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Maharam’s problem

By Michel Talagrand

Dedicated to J. W. Roberts

Abstract

We construct an exhaustive submeasure that is not equivalent to a mea-
sure. This solves problems of J. von Neumann (1937) and D. Maharam (1947).
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1. Introduction

Consider a Boolean algebra B of sets. A map ν : B → R+ is called a
submeasure if it satisfies the following properties:

ν(∅) = 0,(1.1)

A ⊂ B, A,B ∈ B =⇒ ν(A) ≤ ν(B),(1.2)

A,B ∈ B ⇒ ν(A ∪B) ≤ ν(A) + ν(B).(1.3)

If we have ν(A ∪ B) = ν(A) + ν(B) whenever A and B are disjoint, we say
that ν is a (finitely additive) measure.

We say that a sequence (En) of B is disjoint if En ∩ Em = ∅ whenever
n 6= m. A submeasure is exhaustive if limn→∞ ν(En) = 0 whenever (En)
is a disjoint sequence in B. A measure is obviously exhaustive. Given two
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submeasures ν1 and ν2, we say that ν1 is absolutely continuous with respect to
ν2 if

(1.4) ∀ε > 0, ∃α > 0, ν2(A) ≤ α =⇒ ν1(A) ≤ ε.

If a submeasure is absolutely continuous with respect to a measure, it
is exhaustive. One of the many equivalent forms of Maharam’s problem is
whether the converse is true.
Maharam’s problem: If a submeasure is exhaustive, is it absolutely continuous
with respect to a measure?

In words, we are asking whether the only way a submeasure can be ex-
haustive is because it really resembles a measure. This question has been one
of the longest standing classical questions of measure theory. It occurs in a
variety of forms (some of which will be discussed below).

Several important contributions were made to Maharam’s problem. N.
Kalton and J. W. Roberts proved [11] that a submeasure is absolutely con-
tinuous with respect to a measure if (and, of course, only if) it is uniformly
exhaustive, i.e.

(1.5) ∀ε > 0, ∃n, E1, . . . , En disjoint =⇒ inf
i≤n

ν(Ei) ≤ ε.

Thus Maharam’s problem can be reformulated as to whether an exhaustive
submeasure is necessarily uniformly exhaustive. Two other fundamental con-
tributions by J.W. Roberts [15] and I. Farah [6] are used in an essential way
in this paper and will be discussed in great detail later.

We prove that Maharam’s problem has a negative answer.

Theorem 1.1. There exists a nonzero exhaustive submeasure ν on the
algebra B of clopen subsets of the Cantor set that is not uniformly exhaustive
(and thus is not absolutely continuous with respect to a measure). Moreover,
no nonzero measure µ on B is absolutely continuous with respect to ν.

We now spell out some consequences of Theorem 1.1. It has been known
for a while how to deduce these results from Theorem 1.1. For the convenience
of the reader these (easy) arguments will be given in a self-contained way in
the last section of the paper.

Since Maharam’s original question and the von Neumann problem are
formulated in terms of general Boolean algebras (i.e., that are not a priori
represented as algebras of sets) we must briefly mention these. We will denote
by 0 and 1 respectively the smallest and the largest element of a Boolean
algebra B, but we will denote the Boolean operations by ∩,∪, etc. as in
the case of algebras of sets. A Boolean algebra B is called σ-complete if any
countable subset C of B has a least upper bound ∪C (and thus a greatest
lower bound ∩C). A submeasure ν on B is called continuous if whenever (An)
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is a decreasing sequence with
⋂
nAn = 0 we have limn→∞ ν(An) = 0. The

submeasure is called positive if ν(A) = 0 =⇒ A = 0.
A σ-complete algebra B on which there is a positive continuous submea-

sure is called a submeasure algebra. If there is a positive continuous measure
on B, B is called a measure algebra.

Probably the most important consequence of our construction is that it
proves the existence of radically new Boolean algebras.

Theorem 1.2. There exists a submeasure algebra B that is not a measure
algebra. In fact, not only there is no positive measure on B, but there is no
nonzero continuous measure on it.

A subset C of a boolean algebra B is called disjoint if A ∩ B = 0 (= the
smallest element of B) whenever A,B ∈ C, A 6= B. A disjoint set C is called a
partition if ∪C = 1 (= the largest element of B). If every disjoint collection of
B is countable, B is said to satisfy the countable chain condition.

If Π is a partition of B we say that A ∈ B is finitely covered by Π if there is
a finite subset {A1, . . . , An} of Π with A ⊂

⋃
i≤nAi. We say that B satisfies the

weak distributive law if whenever (Πn) is a sequence of partitions of B, there
is a single partition Π of B such that every element of Π is finitely covered by
each Πn. (This terminology is not used by every author; such a σ-algebra is
called weakly (σ −∞) distributive in [8].)

Theorem 1.3 (Negative answer to von Neumann’s problem). There ex-
ists a σ-complete algebra that satisfies the countable chain condition and the
weak distributive law, but is not a measure algebra.

The original problem of von Neumann was to characterize measure alge-
bras in the class of complete Boolean algebras. Every measure algebra (and
in fact every submeasure algebra) satisfies the countable chain condition and
the weak distributive law, and von Neumann asked in the Scottish book ([13,
problem 163]) whether these conditions are sufficient. This question was his-
torically important, in that it motivated much further work.

The first major advance on von Neumann’s problem is due to Maharam
[12]. Her work gives a natural decomposition of von Neumann’s problem in
the following two parts.

Problem I. Does every weakly distributive complete Boolean algbra B sati-
fying the countable chain condition support a positive continuous submeasure?

Problem II. Given that B supports a positive continuous submeasure, does
it also support a positive continous measure?

Theorem 1.2 shows that (II) has a negative answer, and this is how The-
orem 1.3 is proved.
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It is now known that (I) cannot be decided with the usual axioms of set
theory. Maharam proved [12] that (I) does not hold if one assumes the negation
of Suslin’s hypothesis. Recent work ([3], [18]) shows on the other hand that
it is consistent with the usual axioms of set theory to assume that (I) holds.
One can argue in fact that the reason why (I) does not have a very satisfactory
answer is that one does not consider the correct notion of “a countable chain
condition”. Every submeasure algebra (and hence every measure algebra) B
obviously satisfies the following condition (sometimes called the σ-finite chain
condition) that is much stronger than the countable chain condition: B is the
union of sets Bn such that for each n, every disjoint subset of Bn is finite. If one
replaces in (I) the countable chain condition by the σ-finite chain condition one
gets a much more satisfactory answer: S. Todorcevic proved [17] the remarkable
fact that a complete Boolean algebra is a submeasure algebra if and only if it
satisfies the weak distributive law and the σ-finite chain condition.

The reader interested in the historical developements following von Neu-
mann’s problem can find a more detailed account in the introduction of [2].

Consider now a topological vector space X with a metrizable topology,
and d a translation invariant distance that defines this topology. If B is a
Boolean algebra of subsets of a set T , an (X-valued) vector measure is a map
θ : B → X such that θ(A ∪ B) = θ(A) + θ(B) whenever A ∩ B = ∅. We say
that it is exhaustive if limn→∞ θ(En) = 0 for each disjoint sequence (En) of B.
A positive measure µ on B is called a control measure for θ if

∀ε > 0, ∃α > 0, µ(A) ≤ α =⇒ d(0, θ(A)) ≤ ε.

Theorem 1.4 (Negative solution to the Control Measure Problem).
There exists an exhaustive vector-valued measure that does not have a control
measure.

We now explain the organization of the paper. The submeasure we will
construct is an object of a rather new nature, since it is very far from being
a measure. It is unlikely that a very simple example exists at all, and it
should not come as a surprise that our construction is somewhat involved.
Therefore it seems necessary to explain first the main ingredients on which the
construction relies. The fundamental idea is due to J. W. Roberts [15] and is
detailed in Section 2. Another crucial part of the construction is a technical
device invented by I. Farah [6]. In Section 3, we produce a kind of “miniature
version” of Theorem 1.1, to explain Farah’s device, as well as some of the other
main ideas. The construction of ν itself is given in Section 4, and the technical
work of proving that ν is not zero and is exhaustive is done in Sections 5 and 6
respectively. Finally, in Section 7 we give the simple (and known) arguments
needed to deduce Theorems 1.2 to 1.4 from Theorem 1.1.
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Acknowledgments. My warmest thanks go to I. Farah who explained
to me the importance of Roberts’s work [15], provided a copy of this hard-
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essential technical contribution without which my own efforts could hardly
have succeeded.

2. Roberts

Throughout the paper we write

T =
∏
n≥1

{1, . . . , 2n}.

For z ∈ T , we thus have z = (zn), zn ∈ {1, . . . , 2n}. We denote by Bn the
algebra generated by the coordinates of rank≤ n, and B =

⋃
n≥1 Bn the algebra

of the clopen sets of T . It is isomorphic to the algebra of the clopen sets of the
Cantor set {0, 1}N.

We denote by An the set of atoms of Bn. These are sets of the form

(2.1) {z ∈ T ; z1 = τ1, . . . , zn = τn}

where τi is an integer ≤ 2i. An element A of An will be called an atom of rank
n.

Definition 2.1 ([15]). Consider 1 ≤ m < n. We say that a subset X of T
is (m,n)-thin if

∀A ∈ Am, ∃A′ ∈ An, A′ ⊂ A, A′ ∩X = ∅.

In words, in each atom of rank m, X has a hole big enough to contain an
atom of rank n. It is obvious that if X is (m,n)-thin, it is also (m,n′)-thin
when n′ ≥ n.

Definition 2.2 ([15]). Consider a (finite) subset I of N∗ = N \ {0}. We
say that X ⊂ T is I-thin if X is (m,n)-thin whenever m < n, m,n ∈ I.

We denote by cardI the cardinality of a finite set I. For two finite sets
I, J ⊂ N∗, we write I ≺ J if max I ≤ min J .

The following is implicit in [15] and explicit in [6].

Lemma 2.3 (Roberts’s selection lemma). Consider two integers s and t,
and sets I1, . . . , Is ⊂ N∗ with cardI` ≥ st for 1 ≤ ` ≤ s. Then we can
relabel the sets I1, . . . , Is so that there are sets J` ⊂ I` with cardJ` = t and
J1 ≺ J2 ≺ · · · ≺ Js.

Proof. We may assume that cardI` = st. Let us enumerate I` = {i1,`, . . .
. . . , ist,`} where ia,` < ib,` if a < b. We can relabel the sets I` in order to ensure
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that
∀k ≥ 1, it,1 ≤ it,k, ∀k ≥ 2, i2t,2 ≤ i2t,k

and more generally, for any ` < s that

(2.2) ∀k ≥ `, i`t,` ≤ i`t,k

We then define
J` = {i(`−1)t+1,`, . . . , i`t,`}.

To see that for 1 ≤ ` < s we have J` ≺ J`+1 we use (2.2) for k = `+ 1, so that
i`t,` ≤ i`t,`+1 < i`t+1,`+1.

The reader might observe that it would in fact suffice to assume that
cardI` ≥ s(t− 1) + 1; but this refinement yields no benefits for our purposes.

Throughout the paper, given an integer τ ≤ 2n, we write

(2.3) Sn,τ = {z ∈ T ; zn 6= τ}

so that its complement Scn,τ is the set {z ∈ T ; zn = τ}. Thus on the set Sn,τ
we forbid the nth coordinate of z to be τ while on Scn,τ we force it to be τ .

Proposition 2.4. Consider sets X1, . . . , Xq ⊂ T , and assume that for
each ` ≤ q the set X` is I`-thin, for a certain set I` with cardI` ≥ 3q. Then
for each n and each integer τ ≤ 2n we have

(2.4) Scn,τ 6⊂
⋃
`≤q

X`.

Proof. We use Lemma 2.3 for s = q and t = 3 to produce sets J` ⊂ I` with
J1 ≺ J2 ≺ · · · ≺ Jq and cardJ` = 3. Let J` = (m`, n`, r`), and then r` ≤ m`+1

since J` ≺ J`+1.
To explain the idea (on which the paper ultimately relies) let us prove

first that T 6⊂
⋃
`≤qX`. We make an inductive construction to avoid in turn

the sets X`. We start with any A1 ∈ Am1 . Since X1 is (m1, n1)-thin, we can
find C1 ∈ An1 with C1 ⊂ A1 and C1 ∩ X1 = ∅. Since n1 ≤ m2 we can find
A2 ∈ Am2 and A2 ⊂ C1, and we continue in this manner. The set Cq does not
meet any of the sets X`.

To prove (2.4), we must ensure that Cq ∩Scn,τ 6= ∅. The fundamental fact
is that at each stage we have two chances to avoid X`, using either that X` is
(m`, n`)-thin or that it is (n`, r`)-thin. The details of the construction depend
on the “position” of n with respect to the sets J`. Rather that enumerating
the cases, we explain what happens when m1 < n ≤ r1, and this should make
what to do in the other cases obvious.

Case 1. We have m1 < n ≤ n1. Since Sn,τ ∈ Bn ⊂ Bn1 , we can choose
A1 ∈ An1 with A1 ⊂ Scn,τ . Since X1 is (n1, r1)-thin, we choose C1 ∈ Ar1 with
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C1 ⊂ A1 and C1 ∩ X1 = ∅. We then continue as before, choosing A2 ⊂ C1,
A2 ∈ Am2 , etc.

Case 2. We have m1 < n1 < n ≤ r1. We choose any A1 ∈ Am1 . Since
X is (m1, n1)-thin, we can choose C1 ∈ An1 with C1 ⊂ A1 and C1 ∩X1 = ∅.
It is obvious from (2.1) that, since n1 < n, we have C1 ∩ Scn,τ 6= ∅. Since
C1 ∩ Scn,τ ∈ Bn ⊂ Br1 ⊂ Bm2 , we can find A2 ⊂ C1 ∩ Scn,τ , A2 ∈ Am2 , and we
continue as before.

Definition 2.5. Given ε > 0, a submeasure ν on an algebra B is called
ε-exhaustive if for each disjoint sequence (En) of B we have lim supn→∞ ν(En)
≤ ε.

Theorem 2.6 (Roberts). For each q there exists a submeasure ν on T

such that

∀n, ∀τ ≤ 2n, ν(Scn,τ ) = 1,(2.5)

ν is
1

q + 1
-exhaustive.(2.6)

Of course, (2.5) implies that ν is not uniformly exhaustive. Let us consider
the class C of subsets X of T that are I-thin (for a set I depending on X) with
cardI ≥ 3q. For B ∈ B we define

(2.7) ν(B) = min
(

1, inf
{

1
q + 1

cardF ; F ⊂ C; B ⊂ ∪F
})

,

where F runs over the finite subsets of C and ∪F denotes the union of F . It
is obvious that ν is a submeasure, and (2.5) is an immediate consequence of
Proposition 2.4.

To prove (2.6) it suffices, given a disjoint sequence (En) of B, to prove
that lim infn→∞ ν(En) ≤ 1/(1 + q).

For X ⊂ T , let us define

(2.8) (X)m =
⋂
{B ∈ Bm; B ⊃ X} =

⋃
{A, A ∈ Am, A ∩X 6= ∅}.

Since each algebra Bm is finite, by taking a subsequence we can assume that
for some integers m(n) we have En ∈ Bm(n), while

(2.9) ∀k > n, (Ek)m(n) = (En+1)m(n).

We claim that for each k > n + 1, Ek is (m(n),m(n + 1))-thin. To
prove this, consider A ∈ Am(n). If A ∩ Ek = ∅, any A′ ∈ Am(n+1) with
A′ ⊂ A satisfies A′ ∩Ek = ∅. Otherwise A ⊂ (Ek)m(n) = (En+1)m(n) by (2.9).
Therefore, En+1 ∩ A 6= ∅. Since En+1 ∈ Bm(n+1), we can find A′ ∈ Am(n+1)

with A′ ⊂ A and A′ ⊂ En+1. But then A′ ∩ Ek = ∅ since En+1 and Ek are
disjoint. This proves the claim.

It follows that for n ≥ 3q + 1, En is I-thin for I = (m(1), . . . ,m(3q)) and
thus En ∈ C, so that ν(En) ≤ 1/(q + 1).
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3. Farah

In [6] I. Farah constructs for each ε an ε-exhaustive submeasure ν that is
also pathological, in the sense that every measure that is absolutely continuous
with respect to ν is zero. In this paper, we learned several crucial technical
ideas, that are essential for our approach. The concepts and the techniques
required to prove Proposition 3.5 below are essentially all Farah’s.

A class C of weighted sets is a subset of B × R+. For a finite subset
F = {(X1, w1), . . . , (Xn, wn)} of C, we write throughout the paper

(3.1) w(F ) =
∑
i≤n

wi; ∪F =
⋃
i≤n

Xi,

and for B ∈ B we set

(3.2) ϕC(B) = inf{w(F ); B ⊂ ∪F}.
This is well defined provided there exists a finite set F ⊂ C for which
T ⊂ ∪F . It is immediate to check that ϕC is a submeasure. This construction
generalizes (2.7). It is generic; for a submeasure ν, we have ν = ϕC where
C = {(B, ν(B)); B ∈ B}. Indeed, it is obvious that ϕC ≤ ν, and the reverse
inequality follows by subadditivity of ν.

For technical reasons, when dealing with classes of weighted sets, we find
it convenient to keep track for each pair (X,w) of a distinguished finite subset
I of N∗. For this reason we define a class of marked weighted sets as a subset
of B × F × R+, where F denotes the collection of finite subsets of N∗.

For typographical convenience we write

(3.3) α(k) =
1

(k + 5)3

and we fix a sequence (N(k)) to be specified later. The specific choice is
anyway completely irrelevant, what matters is that this sequence increases
fast enough. In fact, there is nothing magic about the choice of α(k) either.
Any sequence such that

∑
k kα(k) <∞ would do. We like to stress than none

of the numerical quantities occurring in our construction plays an essential
role. These are all simple choices that are made for convenience. No attempts
whatsoever have been made to make optimal or near optimal choices. Let us
also point out that for the purpose of the present section it would work just
fine to take α(k) = (k + 5)−1, and that the reasons for taking a smaller value
will become clear only in the next section. For k ≥ 1 we define the class Dk of
marked weighted sets by

Dk =

{
(X, I, w); ∃(τ(n))n∈I , X =

⋂
n∈I

Sn,τ(n); cardI ≤ N(k),

w = 2−k
(
N(k)
cardI

)α(k)
}
.

(3.4)
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The most important part of Dk consists of the triples (X, I, w) where
cardI = N(k) and w = 2−k. The purpose of the relation

w = 2−k (N(k)/cardI)α(k)

is to allow the crucial Lemma 3.1 below. To understand the relation between
the different classes Dk it might help to observe the following. Whenever X
and I are as in (3.4) and whenever N(k) ≥ cardI we have (X, I, wk) ∈ Dk
for wk = 2−k (N(k)/cardI)α(k). If we assume, as we may, that the sequence
2−kN(k)α(k) increases, we see that the sequence (wk) increases. It is then the
smallest possible value of k that gives the smallest possible value of wk. This
is the only value that matters, as will be apparent from the way we use the
classes Dk; see the formula (3.7) below. Let us also note that for each k there
is a finite subset F of Dk such that T ⊂ ∪F .

Given a subset J of N∗ we say that a subset X of T depends only on the
coordinates of rank in J if whenever z, z′ ∈ T are such that zn = z′n for every
n ∈ J , we have z ∈ T if and only if z

′ ∈ T . Equivalently, we sometimes say
that such a set does not depend on the coordinates of rank in Jc = N∗ \J . One
of the key ideas of the definition of Dk is the following simple fact.

Lemma 3.1.Consider (X, I, w)∈Dk and J ⊂ N∗. Then there is (X ′, I ′, w′)
∈ Dk such that X ⊂ X ′, X ′ depends only on the coordinates in J and

(3.5) w′ = w

(
cardI

cardI ∩ J

)α(k)

.

Since α(k) is small, w′ is not really larger than w unless cardI∩J � cardI.
In particular, since α(k) ≤ 1/2,

(3.6) cardI ∩ J ≥ 1
4

cardI =⇒ w′ ≤ 2w.

Proof. We define (X ′, I ′, w′) by (3.5), I ′ = I ∩ J , and

X ′ =
⋂
n∈I′

Sn,τ(n),

where τ(n) is as in (3.4).

A class of marked weighted sets is a subset of B ×F ×R+. By projection
onto B ×R+, to each class C of marked weighted sets, we can associate a class
C∗ of weighted sets. For a class C of marked weighted sets, we then define ϕC
as ϕC∗ using (3.2). As there is no risk of confusion, we will not distinguish
between C and C∗ at the level of notation. We define

(3.7) D =
⋃
k≥1

Dk; ψ = ϕD.
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Proposition 3.2. Let us assume that

(3.8) N(k) ≥ 2k+6(2k+5)1/α(k).

Then ψ(T ) ≥ 25. Moreover ψ is pathological in the sense that if a measure µ
on B is absolutely continuous with respect to ψ, then µ = 0. Finally, if ν is a
submeasure with ν(T ) > 0 and ν ≤ ψ, ν is not uniformly exhaustive.

Pathological submeasures seem to have been constructed first implicitly
in [7] and explicitly in [14].

Proof. To prove that ψ(T ) ≥ 25, we consider a finite subset F of D, with
w(F ) < 25, and we prove that T 6⊂ ∪F . For k ≥ 1 consider disjoint sets
Fk ⊂ F ∩ Dk such that F = ∪k≥1Fk. (We have not proved that the classes
Dk are disjoint.) For (X, I, w) ∈ Dk, we have w ≥ 2−k, so that cardFk ≤ 2k+5

since w(Fk) ≤ w(F ) < 25. Also we have

2−k
(
N(k)
cardI

)α(k)

= w ≤ w(F ) ≤ 25,

so that cardI ≥ (2k+5)−1/α(k)N(k) := c(k). Under (3.8) we have c(k) ≥ 2k+6.
Let us enumerate F as a sequence (Xr, Ir, wr)r≤r0 (where r0 = cardF ) in such
a way that if (Xr, Ir, wr) ∈ Fk(r), the sequence k(r) is nondecreasing. Since∑

`<k

cardF` ≤
∑
`<k

2`+5 < 2k+5,

we see that r ≥ 2k+5 implies k(r) ≥ k and thus cardIr ≥ c(k). Assuming
(3.8) we now prove that cardIr ≥ r + 1. Indeed this is true if r < 26 because
cardI ≥ c(1) ≥ 27, and if r ≥ 26 and if k is the largest integer with r ≥ 2k+5,
then c(k) ≥ 2k+6 ≥ r + 1. Since cardIr ≥ r + 1, we can then pick inductively
integers ir ∈ Ir that are all different. If Xr =

⋂
n∈Ir

Sn,τr(n), any z in T with
zir = τr(ir) for r ≤ r0 does not belong to any of the sets Xr, and thus ∪F 6= T .
This proves that ψ(T ) ≥ 25.

We prove now that ψ is pathological. Consider a measure µ on B and
ε > 0, and assume that there exists k such that

ψ(B) ≤ 2−k =⇒ µ(B) ≤ ε.

For each τ = (τ(n))n≤N(k), we consider the set

Xτ =
⋂

n≤N(k)

Sn,τ(n)

so that if I = {1, . . . , N(k)} we have (Xτ , I, 2−k) ∈ Dk and thus ψ(Xτ ) ≤ 2−k,
and hence µ(Xτ ) ≤ ε.

Let us denote by Av the average over all values of τ , so that

(3.9)
∫

Av(1Xτ
(z))dµ(z) = Av

∫
1Xτ

(z)dµ(z) = Avµ(Xτ ) ≤ ε.
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It should be clear that the quantity Av(1Xτ
(z)) is independent of z. Its value

ak satisfies

ak =
∫

Av1Xτ
(z)dλ(z) = Av

∫
1Xτ

(z)dλ(z)

where λ denotes the uniform measure on T . Now∫
1Xτ

(z)dλ(z) = λ(Xτ ) =
∏

n≤N(k)

(1− 2−n)

is bounded below independently of k, so that ak is bounded below indepen-
dently of k. Finally (3.9) yields

ε ≥
∫

Av(1Xτ
(z))dµ(z) = akµ(T ),

and since ε is arbitrary this shows that µ(T ) = 0.
Consider finally a submeasure ν ≤ ψ, with ν(T ) > 0. We will prove that

ν is not uniformly exhaustive, by showing that lim infn→∞ infτ≤2n ν(Scn,τ ) > 0.
(It is known by general arguments, using in particular the deep Kalton-Roberts
theorem [11], that a submeasure that is pathological cannot be uniformly ex-
haustive. The point of the argument is to show that, in the present setting,
there is a very simple reason why this is true.) To see this, consider I ⊂ N∗,
and for n ∈ I let τ(n) ≤ 2n. Then

T ⊂
⋃
n∈I

Scn,τ(n) ∪

(⋂
n∈I

Sn,τ(n)

)
so that by subadditivity we have

ν(T )≤
∑
n∈I

ν(Scn,τ(n)) + ν

(⋂
n∈I

Sn,τ(n)

)

≤
∑
n∈I

ν(Scn,τ(n)) + ψ

(⋂
n∈I

Sn,τ(n)

)
.

The definition of D shows that if k is such that if 2−k ≤ ν(T )/2 and
cardI = N(k), the last term is ≤ ν(T )/2, and thus

∑
n∈I ν(Scn,τ(n)) ≥ ν(T )/2.

This proves that lim supn→∞ infτ≤2n ν(Scn,τ ) > 0 and thus that ν is not uni-
formly exhaustive.

At the start of the effort that culminates in the present paper, it was not
clear whether the correct approach would be, following Roberts, to attempt to
directly construct an exhaustive submeasure that is not uniformly exhaustive,
or whether it would be, following Farah, to construct an exhaustive measure
dominated by a pathological submeasure. The fact, shown in Proposition 3.2,
that a submeasure ν ≤ ψ is not uniformly exhaustive for “transparent” reasons
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pointed out that a way to merge these apparently different approaches would
be to look for an exhaustive submeasure ν ≤ ψ. This approach has succeeded,
and as a warm up we will prove the following.

Theorem 3.3. If the sequence N(k) is chosen as in (3.8), for each ε > 0
there is an ε-exhaustive submeasure ν ≤ ψ.

This result is of course much weaker than Theorem 1.1. We present its
proof for pedagogical reasons. Several of the key ideas required to prove Theo-
rem 1.1 will be needed here, and should be much easier to grasp in this simpler
setting.

Given A ∈ Am, let us define the map πA : T → A as follows: If τ1, . . . , τm
are such that

z ∈ A⇐⇒ ∀i ≤ m, zi = τi

then for z ∈ T we have πA(z) = y where

y = (τ1, . . . , τm, zm+1, . . . ).

Definition 3.4 (Farah). Given m < n, we say that a set X ⊂ T is
(m,n, ψ)-thin if

∀A ∈ Am, ∃C ∈ Bn, C ⊂ A, C ∩X = ∅, ψ(π−1
A (C)) ≥ 1.

The idea is now that in each atom of rank m, X has a Bn-measurable hole
that is large with respect to ψ. Of course, we cannot require that ψ(C) ≥ 1
because ψ(C) ≤ ψ(A) will be small, and one should think of ψ(π−1

A (C)) as
measuring the “size of C with respect to A”.

Obviously, if n′ ≥ n and if X is (m,n, ψ)-thin, it is also (m,n′, ψ)-thin.
For a subset I of N∗, we say that X is (I, ψ)-thin if it is (m,n, ψ)-thin whenever
m,n ∈ I, m < n. By the previous observation, it suffices that this should be
the case when m and n are consecutive elements of I.

Consider a given integer q and consider an integer b, to be determined
later. Consider the class F of marked weighted sets defined as

F = {(X, I, w); X is (I, ψ)-thin, cardI = b, w = 2−q}.

We define
ν = ϕF∪D,

where D is the class (2.9). Thus ν ≤ ψ = ϕD, so it is pathological.

Proposition 3.5. The submeasure ν is 2−q-exhaustive.

Proposition 3.6. Assuming

(3.10) b = 22q+10,

we have ν(T ) ≥ 24.
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Both these results assume that (3.8) holds. This condition is assumed
without further mention in the rest of the paper.

We first prove Proposition 3.5. Again, the arguments are due to I. Farah
[6] and are of essential importance.

Lemma 3.7. Consider a sequence (Ei)i≥1 of B and assume that

∀n, ψ

(⋃
i≤n

Ei

)
< 1.

Assume that for a certain m ≥ 1, the sets Ei do not depend on the coordinates
of rank ≤ m. Then for each α > 0, there is a set C ∈ B, that does not depend
on the coordinates of rank ≤ m, and satisfies that ψ(C) ≤ 2 and

∀i ≥ 1, ψ(Ei \ C) ≤ α.

Proof. By definition of ψ for each n we can find a finite set Fn ⊂ D with
w(Fn) < 1 and

⋃
i≤nEi ⊂ ∪Fn. For an integer r ≥ m+ 2, let

F rn = {(X, I, w) ∈ Fn; cardI ∩ {m+ 1, . . . , r − 1} < cardI/2;

cardI ∩ {m+ 1, . . . , r} ≥ cardI/2},
(3.11)

so that the sets F rn are disjoint as r varies. We use Lemma 3.1 and (3.6) with
J = I ∩{m+ 1, . . . , r} to obtain for each (X, I, w) ∈ F rn an element (X ′, I ′, w′)
of D such that X ′ ⊃ X, w′ ≤ 2w, and X ′ depends only on the coordinates of
rank in {m + 1, . . . , r} (or, equivalently, I ′ ⊂ {m + 1, · · · , r}). We denote by
F ′n

r the collection of the sets (X ′, I ′, w′) as (X, I, w) ∈ F rn . Thus ∪F ′nr ⊃ ∪F rn ,
and w(F ′n

r) ≤ 2w(F rn).
Consider an integer i, and j such that Ei ∈ Bj . We prove that for n ≥

i we have Ei ⊂
⋃
r≤j ∪F ′nr. Otherwise, since both these sets depend only

on the coordinates of rank in {m + 1, . . . , j}, we can find a nonempty set A
depending only on those coordinates with A ⊂ Ei \

⋃
r≤j ∪F ′nr, and thus A ⊂

Ei \
⋃
r≤j ∪F rn . Since Ei ⊂ ∪Fn, we have A ⊂ ∪F∼, where F∼ = Fn \

⋃
r≤j F

r
n .

Now, by definition of F rn , if (X, I, w) ∈ F∼, card(I \{m+1, . . . , j}) ≥ cardI/2.
Again by Lemma 3.1, now with J = {m+ 1, . . . , j}c, we can find (X ′, I ′, w′) in
D with w′ ≤ 2w and X ′ ⊃ X, where X ′ does not depend on the coordinates of
rank in {m+ 1, . . . , j}. Let F ′ be the collection of these triples (X ′, I ′, w′), so
that F ′ ⊂ D and w(F ′) ≤ 2w(Fn) ≤ 2. Now ∪F ′ ⊃ ∪F∼ ⊃ A, and since ∪F ′
does not depend on the coordinates in {m + 1, . . . , r}, while A is nonempty
and determined by these coordinates, we have ∪F ′ = T . But this would imply
that ψ(T ) ≤ 2, while we have proved that ψ(T ) ≥ 25.

Thus Ei ⊂
⋃
r≤j ∪F ′nr. For (X, I, w) in F ′n

r, we have I ⊂ {m+ 1, . . . , r}.
Under (3.8) we have that if (X, I, w) ∈ Dk ∩ F ′nr then

(3.12) w = 2−k
(
N(k)
cardI

)α(k)

≥ 25

cardIα(k)
≥ 25

rα(k)
,
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which shows (since w(F ′n
r) ≤ 2) that k remains bounded independently of

n. Since moreover I ⊂ {m + 1, · · · , r} there exists a finite set Dr ⊂ D such
that F

′r
n ⊂ Dr for all n. Then, by taking a subsequence if necessary, we can

assume that for each r the sets F
′r
n are eventually equal to a set F r. For

each triplet (X, I, w) in F r, the set X depends only on the coordinates of
rank in {m + 1, . . . , r}, and it should be obvious that

∑
r≥mw(F r) ≤ 2 and

Ei ⊂
⋃
r≤j ∪F r (whenever j is such that Ei ∈ Bj).

Consider r0 such that
∑

r>r0
w(F r) ≤ α, and let C =

⋃
r≤r0 ∪F

r. Thus
C ∈ B, C does not depend on the coordinates of rank ≤ m and ψ(C) ≤∑

r≤r0 w(F r) ≤ 2. Moreover, since Ei ⊂
⋃
r≤j ∪F r whenever j is large enough

that Ei ∈ Bj , we have
Ei \ C ⊂

⋃
r0<r≤j

∪F r,

so that ψ(Ei \ C) ≤
∑

r>r0
w(F r) ≤ α.

Lemma 3.8 (Farah). Consider α > 0, B ∈ Bm, and a disjoint sequence
(Ei) of B. Then there exists n > m, a set B′ ⊂ B, B′ ∈ Bn, so that B′ is
(m,n, ψ)-thin and lim supi→∞ ψ((B ∩ Ei) \B′) ≤ α.

Proof. Consider α′ = α/cardAm. Consider A ∈ Am, A ⊂ B.

Case 1. ∃p; ψ
(
π−1
A

(⋃
i≤pEi

))
≥ 1.

We set C ′ = C ′(A) = A \
⋃
i≤pEi, so that ψ(π−1

A (A \ C ′)) ≥ 1 and
(A ∩ Ei) \ C ′ = ∅ for i > p.

Case 2. ∀p; ψ
(
π−1
A

(⋃
i≤pEi

))
< 1.

The sets π−1
A (Ei) do not depend on the coordinates of rank ≤ m and so by

Lemma 3.7 we can find a set C ∈ B, that does not depend on the coordinates
of rank ≤ m, with ψ(C) ≤ 2 and lim supi→∞ ψ

(
π−1
A (Ei) \ C

)
≤ α′. Let

C ′ = C ′(A) = πA(C)= A∩C ⊂ A. Since C does not depend on the coordinates
of rank ≤ m, we have C = π−1

A (C ′) so that ψ
(
π−1
A (C ′)

)
≤ 2. Since πA(z) = z

for z ∈ A, we have
(A ∩ Ei) \ C ′ ⊂ π−1

A (Ei) \ C

so that

lim sup
i→∞

ψ((A ∩ Ei) \ C ′) ≤ lim sup
i→∞

ψ
(
π−1
A (Ei) \ C

)
≤ α′.

Let us now define

B′ =
⋃
{C ′ = C ′(A); A ∈ Am, A ⊂ B},

so that

(3.13) lim sup
i→∞

ψ((B∩Ei)\B′) ≤
∑

lim sup
i→∞

ψ((A∩Ei)\C ′) ≤ α′cardAm ≤ α,
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where the summation is over A ⊂ B, A ∈ Am.
Consider n such that B′ ∈ Bn. To prove that B′ is (m,n, ψ)-thin it

suffices to prove that ψ
(
π−1
A (A \ C ′)

)
≥ 1 whenever A ∈ Am, A ⊂ B, because

B′ ∩ A = C ′, and thus A \ B′ = A \ C ′. This was already done in case 1. In
case 2, we observe that

ψ
(
π−1
A (A \ C ′)

)
= ψ

(
π−1
A (C ′)c

)
and that

25 ≤ ψ(T ) ≤ ψ
(
π−1
A (C ′)

)
+ ϕ

(
π−1
A (C ′)c

)
≤ 2 + ψ

(
π−1
A (C ′)c

)
.

Proof of Proposition 3.5 (Farah). Consider a disjoint sequence (Ei)i≥1

of B. Consider α > 0. Starting with B0 = T , we use Lemma 3.8 to recursively
construct sets B` ∈ B and integers (n1, n2, . . . ) such that B` is (I`, ψ)-thin for
I` = {1, n1, n2, . . . , n`} and B` ⊂ B`−1,

(3.14) lim sup
i→∞

ψ((Ei ∩B`−1) \B`) ≤ α.

We have, since B0 = T ,

Ei \B` ⊂
⋃
m≤`

((Ei ∩Bm−1) \Bm),

and the subadditivity of ψ then implies that

ψ(Ei \B`) ≤
∑
m≤`

ψ((Ei ∩Bm−1) \Bm)

and thus

(3.15) lim sup
i→∞

ψ(Ei \B`) ≤ α`.

For ` = b (or even ` = b − 1) (where b is given by (3.10)) the definition of F
shows that (B`, I`, 2−q) ∈ F , and thus ν(B`) ≤ 2−q. Since ν ≤ ψ, we have

ν(Ei) ≤ ν(B`) + ψ(Ei \B`) ≤ 2−q + ψ(Ei \B`),

and (3.15) shows that

lim sup
i→∞

ν(Ei) ≤ 2−q + α`.

Since α is arbitrary, the proof is complete.

We turn to the proof of Proposition 3.6. Considering F1 ⊂ F and F2 ⊂ D,
we want to show that

w(F1) + w(F2) < 24 =⇒ T 6⊂ (∪F1) ∪ (∪F2).

Since w ≥ 2−q for (X, I, w) ∈ F , we have w(F1) ≥ 2−qcardF1, so that cardF1 ≤
2q+4. We appeal to Lemma 2.3 with s = cardF1 and t = b2−q−4 (which is an
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integer by (3.10)) to see that we can enumerate F1 = (X`, I`, w`)`≤s and find
sets J1 ≺ J2 ≺ · · · ≺ Js with cardJ` = t and J` ⊂ I`.

Let us enumerate

(3.16) J` = {i1,`, . . . , it,`}.

An essential idea is that each of the pairs {iu,`, iu+1,`} for 1 ≤ u ≤ t− 1 gives
us a chance to avoid X`. We are going for each ` to choose one of these chances
using a counting argument. For

(3.17) u = (u(`))`≤s ∈ {1, . . . , t− 1}s,

we define the set
W (u) =

⋃
`≤s

]iu(`),`, iu(`)+1,`],

where for integers m < n we define ]m,n] = {m+ 1, . . . , n}.
We consider the quantity

S(u) =
∑
{w; (X, I, w) ∈ F2, card(I ∩W (u)) ≥ cardI/2}.

We will choose u so that S(u) is small. Let us denote by Av the average over
all possible choices of u. Then, for any set I, by linearity of Av, we have

Av(card(I ∩W (u))) =
∑
`≤s

Av(card(I∩]iu(`),`, iu(`)+1,`]))

=
∑
`≤s

1
t− 1

card(I∩]i1,`, it,`]) ≤
1

t− 1
cardI.

Thus, by Markov’s inequality,

Av(1{card(I∩W (u))≥cardI/2}) ≤
2

t− 1
and, using linearity of average, we get

Av(S(u)) ≤ 2
t− 1

w(F2) ≤ 25

t− 1
≤ 2q+10

b
.

Thus, we can find u such that S(u) ≤ 2q+10/b. We fix this value of u once
and for all. To lighten notation we set

(3.18) W = W (u); m` = iu(`),`, n` = iu(`)+1,`, W` =]m`, n`]

so that W =
⋃
`≤sW`, and n` ≤ m`+1 since n` ∈ J`, m`+1 ∈ J`+1, J` ≺ J`+1.

Let us define

F3 = {(X, I, w) ∈ F2; card(I ∩W ) ≥ cardI/2},(3.19)

F4 = {(X, I, w) ∈ F2; card(I ∩W ) < cardI/2},(3.20)

so that F2 = F3 ∪ F4, and the condition S(u) ≤ 2q+10/b means that

w(F3) ≤ 2q+10

b
.



MAHARAM’S PROBLEM 997

In particular if (X, I, w) ∈ F3 we have w ≤ 2q+10/b. Since w ≥ 2−k for
(X, I, w) ∈ Dk we see that under (3.10) we have

(3.21) (X, I, w) ∈ Dk ∩ F3 =⇒ k ≥ q.

Since s = cardF1 ≤ 2q+4 and W =
⋃
`≤sW`, if card(I ∩W ) ≥ cardI/2,

there must exist ` ≤ s with card(I ∩W`) ≥ 2−q−5cardI. This shows that if we
define

(3.22) F `3 = {(X, I, w) ∈ F3; card(I ∩W`) ≥ 2−q−5cardI},

then we have F3 =
⋃
`≤s F

`
3 .

We appeal to Lemma 3.1 with J = W`, using the fact that if k ≥ q we
have

(2q+5)α(k) ≤ 2

(with huge room to spare!), to find for each (X, I, w) ∈ F `3 a triplet (X ′, I ′, w′)
∈ D with X ⊂ X ′, w′ ≤ 2w, such that X ′ depends only on the coordinates of
rank in W`. Let F ′3

` be the collection of these triples, so that under (3.10) we
have

w(F ′3
`) ≤ 2w(F `3) ≤ 2w(F3) ≤ 2q+11

b
≤ 1

2
.

We use again Lemma 3.1, this time for J the complement of W , so that
card(I ∩J) ≥ cardI/2 for (X, I, w) ∈ F4, and we can find (X ′, I ′, w′) ∈ D with
w′ ≤ 2w, X ′ contains X and depends only on coordinates whose rank is not
in W . Let F ′4 be the collection of these triples, so that w(F ′4) ≤ 2w(F4) < 25.

Since ψ(T ) ≥ 25, we have T 6⊂ ∪F ′4, so that we can find z ∈ T \ ∪F ′4.
Since ∪F ′4 depends only on the coordinates whose rank is not in W , if z

′ ∈ T
is such that zi = z′i for i /∈ W , then z

′
/∈ ∪F ′4. To conclude the proof, we

are going to construct such a z
′

that does not belong to any of the sets X` or
∪F ′3`. (Thus z

′
will not belong to (∪F1) ∪ (∪F2).) First, let A1 ∈ Am1 such

that z ∈ A1. Since X1 is (m1, n1, ψ)-thin, there exists C ∈ Bn1 , C ∩X1 = ∅,
ψ
(
π−1
A1

(C)
)
≥ 1. Since w(F ′3

1) ≤ 1/2, we therefore have π−1
A1

(C) \ C ′ 6= ∅,
where C ′ = ∪F ′31. Since C ′ does not depend on the coordinates of rank ≤ m1

we have C ′ = π−1
A1

(C ′), so that π−1
A1

(C) \ π−1
A1

(C ′) 6= ∅, and hence C \ C ′ 6= ∅.
Since C ′ depends only on the coordinates of rank in W1, we have C ′ ∈ Bn1 ,
and since C ∈ Bn1 , we can find A′ ∈ An1 with A′ ⊂ C \C ′, so that A′∩X1 = ∅
and A′ ∩∪F ′31 = ∅. Next, we find A2 ∈ Am2 with A2 ⊂ A′ such that if y ∈ A2

then

∀i, n1 < i ≤ m2 =⇒ yi = zi,

and we continue the construction in this manner.
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4. The construction

Given an integer p, we will make a construction “with p levels”, and we
will then take a kind of limit as p→∞. We consider the sequence α(k) as in
(3.3), and we fix a sequence (M(k)) to be specified later. The only requirement
is that this sequence increases fast enough. We recall the class D constructed
in the previous section.

We construct classes (Ek,p)k≤p, (Ck,p)k≤p of marked weighted sets, and
submeasures (ϕk,p)k≤p as follows. First, we set

Cp,p = Ep,p = D, ϕp,p = ϕD = ψ.

Having defined ϕk+1,p, Ek+1,p, Ck+1,p, we then set

Ek,p =

{
(X, I, w); X ∈ B, X is (I, ϕk+1,p)-thin,

cardI ≤M(k), w = 2−k
(
M(k)
cardI

)α(k)
}

Ck,p = Ck+1,p ∪ Ek,p, ϕk,p = ϕCk,p
.

To take limits, we fix an ultrafilter U on N∗ and we define the class Ek of
marked weighted sets by

(X, I, w) ∈ Ek⇐⇒{p; (X, I, w) ∈ Ek,p} ∈ U .(4.1)

Of course, one can also work with subsequences if one so wishes. It seems
plausible that with further effort one might prove that (X, I, w) ∈ Ek if and
only if (X, I, w) ∈ Ek,p for all p large enough, but this fact, if true, is not really
relevant for our main purpose.

We define

Ck = D ∪
⋃
`≥k
E` = Ck+1 ∪ Ek; νk = ϕCk

; ν = ν1.

Let us assume that

(4.2) M(k) ≥ 2(k+5)/α(k).

Then if w < 25 and (X, I, w) ∈ Er,p, since

(4.3) w = 2−r
(
M(r)
cardI

)α(r)

≥ 25

cardIα(r)
,

r remains bounded independently of p. It then follows from (4.1) that if w < 25

we have

(4.4) (X, I, w) ∈ Ck ⇐⇒ {p; (X, I, w) ∈ Ck,p} ∈ U .
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Theorem 4.1. We have ν(T ) > 0, ν is exhaustive, ν is pathological, and
ν is not uniformly exhaustive.

The hard work will of course be to show that ν(T ) > 0 and that ν is
exhaustive, but the other two claims are consequences of Proposition 3.2, since
ν ≤ ψ.

It could be of interest to observe that the submeasure ν has nice invariant
properties. For each n it is invariant under any permutation of the elements
of Tn. It was observed by Roberts [15] that if there exists an exhaustive
submeasure that is not uniformly exhaustive, this submeasure can be found
with the above invariance property. This observation was very helpful to the
author, as it pointed to the rather canonical construction of ψ.

5. The main estimate

Before we can say anything at all about ν, we must of course control the
submeasures ϕk,p. Let us define

c1 = 24; ck+1 = ck22α(k)

so that since
∑

k≥1 α(k) ≤ 1/2 we have

(5.1) ck ≤ 25.

Theorem 5.1. If the sequence M(k) satisfies

(5.2) M(k) ≥ 22k+102(k+5)/α(k)(23 +N(k − 1)),

then

(5.3) ∀p, ∀k ≤ p, ϕk,p(T ) ≥ ck.

Of course (5.2) implies (4.2). It is the only requirement we need on the
sequence (M(k)).

The proof of Theorem 5.1 resembles that of Proposition 3.6. The key fact
is that the class Ek,p has to a certain extent the property of Dk stressed in
Lemma 3.1, at least when the set J is not too complicated.

The following lemma expresses such a property when J is an interval. We
recall the notation (X)n of (2.8).

Lemma 5.2. Consider (X, I, w) ∈ Ek,p, k < p, and m0 < n0. Let I ′ =
I∩]m0, n0] and A ∈ Am0. Then if X ′ =

(
π−1
A (X)

)
n0

we have (X ′, I ′, w′) ∈ Ek,p
where w′ = w(cardI/cardI ′)α(k).

Proof. It suffices to prove that X ′ is (I ′, ϕk+1,p)-thin. Consider m,n ∈ I ′,
m<n, so that m0<m<n≤n0. Consider A1∈Am, and set A2 =πA(A1)⊂A,
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so that A2 ∈ Am. Since X is (m,n, ϕk+1,p)-thin, there exists C ⊂ A2, C ∈ Bn,
with C ∩X = ∅, ϕk+1,p(π−1

A2
(C)) ≥ 1. Let C ′ = A1∩π−1

A2
(C), so that C ′ ∈ Bn.

We observe that if a set B does not depend on the coordinates of rank
≤ m, we have

π−1
A1

(B) = B = π−1
A1

(B ∩A1).

Using this for B = π−1
A2

(C), we get that π−1
A1

(C ′) = π−1
A2

(C), and consequently
ϕk+1,p

(
π−1
A1

(C ′)
)
≥ 1.

It remains only to prove that C ′∩X ′ = ∅. This is because on A1 the maps
πA and πA2 coincide, so that, since C ′ ⊂ A1, we have πA(C ′) = πA2(C ′) ⊂ C

and hence πA(C ′)∩X = ∅. Thus C ′∩π−1
A (X) = ∅ and since C ′ ∈ Bn we have

C ′ ∩X ′ = ∅.

Given p, the proof of Theorem 5.1 will go by decreasing induction over k.
For k = p, the result is true since by Proposition 3.2 we have ϕp,p(T ) = ψ(T ) ≥
25 ≥ ck.

Now we proceed to the induction step from q + 1 to q. Considering F ⊂
Cq,p, with w(F ) < cq, our goal is to show that ∪F 6= T . Since Cq,p = Cq+1,p∪Eq,p
we have F = F1 ∪ F2, F1 ⊂ Eq,p, F2 ⊂ Cq+1,p.

Let F ′2 = F2 ∩
⋃
k<q Dk. When (X, I, w) ∈ Dk we have w ≥ 2−k ≥ 2−q,

and thus
2−qcardF ′2 ≤ w(F ′2) ≤ w(F ) ≤ cq ≤ 25

so that cardF ′2 ≤ 2q+5. Also, for (X, I, w) ∈ Dk we have cardI ≤ N(k), so that
if

(5.4) I∗ =
⋃
{I; (X, I, w) ∈ F ′2}

then

(5.5) cardI∗ ≤ t′ := 2q+5N(q − 1).

When (X, I, w) ∈ Eq,p we have w ≥ 2−q. Thus

2−qcardF1 ≤ w(F1) ≤ w(F ) ≤ cq ≤ 25

and thus s := cardF1 ≤ 2q+5. Also, when (X, I, w) ∈ Eq,p,

2−q
(
M(q)
cardI

)α(q)

= w ≤ 25

so that

(5.6) cardI ≥M(q)2−(q+5)/α(q)

and hence, if

(5.7) t = 2q+8 + t′
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under (5.2) then cardI ≥ st where s = cardF1. Now following the proof of
Proposition 3.6, we appeal to Roberts’ selection lemma to enumerate F1 as
(X`, I`, w`)`≤s and find sets J1 ≺ J2 ≺ · · · ≺ Js with cardJ` = t and J` ⊂ I`.
Then appealing to the counting argument of Proposition 3.6, but instead of
allowing in (3.17) all the values of u(`) ≤ t − 1, we now restrict the choice of
u(`) by

u(`) ∈ U` = {u; 1 ≤ u ≤ t− 1, I∗∩]iu,`, iu+1,`] = ∅}.

We observe that by (5.5) and (5.7), cardU` ≥ 2q+8 − 1.
The counting argument then allows us to find u such that (since w(F2)

≤ 25)

S(u) ≤ 2
2q+8 − 1

w(F2) ≤ 2−q−1.

Using the notation (3.18) we have thus constructed intervals W` =]m`, n`],
` ≤ s, with n` ≤ m`+1, in such a manner that X` is (m`, n`, ϕq+1,p)-thin and
that if F3 is defined by (3.19),

(5.8) w(F3) ≤ 2−q−1 ≤ 1
4
.

Moreover, if W =
⋃
`≤s]m`, n`] we have ensured that

(X, I, w) ∈ F ′2 =⇒W ∩ I = ∅,

so that in particular if we define F4 by (3.20) then

(5.9) (X, I, w) ∈ F4 , (X, I, w) ∈
⋃
k<q

Dk =⇒W ∩ I = ∅.

As before, (5.8) implies that if (X, I, w) ∈ Dk ∩ F3, then k ≥ q. Let us
define the classes F `3 , ` ≤ s by

F `3 = {(X, I, w) ∈ F3; card(I ∩W`) ≥ 2−q−6cardI},

so that F3 =
⋃
`≤s F

`
3 , since s ≤ 2q+5.

Lemma 5.3. Consider (X, I, w) ∈ F `3 and A ∈ Am`
. Then there is

(X ′, I ′, w′) in Cq+1,p with X ′ ⊃ π−1
A (X), X ′ ∈ Bn`

, w′ ≤ 2w.

Proof. If (X, I, w) ∈ D we have already proved this statement in the course
of the proof of Proposition 3.6, and so, since Cq+1,p = D ∪

⋃
q+1≤r≤p Er,p, it

suffices to consider the case where (X, I, w) ∈ Er,p, r ≥ q + 1. In that case, if
I ′ = I ∩W`, (

cardI
cardI ′

)α(r)

≤ (2q+6)α(r) ≤ 2

and the result follows from Lemma 5.2.
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Corollary 5.4. Consider A ∈ Am`
. Then there is A′ ∈ An`

such that
A′ ⊂ A, A′ ∩X` = ∅ and A′ ∩ ∪F `3 = ∅.

Proof. Lemma 5.3 shows that π−1
A (∪F `3) ⊂ C ′, where C ′ ∈ Bn`

and
ϕq+1,p(C ′) ≤ 2w(F `3) ≤ 1/2. Since X` is (m`, n`, ϕq+1,p)-thin, there is C ∈ Bn`

,
C ⊂ A, C ∩ X = ∅ with ϕq+1,p

(
π−1
A (C)

)
≥ 1. Thus we cannot have

π−1
A (C) ⊂ C ′ and hence since both these sets belong to Bn`

we can find
A1 ∈ An`

with

A1 ⊂ π−1
A (C) \ C ′ ⊂ π−1

A (C) \ π−1
A (∪F `3).

Now, A′ = πA(A1) ∈ An`
, A′ ∩ ∪F `3 = ∅, A′ ⊂ C, so that A′ ∩X` = ∅.

We now construct a map Ξ : T → T with the following properties. For
y ∈ T , z = Ξ(y) is such that zi = yi whenever i /∈ W =

⋃
`≤s]m`, n`].

Moreover, for each `, and each A ∈ Am`
, there exists A′ ∈ An`

with

y ∈ A =⇒ Ξ(y) ∈ A′,

and A′ satisfies A′ ∩X` = ∅ and A′ ∩ ∪F `3 = ∅.
The existence of this map is obvious from Corollary 5.4. It satisfies

(5.10) ` ≤ s =⇒ Ξ(T ) ∩X` = ∅, Ξ(T ) ∩ ∪F `3 = ∅.

It has the further property that for each integer j the first j coordinates
of Ξ(y) depend only on the first j coordinates of y.

We recall that F4 is as in (3.20).

Lemma 5.5. We have ϕq+1,p

(
Ξ−1(∪F4)

)
< cq+1.

Proof of Theorem 5.1. Using the induction hypothesis ϕq+1,p(T ) ≥ cq+1

we see that there is y in T \ Ξ−1(∪F4), so that Ξ(y) /∈ ∪F4. Combining with
(5.10) we see that Ξ(y) /∈

⋃
`≤sX` = ∪F1, Ξ(y) /∈ ∪F3, so that Ξ(y) /∈ ∪F .

Proof of Lemma 5.5. We prove that if (X, I, w) ∈ F4, then ϕq+1,p

(
Ξ−1(X)

)
≤ w22α(q). This suffices since w(F4) < cq.

Case 1. (X, I, w) ∈ Dk, k < q. In that case, by (5.9), I ∩W = ∅, so that
Ξ−1(X) = X and thus ϕq+1,p

(
Ξ−1(X)

)
= ϕq+1,p(X) ≤ w.

Case 2. We have (X, I, w) ∈ Dk, k ≥ q. We use Lemma 3.1 with
J = N∗ \W and the fact that α(k) ≤ α(q) ≤ (q+ 5)−3. This has already been
done in the previous section.

Case 3. (X, I, w) ∈ Er,p for some q + 1 ≤ r < p. In a first stage we prove
the following. Whenever m,n ∈ I are such that m < n, and ]m,n] ∩W =
∅, then Ξ−1(X) is (m,n, ϕr+1,p)-thin. Since for each integer j the first j
coordinates of Ξ(y) depend only on the first j coordinates of y, whenever
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A ∈ Am there is A′ ∈ Am with Ξ(A) ⊂ A′. Since X is (m,n, ϕr+1,p)-thin we
can find C ′ ∈ Bn with C ′ ∩ X = ∅, C ′ ⊂ A′, and ϕr+1,p

(
π−1
A′ (C

′)
)
≥ 1. We

first prove that

(5.11) Ξ
(
πA
(
π−1
A′ (C

′)
))
⊂ C ′.

Consider τ1, . . . , τm and τ ′1, . . . , τ
′
m such that

A= {z ∈ T ; ∀i ≤ m, zi = τi},
A′= {z ∈ T ; ∀i ≤ m, zi = τ ′i}.

Consider y ∈ π−1
A′ (C

′). Then there exists y′ ∈ C ′ with yi = y′i for i > m. Thus
y
′′

= πA(y) is such that y′′i = τi for i ≤ m, and y′′i = y′i for i > m, so that
z = Ξ(y

′′
) is such that zi = τ ′i for i < m. Moreover zi = y′′i for i 6∈ W , and

since ]m,n] ∩W = ∅, we have zi = y′′i = y′i for m < i ≤ n. Since C ′ ⊂ A′, we
have y′i = τ ′i for i < m, so that zi = y′i for all i ≤ n, and thus z ∈ C ′ because
y′ ∈ C ′ ∈ Bn. Since y is arbitrary this proves (5.11).

Let C = Ξ−1(C ′) ∩A ∈ Bn, so that (5.11) implies that

π−1
A′ (C

′) ⊂ π−1
A

(
Ξ−1(C ′)

)
= π−1

A (C),

so that ϕr+1,p

(
π−1
A (C)

)
≥ 1 and since C ∩ Ξ−1(X) = ∅ we have proved that

Ξ−1(X) is (m,n, ϕr+1,p)-thin.
For each ` ≤ 1, consider the largest element i(`) of I that is ≤ m`. (Trivial

modifications of the argument take care of the case where I has no elements
≤ m`). Let

I ′ = I \ (W ∪ {i(1), . . . , i(s)}),

so that, since card(I \W ) ≥ cardI/2, we have

cardI ′ ≥ cardI
2
− s ≥ cardI

2
− 2q+5 ≥ cardI

4
,

using (5.6) and (5.2). We claim that Ξ−1(X) is (m,n, ϕr+1,p)-thin whenever
m < n, m,n ∈ I ′. To see this, consider the smallest element n′ of I such that
m < n′. Then n′ ≤ n, so it suffices to show that Ξ−1(X) is (m,n′, ϕr+1,p)-thin.
By the first part of the proof, it suffices to show that W∩]m,n′] = ∅. Assuming
W`∩]m,n′] 6= ∅, we see that m` < n′. Since m 6∈ W` we have m ≤ i(`) and
since m 6= i(`), we have m < i(`) ≤ m`, contradicting the choice of n′.

Let w′ = w(cardI/cardI ′)α(q) ≤ w22α(q). Then, obviously, (Ξ−1(X), I ′, w′)
∈ Er,q, so that ϕq+1,p

(
Ξ−1(X)

)
≤ w22α(q).

6. Exhaustivity

Lemma 6.1. Consider B ∈ B and a > 0. If νk(B) < a then

{p; ϕk,p(B) < a} ∈ U .
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Proof. By definition of νk = ϕCk
, there exists a finite set F ⊂ Ck =

D∪
⋃
r≥k Er with w(F ) < a and ∪F ⊃ B. By definition of Er, for (X, I, w) ∈ Er,

{p; (X, I, w) ∈ Er,p} ∈ U ,

so that since Ck,p = D ∪
⋃
k≤r<p Er,p we have {p; F ⊂ Ck,p} ∈ U and thus

ϕk,p(B) ≤ w(F ) < a for these p.

Corollary 6.2. We have ν(T ) ≥ 16.

Proof. By Lemma 6.1, and since ϕ1,p(T ) ≥ c1 = 16, by Theorem 5.1.

The next lemma is a kind of converse to Lemma 6.1, and lies much deeper.

Lemma 6.3. Let B ∈ B with νk(B) ≥ 4. Then

{p; ϕk,p(B) ≥ 1} ∈ U .

Proof. Consider n such that B ∈ Bn, and assume for contradiction that

U = {p; ϕk,p(B) < 1} ∈ U .

Thus, for p ∈ U , we can find Fp ⊂ Ck,p with B ⊂ ∪Fp and w(Fp) ≤ 1. Let

F 1
p = {(X, I, w) ∈ Fp; card(I ∩ {1, . . . , n}) ≥ cardI/2},
F 2
p =Fp \ F 1

p = {(X, I, w) ∈ Fp; card(I ∩ {1, . . . , n}) < cardI/2}.

Using Lemmas 3.1 and 5.2 we find a family F∼p of triples (X ′, I ′, w′) in Ck,p with
∪F∼p ⊃ ∪F 1

p , w(F∼p ) ≤ 2 and I ′ ⊂ {1, . . . , n}, X ′ ∈ Bn, so that ∪F∼p ∈ Bn.
We claim that B ⊂ ∪F∼p . For, otherwise, since B and ∪F∼p both belong to

Bn, we can find A ∈ An with A ⊂ B \ ∪F∼p , so that A ⊂ ∪F 2
p . By Lemma 5.2

again (or, to be exact, its obvious extension to the case n0 =∞) and Lemma
3.1 we get

ϕk,p(T ) = ϕk,p
(
π−1
A (∪F 2

p )
)
≤ 2w(F 2

p ) ≤ 2,

which is impossible because ϕk,p(T ) ≥ 16.
Using (3.12) and (4.3) we see that for (X ′, I ′, w′) ∈ Ck,p the value of cardI ′

determines w′. Since X ′ ∈ Bn, it follows that there exists a finite collection G
of triples (X, I, w) such that F∼p ⊂ G for all p. Thus there exists a set F such
that {p ∈ U ;F∼p = F} ∈ U . If follows from (4.4) that F ⊂ Ck and it is obvious
that B ⊂ ∪F and w(F ) ≤ 2, so that νk(B) ≤ 2, a contradiction.

Corollary 6.4. Consider a triplet (X, I, w) and k with cardI ≤ M(k)
and

w = 2−k
(M(k)

cardI

)α(k)
.
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Assume that X is (I, νk+1/4)-thin, i.e.

(6.1)

∀m,n ∈ I, m < n, ∀A ∈ Am, ∃C ∈ Bn, C ∩X = ∅, νk+1

(
π−1
A (C)

)
≥ 4.

Then (X, I, w) ∈ Ek.
Proof. If νk+1(π−1

A (C)) ≥ 4 then by Lemma 6.3 we have {p; ϕk+1,p(π−1
A (C))

≥ 1} ∈ U and

{p; (X, I, w) ∈ Ek,p} ⊃
⋂{

p; ϕk+1,p

(
π−1
A (C)

)
≥ 1
}
∈ U ,

where the intersection is over all sets A,C as in (6.1).

Lemma 6.5. Consider a sequence (Ei) of B, and assume that these sets
do not depend on the coordinates of rank ≤ m for a certain m. Assume that

∀n, νk

(⋃
i≤n

Ei

)
< 4.

Then for each α > 0 there is C ∈ B, which does not depend on the coordinates
of rank ≤ m, and such that νk(C) ≤ 8 and νk(Ei \ C) ≤ α for each i.

Proof. For each n, let

Un =

{
p; ϕk,p

(⋃
i≤n

Ei

)
< 4

}
so that Un ∈ U by Lemma 6.1. For p ∈ Un we can find Fn,p ⊂ Ck,p with⋃
i≤nEi ⊂ ∪Fn,p and w(Fn,p) ≤ 4. For r ≥ m+ 1 we define

F rn,p =
{

(X, I, w) ∈ Fn,p; card(I ∩ {m+ 1, . . . , r − 1}) ≤ 1
2

cardI;

card(I ∩ {m+ 1, . . . , r}) ≥ 1
2

cardI
}
,

and

F ′n,p =
{

(X, I, w) ∈ Fn,p; card(I ∩ {1, . . . ,m}) ≥ 1
4

cardI
}
.

We use Lemmas 3.1 and 5.2 to find a set B ∈ Bm with ϕk,p(B) ≤ 8 and B ⊃
∪F ′n,p so that since ϕk,p(T ) ≥ 16, B 6= T and thus there exists An,p ∈ Am with
An,p∩∪F ′n,p = ∅. We use again Lemmas 3.1 and 5.2 to see that for (X, I, w) ∈
F rn,p we can find w′ ≤ 2w such that (X ′, I ′, w′) = ((π−1

An,p
(X))r, I ∩ {m +

1, . . . , r}, w′) ∈ Ck,p. We observe that X ′ does not depend on the coordinates of
rank ≤ m. Let F ′rn,p be the collection of the sets (X ′, I ′, w′) for (X, I, w) ∈ F rn,p
so that w(F ′rn,p) ≤ 2w(F rn,p). We claim that if Ei ∈ Bj then

(6.2) Ei ⊂
⋃
r≤j
∪F ′rn,p.
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Otherwise, since both sets depend only on the coordinates of rank ≥ m and
≤ j, and since An,p ∈ Am, we would find A ∈ Aj with A ⊂ An,p and A ⊂
Ei \

⋃
r≤j ∪F ′rn,p. Since π−1

An,p
(X) ∩ An,p ⊃ X ∩ An,p, this shows that A ⊂

Ei \
⋃
r≤j ∪F rn,p. Since An,p ∩∪F ′n,p = ∅, we would have A∩∪F ′n,p = ∅. Also,

since Ei ⊂ ∪Fn,p, we would have A ⊂ ∪F ′′n,p, where

F ′′n,p =Fn,p \

(
F ′n,p ∪

⋃
r≤j

F rn,p

)

⊂
{

(X, I, w) ∈ Fn,p; cardI ∩ {j + 1, . . . } ≥ 1
4

cardI
}
.

A new application of Lemmas 3.1 and 5.2 then shows that T = π−1
A (A) would

satisfy ϕk,p(T ) ≤ 8, and this is impossible. So we have proved (6.2).

Given r, we prove, using (3.12) and (4.3), that F ′rn,p ⊂ Gr where Gr is
finite and does not depend on n or p. It should then be clear by (4.1) how
to take limits as p → ∞, n → ∞ to define for r ≥ m + 1 sets F r ⊂ Ck with∑

r≥m+1w(F r) ≤ 8 such that Ei ⊂
⋃
r≤j ∪F r provided Ei ∈ Bj . The elements

of F r are of the type (X, I, w) where X does not depend on the coordinates of
rank ≤ m, and X ∈ Br.

Consider r0 such that
∑

r>r0
w(F r) < α and let C =

⋃
r≤r0 ∪F

r. Then
νk(C) ≤

∑
r≤r0 w(F r) ≤ 8 and

Ei \ C ⊂
⋃

r0≤r≤j
∪F r

so that νk(Ei \ C) ≤ α.

Lemma 6.6. Consider k > 0, α > 0, B ∈ Bm, a disjoint sequence (Ei)
of B. Then we can find n > m, a set B′ ∈ Bn, B′ ⊂ B such that B′ is
(m,n, νk/4)-thin and

lim sup
i→∞

νk((B ∩ Ei) \B′) ≤ α.

Proof. This is nearly identical to that of Lemma 3.8, by Lemma 6.5, and
since νk(T ) ≥ 16.

Proof that ν is exhaustive. For each k we show that ν is 2−k exhaustive
following the method of Proposition 3.5, and using the fact that by Corollary
6.4, if X is (I, νk+1/4)-thin where cardI = M(k), then (X, I, 2−k) ∈ Ek, so
that ν(X) ≤ νk(X) ≤ 2−k.



MAHARAM’S PROBLEM 1007

7. Proofs of Theorems 1.2 to 1.4

The simple arguments we present here are essentially copied from the
paper of Roberts [15], and are provided for the convenience of the reader.

To prove Theorem 1.4, we simply consider the space L0 of real-valued
functions, defined on the Cantor set, that are B-measurable, provided with the
topology induced by the distance d such that

(7.1) d(f, 0) = sup{ε; ν({|f | ≥ ε}) ≥ ε},

where ν is the submeasure of Theorem 1.1. We consider the L0-valued vector
measure θ given by θ(A) = 1A. Thus d(0, θ(A)) = ν(A), which makes it
obvious that θ is exhaustive and does not have a control measure. Let us also
note that d satisfies the nice formula

d(f + g, 0) ≤ d(f, 0) + d(g, 0),

as follows from the relation {|f + g| ≥ ε1 + ε2} ⊂ {|f | ≥ ε1} ∪ {|g| ≥ ε2}.
We start the proof of Theorem 1.2 first observing that the submeasure

ν of Theorem 1.1 is strictly positive, i.e., ν(A) > 0 if A 6= ∅. This follows
from subadditivity and the fact that by construction we have ν(A) = ν(A′) for
A,A′ ∈ An and any n.

Since ν is strictly positive we can define a distance d on B by

d(A,B) = ν(A M B),

where M denotes the symmetric difference. It is simple to see that the com-
pletion B̂ of B with respect to this distance is still a Boolean algebra, the
operations being defined by continuity, and that ν extends to B̂ in a positive
submeasure, still denoted by ν. We claim that ν is exhaustive. To see this,
consider a disjoint sequence (En) in B̂. Consider ε > 0, and for each n find An
in B with ν(An M En) ≤ ε2−n. Let Bn = An \ (A1 ∪ · · · ∪An−1), so that, since
En = En \ (E1 ∪ · · · ∪ En−1) we have

(7.2) ν(Bn M En) ≤
∑
m≤n

ν(Em M Am) ≤
∑
m≤n

ε2−m ≤ ε.

Since the sequence (Bn) is disjoint in B, we have limn→∞ ν(Bn) = 0, and by
(7.2) we have lim supn→∞ ν(En) ≤ ε. As ε is arbitrary, this proves the result.

Consider now a decreasing sequence (An) of B̂. The fundamental observa-
tion is that it is a Cauchy sequence for d. Otherwise, we could find ε > 0 and
numbers m(k) < n(k) ≤ m(k + 1) < n(k + 1) · · · with ν(An(k) \ Am(k)) ≥ ε,
and this contradicts exhaustivity.

The limit of a decreasing sequence (An) in B̂ is clearly the infimum of this
sequence. This shows that B̂ is σ-complete and that ν is continuous.
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It follows that ν is countably subadditive, i.e.

(7.3) ν

( ⋃
n≥1

An

)
≤
∑
n≥1

ν(An).

This is because for each m, if Bm =
⋃
n≥1An \

(⋃
1≤n≤mAn

)
then

ν

( ⋃
n≥1

An

)
≤ ν

(
Bm ∪

⋃
1≤n≤m

An

)
≤ ν(Bm) +

∑
1≤n≤m

ν(An)

and ν(Bm) → 0 since ν is continuous. Now, the sequence (Bn) decreases
because

⋂
m≥1Bm = 0 (the smallest element of B̂).

Lemma 7.1. Consider A ∈ B, and countable collections Cn, n ≥ 1 such
that A ⊂ ∪Cn for each n. Then for each η > 0 there is A′ ⊂ A with ν(A\A′) ≤ η
such that for each n, A is covered by a finite subset of Cn.

Proof. Enumerate Cn as (Cn,m)m≥1. Since A ⊂ ∪Cn, we have⋂
k

(
A \

⋃
m≤k

Cn,m

)
= 0,

so that by continuity of ν there exists k(n) with ν
(
A \

⋃
m≤k(n)Cn,k

)
≤ η2−n.

The set A′ =
⋂
n

⋃
m≤k(n)Cn,k is for each n covered by a finite subset of Cn

and it satisfies ν(A \A′) ≤ η by (7.3).

Consider a measure µ on B̂. Then µ is not absolutely continuous with
respect to ν on B, so that we can find ε > 0 and for each n a set Bn ∈ B
with ν(Bn) ≤ 2−n and µ(Bn) ≥ ε. Let An =

⋃
m≥nBm. By (7.3) we have

ν(An) ≤
∑

m≥n 2−m ≤ 2−n+1 so that if A =
⋂
n≥1An we have ν(A) = 0

and thus A = 0. But by monotonicity we have µ(An) ≥ ε, so that µ is not
continuous.

On the other hand, ν is not absolutely continuous with respect to µ on
B, so for some ε > 0 and each n we can find Bn ∈ B with ν(Bn) ≥ ε and
µ(Bn) ≤ 2−n. Let An =

⋃
m≥nBm and A =

⋂
n≥1An, so that ν(An) ≥ ε and

ν(A) ≥ ε by continuity of ν. We use Lemma 7.1 with η = ε/2, Cn = {Bm;
m ≥ n}, A =

⋂
n≥1An. Now, ν(A′) ≥ ε/2 since ν(A) ≥ ε, so that A′ 6= 0. For

each n, since µ is subadditive, and since A′ can be covered by a finite subset
of Cn we have µ(A′) ≤

∑
m≥n 2−m = 2−n−1. Thus µ(A′) = 0, and hence µ is

not positive. This concludes the proof of Theorem 1.2.
To prove Theorem 1.3, we first observe that B̂ satisfies the countable chain

condition, since ν is positive and exhaustive. We prove that it also satisfies the
weak distributive law. Given a sequence (Πn) of partitions of B̂ and m ∈ N∗,
Lemma 7.1 produces a set Cm with ν(Ccm) ≤ 2−m such that Cm is finitely
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covered by every partition Πn. And C1, C2 \ C1, C3 \ (C1 ∪ C2), · · · is the
required partition. This concludes the proof of Theorem 1.3.
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