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Quasilinear and Hessian equations
of Lane-Emden type

By Nguyen Cong Phuc and Igor E. Verbitsky*

Abstract

The existence problem is solved, and global pointwise estimates of solu-
tions are obtained for quasilinear and Hessian equations of Lane-Emden type,
including the following two model problems:

−∆pu = uq + µ, Fk[−u] = uq + µ, u ≥ 0,

on Rn, or on a bounded domain Ω ⊂ Rn. Here ∆p is the p-Laplacian defined
by ∆pu = div (∇u|∇u|p−2), and Fk[u] is the k-Hessian defined as the sum of
k × k principal minors of the Hessian matrix D2u (k = 1, 2, . . . , n); µ is a
nonnegative measurable function (or measure) on Ω.

The solvability of these classes of equations in the renormalized (entropy)
or viscosity sense has been an open problem even for good data µ ∈ Ls(Ω),
s > 1. Such results are deduced from our existence criteria with the sharp
exponents s = n(q−p+1)

pq for the first equation, and s = n(q−k)
2kq for the second

one. Furthermore, a complete characterization of removable singularities is
given.

Our methods are based on systematic use of Wolff’s potentials, dyadic
models, and nonlinear trace inequalities. We make use of recent advances in
potential theory and PDE due to Kilpeläinen and Malý, Trudinger and Wang,
and Labutin. This enables us to treat singular solutions, nonlocal operators,
and distributed singularities, and develop the theory simultaneously for quasi-
linear equations and equations of Monge-Ampère type.

1. Introduction

We study a class of quasilinear and fully nonlinear equations and in-
equalities with nonlinear source terms, which appear in such diverse areas
as quasi-regular mappings, non-Newtonian fluids, reaction-diffusion problems,
and stochastic control. In particular, the following two model equations are of
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substantial interest:

(1.1) −∆pu = f(x, u), Fk[−u] = f(x, u),

on Rn, or on a bounded domain Ω ⊂ Rn, where f(x, u) is a nonnegative func-
tion, convex and nondecreasing in u for u ≥ 0. Here ∆pu = div (∇u |∇u|p−2)
is the p-Laplacian (p > 1), and Fk[u] is the k-Hessian (k = 1, 2, . . . , n) defined
by

(1.2) Fk[u] =
∑

1≤i1<···<ik≤n
λi1 · · ·λik ,

where λ1, . . . , λn are the eigenvalues of the Hessian matrix D2u. In other
words, Fk[u] is the sum of the k × k principal minors of D2u, which coincides
with the Laplacian F1[u] = ∆u if k = 1, and the Monge–Ampère operator
Fn[u] = det (D2u) if k = n.

The form in which we write the second equation in (1.1) is chosen only
for the sake of convenience, in order to emphasize the profound analogy be-
tween the quasilinear and Hessian equations. Obviously, it may be stated as
(−1)k Fk[u] = f(x, u), u ≥ 0, or Fk[u] = f(x,−u), u ≤ 0.

The existence and regularity theory, local and global estimates of sub-
and super-solutions, the Wiener criterion, and Harnack inequalities associated
with the p-Laplacian, as well as more general quasilinear operators, can be
found in [HKM], [IM], [KM2], [M1], [MZ], [S1], [S2], [SZ], [TW4] where many
fundamental results, and relations to other areas of analysis and geometry are
presented.

The theory of fully nonlinear equations of Monge-Ampère type which
involve the k-Hessian operator Fk[u] was originally developed by Caffarelli,
Nirenberg and Spruck, Ivochkina, and Krylov in the classical setting. We re-
fer to [CNS], [GT], [Gu], [Iv], [Kr], [Tru2], [TW1], [Ur] for these and further
results. Recent developments concerning the notion of the k-Hessian measure,
weak continuity, and pointwise potential estimates due to Trudinger and Wang
[TW2]–[TW4], and Labutin [L] are used extensively in this paper.

We are specifically interested in quasilinear and fully nonlinear equations
of Lane-Emden type:

(1.3) −∆pu = uq, and Fk[−u] = uq, u ≥ 0 in Ω,

where p > 1, q > 0, k = 1, 2, . . . , n, and the corresponding nonlinear inequali-
ties:

(1.4) −∆pu ≥ uq, and Fk[−u] ≥ uq, u ≥ 0 in Ω.

The latter can be stated in the form of the inhomogeneous equations with
measure data,

(1.5) −∆pu = uq + µ, Fk[−u] = uq + µ, u ≥ 0 in Ω,

where µ is a nonnegative Borel measure on Ω.
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The difficulties arising in studies of such equations and inequalities with
competing nonlinearities are well known. In particular, (1.3) may have singular
solutions [SZ]. The existence problem for (1.5) has been open ([BV2, Prob-
lems 1 and 2]; see also [BV1], [BV3], [Gre]) even for the quasilinear equation
−∆pu = uq + f with good data f ∈ Ls(Ω), s > 1. Here solutions are gener-
ally understood in the renormalized (entropy) sense for quasilinear equations,
and viscosity, or the k-convexity sense, for fully nonlinear equations of Hessian
type (see [BMMP], [DMOP], [JLM], [TW1]–[TW3], [Ur]). Precise definitions
of these classes of admissible solutions are given in Sections 3, 6, and 7 below.

In this paper, we present a unified approach to (1.3)–(1.5) which makes it
possible to attack a number of open problems. This is based on global point-
wise estimates, nonlinear integral inequalities in Sobolev spaces of fractional
order, and analysis of dyadic models, along with the Hessian measure and
weak continuity results [TW2]–[TW4]. The latter are used to bridge the gap
between the dyadic models and partial differential equations. Some of these
techniques were developed in the linear case, in the framework of Schrödinger
operators and harmonic analysis [ChWW], [Fef], [KS], [NTV], [V1], [V2], and
applications to semilinear equations [KV], [VW], [V3].

Our goal is to establish necessary and sufficient conditions for the exis-
tence of solutions to (1.5), sharp pointwise and integral estimates for solutions
to (1.4), and a complete characterization of removable singularities for (1.3).
We are mostly concerned with admissible solutions to the corresponding equa-
tions and inequalities. However, even for locally bounded solutions, as in [SZ],
our results yield new pointwise and integral estimates, and Liouville-type the-
orems.

In the “linear case” p = 2 and k = 1, problems (1.3)–(1.5) with nonlinear
sources are associated with the names of Lane and Emden, as well as Fowler.
Authoritative historical and bibliographical comments can be found in [SZ].
An up-to-date survey of the vast literature on nonlinear elliptic equations with
measure data is given in [Ver], including a thorough discussion of related work
due to D. Adams and Pierre [AP], Baras and Pierre [BP], Berestycki, Capuzzo-
Dolcetta, and Nirenberg [BCDN], Brezis and Cabré [BC], Kalton and Verbitsky
[KV].

It is worth mentioning that related equations with absorption,

(1.6) −∆u+ uq = µ, u ≥ 0 in Ω,

were studied in detail by Bénilan and Brezis, Baras and Pierre, and Marcus and
Véron analytically for 1 < q <∞, and by Le Gall, and Dynkin and Kuznetsov
using probabilistic methods when 1 < q ≤ 2 (see [D], [Ver]). For a general
class of semilinear equations

(1.7) −∆u+ g(u) = µ, u ≥ 0 in Ω,
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where g belongs to the class of continuous nondecreasing functions such that
g(0) = 0, sharp existence results have been obtained quite recently by Brezis,
Marcus, and Ponce [BMP]. It is well known that equations with absorption
generally require “softer” methods of analysis, and the conditions on µ which
ensure the existence of solutions are less stringent than in the case of equations
with source terms.

Quasilinear problems of Lane-Emden type (1.3)–(1.5) have been studied
extensively over the past 15 years. Universal estimates for solutions, Liouville-
type theorems, and analysis of removable singularities are due to Bidaut-Véron,
Mitidieri and Pohozaev [BV1]–[BV3], [BVP], [MP], and Serrin and Zou [SZ].
(See also [BiD], [Gre], [Ver], and the literature cited there.) The profound
difficulties in this theory are highlighted by the presence of the two critical
exponents,

(1.8) q∗ = n(p−1)
n−p , q∗ = n(p−1)+p

n−p ,

where 1 < p < n. As was shown in [BVP], [MP], and [SZ], the quasilinear
inequality (1.5) does not have nontrivial weak solutions on Rn, or exterior
domains, if q ≤ q∗. For q > q∗ , there exist u ∈ W 1, p

loc ∩ L
∞
loc which obeys

(1.4), as well as singular solutions to (1.3) on Rn. However, for the existence
of nontrivial solutions u ∈ W 1,p

loc ∩ L
∞
loc to (1.3) on Rn, it is necessary and

sufficient that q ≥ q∗ [SZ]. In the “linear case” p = 2, this is classical ([GS],
[BP], [BCDN]).

The following local estimates of solutions to quasilinear inequalities are
used extensively in the studies mentioned above (see, e.g., [SZ, Lemma 2.4]).
Let BR denote a ball of radius R such that B2R ⊂ Ω. Then, for every solution
u ∈W 1,p

loc ∩ L
∞
loc to the inequality −∆pu ≥ uq in Ω,∫

BR

uγ dx ≤ C Rn−
γp

q−p+1 , 0 < γ < q,(1.9) ∫
BR

|∇u|
γp
q+1 dx ≤ C Rn−

γp
q−p+1 , 0 < γ < q,(1.10)

where the constants C in (1.9) and (1.10) depend only on p, q, n, γ. Note that
(1.9) holds even for γ = q (cf. [MP]), while (1.10) generally fails in this case.
In what follows, we will substantially strengthen (1.9) in the end-point case
γ = q, and obtain global pointwise estimates of solutions.

In [PV], we proved that all compact sets E ⊂ Ω of zero Hausdorff measure,

H
n− pq

q−p+1 (E) = 0, are removable singularities for the equation −∆pu = uq,
q > q∗. Earlier results of this kind, under a stronger restriction cap

1,
pq

q−p+1 +ε
(E)

= 0 for some ε > 0, are due to Bidaut-Véron [BV3]. Here cap1, s(·) is the ca-
pacity associated with the Sobolev space W 1, s.

In fact, much more is true. We will show below that a compact set E ⊂ Ω
is a removable singularity for −∆pu = uq if and only if it has zero fractional
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capacity: cap
p,

q
q−p+1

(E) = 0. Here capα, s stands for the Bessel capacity

associated with the Sobolev space Wα, s which is defined in Section 2. We
observe that the usual p-capacity cap1, p used in the studies of the p-Laplacian
[HKM], [KM2] plays a secondary role in the theory of equations of Lane-Emden
type. Relations between these and other capacities used in nonlinear PDE
theory are discussed in [AH], [M2], and [V4].

Our characterization of removable singularities is based on the solution of
the existence problem for the equation

(1.11) −∆pu = uq + µ, u ≥ 0,

with nonnegative measure µ obtained in Section 6. Main existence theorems
for quasilinear equations are stated below (Theorems 2.3 and 2.10). Here we
only mention the following corollary in the case Ω = Rn: If (1.11) has an
admissible solution u, then

(1.12)
∫
BR

dµ ≤ C Rn−
pq

q−p+1 ,

for every ball BR in Rn, where C = C(p, q, n), provided 1 < p < n and q > q∗;
if p ≥ n or q ≤ q∗, then µ = 0.

Conversely, suppose that 1 < p < n, q > q∗, and dµ = f dx, f ≥ 0, where

(1.13)
∫
BR

f1+ε dx ≤ C Rn−
(1+ε)pq
q−p+1 ,

for some ε > 0. Then there exists a constant C0(p, q, n) such that (1.11) has
an admissible solution on Rn if C ≤ C0(p, q, n).

The preceding inequality is an analogue of the classical Fefferman-Phong
condition [Fef] which appeared in applications to Schrödinger operators. In
particular, (1.13) holds if f ∈ L

n(q−p+1)
pq

,∞(Rn). Here Ls,∞ stands for the weak
Ls space. This sufficiency result, which to the best of our knowledge is new
even in the Ls scale, provides a comprehensive solution to Problem 1 in [BV2].
Notice that the exponent s = n(q−p+1)

pq is sharp. Broader classes of measures
µ (possibly singular with respect to Lebesgue measure) which guarantee the
existence of admissible solutions to (1.11) will be discussed in the sequel.

A substantial part of our work is concerned with integral inequalities for
nonlinear potential operators, which are at the heart of our approach. We
employ the notion of Wolff’s potential introduced originally in [HW] in relation
to the spectral synthesis problem for Sobolev spaces. For a nonnegative Borel
measure µ on Rn, s ∈ (1, +∞), and α > 0, the Wolff’s potential Wα, s µ is
defined by

(1.14) Wα, s µ(x) =
∫ ∞

0

[µ(Bt(x))
tn−αs

] 1
s−1 dt

t
, x ∈ Rn.
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We write Wα, s f in place of Wα, s µ if dµ = fdx, where f ∈ L1
loc(Rn), f ≥ 0.

When dealing with equations in a bounded domain Ω ⊂ Rn, a truncated version
is useful:

(1.15) Wr
α, s µ(x) =

∫ r

0

[µ(Bt(x))
tn−αs

] 1
s−1 dt

t
, x ∈ Ω,

where 0 < r ≤ 2diam(Ω). In many instances, it is more convenient to work
with the dyadic version, also introduced in [HW]:

(1.16) Wα, s µ(x) =
∑
Q∈D

[ µ(Q)
`(Q)n−αs

] 1
s−1

χQ(x), x ∈ Rn,

where D = {Q} is the collection of the dyadic cubes Q = 2i(k + [0, 1)n),
i ∈ Z, k ∈ Zn, and `(Q) is the side length of Q.

An indispensable source on nonlinear potential theory is provided by [AH],
where the fundamental Wolff’s inequality and its applications are discussed.
Very recently, an analogue of Wolff’s inequality for general dyadic and radially
decreasing kernels was obtained in [COV]; some of the tools developed there
are employed below.

The dyadic Wolff’s potentials appear in the following discrete model of
(1.5) studied in Section 3:

(1.17) u =Wα, s u
q + f, u ≥ 0.

As it turns out, this nonlinear integral equation with f =Wα, s µ is intimately
connected to the quasilinear differential equation (1.11) in the case α = 1,
s = p, and to its k-Hessian counterpart in the case α = 2k

k+1 , s = k+1. Similar
discrete models are used extensively in harmonic analysis and function spaces
(see, e.g., [NTV], [St2], [V1]).

The profound role of Wolff’s potentials in the theory of quasilinear equa-
tions was discovered by Kilpeläinen and Malý [KM2]. They established lo-
cal pointwise estimates for nonnegative p-superharmonic functions in terms of
Wolff’s potentials of the associated p-Laplacian measure µ. More precisely, if
u ≥ 0 is a p-superharmonic function in B3r(x) such that −∆pu = µ, then

(1.18) C1 Wr
1, p µ(x) ≤ u(x) ≤ C2 inf

B(x,r)
u+ C3 W2r

1, p µ(x),

where C1, C2 and C3 are positive constants which depend only on n and p.
In [TW1], [TW2], Trudinger and Wang introduced the notion of the Hes-

sian measure µ[u] associated with Fk[u] for a k-convex function u. Very re-
cently, Labutin [L] proved local pointwise estimates for Hessian equations anal-
ogous to (1.18), where Wolff’s potential Wr

2k
k+1

, k+1
µ is used in place of Wr

1, p µ.

In what follows, we will need global pointwise estimates of this type. In
the case of a k-convex solution to the equation Fk[u] = µ on Rn such that
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infx∈Rn (−u(x)) = 0, one has

(1.19) C1 W 2k
k+1

, k+1 µ(x) ≤ −u(x) ≤ C2 W 2k
k+1

, k+1 µ(x),

where C1 and C2 are positive constants which depend only on n and k. Analo-
gous global estimates are obtained below for admissible solutions of the Dirich-
let problem for −∆pu = µ and Fk[−u] = µ in a bounded domain Ω ⊂ Rn (see
§2).

In the special case Ω = Rn, our criterion for the solvability of (1.11) can
be stated in the form of the pointwise condition involving Wolff’s potentials:

(1.20) W1, p (W1, p µ )q (x) ≤ CW1, p µ(x) < +∞ a.e.,

which is necessary with C = C1(p, q, n), and sufficient with another constant
C = C2(p, q, n). Moreover, in the latter case there exists an admissible solution
u to (1.11) such that

(1.21) c1 W1, p µ(x) ≤ u(x) ≤ c2 W1, p µ(x), x ∈ Rn,

where c1 and c2 are positive constants which depend only on p, q, n, provided
1 < p < n and q > q∗; if p ≥ n or q ≤ q∗ then u = 0 and µ = 0.

The iterated Wolff’s potential condition (1.20) is crucial in our approach.
As we will demonstrate in Section 5, it turns out to be equivalent to the
fractional Riesz capacity condition

(1.22) µ(E) ≤ C Capp, q

q−p+1
(E),

where C does not depend on a compact set E ⊂ Rn. Such classes of measures
µ were introduced by V. Maz’ya in the early 60-s in the framework of linear
problems.

It follows that every admissible solution u to (1.11) on Rn obeys the in-
equality

(1.23)
∫
E
uq dx ≤ C Capp, q

q−p+1
(E),

for all compact sets E ⊂ Rn. We also prove an analogous estimate in a bounded
domain Ω (Section 6). Obviously, this yields (1.9) in the end-point case γ = q.
In the critical case q = q∗, we obtain an improved estimate (see Corollary 6.13):

(1.24)
∫
Br

uq∗ dx ≤ C
(
log(2R

r )
) 1−p
q−p+1 ,

for every ball Br of radius r such that Br ⊂ BR, and B2R ⊂ Ω. Certain
Carleson measure inequalities are employed in the proof of (1.24). We observe
that these estimates yield Liouville-type theorems for all admissible solutions
to (1.11) on Rn, or in exterior domains, provided q ≤ q∗ (cf. [BVP], [SZ]).
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Analogous results will be established in Section 7 for equations of Lane-
Emden type involving the k-Hessian operator Fk[u]. We will prove that there
exists a constant C1(k, q, n) such that, if

(1.25) W 2k
k+1

, k+1(W 2k
k+1

, k+1µ)q(x) ≤ CW 2k
k+1

, k+1µ(x) < +∞ a.e.,

where 0 ≤ C ≤ C1(k, q, n), then the equation

(1.26) Fk[−u] = uq + µ, u ≥ 0,

has a solution u so that −u is k-convex on Rn, and

(1.27) c1 W 2k
k+1

, k+1 µ(x) ≤ u(x) ≤ c2 W 2k
k+1

, k+1 µ(x), x ∈ Rn,

where c1, c2 are positive constants which depend only on k, q, n, for 1 ≤ k < n
2 .

Conversely, (1.25) with C = C2(k, q, n) is necessary in order that (1.26) has a
solution u such that −u is k-convex on Rn provided 1 ≤ k < n

2 and q > q∗ =
nk
n−2k ; if k ≥ n

2 or q ≤ q∗ then u = 0 and µ = 0.

In particular, (1.25) holds if dµ=f dx, where f≥0 and f ∈L
n(q−k)

2kq
,∞(Rn);

the exponent n(q−k)
2kq is sharp.

In Section 7, we will obtain precise existence theorems for equation (1.26)
in a bounded domain Ω with the Dirichlet boundary condition u = ϕ, ϕ ≥ 0,
on ∂Ω, for 1 ≤ k ≤ n. Furthermore, removable singularities E ⊂ Ω for the
homogeneous equation Fk[−u] = uq, u ≥ 0, will be characterized as the sets of
zero Bessel capacity cap2k, q

q−k
(E) = 0, in the most interesting case q > k.

The notion of the k-Hessian capacity introduced by Trudinger and Wang
proved to be very useful in studies of the uniqueness problem for k-Hessian
equations [TW3], as well as associated k-polar sets [L]. Comparison theorems
for this capacity and the corresponding Hausdorff measure were obtained by
Labutin in [L] where it is proved that the (n − 2k)-Hausdorff dimension is
critical in this respect. We will enhance this result (see Theorem 2.20 below)
by showing that the k-Hessian capacity is in fact locally equivalent to the
fractional Bessel capacity cap 2k

k+1
, k+1.

In conclusion, we remark that our methods provide a promising approach
for a wide class of nonlinear problems, including curvature and subelliptic
equations, and more general nonlinearities.

2. Main results

Let Ω be a bounded domain in Rn, n ≥ 2. We study the existence problem
for the quasilinear equation

−divA(x,∇u) = uq + ω,

u ≥ 0 in Ω,
u = 0 on ∂Ω,

(2.1)
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where p > 1, q > p− 1 and

(2.2) A(x, ξ) · ξ ≥ α |ξ|p , |A(x, ξ)| ≤ β |ξ|p−1

for some α, β > 0. The precise structural conditions imposed on A(x, ξ) are
stated in Section 4, formulae (4.1)–(4.5). This includes the principal model
problem 

−∆pu = uq + ω,

u ≥ 0 in Ω,
u = 0 on ∂Ω.

(2.3)

Here ∆p is the p-Laplacian defined by ∆pu = div(|∇u|p−2∇u). We observe that
in the well-studied case q ≤ p − 1, hard analysis techniques are not needed,
and many of our results simplify. We refer to [Gre], [SZ] for further comments
and references, especially in the classical case q = p− 1.

Our approach also applies to the following class of fully nonlinear equations

(2.4)


Fk[−u] = uq + ω,

u ≥ 0 in Ω,
u = ϕ on ∂Ω,

where k = 1, 2, . . . , n, and Fk is the k-Hessian operator defined by (1.2). Here
−u belongs to the class of k-subharmonic (or k-convex) functions on Ω intro-
duced by Trudinger and Wang in [TW1]–[TW2]. Analogues of equations (2.1)
and (2.4) on the entire space Rn are studied as well.

To state our results, let us introduce some definitions and notation. Let
M+

B(Ω) (respectively M+(Ω)) denote the class of all nonnegative finite (re-
spectively locally finite) Borel measures on Ω. For µ ∈M+(Ω) and a Borel set
E ⊂ Ω, we denote by µE the restriction of µ to E: dµE = χEdµ where χE is
the characteristic function of E. We define the Riesz potential Iα of order α,
0 < α < n, on Rn by

Iαµ(x) = c(n, α)
∫
Rn
|x− y|α−n dµ(y), x ∈ Rn,

where µ ∈ M+(Rn) and c(n, α) is a normalized constant. For α > 0, p > 1,
such that αp < n, the Wolff’s potential Wα, pµ is defined by

Wα, pµ(x) =
∫ ∞

0

[µ(Bt(x))
tn−αp

] 1
p−1 dt

t
, x ∈ Rn.

When dealing with equations in a bounded domain Ω ⊂ Rn, it is convenient
to use the truncated versions of Riesz and Wolff’s potentials. For 0 < r ≤ ∞,
α > 0 and p > 1, we set

Irαµ(x) =
∫ r

0

µ(Bt(x))
tn−α

dt

t
, Wr

α, pµ(x) =
∫ r

0

[µ(Bt(x))
tn−αp

] 1
p−1 dt

t
.



868 NGUYEN CONG PHUC AND IGOR E. VERBITSKY

Here I∞α and W∞
α, p are understood as Iα and Wα, p respectively. For α > 0,

we denote by Gα the Bessel kernel of order α (see [AH, §1.2.4]). The Bessel
potential of a measure µ ∈M+(Rn) is defined by

Gαµ(x) =
∫
Rn

Gα(x− y)dµ(y), x ∈ Rn.

Various capacities will be used throughout the paper. Among them are the
Riesz and Bessel capacities defined respectively by

CapIα, s(E) = inf{‖f‖sLs(Rn) : Iαf ≥ χE , 0 ≤ f ∈ Ls(Rn)},

and

CapGα, s(E) = inf{‖f‖sLs(Rn) : Gαf ≥ χE , 0 ≤ f ∈ Ls(Rn)}

for any E ⊂ Rn.
Our first two theorems are concerned with global pointwise potential esti-

mates for quasilinear and Hessian equations on a bounded domain Ω in Rn.

Theorem 2.1. Suppose that u is a renormalized solution to the equation{
−divA(x,∇u) = ω in Ω,

u = 0 on ∂Ω,
(2.5)

with data ω ∈ M+
B(Ω). Then there is a constant K = K(n, p, α, β) > 0 such

that, for all x in Ω,

(2.6)
1
K

W
dist(x,∂Ω)

3
1, p ω(x) ≤ u(x) ≤ KW2diam(Ω)

1, p ω(x).

Theorem 2.2. Let ω ∈ M+
B (Ω) be compactly supported in Ω. Suppose

that −u is a nonpositive k-subharmonic function in Ω such that u is continuous
near ∂Ω and solves the equation{

Fk[−u] = ω in Ω,
u = 0 on ∂Ω.

Then there is a constant K = K(n, k) > 0 such that, for all x ∈ Ω,

(2.7)
1
K

W
dist(x,∂Ω)

8
2k
k+1

, k+1
ω(x) ≤ u(x) ≤ KW2diam(Ω)

2k
k+1

, k+1
ω(x).

We remark that the upper estimate in (2.6) does not hold in general if
u is merely a weak solution of (2.5) in the sense of [KM1]. For a counter-
example, see [Kil, §2]. Upper estimates similar to the one in (2.7) hold also
for k-subharmonic functions with nonhomogeneous boundary condition (see
§7). Definitions of renormalized solutions for the problem (2.5) are given in
Section 6; for definitions of k-subharmonic functions see Section 7.

As was mentioned in the introduction, these global pointwise estimates
simplify in the case Ω = Rn; see Corollary 4.5 and Corollary 7.3 below.
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In the next two theorems we give criteria for the solvability of quasilinear
and Hessian equations on the entire space Rn.

Theorem 2.3. Let ω be a measure in M+(Rn). Let 1 < p < n and
q > p− 1. Then the following statements are equivalent.

(i) There exists a nonnegative A-superharmonic solution u ∈ Lqloc(R
n) to

the equation

(2.8)
{

infx∈Rn u(x) = 0,
−divA(x,∇u) = uq + ε ω in Rn

for some ε > 0.

(ii) The testing inequality

(2.9)
∫
B

[
IpωB(x)

] q

p−1
dx ≤ Cω(B)

holds for all balls B in Rn.

(iii) For all compact sets E ⊂ Rn,

(2.10) ω(E) ≤ C CapIp,
q

q−p+1
(E).

(iv) The testing inequality

(2.11)
∫
B

[
W1, pωB(x)

]q
dx ≤ C ω(B)

holds for all balls B in Rn .

(v) There exists a constant C such that

(2.12) W1, p (W1, pω)q(x) ≤ CW1, pω(x) <∞ a.e.

Moreover, there is a constant C0 = C0(n, p, q, α, β) such that if any one of the
conditions (2.9)–(2.12) holds with C ≤ C0, then equation (2.8) has a solution
u with ε = 1 which satisfies the two-sided estimate

(2.13) c1 W1, pω(x) ≤ u(x) ≤ c2 W1, pω(x), x ∈ Rn,

where c1 and c2 depend only on n, p, q, α, β. Conversely, if (2.8) has a solution
u as in statement (i) with ε = 1, then conditions (2.9)–(2.12) hold with C =
C1(n, p, q, α, β). Here α and β are the structural constants of A defined in
(2.2).

Using condition (2.10) in the above theorem, we can now deduce a simple
sufficient condition for the solvability of (2.8) from the known inequality (see,
e.g., [AH, p. 39])

|E|1−
pq

n(q−p+1) ≤ C CapIp,
q

q−p+1
(E).



870 NGUYEN CONG PHUC AND IGOR E. VERBITSKY

Corollary 2.4. Suppose that f ∈ L
n(q−p+1)

pq
,∞(Rn) and dω = fdx. If

q > p − 1 and pq
q−p+1 < n, then equation (2.8) has a nonnegative solution for

some ε > 0.

Remark 2.5. The condition f ∈ L
n(q−p+1)

pq
,∞(Rn) in Corollary 2.4 can be

relaxed by using the Fefferman-Phong condition [Fef]:∫
BR

f1+δdx ≤ CRn−
(1+δ)pq
q−p+1

for some δ > 0, which is known to be sufficient for the validity of (2.9); see,
e.g., [KS], [V2].

Theorem 2.6. Let ω be a measure in M+(Rn), 1 ≤ k < n
2 , and q > k.

Then the following statements are equivalent.

(i) There exists a solution u ≥ 0, −u ∈ Φk(Ω) ∩ Lqloc(R
n), to the equation

(2.14)
{

infx∈Rn u(x) = 0,
Fk[−u] = uq + ε ω in Rn

for some ε > 0.

(ii) The testing inequality

(2.15)
∫
B

[
I2kωB(x)

] q
k

dx ≤ C ω(B)

holds for all balls B in Rn.

(iii) For all compact sets E ⊂ Rn,

(2.16) ω(E) ≤ C CapI2k,
q

q−k
(E).

(iv) The testing inequality

(2.17)
∫
B

[
W 2k

k+1
, k+1ωB(x)

]q
dx ≤ C ω(B)

holds for all balls B in Rn

(v) There exists a constant C such that

(2.18) W 2k
k+1

, k+1 (W 2k
k+1

, k+1ω)q(x) ≤ CW 2k
k+1

, k+1ω(x) <∞ a.e.

Moreover, there is a constant C0 = C0(n, k, q) such that if any one of the
conditions (2.15)–(2.18) holds with C ≤ C0, then equation (2.14) has a solution
u with ε = 1 which satisfies the two-sided estimate

c1 W 2k
k+1

, k+1ω(x) ≤ u(x) ≤ c2 W 2k
k+1

, k+1ω(x), x ∈ Rn,

where c1 and c2 depend only on n, k, q. Conversely, if there is a solution u to
(2.14) as in statement (i) with ε = 1, then conditions (2.15)–(2.18) hold with
C = C1(n, k, q).
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Corollary 2.7. Suppose that f ∈ L
n(q−k)

2kq
,∞(Rn) and dω = fdx. If

q > k and 2kq
q−k < n then (2.14) has a nonnegative solution for some ε > 0.

Since CapIα, s(E) = 0 in the case α s ≥ n for all sets E ⊂ Rn (see [AH,
§2.6]), we obtain the following Liouville-type theorems for quasilinear and Hes-
sian differential inequalities.

Corollary 2.8. If q ≤ n(p−1)
n−p , then the inequality −divA(x,∇u) ≥ uq

admits no nontrivial nonnegative A-superharmonic solutions in Rn. Analo-
gously, if q ≤ nk

n−2k , then the inequality Fk[−u] ≥ uq admits no nontrivial
nonnegative solutions in Rn.

Remark 2.9. When 1 < p < n and q > n(p−1)
n−p , the function u(x) =

c |x|
−p

q−p+1 with

c =
[ pp−1

(q − p+ 1)p
] 1
q−p+1 [q(n− p)− n(p− 1)]

1
q−p+1 ,

is a nontrivial admissible (but singular) global solution of −∆pu = uq (see
[SZ]). Similarly, the function u(x) = c′ |x|

−2k
q−k with

c′ =
[ (n− 1)!
k!(n− k)!

] 1
q−k
[ (2k)k

(q − k)k+1

] 1
q−k [q(n− 2k)− nk]

1
q−k ,

where 1 ≤ k < n
2 and q > nk

n−2k , is a singular admissible global solution
of Fk[−u] = uq (see [Tso] or [Tru1, formula (3.2)]). Thus, we see that the
exponent n(p−1)

n−p (respectively nk
n−2k ) is critical for the homogeneous equation

−divA(x,∇u) = uq (respectively Fk[−u] = uq) in Rn. The situation is different
when we restrict ourselves only to locally bounded solutions in Rn (see [GS],
[SZ]).

Existence results on a bounded domain Ω analogous to Theorems 2.3 and
2.6 are contained in the following two theorems, where Bessel potentials and
the corresponding capacities are used in place of respectively Riesz potentials
and Riesz capacities.

Theorem 2.10. Let ω ∈M+
B(Ω) be compactly supported in Ω. Let p > 1,

q > p− 1, and let R = diam(Ω). Then the following statements are equivalent.

(i) There exists a nonnegative renormalized solution u ∈ Lq(Ω) to the
equation

(2.19)
{
−divA(x,∇u) = uq + ε ω in Ω,

u = 0 on ∂Ω

for some ε > 0.
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(ii) For all compact sets E ⊂ Ω,

(2.20) ω(E) ≤ C CapGp,
q

q−p+1
(E).

(iii) The testing inequality

(2.21)
∫
B

[
W2R

1, pωB(x)
]q
dx ≤ C ω(B)

holds for all balls B such that B ∩ suppω 6= ∅.
(iv) There exists a constant C such that

(2.22) W2R
1, p (W2R

1, pω)q(x) ≤ CW2R
1, pω(x) a.e. on Ω.

Remark 2.11. In the case where ω is not compactly supported in Ω, it
can be easily seen from the proof of this theorem, given in Section 6, that
any one of the conditions (ii)–(iv) above is still sufficient for the solvability
of (2.19). Moreover, in the subcritical case pq

q−p+1 > n, these conditions are
redundant since the Bessel capacity CapGp,

q

q−p+1
of a single point is positive

(see [AH], §2.6). This ensures that statement (ii) of Theorem 2.10 holds for
some constant C > 0 provided ω is a finite measure.

Corollary 2.12. Suppose that f ∈ L
n(q−p+1)

pq
,∞(Ω) and dω = fdx. If

q > p− 1 and pq
q−p+1 < n then the equation (2.19) has a nonnegative renormal-

ized (or equivalently, entropy) solution for some ε > 0.

Theorem 2.13. Let Ω be a uniformly (k − 1)-convex domain in Rn, and
let ω ∈ M+

B(Ω) be compactly supported in Ω. Suppose that 1 ≤ k ≤ n, q > k,
R = diam(Ω), and ϕ ∈ C0(∂Ω), ϕ ≥ 0. Then the following statements are
equivalent.

(i) There exists a solution u ≥ 0, −u ∈ Φk(Ω) ∩ Lq(Ω), continuous near
∂Ω, to the equation

(2.23)
{
Fk[−u] = uq + ε ω in Ω,

u = εϕ on ∂Ω

for some ε > 0.

(ii) For all compact sets E ⊂ Ω,

ω(E) ≤ C CapG2k,
q

q−k
(E).

(iii) The testing inequality∫
B

[
W2R

2k
k+1

, k+1ωB(x)
]q
dx ≤ C ω(B)

holds for all balls B such that B ∩ suppω 6= ∅ .
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(iv) There exists a constant C such that

W2R
2k
k+1

, k+1 (W2R
2k
k+1

, k+1ω)q(x) ≤ CW2R
2k
k+1

, k+1ω(x) a.e. on Ω.

Remark 2.14. As in Remark 2.11, any one of the conditions (ii)–(iv) in
Theorem 2.13 is still sufficient for the solvability of (2.23) if dω = dµ + f dx,
where µ ∈ M+

B(Ω) is compactly supported in Ω and f ∈ Ls(Ω), f ≥ 0 with
s > n

2k if k ≤ n
2 , and s = 1 if k > n

2 . Moreover, in the subcritical case 2kq
q−k > n

these conditions are redundant.

Corollary 2.15. Let dω = (f + g) dx, where f ≥ 0, g ≥ 0, f ∈
L
n(q−k)

2kq
,∞(Ω) is compactly supported in Ω, and g ∈ Ls(Ω) for some s > n

2k .
If q > k and 2kq

q−k < n then (2.23) has a nonnegative solution for some ε > 0.

Our results on local integral estimates for quasilinear and Hessian inequal-
ities are given in the next two theorems. We will need the capacity associated
with the space Wα, s relative to the domain Ω defined by

(2.24) capα, s(E,Ω) = inf{‖f‖sWα, s(Rn) : f ∈ C∞0 (Ω), f ≥ 1 on E}.

Theorem 2.16. Let u be a nonnegative A-superharmonic function in Ω
such that −divA(x,∇u) ≥ uq. Suppose that q > p− 1, pq

q−p+1 < n, and Ω is a
bounded C∞-domain. Then∫

E
uq ≤ C capp, q

q−p+1
(E,Ω)

for any compact set E ⊂ Ω, where the constant C may depend only on p, q, n,
and the structural constants α, β of A.

Theorem 2.17. Let u ≥ 0 be such that −u is k-subharmonic and that
Fk[−u] ≥ uq in Ω. Suppose that q > k, 2kq

q−k < n, and Ω is a bounded C∞-
domain. Then ∫

E
uq ≤ C cap2k, q

q−k
(E,Ω)

for any compact set E ⊂ Ω, where the constant C may depend only on k, q

and n.

As a consequence of Theorems 2.10 and 2.13, we will deduce the following
characterization of removable singularities for quasilinear and fully nonlinear
equations.

Theorem 2.18. Let E be a compact subset of Ω. Then any solution u to
the problem

(2.25)


u is A-superharmonic in Ω \ E,

u ∈ Lqloc(Ω \ E), u ≥ 0,
−divA(x,∇u) = uq in D′(Ω \ E)
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is also a solution to a similar problem with Ω in place of Ω \ E if and only if
CapGp,

q

q−p+1
(E) = 0.

Theorem 2.19. Let E be a compact subset of Ω. Then any solution u to
the problem

(2.26)


−u is k-subharmonic in Ω \ E,

u ∈ Lqloc(Ω \ E), u ≥ 0,
Fk[−u] = uq in D′(Ω \ E)

is also a solution to a similar problem with Ω in place of Ω \ E if and only if
CapG2k,

q

q−k
(E) = 0.

In [TW3], Trudinger and Wang introduced the so called k-Hessian capac-
ity capk(·,Ω) defined for a compact set E by

(2.27) capk(E,Ω) = sup
{∫

E
dµk[u]

}
,

where the supremum is taken over all k-subharmonic functions u in Ω such that
−1 < u < 0, and µk[u] is the k-Hessian measure associated with u. Our next
theorem asserts that locally the k-Hessian capacity is equivalent to the Bessel
capacity CapG 2k

k+1
, k+1. In what follows, Q = {Q} will stand for a Whitney

decomposition of Ω into a union of disjoint dyadic cubes (see §6).

Theorem 2.20. Let 1 ≤ k < n
2 be an integer. Then there are constants

M1, M2 such that

(2.28) M1 CapG 2k
k+1

, k+1(E) ≤ capk(E,Ω) ≤M2 CapG 2k
k+1

, k+1(E)

for any compact set E ⊂ Q with Q ∈ Q. Furthermore, if Ω is a bounded
C∞-domain then

(2.29) capk(E,Ω) ≤ C cap 2k
k+1

, k+1(E,Ω)

for any compact set E ⊂ Ω, where cap 2k
k+1

, k+1(E,Ω) is defined by (2.24) with

α = 2k
k+1 and s = k + 1.

3. Discrete models of nonlinear equations

In this section we consider certain nonlinear integral equations with dis-
crete kernels which serve as a model for both quasilinear and Hessian equa-
tions treated in Section 5–7. Let D be the family of all dyadic cubes Q =
2i(k + [0, 1)n), i ∈ Z, k ∈ Zn, in Rn. For ω ∈ M+(Rn), we define the dyadic
Riesz and Wolff’s potentials respectively by

Iαω(x) =
∑
Q∈D

ω(Q)
|Q|1−

α

n

χQ(x),(3.1)
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Wα, pω(x) =
∑
Q∈D

[ ω(Q)

|Q|1−
αp

n

] 1
p−1
χQ(x).(3.2)

In this section we are concerned with nonlinear inhomogeneous integral equa-
tions of the type

(3.3) u =Wα, p(uq) + f, u ∈ Lqloc(R
n), u ≥ 0,

where f ∈ Lqloc(R
n), f ≥ 0, q > p − 1, and Wα, p is defined as in (3.2) with

α > 0 and p > 1 such that 0 < αp < n.
It is convenient to introduce a nonlinear operator N associated with the

equation (3.3) defined by

(3.4) N f =Wα, p(f q), f ∈ Lqloc(R
n), f ≥ 0,

so that (3.3) can be rewritten as

u = Nu+ f, u ∈ Lqloc(R
n), u ≥ 0.

Obviously, N is monotonic, i.e., N f ≥ N g whenever f ≥ g ≥ 0 a.e., and
N (λf) = λ

q

p−1N f for all λ ≥ 0. Since

(3.5) (a+ b)p
′−1 ≤ max{1, 2p′−2}(ap′−1 + bp

′−1)

for all a, b ≥ 0, it follows that

(3.6)
[
N (f + g)

] 1
q ≤ max{1, 2p′−2}

[
(N f)

1
q + (N g)

1
q

]
.

Proposition 3.1. Let µ ∈ M+(Rn), α > 0, p > 1, and q > p− 1. Then
the following quantities are equivalent :

(a) A1(P, µ)=
∑
Q⊂P

[ µ(Q)

|Q|1−
αp

n

] q

p−1 |Q| ,

(b) A2(P, µ)=
∫
P

[ ∑
Q⊂P

µ(Q)
1
p−1

|Q|(1−
αp

n
) 1
p−1

χQ(x)
]q
dx,

(c) A3(P, µ)=
∫
P

[ ∑
Q⊂P

µ(Q)

|Q|1−
αp

n

χQ(x)
] q

p−1
dx,

where P is a dyadic cube in Rn, or P = Rn, and the constants of equivalence
do not depend on P and µ.

Proof. The equivalence of A1 and A3 is a localized version of Wolff’s
inequality (5.3) originally proved in [HW], which follows from Proposition 2.2
in [COV]. Moreover, it was proved in [COV] that

(3.7) A3(P, µ) '
∫
P

[
sup

x∈Q⊂P

µ(Q)

|Q|1−
αp

n

] q

p−1
dx,
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where A ' B means that there exist constants c1 and c2 which depend only
on α, p, q, and n such that c1A ≤ B ≤ c2A. Since[

sup
x∈Q⊂P

µ(Q)

|Q|1−
αp

n

] 1
p−1 ≤

∑
Q⊂P

µ(Q)
1
p−1

|Q|(1−
αp

n
) 1
p−1

χQ(x),

from (3.7) we obtain A3 ≤ CA2. In addition, for p ≤ 2 we clearly have
A2 ≤ A3 ≤ CA1. Therefore, it remains to check that, in the case p > 2,
A2 ≤ CA1 for some C > 0 independent of P and µ. By Proposition 2.2 in
[COV] we have (note that q > p− 1 > 1)

A2(P, µ) =
∫
P

[ ∑
Q⊂P

µ(Q)
1
p−1

|Q|(1−
αp

n
) 1
p−1

χQ(x)
]q
dx(3.8)

≤C
∑
Q⊂P

µ(Q)
1
p−1

|Q|(1−
αp

n
) 1
p−1

+q−2

[ ∑
Q′⊂Q

µ(Q′)
1
p−1

|Q′|(1−
αp

n
) 1
p−1
−1

]q−1
.

On the other hand, by Hölder’s inequality,∑
Q′⊂Q

µ(Q′)
1
p−1

|Q′|(1−
αp

n
) 1
p−1
−1

=
∑
Q′⊂Q

(
µ(Q′)

1
p−1
∣∣Q′∣∣ε ) ∣∣Q′∣∣−(1−αp

n
) 1
p−1

+1−ε

≤
( ∑
Q′⊂Q

µ(Q′)
r′
p−1
∣∣Q′∣∣εr′ ) 1

r′
( ∑
Q′⊂Q

∣∣Q′∣∣−r(1−αpn ) 1
p−1

+r−rε
) 1
r

,

where r′ = p − 1 > 1, r = p−1
p−2 and ε > 0 is chosen so that −r(1 − αp

n ) 1
p−1

+ r − rε > 1, i.e., 0 < ε < αp
(p−1)n . Therefore,

∑
Q′⊂Q

µ(Q′)
1
p−1

|Q′|(1−
αp

n
) 1
p−1
−1
≤Cµ(Q)

1
p−1 |Q|ε |Q|−(1−αp

n
) 1
p−1

+1−ε

=C
µ(Q)

1
p−1

|Q|(1−
αp

n
) 1
p−1
−1
.

Hence, combining this with (3.8) we obtain

A2(P, µ)≤C
∑
Q⊂P

µ(Q)
1
p−1

|Q|(1−
αp

n
) 1
p−1

+q−2

[ µ(Q)
1
p−1

|Q|(1−
αp

n
) 1
p−1
−1

]q−1

=C
∑
Q⊂P

µ(Q)
q

p−1

|Q|(1−
αp

n
) q

p−1
−1

= CA1(P, µ).

This completes the proof of the proposition.
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Theorem 3.2. Let α > 0, p > 1 be such that 0 < αp < n, and let
q > p − 1. Suppose f ∈ Lqloc(R

n), f ≥ 0, and dω = f qdx. Then the following
statements are equivalent.

(i) The equation

(3.9) u =Wα, p(uq) + εf

has a solution u ∈ Lqloc(R
n), u ≥ 0, for some ε > 0.

(ii) The testing inequality

(3.10)
∫
P

[ ∑
Q⊂P

ω(Q)

|Q|1−
αp

n

χQ(x)
] q

p−1
dx ≤ C ω(P )

holds for all dyadic cubes P .

(iii) The testing inequality

(3.11)
∫
P

[ ∑
Q⊂P

ω(Q)
1
p−1

|Q|(1−
αp

n
) 1
p−1

χQ(x)
]q
dx ≤ C ω(P )

holds for all dyadic cubes P .

(iv) There exists a constant C such that

(3.12) Wα, p[Wα, p(f q)]q(x) ≤ CWα, p(f q)(x) <∞ a.e.

Proof. Note that by Proposition 3.1 we have (ii)⇔(iii). Therefore, it is
enough to prove (iv)⇒(i)⇒(iii)⇒(iv).

Proof of (iv)⇒(i). The pointwise condition (3.12) can be rewritten as

N 2f ≤ CN f <∞ a.e.,

where N is the operator defined by (3.4). The sufficiency of this condition for
the solvability of (3.9) can be proved using simple iterations:

un+1 = Nun + εf, n = 0, 1, 2, . . . ,

starting from u0 = 0. SinceN is monotonic it is easy to see that un is increasing
and that ε

q

p−1N f + εf ≤ un for all n ≥ 2. Let c(p) = max{1, 2p′−1}, c1 = 0,
c2 = [ε

1
p−1 c(p)]q and

cn =
[
ε

1
p−1 c(p)(1 + C1/q)cp

′−1
n−1

]q
, n = 3, 4, . . . ,

where C is the constant in (3.12). Here we choose ε so that

ε
1
p−1 c(p) =

(q − p+ 1
q

) q−p+1
q
(p− 1

q

) p−1
q

C
1−p
q2 .

By induction and using (3.6) we have

un ≤ cnN f + εf, n = 1, 2, 3, . . . .
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Note that

x0 =
[ q

p− 1
ε

1
p−1 c(p)C

1
q

] q(p−1)
p−1−q

is the only root of the equation

x =
[
ε

1
p−1 c(p)(1 + C

1
q x)
]q

and thus limn→∞ cn = x0. Hence there exists a solution

u(x) = lim
n→∞

un(x)

to equation (3.9) (with that choice of ε) such that

εf + ε
q

p−1Wα, p(f q) ≤ u ≤ εf + x0Wα, p(f q).

Proof of (i)⇒(iii). Suppose that u ∈ Lqloc(R
n), u ≥ 0, is a solution of

(3.9). Let P be a cube in D and dµ = uqdx. Since

[u(x)]q ≥ [Wα, p(uq)(x)]q a.e.,

we have ∫
P

[Wα, p(uq)(x)]qdx ≤
∫
P

[u(x)]qdx.

Thus,

(3.13)
∫
P

[ ∑
Q⊂P

µ(Q)
1
p−1

|Q|(1−
αp

n
) 1
p−1

χQ(x)
]q
dx ≤ Cµ(P ),

for all P ∈ D. By Proposition 3.1, inequality (3.13) is equivalent to∫
P

[ ∑
Q⊂P

µ(Q)

|Q|1−
αp

n

χQ(x)
] q

p−1
dx ≤ Cµ(P )

for all P ∈ D, which in its turn is equivalent to the weak-type inequality

(3.14) ‖Iαp(g)‖
L

q
q−p+1 ,∞(dµ)

≤ C ‖g‖
L

q
q−p+1 (dx)

for all g ∈ L
q

q−p+1 (Rn), g ≥ 0 (see [NTV], [VW]). Note that by (3.9),

dµ = uqdx ≥ εqf q dx = εq dω.

We now deduce from (3.14),

(3.15) ‖Iαp(g)‖
L

q
q−p+1 ,∞(dω)

≤ C

εq−p+1
‖g‖

L
q

q−p+1 (dx)
.

Similarly, by duality and Proposition 3.1 we see that (3.15) is equivalent to the
testing inequality (3.11). The implication (i)⇒ (iii) is proved.
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Proof of (iii)⇒(iv). We first deduce from the testing inequality (3.11)
that

(3.16) ω(P ) ≤ C |P |1−
αpq

n(q−p+1)

for all dyadic cubes P . In fact, this can be verified by using (3.11) and the
obvious estimate∫

P

[ ω(P )

|P |1−
αp

n

] q

p−1
dx ≤

∫
P

[ ∑
Q⊂P

ω(Q)
1
p−1

|Q|(1−
αp

n
) 1
p−1

χQ(x)
]q
dx.

Following [KV], [V3], we next introduce a certain decomposition of the
dyadic Wolff’s potential Wα, pµ. To each dyadic cube P ∈ D, we associate the
“upper” and “lower” parts of Wα, pµ defined respectively by

(3.17) UPµ(x) =
∑
Q⊂P

[ µ(Q)

|Q|1−
αp

n

] 1
p−1
χQ(x),

(3.18) VPµ(x) =
∑
Q⊃P

[ µ(Q)

|Q|1−
αp

n

] 1
p−1
χQ(x).

Obviously,
UPµ(x) ≤ Wα, pµ(x), VPµ(x) ≤ Wα, pµ(x),

and for x ∈ P ,

Wα, pµ(x) = UPµ(x) + VPµ(x)−
[ µ(P )

|P |1−
αp

n

] 1
p−1
.

Using the notation just introduced, we can rewrite the testing inequality (3.11)
in the form:

(3.19)
∫
P

[UPω(x)]q dx ≤ C ω(P )

for all dyadic cubes P . Recall that dω = f q dx. The desired pointwise inequal-
ity (3.12) can be restated as

(3.20)
∑
P∈D

[∫
P [Wα, pω(y)]q dy

|P |1−
αp

n

] 1
p−1
χP (x) ≤ CWα, pω(x).

Obviously, for y ∈ P ,

Wα, pω(y) ≤ UPω(y) + VPω(y),

and from the testing inequality (3.19) we have∑
P∈D

[∫
P [UPω(y)]q dy

|P |1−
αp

n

] 1
p−1
χP (x) ≤ CWα, pω(x).
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Therefore, to prove (3.20) it enough to prove

(3.21)
∑
P∈D

[∫
P [VPω(y)]q dy

|P |1−
αp

n

] 1
p−1
χP (x) ≤ CWα, pω(x).

Note that, for y ∈ P ,

VPω(y) =
∑
Q⊃P

[ ω(Q)

|Q|1−
αp

n

] 1
p−1 = const.

Using the elementary inequality( ∞∑
k=1

ak

)s
≤ s

∞∑
k=1

ak

( ∞∑
j=k

aj

)s−1
,

where 1 ≤ s <∞ and 0 ≤ ak <∞, we deduce

[VPω(y)]
q

p−1 ≤C
∑
Q⊃P

[ ω(Q)

|Q|1−
αp

n

] 1
p−1
{ ∑
R⊃Q

[ ω(R)

|R|1−
αp

n

] 1
p−1
} q

p−1
−1
.

From this we see that the left-hand side of (3.21) is bounded above by a
constant multiple of∑

P∈D
|P |

αp

n(p−1)

∑
Q⊃P

[ ω(Q)

|Q|1−
αp

n

] 1
p−1
{ ∑
R⊃Q

[ ω(R)

|R|1−
αp

n

] 1
p−1
} q

p−1
−1
χP (x).

Changing the order of summation, we see that it is equal to∑
Q∈D

[ ω(Q)

|Q|1−
αp

n

] 1
p−1
χQ(x)

{ ∑
P⊂Q
|P |

αp

n(p−1) χP (x)[VQω(x)]
q

p−1
−1
}
.

By (3.16), the expression in the curly brackets above is uniformly bounded.
Therefore, the proof of estimate (3.21), and hence of (iii) ⇒ (iv), is complete.

4. A-superharmonic functions

In this section, we recall for later use some facts on A-superharmonic
functions, most of which can be found in [HKM], [KM1], [KM2], and [TW4].
Let Ω be an open set in Rn, and p > 1. We will mainly be interested in the
case where Ω is bounded and 1 < p ≤ n, or Ω = Rn and 1 < p < n. We
assume that A : Rn ×Rn → Rn is a vector-valued mapping which satisfies the
following structural properties:

the mapping x→ A(x, ξ) is measurable for all ξ ∈ Rn,(4.1)

the mapping ξ → A(x, ξ) is continuous for a.e. x ∈ Rn,(4.2)
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and there are constants 0 < α ≤ β <∞ such that for a.e. x in Rn, and for all
ξ in Rn,

A(x, ξ) · ξ ≥ α |ξ|p , |A(x, ξ)| ≤ β |ξ|p−1 ,(4.3)

[A(x, ξ1)−A(x, ξ2)] · (ξ1 − ξ2) > 0, if ξ1 6= ξ2,(4.4)

A(x, λξ) = λ |λ|p−2A(x, ξ), if λ ∈ R \ {0}.(4.5)

For u ∈ W 1, p
loc (Ω), we define the divergence of A(x,∇u) in the sense of

distributions; i.e., if ϕ ∈ C∞0 (Ω), then

divA(x,∇u)(ϕ) = −
∫

Ω
A(x,∇u) · ∇ϕdx.

It is well known that every solution u ∈W 1, p
loc (Ω) to the equation

−divA(x,∇u) = 0(4.6)

has a continuous representative. Such continuous solutions are said to be
A-harmonic in Ω. If u ∈W 1, p

loc (Ω) and∫
Ω
A(x,∇u) · ∇ϕdx ≥ 0,

for all nonnegative ϕ ∈ C∞0 (Ω), i.e., −divA(x,∇u) ≥ 0 in the distributional
sense, then u is called a supersolution to (4.6) in Ω.

A lower semicontinuous function u : Ω → (−∞,∞] is called A-super-
harmonic if u is not identically infinite in each component of Ω, and if for all
open sets D such that D ⊂ Ω, and all functions h ∈ C(D), A-harmonic in D,
it follows that h ≤ u on ∂D implies h ≤ u in D.

In the special case A(x, ξ) = |ξ|p−2ξ, A-superharmonicity is often referred
to as p-superharmonicity. It is worth mentioning that the latter can also be
defined equivalently using the language of viscosity solutions (see [JLM]).

We recall here the fundamental connection between supersolutions of (4.6)
and A-superharmonic functions [HKM].

Proposition 4.1 ([HKM]). (i) If v is A-superharmonic on Ω then

(4.7) v(x) = ess lim
y→x

inf v(y), x ∈ Ω.

Moreover, if v ∈W 1, p
loc (Ω) then

−divA(x,∇v) ≥ 0.

(ii) If u ∈W 1, p
loc (Ω) is such that

−divA(x,∇u) ≥ 0,

then there is an A-superharmonic function v such that u = v a.e.
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(iii) If v is A-superharmonic and locally bounded, then v ∈W 1, p
loc (Ω) and

−divA(x,∇v) ≥ 0.

A useful consequence of the above proposition is that if u and v are two
A-superharmonic functions on Ω such that u ≤ v a.e. on Ω then u ≤ v

everywhere on Ω.
Note that an A-superharmonic function u does not necessarily belong to

W 1, p
loc (Ω), but its truncation min{u, k} does for every integer k due to Propo-

sition 4.1(iii). Using this, we set

Du = lim
k→∞

∇ [ min{u, k}],

defined a.e. If either u ∈ L∞(Ω) or u ∈ W 1, 1
loc (Ω), then Du coincides with the

regular distributional gradient of u. In general we have the following gradient
estimates [KM1] (see also [HKM], [TW4]).

Proposition 4.2 ([KM1]). Suppose u is A-superharmonic in Ω and 1 ≤
q < n

n−1 . Then both |Du|p−1 and A(·, Du) belong to Lqloc(Ω). Moreover, if
p > 2− 1

n , then Du is the distributional gradient of u.

We can now extend the definition of the divergence of A(x,∇u) to those
u which are merely A-superharmonic in Ω. For such u we set

−divA(x,∇u)(ϕ) =
∫

Ω
A(x,Du) · ∇ϕdx,

for all ϕ ∈ C∞0 (Ω). Note that by Proposition 4.2 and the dominated conver-
gence theorem,

−divA(x,∇u)(ϕ) = lim
k→∞

∫
Ω
A(x,∇min{u, k}) · ∇ϕdx ≥ 0

whenever ϕ ∈ C∞0 (Ω) and ϕ ≥ 0.
Since −divA(x,∇u) is a nonnegative distribution in Ω for an A-super-

harmonic u, it follows that there is a positive (not necessarily finite) Radon
measure denoted by µ[u] such that

−divA(x,∇u) = µ[u] in Ω.

Conversely, given a positive finite measure µ in a bounded domain Ω, there
is an A-superharmonic function u such that −divA(x,∇u) = µ in Ω and
min{u, k} ∈W 1,p

0 (Ω) for all integers k.
The following weak continuity result from [TW4] will be used later in

Section 5 to prove the existence of A-superharmonic solutions to quasilinear
equations.
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Theorem 4.3 ([TW4]). Suppose that {un} is a sequence of nonnegative
A-superharmonic functions in Ω that converges a.e. to an A-superharmonic
function u. Then the sequence of measures {µ[un]} converges to µ[u] weakly ;
i.e.,

lim
n→∞

∫
Ω
ϕdµ[un] =

∫
Ω
ϕdµ[u],

for all ϕ ∈ C∞0 (Ω).

In [KM2] (see also [Mi, Th. 3.1] and [MZ]) the following pointwise potential
estimate for A-superharmonic functions was established, and this serves as a
major tool in our study of quasilinear equations of Lane-Emden type.

Theorem 4.4 ([KM2]). Suppose u ≥ 0 is an A-superharmonic function
in B3r(x). If µ = −divA(x,∇u), then there are positive constants C1, C2 and
C3 which depend only on n, p and the structural constants α and β such that
(1.18) holds.

A consequence of Theorem 4.4 is the following global version of the above
potential pointwise estimate.

Corollary 4.5 ([KM2]). Let u be an A-superharmonic function in Rn

with infRn u = 0. If µ = −divA(x,∇u), then

1
K

W1, pµ(x) ≤ u(x) ≤ KW1, pµ(x)

for all x ∈ Rn, where K is a positive constant depending only on n, p and the
structural constants α and β.

5. Quasilinear equations on Rn

In this section, we study the solvability problem for the quasilinear equa-
tion

−divA(x,∇u) = uq + ω(5.1)

in the class of nonnegative A-superharmonic functions on the entire space Rn,
where A(x, ξ) · ξ ≈ |ξ|p is defined precisely as in Section 4. Here we assume
1 < p < n, q > p − 1, and ω ∈ M+(Rn). In this setting, all solutions are
understood in the “potential-theoretic” sense, i.e., u ∈ Lqloc(R

n), u ≥ 0, is a
solution to (5.1) if u is A-superharmonic, and

(5.2)
∫

lim
k→∞

A(x,∇min{u, k}) · ∇ϕdx =
∫
uqϕdx+

∫
ϕdω

for all test functions ϕ ∈ C∞0 (Rn).
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We first prove a continuous counterpart of Proposition 3.1. Here we use
the well-known argument due to Fefferman and Stein [FS] which is based on
the averaging over shifts of the dyadic lattice D.

Proposition 5.1. Let 0 < r ≤ ∞. Let µ ∈ M+(Rn), α > 0, p > 1, and
q > p− 1. Then the following quantities are equivalent.

(a)
∥∥∥Wr

αp, q

q−p+1
µ
∥∥∥
L1(dµ)

=
∫
Rn

∫ r

0

[µ(Bt(x))

tn−
αpq

q−p+1

] q

p−1
−1dt

t
dµ,

(b)
∥∥Wr

α, pµ
∥∥q
Lq(dx)

=
∫
Rn

{∫ r

0

[µ(Bt(x))
tn−αp

] 1
p−1 dt

t

}q
dx,

(c)
∥∥Irαpµ∥∥ q

p−1

L
q
p−1 (dx)

=
∫
Rn

[ ∫ r

0

µ(Bt(x))
tn−αp

dt

t

] q

p−1
dx,

where the constants of equivalence do not depend on µ and r.

Remark 5.2. The equivalence of expressions (a) and (c) in Proposition 5.1
may be regarded as a version of Wolff’s inequality [HW] (see also [AH, §4.5]):

(5.3) C1

∫
Rn

Wα, sµdµ ≤
∫
Rn

(Iαµ)
s

s−1dx ≤ C2

∫
Rn

Wα, sµdµ,

where 1 < s < +∞, 0 < α < n
s , and C1, C2 depend only on α, s and n.

Furthermore,

(5.4)
∫
Rn

(Iαµ)
s

s−1dx '
∫
Rn

(Iαµ)
s

s−1dx '
∑
Q∈D

[ µ(Q)
|Q|1−

α

n

] s

s−1 |Q| .

The second equivalence in (5.4) is a dyadic form of (5.3) proved in [HW] (see
also [COV], [V2]).

Proof of Proposition 5.1. We will prove only the equivalence of (b) and
(c); i.e., there are constants C1, C2 > 0 such that

(5.5) C1

∥∥Wr
α, pµ

∥∥q
Lq(dx)

≤
∥∥Irαpµ∥∥ q

p−1

L
q
p−1 (dx)

≤ C2

∥∥Wr
α, pµ

∥∥q
Lq(dx)

.

The equivalence of (a) and (c), which is actually a consequence of Theorem
3.6.2 in [AH], can also be deduced by a similar argument. We first restrict
ourselves to the case r <∞. Observe that there is a constant C > 0 such that

(5.6)
∥∥I2r
αpµ
∥∥ q

p−1

L
q
p−1 (dx)

≤ C
∥∥Irαpµ∥∥ q

p−1

L
q
p−1 (dx)

.

In fact, since∫ 2r

0

µ(Bt(x))
tn−αp

dt

t
≤ C

∫ r

0

µ(Bt(x))
tn−αp

dt

t
+ C

µ(B2r(x))
rn−αp

,

(5.6) will follow from the estimate

(5.7)
∫
Rn

[µ(B2r(x))
rn−αp

] q

p−1
dx ≤ C

∫
Rn

[ ∫ r

0

µ(Bt(x))
tn−αp

dt

t

] q

p−1
dx.
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Note that for a partition of Rn into a union of disjoint cubes {Qj} such that
diam(Qj) = r

4 , ∫
Rn
µ(B2r(x))

q

p−1dx=
∑
j

∫
Qj

µ(B2r(x))
q

p−1dx

≤C
∑
j

∫
Qj

µ(Qj)
q

p−1dx,

where we have used the fact that the ball B2r(x) is contained in the union of
at most N cubes in {Qj} for some constant N depending only on n. Thus∫

Rn

[µ(B2r(x))
rn−αp

] q

p−1
dx≤C

∑
j

∫
Qj

[µ(Br/2(x))
rn−αp

] q

p−1
dx

≤C
∑
j

∫
Qj

[ ∫ r

0

µ(Bt(x))
tn−αp

dt

t

] q

p−1
dx,

which gives (5.7).
By arguing as in [COV, §3], we can find constants a, C and c depending

only on p and n such that

Wr
α, pµ(x) ≤ Cr−n

∫
|t|≤cr

∑
Q∈Dt

`(Q)≤4 r
a

[ µ(Q)

|Q|1−
αp

n

] 1
p−1
χQ(x)dt,

where Dt, t ∈ Rn, denotes the lattice D + t = {Q = Q′ + t : Q′ ∈ D} and `(Q)
is the side length of Q. Using Proposition 2.2 in [COV] and arguing as in the
proof of Theorem 3.1 we obtain∫
Rn

{ ∑
Q∈Dt

`(Q)≤4 r
a

[ µ(Q)

|Q|1−
αp

n

] 1
p−1
χQ(x)

}q
dx '

∫
Rn

[ ∑
Q∈Dt

`(Q)≤4 r
a

µ(Q)

|Q|1−
αp

n

χQ(x)
] q

p−1
dx,

where the constants of equivalence are independent of µ, r and t. The last two
estimates together with the integral Minkowski inequality then give

||Wr
α, pµ||Lq(dx)≤Cr−n

∫
|t|≤cr

{∫
Rn

( ∑
Q∈Dt

`(Q)≤4 r
a

[ µ(Q)

|Q|1−
αp

n

] 1
p−1
χQ(x)

)q
dx
} 1
q

dt

≤Cr−n
∫
|t|≤cr

[ ∫
Rn

( ∑
Q∈Dt

`(Q)≤4 r
a

µ(Q)

|Q|1−
αp

n

χQ(x)
) q

p−1
dx
] 1
q

dt.

Note that ∑
Q∈Dt

`(Q)≤4 r
a

µ(Q)

|Q|1−
αp

n

χQ(x)≤C
∑

2k≤4 r
a

µ(B(x,
√
n2k))

2k(n−αp)

≤CI
8r
√
n

a
αp µ(x)
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where C is independent of t. Thus, in view of (5.6), we obtain the lower
estimate in (5.5).

Now by letting R→∞ in the inequality

||WR
α, pµ||

q
Lq(dx) ≤ C ||I

R
αpµ||

q

p−1

L
q
p−1 (dx)

, 0 < R <∞,

we get the lower estimate in (5.5) with r = ∞. The upper estimate in (5.5)
can be deduced in a similar way. This completes the proof of Proposition 5.1.

In the next theorem, we give a sufficient condition for the solvability of
quasilinear equations in Rn. Later on we will show that it is necessary as well,
and give equivalent simpler characterizations.

Theorem 5.3. Let ω ∈M+(Rn), 1 < p < n, and q > p−1. Suppose that

(5.8) W1, p(W1, pω)q ≤ CW1, pω <∞ a.e.,

where

(5.9) C ≤
( q − p+ 1
qK max{1, 2p′−2}

)q(p′−1)( p− 1
q − p+ 1

)
,

and K is the constant used in Theorem 2.1. Then there is an A-superharmonic
function u ∈ Lqloc(R

n) such that{
infx∈Rn u(x) = 0,
−divA(x,∇u) = uq + ω,

(5.10)

and
c1W1, pω(x) ≤ u(x) ≤ c2 W1, pω(x)

for all x in Rn, where the constants c1, c2 depend only n, p, q, and the structural
constants α, β.

Proof. For each m ∈ N, let us construct by an induction argument a
nondecreasing sequence {umk }k≥0 of A-superharmonic functions on Bm+1 such
that {

−divA(x,∇um0 ) = ωBm in Bm+1,

um0 = 0 on ∂Bm+1,

and {
−divA(x,∇umk ) = (umk−1)q + ωBm in Bm+1,

umk = 0 on ∂Bm+1

for each k ≥ 1, in the renormalized sense (see Lemma 6.9 in §6). Here Bm
denotes the ball of radius m and is centered at the origin. The renormalized
solutions are needed here only to get the following estimates:

um0 ≤ KW1, pω and umk ≤ KW1, p(u
q
k + ω)
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for all k ≥ 1; see Theorem 2.1 whose proof is presented in Section 6. Set
c0 = K, where K is the constant in Theorem 2.1. From these estimates and
(3.5) we get

um1 ≤K max{1, 2p′−2}
[
W1, p(um0 )q + W1, pω

]
≤K max{1, 2p′−2}(cq(p

′−1)
0 C + 1)W1, pω

= c1W1, pω,

where c1 = K max{1, 2p′−2}(cq(p
′−1)

0 C+1). By induction we can find a sequence
{ck}k≥0 of positive numbers such that umk ≤ ckW1, pω, with c0 = K and
ck+1 = K max{1, 2p′−2}(cq(p

′−1)
k C + 1) for all k ≥ 0. It is then easy to see that

ck ≤ K max{1, 2p′−2}q
q−p+1 for all k ≥ 0 as long as (5.9) is satisfied. Thus

umk ≤
K max{1, 2p′−2}q

q − p+ 1
W1, pω on Bm+1.

Now by weak continuity (Theorem 4.3) or stability results for renormalized
solutions in [DMOP] we see that umk ↑ um for an A-superharmonic function
um ≥ 0 on Bm+1 such that{

−divA(x,∇um) = (um)q + ωBm in Bm+1,

um = 0 on ∂Bm+1,
(5.11)

and

(5.12) um ≤ CW1, pω on Bm+1.

By Theorem 1.17 in [KM1] we can find a subsequence {umj}j of {um}m and
an A-superharmonic function u on Rn such that umj → u a.e. Thus by (5.11)
and weak continuity (Theorem 4.3) we see that u is a solution to the equation
−divA(x,∇u) = uq + ω in Rn. On the other hand, from (5.12) we have

u ≤ CW1, pω a.e. on Rn,

which by Corollary 4.5 gives

u ≤ C(u− inf
Rn
u).

Thus infRn u = 0, which completes the proof of the theorem.

We can now prove Theorem 2.3 stated in Section 2 which gives the exis-
tence criteria for quasilinear equations in Rn.

Proof of Theorem 2.3. It is well-known that statements (ii) and (iii) in
Theorem 2.3 are equivalent (see, e.g., [V2]). Note that (2.9) is also equivalent
to the testing inequality (see, e.g., [VW]):∫

Rn

[
IpωB(x)

] q

p−1
dx ≤ C ω(B).
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By applying Proposition 5.1 we deduce (ii)⇒(iv). The implication (v)⇒(i)
clearly follows from Theorem 5.3. Therefore, it remains to check (i)⇒(ii) and
(iv)⇒(v).

Proof of (i)⇒(ii). Let u be a nonnegative solution of (2.8) and let µ =
uq + εω. Then µ is a nonnegative measure such that µ ≥ uq, µ ≥ εω and
u(x) ≥ CW1, pµ(x) by Corollary 4.5. Therefore,∫

P
dµ≥

∫
P
uq dx ≥ C

∫
P

(W1, pµ)q dx

≥C
∫
P

[ ∑
Q⊂P

( µ(Q)

|Q|1−
p

n

) 1
p−1
χQ(x)

]q
dx

for all dyadic cubes P in Rn. Using this and Proposition 3.1, we get∑
Q⊂P

[ µ(Q)

|Q|1−
p

n

] q

p−1 |Q| ≤ C µ(P ), P ∈ D.

It is known that the preceding condition is equivalent to the inequality (see
[V1, §3])

‖Ip(f)‖
L

q
q−p+1 (dµ)

≤ C ‖f‖
L

q
q−p+1 (dx)

,

where C does not depend on f ∈ L
q

q−p+1 (dx). Since µ ≥ ε ω, we have

‖Ip(f)‖
L

q
q−p+1 (dω)

≤ ε
q−p+1
−q C ‖f‖

L
q

q−p+1 (dx)
.

Therefore, by duality we obtain the testing inequality (2.9). This completes
the proof of (i)⇒(ii).

Proof of (iv)⇒(v). We first claim that (2.11) yields

(5.13)
∫ ∞
r

[ω(Bt(x))
tn−p

] 1
p−1 dt

t
≤ C r

−p
q−p+1 ,

where C is independent of x and r. Note that for y ∈ Bt(x) and τ ≥ 2t, we
have Bt(x) ⊂ Bτ (y). Thus,

W1, pωBt(x)(y)≥
∫ ∞

2t

[ω(Bτ (y) ∩Bt(x))
τn−p

] 1
p−1 dτ

τ

≥C
[ω(Bt(x))

tn−p

] 1
p−1
.

Combining this with (2.11) we obtain

(5.14) ω(Bt(x)) ≤ C tn−
pq

q−p+1 ,

which clearly implies (5.13).
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Next, we introduce a decomposition of the Wolff potential W1, p into its
“upper” and “lower” parts, which are the continuous analogues of the discrete
ones given in (3.17) and (3.18) above:

Urµ(x) =
∫ r

0

[µ(Bt(x))
tn−p

] 1
p−1 dt

t
, r > 0, x ∈ Rn,

Lrµ(x) =
∫ ∞
r

[µ(Bt(x))
tn−p

] 1
p−1 dt

t
, r > 0, x ∈ Rn.

Let dν = (W1, pω)qdx. For each r > 0 let dµr = (Urω)qdx and dλr =
(Lrω)qdx. Then

ν ≤ C(q)(µr + λr).(5.15)

Let x ∈ Rn and Br = Br(x). Since W1, p(W1, pω)q = W1, pν, we have to prove
that

W1, pν(x) =
∫ ∞

0

[ν(Br)
rn−p

] 1
p−1 dr

r
≤ CW1, pω(x).

For r > 0, t ≤ r and y ∈ Br we have Bt(y) ⊂ B2r. Therefore it is easy to see
that Urω = UrωB2r on Br. Using this together with (2.11), we have

µr(Br) =
∫
Br

(Urω)qdx =
∫
Br

(UrωB2r)
qdx ≤ Cω(B2r).

Hence, ∫ ∞
0

[µr(Br)
rn−p

] 1
p−1 dr

r
≤C

∫ ∞
0

[ω(B2r)
rn−p

] 1
p−1 dr

r
(5.16)

≤C ′W1, pω(x).

On the other hand, for y ∈ Br and t ≥ r, we have Bt(y) ⊂ B2t, and conse-
quently

Lrω(y)≤
∫ ∞
r

[ω(B2t)
tn−p

] 1
p−1 dt

t
(5.17)

≤C
∫ ∞

2r

[ω(Bt)
tn−p

] 1
p−1 dt

t

≤C Lrω(x).

Using (5.17), we obtain

λr(Br) =
∫
Br

(Lrω(y))qdy ≤ C(Lrω(x))qrn.

Thus, ∫ ∞
0

[λr(Br)
rn−p

] 1
p−1 dr

r
≤C ′

∫ ∞
0

(Lrω(x))
q

p−1 r
p

p−1
dr

r

=C ′
∫ ∞

0

[ ∫ ∞
r

(ω(Bt)
tn−p

) 1
p−1 dt

t

] q

p−1
r

p

p−1
dr

r

=C ′
q

p

∫ ∞
0

r
p

p−1 [Lrω(x)]
q

p−1
−1
[ω(Br)
rn−p

] 1
p−1 dr

r
,
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where we have used integration by parts in the last equality. It then follows
from (5.13) that∫ ∞

0

[λr(Br)
rn−p

] 1
p−1 dr

r
≤C ′′

∫ ∞
0

[ω(Br)
rn−p

] 1
p−1 dr

r
(5.18)

=C ′′W1, pω(x).

Combining (5.15), (5.16) and (5.18) gives

W1, pν(x) =
∫ ∞

0

[ν(Br)
rn−p

] 1
p−1 dr

r
≤ CW1, pω(x)

for a suitable constant C independent of ω. Thus, (iv) implies (v) as claimed
which completes the proof of the theorem.

6. Renormalized solutions of quasilinear Dirichlet problems

Let Ω be a bounded, open subset of Rn, n ≥ 2. We denote byMB(Ω) the
set of all Radon measures with bounded variation on Ω. Recall that M+

B(Ω)
denotes the set of nonnegative finite measures on Ω. Let A be as in Section 4,
and let 1 < p <∞. In this section we consider the Dirichlet problem

−divA(x,∇u) = uq + ω,

u ≥ 0 in Ω,
u = 0 on ∂Ω,

(6.1)

where ω ∈M+
B(Ω) and q > p− 1.

It is well known that when the data are not regular enough, a solution
to nonlinear equations of Leray–Lions type does not necessarily belong to the
Sobolev space W1, p

0 (Ω). Therefore, we have to use the framework of renormal-
ized solutions (see, e.g., [DMOP], [BMMP], [Gre], [Kil]).

For a measure µ inMB(Ω), its positive and negative parts are denoted by
µ+ and µ−, respectively. We say that a sequence of measures {µn} inMB(Ω)
converges in the narrow topology to µ ∈MB(Ω) if

lim
n→∞

∫
Ω
ϕdµn =

∫
Ω
ϕdµ

for every bounded and continuous function ϕ on Ω.
Denote byM0(Ω) (respectivelyMs(Ω)) the set of all measures inMB(Ω)

which are absolutely continuous (respectively singular) with respect to the
capacity cap1, p(·,Ω). Here cap1, p(·,Ω) is the capacity relative to the domain
Ω defined by

(6.2) cap1, p(E,Ω) = inf
{∫

Ω
|∇φ|p dx : φ ∈ C∞0 (Ω), φ ≥ 1 on E

}
for any compact set E ⊂ Ω. Recall that, for every measure µ inMB(Ω), there
exists a unique pair of measures (µ0, µs) with µ0 ∈ M0(Ω) and µs ∈ Ms(Ω),
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such that µ = µ0 + µs. If µ is nonnegative, then so are µ0 and µs (see [FST,
Lemma 2.1]).

For k > 0 and for s ∈ R we denote by Tk(s) the truncation Tk(s) =
max{−k,min{k, s}}. Recall also from [BBG] that if u is a measurable function
on Ω which is finite almost everywhere and satisfies Tk(u) ∈W 1, p

0 (Ω) for every
k > 0, then there exists a measurable function v : Ω→ Rn such that

∇Tk(u) = vχ{|u|<k} a.e. on Ω, for all k > 0.

Moreover, v is unique up to almost everywhere equivalence. We define the
gradient Du of u as this function v, and set Du = v.

In [DMOP], several equivalent definitions of renormalized solutions are
given. In what follows, we will need the following ones.

Definition 6.1. Let µ ∈ MB(Ω). Then u is said to be a renormalized
solution of {

−divA(x,∇u) = µ in Ω,
u = 0 on ∂Ω,

(6.3)

if the following conditions hold:

(a) The function u is measurable and finite almost everywhere, and Tk(u)
belongs to W 1, p

0 (Ω) for every k > 0.

(b) The gradient Du of u satisfies |Du|p−1 ∈ Lq(Ω) for all q < n
n−1 .

(c) If w belongs to W 1, p
0 (Ω)∩L∞(Ω) and if there exist w+∞ and w−∞ in

W 1, r(Ω) ∩ L∞(Ω), with r > n, such that{
w = w+∞ a.e. on the set {u > k},
w = w−∞ a.e. on the set {u < −k}

for some k > 0, then

(6.4)
∫

Ω
A(x,Du) · ∇wdx =

∫
Ω
wdµ0 +

∫
Ω
w+∞dµ+

s −
∫

Ω
w−∞dµ−s .

Definition 6.2. Let µ ∈ MB(Ω). Then u is a renormalized solution of
(6.3) if u satisfies (a) and (b) in Definition 6.1, and if the following conditions
hold:

(c) For every k > 0 there exist two nonnegative measures in M0(Ω), λ+
k

and λ−k , concentrated on the sets {u = k} and {u = −k}, respectively, such
that λ+

k → µ+
s and λ−k → µ−s in the narrow topology of measures.

(d) For every k > 0

(6.5)
∫
{|u|<k}

A(x,Du) · ∇ϕdx =
∫
{|u|<k}

ϕdµ0 +
∫

Ω
ϕdλ+

k −
∫

Ω
ϕdλ−k

for every ϕ in W1, p
0 (Ω) ∩ L∞(Ω).
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Remark 6.3. By [DMOP, Remark 2.18], if u is a renormalized solution
of (6.3) then (the cap1, p-quasi continuous representative of) u is finite cap1, p-
quasieverywhere. Therefore, u is finite µ0-almost everywhere.

Remark 6.4. By (6.5), if u is a renormalized solution of (6.3) then

(6.6) −divA(x,∇Tk(u)) = µk in Ω,

where
µk = χ{|u|<k}µ0 + λ+

k − λ
−
k .

Since Tk(u) ∈ W 1, p
0 (Ω), by (4.3) we see that −divA(x,∇Tk(u)) and hence µk

belong to the dual space W−1, p′(Ω) of W 1, p
0 (Ω). Moreover, by Remark 6.3,

|u| <∞ µ0-almost everywhere and hence χ{|u|<k} → χΩ µ0-almost everywhere
as k →∞. Therefore, by the monotone convergence theorem, µk converges to
µ in the narrow topology of measures.

Remark 6.5. If µ ≥ 0, i.e., µ ∈ M+
B(Ω), and u is a renormalized solution

of (6.3) then u is nonnegative. To see this, for each k > 0 we “test” (6.4) with
w = Tk(min{u, 0}), w+∞ = 0 and w−∞ = −k:∫

Ω
A(x,Du) · ∇wdx =

∫
Ω
wdµ0 +

∫
Ω
kdµ−s =

∫
Ω
wdµ0 ≤ 0,

since µ−s = 0 and w ≤ 0. Thus using (4.3) we get∫
Ω
|∇Tk(min{u, 0})|pdx ≤ 0

for every k > 0. Therefore min{u, 0} = 0 a.e., i.e., u is nonnegative.

Remark 6.6. Let µ ∈M+
B(Ω) and let u be a renormalized solution of (6.3).

Since u− = 0 a.e. (by Remark 6.5) and hence u− = 0 cap1,p-quasi everywhere
(see [HKM, Th. 4.12]), in Remark 6.4 we may take λ−k = 0, and thus µk is
nonnegative. Hence by (6.6) and Proposition 4.1, the functions vk defined by
vk(x) = ess lim infy→x Tk(u)(y) are A-superharmonic and increasing. Using
Lemma 7.3 in [HKM], it is then easy to see that vk → v as k →∞ everywhere
in Ω for some A-superharmonic function v on Ω such that v = u a.e. In other
words, v is an A-superharmonic representative of u.

Remark 6.7. When dealing with pointwise values of a renormalized so-
lution u to (6.3) with measure data µ ≥ 0, we always identify u with its
A-superharmonic representative mentioned in Remark 6.6.

We now establish a comparison principle for renormalized solutions.
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Lemma 6.8. Let µ, ν ∈ M+
B(Ω) be such that µ ≤ ν. Suppose that u and

v are renormalized solutions of{
−divA(x,∇u) = µ in Ω,

u = 0 on ∂Ω,

and {
−divA(x,∇v) = ν in Ω,

v = 0 on ∂Ω,

respectively. If u is uniformly bounded then u ≤ v.

Proof. Let w = min{(u − v)+, k}. Then w = 0 on the set {v > k + M}
and w = k on the set {v < −k −M}, where M = supΩ u. Moreover, w ∈
W 1, p

0 ∩ L∞(Ω) as w = min{(u − Tk+M (v))+, k}. Thus by Definition 6.1 we
have

(6.7)
∫

Ω
A(x,Dv) · ∇wdx =

∫
Ω
wdν0.

On the other hand, since u is bounded (hence belongs to W 1, p
0 (Ω)) we have

(6.8)
∫

Ω
A(x,Du) · ∇wdx =

∫
Ω
wdµ.

From (6.7) and (6.8) we get∫
Ω

[A(x,Du)−A(x,Dv)] · ∇wdx ≤ 0.

Consequently,∫
0<u−v<k

[A(x,Du)−A(x,Dv)] · (Du−Dv)dx ≤ 0,

since ∇w = ∇max{Tk(u − v), 0} = D(u − v)χ{0<u−v<k}. Thus by (4.4) we
have ∇w = 0 and hence w = 0 a.e. for every k > 0, which gives u ≤ v.

In the following lemma we drop the assumption that u is uniformly bounded
in Lemma 6.8, but claim only the existence of v such that v ≥ u. This lemma
was referred to in the proof of Theorem 5.3 given in Section 5 above.

Lemma 6.9. Let µ, ν ∈ M+
B(Ω) be such that ν ≥ µ. Suppose that u is a

renormalized solution of{
−divA(x,∇u) = µ in Ω,

u = 0 on ∂Ω.

Then there exists v ≥ u such that{
−divA(x,∇v) = ν in Ω,

v = 0 on ∂Ω

in the renormalized sense.
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Proof. Let uk = min{u, k} for each k ∈ N. From Definition 6.2 of
renormalized solutions we have{

−divA(x,∇uk) = µ0{u<k} + λ+
k in Ω,

uk = 0 on ∂Ω

in the renormalized sense for a sequence of nonnegative measures {λ+
k } that

converges to µ+
s in the narrow topology of measures. Thus, by Lemma 6.8 we

have uk ≤ vk, where vk are renormalized solutions of{
−divA(x,∇vk) = µ0 + λ+

k + ν − µ in Ω,
vk = 0 on ∂Ω.

Finally, it follows from the stability results in [DMOP] that we can find a
subsequence of {vk} that converges a.e. to a required function v.

We will also need the following version of Lemma 6.9 which will be used
in the proof of Theorem 2.1 on global potential estimates for renormalized
solutions stated in Section 2.

Lemma 6.10. Suppose that u is a renormalized solution to (6.3) with data
µ ∈M+

B(Ω). Let B be a ball that contains Ω. Then there exists a renormalized
solution w on B to

(6.9)
{
−divA(x,∇w) = µ in B,

w = 0 on ∂B

such that u ≤ w on Ω, and

||w||Lp−1(B) ≤ CR
p

p−1µ(Ω)
1
p−1 .(6.10)

Proof. Let uk = min{u, k}, k > 0, and let µk = χ{u<k}µ0 + λ+
k be as in

Remark 6.4 (note that λ−k = 0 by Remark 6.6). We see that uk ∈ W 1,p
0 (Ω) is

the unique solution of problem (6.3) with data µk. We next extend uk by zero
outside Ω, and set

Ψ = min{wk − uk, 0} = min{min{wk, k} − uk, 0},

where wk, k > 0, is a renormalized solution to the problem{
−divA(x,∇wk) = µ0 + λ+

k in B,

wk = 0 on ∂B.
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Note that Ψ ∈W 1, p
0 (Ω) ∩W 1, p

0 (B) ∩ L∞(B) since |Ψ| ≤ uk. Then using Ψ as
a test function we have

0≥
∫
B
A(x,∇wk) · ∇Ψdx−

∫
Ω
A(x,∇uk) · ∇Ψdx

=
∫
B∩{wk<uk}

A(x,∇wk) · ∇Ψdx−
∫
B∩{wk<uk}

A(x,∇uk) · ∇Ψdx

=
∫
B∩{wk<uk}

[A(x,∇wk)−A(x,∇uk)] · (∇wk −∇uk)dx.

Thus ∇wk = ∇uk a.e. on the set B ∩ {wk < uk} by hypothesis (4.4) on A.
Hence Ψ = 0 a.e.; i.e.,

(6.11) uk ≤ wk a.e.

Now by the stability results for renormalized solutions established in
[DMOP] we can find a subsequence {wkj} of {wk} such that wkj → w a.e.,
where w is a renormalized solution to (6.9). By (6.11) we have u ≤ w a.e. on
Ω, and hence u ≤ w everywhere on Ω due to Remark 6.7 and Proposition 4.1.

Finally, note that for p < n we have

||w||
L
n(p−1)
n−p ,∞

(B)
≤ C µ(Ω)

1
p−1 ,

for a constant C independent of R (see [DMOP, Th. 4.1] or [BBG, Lemma
4.1]). Thus we obtain (6.10). Inequality (6.10) also holds for p ≥ n; see for
example [Gre, Lemma 2.1]. This completes the proof of the lemma.

Proof of Theorem 2.1. The lower estimate in (2.6) is just a restatement of
the local estimate given in Theorem 4.4. To prove the upper estimate we let
B = B2R(a), where R = diam(Ω), a ∈ Ω so that Ω ⊂ B. Also, let w be as in
Lemma 6.10 with respect to that choice of B. For x ∈ Ω we denote by d(x)
the distance from x to the boundary ∂B of B. By Theorem 4.4, Lemma 6.10,
and the fact that d(x) ≥ R,

u(x)≤w(x) ≤ CW
2
3
d(x)

1, p µ(x) + C inf
B 1

3 d(x)(x)
w

≤CW2R
1, pµ(x) + Cd(x)

−n
p−1 ||w||Lp−1(B)

≤CW2R
1, pµ(x) + CR

−n
p−1 ||w||Lp−1(B).

Thus from (6.10) we get the desired upper estimate in (2.6).

We next give a sufficient condition for the existence of renormalized solu-
tions to quasilinear equations in a bounded domain Ω, which is an analogue
of Theorem 5.3 related to the case Ω = Rn. Its proof is based on stability
results for renormalized solutions in place of the weak continuity of measures
generated by A-superharmonic functions used in the proof of Theorem 5.3.
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Theorem 6.11. Let ω ∈M+
B(Ω). Let p > 1 and q > p− 1. Suppose that

R = diam(Ω), and

W2R
1, p (W2R

1, pω)q ≤ CW2R
1, pω a.e.,

where

C ≤
( q − p+ 1
qK max{1, 2p′−2}

)q(p′−1)( p− 1
q − p+ 1

)
,

and K is the constant in Theorem 2.1. Then there is a renormalized solution
u ∈ Lq(Ω) to the Dirichlet problem{

−divA(x,∇u) = uq + ω in Ω,
u = 0 on ∂Ω

(6.12)

such that
u(x) ≤M W2R

1, pω(x)

for all x in Ω, where the constant M depends only on p, q, n, and the structural
constants α and β.

Proof. By Lemma 6.9 we can find a nondecreasing sequence {uk}k≥0 of
renormalized solutions to the following Dirichlet problems:{

−divA(x,∇u0) = ω in Ω,
u0 = 0 on ∂Ω,

(6.13)

and {
−divA(x,∇uk) = uqk−1 + ω in Ω,

uk = 0 on ∂Ω
(6.14)

for k ≥ 1. By Theorem 2.1 we have

u0 ≤ K W2R
1, pω, uk ≤ K W2R

1, p(u
q
k−1 + ω).

Thus arguing as in the proof of Theorem 5.3, we obtain a constant M > 0 such
that

uk ≤M W2R
1, pω <∞ a.e.

for all k ≥ 0. Therefore, {uk} converges pointwise to a nonnegative function u
for which

u ≤M W2R
1, pω <∞ a.e.,

and uqk → uq in L1(Ω). Finally, in view of (6.14), the stability result in [DMOP,
Th. 3.4] asserts that u is a renormalized solution of (6.12), which proves the
theorem.
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Let Q = {Q} be a Whitney decomposition of Ω, i.e., Q is a disjoint
subfamily of the family of dyadic cubes in Rn such that Ω = ∪Q∈QQ, where we
can assume that 25diam(Q) ≤ dist(Q, ∂Ω) ≤ 27diam(Q). Let {φQ}Q∈Q be a
partition of unity associated with the Whitney decomposition of Ω above: 0 ≤
φQ ∈ C∞0 (Q∗), φQ ≥ 1/C(n) onQ,

∑
Q φQ = 1 and |DγφQ| ≤ Aγ(diam(Q))−|γ|

for all multi-indices γ. Here Q∗ = (1 + ε)Q, 0 < ε < 1
4 and C(n) is a positive

constant depending only on n such that each point in Ω is contained in at most
C(n) of the cubes Q∗ (see [St1]).

The following theorem is an extension of Theorem 2.16 on local estimates
for solutions of quasilinear equations.

Theorem 6.12. Let ω be a locally finite, nonnegative measure on an open
(not necessarily bounded) set Ω. Let p > 1 and q > p− 1. Suppose that there
exists a nonnegative A-superharmonic function u in Ω such that

−divA(x,∇u) = uq + ω in Ω.

Then, for each cube P ∈ Q and compact set E ⊂ Ω,

(6.15) µP (E) ≤ C CapIp,
q

q−p+1
(E)

if pq
q−p+1 < n, and

µP (E) ≤ C(P ) CapGp,
q

q−p+1
(E)(6.16)

if pq
q−p+1 ≥ n. Here dµ = uqdx+dω, and the constant C in (6.15) is independent

of P ∈ Q and E ⊂ Ω, but the constant C(P ) in (6.16) may depend on the side
length of P .

Moreover, if pq
q−p+1 < n and Ω is a bounded C∞-domain, then

µ(E) ≤ C capp, q

q−p+1
(E,Ω)

for all compact sets E ⊂ Ω, where capp, q

q−p+1
(E,Ω) is defined by (2.24).

Proof. Let P be a fixed dyadic cube in Q. For a dyadic cube P ′ ⊂ P we
have

dist(P ′, ∂Ω) ≥ dist(P, ∂Ω) ≥ 25diam(P ) ≥ 25diam(P ′).

The lower estimate in Theorem 4.4 then yields

u(x)≥CW23diam(P ′)
1, p µ(x)

≥C
∞∑
k=0

∫ 2−k+3diam(P ′)

2−k+2diam(P ′)

[µ(Bt(x))
tn−p

] 1
p−1 dt

t

≥C
∑
Q⊂P ′

[ µ(Q)

|Q|1−
p

n

] 1
p−1
χQ(x)
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for all x ∈ P ′. Thus it follows from Proposition 3.1 that

(6.17)
∑
Q⊂P ′

[ µ(Q)

|Q|1−
p

n

] q

p−1 |Q| ≤ C
∫
P ′
uqdx ≤ Cµ(P ′), P ′ ⊂ P.

Hence

(6.18) µ(P ′) ≤ C
∣∣P ′∣∣1− pq

n(q−p+1) , P ′ ⊂ P.

To get a better estimate for µ(P ′) in the case pq
q−p+1 = n, we observe that

(6.17) is a dyadic Carleson condition. Thus by the dyadic Carleson imbedding
theorem (see, e.g., [NTV], [V1]) we obtain, for pq

q−p+1 = n,

(6.19)
∑
Q⊂P

µ(Q)
q

p−1

[ 1
µ(Q)

∫
Q
fdµ

] q

p−1 ≤ C
∫
P
f

q

p−1dµ,

where f ∈ L
q

p−1 (dµP ), f ≥ 0. From (6.19) with f = χP ′ , one gets

(6.20) µ(P ′) ≤ C
(

log
2n |P |
|P ′|

) 1−p
q−p+1

, P ′ ⊂ P,

if pq
q−p+1 = n. Now let P ′ be a dyadic cube in Rn. From Wolff’s inequality

(5.4) we have∫
Rn

(IpµP ′∩P )
q

p−1dx(6.21)

≤ C
∑
Q∈D

[µP (P ′ ∩Q)

|Q|1−
p

n

] q

p−1 |Q|

= C
∑
Q⊂P ′

[ µP (Q)

|Q|1−
p

n

] q

p−1 |Q|+ C
∑
P ′ Q

[µP (P ′)

|Q|1−
p

n

] q

p−1 |Q| .

Thus, for pq
q−p+1 < n, by combining (6.17) and (6.21) we deduce

(6.22)
∫
Rn

(IpµP ′∩P )
q

p−1 dx ≤ C µP (P ′).

In the case pq
q−p+1 ≥ n, a similar argument using (6.17), (6.18), (6.20) and

Wolff’s inequality for Bessel potentials:∫
Rn

(GpµP ′∩P )
q

p−1dx ≤ C(P )
∑

Q∈D, Q⊂P

[µP (P ′ ∩Q)

|Q|1−
p

n

] q

p−1 |Q| ,

(see [AH, §4.5]), also gives

(6.23)
∫
Rn

(GpµP ′∩P )
q

p−1dx ≤ C(P )µP (P ′),

where the constant C(P ) may depend on the side length of P . Note that (6.22)
which holds for all dyadic cubes P ′ in Rn is the well-known Kerman-Sawyer
condition. Therefore by the results of [KS],

‖Ipf‖L q
q−p+1 (dµP )

≤ C ‖f‖
L

q
q−p+1 (dx)
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for all f ∈ L
q

q−p+1 (Rn) which is equivalent to the capacitary condition

µP (E) ≤ C CapIp,
q

q−p+1
(E)

for all compact sets E ⊂ Rn. Thus we obtain (6.15). The inequality (6.16)
is proved in the same way using (6.23). From (6.15) and the definition of
capp, q

q−p+1
(·,Ω), we see that, for each cube P ∈ Q,

µP (E) ≤ Ccapp, q

q−p+1
(E ∩ P,Ω)

for all compact sets E ⊂ Ω. Thus

µ(E)≤
∑
P∈Q

µP (E)

≤C
∑
P∈Q

capp, q

q−p+1
(E ∩ P,Ω)

≤C capp, q

q−p+1
(E,Ω),

where the last inequality follows from the quasi-additivity of the capacity
capp, q

q−p+1
(·,Ω) which is considered in the next theorem.

Let BR be a ball such that B2R ⊂ Ω. It is easy to see that there exists a
constant c > 0 such that `(P ) ≥ cR for any Whitney cube P that intersects
BR. On the other hand, if Br is a ball in BR then we can find at most N
dyadic cubes Pi with c r4 ≤ `(Pi) < c r2 that cover Br, where N depends only
on n. Thus we can deduce from (6.20) the following corollary which gives an
improved estimate in the critical case q = n(p−1)

n−p , 1 < p < n.

Corollary 6.13. Let ω, Ω, p, q and u be as in Theorem 6.12. Then in
the case pq

q−p+1 = n, ∫
Br

uq dx+ ω(Br) ≤ C(log 2R
r )

1−p
q−p+1

for all balls Br ⊂ BR such that B2R ⊂ Ω.

Theorem 6.14. Suppose that Ω is a C∞-domain in Rn. Then there exists
a constant C > 0 such that∑

Q∈Q
capp, q

q−p+1
(E ∩Q,Ω) ≤ Ccapp, q

q−p+1
(E,Ω)

for all compact sets E ⊂ Ω.

Proof. Obviously, we may assume that capp, q

q−p+1
(E,Ω) > 0. Then by

definition there exists f ∈ C∞0 (Ω), f ≥ 1, on E such that

2 capp, q

q−p+1
(E,Ω) ≥ ‖f‖

q

q−p+1

W
p,

q
q−p+1 (Rn)

.
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By the refined localization principle on the smooth domain Ω for the function
space W p, q

q−p+1 (see, e.g., [Tri, Th. 5.14]) we have

‖f‖
q

q−p+1

W
p,

q
q−p+1 (Rn)

≥ C
∑
Q∈Q
‖fφQ‖

q

q−p+1

W
p,

q
q−p+1 (Rn)

.

Thus

(6.24)
∑
Q∈Q
‖fφQ‖

q

q−p+1

W
p,

q
q−p+1 (Rn)

≤ Ccapp, q

q−p+1
(E,Ω).

Note that for x ∈ E ∩Q,

fφQ ≥ φQ ≥ 1/C(n).

Hence by definition we have

capp, q

q−p+1
(E ∩Q,Ω) ≤ C ‖fφQ‖

q

q−p+1

W
p,

q
q−p+1 (Rn)

.

From this and (6.24) we deduce the desired inequality.

We now prove Theorem 2.10 stated in Section 2. which gives existence
criteria for quasilinear equations in a bounded domain.

Proof of Theorem 2.10. Since ω is compactly supported in Ω, we have
(i)⇒(ii) by Theorem 6.12. Thus we need to show (ii)⇒(iii)⇒(iv) ⇒(i). Note
that the capacitary inequality (2.20) is equivalent to the Kerman–Sawyer con-
dition

(6.25)
∫
Rn

[
GpωB(x)

] q

p−1
dx ≤ C ω(B),

(see [KS], [V2]). Note also that

(6.26)
∫
Rn

[
Gpµ(x)

] q

p−1
dx '

∫
Rn

[ ∫ 2R

0

µ(Bt(x))
tn−p

] q

p−1
dx,

where the constants of equivalence are independent of the measure µ, (see
[HW], [AH]). Thus from (6.25), (6.26), and Proposition 5.1 we deduce the
implication (ii)⇒(iii). By Theorem 6.11 we have (iv)⇒(i). It remains to show
that (iii)⇒(iv). In fact, the proof of this implication is similar to the proof
of (iv)⇒(v) in Theorem 2.3. We will only sketch some crucial steps here. We
define the “lower” and “upper” parts of the truncated Wolff’s potential W2R

1, p

respectively by

L2R
r µ(x) =

∫ 2R

r

[µ(Bt(x))
tn−p

] 1
p−1 dt

t
, 0 < r < 2R, x ∈ Rn,

and

U2R
r µ(x) =

∫ r

0

[µ(Bt(x))
tn−p

] 1
p−1 dt

t
, 0 < r < 2R, x ∈ Rn.
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Since R = diam(Ω) and ω ∈ M+
B (Ω), to prove (2.22), it is enough to verify

that, for x ∈ Ω,

(6.27)
∫ 2R

0

[µr(Br(x))
rn−p

] 1
p−1 dr

r
≤ CW2R

1, pω(x),

and

(6.28)
∫ 2R

0

[λr(Br(x))
rn−p

] 1
p−1 dr

r
≤ CW2R

1, pω(x),

where dµr = (U2R
r ω)qdx, dλr = (L2R

r ω)qdx and 0 < r < 2R. The proof of
(6.27) is the same as before. For the proof of (6.28), we need an estimate
similar to (5.13) in the proof of Theorem 2.3, namely,

(6.29)
∫ 4R

r

[ω(Bt(x))
tn−p

] 1
p−1 dt

t
≤ C(R,ω(Ω)) r

−p
q−p+1

for all 0 < r ≤ 4R and x ∈ Ω. In fact, note that for 0 < t < R
2 and y ∈ Bt(x),

W2R
1, pωBt(x)(y)≥

∫ 2R

2t

[ω(Bτ (y) ∩Bt(x))
τn−p

] 1
p−1 dτ

τ

≥C(n, p)
[ω(Bt(x))

tn−p

] 1
p−1
.

As before, from this inequality and (2.21) we get

(6.30) ω(Bt(x)) ≤ Ctn−
pq

q−p+1 , 0 < t < R
2 .

To prove (6.29), we can assume that 0 < r < R
2 and write the left-hand side

of (6.29) in the form

(6.31)
∫ R

2

r

[ω(Bt(x))
tn−p

] 1
p−1 dt

t
+
∫ 4R

R

2

[ω(Bt(x))
tn−p

] 1
p−1 dt

t
.

Applying (6.30) to the first term of (6.31) and using the fact that ω ∈M+
B(Ω)

in the second term of (6.31), we finally obtain (6.29). This completes the proof
of (iii)⇒(iv), and hence Theorem 2.10 is proved.

We are now in a position to obtain the characterization of removable
singularities for homogeneous quasilinear equations in Theorem 2.18 above.

Proof of Theorem 2.18. Let us first prove the “only if” part of the
theorem. Suppose that CapGp,

q

q−p+1
(E) = 0, and u is a solution of (2.25).

We have cap1, p(E,Ω) = 0, where the capacity cap1, p(·,Ω) is defined by (6.2).
Thus u can be extended so that it is a nonnegative A-superharmonic function
in Ω (see [HKM]). Let µ[u] be the Radon measure on Ω associated with u, and
let ϕ be an arbitrary nonnegative function in C∞0 (Ω). As in [BP, Lemme 2.2],
we can find a sequence {ϕn} of nonnegative functions in C∞0 (Ω \E) such that

(6.32) 0 ≤ ϕn ≤ ϕ; ϕn → ϕ CapGp,
q

q−p+1
-quasi everywhere.
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By Fatou’s lemma we have∫
Ω
uq ϕdx≤ lim inf

n→∞

∫
Ω
uq ϕn dx

= lim inf
n→∞

∫
Ω
ϕn dµ[u]

≤
∫

Ω
ϕdµ[u] <∞.

Therefore u ∈ Lqloc(Ω), and µ[u] ≥ uq in D′(Ω). It is then easy to see that

−divA(x,∇u) = uq + µE in D′(Ω)

for some nonnegative measure µE such that µE(A) = 0 for any Borel set
A ⊂ Ω \ E. Moreover, by Theorem 6.12 we have

µE(E) ≤ C(E) CapGp,
q

q−p+1
(E) = 0.

Thus µE = 0 and u solves (2.25) with Ω in place of Ω \ E.
The “if” part of the theorem is proved in the same way as in the linear

case p = 2 using the existence results obtained in Theorem 2.10. We refer to
[AP] for details.

7. Hessian equations

In this section, we study a fully nonlinear counterpart of the theory pre-
sented in the previous sections. Here the notion of k-subharmonic
(k-convex) functions associated with the fully nonlinear k-Hessian operator
Fk, k = 1, . . . , n, introduced by Trudinger and Wang in [TW1]–[TW3] will
play a role similar to that of A-superharmonic functions in the quasilinear the-
ory.

Let Ω be an open set in Rn, n ≥ 2. For k = 1, . . . , n and u ∈ C2(Ω), the
k-Hessian operator Fk is defined by

Fk[u] = Sk(λ(D2u)),

where λ(D2u) = (λ1, . . . , λn) denotes the eigenvalues of the Hessian matrix of
second partial derivatives D2u, and Sk is the kth symmetric function on Rn

given by
Sk(λ) =

∑
1≤i1<···<ik≤n

λi1 · · ·λik .

Thus F1[u] = ∆u and Fn[u] = detD2u. Alternatively, we may also write

Fk[u] = [D2u]k,

where for an n × n matrix A, [A]k is the k-trace of A, i.e., the sum of its
k×k principal minors. Several equivalent definitions of k-subharmonicity were
given in [TW2], one of which involves the language of viscosity solutions: An
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upper-semicontinuous function u : Ω → [−∞,∞) is said to be k-subharmonic
in Ω, 1 ≤ k ≤ n, if Fk[q] ≥ 0 for any quadratic polynomial q such that u−q has
a local finite maximum in Ω. Equivalently, an upper-semicontinuous function
u : Ω→ [−∞,∞) is k-subharmonic in Ω if, for every open set Ω′ b Ω and for
every function v ∈ C2

loc(Ω
′) ∩ C0(Ω′) satisfying Fk[v] ≥ 0 in Ω′, the following

implication holds:
u ≤ v on ∂Ω′ =⇒ u ≤ v in Ω′,

(see [TW2, Lemma 2.1]). Note that a function u ∈ C2
loc(Ω) is k-subharmonic

if and only if
Fj [u] ≥ 0 in Ω for all j = 1, . . . , k.

We denote by Φk(Ω) the class of all k-subharmonic functions in Ω which are
not identically equal to −∞ in each component of Ω. It was proved in [TW2]
that Φn(Ω) ⊂ Φn−1(Ω) · · · ⊂ Φ1(Ω) where Φ1(Ω) coincides with the set of all
proper classical subharmonic functions in Ω, and Φn(Ω) is the set of functions
convex on each component of Ω.

The following weak convergence result proved in [TW2] is fundamental to
potential theory associated with k-Hessian operators.

Theorem 7.1 ([TW2]). For each u ∈ Φk(Ω), there exists a nonnegative
Borel measure µk[u] in Ω such that

(i) µk[u] = Fk[u] for u ∈ C2(Ω), and

(ii) if {um} is a sequence in Φk(Ω) converging in L1
loc(Ω) to a function u ∈

Φk(Ω), then the sequence of the corresponding measures {µk[um]} converges
weakly to µk[u].

The measure µk[u] in the theorem above is called the k-Hessian measure
associated with u. Due to (i) in Theorem 7.1 we sometimes write Fk[u] in place
of µk[u] even in the case where u ∈ Φk(Ω) does not belong to C2(Ω). The
k-Hessian measure is an important tool in potential theory for Φk(Ω). It was
used by D. A. Labutin to derive pointwise estimates for functions in Φk(Ω) in
terms of Wolff’s potential, which is an analogue of Wolff’s potential estimates
for A-superharmonic functions considered in Theorem 4.4.

Theorem 7.2 ([L]). Let u ≥ 0 be such that −u ∈ Φk(B3r(x)), where
1 ≤ k ≤ n. If µ = µk[−u] then

C1W
r

8
2k
k+1

, k+1
µ(x) ≤ u(x) ≤ C2 inf

B(x,r)
u+ C3W2r

2k
k+1

, k+1µ(x),

where the constants C1, C2 and C3 depend only on n and k.

The following global estimate is deduced from the preceding theorem as
in the quasilinear case.
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Corollary 7.3. Let u ≥ 0 be such that −u ∈ Φk(Rn), where 1 ≤ k < n
2 .

If µ = µk[−u] and infRn u = 0 then for all x ∈ Rn,

1
K

W 2k
k+1

, k+1µ(x) ≤ u(x) ≤ KW 2k
k+1

, k+1µ(x),

for a constant K depending only on n and k.

Let Ω be a bounded uniformly (k − 1)-convex domain in Rn, that is,
∂Ω ∈ C2 and Hj(∂Ω) > 0, j = 1, ..., k − 1, where Hj(∂Ω) denotes the j-
mean curvature of the boundary ∂Ω. We consider the following fully nonlinear
problem: 

Fk[−u] = uq + ω in Ω,
u ≥ 0 in Ω,
u = ϕ on ∂Ω

(7.1)

in the class of functions u such that −u is k-subharmonic in Ω. Here ω is
a nonnegative finite Borel measure which is regular enough near ∂Ω so that
the boundary condition in (7.1) can be understood in the classical sense (see
[TW1], [TW2]). Characterizations of the existence of u ≥ 0, −u ∈ Φk(Ω),
continuous near ∂Ω, which solves (7.1), can be obtained using the iteration
scheme employed in the proof of Theorem 6.11 along with weak continuity of
Hessian measures and testing inequalities analogous to those used in the proof
of Theorem 2.10. For this purpose, we first prove an extension of Theorem 2.2
concerning the global potential estimates on a bounded domain, which is an
analogue of Theorem 2.1 established for quasilinear operators.

Theorem 7.4. Suppose that ϕ ≥ 0, ϕ ∈ C0(∂Ω) and ν = µ + f where
µ ∈ M+(Ω) has compact support in Ω and f ≥ 0, f ∈ Ls(Ω) with s > n

2k if
1 ≤ k ≤ n

2 , and s = 1 if n
2 < k ≤ n. Let u ≥ 0, −u ∈ Φk(Ω) be such that u is

continuous near ∂Ω and solves{
µk[−u] = ν in Ω,
u = ϕ on ∂Ω.

Then for all x ∈ Ω,

u(x) ≤ K
[
W2R

2k
k+1

, k+1ν(x) + max
∂Ω

ϕ
]
,

where R = diam(Ω) and K is a constant depending only on n and k.

Proof. Suppose that the support of µ is contained in Ω′ for some open
set Ω′ b Ω. Let M = supΩ\Ω′ u and um = min{u,m} for m > M . Then
−um ∈ Φk(Ω), continuous near ∂Ω, solves{

µk[−um] = νm in Ω,
um = ϕ on ∂Ω
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for certain nonnegative Borel measures νm in Ω. Since um → u in L1
loc(Ω), by

Theorem 7.1 we have

(7.2) µm → ν = µ+ f weakly as measures in Ω.

Note that um = u in Ω \ Ω′ since m > M . Thus νm = µk[u] = f in Ω \ Ω′ for
all m > M . Using this and (7.2) it is easy to see that∫

Ω
φdµm →

∫
Ω
φdµ+

∫
Ω
φfdx

as m→∞ for all φ ∈ C0(Ω), i.e.,

µm → ν = µ+ f in the narrow topology of measures.

We now take a ball B = B2R(a) where a ∈ Ω so that Ω ⊂ B, and consider
solutions wm ≥ 0, −wm ∈ Φk(B), continuous near ∂B, of{

µk[−wm] = νm in B,

wm = max∂Ω ϕ on ∂B,

where m > M . Since um is bounded in Ω the measure νm is absolutely con-
tinuous with respect to the capacity capk(·,Ω), and hence with respect to
the capacity capk(·, B) (see [TW3]). Here capk(·,Ω) is the k-Hessian capac-
ity defined by (2.27). By a comparison principle (see [TW3, Th. 4.1]), we
have wm ≥ max∂Ω ϕ in B, and hence wm ≥ um on ∂Ω. Thus, applying the
comparison principle again, we have

wm ≥ um in Ω.(7.3)

Since νm → ν in the narrow topology of measures in Ω, we see that νm → ν

weakly as measures in B. Therefore, arguing as in [TW2, §6] we can find a
subsequence {wmj

} such that wmj
→ w a.e. for some w ≥ 0, −w ∈ Φk(B),

such that w is continuous near ∂B and{
µk[−w] = ν in B,

w = max∂Ω ϕ on ∂B.

Note that from (7.3), w ≥ u a.e. on Ω and hence w ≥ u everywhere on
Ω. Using this and Theorem 7.2 applied to the function w on Bd(x)(x), where
d(x) = dist(x, ∂B) we have, for x ∈ Ω,

u(x)≤CW2R
2k
k+1

, k+1ν(x) + C inf
B 1

3 d(x)(x)
w(7.4)

≤CW2R
2k
k+1

, k+1ν(x) + C d(x)−n
∫
B 1

3 d(x)(x)
w dy

≤C
(
W2R

2k
k+1

, k+1ν(x) + max
∂Ω

ϕ+R2−n
k ν(Ω)

1
k

)
,
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where the last inequality in (7.4) follows from the estimate (6.3) in [TW2].
The proof of Theorem 7.4 is then completed by noting that∫ 2R

R

[ν(Bt(x))
tn−2k

] 1
k dt

t
≥ CR2−n

k ν(Ω)
1
k

for all x ∈ Ω.

The following lemma is an analogue of Lemma 6.9. It is needed in the
proof of Theorem 7.6 below to construct a solution to Hessian equations.

Lemma 7.5. Let Ω, ν, ϕ and u be as in Theorem 7.4. Let ν ′ be a measure
which belongs to the same class as ν, i.e., ν ′ = µ′+ f ′, where µ′ ∈M+(Ω) has
compact support in Ω and f ′ ≥ 0, f ′ ∈ Ls(Ω) with s > n

2k if 1 ≤ k ≤ n
2 , and

s = 1 if n
2 < k ≤ n. Then there exists w ≥ u such that −w ∈ Φk(Ω) and{

µk[−w] = ν + ν ′ in Ω,
w = ϕ on ∂Ω.

Proof. By approximation we may assume that µ′ is absolutely continuous
with respect to the capacity capk(·,Ω). Let um and νm be as in the proof of
Theorem 7.4. Then by the comparison principle in [TW3, Th. 4.1], we have
um ≤ wm where wm is the solution of{

µk[−wm] = νm + ν ′ in Ω,
wm = ϕ on ∂Ω.

Thus arguing as in [TW2, §6] we obtain a subsequence {wmj
} that converges

a.e. to a required function w.

From Lemma 7.5 and Theorem 2.2, along with the weak continuity of
Hessian measures (Theorem 7.1), we deduce the following existence theorem
for fully nonlinear equations whose proof, which we will omit, is analogous to
that of Theorem 5.3 in the quasilinear case.

Theorem 7.6. Let ω ∈M+(Rn), 1 ≤ k < n
2 , and q > k. Suppose that

W 2k
k+1

, k+1 (W 2k
k+1

, k+1ω)q ≤ CW 2k
k+1

, k+1ω <∞ a.e.,

where

C ≤
(q − k
qK

)q/k k

q − k
,

and K is the constant in Theorem 2.2. Then there exists u ≥ 0, u ∈ Lqloc(R
n),

such that −u ∈ Φk(Rn) and {
infx∈Rn u(x) = 0,
Fk[−u] = uq + ω.
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Moreover, u satisfies the two-sided estimate

c1W 2k
k+1

, k+1ω(x) ≤ u(x) ≤ c2 W 2k
k+1

, k+1ω(x)

for all x in Rn, where the constants c1, c2 depend only on n, k, q.

We are now in a position to establish the main results of this section.

Proof of Theorem 2.6. The proof of Theorem 2.6 is completely analogous
to that of Theorem 2.3 in the quasilinear case using W 2k

k+1
, k+1 in place of W1, p

and Theorem 7.6 in place of Theorem 5.3.

The proof of our next theorem on the existence of solutions for Hessian
equations with nonhomogeneous boundary condition is similar to that of The-
orem 6.11. However, due to the inhomogeneity we will need to take care of the
boundary term. Moreover, the weak continuity of Hessian measures is used in
place of the stability result for renormalized solutions in the quasilinear case.

Theorem 7.7. Let Ω be a bounded uniformly (k − 1)-convex domain in
Rn. Suppose that ω ∈ M+

B(Ω) such that ω = µ + f , where µ ∈ M+(Ω) has
compact support in Ω, and 0 ≤ f ∈ Ls(Ω) with s > n

2k if 1 ≤ k ≤ n
2 and s = 1

if n
2 < k ≤ n. Let q > k, R = diam(Ω) and 0 ≤ ϕ ∈ C0(∂Ω). Suppose that

(7.5) W2R
2k
k+1

, k+1 (W2R
2k
k+1

, k+1ω)q ≤ AW2R
2k
k+1

, k+1ω,

and

(7.6) (max
∂Ω

ϕ)
q

k
−1 ≤ B

k

q

2R2|B1(0)|
1
k

,

where A, B are positive constants such that

(7.7) A ≤
( q − k

3
q−1
q qK

) q
k
( k

q − k

)
, and B ≤

( q − k
3
q−1
q qK

q

k

) q
k
( k

q − k

)
.

Here K is the constant in Theorem 7.4. Then there exists a function u ≥ 0,
−u ∈ Φk(Ω) ∩ Lq(Ω), continuous near ∂Ω such that

(7.8)
{
Fk[−u] = uq + ω in Ω,

u = ϕ on ∂Ω.

Moreover, there is a constant C = C(n, k, q) such that

u ≤ C
{
W2R

2k
k+1

, k+1ω + W2R
2k
k+1

, k+1(max
∂Ω

ϕ)q + max
∂Ω

ϕ
}
.

Proof. First observe by direct calculations that condition (7.6) is equiv-
alent to

(7.9) W2R
2k
k+1

, k+1

[
W2R

2k
k+1

, k+1(max
∂Ω

ϕ)q
]q
≤ BW2R

2k
k+1

, k+1(max
∂Ω

ϕ)q.
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From Lemma 7.5 it follows that we can choose inductively a nondecreasing
sequence {um} of nonnegative functions on Ω such that{

Fk[−u0] = ω in Ω,
u0 = ϕ on ∂Ω,

and

(7.10)
{
Fk[−um] = uqm−1 + ω in Ω,

um = ϕ on ∂Ω

for m ≥ 1. Here for each m ≥ 0, −um is k-subharmonic and is continuous near
∂Ω. By Theorem 7.4 we have

u0≤KW2R
2k
k+1

, k+1ω +K max
∂Ω

ϕ

= a0W2R
2k
k+1

, k+1ω + b0W2R
2k
k+1

, k+1(max
∂Ω

ϕ)q +K max
∂Ω

ϕ,

where a0 = K and b0 = 0. Thus

u1≤KW2R
2k
k+1

, k+1(uq0 + ω) +K max
∂Ω

ϕ

≤K
{

(3q−1aq0)
1
kW2R

2k
k+1

, k+1 (W2R
2k
k+1

, k+1ω)q

+(3q−1bq0)
1
kW2R

2k
k+1

, k+1

[
W2R

2k
k+1

, k+1(max
∂Ω

ϕ)q
]q

+K
q

kW2R
2k
k+1

, k+1(max
∂Ω

ϕ)q + W2R
2k
k+1

, k+1ω
}

+K max
∂Ω

ϕ.

Then by (7.5) and (7.9),

u1≤K[(3q−1aq0)
1
kA+ 1]W2R

2k
k+1

, k+1ω

+K[(3q−1bq0)
1
kB +K

q

k ]W2R
2k
k+1

, k+1(max
∂Ω

ϕ)q +K max
∂Ω

ϕ

= a1W2R
2k
k+1

, k+1ω + b1W2R
2k
k+1

, k+1(max
∂Ω

ϕ)q +K max
∂Ω

ϕ,

where
a1 = K[(3q−1aq0)

1
kA+ 1], b1 = K[(3q−1bq0)

1
kB +K

q

k ].

By induction we have

um ≤ amW2R
2k
k+1

, k+1ω + bmW2R
2k
k+1

, k+1(max
∂Ω

ϕ)q +K max
∂Ω

ϕ,

where

am+1 = K[(3q−1aqm)
1
kA+ 1], bm+1 = K[(3q−1bqm)

1
kB +K

q

k ]

for all m ≥ 0. It is then easy to see that

am ≤
Kq

q − k
, and bm ≤

K
q

k
+1q

q − k
,



QUASILINEAR AND HESSIAN EQUATIONS 909

provided (7.7) is satisfied. Thus

um≤
Kq

q − k
W2R

2k
k+1

, k+1ω(7.11)

+
K

q

k
+1q

q − k
W2R

2k
k+1

, k+1(max
∂Ω

ϕ)q +K max
∂Ω

ϕ.

Using (7.5) and (7.11) we see that um ↑ u for a function u ≥ 0 such that −u is
k-subharmonic and uqm → uq in L1(Ω). Thus in view of (7.10) and Theorem
7.1 we see that u is a desired solution of (7.8).

We will omit the proof of the next theorem, which contains Theorem 2.17
in Section 2, as it is completely analogous to the proof of Theorem 6.12 in the
quasilinear case.

Theorem 7.8. Let ω be a locally finite nonnegative measure on an open
(not necessarily bounded) set Ω. Let 1 ≤ k ≤ n and q > k. Suppose that u ≥ 0,
−u ∈ Φk(Ω), such that u is a solution to

Fk[−u] = uq + ω in Ω.

Then for each cube P ∈ Q, where Q = {Q} is a Whitney decomposition of Ω
(see §6),

(7.12) µP (E) ≤ C CapI2k,
q

q−k
(E)

if 2kq
q−k < n, and

(7.13) µP (E) ≤ C(P ) CapG2k,
q

q−k
(E)

if 2kq
q−k ≥ n, for all compact sets E ⊂ Ω. Here dµ = uqdx+dω, and the constant

C in (7.12) does not depend on P ∈ Q and E ⊂ Ω; however, the constant C(P )
in (7.13) may depend on the side length of P .

Moreover, if 2kq
q−k < n, and Ω is a bounded C∞-domain then

µ(E) ≤ C cap2k, q

q−k
(E,Ω)

for all compact sets E ⊂ Ω, where cap2k, q

q−k
(E,Ω) is defined by (2.24).

Remark 7.9. Let BR be a ball such that B2R ⊂ Ω. Then in the critical
case q = nk

n−2k , (k < n
2 ), as in Corollary 6.13 we have

µ(Br) ≤ C(log 2R
r )

−k
q−k

for all balls Br ⊂ BR.

We are now in a position to deduce Theorem 2.13 concerning the charac-
terizations of solvability for Hessian equations in a bounded domain.
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Proof of Theorem 2.13. The proof of this theorem is analogous to that
of Theorem 2.6 in the quasilinear case. One only has to use Theorems 7.7 and
7.8 in place of Theorems 6.11 and 6.12 respectively.

We next prove Theorem 2.19 on removable singularities for Hessian equa-
tions.

Proof of Theorem 2.19. To prove this theorem, we will proceed as in the
proof of Theorem 2.18. For the “only if” part, we may assume that k < n

2 ,
since otherwise 2kq

q−k > n, and so E = ∅. Note that if CapG2k,
q

q−k
(E) = 0 then

CapG 2k
k+1

, k+1(E) = 0 (see [AH, §5.5]), which implies that capk(E,Ω) = 0 due

to Theorem 2.20, whose proof is given below. Here capk(·,Ω) is the (relative)
k-Hessian capacity associated with the domain Ω defined by (2.27). Thus
by [L, Th. 4.2], E is a k-polar set, i.e., it is contained in the (−∞)-set of a
k-subharmonic function in Rn. Suppose that u is a solution of (2.26). It is
easy to see that the function ũ defined by

(7.14) ũ(x) =

{
u(x), x ∈ Ω \ E,

lim inf
y→x, y 6∈E

u(y), x ∈ E

is an extension of u to Ω such that −ũ ∈ Φk(Ω). The rest of the proof is then
the same as in the quasilinear case.

Finally, we prove Theorem 2.20 on the local equivalence of the k-Hessian
capacity and an appropriate Bessel capacity.

Proof of Theorem 2.20. Let R be the diameter of Ω. From Wolff’s
inequality (5.3) it follows that CapG 2k

k+1
, k+1(E) is equivalent to

sup {µ(E) : µ ∈M+(E), W4R
2k
k+1

, k+1µ ≤ 1 on suppµ}

for any compact set E ⊂ Ω (see [HW, Prop. 5]). To prove the left-hand
inequality in (2.28), let µ ∈M+(E) such that W4R

2k
k+1

, k+1
µ ≤ 1 on suppµ, and

let u ∈ Φk(B) be a nonpositive solution of{
Fk[u] = µ in B

u = 0 on ∂B,

where B is a ball of radius R containing Ω. By Theorem 7.4 and the bound-
edness principle for nonlinear potentials (see [AH, §2.6]), we have

|u(x)| ≤ CW4R
2k
k+1

, k+1µ(x) ≤ C, x ∈ B.

Thus
µ(E) = µk[u](E) ≤ C capk(E,Ω),
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which shows that
CapG 2k

k+1
, k+1(E) ≤ C capk(E,Ω).

To prove the upper estimate in (2.28), we let Q ∈ Q, and fix a compact set
E ⊂ Q. Note that for µ ∈M+(E) and x ∈ E,

W4R
2k
k+1

, k+1µ(x) = W2diam(Q)
2k
k+1

, k+1
µ(x) +

∫ 4R

2diam(Q)

[µ(E)
tn−2k

] 1
k dt

t
.

Thus, for k < n
2 ,

(7.15) W4R
2k
k+1

, k+1µ(x) ≤ CW2diam(Q)
2k
k+1

, k+1
µ(x), x ∈ E.

Now for u ∈ Φk(Ω) such that −1 < u < 0 by Theorem 7.2 we obtain

W2diam(Q)
2k
k+1

, k+1
µE(x) ≤W2diam(Q)

2k
k+1

, k+1
µ(x) ≤ C |u(x)| ≤ C

for all x ∈ E, where µ = µk[u]. Thus, we deduce from (7.15) that

W4R
2k
k+1

, k+1µE(x) ≤ C, x ∈ E,

which implies

(7.16) capk(E,Ω) ≤ CCapG 2k
k+1

, k+1(E).

Finally, if Ω is a C∞-domain in Rn, and 1 ≤ k < n
2 , then by (7.16) and the

quasi-additivity of the capacity cap 2k
k+1

, k+1(·,Ω) (see Theorem 6.14) we obtain
the global upper estimate (2.29) for the k-Hessian capacity.
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[BC] H. Brezis and X. Cabré, Some simple nonlinear PDE’s without solutions, Boll.
Unione Mat. Ital. 8, Ser. 1-B (1998) 223–262.

[BMP] H. Brezis, M. Marcus, and A. Ponce, Nonlinear equations with measures revisited,
preprint, 2004.

[CNS] L. Caffarelli, L. Nirenberg, and J. Spruck, The Dirichlet problem for nonlinear
second-order elliptic equations. III. Functions of the eigenvalues of the Hessian,
Acta Math. 155 (1985), 261–301.

[COV] C. Cascante, J. M. Ortega, and I. E. Verbitsky, Nonlinear potentials and two
weight trace inequalities for general dyadic and radial kernels, Indiana Univ. Math.
J. 53 (2004), 845–882.

[ChWW] S.-Y. A. Chang, J. M. Wilson, and T. H. Wolff, Some weighted norm inequalities
concerning the Schrödinger operators, Comment. Math. Helv. 60 (1985), 217–246.

[DMOP] G. Dal Maso, F. Murat, A. Orsina, and A. Prignet, Renormalized solutions of
elliptic equations with general measure data, Ann. Scuol. Norm. Pisa (4) 28 (1999),
741–808.

[D] E. B. Dynkin, Superdiffusions and Positive Solutions of Nonlinear Partial Differ-
ential Equations, University Lecture Series 34, Amer. Math. Soc., Providence, RI,
2004.

[Fef] C. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. 9 (1983), 129–
206.

[FS] C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93
(1971) 107–115.

[FST] M. Fukushima, K. Sato, and S. Taniguchi, On the closable part of pre-Dirichlet
forms and the fine support of the underlying measures, Osaka J. Math. 28 (1991),
517–535.

[GS] B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear
elliptic equations, Commun. Pure Appl. Math. 34 (1981), 525–598.

[GT] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second
Order, reprint of the 1998 edition, Classics in Math. Springer-Verlag, New York,
2001.

[Gre] N. Grenon, Existence results for semilinear elliptic equations with small measure
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