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The “Harder-Narasimhan trace”

and unitarity of the
KZ/Hitchin connection: genus 0

By T. R. Ramadas*

Abstract

Let a reductive group G act on a projective variety X+, and suppose given
a lift of the action to an ample line bundle θ̂. By definition, all G-invariant
sections of θ̂ vanish on the nonsemistable locus X nss+ . Taking an appropriate
normal derivative defines a map H0(X+, θ̂)G → H0(Sµ,Vµ)G, where Vµ is a
G−vector bundle on a G−variety Sµ. We call this the Harder-Narasimhan
trace. Applying this to the Geometric Invariant Theory construction of the
moduli space of parabolic bundles on a curve, we discover generalisations of
“Coulomb-gas representations”, which map conformal blocks to hypergeomet-
ric local systems. In this paper we prove the unitarity of the KZ/Hitchin
connection (in the genus zero, rank two, case) by proving that the above map
lands in a unitary factor of the hypergeometric system. (An ingredient in
the proof is a lower bound on the degree of polynomials vanishing on partial
diagonals.) This elucidates the work of K. Gawedzki.

Introduction

The Hitchin connection – the algebro-geometric version of the connec-
tion described by the Knizhnik-Zamolodchikov-Bernard equation – is gener-
ally believed to be unitary. In a series of remarkable works (related in spirit
to the differential-geometric version, due to S. Axelrod, V. Della Pietra and
E. Witten), K. Gawedzki has derived expressions for a scalar product ([G]
and references therein, in particular, [G1] and [G2]). The starting point is a
formal functional integral, and a series of transformations results in a finite-
dimensional integral. The latter integral is extremely complicated, the domain
of integration noncompact, and convergence has been proved in few cases. Fur-
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thermore, invariance under the KZ connection is only shown ([F-G]) under the
assumption of convergence of the integrals involved.

This work is part of a project to understand the resulting expressions and
to extract a rigorous proof of unitarity. Here is a summary.

(1) In the next section (§1), we introduce a family of injective maps (Proposi-
tion 1.1) from the space of invariant sections of a polarising line bundle on
a (projective) G-variety, where G is a complex reductive group. In brief,
one fixes a nonsemistable (Harder-Narasimhan) stratum, and the map is
defined by attaching to each section an appropriate normal derivative on
the stratum. We call this map the Harder-Narasimhan trace.

(2) In Section 2 we recall the construction via Geometric Invariant Theory
of the moduli space of rank 2 (parabolic) bundles on an n-pointed curve.
Invariant sections of a polarising line bundle are sections of a theta bundle
on the moduli space. The space of these sections – the generalised theta
functions, to use Narasimhan’s terminology that harks back to Weil – is
the fibre of a vector bundle over the space of such curves. The Hitchin
connection (in its parabolic version, due to P. Scheinost and M. Schot-
tenloher) describes a natural flat projective connection on this bundle.

(3) In Section 3 we describe the Harder-Narasimhan trace for generalised
theta functions in geometric terms.

In the rest of the paper, we specialise to the genus zero case, where the
n-pointed curve X is P1, with n (distinct) points z1, . . . , zn marked on it.

(4) In Section 4 we describe how, locally over the configuration space of n
distinct points, the (parabolic) Hitchin connection can be identified with
the KZ connection. (Much of this is a rewriting, in algebro-geometric
language, of [G-K].)

(5) In Section 5 we introduce “hypergeometric local systems” on Zn ≡ Cn\∆,
where ∆ denotes the generalised diagonal. These are direct images of
unitary one-dimensional local systems on a complement of hyperplanes
in X ≡ P1 × · · · × P1 × Zn, i.e., the fibre of the local system is the (top)
cohomology with values in a flat unitary line bundle. The number of
factors as well as the choice of local system depend on the parabolic
data and the choice of Harder-Narasimhan stratum. We introduce (for
later use) a certain blow-up of X (the union of hyperplanes becomes a
divisor with normal crossings here), and a cyclic cover X̂ thereof, which
has locally toric (and therefore rational) singularities. For z ∈ Zn, let us
denote by Xz, X̂z, etc., the fibre above z.

(6) In Section 6 we compute the Harder-Narasimhan trace explicitly for the
simplest choice of Harder-Narasimhan stratum and show that it takes
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values in the space of top (degree) forms in a certain hyperplane comple-
ment in Xz. This gives a map of the KZ local system to a hypergeometric
local system, and the dual map has been much studied by A. Varchenko,
V. Schechtman, and others ([V] and references therein). This is the
Coulomb-gas representation of conformal blocks discovered by Dotsenko
and Fateev in the eighties.

(7) We have generalisations to other strata, and in fact, other genera. In
Section 7 we give an example of a computation involving a “deeper”
stratum which yields a new map of local systems.

It is very important for what follows to note that the map to the cohomol-
ogy actually factors through an injective map to the space of top-forms.

(8) We next (§8) prove a preliminary result which addresses the following
question. If a nonzero homogeneous polynomial in b variables is known
to vanish on all partial diagonals of dimension b − a (that is, whenever
a+1 of the variables are equal), what is the minimum degree it can have?
The answer turns out to involve a basic result in combinatorics: Turán’s
theorem.

(9) Returning to our main theme, our second insight is that Gawedzki’s
scalar product is (up to a “central” term) the natural L2 norm of the
top-forms. As described by him, this L2-norm is an integral over the
complement of hyperplanes in Xz of the pointwise norm-squared of the
form, multiplied by the norm-squared of a (multivalued) weight function.
We prove (§9) that this is (up to a constant multiplicative factor) the L2-
norm of a regular top form on the smooth locus of X̂z. (One proves that
the form, a priori defined outside a divisor, extends across the generic
point of each component of this divisor.) For small values of the “level”,
this is contingent on a certain (“Kac-Kazhdan”-type) condition being
met. One then uses the fact that X̂z has rational singularities to see
that such a form must have bounded L2 norm. This proves Gawedzki’s
central conjecture (see §4.3 of [G]).

(10) Invariance under the KZ connection follows with some more work (§10).
An important ingredient is the injectivity of the map from the KZ local
system to the hypergeometric local system, a result due to Varchenko
which we are now able to prove directly using Hodge-theoretic results of
Deligne.

One way of investigating convergence of integrals, familiar in Physics, is
by “power-counting” in various aymptotic directions. Blowing up to display
infinity as a divisor with normal crossings systematises this, and is part of
what goes into Step (9) above. But there are novelties, so that it is worth
summarising the strategy here:
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(1) The integrand is of the form |R|2φ ∧ φ̄, where R = T
1
k+2 , with T an

invertible holomorphic function, and φ a holomorphic top-form, both
defined outside a divisor D in a compact variety Xz, with zeroes and
poles along different components of D. (Here, k is the “level”.)

(2) One blows up along D to get a normal-crossing divisor D′.

(3) One goes to a generically étale and Galois cover X̂z, where R becomes
single-valued. The variety X̂z is normal and locally toric. One keeps
track of the behavior of (the pullbacks of) R and φ near the inverse
image D̂ of D. Remember that φ is a form, and pulling back tends to
produce zeroes.

(4) One checks that Rφ extends (that is, without poles) “generically” across
D̂. By normality of X̂z, Rφ is now defined and holomorphic everywhere
on the smooth part of X̂z. We now use the fact that in our case X̂z

has rational singularities to conclude that Rφ has finite L2 norm. (The
reason is simple: pulled back to any desingularisation of X̂z, a regular
top-form extends everywhere.)

From a strictly logical point of view, unitarity in genus zero can be proved
without reference to the work of Gawedzki, once the map to the hypergeomet-
ric local system is known. But it is in his formulae that lies the clue that this
map in fact lands in a unitary factor of a local system. Also, the description of
the hypergeometric map as a trace on a Harder-Narasimhan stratum emerged
out of a close inspection of these formulae, and of the support properties of
the formal functional measures that figure in the intermediate steps of his cal-
culation. (Note also that Gawedzki’s computation yields the “Virasoro central
charge”, which we totally ignore.)

I close this Introduction with remarks on work in progress:

(1) Clearly the most urgent task is to extend our results to higher genus, and
in particular, to the case “without insertions”, i.e., when one considers
moduli spaces of bundles without parabolic structure. Section 3 is set
up so that the target space of the corresponding trace map is evident. In
fact I can now interpret the results of F. Falceto and K. Gawedzki [F-G]
and G. Felder and A. Varchenko [F-V] in genus one from this point of
view, and a proof of unitarity in this case seems at hand.

(2) The relationship between traces on different strata, and induced inner
products on conformal blocks, is not clear yet. In higher rank, the choices
of Harder-Narasimhan strata possible are much richer, and the story
possibly involves the “strange dualities”.

After this work was done, I became aware of the work of T. Yoshida ([Y])
which addresses the unitarity of the Hitchin connection. The approach is via
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“abelianisation” à la Hitchin. I should also mention the important work of
A. Kirillov ([K]) where a “formal” hermitian structure – invariant under an
action of the modular group, presumably the monodromy of the KZ equation
– is defined on conformal blocks.

1. The Harder-Narasimhan trace

In this section, we introduce a map from the space of invariant sections
of a polarising line bundle. The map takes values in invariant sections of a
certain vector bundle.

We consider varieties over C. Let a reductive group G act on an irreducible
projective variety X+, and suppose given a lift of the action to an ample line
bundle θ̂. This is the familiar setup of Geometric Invariant Theory (GIT
henceforth). One defines a closed subset, the set of nonsemistable points, by

X nss+ = ∩l ∈N{x ∈ X+|σ(x) = 0 ∀ σ ∈ H0(X+, θ̂
l)G } .

We define X ss+ = X+ \ X nss+ , the open set of semistable points, which we shall
assume to be nonempty.

Suppose now that X is a nonempty open G−invariant subset of X+. We
set X nss = X ∩ X nss+ . Let Y be a closed, irreducible G−invariant subset of
X nss, endowed with the structure of a reduced variety. (In general Y will be
only locally closed in X+.) Let IY denote the corresponding sheaf of ideals on
X . This is clearly G−invariant. Restriction gives an injective map

H0(X+, θ̂)G ↪→ H0(X , θ̂ ⊗ IY)G.

Let us suppose in addition that H0(X , θ̂)G is finite-dimensional. (This will be
the case, for example, if X ss+ ⊂ X .) In that case

H0(X , θ̂ ⊗ IQY )G = 0

for Q a sufficiently large integer, so that for such a Q we have an injection

H0(X+, θ̂)G ↪→ H0(X , θ̂ ⊗ IY/IQY )G .

For q any positive integer, let N ∗(q) denote quotient IqY/I
q+1
Y . This is a sheaf

on Y. The sheaf IY/IQY is filtered:

0 ⊂ · · · ⊂ Iq+1
Y /IQY ⊂ I

q
Y/I

Q
Y ⊂ · · · ⊂ IY/I

Q
Y .

Denote the successive quotients:

N ∗(q) = IqY/I
q+1
Y .

Let Hq ≡ H0(X , θ̂ ⊗ IqY/I
Q
Y )G. Note the injection

Hq/Hq+1 ↪→ H0(Y, θ̂ ⊗N ∗(q))G .
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Suppose henceforth that Y is smooth and X is smooth along Y. In that case
N ∗(q) is the qth symmetric power SqN ∗ of the co-normal bundle N ∗ of Y.

Finally we make the following hypothesis:

• (H) There exists a unique q = q∗ such that H0(Y, θ̂ ⊗ Sq∗N ∗)G 6= 0.

This condition, which appears extremely strong, is satisfied in many cases, and
the ensuing theory is very pleasant. In particular, we have an injective map

TR : H0(X+, θ̂)G ↪→ H0(Y, θ̂ ⊗ Sq∗N ∗)G .

If X+ is normal, the restriction map H0(X+, θ̂)G → H0(X ss+ , θ̂)G is an isomor-
phism ([N-R], Lemma 4.15), so that we can conclude:

Proposition 1.1. Suppose X+ is normal, (H) holds, and the line bundle θ̂
descends to a line bundle θ on the GIT quotient X ss+ //G. There is an injective

map:
TR : H0(X ss+ //G, θ) ↪→ H0(Y, θ̂ ⊗ Sq∗N ∗)G .

We call this the Harder-Narasimhan trace.

Remark 1.2. We will need a slightly stronger version which also follows
from the same lemma: suppose that X ss+ is contained in the normal locus of
X+, as is the subset X . In this case we have again an injective map, which
factors as follows:

H0(X ss+ //G, θ) ↪→ H0(X , θ)G ↪→ H0(Y, θ̂ ⊗ Sq∗N ∗)G.

Here is an illustrative example, which will be useful later.

Notation 1.3. Fix positive integers µi, i = 1, . . . , n, satisfying the condi-
tion: 1

2

∑
i µi ≡ J , an integer. For V1 a two-dimensional vector space, define

Ŵ(V1) to be the tensor product

⊗
i
SµiV1 ⊗ (detV1)−J .

This is a PGL(V1)-module. Let W(V1) denote the subspace of invariants.

Remark 1.4. Note that if V2 is another two-dimensional vector space, the
spaces W(V1) and W(V2) are canonically isomorphic. In particular, to a rank
two vector bundle F (on any base) one can associate a canonically trivialised
bundle W(F).

Remark 1.5. Fixing a nonzero element τ of detV1, we have an isomor-
phism

(⊗
i
SµiV1)SL(V1) →W(V1) ,

given by w 7→ w ⊗ τ−J .
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Let V be a two-dimensional vector space, and set XJ = P(V )× · · · × P(V )
n factors

.

The latter is a PGL(V )-variety. Take as polarisation

θ̂ = O(µ1)⊗ ..⊗O(µn)⊗C (detV )−J .

We have then
H0(XJ , θ̂)PGL(V ) = W(V ) .

Take Y to be the image of the diagonal inclusion P(V ) ↪→ XJ . This is clearly
part of the nonsemistable locus. Note that the restriction of θ̂ to Y is O(2J)⊗C
(detV )−J , and N is defined by the naturally split sequence

(1) 0→ K−1
P(V ) −→diagonal

(K−1
P(V ))

n → N → 0 .

Therefore condition (H) is satisfied with q∗ = J . Note thatH0(Y, θ̂⊗SJN ∗)PGL(V ) =
SJ(Cn/C)∗.

Notation 1.6. Fixing a basis (v,v′) of V , we have the standard basis
(e, f, h) of sl(V ), defined by

ev = v′, ev′ = 0(2)

fv = 0, fv′ = v

hv = −v, hv′ = v′ .

Let ei, fi, hi denote the induced maps on SµiV , as well as on the tensor product
Ŵ(V ) (with ei, for example, acting trivially on all factors except the ith). Set
τ = v′ ∧ v, define vectors: vJ = ⊗

i
vµi and v′J = ⊗

i
v
′µi . For future reference

we record: hivJ = −µivJ , hiv′J = µivJ . Let (σ, σ′) denote the basis of
sections of O(1) given by the vectors (v,v′) respectively (via the quotient map
V ⊗C OP(V ) → O(1) → 0), and x the (meromorphic) co-ordinate on P(V )
determined by σ = xσ′. For any positive integer µ, denote by 〈, 〉 the duality
pairing SµV ⊗ SµV → C:

〈x1 ⊗ . . . xµ, y1 ⊗ . . . yµ〉τµ =
1
µ!

∑
ρ

(x1 ∧ yρ(1)) . . . (xµ ∧ yρ(µ))

where the sum is over all permutations ρ of {1, . . . , µ}. This induces an SL(V )-
invariant bilinear form on tensor products, which we continue to denote by 〈, 〉.

Lemma 1.7. The map SµV → H0(P(V ),O(µ)) = SµV , given by

(3) u 7→ 〈u, exp−xe vµ〉σ′µ,

is the identity.

We omit the proof.



8 T. R. RAMADAS

Proposition 1.8. The trace map

TR : W(V ) ↪→ SJ(Cn/C)∗

is given by

TR(wτ−J) (u1, . . . ,uJ) =

〈
w,

J∏
ν=1

(∑
i

uiνei

)
vJ

〉
where uν = (u1

ν , . . . , u
n
ν ).

Remark 1.9. One can check that the above map is independent of the
choice of basis. Further: (a) TR(wτ−J) (u1, . . . ,un) = 0 if u1 = (u, . . . , u)
(since w is an invariant vector), and (b) if we define TRL(wτ−J) as above with
an arbitrary positive integer L replacing J , then TRL(wτ−J) is identically zero
unless L = J (consider weights). The above map TR is totally canonical, but
a universal choice (of sign) has been made in the isomorphism:

K−1
P(V ) = O(2)⊗ (detV ) .

Proof. Under the map (3) the vector wτ−J ∈W(V ) maps to

σw ≡ 〈w, exp−
∑
i

xiei vJ〉 ⊗
i
σ
′µi τ−J .

Using the above Remark (b), one sees that σw vanishes on the diagonal to
order J − 1, and the J th derivative at the point P = {x1 = · · · = xn = 0} is
the form

DJσw = (−1)J
∑
|α|=J

1
α!
〈w, eαvJ〉dxα ⊗

i
σ
′µi τ−J .

Here α ≡ (α1, . . . , αn) is a multi-index, and eα ≡
∏
i e
αi
i , etc. Using the split

sequence (1), we get

TR(wτ−J)(u, . . . ,u)) = (−1)J
∑
|α|=J

1
α!
〈w, eαuαvJ〉dxJσ

′2J τ−J .

One checks that the tensor product −dxσ′2 τ can be canonically (up a sign
convention) made equal to one. Polarising the resulting expression yields the
proposition.

2. Rank 2 parabolic bundles on a curve

We summarise some basic results on the theta bundle and the “parabolic”
Quot scheme. These are extracted from [N-R]. We have made some minor
changes of notation to facilitate comparison with the literature.
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Let X be a smooth projective curve of genus g. We will consider rank
2 parabolic bundles of (ordinary, not “parabolic”) degree d, with parabolic
structures at n distinct points zi, i = 1, . . . , n. Fix a further base point z0 on
X. We let I denote the set {1, . . . , n}, and Z the set {z1, . . . , zn}.

Notation 2.1. Define χ = d + 2(1 − g). Fix a positive integer k, and
integers µi, i = 1, . . . , n satisfying the conditions:

(1) 0 < µi < k, and

(2) l ≡ 1
2(kχ+

∑
i µi)− kn is an integer.

Define the set of real numbers {ti} by ti = µi/k. Set κ = k + 2.

By definition, a rank 2 quasi-parabolic bundle E comes with a quotient
sheaf Q with support Z, and with length one at each of the points zi; the “pa-
rabolic weights” {ti} having been chosen, we have in fact a parabolic structure.
The parabolic degree of E is

par degE = degE +
∑
I

ti .

Given a line sub-bundle L, this inherits a parabolic structure L → QL → 0,
where QL is the image of the composite map L → E → Q. (L is regarded
as having a parabolic structure on Z – note that this structure is in fact
“nontrivial” at Z \ support QL, which explains the expression for its parabolic
degree given below.) The quotient line bundle E/L ≡ L′ inherits the parabolic
structure L′ → QL′ → 0, where Q/QL ≡ QL′ . We define complementary
subsets R and Rc of I by support QL′ = {zi|i ∈ R}. The parabolic degree of
L is defined to be

par degL = degL+
∑
R

ti

and that of L′ is defined to be

par degL′ = degL′ +
∑
Rc

ti .

Semistability of E (w.r.to parabolic weights ti) requires that for every such
sub-bundle L we have par degL ≤ 1

2par degE, that is to say,

2degL− degE ≤
∑
Rc

ti −
∑
R

ti .

If E is not semistable there exists a line sub-bundle contradicting semista-
bility. This is unique (the rank 2 case is deceptively simple), and the corre-
sponding extension

(4) 0→ L→ E → L′ → 0
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with Lzi → Qi being an isomorphism if and only if i ∈ Rc, is the parabolic
Harder-Narasimhan filtration. In general these extensions do not split. In this
paper we wish to consider only those that do split, though we do not rule out
having to consider other cases in future. Here is a sufficient condition for that
to happen. (In what follows we denote by D the degree of the sub-bundle L.)

Lemma 2.2. Suppose 2D − d > 2g − 2 + |Rc|. Then E is isomorphic to
the direct sum L⊕ L′, with parabolic structure given by Q = QL ⊕QL′ , where
support QL = ZRc ≡ {zi|i ∈ Rc} and support QL′ = ZR ≡ {zi|i ∈ R}. (We
write, informally, (E,Q) = (L,QL)⊕ (L′, QL′).)

Proof. We first need the extension to split as an extension of vector
bundles, forgetting parabolic structures. The condition H1(Hom(L′, L)) = 0
ensures this, and this in turn is guaranteed if 2D−d > 2g−2. To guarantee that
the extension of parabolic bundles splits, we need the map H0(Hom(L′, L))→
⊕i∈RcHom(L′, L)zi to be surjective. This in turn is the case if 2D − d >

2g − 2 + |Rc|.

Let T be a parameter variety. Suppose given a rank two bundle ET on
T ×X, and rank one quotients ET,zi → QT,i → 0, with ET,zi noting the pull-
back to T of ET by the map t 7→ (t, zi). This is a family of parabolic bundles
parametrised by T . One defines the line bundle LT on T by

(5) LT = (detR(πT )∗E)k ⊗ {⊗
i
QµiT,i ⊗ (det ET,zi)k−µi} ⊗ (det ET,z0)l .

The determinant bundle of cohomology is defined with the convention that
the determinant line associated to a bundle E on X is (detH0(X,E))−1 ⊗
(detH1(X,E)). One verifies that if ET is twisted by a line bundle from the
parameter space T , the line bundle LT “does not change” - the last factor is
designed to ensure this.

Let U = U({ti}I) denote the moduli space of (s-equivalence classes of)
semistable parabolic bundles of rank 2 and degree d on X, with quasi-parabolic
structures at the {zi}I , semistable with respect to the weights {ti}I . There is
a natural ample line bundle θ = θ(k, {µi}I) on U , which pulls back to LT if
the family ET consists of semistable parabolic bundles. (If the base point z0 is
changed, θ changes in its algebraic equivalence class; in the case when g = 0,
it is in fact well-defined.)

We outline the construction of U and the “parabolic Quot scheme” that
intervenes. Let O(1) denote an ample line bundle on X of degree 1. Let Q+

denote the Quot scheme parametrising rank 2, degree d quotients of O(−m)M ,
with m a large positive integer, wisely chosen, and M = χ+ 2m. On Q+ ×X
there is the tautological sequence:

O(−m)M → EQ+ → 0 .
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For each i, consider the sheaf EQ+,zi on Q+, and let Pi denote the scheme
representing its rank-one locally free quotients. We let Q̂+ denote the fibre
product ×

i
Q+Pi and denote byQ the open subset ofQ+ consisting of locally free

quotients O(−m)M → E → 0 such that the induced map CM → H0(E(m))
is an isomorphism; we let Q̂ denote its inverse image in Q̂+. (In particular
H1(E(m)) = 0 for such E.) By Grothendieck’s criterion ([Le-P, Th. 8.2.1]) Q
is regular, and therefore so is Q̂. We choose m large enough such that

• all semistable parabolic bundles occur as quotients in Q̂, and further,

• all nonsemistable bundles belonging to a certain finite number of Harder-
Narasimhan types (depending on the situation) also occur in Q̂, and the
corresponding strata are smooth.

Note that Q̂ is contained in the smooth locus of Q̂+, and is irreducible.

Notation 2.3. Consider, briefly, the case g = 0, d = 0. In this case an
open set Q0 of Q parametrises quotients which are trivial. For later use, we
denote by Q̂0 the open subset of Q̂ over Q0.

The data chosen at the beginning of this section determine a polarisation
linearising the PGL(M) action on Q̂+; the space U is the quotient of the subset
of semistable points for this action. On this open set, the polarising line bundle
is (up to a power) isomorphic as a PGL(M) line bundle to θ̂ ≡ LQ̂. The line
bundle θ is the descent to U of θ̂.

3. Computation of the Harder-Narasimhan trace

If we fix D and R ⊂ I satisfying

(1) 2D − d >
∑

Rc ti −
∑

R ti,

(2) 2D − d > 2g − 2 + |Rc|

(the second inequality clearly implying the first if the genus is nonzero), there
is an obvious family of nonsemistable parabolic bundles parametrised by J ≡
JDX × J

d−D
X , direct sums of parabolic line bundles as in Lemma 2.2.

Given a line bundle L of degreeD, and another, L′ of degree d−D, consider
the cohomology H1(Hom(L(ZR), L′)). (The sets ZR and ZRc are defined in
the statement of Lemma 2.2.) The exact sequence of sheaves

0→ Hom(L(ZR), L′)→ Hom(L,L′)→ L−1 ⊗ L′|ZR → 0

yields the exact sequence of vector spaces

0→
∑
i∈R

L−1 ⊗ L′|zi → H1(Hom(L(ZR), L′))→ H1(Hom(L,L′))→ 0 .
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An element of H1(Hom(L,L′)) gives an extension

0→ L′ → E → L→ 0 .

Writing the extension class as the pullback of an element H1(Hom(L(ZR), L′))
corresponds to a diagram:

0 −−−−→ L′ −−−−→ E −−−−→ L −−−−→ 0y y y
0 −−−−→ L′ −−−−→ E′ −−−−→ L(ZR) −−−−→ 0 .

The bundle E has a natural (quasi)parabolic structure at points of ZR, given
by the map E → L′|ZR → 0. At points of ZRc , endow E with the parabolic
structure E → L|ZRc → 0.

All this can be done in a family. Choose Poincaré line bundles L on JDX and
L′ on Jd−DX . Consider the bundle N on J defined to be the first direct image
(on J ) of Hom(L(ZR),L′). We have a family of parabolic bundles parametrised
by the corresponding projective bundle P(N ∗) (of one-dimensional subspaces
of the fibres of N ). Note that the generalisation of (4) is the tautological exact
sequence on P(N ∗)×X:

0→ L′ → EP(N ∗) → L⊗OP(N ∗)(−1)→ 0 .

We have the following:

Proposition 3.1. The generic parabolic bundle in this family is semistable.
Under the rational map φ : P(N ∗)−− → U , θ pulls back to

LP(N ∗) = (detR(πJDX )∗L)k ⊗ ⊗
i∈Rc
Lµizi ⊗ ⊗

i∈I
Lk−µizi ⊗ Llz0(6)

⊗(detR(πJd−DX
)∗L′)k ⊗ ⊗

i∈R
L′µizi ⊗ ⊗

i∈I
L′k−µizi ⊗ L′lz0

⊗OP(N ∗)

(
k
[
D − d

2

]
+

1
2

∑
i

µi +
∑
Rc

µi

)
.

Proof. We need to show that a semistable parabolic bundle occurs in the
family parametrised by P(N ∗). In fact by a standard argument (adapted to the
parabolic case) one sees that the generic such bundle does indeed occur, thus
proving the existence of a rational dominant map φ as above. The expression
(6) follows by a simple computation using the definition of the theta bundle
(Equation (5)).

Remark 3.2. (a) One checks that the R.H.S of (6) is invariant under a
change of Poincaré bundles: L 7→ L⊗M , L′ 7→ L′⊗M ′, where M, M ′ are line
bundles on the respective jacobians.
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(b) If there are no parabolic points (i.e., n = 0), the above expression
becomes

LP(N ∗) = (detR(πJDX )∗L)k

⊗Llz0 ⊗ (detR(πJd−DX
)∗L′)k ⊗ L′lz0 ⊗OP(N ∗)

(
k
[
D − d

2

])
.

The interest of the above proposition is the following. The data (D,R)
determine a Harder-Narasimhan stratum S(D,R). Let N denote the normal
bundle, and let Nq̂ be its fibre at a point q̂ ∈ Q̂ which corresponds to a
parabolic bundle (E,Q)→̃

η
(L,QL)⊕ (L′, QL′). Then we have an isomorphism

(depending on η, as the notation emphasises)

Nq̂ =
Tη
H1(Hom(L(ZR), L′)) .

We now apply the considerations of Section 1, taking X+ = Q̂+, W = S(D,R)

and X to be an open PGL(M)-invariant subset of Q̂+ containing S(D,R) in
which this stratum is closed. We check that (thanks to the hypothesis 2D−d >
2g − 2 + |Rc|), the whole stratum is a bundle over JDX × J

d−D
X . The isotropy

(in PGL(M)) of a point q̂ is P (C∗ ×C∗), and it acts by a nontrivial character
on the fibre of θ̂ ⊗ SqN ∗ unless

q = q∗ ≡ k[D − d

2
] +

1
2

∑
i

µi +
∑
Rc

µi .

The condition (H) of Section 1 is therefore satisfied, and we have the following
important result. The proof is a matter of unravelling definitions, and we omit
it.

Theorem 3.3. The map φ of Proposition 3.1 induces the Harder-Narasimhan
trace

TRS(D,R) : H0(U , θ)→ H0(J , θL ⊗ θL′ ⊗ Sq∗N ∗(L,L))

where θL is defined by the first line of the RHS of (6), θL′ by the second line,
and N ∗ ≡ (πJ )∗(L ⊗ L′−1 ⊗KX(ZR)).

Remark 3.4. We shall consider two particular cases:
(a) The genus of X is zero, D = d = 0, R = I. In this case N is just the

vector space H1(O(−Z)), and the trace map lands in SJH0(KX(Z)). Note,
for later reference, that the residue map yields an isomorphism

(7) H0(KX(Z))→ (Cn/C)∗ .

(b) The genus of X is zero, d = 0, D = 1, R = I. In this case the trace
map is into L(z1,...,zn) ⊗ SJ+kH0(O(Z)), where L(z1,...,zn) is a one-dimensional
vector space to be defined in the next section.
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The generalisation of the above proposition to higher rank involves the
moduli spaces studied by Bradlow, Garcia-Prada and others.

4. Generalised theta functions and conformal blocks, genus zero

Much of the material in this section is not new (cf., [G-K]), but I cannot
find a reference in algebro-geometric terms.

We take d = 0, so that χ = 2. Noting that
∑

i µi is an even integer, we
set, as in Section 1,

J =
1
2

(∑
i

µi

)
.

We remark that setting d = 0 leads to no loss of generality. In the presence
of parabolic structures, a suitable Hecke transformation gives an isomorphism
between even and odd degree (rank 2) moduli spaces. See Section 2.1 of [R].

Write the genus zero curve as the projective space associated to a two-
dimensional vector space: X = P(V ). Consider the tautological exact sequence
on X = P(V ):

0→ s→ V ⊗C O →
p
q → 0

where we denote by q the hyperplane bundle O(1).
We pause to define the notation used in the Remark 3.4:

L(z1,...,zn) = (detV )−J ⊗
i
sµizi .

Recall the definition of Q̂0 (§2): this is the open subset of the parabolic
Quot scheme Q̂ where the quotient sheaf is the trivial bundle. Its complement
is a divisor D = Q̂ \ Q̂0. We will need to consider one-parameter families of
parabolic bundles which cut this divisor, and we deal with this now.

Let T denote the affine line, and let t be a co-ordinate. Let ET be the
bundle on X × T defined by

(8) 0→ ET → V ⊗C O ⊕ q →
P
q → 0 ,

where the map P is defined by

P (v, β) = p(v)− tβ .

We omit the proof of the following:

Lemma 4.1. There is an exact sequence sequence (on T ×X):

0→ s→ ET → q → 0

such that the induced map T → H1(X, q−1s) = H1(KX) = C is given by the
co-ordinate t.
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One checks that ET is a Hecke transform on X × T :

0→ ET → V ⊗C O → q0 → 0

where q0 = (i0)∗q, i0 being the inclusion X → X ×{0} ⊂ X × T . In turn, this
yields on T the Hecke transform:

(9) 0→ ET,zi → V ⊗C O → qzi → 0 .

Turning to the corresponding projective bundles, we see that P(ET,zi) is related
to the the product bundle PT (V )i ≡ T ×P(V ) by a blow-up and a blow-down:

Pi
Li

yyssssssssss
Ri

&&MMMMMMMMMMMM

z̃i ∈ P(ET,zi)

%%LLLLLLLLLL
PT (V )i 3 (0, zi)

xxpppppppppppp

T.

Here Ri is the blow-up of PT (V )i at (0, zi) - we denote the exceptional fibre
by ERi . The map Li blows down ELi (the proper transform of {0}× P(V )) to
a point, which we denote z̃i.

Let T̂ → T denote the fibre product ×TP(ET,zi), and T̂0 = T × ×
i
P(V ).

As above, T̂ and T̂0 are related by a blow-up and a blow-down:

P
L

����������
R

��@@@@@@@@

T̂

��???????? T̂0

��~~~~~~~~

T.

Let D0 denote the divisor in P defined by {t = 0}. Note the equality (for
any i):

(10) D0 = ERi + ELi .

Define L0 to be the line bundle (detV )−J ⊗
i
qµii on T̂0, where qi denotes the

quotient line bundle on PT (V )i. The isomorphism – on {t|t 6= 0} – ET →
V ⊗C O induced by (8) yields on P \D0 an isomorphism between LT̂ and L0.

The following proposition relates LT̂ and L0 on P:

Proposition 4.2. The above isomorphism extends to an isomorphism

(11) L0 = LT̂ ⊗O(
∑
i

µiERi)O(−(k + J)D0) .



16 T. R. RAMADAS

Proof. There are three steps. (a) We recall some notation: qi denotes
the tautological quotient bundle on PT (V )i, and QT,i the quotient bundle on
P(ET,zi). Pulled back to Pi, these two line bundles are related by the natural
isomorphism qi = QT,i(ERi).

(b) The map ET → V ⊗C O induced by the exact sequence (8) yields a
map of direct images

(πT )∗ET → V ⊗C OT .

These are rank two vector bundles and the above map is an isomorphism away
from t = 0, where it vanishes. The first direct images are zero. This yields an
isomorphism detR(πT )∗ET → detV ⊗C O(2D0).

(c) The sequence (9) yields isomorphisms det ET,zi → detV ⊗C O(−D0);
we have a similar isomorphism at z0.

It is straightforward now to verify the equation (10).

Theorem 4.3. H0(Q̂0, θ̂)PGL(M) = W(V ). For k ≥ J , all invariant sec-
tions of θ̂ extend across D, so that H0(Q̂, θ̂)PGL(M) = W(V ). For k < J ,
H0(Q̂, θ̂)PGL(M) ⊂ W(V ) is defined by the following condition: An element
φ ∈W(V ) belongs to the subspace H0(Q̂0, θ̂) if and only if

(G) φ vanishes to order J − k at (z1, . . . , zn) .

Proof. Consider the universal quotient bundle EQ0 on Q0 × X, and
let E = (π1)∗EQ0 be its direct image on Q0. The map π∗1E → EQ0 is an
isomorphism, and therefore H0(Q̂0, θ̂)PGL(M) = H0(Q0, Ŵ(E))PGL(M). Now,
Q0 is a homogeneous space for PGL(M), so that the last space is equal to the
fixed subspace for the isotropy group at any point.

To prove the second statement, it suffices to see which invariant sections
of θ̂ on Q̂0 extend across the divisor D = Q̂ \ Q̂0. The generic degeneration of
the trivial rank two bundle on P1 is as a direct sum O(1) ⊕ O(−1). We now
use Proposition 4.2 and the isomorphism (11).

Consider now the configuration space M̂n of n (distinct) points z1, . . . , zn
on X (we do not take the quotient modulo the projective group), and repeat
the above constructions relative to M̂n. Once a further point z0 is chosen,
we get on M̂n a vector bundle V of generalised theta functions, which comes
embedded in the (canonically) trivial bundle W with fibre W(V ). The KZ
connection is a connection on W which leaves the sub- bundle V invariant.
This is an actual connection (rather than just a projective connection), and
flat, but depends on the choice of a point ∞ on X, and is defined locally on
M̂n. Let M̂′n denote the open set of configurations disjoint from ∞. Given a
section of W over M̂′n, i.e., a function w : M̂′n →W(V ), the KZ connection is
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defined by:

∇w = dw − 1
κ

∑
i

dzi
∑
j 6=i

Ωij

zi − zj
w

where (recall) κ = k+ 2. We have chosen a co-ordinate function on X = P(V )
as in Section 1, and will not distinguish the points zi and their co-ordinates.
For each j 6= i, Ωij is an endomorphism of W(V ) defined by:

Ωij = eifj + fjej +
1
2
hihj .

We have the following theorem, whose proof can be extracted by combin-
ing [G-K] and [S-S]. The latter work involves a detour via moduli spaces of
bundles on elliptic surfaces. A direct proof will be published elsewhere.

Theorem 4.4. The bundle V ↪→W is invariant under the above connec-
tion. The induced projective connection on V agrees with the heat equation
connection, defined à la Hitchin.

5. Interlude: hypergeometric local systems

In this section, as in the previous one, we let zi ∈ C be variables, and we
set Zn ≡ {(z1, . . . , zn)|zi 6= zj ∀i, j}. We denote by XJ the product X × ..×X

J factors
.

We set XJ,n ≡ XJ×Zn. We next define a collection C of hyperplanes H ↪→ XJ,n,
and associate a positive rational number a(H) to each H:

(1) Di
ν will denote the divisor Di

ν = {(t1, . . . , tJ; z1, . . . , zn)|tν = zi}. The
corresponding weight is a(Di

ν) = µi
κ .

(2) Dν = {tν =∞}, a(Dν) = −2(1+J−J)
κ .

(3) D(ν,ν′) = {tν = tν′}, a(D(ν,ν′)) = − 2
κ .

Let D denote the union of all the above divisors. Define the meromorphic
function T by

T =
∏
i<j

(zi − zj)
−µiµj

2

∏
ν,i

(tν − zi)µi
∏
ν<ν′

(tν − tν′)−2 .

Note that the divisor of T is (the diagonals {zi = zj} having been removed)

(T ) =
∑
ν,i

µiD
i
ν − 2

∑
ν<ν′

D(ν,ν′) −
∑
ν

2(J − J + 1)Dν .

The above data define a hypergeometric local system on Zn, as follows.
First, consider the twisted algebraic de Rham complex on XJ,n \D:

· · · → Ωp
alg →dR

Ωp+1
alg → . . .
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where Ωp
alg is the sheaf of algebraic p−forms and the differential dR is defined

by

(12) dR ≡ d+
1
κ
T −1dT = R−1 ◦ d ◦ R .

The second equality above is formal, with R denoting the κth root of T . By
Gothendieck’s algebraic de Rham theorem, this complex gives the cohomology
of a certain one-dimensional local system on XJ,n.

Consider the top direct image of this local system on Zn. This yields a
flat vector bundle HJ

R on Zn, which we now describe. Locally, over affine open
sets U of the base, a section ω̄ of the vector bundle is represented by a J-form
ω along the fibres of the inverse image in XJ,n \ D, modulo dR-exact forms.
The projection XJ,n \D → Zn being affine, ω can be extended to a form ω′ on
the inverse image of U , and for the same reason, given a vector field v on U

one can lift it to a vector field ṽ. The covariant derivative of ω̄ is defined by

∇vω̄ = R−1LṽRω′

where L denotes the Lie derivative, and the above equation is to be read in
the same spirit as (12). One checks that this is independent of choices.

All this is in the algebraic category. The fibre of the local system HJ
R at a

point z ∈ Zn is the Jth cohomology of the local system on the fibre XJ,n \Dz.

-

6

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

z1

z2

∞

z1 z2 ∞

t1

t2

Here we denote byDz the union of the divisors {t1, . . . , tJ|tν = zi}, {t1, . . . , tJ|tν
=∞} and {t1, . . . , tJ|tν = tν′}.

There exists a natural blow-up π′ : X′J,n → XJ,n ([E-S-V], [V]) such that
the (reduced) inverse image D′ of D is a divisor with normal crossings. A
nonempty intersection of elements of C is called an edge. If L is an edge, set
CL = {H ∈ C|L ⊂ H}. Note that L = ∩H∈CLH. The notion of a dense edge is
due to Varchenko. For a definition, and a proof of the following theorem, see
[O-T]. In fact we state a slightly different, relative (to Zn), version.
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Theorem 5.1. Let Lp, p = n, . . . , J+n−2, denote the set of dense edges
of dimension p, and Lp the union of the elements of Lp. Set LJ+n−1 = C and
L =

∐J+n−1
p=n Lp. Let Xn = XJ,n, and, for p < J let πp : Xp+n → Xp−1+n be the

blow-up along the proper transform of Lp−1 under π1 ◦ · · · ◦πp−1. Then X′J,n =
XJ+n−1 and π′ = π1 ◦ · · · ◦ πJ−1. The irreducible components of D′ intersect
normally, and the set of these divisors is in natural bijection L↔ D′(L) with
the set of edges L ∈ L.

The following is Lemma 10.8.4 of [V]. Here a(L) is the quasi-classical
weight of an edge L, defined by

a(L) =
∑
L⊂H

a(H) =
∑
H∈CL

a(H)

and we have introduced the notation α(L) = κa(L).

Lemma 5.2. Let x0 be a point of D′, such that in a neighbourhood D′ is
given by the equation x1 . . . x` = 0. Then around x0 one has T ◦ π′ = (unit)×
x
κa(L1)
1 . . . x

κa(L`)
` where the edge Li corresponds to the divisor D′(Li)={xi=0}.

That is, the divisor of T ◦ π′ in X′J,n is

(T ◦ π′) =
∑
L

α(L)D′(L) .

We note also:

Lemma 5.3. Let D′(Lp) denote the sum of divisors corresponding to el-
ements of Lp. The canonical bundles of X′J,n and XJ,n are related on X̂′J,n
by

KXJ,n = KX′J,n(−(J− 1)D′(Ln)− (J− 2)D′(Ln+1) · · · −D′(LJ+n−2)) .

We next construct a normal variety X̂J,n,R, and a generically finite map
π : X̂J,n,R → XJ,n such that the meromorphic function T , pulled back by π̂,
has a κth root R. This we do by thinking of T ◦ π′ as a rational map to P1,
taking the fibre product with the κth-power map P1 → P1, and then closing
up the result in X′J,n × P1, thus obtaining a (reduced, but in general, reducible
and nonnormal) variety, denoted X′′J,n,R. Explicitly, if (x, y) are homogeneous
co-ordinates on P1 and T ◦ π′ is locally given as a quotient F/G of regular
functions, X′′J,n,R is defined by

xκG = yκF .

In fact locally F and G can be taken to be monomials (since D′ has normal
crossings), so that X′′J,n,R is locally a (nonnormal) toric variety. Its normalisa-
tion is therefore locally toric. (See [C, Lecture 1 (7): Third construction: toric
ideals].)
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Let π′′ denote the projection X′′J,n,R → X′J,n. We define π̂ : X̂J,n,R → X′′J,n,R
to be the normalisation map, and set π = π′ ◦ π′′ ◦ π̂. This is the tower that
we finally obtain:

D̂ −−−−→ D′′ −−−−→ D′ −−−−→ Dy y y y
X̂J,n,R

π̂−−−−→ X′′J,n,R
π′′−−−−→ X′J,n

π′−−−−→ XJ,n .

Note that the group µκ of κth roots of unity acts on X′′J,n,R as well as its
normalisation; the map X̂J,n,R \ D̂ → XJ,n \D is a µκ-fibration.

In the rest of this paper we drop, for the most part, the suffixes {}J,n, etc.
We have proved:

Proposition 5.4. The variety X̂ is locally toric, and therefore has ratio-
nal singularities.

Before going further, we make an important observation:

Remark 5.5. The map

ω 7→ π∗Rω ≡ Rπ∗ω

yields an injective map (of complexes) from the twisted de Rham complex on
X \D to the de Rham complex on X̂ \ D̂. The image is the subcomplex which
transforms under µκ by the identity character.

Let D′′ denote the (reduced) inverse image of D′ in X′′. An irreducible
component of D′′ arises from one of the following three situations:

• D′′1 is above a component D′1 = {x1 = 0} (corresponding to an edge L1)
of D′, such that order T ≥ 0 along D′1. (We abuse notation and write T
when we mean T ◦ π′.)
• D′′2 is above a component D′2 = {x2 = 0} (corresponding to an edge L2)

of D′, such that order T < 0 along D′2.

• D′′3 is the inverse image of an intersection D′1 ∩D′2 = {x1 = x2 = 0} of
the types 1 and 2 above, with order T > 0 along D′1.

We will let D̂, D̂1, etc., denote the corresponding inverse images in X̂. We will
need to have an explicit model of the map π (defined above as the composite
morphism π′ ◦ π′′ ◦ π̂) in the vicinity of a smooth point of D̂. We will use the
fact that “normalisation commutes with completion” ([EGA-IV], Corollaire
6.14.5).

(i) Consider first a point x̂0 of D̂ above a smooth point x′0 of a component
D′1 as above. Thus in a neighbourhood of x′0, T = (unit) × x

α(L1)
1 , with
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α(L1) ≥ 0. The variety X′′ is defined locally by {(u, x1)|uεκ = x
α(L1)
1 }, with

ε a set equal to 1 for the present. (The image of x̂0 under π̂, which we can
denote x′′0, is defined by u = 0, x1 = 0. We are suppressing co-ordinates which
do not play a role.) Let δ = gcd(κ, α(L1)), and write κ = δκ′, α(L1) = δα′.
Then x̂0 is on one of δ branches of X̂, and locally the map X̂→ X′′ is given by
t 7→ (u = tεα

′
, x1 = tκ

′
). Recall that we have denoted by R the κth root of T .

Pulled back to X̂, R = (unit)× tα′ near x̂0.
(ii) If the point x̂0 is above a smooth point x′0 of a component D′2, the

above paragraph applies, with α(L1) replaced by α(L2), which is now negative
(ε = −1) and finally, with the notation change x1  x2.

(iii) Finally, suppose x̂0 is above a smooth point x′0 of D′1 ∩ D′2, and
x′′0 ∈ D′′3 is the image of x̂0 under π̂. We have then, near x0

T = (unit)× xα(L1)
1 x

α(L2)
2

(with α(L1) > 0, α(L2) < 0). Near x′′0 ∈ X′ × P1, X′′ is defined by

{(u, x1, x2)|uκx−α(L2)
2 = x

α(L1)
1 },

with the co-ordinates of x′′0 being (u0, 0, 0), where u0 6= 0. (We ignore spectator
co-ordinates.) The normalisation map is (u, t) 7→ (u, t−α

′
2u

κ

α1 , tα
′
1), where we

have written α(Li) = δα′i, i = 1, 2, δ = gcd(α(L1), α(L2)). Note that R is a
unit near x̂.

Lemma 5.6. The canonical bundles of the smooth locus of X̂ and that of
X′ are related in the three cases as follows. The behavior of R, derived in the
above paragraphs, is also summarised.

• KX′ = KX̂(−(κ′ − 1)D̂1) near D̂1, and (R) = α′D̂1.

• KX′ = KX̂(−(κ′ − 1)D̂2) near D̂2, and (R) = α′D̂2.

• KX′ = KX̂(−(α′1 − α′2 − 1)D̂3) near D̂3, and R is a unit.

6. The trace map: first case

In this section we calculate the Harder-Narasimhan trace on the stratum
D = 0, R = I. From now on, we omit the book-keeping factor τ−J . (See
Remark 1.5.)

Theorem 6.1.

TR(0,I)(w) =

〈
w,

J∏
ν=0

(∑
i

ei
tν − zi

)
vJ

〉
dt

where dt = dt1 . . . dtJ .
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Proof. We use the notation of the proof of Theorem 4.3. The Harder-
Narasimhan stratum of interest is Q0×P(E) diagonally included in Q̂0, which
is isomorphic to Q× P(E)n. The bundle θ̂ restricted to Q̂0 is the pullback of
the corresponding θ̂ on P(E)n (defined as in §1). Now use Proposition 1.8, and
commutativity of the diagram

w −−−−→ TR(0,1)(w)y= residue

y
w −−−−→ TR(w)

where TR is the trace calculated in Proposition 1.8 and the residue map is
defined as in Remark 3.4. (In particular, we use the isomorphism (7)).

Remark 6.2. It is instructive to check that the map TR(0,I) lands in the
subspace

SJH0(KX(Z)) ⊂ H0(KX(Z)⊗ · · · ⊗KX(Z))
J factors

= H0(KX(Z1 + · · ·+ ZJ))

where Zν denotes the pullback of Z from the νth factor. First note that for
each ν ′, the residue at tν′ = ∞ of the form TR(0,I)(w) is (up to a nonzero
constant factor) 〈

w,

(∑
i

ei

)
J ′∏
ν=0

(∑
i

ei
tν − zi

)
vJ

〉
dt′

which vanishes because w is invariant. (Here the superscript ′ indicates a
product omitting ν ′.) Thus the form TR(0,I)(w) is indeed regular on XJ except
along the divisorsDi

ν where it has a simple pole. The symmetry is clear because
the ei’s all commute.

Remark 6.3. Note that the Harder-Narasimhan trace on the stratum S(0,I)

is defined on all of W(V ) rather than on the subspace satisfying the condition
(G) of Theorem 4.3. This will not be the case for other strata.

We now let the points zi vary over the open set P1 \ ∞. The trace map
can then be regarded as a map of vector bundles W → HJR, where the latter
bundle is the local system described in Section 5, with the choice J = J .

Theorem 6.4. The map TR(0,I) is compatible with connections.

Proof. I use tricks learnt from [E-F-K] (where the dual map is considered),
and have adapted some of the following notation from there. I go into some
detail because one step of the above reference is not clear to me. Also, we will
need to make a similar, more complicated computation in the next section. Set

• P = 〈w,
∏J
ν=0(

∑
i

ei
tν−zi )vJ〉.
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• Tν,i = ei
tν−zi .

• Yν =
∑

i
ei

tν−zi =
∑

i Tν,i.

• Hν,i = hi+µi
tν−zi .

• Hν =
∑

i
hi+µi
tν−zi =

∑
iHν,i.

Note the equalities:
∂Yν
∂zi

= −∂Tν,i
∂tν

;
∑
j 6=i

[
Ωij

zi − zj
, Yν ] = Tν,i

∑
j

hj
tν − zj

− Yν
hi

tν − zi
.

Suppose w satisfies ∇w = 0. Let R be a multi-valued meromorphic func-
tion whose logarithmic differential is well-defined. We have then (as above, J ′

flags a product omitting ν ′):

R−1L∂zi (RPdt)

=R−1∂R
∂zi

Pdt+

〈
∂w

∂zi
,

J∏
ν=0

YνvJ

〉
dt+

∑
ν′

〈
w,

J ′∏
ν=0

Yν
∂Yν′

∂zi
vJ

〉
dt

=

R−1∂R
∂zi

+
1

2κ

∑
j 6=i

µiµj
zi − zj

Pdt+
∑
ν′

〈w, Y1 . . . [ ]ν
′
. . . YJvJ〉dt

where in the ν ′th place we have

[ ]ν
′ ≡ ∂Yν

′

∂zi
+

1
κ

∑
j 6=i

[ Ωij

zi − zj
, Yν′

]
=−R−1∂(RTν′,i)

∂tν′
+R−1 ∂R

∂tν′
Tν′,i +

1
κ

(
Tν′,i

∑
j

hj
tν′ − zj

− Yν′
hi

tν′ − zi

)
.

Re-arranging, and adding and subtracting terms, we get

R−1L∂zi (RPdt) =
(
R−1∂R

∂zi
+

1
2κ

∑
j 6=i

µiµj
zi − zj

+
1
κ

∑
ν

µi
tν − zi

)
Pdt(13)

−R−1
∑
ν′

∂

∂tν′
(R〈w, Y1 . . . [Tν′,i]ν

′
. . . YJvJ〉)dt

+
∑
ν′

〈w, Y1 . . . [ ]ν
′
. . . YJvJ〉dt

where in the ν ′th place in the third term, we have

[ ]ν
′ ≡ 1

κ
(Tν′,iHν′ − Yν′Hν′,i) +

(
R−1 ∂R

∂tν′
− 1
κ

∑
j

µj
tν′ − zj

)
Tν′,i .

We now choose

R =
∏
i<j

(zi − zj)
−µiµj

2κ

∏
ν,i

(tν − zi)
µi
κ

∏
ν<ν′

(tν − tν′)−
2
κ .
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This has the effect of killing the first line of the R.H.S of (13). As for the last
line, after simplifying the underlined term and commuting Hν′ and Hν′,i to the
extreme right, one is left with

2
κ

∑
ν′<ν′′

[∗]〈w, Y1 . . . [1]ν
′
. . . [1]ν

′′
. . . YJeiejvJ〉dt

where

[∗] =
∑
j

1
(tν′ − zi)(tν′ − zj)(tν′′ − zj)

− 1
(tν′ − zi)(tν′ − zj)(tν′′ − zi)

− 1
(tν′ − tν′′)(tν′ − zi)(tν′′ − zj)

+
1

(tν′ − tν′′)(tν′ − zj)(tν′′ − zi)
= 0 .

(One way of checking that the expression on the L.H.S. above is zero is this:
consider it as a function of t′ν – fixing all other variables – and show that all
residues vanish.)

This shows that

(14) R−1L∂zi (RPdt) = −R−1
∑
ν′

∂

∂tν′
(R〈w, Y1 . . . [Tν′,i]ν

′
. . . YJvJ〉)dt .

The R.H.S. is a total derivative (in the t variables), which is what we wanted.

7. The trace: second case

In this section we calculate the Harder-Narasimhan trace on the stratum
D = 1, R = I, using the set-up of Section 3. (This section is not used later in
the paper, but for Remark 7.1.) Recall that z̃i ∈ P(ET,i) is the image of ELi ;
let z̃ denote the point (z̃1, . . . , z̃n) in T̂ .

We have a family of parabolic bundles parametrised by T̂ , such that the
point z̃ corresponds to a nonsemistable bundle of type (1, I). One verifies that
the tangent space is H1(KX(−Z)), and that if we map T̂ into Q̂ (by choosing
a trivialisation of (πT )∗E(m)), this is an immersion at z̃, the image cutting
S(1,I) transversally. Thus the normal derivative of a section on the stratum
can be computed after pulling it back to T̂ . This is the idea of the following
calculation.

We make a couple of preliminary observations:

(1) The space H1(KX(−Z)) is filtered:

0→ ⊕iKzi → H1(KX(−Z))→ C→ 0

with a splitting being given, once a point ∞ is chosen, by the surjection
H1(KX(−Z))→ H1(KX(−Z +∞)). (Dually, we have

0→ C→ H0(O(Z))→ ⊕iK−1
zi → 0
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split by H0(O(Z − ∞)) ↪→ H0(O(Z)).) Note also the isomorphism
H0(O(Z −∞)) = H0(KX(Z +∞)), given by multiplication by dt, with
t a co-ordinate.

(2) From (9) one sees that there are natural isomorphisms (a) (KX)zi =
(K−1

T̂
)z̃i (b) (det ET )0 = det V .

The point of the observation (1) is that, with the splitting, we can write:

SJ+kH0(O(Z)) = ⊕J+k
m=0S

mH0(KX(Z +∞))⊗ SJ+k−mH0(KX(2∞))

The expression for the trace in Theorem 7.3 below is to be read with this in
mind.

Step 1. Choose a basis for V and a co-ordinate x on P(V ) as above.
As before, we abuse notation and set x(zi) = zi. Let (t, xi = zi + ζi) be
co-ordinates on PT (V )i. Define co-ordinates (t, ζ̃i) on P(ET,i) by t = ζiζ̃i.

Step 2. Consider the section σw of L0 defined as in the proof of Propo-
sition 1.8 . We have

σw(x1, . . . , xn) =
〈
w, exp−

∑
i

(ζi + zi)ei vJ
〉
⊗
i
σ
′µi τ−J .

Pulled back to P, this section can be written

σw =
〈
w, exp−

∑
i

(ζi + zi)eivJ
〉
⊗
i
σ
′µi τ−J

=
〈
w, exp−

∑
i

(
t

ζ̃i
+ zi)ei vJ

〉
⊗
i
σ
′µi τ−J .

Step 3. Composing this with the isomorphism given by Proposition 4.2
one gets a section

σ̃w =
〈
w, exp−

∑
i

( t
ζ̃i

+ zi

)
ei vJ

〉∏
i

(
ζ̃i
t

)µitk+J σ̃∗τ−J

where σ̃∗ is a section of LT̂ , nonvanishing at z̃.

Step 4. Set Ez = exp
∑

i ziei. The above expression can be re-written:

σ̃w =
〈
w, exp−

∑
i

t

ζ̃i
ei E

−1
z vJ

〉∏
i

ζ̃µii t
k−J σ̃∗τ−J .

Expanding the exponential, we get

σ̃w =
∑
α

(−1)|α|

α!
〈w, eαE−1

z vJ〉
∏
i

ζ̃µi−αii tk−J+|α|σ̃∗τ−J .
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Remark 7.1. Note that for σ̃w to be regular at t = 0, it is necessary and
sufficient that

(K) 〈w, eαE−1
z vJ〉 = 〈Ezw, e

αv′J〉 = 0 for |α| < J − k.

We recognise a new avatar of the condition (G) of 4.3: once (K) is satisfied,
the section σ̃w vanishes to order J + k at the point z̃ ∈ T̂ .

Step 5. With a little work, one can re-write the above expression for σ̃w
as follows:

σ̃w =
∑
β

(−1)|β|

β!
〈Ezw, f

βv′J〉
∏
i

ζ̃βii t
k+J−|β|σ̃∗τ−J

and the condition for regularity becomes:

(K′) 〈Ezw, f
βv′J〉 = 0 for |β| > J + k.

Notation 7.2. We have introduced above the notation: Ez = exp
∑

i ziei.

Theorem 7.3. Define

T̂R(1,I)(w) ≡
∑
L

γ|L|

〈
Ezw,

∏
ν∈L

(∑
i

fi
tν − zi

)
v′J

〉
dt

where the sum is over all subsets L = {ν1, . . . , ν|L|} ⊂ {1, . . . , J + k}, dt =
dt1 . . . dtJ+k. The map T̂R(1,I) is compatible with connections provided

(15) γ|L| = (k − |L|+ J)γ|L|+1 .

Note that because of (K′) the sum only goes up to |L| = J + k, and
equation 15 can be solved by taking γJ+k−l = l!.

Proof. The condition (15) will emerge in the course of the proof. We will
use the following notation:

• P̂L = 〈Ezw,
∏
ν∈L(

∑
i

fi
tν−zi )v

′
J〉.

• H =
∑

j hj .

• T̂ν,i = fi
tν−zi .

• Ŷν =
∑

i
fi

tν−zi =
∑

i T̂ν,i.

We begin with some identities, whose proofs are straightforward.

(1) EzΩijE
−1
z = Ωij + (zi − zj)(hiej − hjei)− eiej(zi − zj)2.

(2) Ez
∑

j 6=i
Ωij
zi−zjw = (

∑
j 6=i

Ωij
zi−zj − ei −

Hei
2 )Ezw (using invariance of w).

(3) ∂Ŷν
∂zi

= −∂T̂ν,i
∂tν

.
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(4)
∑

j 6=i[
Ωij
zi−zj , Ŷν ] = −T̂ν,i

∑
j

hj
tν−zj + Ŷν

hi
tν−zi .

We now imitate the calculation of the proof of Theorem 6.4.

R̂−1L∂zi
(
R̂P̂Ldt

)
=
(
R̂−1∂R̂

∂zi
+

1
2κ

∑
j 6=i

µiµj
zi − zj

)
P̂Ldt

+
∑
l′

〈Ezw, Ŷν1 . . . [ ]l
′
. . . Ŷν|L|v

′
J〉dt

+
〈(

1− 1
κ

(
1 +

H
2

))
eiEzw, Ŷν1 . . . Ŷν|L|v

′
J

〉
dt

where in the l′th place we have

[ ]l
′
=−R̂−1∂(R̂T̂νl′ ,i)

∂tνl′
+ R̂−1 ∂R̂

∂tνl′
T̂νl′ ,i

−1
κ

(
T̂νl′ ,i

∑
j

hj
tνl′ − zj

− Ŷνl′
hi

tνl′ − zi

)
.

As before we re-arrange, and add and subtract terms to find

R̂−1L∂zi (R̂P̂Ldt)(16)

=
(
R̂−1∂R̂

∂zi
+

1
2κ

(∑
j 6=i

µiµj
zi − zj

+ 2
∑
l∈L

µi
tl − zi

))
P̂Ldt

−R̂−1 ∂

∂tνl′
(R̂
∑
νl′

< Ezw, Ŷν1 . . . [T̂νl′ ,i]
l′ . . . Ŷν|L|v

′
J >)dt

+
∑
νl′

〈Ezw, Ŷν1 . . . [ ]l
′
. . . Ŷν|L|v

′
J〉dt

+
〈(

1− 1
κ

(
1 +

H
2

))
eiEzw, Ŷν1 . . . Ŷν|L|v

′
J

〉
dt

where in the l′th place we now have

[ ]l
′ ≡ −1

κ
(T̂νl′ ,iĤνl′ − Ŷνl′ Ĥνl′ ,i) + (R̂−1 ∂R̂

∂tνl′
− 1
κ

∑
j

µj
tνl′ − zj

)
fi

tνl′ − zi
.

The last term in (16) can be simplified to yield〈(
1− 1

κ

(
1 +

H
2

))
eiEzw, Ŷν1 . . . Ŷν|L|v

′
J

〉
dt(17)

= −1
κ

(κ− 1− |L|+ J)〈Ezw, eiŶν1 . . . Ŷν|L|v
′
J〉dt

= −1
κ

(κ− 1− |L|+ J)
∑
l′

µi
tνl′ − zi

〈Ezw, Ŷν1 . . . [1]l
′
. . . Ŷν|L|v

′
J〉dt

−2
κ

(κ− 1− |L|+ J)
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×
∑
l′′>l′

1
tνl′′ − tνl′

( 1
tνl′′ − zi

− 1
tνl′ − zi

)
×〈Ezw, Ŷν1 . . . [1]l

′
. . . [1]l

′′
. . . Ŷν|L|fiv

′
J〉dt

= −1
κ

(κ− 1− |L|+ J)
∑
l′

µi
tνl′ − zi

〈Ezw, Ŷν1 . . . [1]l
′
. . . Ŷν|L|v

′
J〉dt

−2
κ

(κ− 1− |L|+ J)

×
∑
l′′,l′

1
tνl′′ − tνl′

1
tνl′′ − zi

〈Ezw, Ŷν1 . . . [1]l
′
. . . [1]l

′′
. . . Ŷν|L|fiv

′
J〉dt .

We now choose

R̂ =
∏
i<j

(zi − zj)
−µiµj

2κ

∏
l,i

(tl − zi)
µi
κ

∏
l<l′

(tl − tl′)
−2
κ .

This kills most of the terms as before, and we are left with

R̂−1L∂zi (R̂P̂Ldt) = R̂−1 ∂

∂tνl′

(
R̂
∑
νl′

〈Ezw, Ŷ1 . . . [T̂νl′ ,i]
l′ . . . ŶLvJ〉

)
dt(18)

−1
κ

(∑
νl /∈L

µi
tνl − zi

)
P̂Ldt

+
2
κ

∑
νl′

∑
νl /∈L

1
tνl′ − tνl

1
tνl′ − zi

〈Ezw, Ŷν1 . . . [1]l
′
. . . Ŷν|L|fivJ〉dt

+ (RHS of (17)) .

Consider now the variation of the sum T̂R(1,I)(w) =
∑

L γ|L|P̂Ldt. We
have (up to exact terms)

R̂−1L∂zi (R̂T̂R(1,I)(w)) = −
∑
L

γ|L|

(∑
νl /∈L

µi
tνl − zi

)
P̂Ldt

+ 2
∑
L

γ|L|
∑
νl′

∑
νl /∈L

1
tνl′ − tνl

1
tνl′−zi

〈Ezw, Ŷν1 . . . [1]l
′
. . . Ŷν|L|fivJrangledt

−
∑
L

γ|L|(k + 1− |L|+ J)
∑
l′

µi
tνl′ − zi

〈Ezw, Ŷν1 . . . [1]l
′
. . . Ŷν|L|v

′
J〉dt

− 2
∑
L

γ|L|(k + 1− |L|+ J)

×
∑
l′′,l′

1
tνl′′ − tνl′

1
tνl′′ − zi

〈Ezw, Ŷν1 . . . [1]l
′
. . . [1]l

′′
. . . Ŷν|L|fiv

′
J〉dt

= −
∑
L

γ|L|

(∑
νl /∈L

µi
tνl − zi

)
P̂Ldt

−
∑
L

γ|M |+1(k − |M |+ J)
∑
νl′ /∈M

µi
tνl′ − zi

P̂Mdt



HARDER-NARASIMHAN TRACE, UNITARITY OF KZ/HITCHIN CONNECTION 29

+ 2
∑
M

γM+1

∑
νl′ ,νl /∈L

1
tνl′ − tνl

1
tνl′−zi

〈Ezw,
∏

νm∈M
ŶνmfivJ〉dt

− 2
∑
N

γ|N |+2(k − 1− |N |+ J)

×
∑
νl′′ ,νl′

1
tνl′′ − tνl′

1
tνl′′ − zi

〈Ezw,
∏
νm∈n

ŶνNfivJ〉dt

= 0

provided the coefficients γ|L| are chosen as in the statement of the theorem.

8. Polynomials vanishing on partial diagonals

Let a, b be positive integers satisfying a < b. Set B = {1, . . . , b}. Consider
homogeneous polynomials P in b complex variables t = (t1, . . . , tb). We denote
by C(a,b) the condition:

• P vanishes on all the partial diagonals of dimension b − a. That is,
P (t1, . . . , tb) = 0 if there is a subset i = (i1 < · · · < ia+1) of B such that
ti1 = · · · = tia+1 . (We shall denote by ∆i the above partial diagonal.)

We wish to bound from below the degree of a nonzero P satisfying C(a,b). In
fact, for our purpose we will need to consider polynomials invariant under the
symmetric group Sb; so we introduce the condition C∗(a,b):

• P is invariant under permutations of its arguments and vanishes on all
the partial diagonals of dimension b − a. That is, P (tτ(1), . . . , tτ(b)) =
P (t1, . . . , tb) for any permutation τ ∈ Sb, and P (t1, . . . , tb) = 0 if there is
a subset i = (i1 < · · · < ia+1) of B such that ti1 = · · · = tia+1 .

We start with an ansatz which gives a family of polynomials satisfying
C(a,b), as products of linear factors.

Consider sets
B ⊂ {(i, j)|1 ≤ i < j ≤ b}

such that every subset A of B with a+1 elements contains at least two elements
i, j such that (i, j) ∈ B. The theorem of Turán ([A-S, p. 72]) produces such
a B of least possible size: Write b = qa + r, with 0 ≤ r < a, and divide B
into disjoint sets B1, . . .Bl, . . . ,Ba such that B1, . . . ,Br are of size q + 1 and
Br+1, . . . ,Ba are of size q; denote by B̂ the resulting partition and let B be the
set of all pairs of elements which belong to the same “box” Bl. Note that

|B| = rCq+1
2 + (a− r)Cq2 ≡ d(a, b) .

For any partition of B as above, the polynomial

PB̂ =
∏

l=1,...a

 ∏
i,j∈Bl,i<j

(ti − tj)


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has degree d(a, b) and satisfies C(a,b). Set P ∗ =
∑

B̂ P
2
B̂ , where the sum B̂ runs

through all partitions of the above type. This (nonzero) polynomial has degree
2d(a, b), and satisfies C∗(a,b).

Theorem 8.1. If a nonzero polynomial satisfies C(a,b), its degree is at
least d(a, b), and if it satisfies C∗(a,b), its degree is at least 2d(a, b).

Proof. Clearly, we can assume that the polynomial is homogeneous. We
consider the case without permutation symmetry and then indicate where the
argument has to be modified to cover this. The proof is by induction, and so
we begin by labelling particular cases of the statement of the theorem.

• T (a, b): The polynomials PB̂ have minimum degree among those that
satisfy the condition C(a,b).

• T ∗(a, b): The polynomial P ∗ has minimum degree among those satisfying
C∗(a,b).

Step 1. Note that the result for a = 1 follows from unique factorisation.
This proves T (1, b).

Step 2a. Consider now the case when a is arbitrary, but b ≤ 2a. Let P be
a nonzero polynomial satisfying C(a,b), and for any a-subset j = (j1 < · · · < ja)
of B, consider its restriction Pj to the (b−a)-dimensional subspace Hj defined
by

Hj = {t|tj1 = · · · = tja = 0}.

The restriction Pj vanishes along the hyperplanes ti = 0, i /∈ j, and is therefore
divisible by

∏
i/∈j ti. Thus either

(1) the degree of P is at least b− a (this is the desired bound), or

(2) all the restrictions Pj are zero.

In the second case, a simple induction (Step 2b below) shows that the degree
of P is at least b− a+ 1, so that we have the desired bound in any case. Thus
we have proved T (a, b) for b ≤ 2a.

Step 2b. Let b > c > 0. We prove that if a nonzero homogeneous
polynomial in b variables vanishes whenever b− c of the variables are zero, the
degree is at least c + 1. We do induction on b, keeping c fixed. First, this
is clear if b = c + 1. For the inductive step, consider the restrictions of the
polynomial to the b co-ordinate hyperplanes. If all these are zero, the degree is
at least b. If not, consider a nonzero restriction. This is a polynomial in b− 1
variables, vanishing whenever b− c− 1 variables are put equal to zero.
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Step 3. Let now b > 2a. Consider a polynomial P satisfying C(a,b) and a
restriction Pj. Write

(19) Pj =

∏
i/∈j

ti

P ′j .

Note that P ′j satisfies C(a,b−a). Suppose T (a, b− a) holds. Then either

(1) the degree of P is at least b− a+ d(a, b− a) - this is the desired bound
d(a, b) - or

(2) all the restrictions Pj are zero.

Step 4. We need to deal with the second possibility. For λ ∈ C, consider
the map Dλ : Cb → Cb defined by

Dλ(t1, . . . , tb) =

(
t1 + λ

∑
i

ti, . . . , tb + λ
∑
i

ti

)
.

This is invertible as long as bλ 6= −1. Consider the polynomial Pλ = P ◦Dλ; one
sees easily that Pλ satisfies C(a, b) as well. Clearly its degree is the same as that
of P . Thus if P were to have a degree smaller than d(a, b), Pλ must also vanish
on all the subspaces Hj. In terms of P , this translates to P (t1, . . . , tb) = 0
whenever

tj1 = · · · = tja = −λ
∑
i

ti .

As λ runs over all possible complex numbers, this covers a dense set of the
(a− 1)-dimensional diagonal ∆j:

tj1 = · · · = tja

so that P is seen to satisfy C(a−1, b). Suppose now that T (a−1, b) holds. Then
degP ≥ d(a − 1, b) ≥ d(a, b), where this last inequality follows from Turán’s
Theorem, though no doubt it can be proved directly from the definition of
d(a, b).

Step 5. Summarising the last two steps, we have, if b > 2a,

T (a− 1, b) and T (a, b− a)⇒ T (a, b) .

By induction, we are done.
To incorporate symmetry under Sb and thus prove T ∗(a, b) note the fol-

lowing: if a polynomial P is invariant under permutation of its arguments and
vanishes along a diagonal ∆i, then its derivatives ∂P/∂tip , ip ∈ i vanish there
as well. This follows from the equalities

• ∂P/∂tip = ∂P/∂tiq , p, q ∈ i on ∆i.

•
∑

i∈i ∂P/∂ti = 0.
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As a consequence, in Step 3 above, equation (19) gets replaced by

(20) Pj = (
∏
i/∈j

t2i )P
′
j .

Once this is noted, the proof goes through with obvious changes.

9. Finiteness

We return to the situation in Section 6.

Theorem 9.1. Suppose that the level k satisfies the inequality k ≥ J .
Then the (multi-valued) form R TR(0,I)(w), pulled back to X̂ \ D̂ (where it
becomes single-valued), extends across the smooth locus of D̂.

Proof. Much of the work for the following proof has already been done in
Sections 5 and 8. We retain the notation from there, and in addition we set
J = {1, . . . , J}, and for any nonempty J′ ⊂ J, set ∧2J′ = {(ν, ν ′)|ν < ν ′ ∈ J′}.
Such a subset determines dense edges LJ′ and L(J′,r) r = 1, . . . , n+ 1, defined
as intersections:

(1) L(J′,r) = ∩
ν∈J′

Dr
ν ∩ ∩

(ν,ν′)∈∧2J′
D(ν,ν′) (r = 1, . . . , n).

α(L(J′,r)) = µr|J′| − |J′|(|J′| − 1), C = |J′|.

(2) L(J′,n+1) = ∩
ν∈J′

Dν ∩ ∩
(ν,ν′)∈∧2J′

D(ν,ν′).

α(LJ′,n+1) = −2|J′| − |J′|(|J′| − 1), C = |J′|.

(3) LJ′ = ∩
(ν,ν′)∈∧2J′

D(ν,ν′).

α(LJ′) = −|J′|(|J′| − 1), C = |J′| − 1.

(In each case we have also written the corresponding α, as well as the codi-
mension C.) It is easy to check (and in fact a very special case of [S-T-V,
Prop. 12]) that these are all the dense edges.

Consider the form R TR(0,I)(w) on X. Locally, this has the shape Rfτ ,
where τ is a regular nonvanishing top-form and f a function with at most
simple poles along the divisors Di

ν . We introduce – for later use – a nonnegative
integer l associated to each dense edge. In the last two cases l is the order of
vanishing of f along the edge; in particular, l > 0. In the first case l + |J′| is
the order of vanishing (along LJ′) of the function f ′ = (

∏
ν=∈J′(tν − zr))f ; we

have l + |J′| ≥ 0.
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We now consider in turn each of the three situations described in Section 5.

(i) This is the simplest case, for α(L1) > 0. From the list above, we see
that L1 must be of the form L(J′,r)). Pulled back to X′, R TR(0,I)(w) becomes

x
α(L1)
κ

+C−1+l

1 τ ′

where τ ′ is a regular top-form. On further pulling back to X̂, we get an ex-
pression

tα
′+κ′(C−1+l)+κ′−1τ̂

with τ̂ a regular form. For this expression to be a regular form, we need

α′ + κ′(C + l) ≥ 1

or equivalently (multiplying by δ)

α(L1) + κ(C + l) ≥ δ .

Since δ = gcd(κ, α(L1)), it clearly suffices to ensure (since C = |J′|)

α(L1) + κ(|J′|+ l) > 0 .

This is clearly the case if α(L1) > 0. If α(L1) = 0, |J′| − 1 = µr, and Lemma
9.2 below yields |J′| + l ≥ |J′| − µr = 1. For later reference, we write out the
L.H.S., and find we have proved

|J′|µr − |J′|(|J′| − 1) + κ(|J′|+ l) = |J′|
{
µr − |J′|+ 1 + κ

(
1 +

l

|J′|

)}
> 0 .

(ii) When the quasi-classical weight is negative, the situation is subtler.
We argue as before, and find that R TR(0,I)(w) pulls back to X̂ to yield a form
of the shape

tα
′+κ′(C−1+l)+κ′−1τ̂

except, of course, that now α′ < 0. As before, we need to ensure that

(21) α(L2) + κ(C + l) > 0 .

Substituting the expressions for α and the codimension C, the L.H.S. of the
above inequality becomes (respectively)

(1) µr|J′| − |J′|(|J′| − 1) + κ(|J′|+ l) = |J′|{µr − |J′|+ 1 + κ(1 + l
|J′|)}.

(2) −2|J′| − |J′|(|J′| − 1) + κ(|J′|+ l) = |J′|{−|J′| − 1 + κ(1 + l
|J′|)}.

(3) −|J′|(|J′| − 1) + κ(|J′| − 1 + l) = (|J′| − 1){−|J′|+ κ+ κl
|J′|−1)}.

If the condition k ≥ J is met, we have in the respective cases

(1) µr − |J′|+ 1 + κ(1 + l
|J′|) > 0 by Lemma 9.2 below.
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(2) κ− 1− |J′| > 0, l ≥ 0.

(3) κ− |J′| > 0, |J′| − 1 > 0, l ≥ 0.

This proves (21).

(iii) The form R TR(0,I)(w) pulls back to X̂ as a form of the shape

tα
′
1(C2+l2−1)−α′2(C1+l1−1)+α′1−α′2−1τ̂ .

We have used subscripts to distinguish the codimensions of the two edges, as
well as the corresponding values of l. Regularity requires

α1(l2 + |J2|)− α2(l1 + |J1|) > 0 .

Since α2 < 0, l2 + |J2| > 1, the L.H.S. above is greater than or equal to α1 > 0.

Lemma 9.2. Consider an edge of type L(J′,r). Now, l ≥ sup(−µr,−|J′|).

Proof. Consider the function P = 〈w,
∏J
ν=0(

∑
i

ei
tν−zi )vJ〉 around the edge.

We write

P =

( ∏
ν=∈J′

1
tν − zr

)
P ′

where

P ′ =

〈
w,
∏
ν /∈J′

(∑
i

ei
tν − zi

) ∏
ν∈J′

er +
∑
i 6=r

(tν − zr)ei
tν − zi

 vJ

〉
.

We need to show that P ′ vanishes on L to order |J′| − µi, once |J′| > µi. For
ν ∈ J′, set yν = tν − zr, and rewrite the above expression:

P ′ =

〈
w,
∏
ν /∈J′

(∑
i

ei
tν − zi

) ∏
ν∈J′

er +
∑
i 6=r

yνei
zr − zi + yν

 vJ

〉
.

Note that emr vJ = 0 if m > µr. The lemma now follows.

Theorem 9.3. Suppose that k < J . Then the form R TR(0,I)(w), pulled
back to X̂ \ D̂, extends across the smooth locus of D̂, provided the condition
(K) holds.

An examination of the previous proof reveals that it is the part (ii) which
calls for more work. The key fact is the following consequence of the condi-
tion (K): the functions P (t1, . . . tJ) = 〈w,

∏J
ν=0(

∑
i

ei
tν−zi )vJ〉 vanish along the

partial diagonals of codimension k or more (Proposition 9.5 below).
It is useful to introduce some notation at this point. Set, for u = (u1, u2,

. . . , un) a sequence of points in C:
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• E(t,u) =
∑

i ei(t− ui)−1,

• Ê(t,u) =
∑

i ei(t− ui), and

• F̂ (t,u) =
∑

i fi(t− ui).

Lemma 9.4. The condition (K) is equivalent to either one of the following
equalities (of functions of the variables u).

(1) 〈w, Ê(t′,u)J−qÊ(t, z)qvJ〉 = 0, k < q.

(2) 〈w, F̂ (t′,u)J−qF̂ (t, z)qv′J〉 = 0, k < q.

Proof. The condition

(22) 〈Ezw, e
αvJ〉 = 0

(for fixed α) is equivalent to 〈w, eα(
∑

i ziei)
J−|α|vJ〉 = 0 (consider the weights).

Demanding that (22) be satisfied for all |α| < J−k is equivalent to demanding
that

∑
|α|=p〈w,uαeα(

∑
i ziei)

J−pvJ〉 = 0, p < J − k. This in turn, is true if
and only if

(23)

〈
w,

(∑
i

uiei

)p(∑
i

ziei

)J−p
vJ

〉
= 0, p < J − k .

This is easily seen to translate to the first condition of the lemma, because w
is an invariant vector.

Set F =
∑

j fj . It is easy to check that vJ = F2Jv′J , up to a nonzero
constant. So (1) implies

〈w, Ê(t′,u)J−qÊ(t, z)qF2Jv′J〉 = 0, k < q .

On the other hand, one computes (for B a positive integer)

Ê(t,u)FBv′J = −B(B − 1)FB−2F̂ (t,u)v′J +BFB−1

(∑
i

µi(t− ui)

)
v′J .

If we therefore commute all the operators Ê1 across until they kill v′J , the
pairing with the invariant vector w results in the vanishing of all terms which
contain a factor F. The second relation (2) of the lemma is the result.

Proposition 9.5. Suppose k < J , and that condition (K) holds. Then
〈w,
∏
ν≥lE(tν , z)E(t, z)lvJ〉 = 0 for all integers J ≥ l > k.

Proof. It suffices to prove 〈w, eβE(t, z)J−|β|vJ〉 = 0 for all multi-indices
β with J − |β| > k. One checks that vJ = F̂ 2J(t, z)v′J , up to a nonzero factor.
So the above condition translates (using the relation [E(t, z), F̂ (t, z)] = H =∑

i hi) to 〈w, eβF̂ (t, z)J+|β|v′J〉 = 0. Commuting eβ across, one obtains a sum
of terms proportional to 〈w, F̂ (t, z)J−|β

′|fβ
′
v′J〉 where β′ ≤ β (the inequality of

multi-indices has an obvious meaning). This in turn follows easily from part
(2) of Lemma 9.4.
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We can now give the proof of Theorem 9.3:

Proof. We have to deal with the cases in part (ii) of the proof of The-
orem 9.1 remembering that now k < |J|. Combining Proposition 9.5 and
Theorem 8.1, we obtain the following lower bound on the degrees l: write
|J′| = qk + r̂, 0 ≤ r̂ < k; then

l ≥ 2{r̂(q + 1)q + (k − r̂)q(q − 1)} .

The required inequalities now follow.

We have proved the conjecture of Gawedzki (§4.3 of [G])). In our notation:

Corollary 9.6. The integral∫
X\D
|R|2TR(0,I)(w)TR(0,I)(w)

is finite if w satisfies the condition (K) (or equivalently, (G)).

Proof. It suffices to prove that the integral, pulled back to the µκ-cover
X̂\ D̂, is finite. We have proved that the form R TR(0,I)(w) extends across the
smooth part of D̂, and thus to the smooth locus of X̂. On the other hand, X̂ has
rational singularities, which implies that pulled back to any desingularisation
X̂s, R TR(0,I)(w) extends to a globally regular form.

The necessity of the condition (K) for the convergence to hold has already
been noted by Gawedzki.

10. Unitarity

Theorem 10.1. The (parabolic) Hitchin connection in genus zero, or
equivalently the KZ connection on the bundle of conformal blocks (the sub-
bundle W defined in §4) is unitary in the rank two case.

Proof. Consider, over Zn, a µκ-equivariant resolution of singularities
πs : X̂s → X̂. This is an isomorphism outside D̂, and so we have the diagram:

X \D π←−−−− X̂ \ D̂ i−−−−→
↪→

X̂s
πs−−−−→ X̂y y y y

Zn Zn Zn Zn .
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The map π above is a µκ-fibration. Consider the corresponding bundles of
degree J cohomology (i.e., the J th direct images of the constant sheaf C):

HJR
π∗R−−−−→
↪→

HJ(X̂ \ D̂) i∗←−−−− HJ(X̂s)y y y
Zn Zn Zn .

The map i∗ is covariant between flat µκ-bundles, and π∗R (defined in Remark
5.5) an isomorphism onto an isotypical component (corresponding to the iden-
tity character of µκ) of HJ(X̂ \ D̂). Let us denote by χ0 this character, and by
HJχ0

(X \ D̂), HJχ0
(X̂s) the corresponding isotypical components. Our work so

far has yielded the following:

(1) The map of bundles V → HJR factors as in the following diagram:

V ↪→ ΩJ
χ0
↪→ HJχ0

(X̂s)→
i∗
HJχ0

(X \ D̂) = HJR

where ΩJ is the direct image of a relative canonical bundle of X̂s → Zn.
The injectivity of the first arrow follows from the injectivity of the trace
map; see Proposition 1.1.

(2) The map V → HJR is flat.

The bundle HJ(X̂s) carries a skew-hermitian pairing invariant under the
flat connection:

(α, β) 7→ iJ
∫
α ∧ β̄

which induces a definite scalar product on the sub-bundle ΩJ . In general the
sub-bundle ΩJ is not invariant under the connection, the second fundamental
form being given by cupping with the Kodaira-Spencer map. By the results of
Deligne [D] the composite map

(24) ΩJ(↪→ HJ(X̂s))→
i∗
HJ(X̂ \ D̂)

is an injection, which yields that the map of isotypical components

ΩJ
χ0

(↪→ HJχ0
(X̂s))→

i∗
HJχ0

(X \ D̂) = HJR

is an injection as well. This proves that the image of V → ΩJ
χ0

is a flat sub-
bundle of the latter. Thus the induced scalar product on V is invariant.

Note that in the course of the above proof we have obtained

Corollary 10.2. The map V → HJR is injective; therefore the map of
dual local systems is surjective.
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This is in fact a result of A. Varchenko (Theorem 14.6.4 of [V]). In an
earlier version of this paper, I had used this result to reach the conclusion of
Theorem 10.1. M. Nori and N. Fakhruddin pointed out the injectivity of (24),
which therefore yields an independent proof of the fact that the Coulomb-gas
construction yields a complete set of solutions to the KZ equation.

It remains to add that everything seems to go through as above for the
other trace that we have studied. I have no idea at present why this should
be so, and close this paper with the question: Are the two metrics induced on
the bundle of conformal blocks the same (modulo of course, scalars)?
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