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Propagation of singularities for the wave
equation on manifolds with corners

By András Vasy*

Abstract

In this paper we describe the propagation of C∞ and Sobolev singularities
for the wave equation on C∞ manifolds with corners M equipped with a Rie-
mannian metric g. That is, for X = M ×Rt, P = D2

t −∆M , and u ∈ H1
loc(X)

solving Pu = 0 with homogeneous Dirichlet or Neumann boundary condi-
tions, we show that WFb(u) is a union of maximally extended generalized
broken bicharacteristics. This result is a C∞ counterpart of Lebeau’s results
for the propagation of analytic singularities on real analytic manifolds with
appropriately stratified boundary, [11]. Our methods rely on b-microlocal pos-
itive commutator estimates, thus providing a new proof for the propagation of
singularities at hyperbolic points even if M has a smooth boundary (and no
corners).

1. Introduction

In this paper we describe the propagation of C∞ and Sobolev singularities
for the wave equation on a manifold with corners M equipped with a smooth
Riemannian metric g. We first recall the basic definitions from [12], and refer
to [20, §2] as a more accessible reference. Thus, a tied (or t-) manifold with
corners X of dimension n is a paracompact Hausdorff topological space with
a C∞ structure with corners. The latter simply means that the local coordi-
nate charts map into [0,∞)k × Rn−k rather than into Rn. Here k varies with
the coordinate chart. We write ∂`X for the set of points p ∈ X such that in
any local coordinates φ = (φ1, . . . , φk, φk+1, . . . , φn) near p, with k as above,
precisely ` of the first k coordinate functions vanish at φ(p). We usually write
such local coordinates as (x1, . . . , xk, y1, . . . , yn−k). A boundary face of codi-
mension ` is the closure of a connected component of ∂`X. A boundary face of
codimension 1 is called a boundary hypersurface. A manifold with corners is a
tied manifold with corners such that all boundary hypersurfaces are embedded
submanifolds. This implies the existence of global defining functions ρH for
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each boundary hypersurface H (so that ρH ∈ C∞(X), ρH ≥ 0, ρH vanishes
exactly on H and dρH 6= 0 on H); in each local coordinate chart intersecting
H we may take one of the xj ’s (j = 1, . . . , k) to be ρH . While our results are
local, and hence hold for t-manifolds with corners, it is convenient to use the
embeddedness occasionally to avoid overburdening the notation. Moreover, in
a given coordinate system, we often write Hj for the boundary hypersurface
whose restriction to the given coordinate patch is given by xj = 0, so that the
notation Hj depends on a particular coordinate system having been chosen
(but we usually ignore this point). If X is a manifold with corners, X◦ denotes
its interior, which is thus a C∞ manifold (without boundary).

Returning to the wave equation, letM be a manifold with corners equipped
with a smooth Riemannian metric g. Let ∆ = ∆g be the positive Laplacian of
g, let X = M×Rt, P = D2

t −∆, and consider the Dirichlet boundary condition
for P :

Pu = 0, u|∂X = 0,

with the boundary condition meaning more precisely that u ∈ H1
0,loc(X). Here

H1
0 (X) is the completion of Ċ∞c (X) (the vector space of C∞ functions of com-

pact support on X, vanishing with all derivatives at ∂X) with respect to
‖u‖2H1(X) = ‖du‖L2(X) + ‖u‖L2(X), L2(X) = L2(X, dg dt), and H1

0,loc(X) is
its localized version; i.e., u ∈ H1

0 (X) if for all φ ∈ C∞c (X), φu ∈ H1
0 (X). At

the end of the introduction we also consider Neumann boundary conditions.
The statement of the propagation of singularities of solutions has two ad-

ditional ingredients: locating singularities of a distribution, as captured by the
wave front set, and describing the curves along which they propagate, namely
the bicharacteristics. Both of these are closely related to an appropropriate
notion of phase space, in which both the wave front set and the bicharacter-
istics are located. On manifolds without boundary, this phase space is the
standard cotangent bundle. In the presence of boundaries the phase space is
the b-cotangent bundle, bT ∗X, (‘b’ stands for boundary), which we now briefly
describe following [19], which mostly deals with the C∞ boundary case, and
especially [20].

Thus, Vb(X) is, by definition, the Lie algebra of C∞ vector fields on X

tangent to every boundary face of X. In local coordinates as above, such vector
fields have the form ∑

aj(x, y)xj∂xj
+
∑
j

bj(x, y)∂yj

with aj , bj smooth. Correspondingly, Vb(X) is the set of all C∞ sections of
a vector bundle bTX over X: locally xj∂xj

and ∂yj
generate Vb(X) (over

C∞(X)), and thus (x, y, a, b) are local coordinates on bTX.
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The dual bundle of bTX is bT ∗X; this is the phase space in our setting.
Sections of these have the form

(1.1)
∑

σj(x, y)
dxj
xj

+
∑
j

ζj(x, y) dyj ,

and correspondingly (x, y, σ, ζ) are local coordinates on it. Let o denote the
zero section of bT ∗X (as well as other related vector bundles below). Then
bT ∗X \ o is equipped with an R+-action (fiberwise multiplication) which has
no fixed points. It is often natural to take the quotient with the R+-action,
and work on the b-cosphere bundle, bS∗X.

The differential operator algebra generated by Vb(X) is denoted by
Diffb(X), and its microlocalization is Ψb(X), the algebra of b-, or totally
characteristic, pseudodifferential operators. For A ∈ Ψm

b (X), σb,m(A) is a ho-
mogeneous degree m function on bT ∗X \ o. Since X is not compact, even
if M is, we always understand that Ψm

b (X) stands for properly supported
ps.d.o’s, so its elements define continuous maps Ċ∞(X) → Ċ∞(X) as well as
C−∞(X) → C−∞(X). Here Ċ∞(X) denotes the subspace of C∞(X) consist-
ing of functions vanishing at ∂X with all derivatives, Ċ∞c (X) the subspace
of Ċ∞(X) consisting of functions of compact support. Moreover, C−∞(X) is
the dual space of Ċ∞c (X); we may call its elements ‘tempered’ or ‘extendible’
distributions. Thus, C∞c (X◦) ⊂ Ċ∞(X) and C−∞(X) ⊂ C−∞(X◦).

We are now ready to define the wave front set WFb(u) for u ∈ H1
loc(X).

This measures whether u has additional regularity, locally in bT ∗X, relative
to H1. For u ∈ H1

loc(X), q ∈ bT ∗X \ o, m ≥ 0, we say that q /∈ WF1,m
b (u)

if there is A ∈ Ψm
b (X) such that σb,m(A)(q) 6= 0 and Au ∈ H1(X). Since

compactly supported elements of Ψ0
b(X) preserve H1

loc(X), it follows that for
u ∈ H1

loc(X), WF1,0
b (u) = ∅. For any m, WF1,m

b (u) is a conic subset of bT ∗X\o;
hence it is natural to identify it with a subset of bS∗X. Its intersection with
bT ∗X◦X \ o, which can be naturally identified with T ∗X◦ \ o, is WFm+1(u).
Thus, in the interior of X, WF1,m

b (u) measures whether u is microlocally in
Hm+1. The main result of this paper, stated at the end of this section, is
that for u ∈ H1

0 (X) with Pu = 0, WF1,m
b (u) is a union of maximally extended

generalized broken bicharacteristics, which are defined below. In fact, the
requirement u ∈ H1

0 (X) can be relaxed and m can be allowed to be negative,
see Definitions 3.15–3.17. We also remark that for such u, the H1(X)-based
b-wave front set, WF1,m

b (u), could be replaced by an L2(X)-based b-wave
front set; see Lemma 6.1. In addition, our methods apply, a fortiori, for
elliptic problems such as ∆g on (M, g), e.g. showing that u ∈ H1

0,loc(M) and
(∆g − λ)u = 0 imply u ∈ H1,∞

b,loc(M), so that u is conormal; see the end of
Section 4.

This propagation result is the C∞ (and Sobolev space) analogue of Lebeau’s
result [11] for analytic singularities of u when M and g are real analytic. Thus,
the geometry is similar in the two settings, but the analytic techniques are
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rather different: Lebeau uses complex scaling and the analytic wave front set
of the extension of u as 0 to a neighborhood ofX (in an extension X̃ of the man-
ifold X), while we use positive commutator estimates and b-microlocalization
relative to the form domain of the Laplacian. It should be kept in mind though
that positive commutator estimates can often be thought of as infinitesimal ver-
sions of complex scaling (if complex scaling is available at all), although this
is more of a moral than a technical statement, for the techniques involved in
working infinitesimally are quite different from what one can do if one has room
to deform contours of integration! In fact, our microlocalization techniques, es-
pecially the positive commutator constructions, are very closely related to the
methods used in N -body scattering, [24], to prove the propagation of singu-
larities (meaning microlocal lack of decay at infinity) there. Although Lebeau
allows more general singularities than corners for X, provided that X sits in
a real analytic manifold X̃ with g extending to X̃, we expect to generalize
our results to settings where no analogous C∞ extension is available; see the
remarks at the end of the introduction.

We now describe the setup in more detail so that our main theorem can
be stated in a precise fashion. Let Fi, i ∈ I, be the closed boundary faces of
M (including M), Fi = Fi × R, Fi,reg the interior (‘regular part’) of Fi. Note
that for each p ∈ X, there is a unique i such that p ∈ Fi,reg. Although we work
on both M and X, and it is usually clear which one we mean even in the local
coordinate discussions, to make matters clear we write local coordinates on M ,
as in the introduction, as (x, y) (with x = (x1, . . . , xk), y = (y1, . . . , ydimM−k)),
with xj ≥ 0 (j = 1, . . . , k) on M , and then local coordinates on X, induced
by the product M × Rt, as (x, ȳ), ȳ = (y, t) (so that X is given by xj ≥ 0,
j = 1, . . . , k).

Let p ∈ ∂X, and let Fi be the closed face of X with the smallest dimension
that contains p, so that p ∈ Fi,reg. Then we may choose local coordinates
(x, y, t) = (x, ȳ) near p in which Fi is defined by x1 = . . . = xk = 0, and the
other boundary faces through p are given by the vanishing of a subset of the
collection x1, . . . , xk of functions; in particular, the k boundary hypersurfaces
Hj through p are locally given by xj = 0 for j = 1, . . . , k. (This may require
shrinking a given coordinate chart (x′, ȳ′) that contains p so that the x′j that
do not vanish identically on Fi do not vanish at all on the smaller chart, and
can be relabelled as one of the coordinates y`.)

Now, there is a natural non-injective ‘inclusion’ π : T ∗X → bT ∗X induced
by identifying bTX with TX (and hence also their dual bundles) with each
other in the interior of X, where the condition on tangency to boundary faces
is vacuous. In view of (1.1), in the canonical local coordinates (x, ȳ, ξ, ζ̄) on
T ∗X (so one-forms are

∑
ξj dxj +

∑
ζ̄j dȳj), and canonical local coordinates

(x, ȳ, σ, ζ̄) on bT ∗X, π takes the form

π(x, ȳ, ξ, ζ̄) = (x, ȳ, xξ, ζ̄), with xξ = (x1ξ1, . . . , xkξk).
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Thus, π is a C∞ map, but at the boundary ofX, it is not a local diffeomorphism.
Moreover, the range of π over the interior of a face Fi lies in T ∗Fi (which is well-
defined as a subspace of bT ∗X) while its kernel is N∗Fi, the conormal bundle
of Fi in X. In local coordinates as above, in which Fi is given by x = 0, the
range T ∗Fi over Fi is given by x = 0, σ = 0 (i.e. by x1 = . . . = xk = 0,
σ1 = . . . = σk = 0), while the kernel N∗Fi is given by x = 0, ζ̄ = 0. Then we
define the compressed b-cotangent bundle bṪ ∗X to be the range of π:

bṪ ∗X = π(T ∗X) = ∪i∈IT ∗Fi,reg ⊂ bT ∗X.

We write o for the ‘zero section’ of bṪ ∗X as well, so that
bṪ ∗X \ o = ∪i∈IT ∗Fi,reg \ o,

and then π restricts to a map

T ∗X \ ∪iN∗Fi → bṪ ∗X \ o.

Now, the characteristic set Char(P ) ⊂ T ∗X\o of P is defined by p−1({0}),
where p ∈ C∞(T ∗X \ o) is the principal symbol of P , which is homogeneous
degree 2 on T ∗X\o. Notice that Char(P )∩N∗Fi = ∅ for all i, i.e. the boundary
faces are all non-characteristic for P . Thus, π(Char(P )) ⊂ bṪ ∗X \o. We define
the elliptic, glancing and hyperbolic sets by

E = {q ∈ bṪ ∗X \ o : π−1(q) ∩ Char(P ) = ∅},
G= {q ∈ bṪ ∗X \ o : Card(π−1(q) ∩ Char(P )) = 1},
H= {q ∈ bṪ ∗X \ o : Card(π−1(q) ∩ Char(P )) ≥ 2},

with Card denoting the cardinality of a set; each of these is a conic subset of
bṪ ∗X \ o. Note that in T ∗X◦, π is the identity map, so that every point q ∈
T ∗X◦ is either in E or G depending on whether q /∈ Char(P ) or q ∈ Char(P ).

Local coordinates on the base induce local coordinates on the cotangent
bundle, namely (x, y, t, ξ, ζ, τ) on T ∗X near π−1(q), q ∈ T ∗Fi,reg, and corre-
sponding coordinates (y, t, ζ, τ) on a neighborhood U of q in T ∗Fi,reg. The
metric function on T ∗M has the form

g(x, y, ξ, ζ) =
∑
i,j

Aij(x, y)ξiξj +
∑
i,j

2Cij(x, y)ξiζj +
∑
i,j

Bij(x, y)ζiζj

with A,B,C smooth. Moreover, these coordinates can be chosen (i.e. the yj
can be adjusted) so that C(0, y) = 0. Thus,

p|x=0 = τ2 − ξ ·A(y)ξ − ζ ·B(y)ζ,

with A, B positive definite matrices depending smoothly on y, so that

E ∩ U = {(y, t, ζ, τ) : τ2 < ζ ·B(y)ζ, (ζ, τ) 6= 0},
G ∩ U = {(y, t, ζ, τ) : τ2 = ζ ·B(y)ζ, (ζ, τ) 6= 0},
H ∩ U = {(y, t, ζ, τ) : τ2 > ζ ·B(y)ζ, (ζ, τ) 6= 0}.
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The compressed characteristic set is

Σ̇ = π(Char(P )) = G ∪ H,
and

π̂ : Char(P )→ Σ̇

is the restriction of π to Char(P ). Then Σ̇ has the subspace topology of
bT ∗X, and it can also be topologized by π̂, i.e. requiring that C ⊂ Σ̇ be closed
(or open) if and only if π̂−1(C) is closed (or open). These two topologies
are equivalent, though the former is simpler in the present setting; e.g., it
is immediate that Σ̇ is metrizable. Lebeau [11] (following Melrose’s original
approach in the C∞ boundary setting, see [17]) uses the latter; in extensions of
the present work, to allow e.g. iterated conic singularities, that approach will
be needed. Again, an analogous situation arises in N -body scattering, though
that is in many respects more complicated if some subsystems have bound
states [24], [25].

We are now ready to define generalized broken bicharacteristics, essentially
following Lebeau [11]. We say that a function f on T ∗X \ o is π-invariant if
f(q) = f(q′) whenever π(q) = π(q′). In this case f induces a function fπ on
bṪ ∗X which satisfies f = fπ ◦ π. Moreover, if f is continuous, then so is fπ.
Notice that if f = π∗f0, f0 ∈ C∞(bT ∗X), then f ∈ C∞(T ∗X) is certainly
π-invariant.

Definition 1.1. A generalized broken bicharacteristic of P is a continuous
map γ : I → Σ̇, where I ⊂ R is an interval, satisfying the following require-
ments:

(i) If q0 = γ(t0) ∈ G then for all π-invariant functions f ∈ C∞(T ∗X),

(1.2)
d

dt
(fπ ◦ γ)(t0) = Hpf(q̃0), q̃0 = π̂−1(q0).

(ii) If q0 = γ(t0) ∈ H ∩ T ∗Fi,reg then there exists ε > 0 such that

(1.3) t ∈ I, 0 < |t− t0| < ε⇒ γ(t) /∈ T ∗Fi,reg.

(iii) If q0 = γ(t0) ∈ G ∩ T ∗Fi,reg, and Fi is a boundary hypersurface (i.e.
has codimension 1), then in a neighborhood of t0, γ is a generalized
broken bicharacteristic in the sense of Melrose-Sjöstrand [13]; see also
[4, Def. 24.3.7].

Remark 1.2. Note that for q0 ∈ G, π̂−1({q0}) consists of a single point,
and so (1.2) makes sense. Moreover, (iii) implies (i) if q0 is in a boundary hyper-
surface, but it is stronger at diffractive points; see [4, §24.3]. The propagation
of analytic singularities, as in Lebeau’s case, does not distinguish between glid-
ing and diffractive points, hence (iii) can be dropped to define what we may
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call analytic generalized broken bicharacteristics. It is an interesting question
whether in the C∞ setting there are also analogous diffractive phenomena at
higher codimension boundary faces, i.e. whether the following theorem can be
strengthened at certain points.

We remark also that there is an equivalent definition (presented in lecture
notes about the present work, see [26]), which is more directly motivated by
microlocal analysis and which also works in other settings such as N -body
scattering in the presence of bound states.

Our main result is:

Theorem (See Corollary 8.4). Suppose that Pu = 0, u ∈ H1
0,loc(X).

Then WF1,∞
b (u) ⊂ Σ̇, and it is a union of maximally extended generalized

broken bicharacteristics of P in Σ̇.

The analogue of this theorem was proved in the real analytic setting by
Lebeau [11], and in the C∞ setting with C∞ boundaries (and no corners) by
Melrose, Sjöstrand and Taylor [13], [14], [22]. In addition, Ivrĭı [8] has obtained
propagation results for systems. Moreover, a special case with codimension 2
corners in R2 had been considered by P. Gérard and Lebeau [3] in the real
analytic setting, and by Ivrĭı [5] in the smooth setting. It should be mentioned
that due to its relevance, this problem has a long history, and has been studied
extensively by Keller in the 1940s and 1950s in various special settings; see
e.g. [1], [10]. The present work (and ongoing projects continuing it, especially
joint work with Melrose and Wunsch [15], see also [2], [16]), can be considered
a justification of Keller’s work in the general geometric setting (curved edges,
variable coefficient metrics, etc.).

A more precise version of this theorem, with microlocal assumptions on
Pu, is stated in Theorem 8.1. In particular, one can allow Pu ∈ C∞(X), which
immediately implies that the theorem holds for solutions of the wave equation
with inhomogeneous C∞ Dirichlet boundary conditions that match across the
boundary hyperfaces, see Remark 8.2. In addition, this theorem generalizes
to the wave operator with Neumann boundary conditions, which need to be
interpreted in terms of the quadratic form of P (i.e. the Dirichlet form). That
is, if u ∈ H1

loc(X) satisfies

〈dMu, dMv〉X − 〈∂tu, ∂tv〉X = 0

for all v ∈ H1
c (X), then WF1,∞

b (u) ⊂ Σ̇, and it is a union of maximally
extended generalized broken bicharacteristics of P in Σ̇. In fact, the proof of
the theorem for Dirichlet boundary conditions also utilizes the quadratic form
of P . It is slightly simpler in presentation only to the extent that one has more
flexibility to integrate by parts, etc., but in the end the proof for Neumann
boundary conditions simply requires a slightly less conceptual (in terms of the
traditions of microlocal analysis) reorganization, e.g. not using commutators
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[P,A] directly, but commuting A through the exterior derivative dM and ∂t
directly.

It is expected that these results will generalize to iterated edge-type struc-
tures (under suitable hypotheses), whose simplest example is given by (iso-
lated) conic points, recently analyzed by Melrose and Wunsch [16], extending
the product cone analysis of Cheeger and Taylor [2]. This is subject of an
ongoing project with Richard Melrose and Jared Wunsch [15].

It is an interesting question whether this propagation theorem can be
improved in the sense that, under certain ‘non-focusing’ assumptions for a
solution u of the wave equation, if a bicharacteristic segment carrying a sin-
gularity of u hits a corner, then the reflected singularity is weaker along ‘non-
geometrically related’ generalized broken bicharacteristics continuing the afore-
mentioned segment than along ‘geometrically related’ ones. Roughly, ‘geomet-
rically related’ continuations should be limits of bicharacteristics just missing
the corner. In the setting of (isolated) conic points, such a result was obtained
by Cheeger, Taylor, Melrose and Wunsch [2], [16]. While the analogous result
(including its precise statement) for manifolds with corners is still some time
away, significant progress has been made, since the original version of this
manuscript was written, on analyzing edge-type metrics (on manifolds with
boundaries) in the project [15]. The outline of these results, including a dis-
cussion of how it relates to the problem under consideration here, is written
up in the lecture notes of the author on the present paper [26].

To make clear what the main theorem states, we remark that the propa-
gation statement means that if u solves Pu = 0 (with, say, Dirichlet boundary
condition), and q ∈ bT ∗∂XX \ o is such that u has no singularities on bicharac-
teristics entering q (say, from the past), then we conclude that u has no singu-
larities at q, in the sense that q /∈WF1,∞

b (u); i.e., we only gain b-derivatives (or
totally characteristic derivatives) microlocally. In particular, even if WF1,∞

b (u)
is empty, we can only conclude that u is conormal to the boundary, in the pre-
cise sense that V1 . . . Vku ∈ H1

loc(X) for any V1, . . . , Vk ∈ Vb(X), and not that
u ∈ Hk

loc(X) for all k. Indeed, the latter cannot be expected to hold, as can
be seen by considering e.g. the wave equation (or even elliptic equations) in
2-dimensional conic sectors.

This already illustrates that from a technical point of view a major chal-
lenge is to combine two differential (and pseudodifferential) algebras: Diff(X)
and Diffb(X) (or Ψb(X)). The wave operator P lies in Diff(X), but mi-
crolocalization needs to take place in Ψb(X): if Ψ(X̃) is the algebra of usual
pseudodifferential operators on an extension X̃ of X, its elements do not even
act on C∞(X): see [4, §18.2] when X has a smooth boundary (and no corners).
In addition, one needs an algebra whose elements A respect the boundary con-
ditions, so that e.g. Au|∂X depends only on u|∂X . This is exactly the origin
of the algebra of totally characteristic pseudodifferential operators, denoted by
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Ψb(X), in the C∞ boundary setting [18]. The interaction of these two algebras
also explains why we prove even microlocal elliptic regularity via the quadratic
form of P (the Dirichlet form), rather than by standard arguments, valid if
one studies microlocal elliptic regularity for an element of an algebra (such as
Ψb(X)) with respect to the same algebra.

The ideas of the positive commutator estimates, in particular the con-
struction of the commutants, are very similar to those arising in the proof of
the propagation of singularities in N -body scattering in previous works of the
author – the wave equation corresponds to the relatively simple scenario there
when no proper subsystems have bound states [24]. Indeed, the author has
indicated many times in lectures that there is a close connection between these
two problems, and it is a pleasure to finally spell out in detail how the N -body
methods can be adapted to the present setting.

The organization of the paper is as follows. In Section 2 we recall ba-
sic facts about Ψb(X) and analyze its commutation properties with Diff(X).
In Section 3 we describe the mapping properties of Ψb(X) on H1(X)-based
spaces. We also define and discuss the b-wave front set based on H1(X) there.
The following section is devoted to the elliptic estimates for the wave equa-
tion. These are obtained from the microlocal positivity of the Dirichlet form,
which implies in particular that in this region commutators are negligible for
our purposes. In Section 5 we describe basic properties of bicharacteristics,
mostly relying on Lebeau’s work [11]. In Sections 6 and 7, we prove propa-
gation estimates at hyperbolic, resp. glancing, points, by positive commutator
arguments. Similar arguments were used by Melrose and Sjöstrand [13] for the
analysis of propagation at glancing points for manifolds with smooth bound-
aries. In Section 8 these results are combined to prove our main theorems.
The arguments presented there are very close to those of Melrose, Sjöstrand
and Lebeau.

Here we point out that Ivrĭı [8], [6], [7], [9] also used microlocal energy
estimates to obtain propagation results of a different flavor for symmetric sys-
tems in the smooth boundary setting, including at hyperbolic points. Roughly,
Ivrĭı’s results give conditions for hypersurfaces Σ through a point q0 under
which the following conclusion holds: the point q0 is absent from the wave
front set of a solution provided that, in a neighborhood of q0, one side of Σ
is absent from the wave front set – with further restrictions on the hypersur-
face in the presence of smooth boundaries. In some circumstances, using other
known results, Ivrĭı could strengthen the conclusion further.

Since the changes for Neumann boundary conditions are minor, and the
arguments for Dirichlet boundary conditions can be stated in a form closer to
those found in classical microlocal analysis (essentially, in the Neumann case
one has to pay a price for integrating by parts, so one needs to present the
proofs in an appropriately rearranged, and less transparent, form) the proofs in
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the body of the paper are primarily written for Dirichlet boundary conditions,
and the required changes are pointed out at the end of the various sections.

In addition, the hypotheses of the propagation of singularities theorem
can be relaxed to u ∈ H1,m

b,0,loc(X), m ≤ 0, defined in Definition 3.15. Since
this simply requires replacing the H1(X) norms by the H1,m

b norms (which are
only locally well defined), we suppress this point except in the statement of
the final result, to avoid overburdening the notation. No changes are required
in the argument to deal with this more general case. See Remark 8.3 for more
details.

To give the reader a guide as to what the real novelty is, Sections 2-3
should be considered as variations on a well-developed theme. While some of
the features of microlocal analysis, especially wave front sets, are not discussed
on manifolds with corners elsewhere, the modifications needed are essentially
trivial (cf. [4, Ch. 18]). A slight novelty is using H1(X) as the point of reference
for the b-wave front sets (rather than simply weighted L2 spaces), which is very
useful later in the paper, but again only demands minimal changes to standard
arguments. The discussions of bicharacteristics in Section 5 essentially quotes
Lebeau’s paper [11, §III]. Moreover, given the results of Sections 4, 6 and 7,
the proof of propagation of singularities in Section 8 is standard, essentially
due to Melrose and Sjöstrand [14, §3]. Indeed, as presented by Lebeau [11,
Prop. VII.1], basically no changes are necessary at all in this proof.

The novelty is thus the use of the Dirichlet form (hence the H1-based
wave front set) for the proof of both the elliptic and hyperbolic/glancing es-
timates, and the systematic use of positive commutator estimates in the hy-
perbolic/glancing regions, with the commutants arising from an intrinsic pseu-
dodifferential operator algebra, Ψb(X). This approach is quite robust, hence
significant extensions of the results can be expected, as was already indicated.
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2. Interaction of Diff(X) with the b-calculus

One of the main technical issues in proving our main theorem is that unless
∂X = ∅, the wave operator P is not a b-differential operator: P /∈ Diff2

b(X). In
this section we describe the basic properties of how Diffk(X), which includes
P for k = 2, interacts with Ψb(X). We first recall though that for p ∈ Fi,reg,
local coordinates in bT ∗X over a neighborhood of p are given by (x, y, t, σ, ζ, τ)
with σj = xjξj . Thus, the map π in local coordinates is (x, y, t, ξ, ζ, τ) 7→
(x, y, t, xξ, ζ, τ), where by xξ we mean the vector (x1ξ1, . . . , xkξk).

In fact, in this section y and t play a completely analogous role, hence
there is no need to distinguish them. The difference will only arise when we
start studying the wave operator P in Section 4. Thus, we let ȳ = (y, t) and
ζ̄ = (ζ, τ) here to simplify the notation.

We briefly recall basic properties of the set of ‘classical’ (one-step polyho-
mogeneous, in the sense that the full symbols are such on the fibers of bT ∗X)
pseudodifferential operators Ψb(X) = ∪m Ψm

b (X) and the set of standard
(conormal) b-pseudodifferential operators, Ψbc(X) = ∪m Ψm

bc(X). The differ-
ence between these two classes is in terms of the behavior of their (full) symbols
at fiber-infinity of bT ∗X; elements of Ψbc(X) have full symbols that satisfy the
usual symbol estimates, while elements of Ψb(X) have in addition an asymp-
totic expansion in terms of homogeneous functions, so that Ψm

b (X) ⊂ Ψm
bc(X).

Conceptually, these are best defined via the Schwartz kernel of A ∈ Ψm
bc(X)

in terms of a certain blow-up X2
b of X × X; see [20]. The Schwartz kernel

is conormal to the lift diagb of the diagonal of X2 to X2
b with infinite order

vanishing on all boundary faces of X2
b which are disjoint from diagb. Mod-

ulo Ψ−∞b (X), however, the explicit quantization map we give below describes
Ψm

bc(X) and Ψm
b (X). Here Ψ−∞bc (X) = Ψ−∞b (X) = ∩m Ψm

bc(X) = ∩m Ψm
b (X)

is the ideal of smoothing operators. The topology of Ψbc(X) is given in terms
of the conormal seminorms of the Schwartz kernel K of its elements; these
seminorms can be stated in terms of the Besov space norms of L1L2 . . . LkK

as k runs over non-negative integers, and the Lj over first order differential
operators tangential to diagb; see [4, Def. 18.2.6]. Recall in particular that
these seminorms are (locally) equivalent to the C∞ seminorms away from the
lifted diagonal diagb.

There is a principal symbol map

σb,m : Ψm
bc(X)→ Sm(bT ∗X)/Sm−1(bT ∗X);

here, for a vector bundle E over X, Sk(E) denotes the set of symbols of order
k on E (i.e. these are symbols in the fibers of E, smoothly varying over X).
Its restriction to Ψm

b (X) can be re-interpreted as a map σb,m : Ψm
b (X) →

C∞(bT ∗X \ o) with values in homogeneous functions of degree m; the range
can of course also be identified with C∞(bS∗X) if m = 0 (and with sections of
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a line bundle over bS∗X in general). There is a short exact sequence

0 −→ Ψm−1
bc (X) −→ Ψm

bc(X) −→ Sm(bT ∗X)/Sm−1(bT ∗X) −→ 0

as usual; the last non-trivial map is σb,m. There are also quantization maps
(which depend on various choices) q = qm : Sm(bT ∗X) → Ψm

bc(X), which
restrict to q : Smcl (bT ∗X)→ Ψm

b (X), cl denoting classical symbols, and σb,m◦qm
is the quotient map Sm → Sm/Sm−1. For instance, over a local coordinate
chart U as above, with a supported in bT ∗KX, K ⊂ U compact, we may take,
with n = dimX,

q(a)u(x, ȳ)

= (2π)−n
∫
ei(x−x

′)·ξ+(ȳ−ȳ′)·ζ̄φ
(x− x′

x

)
a(x, y, xξ, ζ̄)u(x′, ȳ′) dx′ dȳ′ dξ dζ,

(2.1)

understood as an oscillatory integral, where φ ∈ C∞c ((−1/2, 1/2)k) is identically
1 near 0 and x−x′

x = (x1−x′1
x1

, . . . ,
xk−x′k
xk

), and the integral in x′ is over [0,∞)k.
Here the role of φ is to ensure the infinite order vanishing at the boundary
hypersurfaces of X2

b disjoint from diagb; it is irrelevant as far as the behavior of
Schwartz kernels near the diagonal is concerned (it is identically 1 there). This
can be extended to a global map via a partition of unity, as usual. Locally, for
q(a), supp a ⊂ bT ∗KX as above, the conormal seminorms of the Schwartz kernel
of q(a) (i.e. the Besov space norms described above) can be bounded in terms
of the symbol seminorms of a; see the beginning of [4, §18.2], and conversely.
Moreover, any A ∈ Ψbc(X) with properly supported Schwartz kernel defines
continuous linear maps A : Ċ∞(X)→ Ċ∞(X), A : C∞(X)→ C∞(X).

Remark 2.1. We often do not state it below, but in general most pseu-
dodifferential operators have compact support in this paper. Sometimes we
use properly supported ps.d.o’s, in order not to have to state precise support
conditions; these are always composed with compactly supported ps.d.o’s or
applied to compactly supported distributions, so that, effectively, they can be
treated as compactly supported. See also Remark 4.1.

If g̃ is any C∞ Riemannian metric on X, and K ⊂ X is compact, any
A ∈ Ψ0

bc(X) with Schwartz kernel supported in K × K defines a bounded
operator on L2(X) = L2(X, dg̃), with norm bounded by a seminorm of A in
Ψ0

bc(X). Indeed, this is true for A ∈ Ψ−∞b (X) with compact support, as follows
from the Schwartz lemma and the explicit description of the Schwartz kernel
of A on X2

b. The standard square root argument then shows the boundedness
for A ∈ Ψ0

bc(X), with norm bounded by a seminorm of A in Ψ0
bc(X); see [20,

Eq. (2.16)]. In fact, we get more from the argument: letting a = σb,0(A), there
exists A′ ∈ Ψ−1

b (X) such that for all v ∈ L2(X),

‖Av‖ ≤ 2 sup |a| ‖v‖+ ‖A′v‖.
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(The factor 2 of course can be improved, as can the order of A′.) This estimate
will play an important role in our propagation estimates. It will make it
unnecessary to construct a square root of the commutator, which would be
difficult here as we will commute P with an element of Ψb(X), so that the
commutator will not lie in Ψb(X). We remark here that it is more usual to
take a ‘b-density’ in place of dg̃, i.e. a globally non-vanishing section of Ω1

bX =
ΩbX, which thus takes the form (x1 . . . xk)−1 dg̃ locally near a codimension k

corner, to define an L2-space, namely L2
b(X) = L2(X, dg̃

x1...xk
); then L2(X) =

x
−1/2
1 . . . x

−1/2
k L2

b(X) appears as a weighted space. Elements of Ψ0
bc(X) are

bounded on both L2 spaces, in the manner stated above. The two boundedness
results are very closely related, for if A ∈ Ψ0

bc(X), then so is xλjAx
−λ
j , λ ∈ C.

There is an operator wave front set associated to Ψbc(X) as well: for
A ∈ Ψm

bc(X), WF′b(A) is a conic subset of bT ∗X \o, and has the interpretation
that A is ‘in Ψ−∞bc (X)’ outside WF′b(A). (We caution the reader that unlike the
previous material, as well as the rest of the background in the next three para-
graphs, WF′b is not discussed in [20]. This discussion, however, is standard; see
e.g. [4, §18.1], especially after Definition 18.1.25, in the boundaryless case, and
[4, §18.3] for the case of a C∞ boundary, where one simply says that the oper-
ator is order −∞ on certain open cones; see e.g. the proof of Theorem 18.3.27
there.) In particular, if WF′b(A) = ∅, then A ∈ Ψ−∞b (X). For instance, if
A = q(a), a ∈ Sm(bT ∗X), q as in (2.1), WF′b(A) is defined by the requirement
that if p /∈WF′b(A) then p has a conic neighborhood U in bT ∗X \ o such that
A = q(a), a is rapidly decreasing in U ; i.e., |a(x, ȳ, σ, ζ̄)| ≤ CN (1 + |σ|+ |ζ̄|)−N
for all N . Thus, WF′b(A) is a closed conic subset of bT ∗X \ o. Moreover, if
K ⊂ bS∗X is compact, and U is a neighborhood of K, there exists A ∈ Ψ0

b(X)
such that A is the identity on K and vanishes outside U , i.e. WF′b(A) ⊂ U ,
WF′b(Id−A) ∩ K = ∅. We can construct a to be homogeneous degree zero
outside a neighborhood of o, such that this homogeneous function regarded as
a function on bS∗X (and still denoted by a) satisfies a ≡ 1 near K, supp a ⊂ U ,
and then let A = q(a). (This roughly says that Ψb(X) can be used to localize
in bS∗X, i.e. to b-microlocalize.)

Since Ψbc(X) forms a filtered ∗-algebra, Aj ∈ Ψmj

bc (X), j = 1, 2, implies
A1A2 ∈ Ψm1+m2

bc (X), and A∗j ∈ Ψmj

bc (X) with

σb,m1+m2(A1A2) = σb,m1(A1)σb,m2(A2), σb,mj
(A∗j ) = σb,mj

(A).

Here the formal adjoint is defined with respect to L2(X), the L2-space of any
C∞ Riemannian metric on X; the same statements hold with respect to L2

b(X)
as well, since conjugation by x1 . . . xk preserves Ψm

bc(X) (as well as Ψm
b (X)),

as already remarked for m = 0. Moreover, [A1, A2] ∈ Ψm1+m2−1
bc (X) with

σb,m1+m2−1([A1, A2]) =
1
i
{a1, a2}, aj = σb,mj

(Aj);
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{·, ·} is the Poisson bracket lifted from T ∗X via the identification of T ∗X◦

with bT ∗X◦X. If Aj ∈ Ψmj

b (X), then A1A2 ∈ Ψm1+m2
b (X), A∗j ∈ Ψmj

b (X), and
[A1, A2] ∈ Ψm1+m2−1

b (X). In addition, operator composition satisfies

WF′b(A1A2) ⊂WF′b(A1) ∩WF′b(A2).

If A ∈ Ψm
bc(A) is elliptic, i.e. σb,m(A) is invertible as a symbol (with inverse

in S−m(bT ∗X \o)/S−m−1(bT ∗X \o)), then there is a parametrix G ∈ Ψ−mbc (X)
for A, i.e. GA − Id, AG − Id ∈ Ψ−∞bc (X). This construction microlocalizes, so
if σb,m(A) is elliptic at q ∈ bT ∗X \ o, i.e. σb,m(A) is invertible as a symbol in
an open cone around q, then there is a microlocal parametrix G ∈ Ψ−mbc (X)
for A at q, so that q /∈ WF′b(GA − Id), q /∈ WF′b(AG − Id), so GA, AG are
microlocally the identity operator near q. More generally, if K ⊂ bS∗X is
compact, and σb,m(A) is elliptic on K then there is G ∈ Ψ−mbc (X) such that
K∩WF′b(GA−Id) = ∅, K∩WF′b(AG−Id) = ∅. For A ∈ Ψm

b (X), σb,m(A) can
be regarded as a homogeneous degree m function on bT ∗X \ o, and ellipticity
at q means that σb,m(A)(q) 6= 0. For such A, one can take G ∈ Ψ−mb (X) in all
the cases described above.

The other important ingredient, which however rarely appears in the fol-
lowing discussion, although when it appears it is crucial, is the notion of the
indicial operator. This captures the mapping properties of A ∈ Ψb(X) in terms
of gaining any decay at ∂X. It plays a role here as P /∈ Diffb(X); so even if
we do not expect to gain any decay for solutions u of Pu = 0 say, we need
to understand the commutation properties of Diff(X) with Ψb(X), which will
in turn follow from properties of the indicial operator. There is an indicial
operator map (which can also be considered as a non-commutative analogue
of the principal symbol), denoted by N̂i, for each boundary face Fi, i ∈ I, and
N̂i maps Ψm

bc(X) to a family of b-pseudodifferential operators on Fi. For us,
only the indicial operators associated to boundary hypersurfaces Hj (given by
xj = 0) will be important; in this case the family is parametrized by σj , the
b-dual variable of xj . It is characterized by the property that if f ∈ C∞(Hj)
and u ∈ C∞(X) is any extension of f , i.e. u|Hj

= f , then

N̂j(A)(σj)f = (x−iσj

j Ax
iσj

j u)|Hj
,

where x−iσj

j Ax
iσj

j ∈ Ψm
bc(X), hence x−iσj

j Ax
iσj

j u ∈ C∞(X), and the right-hand
side does not depend on the choice of u. (In this formulation, we need to fix xj ,
at least mod x2

jC∞(X), to fix N̂j(A). Note that the radial vector field, xjDxj
,

is independent of this choice of xj , at least modulo xjVb(X).) If A ∈ Ψm
bc(X)

and N̂i(A) = 0, then in fact A ∈ C∞Fi
(X) Ψm

bc(X), where C∞Fi
(X) is the ideal of

C∞(X) consisting of functions that vanish at Fi. In particular, for a boundary
hypersurface Hj defined by xj , if A ∈ Ψm

bc(X) and N̂j(A) = 0, then A = xjA
′

with A′ ∈ Ψm
bc(X). The indicial operators satisfy N̂i(AB) = N̂i(A)N̂i(B).

The indicial family of xjDxj
at Hj is multiplication by σj , while the indicial
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family of xkDxk
, k 6= j, is xkDxk

and that of Dȳk
is Dȳk

. In particular,
N̂j([xjDxj

, A]) = [N̂j(xjDxj
), N̂j(A)] = 0, so

(2.2) [xjDxj
, A] ∈ xj Ψm

bc(X),

which plays a role below. All of the above statements also hold with Ψbc(X)
replaced by Ψb(X).

The key point in analyzing smooth vector fields on X, and thereby dif-
ferential operators such as P , is that while Dxj

/∈ Vb(X), for any A ∈ Ψm
b (X)

there is an operator Ã ∈ Ψm
b (X) such that

(2.3) Dxj
A− ÃDxj

∈ Ψm
b (X),

and analogously for Ψm
b (X) replaced by Ψm

bc(X). Indeed,

Dxj
A = x−1

j (xjDxj
)A = x−1

j [xjDxj
, A] + x−1

j AxjDxj
.

By (2.2), applied for Ψb rather than Ψbc,

x−1
j [xjDxj

, A] ∈ Ψm
b (X).

Thus, we may take Ã = x−1
j Axj , proving (2.3). We also have, more trivially,

that

(2.4) Dȳj
A− ÃDȳj

∈ Ψm
b (X), Ã ∈ Ψm

b (X), σb,m(A) = σb,m(Ã).

Since σb,m(A) = σb,m(x−1
j Axj), we deduce the following lemma.

Lemma 2.2. Suppose V ∈ V(X), A ∈ Ψm
b (X). Then [V,A] =

∑
AjVj+B

with Aj ∈ Ψm−1
b (X), Vj ∈ V(X), B ∈ Ψm

b (X).
Similarly, [V,A] =

∑
VjA

′
j + B′ with A′j ∈ Ψm−1

b (X), Vj ∈ V(X), B′ ∈
Ψm

b (X).
Analogous results hold with Ψb(X) replaced by Ψbc(X).

Proof. It suffices to prove this for the coordinate vector fields, and indeed
just for the Dxj

. Then with the notation of (2.3),

Dxj
A−ADxj

= (Ã−A)Dxj
+B,

and σb,m(Ã) = σb,m(A), so that Ã−A ∈ Ψm−1
b (X), proving the claim.

More generally, we make the definition:

Definition 2.3. Diffk Ψs
b(X) is the vector space of operators of the form

(2.5)
∑
j

PjAj , Pj ∈ Diffk(X), Aj ∈ Ψs
b(X),

where the sum is locally finite in X. Diffk(X) Ψs
bc(X) is defined analogously.
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Remark 2.4. Since any point q ∈ bT ∗X \ o has a conic neighborhood U

in bT ∗X \ o on which some vector field V ∈ Vb(X) is elliptic, i.e. σb,1(V ) 6= 0
on U , we can always write Aj ∈ Ψs+k−kj

b (X) with WF′b(A) ⊂ U , kj ≤ k, as
Aj = QjA

′
j + Rj with Qj ∈ Diffk−kj

b (X), A′j ∈ Ψs
b(X), Rj ∈ Ψ−∞b (X). Thus,

any operator which is given by a locally finite sum of the form∑
j

PjAj , Pj ∈ Diffkj (X), Aj ∈ Ψs+k−kj

b (X),

can in fact be written in the form (2.5). In particular, Diffk
′
Ψs′

bc(X) ⊂
Diffk Ψs

bc(X) provided that k′ ≤ k and k′ + s′ ≤ k + s, and Diffk
′
Ψs′

b (X) ⊂
Diffk Ψs

b(X) provided that k′ ≤ k, k′ + s′ ≤ k + s and s− s′ is an integer.

Lemma 2.5. Diff∗Ψ∗bc(X) is a filtered algebra with respect to operator
composition, with Bj ∈ Diffkj Ψsj

bc(X), j = 1, 2, implying

B1B2 ∈ Diffk1+k2 Ψs1+s2
bc (X).

Moreover, with B1, B2 as above,

[B1, B2] ∈ Diffk1+k2 Ψs1+s2−1
bc (X).

Proof. To prove that Diff∗Ψ∗bc(X) is an algebra, we only need to prove
that if A ∈ Ψs

bc(X), P ∈ Diffk(X), then AP ∈ Diffk(X) Ψs
bc(X). When P is a

sum of products of vector fields in V(X), the claim follows from Lemma 2.2.
Writing Bj = Vj,1 . . . Vj,k1Aj , Aj ∈ Ψsj

bc(X), Vj,i ∈ V(X), and expanding
the commutator [B1, B2], one gets a finite sum, which is a product of the
factors Vj,1, . . . Vj,k1 , Aj with two factors (one with j = 1 and one with j = 2)
removed and replaced by a commutator. In view of the first part of the lemma,
it suffices to note that

[V1,i, V2,i′ ]∈V(X), Diffk1+k2−1 Ψs1+s2
bc (X) ⊂ Diffk1+k2 Ψs1+s2−1

bc (X),

[A1, A2]∈Ψs1+s2−1
bc (X)

[Vj,i, A3−j ]∈Diff1 Ψs3−j−1
bc (X),

where the last statement is a consequence of Lemma 2.2, when we take into
account that Ψm

bc(X) ⊂ Diff1 Ψm−1
bc (X).

We can also define the principal symbol on Diffk Ψs
b(X). Thus, using

π : T ∗X → bT ∗X, we can pull back σb,s(A), A ∈ Ψs
b(X), to T ∗X, and define:

Definition 2.6. Suppose B =
∑
PjAj ∈ Diffk Ψs

b(X), Pj ∈ Diffk(X),
Aj ∈ Ψs

b(X). The principal symbol of B is the C∞ homogeneous degree k + s

function on T ∗X \ o defined by

(2.6) σk+s(B) =
∑

σk(Pj)π∗σb,s(Aj).
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Lemma 2.7. σk+s(B) is independent of all choices.

Proof. Away from ∂X, B is a pseudodifferential operator of order k + s,
and σk+s(B) is its invariantly defined symbol. Since the right-hand side of
(2.6) is continuous up to ∂X, and is independent of all choices in T ∗X◦, it is
independent of all choices in T ∗X.

We are now ready to compute the principal symbol of the commutator of
A ∈ Ψm

b (X) with Dxj
.

Lemma 2.8. Let ∂xj
, ∂σj

denote local coordinate vector fields on bT ∗X

in the coordinates (x, ȳ, σ, ζ̄). For A ∈ Ψm
b (X) with Schwartz kernel supported

in the coordinate patch, a = σb,m(A) ∈ C∞(bT ∗X \ o), we have [Dxj
, A] =

A1Dxj
+A0 ∈ Diff1 Ψm−1

b (X) with A0 ∈ Ψm
b (X), A1 ∈ Ψm−1

b (X) and

(2.7) σb,m−1(A1) =
1
i
∂σj

a, σb,m(A0) =
1
i
∂xj

a.

This result also holds with Ψb(X) replaced by Ψbc(X) everywhere.

Remark 2.9. Notice that σm([Dxj
, A]) = 1

i {ξj , π
∗a} = 1

i ∂xj
|ξπ∗a, {., .}

denoting the Poisson bracket on T ∗X and ∂xj
|ξ denoting the appropriate coor-

dinate vector field on T ∗X (where ξ is held fixed rather than σ during the par-
tial differentiation), since both sides are continuous functions on T ∗X \o which
agree on T ∗X◦ \ o. A simple calculation shows that the lemma is consistent
with this result. The statement of the lemma would follow from this observa-
tion if we showed that the kernel of σm on Diff1 Ψm−1

b (X) is Diff1 Ψm−2
b (X).

The proof given below avoids this point by reducing the calculation to Ψb(X).

Proof. The lemma follows from

Dxj
A−ADxj

= x−1
j [xjDxj

, A] + x−1
j [A, xj ]Dxj

.

Indeed, when

(2.8) A0 = x−1
j [xjDxj

, A] ∈ Ψm
b (X), A1 = x−1

j [A, xj ] ∈ Ψm−1
b (X),

the principal symbols can be calculated in the b-calculus. Since they are given
by the standard Poisson bracket in T ∗X◦, hence in bT ∗X◦X, by continuity
the same calculation gives a valid result in bT ∗X. As ∂ξj

= xj∂σj
, ∂xj

|ξ =
∂xj
|σ + ξj∂σj

, we see that for b = σj or b = xj , the Poisson bracket {b, a} is
given by

xj(∂σj
b)(∂xj

|σa+ ξj∂σj
a)− xj(∂σj

a)(∂xj
|σb+ ξj∂σj

b)

= xj(∂σj
b)∂xj

|σa− xj(∂σj
a)∂xj

|σb

so that we get
{σj , a} = xj∂xj

|σa, {xj , a} = −xj∂σj
a,

and (2.7) follows from (2.8).
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3. Function spaces and microlocalization

We now turn to actions of Ψb(X) on function spaces related to differential
operators in Diff(X), and in particular to H1(X) which corresponds to first
order differential operators, such as the exterior derivative d. We first recall
that C∞c (X) is the space of C∞ functions of compact support on X (which may
thus be non-zero at ∂X), while Ċ∞c (X) is the subspace of C∞c (X) consisting
of functions which vanish to infinite order at ∂X. Although we will mostly
consider local results, and any C∞ Riemannian metric can be used to define
L2

loc(X), L2
c(X) (as different choices give the same space), it is convenient to

fix a global Riemmanian metric, g̃ = g+dt2, on X, where g is the metric on M .
With this choice, L2(X) is well-defined as a Hilbert space. For u ∈ C∞c (X), we
let

‖u‖2H1(X) = ‖du‖2L2(X) + ‖u‖2L2(X).

We then let H1(X) be the completion of C∞c (X) with respect to the H1(X)
norm. Then we define H1

0 (X) as the closure of Ċ∞c (X) inside H1(X).

Remark 3.1. We recall alternative viewpoints of these Sobolev spaces.
Good references for the C∞ boundary case (and no corners) include [4, App. B.2]
and [23, §4.4]; only minor modifications are needed to deal with the corners
for the special cases discussed below.

We can define H1(X◦) as the subspace of L2(X) consisting of functions
u such that du, defined as the distributional derivative of u in X◦, lies in
L2(X,Λ1X); we then equip it with the above norm. This is locally equivalent
to saying that V u ∈ L2

loc(X) for all C∞ vector fields V on X, where V u refers
to the distributional derivative of u on X◦.

In fact, H1(X◦) = H1(X), since H1(X◦) is complete with respect to the
H1 norm and C∞c (X) is easily seen to be dense in it. For instance, locally, if
X is given by xj ≥ 0, j = 1, . . . , k, and u is supported in such a coordinate
chart, one can take us(x, ȳ) = u(x1 + s, . . . , xk + s, ȳ) for s > 0, and see
that us|X → u in H1

c (X◦). Then a standard regularization argument on Rn,
n = dimX, gives the claimed density of C∞c (X) in H1

c (X◦). Thus, H1(X◦) =
H1(X) indeed, which shows in particular that H1(X) ⊂ L2(X). (Note that
‖u‖L2(X) ≤ ‖u‖H1(X) only guarantees that there is a continuous ‘inclusion’
H1(X) ↪→ L2(X), not that it is injective, although that can be proved easily
by a direct argument; cf. the Friedrichs extension method for operators; see
e.g. [21, Th. X.23].)

If X̃ is a manifold without boundary, and X is embedded into it, one
can also extend elements of H1(X) to elements H1

loc(X̃) exactly as in the C∞
boundary case (or simply locally extending in x1 first, then in x2, etc., and
using the C∞ boundary result); see [23, §4.4]. Thus, with the notation of
[4, App. B.2], H1

loc(X) = H̄1
loc(X

◦). As is clear from the completion definition,
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H1
0,loc(X) can be identified with the subset of H1

loc(X̃) consisting of functions
supported in X. Thus, H1

0,loc(X) = Ḣ1
loc(X) with the notation of [4, App. B.2].

All of the discussion above can be easily modified for Hm in place of H1,
m ≥ 0 an integer.

We are now ready to state the action on Sobolev spaces. These results
would be valid, with similar proofs, if we replaced H1(X) by Hm(X), m ≥ 0
an integer. We also refer to [4, Th. 18.3.13] for further extensions when X has
a C∞ boundary (and no corners).

Lemma 3.2. Any A ∈ Ψ0
bc(X) with compact support defines continuous

linear maps A : H1(X)→ H1(X), A : H1
0 (X)→ H1

0 (X), with norms bounded
by a seminorm of A in Ψ0

bc(X).
Moreover, for any K ⊂ X compact, any A ∈ Ψ0

bc(X) with proper support
defines a continuous map from the subspace of H1(X) (resp. H1

0 (X)) consisting
of distributions supported in K to H1

c (X) (resp. H1
0,c(X)).

Remark 3.3. Note that all smooth vector fields V of compact support de-
fine a continuous operator H1(X)→ L2(X), so that, in particular, V ∈ Vb(X)
do so. Now, any A ∈ Ψ1

bc(X) can be written as
∑

(Dxj
xj)Aj +

∑
Dȳj

A′j +A′′

with Aj , A
′
j , A

′′ ∈ Ψ0
bc(X) by writing σb,1(A) =

∑
σjaj +

∑
ζ̄ja
′
j , and taking

Aj , A
′
j with principal symbol aj , a′j . Therefore the lemma implies that any

A ∈ Ψ1
bc(X) defines a continuous linear operator H1(X) → L2(X), and in

particular restricts to a map H1
0 (X)→ L2(X).

Proof. For A ∈ Ψ0
bc(X), by (2.3) Dxj

Au = ÃDxj
u + Bu, with Ã ∈

Ψ0
bc(X), B ∈ Ψ0

bc(X), the seminorms of both in Ψ0
bc(X) bounded by seminorms

of A in Ψ0
bc(X). Thus, for u ∈ C∞c (X)

‖Dxj
Au‖L2(X) ≤ ‖Ã‖B(L2(X),L2(X))‖Dxj

u‖L2(X) + ‖B‖B(L2(X),L2(X))‖u‖L2(X).

Since there is an analogous formula for Dxj
replaced by Dȳj

, we deduce that
for some C > 0, depending only on a seminorm of A in Ψ0

bc(X),

‖dXAu‖L2(X) ≤ C(‖dXu‖L2(X) + ‖u‖L2(X)).

Thus, A ∈ Ψ0
bc(X) extends to a continuous linear map from the completion

of C∞c (X) with respect to the H1(X) norm to itself, i.e. from H1(X) to itself as
claimed. As it maps Ċ∞c (X)→ Ċ∞c (X), it also maps the H1-closure of Ċ∞(X)
to itself, i.e. it defines a continuous linear map H1

0 (X)→ H1
0 (X), which finishes

the proof of the first half of the lemma.
For the second half, we only need to note that Au = Aφu if φ ≡ 1 near K

and has compact support; now Aφ has compact support so that the first half
of the lemma is applicable.
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Note that H1(X) ⊂ L2(X) ⊂ C−∞(X), with C−∞(X) denoting the dual
space of Ċ∞c (X), i.e. the space of extendible distributions. (Here we use dg̃ =
dg dt to trivialize ΩX.) Since for any m, A ∈ Ψm

bc(X) maps C−∞(X) →
C−∞(X), we could view A already defined as a map H1(X)→ C−∞(X); then
the above lemma is a continuity result for m = 0.

We let H−1(X) be the dual of H1
0 (X) and Ḣ−1(X) be the dual of H1(X),

with respect to an extension of the sesquilinear form 〈u, v〉 =
∫
X u v dg̃, i.e. the

L2 inner product. As H1
0 (X) is a closed subspace of H1(X), H−1(X) is the

quotient of Ḣ−1(X) by the annihilator of H1
0 (X). In terms of the identification

of the H1 spaces in the penultimate paragraph of Remark 3.1, H−1
loc (X) =

H̄−1
loc (X◦) in the notation of [4, App. B.2], i.e. its elements are the restrictions

to X◦ of elements of H−1
loc (X̃). Analogously, Ḣ−1

loc (X) consists of those elements
of H−1

loc (X̃) which are supported in X.
Any V ∈ Diff1(X) of compact support defines a continuous map L2(X)→

H−1(X) via 〈V u, v〉 = 〈u, V ∗v〉 for u ∈ L2(X), v ∈ H1
0 (X); this is the same

map as that induced by extending V to an element Ṽ of Diff1(X̃), extending
u to X̃, say as 0, and letting V u = Ṽ ũ|X◦ . Thus, any P ∈ Diff2(X) of
compact support defines continuous mapsH1(X)→ H−1(X), and in particular
H1

0 (X) → H−1(X), since we can write P =
∑
VjWj with Vj ,Wj ∈ Diff1(X).

Similarly, any P ∈ Diff2(X) defines continuous maps H1
loc(X) → H−1

loc (X),
and in particular H1

0,loc(X) → H−1
loc (X). Thus, for P = ∆g̃ + 1, 〈u, v〉H1(X) =

〈u, Pv〉 if u ∈ H1
0 (X) and v ∈ H1(X). Similarly, for P = D2

t −∆g, 〈Dtu,Dtv〉−
〈dMu, dMv〉 = 〈u, Pv〉, if u ∈ H1

0 (X) and v ∈ H1(X).
We also note that as H1(X) and H1

0 (X) are Hilbert spaces, their duals
are naturally identified with themselves via the inner product. Thus, if f is a
continuous linear functional on H1

0 (X), then there is a v ∈ H1
0 (X) such that

f(u) = 〈u, v〉+ 〈du, dv〉. Thus, regarding H1
0 (X) as a subspace of H1(X̃), for

an extension X̃ of X, as in Remark 3.1, we deduce that f(u) = 〈u, (∆g̃ + 1)v〉,
and so the identification of H−1(X) with H1

0 (X) (regarded as its own dual) is
given by H1

0 (X) 3 v 7→ (∆g̃ + 1)v ∈ H−1(X).
Since Ψ0

bc(X) is closed under taking adjoints, the following result is an
immediate consequence of Lemma 3.2.

Corollary 3.4. Any A ∈ Ψ0
bc(X) with compact support defines continu-

ous linear maps A : H−1(X)→ H−1(X), A : Ḣ−1(X)→ Ḣ−1(X), with norm
bounded by a seminorm of A in Ψ0

bc(X).

We now define subspaces of H1(X) which possess additional regularity
with respect to Ψb(X).

Definition 3.5. For m ≥ 0, we define H1,m
b,c (X) as the subspace of H1(X)

consisting of u ∈ H1(X) with suppu compact and Au ∈ H1(X) for some
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(hence any, as shown below) A ∈ Ψm
b (X) (with compact support) which is

elliptic over suppu, i.e. A such that σb,m(A)(q) 6= 0 for any q ∈ bT ∗suppuX \ o.
We let H1,m

b,loc(X) be the subspace of H1
loc(X) consisting of u ∈ H1

loc(X)
such that for any φ ∈ C∞c (X), φu ∈ H1,m

b,c (X).
We also let H1,m

b,0,c(X) = H1,m
b,c (X) ∩ H1

0 (X), and similarly for the local
space H1,m

b,0,loc(X).

Remark 3.6. The definition is independent of the choice of A, as can be
seen by taking a parametrix G ∈ Ψ−mb (X) for A in a neighborhood of suppu,
so that GA − Id = E ∈ Ψ0

b(X), and WF′b(E) ∩ bT ∗suppuX \ o = ∅. Indeed, let
ρ ∈ C∞c (X) be identically 1 near suppu, WF′b(E) ∩ bT ∗supp ρX = ∅. Then any
A′ with the properties of A can be written as A′ = A′GA−A′Eρ−A′E(1−ρ),
A′G,A′Eρ ∈ Ψ0

b(X), while (1 − ρ)u = 0; so by Lemma 3.2, A′u ∈ H1(X)
provided that u,Au ∈ H1(X).

It is useful to note that if Au ∈ H1(X) and u ∈ H1
0 (X), then in fact

Au ∈ H1
0 (X):

Lemma 3.7. Suppose that u ∈ H1
0 (X), A ∈ Ψm

b (X) and Au ∈ H1(X).
Then Au ∈ H1

0 (X).

Proof. Suppose that u ∈ H1
0 (X), A ∈ Ψm

b (X) and Au ∈ H1(X). Let Λr,
r ∈ (0, 1], be a uniformly bounded family in Ψ0

bc(X) with Λr ∈ Ψ−∞b (X) for
r > 0, Λr → Id in Ψε

b(X), ε > 0, as r → 0.
Then, for r > 0, ΛrA ∈ Ψ−∞b (X), so that u ∈ H1

0 (X) implies that ΛrAu ∈
H1

0 (X) by Lemma 3.2. As Au ∈ H1(X), and Λr is uniformly bounded as a
family of operators on H1(X), we deduce that ΛrAu is uniformly bounded in
H1(X). Thus, there is a weakly convergent sequence Λrj

Au, with rj → 0, in
H1

0 (X), as the latter is a closed subspace of H1(X); let v be the limit. But
ΛrAu→ Au in C−∞(X) as r → 0, since ΛrA→ A in Ψm+ε

bc (X). As Λrj
Au→ v

in C−∞(X) as well, Au = v ∈ H1
0 (X) as claimed.

The following wave front set microlocalizes H1,m
b,loc(X).

Definition 3.8. Suppose u ∈ H1
loc(X), m ≥ 0. We say that q ∈ bT ∗X \ o

is not in WF1,m
b (u) if there exists A ∈ Ψm

b (X) such that σb,m(A)(q) 6= 0 and
Au ∈ H1(X).

For m = ∞, we say that q ∈ bT ∗X \ o is not in WF1,m
b (u) if there exists

A ∈ Ψ0
b(X) such that σb,0(A)(q) 6= 0 and LAu ∈ H1(X) for all L ∈ Diffb(X),

i.e. if Au ∈ H1,∞
b (X).

We note that, by the preceding lemma, if u ∈ H1
0,loc(X) then Au ∈

H1
0,loc(X), etc. (here A ∈ Ψm

b (X)). Moreover, in the m infinite case we may



770 ANDRÁS VASY

equally allow L ∈ Ψb(X), and we can also rewrite the finite m definition anal-
ogously, i.e. to state that there exists A ∈ Ψ0

b(X) such that σb,0(A)(q) 6= 0
and LAu ∈ H1(X) for all L ∈ Ψm

b (X). This follows immediately from the
next lemma. Since we do not need this here, we do not comment on it any-
more; we could also allow A ∈ Ψm

bc(X) in the definition, provided we replace
σb,m(A)(q) 6= 0 by the assumption that A is elliptic at q; this follows from the
next results.

The next lemma shows that the action of elements of Ψb(X) is indeed
microlocal.

Lemma 3.9. Suppose that u∈H1
loc(X), B∈Ψk

bc(X). Then WF1,m−k
b (Bu)

⊂WF1,m
b (u) ∩WF′b(B).

Proof. We assume that m is finite; the proof for m infinite is similar.
Suppose q /∈ WF′b(B). As WF′b(B) is closed, there is a neighborhood U

of q such that U ∩WF′b(B) = ∅. Let A ∈ Ψm−k
b (X) satisfy WF′b(A) ⊂ U ,

σb,m−k(A)(q) 6= 0. Then AB ∈ Ψ−∞b (X) ⊂ Ψ0
b(X), so that ABu ∈ H1(X) by

Lemma 3.2. Thus, q /∈WF1,m−k
b (Bu) by definition of the wave front set.

On the other hand, suppose that q /∈ WF1,m
b (u). Then there is some

A ∈ Ψm
b (X) such that Au ∈ H1(X) and σb,m(A)(q) 6= 0. Let G ∈ Ψ−mb (X)

be a microlocal parametrix for A, so that GA = Id +E with E ∈ Ψ0
b(X),

q /∈ WF′b(E). Let C ∈ Ψm−k
b (X) be such that WF′b(C) ∩WF′b(E) = ∅ and

σb,m−k(C)(q) 6= 0. Then CBE ∈ Ψ−∞b (X), so CBEu ∈ H1(X) by Lemma 3.2.
On the other hand, CBG ∈ Ψ0

bc(X) and Au ∈ H1(X), so CBGAu ∈ H1(X)
also by Lemma 3.2. We thus deduce that CBu = CBGAu−CBEu ∈ H1(X),
and so q /∈WF1,m−k

b (u).

We will need a quantitative version of this lemma giving actual estimates,
but first we state the precise sense in which this wave front set provides a
refined version of the conormality of u.

Lemma 3.10. Suppose u ∈ H1
loc(X), m ≥ 0, p ∈ X. If bS∗pX ∩WF1,m

b (u)
= ∅, then in a neighborhood of p, u lies in H1,m

b (X); i.e., there is φ ∈ C∞c (X)
with φ ≡ 1 near p such that φu ∈ H1,m

b (X).

Proof. We assume that m is finite; the proof for m infinite is similar.
For each q ∈ bS∗pX there is Aq ∈ Ψm

b (X) such that σb,m(Aq)(q) 6= 0 and
Aqu ∈ H1(X). Let Uq be the set on which σb,m(Aq) 6= 0; then Uq is an open
set containing q. Thus, {Uq : q ∈ bS∗pX} is an open cover of the compact
set bS∗pX. Let Uqj

, j = 1, . . . , r be a finite subcover. Then A0 =
∑
A∗qj

Aqj

is elliptic on bS∗pX since σb,2m(A0) =
∑
|σb,m(Aqj

)|2, with each summand
non-negative, and at any q ∈ bS∗pX at least one term is nonzero (namely one
for which q ∈ Uqj

). Finally, we renormalize A0 to make its order the same
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as that of Aqj
: this is achieved by taking any Q ∈ Ψ−mb (X) which is elliptic

on bS∗pX, and letting A = QA0 ∈ Ψm
b (X). Thus, A is elliptic on bS∗pX, and

Au ∈ H1(X) as this holds for each summand (QA∗qj
)(Aqj

u), for QA∗qj
∈ Ψ0

b(X)
and Aqj

u ∈ H1(X). Here we used Lemma 3.2.
Let G ∈ Ψ−mb (X) be a microlocal parametrix for A, so that GA = Id +E

and WF′b(E) ∩ bS∗pX = ∅. Thus, p has a neighborhood O in X such that
WF′b(E)∩ bS∗OX = ∅. Let φ ∈ C∞c (X) be supported in O, identically 1 near p,
and let T ∈ Ψm

b (X) be elliptic on bS∗suppφX. Then Tφu = TφGAu − TφEu.
Since WF′b(E) ∩WF′b(φ) = ∅, we see that TφE ∈ Ψ−∞b (X), and thus the last
term is in H1(X) by Lemma 3.2. On the other hand, the first term is in H1(X)
since Au ∈ H1(X) and TφG ∈ Ψ0

b(X). Thus, φu ∈ H1,m
b (X) as claimed.

Corollary 3.11. If u ∈ H1
loc(X) and WF1,m

b (u) = ∅, then u ∈ H1,m
b,loc(X).

In particular, if u ∈ H1
loc(X) and WF1,m

b (u) = ∅ for all m, then u ∈
H1,∞

b,loc(X); i.e., u is conormal in the sense that Au ∈ H1
loc(X) for all A ∈

Diffb(X) (or indeed for A ∈ Ψb(X)).

For the quantitative version of Lemma 3.9 we need a notion of the operator
wave front set that is uniform in a family of operators:

Definition 3.12. Suppose that B is a bounded subset of Ψk
bc(X), and q ∈

bS∗X. We say that q /∈ WF′b(B) if there is some A ∈ Ψb(X) which is elliptic
at q such that {AB : B ∈ B} is a bounded subset of Ψ−∞b (X).

Note that the wave front set of a family B is only defined for bounded fam-
ilies. It can be described directly in terms of quantization of (full) symbols,
much like the operator wave front set of a single operator. All standard prop-
erties of the operator wave front set also hold for a family; e.g. if E ∈ Ψb(X)
with WF′b(E) ∩WF′b(B) = ∅ then {BE : B ∈ B} is bounded in Ψ−∞b (X).

A quantitative version of Lemma 3.9 is the following result.

Lemma 3.13. Suppose that K ⊂ bS∗X is compact, and U is a neighbor-
hood of K in bS∗X. Let K̃ ⊂ X be compact, and Ũ be a neighborhood of K̃ in
X with compact closure. Let Q ∈ Ψk

b(X) be elliptic on K with WF′b(Q) ⊂ U ,
with Schwartz kernel supported in K̃×K̃. Let B be a bounded subset of Ψk

bc(X)
with WF′b(B) ⊂ K and Schwartz kernel supported in K̃ × K̃. Then there is a
constant C > 0 such that for B ∈ B, u ∈ H1

loc(X) with WF1,k
b (u) ∩ U = ∅,

‖Bu‖H1(X) ≤ C(‖u‖H1(Ũ) + ‖Qu‖H1(X)).

Proof. Let φ ∈ C∞c (Ũ) be identically 1 near K̃. We may replace u by φu
in the estimate since Bφ = B, Qφ = Q; then ‖φu‖H1(Ũ) = ‖φu‖H1(X).

By Lemma 3.9 and Lemma 3.10, all terms in the estimate are finite, since
e.g. WF′b(Q) ∩WF1,k

b (u) = ∅ so that WF1,0
b (u) = ∅, so that Qu ∈ H1,0

b,loc(X) =
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H1
loc(X), and indeed Qu ∈ H1

c (X), as the Schwartz kernel of Q has compact
support.

Let G be a microlocal parametrix for Q, so that GQ = Id +E with E ∈
Ψ0

b(X), WF′b(E) ∩K = ∅. Thus, Bu = BGQu− BEu. Now, BE ∈ Ψ−∞b (X)
since WF′b(E) ∩K = ∅ and WF′b(B) ⊂ K, and it lies in a bounded subset of
Ψ−∞b (X) for B ∈ B. Thus, ‖BEu‖H1(X) ≤ C1‖u‖H1(X) by Lemma 3.2. On
the other hand, BG ∈ Ψ0

b(X) and indeed in a bounded subset of Ψ0
bc(X) for

B ∈ B, Lemma 3.2 also gives that for some C2 > 0 (independent of B ∈ B),
‖BGQu‖H1(X) ≤ C2‖Qu‖H1(X). Combination of these statements proves the
lemma.

We can similarly microlocalize H−1
loc (X):

Definition 3.14. Suppose u ∈ H−1
loc (X), m ≥ 0. We say that q ∈ bT ∗X \ o

is not in WF−1,m
b (u) if there exists A ∈ Ψm

b (X) such that σb,m(A)(q) 6= 0 and
Au ∈ H−1(X).

Then the analogues of Lemma 3.9-3.13 remain valid with H1(X) replaced
by H−1(X) and WF1,·

b replaced by WF−1,·
b , with analogous proofs using Corol-

lary 3.4 in place of Lemma 3.2.
These results can be extended in another way, by consideration of Sobolev

spaces with a negative order of regularity relative to H1(X).

Definition 3.15. Let k be an integer, m < 0, and A ∈ Ψ−mb (X) be elliptic
on bS∗X with proper support. We let Hk,m

b,c (X) be the space of all u ∈ C−∞(X)
of the form u = u1 +Au2 with u1, u2 ∈ Hk

c (X) and let

‖u‖Hk,m
b,c (X) = inf{‖u1‖Hk(X) + ‖u2‖Hk(X) : u = u1 +Au2}.

We also let Hk,m
b,loc(X) be the space of all u ∈ C−∞(X) such that φu ∈

Hk,m
b,c (X) for all φ ∈ C∞c (X).

Now, define Ḣk,m
b,c (X) and Ḣk,m

b,loc(X) analogously, replacing Hk(X) by
Ḣk(X) throughout the above discussion. Here, for k ≥ 0, Ḣk(X) stands for
Hk

0 (X); see Remark 3.1. Thus, Ḣk,m
b,c (X) = Hk,m

b,0,c(X) for k ≥ 0.

Remark 3.16. In this paper we are only concerned with the cases k = ±1.
There is no difference between these two cases for the ensuing discussion, except
for the boundary values considered in the next paragraph. For the sake of
definiteness, we will use k = 1 throughout the discussion. We will also not
consider Ḣk(X) explicitly for most of the discussion; there is no difference for
the treatment of these spaces either.

Also note that we can talk about the boundary values of u ∈ H1,m
b,c (X)

at boundary hypersurfaces (codimension 1 boundary faces) Hj for m < 0,
although we do not need this here. One way to do this is to define, for u =
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u1 + Au2, u|Hj
= u1|Hj

+ N̂j(A)(0)(u2|Hj
), regarded e.g. as an element of

C−∞(Hj) (note that N̂j(A)(0) : C−∞(Hj) → C−∞(Hj)). This is independent
of the choices of u1, u2 and A. Of course, for u ∈ H1,m

b,0,c(X), in the sense just
sketched, u|Hj

= 0 for all j. It is straightforward to see that for u ∈ H1,m
b,c with

u|Hj
= 0 for all j, there exist u1, u2 ∈ H1

0,c(X) with u = u1 + Au2, so that
u ∈ H1,m

b,0,c(X).
Also, note that Lemma 3.7 still holds if one only assumes u ∈ H1,m

b,0,c(X).

First note that given any K ⊂ X compact there is another K ′ ⊂ X

compact such that u ∈ H1,m
b,c (X) with suppu ⊂ K can be written as u = u1 +

Au2 with u1, u2 ∈ H1
c (X) both supported in K ′. Indeed, when φ ∈ C∞c (X) is

identically 1 on a neighborhood of K, and G ∈ Ψm
b (X) is a properly supported

parametrix for A, then AG = Id +E, E ∈ Ψ−∞b (X), E also properly supported.
By definition, if u ∈ H1,m

b,c (X) then there are u′1, u
′
2 ∈ H1

c (X) with u = u′1+Au′2,
and as φ ≡ 1 on a neighborhood of suppu, φu = u. Thus,

u = φu = φu′1 − EφAu′2 +AGφAu′2 = u1 + u2,

u1 = φu′1 − EφAu′2, u2 = GφAu′2,

so that u1, u2 ∈ H1
c (X) as EφA,GφA ∈ Ψ0

b(X), and suppuj , j = 1, 2, is
bounded in terms of suppφ, suppE and suppG. Namely,

suppuj ⊂ K ′,
K ′ = suppφ ∪ πL(suppE ∩ π−1

R (suppφ)) ∪ πL(suppG ∩ π−1
R (suppφ)),

where πL, πR : X×X → X are the projections to the left and right factors; K ′

is compact as E and G are properly supported, so that suppE ∩ π−1
R (suppφ),

suppG ∩ π−1
R (suppφ) are compact. Note also that, by Lemma 3.2,

‖u1‖H1(X) + ‖u2‖H1(X) ≤ C(‖u′1‖H1(X) + ‖u′2‖H1(X)).

Since this holds for any u′1, u′2 with u = u′1 + Au′2, we deduce that with this
K ′, if we restrict suppuj ⊂ K ′, and take inf just over these uj , we get an
equivalent norm on the subspace of H1

c (X) consisting of elements supported
in K.

In fact, as suppG, suppE can be made to lie in any neighborhood of the
diagonal in X ×X, and suppφ can be made to lie in any neighborhood of K,
this argument shows that given any K compact and any U open with K ⊂ U ,
suppuj may be assumed to lie in K ′ = U , with the resulting norm equivalent
to the H1

c (X) norm of the definition (with the equivalence constant of course
depending on U !).

Moreover, Definition 3.15 is independent of the choice of A. Indeed, if
A′ ∈ Ψ−mb (X) is elliptic and has proper support, then it has a parametrix
G′ ∈ Ψm

b (X) with E′ = A′G′ − Id ∈ Ψ−∞b (X), all with proper support. Then
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u = u1 +Au2 = u1 − E′Au2 +A′G′Au2, and u′1 = u1 − E′Au2 ∈ H1
c (X) since

E′A ∈ Ψ−∞b (X), and u′2 = G′Au2 ∈ H1
c (X) since G′A ∈ Ψ0

b(X). Moreover, if
we fix K ⊂ X compact, then for u with suppu ⊂ K, the norms ‖u‖H1,m

b,c (X)

are equivalent for different choices of A. This follows from Lemma 3.2 and the
preceding remark that we may take the support of u1, u2 lie in a compact set
depending on K only.

Note also that for F ∈ Ψm
bc(X) with compactly supported Schwartz kernel,

F : H1,m
b,c (X)→ H1(X) is continuous. Indeed, Fu = Fu1 +FAu2 ∈ H1

c (X) by
Lemma 3.2 since F, FA ∈ Ψ0

bc(X) and u1, u2 ∈ H1
c (X). This also gives a bound

for ‖Fu‖H1(X) in terms of ‖u‖H1,m
b,c (X) and a seminorm of F in Ψm

bc(X). In

particular, Ψ−∞b (X) maps H1,m
b,c (X) → H1(X), and indeed into the conormal

space H1,∞
b,c (X).

Since any A ∈ Ψm
b (X) defines a map A : C−∞(X) → C−∞(X), our defi-

nition of the wave front set makes sense for m < 0 as well; it is independent
of s if we take u ∈ H1,s

b,loc(X) since the action of Ψb(X) is well-defined on the
larger space C−∞(X) already.

Definition 3.17. Suppose u ∈ H1,s
b,loc(X) for some s ≤ 0, and suppose that

m ∈ R. We say that q ∈ bT ∗X\o is not in WF1,m
b (u) if there exists A ∈ Ψm

b (X)
such that σb,m(A)(q) 6= 0 and Au ∈ H1(X).

For m = ∞, we say that q ∈ bT ∗X \ o is not in WF1,m
b (u) if there exists

A ∈ Ψ0
b(X) such that σb,0(A)(q) 6= 0 and LAu ∈ H1(X) for all L ∈ Diffb(X),

i.e., if Au ∈ H1,∞
b (X).

Again, the analogues of Lemma 3.9-3.13 remain valid with H1(X) re-
placed by H1,s

b,c(X) for some s, and m allowed to be negative in WF1,m
b (u). In

particular, Lemma 3.13 takes the form:

Lemma 3.18. Suppose that K ⊂ bS∗X is compact, and U a neighborhood
of K in bS∗X. Let K̃ ⊂ X be compact, and Ũ be a neighborhood of K̃ in X

with compact closure. Let Q ∈ Ψk
b(X) be elliptic on K with WF′b(Q) ⊂ U , with

Schwartz kernel supported in K̃ × K̃. Let B be a bounded subset of Ψk
bc(X)

with WF′b(B) ⊂ K and Schwartz kernel supported in K̃ × K̃. Then for any
s < 0 there is a constant C > 0 such that for B ∈ B, u ∈ H1,s

b,loc(X) with

WF1,k
b (u) ∩ U = ∅,

‖Bu‖H1(X) ≤ C(‖u‖H1,s
b (Ũ) + ‖Qu‖H1(X)),

where ‖u‖H1,s
b (Ũ) stands for ‖φu‖H1,s

b,c (X) for some fixed φ ∈ C∞c (X) with

suppφ ⊂ Ũ , φ ≡ 1 on a neighborhood of K̃.

Finally, connecting Hk,m
b,loc(X) for k = ±1, we note that any P ∈ Diff2(X)

defines a continuous linear map P : H1,m
b,loc(X) → H−1,m

b,loc (X), as discussed
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before the statement of Corollary 3.4; now we need to use (2.3) as well to
deduce this.

4. The elliptic set

We first prove an estimate that microlocally controls the Dirichlet form for
microlocalized solutions Pu = 0, u ∈ H1

0 (X), in terms of lower order microlocal
information and a global bound in H1

0 (X). In fact, as it does not require much
additional effort, we consider microlocal solutions, i.e. we make assumptions
on WF−1,∞

b (Pu), or indeed on WF−1,s
b (Pu).

Remark 4.1. Since X is non-compact and our results are microlocal, we
may always fix a compact set K̃ ⊂ X and assume that all ps.d.o’s have
Schwartz kernel supported in K̃ × K̃. We also let Ũ be a neighborhood of
K̃ in X such that Ũ has compact closure, and use the H1(Ũ) norm in place
of the H1(X) norm to accommodate u ∈ H1

0,loc(X). (We may instead take
φ ∈ C∞c (Ũ) identically 1 in a neighborhood of K̃, and use ‖φu‖H1(X).) Below
we use the notation ‖.‖H1

loc(X) for ‖.‖H1(Ũ) to avoid having to specify Ũ . We
also use ‖v‖H−1

loc (X) for ‖φv‖H−1(X).

We give two versions of the Dirichlet estimates: the first one suffices for
most purposes, but it does not give the optimal estimates in terms of the order
m in WF−1,m

b (Pu). The second one takes care of this issue.

Lemma 4.2. Suppose that K ⊂ bS∗X is compact, U ⊂ bS∗X is open,
K ⊂ U . Suppose that A = {Ar : r ∈ (0, 1]} is a bounded family of ps.d.o’s
in Ψs

bc(X) with WF′b(A) ⊂ K, and with Ar ∈ Ψs−1
b (X) for r ∈ (0, 1]. Then

there are G ∈ Ψs−1/2
b (X), G̃ ∈ Ψs+1/2

b (X) with WF′b(G),WF′b(G̃) ⊂ U and
C0 > 0 such that for r ∈ (0, 1], u ∈ H1

0,loc(X) with WF1,s−1/2
b (u) ∩ U = ∅,

WF−1,s+1/2
b (Pu) ∩ U = ∅,∣∣∣ ∫

X

(
|dMAru|2 − |DtAru|2

) ∣∣∣
≤ C0

(
‖u‖2H1

loc(X) + ‖Gu‖2H1(X) + ‖Pu‖2
H−1

loc (X)
+ ‖G̃Pu‖2H−1(X)

)
.

In particular, if the assumption on Pu is strengthened to Pu = 0, then∣∣∣ ∫
X

(
|dMAru|2 − |DtAru|2

) ∣∣∣ ≤ C0

(
‖u‖2H1

loc(X) + ‖Gu‖2H1(X)

)
.

The meaning of ‖u‖2H1
loc(X) and ‖Pu‖2

H−1
loc (X)

is stated above in Remark 4.1,
and the integrals are performed with respect to dg̃ = dg dt.

Remark 4.3. The point of this lemma is G is 1/2 order lower (s − 1/2
vs. s) than the family A. We will later take a limit, r → 0, which gives control
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of the Dirichlet form evaluated on A0u, A0 ∈ Ψs
bc(X), in terms of lower order

information.
The role of Ar, r > 0, is to regularize such an argument, i.e. to make sure

various terms in a formal computation, in which one uses A0 directly, actually
make sense.

Proof. Then for r ∈ (0, 1], Aru ∈ H1
0 (X), so that∫

X
(|dMAru|2 − |DtAru|2) = −

∫
X
PAruAru.

Here the right-hand side is the pairing of H−1(X) with H1
0 (X). Writing PAr =

ArP + [P,Ar], and 〈v, w〉 =
∫
X v w for the L2-pairing on X, we see that the

right-hand side can be estimated by

(4.1) |〈ArPu,Aru〉|+ |〈[P,Ar]u,Aru〉|.

The lemma is thus proved if we show that the first term of (4.1) is bounded
by

(4.2) C ′0

(
‖u‖2H1

loc(X) + ‖Gu‖2H1(X) + ‖Pu‖2
H−1

loc (X)
+ ‖G̃Pu‖2H−1(X)

)
,

and the second term is bounded by C ′′0 (‖u‖2H1
loc(X) + ‖Gu‖2H1(X)). (Recall that

the ‘local ’ norms were defined in Remark 4.1.)
The first term is straightforward to estimate. Let Λ ∈ Ψ−1/2

b (X) be elliptic
with Λ− ∈ Ψ1/2

b (X) a parametrix, so that

E = ΛΛ− − Id, E′ = Λ−Λ− Id ∈ Ψ−∞b (X).

Then ∫
X
ArPuAru=

∫
X

(ΛΛ− − E)ArPuAru

=
∫
X

Λ−ArPuΛ∗Aru−
∫
X
ArPuE∗Aru.

Since Λ−Ar is uniformly bounded in Ψs+1/2
bc (X), and Λ∗Ar is uniformly bounded

in Ψs−1/2
bc (X),

∫
X Λ−ArPuΛ∗Aru is uniformly bounded, with a bound like (4.2)

by Cauchy-Schwartz and Lemma 3.13. Indeed, by Lemma 3.13, if we choose
any G ∈ Ψs−1/2

b (X) which is elliptic on K, there is a constant C1 > 0 such
that

‖Λ∗Aru‖2H1(X) ≤ C1(‖u‖2H1
loc(X) + ‖Gu‖2H1(X)).

Similarly, by Lemma 3.13 and the remark following Definition 3.14, if we choose
any G̃ ∈ Ψs+1/2

b (X) which is elliptic on K, there is a constant C ′1 > 0 such
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that ‖Λ−ArPu‖2H−1(X) ≤ C ′1(‖Pu‖2
H−1

loc (X)
+ ‖G̃Pu‖2H−1(X)). Combining these

gives, with C ′0 = C1 + C ′1,

∣∣∣ ∫
X

Λ−ArPuΛ∗Aru
∣∣∣ ≤ ‖Λ−ArPu‖ ‖Λ∗Aru‖ ≤ ‖Λ−ArPu‖2 + ‖Λ∗Aru‖2

≤ C ′0
(
‖u‖2H1

loc(X) + ‖Gu‖2H1(X) + ‖Pu‖2
H−1

loc (X)
+ ‖G̃Pu‖2H−1(X)

)
,

as desired.
A similar argument, when Ar is uniformly bounded in Ψs+1/2

bc (X) (in fact
in Ψs

bc(X)), and E∗Ar is uniformly bounded in Ψs−1/2
bc (X) (in fact in Ψ−∞bc (X)),

shows that
∫
X ArPuE

∗Aru is uniformly bounded.
Now we turn to the second term in (4.1). Using (2.3) and Lemma 2.2, we

have

[P,Ar] =
∑
i,j

Dxi
Dxj

Bij,r +
∑
j

Dxj
Bj,r +Br,

Br ∈ Ψs
b(X), Bj,r ∈ Ψs−1

b (X), Bij,r ∈ Ψs−2
b (X), uniformly bounded in Ψs+1

bc (X),
resp. Ψs

bc(X), resp. Ψs−1
bc (X). With Λ ∈ Ψ−1/2

b (X) as above, utilizing (2.3),
we can write further

Λ−
∑
i,j

Dxi
Dxj

Bij,r =
∑
i,j

Dxi
Dxj

B′ij,r +
∑

Dxj
B′j,r +B′r,

with B′ij,r, B
′
j,r, B

′
r ∈ Ψs−3/2

b (X), uniformly bounded in Ψs−1/2
bc (X). Thus,

(4.3)

〈[P,Ar]u,Aru〉
=
∑
ij

〈Λ−Dxi
Dxj

Bij,ru,Λ∗Aru〉 −
∑
ij

〈Dxi
Dxj

Bij,ru,E
∗Aru〉

+
〈
Λ∗
(∑

j

Dxj
Bj,r +Br

)
u,Λ−Aru

〉
−
〈
E∗
(∑

j

Dxj
Bj,r +Br

)
u,Λ−Aru

〉
.

Note that Λ−, Λ∗ and E∗ are positioned differently for the first two, resp.
last two terms; this is so that after integration by parts in the first two terms,
moving Dxi

to Λ∗Aru, resp. E∗Aru, each of the two terms being paired involve
operators of uniform order s+1/2, when the derivatives Dxi

, etc., are included
in the order count. (We need to integrate by parts so that at most one normal
derivative falls on each of the two terms being paired, since we are working
relative to H1(X).) The first two terms on the right-hand side of (4.3) can be



778 ANDRÁS VASY

expanded as

∑
ij

∫
X
Dxi

Dxj
B′ij,ruΛ∗Aru−

∑
ij

∫
X
Dxi

Dxj
Bij,ruE∗Aru(4.4)

+
∑
j

∫
X
Dxj

B′j,ruΛ∗Aru+
∫
X
B′ruΛ∗Aru

=
∑
ij

∫
X
Dxj

B′ij,ruD
t
xi

Λ∗Aru−
∑
ij

∫
X
Dxj

Bij,ruDt
xi
E∗Aru

+
∑
j

∫
X
Dxj

B′j,ruΛ∗Aru+
∫
X
B′ruΛ∗Aru,

where Dt
xi

is the formal adjoint of Dxi
with respect to dg, and where in the

last step we used the fact that

B′ij,ru,Bij,ru,Λ
∗Aru,E

∗Aru ∈ H1
0 (X).

Note that Dt
xi

= J−1Dxi
J if dg = Jdx1 . . . dxk dy1 . . . dyl is the Riemannian

density, so that Dt
xi

= Dxi
+ b, b ∈ C∞(X). Thus,

∣∣∣ ∫
X
Dxj

B′ij,ruD
t
xi

Λ∗Aru
∣∣∣≤‖Dxj

B′ij,ru‖L2(X)‖Dxi
Λ∗Aru‖L2(X)

+C2‖Dxj
B′ij,ru‖L2(X)‖Λ∗Aru‖L2(X), C2 > 0,

and both factors in both terms are uniformly bounded for r ∈ (0, 1] since Λ∗Ar,
B′ij,r are uniformly bounded in Ψs−1/2

bc (X) with a uniform wave front bound

disjoint from WF1,s−1/2
b (u). Indeed, as noted above, by Lemma 3.13, choosing

any G ∈ Ψs−1/2
b (X) which is elliptic on K, we have a constant C1 > 0 such

that the right-hand side is bounded by C1(‖u‖2H1
loc(X) + ‖Gu‖2H1(X)). Similar

estimates apply to the other terms on the right-hand side of (4.4), and the
last two terms on the right-hand side of (4.3) can be treated similarly, showing
that

∫
X [P,Ar]uAru is uniformly bounded for r ∈ (0, 1], indeed is bounded by

C0(‖u‖2H1
loc(X) + ‖Gu‖2H1(X)), proving the lemma.

The lemma which allows more precise estimates is the following.

Lemma 4.4. Suppose that K ⊂ bS∗X is compact, U ⊂ bS∗X is open,
K ⊂ U . Suppose that A = {Ar : r ∈ (0, 1]} is a bounded family of ps.d.o’s
in Ψs

bc(X) with WF′b(A) ⊂ K, and with Ar ∈ Ψs−1
b (X) for r ∈ (0, 1]. Then

there are G ∈ Ψs−1/2
b (X), G̃ ∈ Ψs

b(X) with WF′b(G),WF′b(G̃) ⊂ U and C0 > 0
such that for ε > 0, r ∈ (0, 1], u ∈ H1

0,loc(X) with WF1,s−1/2
b (u) ∩ U = ∅,
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WF−1,s
b (Pu) ∩ U = ∅,∣∣∣ ∫
X

(
|dMAru|2 − |DtAru|2

) ∣∣∣ ≤ ε‖dXAru‖2L2(X)

+ C0

(
‖u‖2H1

loc(X) + ‖Gu‖2H1(X) + ε−1‖Pu‖2
H−1

loc (X)
+ ε−1‖G̃Pu‖2H−1(X)

)
.

Remark 4.5. The point of this lemma is that on the one hand the new
term ε‖dXAru‖2 can be absorbed on the left-hand side in the elliptic region,
hence is negligible; on the other hand, there is a gain in the order of G̃ (s, versus
s+ 1/2 in the previous lemma).

Proof. We only need to modify the previous proof slightly. Thus, we
need to estimate the term |

∫
X ArPuAru| in (4.1) differently, namely∣∣∣ ∫

X
ArPuAru

∣∣∣≤‖ArPu‖H−1(X)‖Aru‖H1(X)

≤ ε‖Aru‖2H1(X) + ε−1‖ArPu‖2H−1(X).

Now the lemma follows by Lemma 3.13 and the remark following Defini-
tion 3.14. That is, we choose any G̃ ∈ Ψs

b(X) which is elliptic on K, where
there is a constant C ′1 > 0 such that

‖ArPu‖2H−1(X) ≤ C
′
1

(
‖Pu‖2

H−1
loc (X)

+ ‖G̃Pu‖2H−1(X)

)
,

and finish the proof exactly as for Lemma 4.2.

Using the microlocal positivity of the Dirichlet form, we now prove the
elliptic estimates. Recall that π : T ∗X → bT ∗X is the natural ‘inclusion’ map,
and bṪ ∗X ⊂ bT ∗X is its range.

Proposition 4.6 (Microlocal elliptic regularity). If u ∈ H1
0,loc(X) then

WF1,m
b (u) ⊂WF−1,m

b (Pu) ∪ bṪ ∗X, and WF1,m
b (u) ∩ E ⊂WF−1,m

b (Pu).

In particular, if Pu = 0, u ∈ H1
0,loc(X) then

WF1,∞
b (u) ⊂ bṪ ∗X, and WF1,∞

b (u) ∩ E = ∅.

Proof. We first prove a slightly weaker result in which WF−1,m
b (Pu)

is replaced by WF−1,m+1/2
b (Pu), relying on Lemma 4.2. We then prove the

original statement using Lemma 4.4.
Suppose that either q ∈ bT ∗X\bṪ ∗X or q ∈ E . We may assume iteratively

that q /∈ WF1,s−1/2
b (u); we need to prove then that q /∈ WF1,s

b (u) provided
s ≤ m + 1/2 (note that the inductive hypothesis holds for s = 1/2 since
u ∈ H1

loc(X)). Let A ∈ Ψs
b(X) be such that WF′b(A) ∩WF1,s−1/2

b (u) = ∅,
WF′b(A)∩WF1,s+1/2

b (Pu) = ∅, and have WF′b(A) in a small conic neighborhood
U of q so that for a suitable C > 0 or ε > 0, in U
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(i) τ2 < C
∑

j σ
2
j if q ∈ bT ∗X \ bṪ ∗X,

(ii) |σj | < ε(τ2 + |ζ|2)1/2 for all j, and |ζ||τ | > 1 + ε, if q ∈ E .

Let Λr ∈ Ψ−2
b (X) for r > 0, such that L = {Λr : r ∈ (0, 1]} is a bounded

family in Ψ0
b(X), and Λr → Id as r → 0 in Ψε̃

b(X), ε̃ > 0, e.g. the symbol of
Λr could be taken as (1 + r(τ2 + |ζ|2 + |σ|2))−1. Let Ar = ΛrA. Let a be the
symbol of A, and let Ar have symbol (1+r(τ2 + |ζ|2 + |σ|2))−1a, r > 0, so that
Ar ∈ Ψs−2

b (X) for r > 0, and Ar is uniformly bounded in Ψs
bc(X), Ar → A in

Ψs+ε̃
bc (X).

By Lemma 4.2, ∫
X

(
|dMAru|2 − |DtAru|2

)
is uniformly bounded for r ∈ (0, 1]. On the other hand,∫

X
|dMAru|2 =

∫
X

∑
AijDxi

AruDxj
Aru+

∫
X

∑
BijDyi

AruDyj
Aru

+
∫
X

∑
CijDxi

AruDyj
Aru.

Using that Aij(x, y) = Aij(0, y)+
∑
xkA

′
ijk(x, y), we see that if Ar is supported

in xk < δ for all k, then for some C > 0 (independent of Ar),

(4.5)
∣∣∣ ∫

X

∑
xkA

′
ijkDxi

AruDxj
Aru

∣∣∣ ≤ Cδ∑
i′,j′

‖Dxi′Aru‖ ‖Dxj′Aru‖,

with analogous estimates for Bij(x, y)−Bij(0, y) and for Cij(x, y). Moreover,
as the matrix Aij is positive definite, for some c > 0,

c

∫
X

∑
j

|Dxj
Aru|2 ≤

1
2

∫
X

∑
ij

AijDxi
AruDxj

Aru.

Thus, there exists C̃ > 0 and δ0 > 0 such that if δ < δ0 and A is supported in
|x| < δ then

c

∫
X

∑
j

|Dxj
Aru|2 +

∫
X

(
(1− C̃δ)

∑
j

|Dyj
Aru|2h − |DtAru|2

)
(4.6)

≤
∫
X

(|dMAru|2 − |DtAru|2),

where we used the notation∑
j

|Dyj
Aru|2h =

∑
ij

Bij(0, y)Dyi
AruDyj

Aru;

i.e., h is the dual metric g restricted to the span of the dyj , j = 1, . . . , l.
Now we distinguish the cases q ∈ E and q ∈ bT ∗X \ bṪ ∗X. If q ∈ E , A

is supported near E , we choose δ ∈ (0, 1
2C̃

) so that (1 − C̃δ) |ζ|
2

τ2 > 1 + δ on
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a neighborhood of WF′b(A), which is possible in view of (ii) at the beginning
of the proof. Then the second integral on the left-hand side of (4.6) can be
written as ‖BAru‖2, with the symbol of B given by ((1 − C̃δ)|ζ|2 − τ2)1/2

)(which is ≥ δτ), modulo a term∫
X
FAruAru, F ∈ Ψ1

b(X).

But this expression is uniformly bounded as r → 0 by the argument above.
We thus deduce that

c

∫
X

(∑
j

|Dxj
Aru|2

)
+ ‖BAru‖2

is uniformly bounded as r → 0.
If q ∈ bT ∗X \ bṪ ∗X, and A is supported in |x| < δ,∫

X
δ−2|xjDxj

Aru|2 ≤
∫
X
|Dxj

Aru|2,

On the other hand, near bT ∗X \ bṪ ∗X, for δ > 0 sufficiently small,∫
X

( c

2δ2

∑
j

|xjDxj
Aru|2 − |DtAru|2

)
= ‖BAru‖2 +

∫
X
FAruAru,

with the symbol of B given by ( c
2δ2
∑
σ2
j − τ2)1/2 (which does not vanish on U

for δ > 0 small), while F ∈ Ψ1
b(X), so that the second term on the right-hand

side is uniformly bounded as r → 0. We thus deduce in this case that

c

2

∫
X

(∑
j

|Dxj
Aru|2

)
+ ‖BAru‖2

is uniformly bounded as r → 0.
We thus conclude that Dxj

Aru,BAru are uniformly bounded in L2(X).
Correspondingly there are sequences Dxj

Ark
u, BArk

u, weakly convergent
in L2(X), and such that rk → 0, as k → ∞. Since they converge to
Dxj

Au, BAu, respectively, in C−∞(X), we deduce that the weak limits are
Dxj

Au, BAu, which therefore lie in L2(X). Consequently, dAu ∈ L2(X)
proving q /∈ WF1,s

b (u), hence the proposition with WF−1,m
b (Pu) replaced by

WF−1,m+1/2
b (Pu).
To obtain the optimal result, we note that due to Lemma 4.4 we still have,

for any ε > 0, that∫
X

(
|dMAru|2 − |DtAru|2 − ε|dXAru|2

)
=
∫
X

(
(1− ε)|dMAru|2 − (1 + ε)|DtAru|2

)
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is uniformly bounded above for r ∈ (0, 1]. (Keep in mind that dX = (dM , ∂t)
with respect to the product decomposition of X.) By arguing just as above,
with B as above, for sufficiently small ε > 0, the right-hand side gives an upper
bound for

c

2

∫
X

(∑
j

|Dxj
Aru|2

)
+ ‖BAru‖2,

which is thus uniformly bounded as r → 0. The proof is then finished exactly
as above.

A slightly different formulation of this argument is the following. Below
w = (x, y). Consider

‖dMAru‖2 − ‖DtAru‖2 =
∫
X

∑
i,j

gijDwi
AruDwj

AruJ dw dt

−
∫
X
DtAruDtAruJ dw dt.

We move the Ar in the first factor of each term on the right-hand side by first
commuting it through gijDwi

(or Dt), then taking its adjoint with respect to
J dw dt, and finally commuting it through Dwj

. Each of the commutator terms
can be controlled by the inductive hypothesis as above. Modulo such terms
the result is

(4.7)
∫
X

∑
i,j

gijDwi
uDwj

A∗rAru−DtuDtA∗rAru

 J dw dt.

But by definition, a solution of the wave equation Pu = f satisfying the
Dirichlet boundary condition is u ∈ H1

0,loc(X) with∫
X

∑
i,j

gijDwi
uDwj

v −DtuDtv

 J dw dt = −
∫
X
f v J dw dt

for every v ∈ H1
0,c(X). In particular, as A∗rAr preserves H1

0,loc(X), this holds
for v = A∗rAru when Ar has a compactly supported Schwartz kernel. If
f ∈ Ċ∞(X), e.g. if f = 0, the right-hand side now can also be estimated
by the inductive hypothesis, showing that ‖dMAru‖2−‖DtAru‖2 is uniformly
bounded as r → 0. The rest of the arguments presented above apply then, so
we can conclude that q /∈WF1,∞

b (u) as above.
This argument is immediately applicable for Neumann boundary condi-

tions as well. Thus, we still get (4.7) modulo terms that can be estimated by
the inductive hypothesis. Now, by definition, a solution of the wave equation
Pu = f satisfying the Neumann boundary condition is u ∈ H1

loc(X) with

(4.8)
∫
X

∑
i,j

gijDwi
uDwj

v −DtuDtv

 J dw dt = −
∫
X
f v J dw dt
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for every v ∈ H1
c (X). Here, for f ∈ Ḣ−1

loc (X), the right-hand side is the pairing
of Ḣ−1

loc (X) with H1
c (X) via duality. In particular, as A∗rAr preserves H1

loc(X),
this holds for v = A∗rAru, and the rest of the elliptic argument is as for the
Dirichlet boundary condition.

We use this opportunity to remark that our methods also immediately
give elliptic regularity for the Laplacian on M .

Theorem 4.7 (Microlocal elliptic regularity for ∆). Suppose that u ∈
H1

0,loc(M), and ∆u = f , i.e.

〈du, dv〉M = 〈f, v〉M
for all v ∈ H1

0,c(M); here 〈·, ·〉M is the L2 inner product on M . Then WF1,m
b (u)

⊂WF−1,m
b (f). In particular, if f ∈ H−1,m

b,loc (M) then u ∈ H1,m
b,loc(M).

The same conclusions hold for Neumann boundary conditions, i.e. with
H1

0 (M) replaced by H1(M).

Corollary 4.8. Suppose that u ∈ H1
0,loc(M), and (∆ − λ)u = 0. Then

u ∈ H1,∞
b,loc(M). The conclusion also holds if u satisfies Neumann boundary

conditions.

Proof. We have ∆u = f with f = λu ∈ H1
0,loc(M) ⊂ H−1,2

b,loc(M), so that
u ∈ H1,2

b,loc(M). Iterating this, using H1,m
b,loc ⊂ H−1,m+2

b,loc (M), we complete the
proof.

5. Bicharacteristics

In this section we state the basic properties of generalized broken bichar-
acteristics that are instrumental in proving the propagation of singularities
theorem in Section 8.1. The philosophy originating from the work of Melrose
and Sjöstrand [13], [14] is that it is easier to analyze the bicharacteristics (i.e.
the ‘classical’ system) precisely, and prove only rough propagation estimates
for the ‘quantum’ system (in this case the wave equation), essentially merely
getting the direction of the propagation correct, than to prove the precise prop-
agation statements directly, for many different aspects (not only the classical
geometry) interact in the latter setting. The precise propagation statement
is thus a combination of the rough propagation statements with the detailed
analysis of the bicharacteristics – this is the content of Section 8 here.

Turning to the generalized broken bicharacteristics, these have been de-
scribed by Lebeau [11, §III] in his setting, i.e. for domains M in real analytic
manifolds M̃ , equipped with a real analytic metric g, with the boundary of M
admitting a stratification. However, analyticity does not enter into the analy-
sis of generalized broken bicharacteristics (called ‘rayons’ there), and manifolds
with corners, by definition, admit the desired stratification (stratified by the
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boundary faces), in a C∞ sense. Thus, all of Lebeau’s results on generalized
broken bicharacteristics apply in our setting, at least if one adopts his defini-
tions.

Our definition differs from that of Lebeau in two ways. First, at bound-
ary hypersurfaces (i.e. codimension 1 faces), Definition 1.1, part (iii), demands
more than Lebeau’s definition (from which (iii) is missing). Thus, our bicharac-
teristics are a subset of those of Lebeau’s. However, since the analysis of bichar-
acteristics is local in X, the C∞ boundary analysis of Melrose and Sjöstrand
applies. As this only necessitates trivial changes, we point these out below
after the statement of the propositions of this section.

The other difference is that we defined the topology of Σ̇ as the subspace
topology inherited from bT ∗X, while Lebeau defines it by requiring that π̂ be
continuous; thus, we need to show that these are indeed the same, which we
proceed to do now.

Lemma 5.1. Define the topology of Σ̇ as the subspace topology of bT ∗X.
Then O ⊂ Σ̇ is open (resp. closed) if and only if π̂−1(O) is open (resp. closed).

Since the bundle inclusion map π : T ∗X → bT ∗X is C∞, hence continuous,
π̂ is automatically continuous, so it only remains to show that if π̂−1(O) is open,
then O is open, which we do below.

First, however, we remark that a basis of the subspace topology is given
by

Bδ(q0) = {q ∈ Σ̇ : |x(q)| < δ, |y(q)− y0(q)| < δ, |t(q)− t(q0)| < δ,(5.1)

|τ(q)− τ(q0)| < δ, |ζ(q)− ζ(q0)| < δ},

as q0 and δ > 0 vary. Indeed, on Σ̇ = π(Char(P )), |σ(q)| ≤ C|x(q)| |τ(q)|
over compact subsets of X. Assuming δ < 1, δ < |τ(q0)|/2, as we may, the
above inequalities imply that |σ(q)| < 2Cδ|τ(q0)|. Given δ0 > 0, this set will
thus be included in a δ0-ball in bT ∗X, centered at q0, provided we choose
δ < δ0/2C|τ(q0)|, so that every neighborhood of q0 in Σ̇ contains a set of the
form (5.1).

Proof of Lemma 5.1. We now show that if π̂−1(O) is open, then
so is O. That is, we need to show for any set O with π̂−1(O) open, and
for any q0 ∈ O ∩ T ∗Fi,reg, there is a δ > 0 such that Bδ(q0) ⊂ O. But
π̂−1({q0}) is the set of points q̃0 = (x, y, t, ξ, ζ, τ) in T ∗X with (x, y, t, ξ, ζ, τ) =
(0, y(q0), t(q0), ξ, ζ(q0), τ(q0)) and ξ · A(y(q0))ξ = τ(q0)2 − |ζ(q0)|2y(q0). As A
is positive definite, the last equation implies that ξ is bounded on π̂−1({q0}),
and indeed π̂−1({q0}) is compact. So if π̂−1(O) is open, then for some δ > 0 it
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contains the intersection of Char(P ) with the set

{q̃ ∈ T ∗X : |x(q̃)| < δ, |y(q̃)− y(q0)| < δ, |t(q̃)− t(q0)| < δ,

|τ(q̃)− τ(q0)| < δ, |ζ(q̃)− ζ(q0)| < δ, |p(q̃)| < δ},

i.e. it contains the set

B̃δ(q0) = {q̃ ∈ Char(P ) : |x(q̃)| < δ, |y(q̃)− y(q0)| < δ, |t(q̃)− t(q0)| < δ,

|τ(q̃)− τ(q0)| < δ, |ζ(q̃)− ζ(q0)| < δ}.

Now π̂(B̃δ) = Bδ(q0), while π̂(π̂−1(O)) = O, so we deduce that Bδ(q0) ⊂ O,
and hence O is open as claimed.

Being a subset of bT ∗X, Σ̇ is a separable, locally compact, metrizable
space, although this follows also directly from the topology induced by π̂ as in
Lebeau’s paper.

A stronger characterization of generalized broken bicharacteristics at H
follows as in Lebeau’s paper.

Proposition 5.2 (Lebeau, [11, Prop. 1]). If γ is a generalized broken
bicharacteristic, t0 ∈ I, q0 = γ(t0), then there exist unique q̃+, q̃− ∈ Char(P )
satisfying π(q̃±) = q0 and having the property that if f ∈ C∞(T ∗X) is
π-invariant then t 7→ fπ(γ(t)) is differentiable both from the left and from
the right at t0 and

(5.2)
(
d

dt

)
(fπ ◦ γ)|t0± = Hpf(q̃±).

Notice that if γ : I → Σ̇ is continuous and if in addition the conclusion
of the following proposition holds, then (i) and (ii) of Definition 1.1 follow
((ii) follows as xj are π-invariant), and so the proposition indeed provides an
alternative to (i)–(ii) of our definition. Note that (iii) is not required for this
proposition, and conversely, the proposition does not imply (iii). (We also
remark paranthetically that there is yet another way of phrasing (i) and (ii)
in the definition of generalized broken bicharacteristics, which is important in
N -body scattering in the presence of bound states; see [25, Def. 2.1].)

Corollary 5.3 (Lebeau, [11, Cor. 2]). Suppose that K is a compact sub-
set of Σ̇. Then there is a constant C > 0 such that for all generalized broken
bicharacteristics γ : I → K, and for all π-invariant functions f on a neighbor-
hood of π−1(K) in T ∗X, one has the uniform Lipschitz estimate

|fπ ◦ γ(s1)− fπ ◦ γ(s2)| ≤M‖f‖C1 |s1 − s2|, s1, s2 ∈ I.

In particular , (locally) the functions x, ȳ and ζ̄ are Lipschitz on generalized
broken bicharacteristics.
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We also need to analyze the uniform behavior of generalized broken bichar-
acteristics. Here we quote Lebeau’s results.

Proposition 5.4 (Lebeau, [11, Prop. 5]). Suppose that K is a compact
subset of Σ̇, γn : [a, b]→ K is a sequence of generalized broken bicharacteristics
which converge uniformly to γ. Then γ is a generalized broken bicharacteristic.

Proof. By Lebeau’s result, γ is a ‘rayon’; i.e. it satisfies (i)–(ii) of Defini-
tion 1.1. Thus, we only need to show that it satisfies (iii) in order to prove that
it is a generalized broken bicharacteristic. But if γ(t0) ∈ G ∩ T ∗Fi,reg and Fi a
boundary hypersurface, then, using that the projection of γ to X is Lipschitz
by Corollary 5.3, we see that for δ > 0 sufficiently small, γ̃n = γn|[t0−δ,t0+δ] lie
in T ∗X◦ ∪ T ∗Fi,reg for all n, as does γ̃ = γ|[t0−δ,t0+δ]. Thus, γ̃ is a generalized
broken bicharacteristic by the results of [14], which implies that γ satisfies (iii),
and which ends the proof.

Proposition 5.5 (Lebeau, [11, Prop. 6]). Suppose that K is a compact
subset of Σ̇, [a, b] ⊂ R and

(5.3) R = {generalized broken bicharacteristics γ : [a, b]→ K}.

If R is not empty then it is compact in the topology of uniform convergence.

Proof. R is equicontinuous, as in Lebeau’s proof (since every generalized
broken bicharacteristic is a rayon), and so the proposition follows from the
theorem of Ascoli-Arzelà and Proposition 5.4.

Corollary 5.6 (Lebeau, [11, Cor. 7]). If γ : (a, b)→ R is a generalized
broken bicharacteristic then γ extends to [a, b].

6. The hyperbolic set

In H ∪ G the Dirichlet form is not positive, but we can use it to estimate
dMu microlocally in terms of Dtu and Pu. This follows immediately from
Lemma 4.2 for it implies, with the notation of that lemma, that

(6.1)

‖dMAru‖2≤‖DtAru‖2

+C0

(
‖u‖2H1

loc(X) + ‖Gu‖2H1(X) + ‖Pu‖2
H−1

loc (X)
+ ‖G̃Pu‖2H−1(X))

)
.

In particular, if the assumption on Pu is strengthened to Pu = 0,

(6.2) ‖dMAru‖2 ≤ ‖DtAru‖2 + C0

(
‖u‖2H1

loc(X) + ‖Gu‖2H1(X)

)
.

Recall here that the meaning of ‖u‖2H1
loc(X) and ‖Pu‖2

H−1
loc (X)

was stated in
Remark 4.1. (As an aside, we do not need the sharp elliptic version, as in
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Lemma 4.4, since Lemma 4.2 is only 1/2 derivative weaker than Lemma 4.4,
and at H∪G, u loses a whole derivative as compared to the elliptic estimates.)

The estimate (6.1) roughly says that Dxi
Aru (and also Dyi

Aru, but the
latter follows more directly from general properties of the b-ps.d.o’s nearH∪G)
is bounded by DtAru, modulo lower order error terms. This allows us to
estimate various error terms in the positive commutator argument below, and
it shows that we only need to find a uniform bound on ‖DtAru‖2 in terms of
other terms on the right-hand side in order to get a bound on ‖dMAru‖2, and
hence conclude that points at which σb,s(A) 6= 0 do not lie in WF1,s

b (u). (Here
Ar → A in a suitable sense.)

A related consequence of this estimate is that for microlocal solutions of
Pu = 0, u ∈ H1

0 (X), WF1,m
b (u) agrees with the b-wave front set of u defined

with respect to the more traditional L2 space.

Lemma 6.1. Suppose u ∈ H1
0,loc(X), WF−1,∞

b (Pu) = ∅. Then

WF1,m
b (u)c

= {q ∈ bT ∗X \ o : ∃A ∈ Ψm+1
b (X), σb,m+1(A)(q) 6= 0, Au ∈ L2(X)}.

More generally, for u ∈ H1
0,loc(X),

WF1,m
b (u)c ∩WF−1,∞

b (Pu)c

= {q ∈WF−1,∞
b (Pu)c : ∃A ∈ Ψm+1

b (X), σb,m+1(A)(q) 6= 0, Au ∈ L2(X)}.

Proof. In T ∗X◦, both sides are the standard wave front set, WFm+1(u),
so it suffices to consider the case when q lies over ∂X.

First we show that the left-hand side is a subset of the right-hand side,
which is the ‘easy direction’, and does not use any condition on Pu. Now,
if q ∈ WF1,m

b (u)c, then there is some B ∈ Ψm
b (X) with σb,m(B)(q) 6= 0 and

Bu ∈ H1
0 (X). We may assume that B is supported near the projection of

q to X, so that, in particular, we can use local coordinates in the rest of
the argument. If ζj(q) 6= 0, then A = Dyj

B ∈ Ψm+1
b (X) with non-vanishing

principal symbol at q and Dyj
Bu ∈ L2(X) since Bu ∈ H1

0 (X); so q indeed lies
on the right-hand side. A similar argument works if τ(q) 6= 0. If σj(q) 6= 0,
then A = xjDxj

B ∈ Ψm+1
b (X) with non-vanishing principal symbol at q and

Dxj
Bu ∈ L2(X) since Bu ∈ H1

0 (X). Now, xjDxj
Bu ∈ L2(X) as well and,

again, q lies on the right-hand side. Therefore the left-hand side is indeed a
subset of the right-hand side.

To see the converse direction, i.e. that the right-hand side is a subset of
the left-hand side, we note that as u ∈ H1

0,loc(X),

WF1,m
b (u)c ⊃ ((bṪ ∗X)c ∪ E) \WF−1,∞

b (Pu)
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by Proposition 4.6, so it suffices to consider q ∈ G ∪ H. We use induction
on m to prove that if q is on the right-hand side then it is also on the left-
hand side, the case m = 0 being trivial as we are assuming u ∈ H1

0,loc(X).
In general, suppose that the inclusion has been proved for m replaced by
m− 1/2. Suppose that q ∈ G ∪H is in the set on the right-hand side, so there
is A ∈ Ψm+1

b (X), A elliptic at q, Au ∈ L2(X), and q /∈ WF1,m−1/2
b (u) by the

inductive hypothesis. Note that τ(q) 6= 0, i.e. Dt is elliptic at q. We may
assume that WF′b(A) lies close to q, hence that τ is elliptic on WF′b(A), and
in addition WF1,m−1/2

b (u) ∩WF′b(A) = ∅. Then we can write A = DtB + R,
B ∈ Ψm

b (X) elliptic at q and R ∈ Ψ−∞b (X). Thus, (as u ∈ L2(X)) Ru ∈ L2(X),
so that DtBu ∈ L2(X). Taking Br ∈ Ψm−1

b (X) uniformly bounded with
Br → B in Ψm+ε

bc (X) (ε > 0), and using Lemma 4.2 (in the form of (6.1)) we
see that dMBru is uniformly bounded in L2. Since it converges to dMBu in
C−∞(X) on the one hand, and there must be a weakly convergent sequence
dMBrk

u in L2(X), rk → 0 as k → ∞, by the uniform bound, we deduce that
dMBu ∈ L2(X) as well; so dXBu ∈ L2(X), hence Bu ∈ H1

0 (X).

After these preliminary discussions, we turn to the propagation estimate
at q ∈ H. As usual, the key ingredient is to find a C∞ function f on bT ∗X such
that, at least near q, Hpπ

∗f has a fixed sign. We usually drop the pull-back
π∗ below; recall that π : T ∗X → bT ∗X is the ‘inclusion’. In our setting, we
can take f = η where η = −x·ξ

|τ | = −
P
σj

|τ | . Indeed, the Hamilton vector field
Hp of p is given by

(6.3)

Hp = 2τ∂t −Hg = 2τ∂t − 2Aξ · ∂x − 2Bζ · ∂y − 2
∑

Cijζj∂xi
− 2

∑
Cijξi∂yj

+2
∑

(∂xk
Aij)ξiξj∂ξk

+ 2
∑

(∂xk
Cij)ξiζj∂ξk

+ 2
∑

(∂xk
Bij)ζiζj∂ξk

+2
∑

(∂yk
Aij)ξiξj∂ζk

+ 2
∑

(∂yk
Cij)ξiζj∂ζk

+ 2
∑

(∂yk
Bij)ζiζj∂ζk

.

Thus,

|τ |Hpη = 2ξ ·Aξ + 2
∑

Cijξiζj −2
∑

(∂xk
Aij)ξiξjxk

−2
∑

(∂xk
Cij)ξiζjxk − 2

∑
(∂xk

Bij)ζiζjxk,

and so at x = 0, where C vanishes,

(6.4) |τ |Hpη = 2ξ ·Aξ = 2τ2 − 2ζ ·Bζ − 2p = 2τ2 − 2|ζ|2y − 2p.

Thus, Hpη > 0 at π−1(H) ∩ Char(P ) = π̂−1(H).
We only state the following propagation result for propagation in the

forward direction along the generalized broken bicharacteristics. A similar
result holds in the backward direction, i.e. if we replace η(ξ) < 0 by η(ξ) > 0 in
(6.5); the proof in this case only requires changes in some signs in the argument
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given below. The construction of a positive commutator below closely mirrors
that of [24] in the N -body setting.

Proposition 6.2. Let q0 = (y0, t0, ζ0, τ0) ∈ H ∩ T ∗Freg and let η = −x·ξ
|τ |

be the π-invariant function defined in the local coordinates discussed above,
and suppose that u ∈ H1

0,loc(X), q0 /∈ WF−1,∞
b (Pu). If there exists a conic

neighborhood U of q0 in bṪ ∗X such that

(6.5) q ∈ U and η(q) < 0⇒ q /∈WF1,∞
b (u)

then q0 /∈WF1,∞
b (u).

In fact, if the wave front set assumptions are relaxed to q0 /∈WF−1,s+1
b (Pu)

and the existence of a conic neighborhood U of q0 in bṪ ∗X is such that

(6.6) q ∈ U and η(q) < 0⇒ q /∈WF1,s
b (u),

then we can still conclude that q0 /∈WF1,s
b (u).

Remark 6.3. Note that η(q) < 0 implies x 6= 0, and so q /∈ T ∗F .

Remark 6.4. We recall that every conic neighborhood U of

q0 = (y0, t0, ζ0, τ0) ∈ H ∩ T ∗Freg

in Σ̇ contains an open set of the form

(6.7) {q : |x(q)|2 + |y(q)− y0|2 + |t(q)− t0|2 + |ζ̂(q)− ζ̂0|2 < δ},

ζ̂ = ζ
τ . Note also that (6.5) implies the same statement with U replaced by

any smaller neighborhood of q0, in particular, for the set (6.7), provided that
δ is sufficiently small. We can also assume that WF−1,∞

b (Pu) ∩ U = ∅.

Proof. As in Proposition 4.6 we use an inductive argument to show
that q0 /∈ WF1,s

b (u), provided that q0 /∈ WF1,s−1/2
b (u); again the inductive

hypothesis holds for s = 1/2 since u ∈ H1
loc(X). Because of Lemma 6.1,

we only need to show that for some B ∈ Ψs+1
b (X) with σb,s+1(B)(q0) 6= 0,

Bu ∈ L2(X).
Below we fix a small neighborhood U0 of q0 such that U0 is inside a coor-

dinate neighborhood of q0 and WF−1,∞
b (Pu) ∩ U0 = ∅.

The key is to construct an operator A with WF′b(A) ⊂ U and i[A∗A,P ]
positive, modulo terms that we can estimate by the a priori assumptions,
namely those on Pu and those on WFb(u), summarized in (6.5) above. Thus,
we do not need to make the commutator positive in η < 0, and also ‘away
from Char(P )’, although the latter is a moral statement as the locus of the
microlocalization is bT ∗X \ o, not T ∗X \ o. Our A will in fact be formally self-
adjoint modulo lower order operators, and we only take A∗A to avoid having
to comment on the subprincipal terms.
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The main technical problem below is that P does not lie in Ψb(X), so
we cannot simply use the symbol calculus on Ψb(X): we need to write out
various expressions semi-explicitly as elements of Diff Ψb(X). On the other
hand, while Ψb(X) is the locus of the microlocalization, at the level of the
symbol calculus one can rely on standard ps.d.o’s on an extension X̃ of X, i.e.
work with symbols on T ∗X. This has the advantage that p is a symbol on
T ∗X, as is the pull-back of symbols on bT ∗X via π, so one can calculate their
Poisson bracket, etc. However, it is not trivial to make this into a technically
useful computation, since we need to control various expression in Diff Ψb(X).
In order to make the argument more digestible, we start with a symbol con-
struction, and do a formal commutator computation in Ψ(X̃) (in fact, we will
ignore that we need an extension X̃ here and write ‘Ψ(X)’ at times) to show
why the constructed symbol should be useful, and then give the actual proof.

We construct the symbol of A in a few steps. The two main ingredients
are a homogeneous degree zero function that is increasing along the Hamilton
flow, which will be η, and a homogeneous degree zero function ω on a conic
neighborhood of q0 in bT ∗X\o that roughly measures the square of the distance
from q0 in bṪ ∗X (modulo the R+-action). Note that ω can also be regarded
as a function on a subset of bS∗X, if desired. Thus, we let

(6.8) ω(q) = |x(q)|2 + |y(q)− y0|2 + |t(q)− t0|2 + |ζ̂(q)− ζ̂0|2,

|.| denoting the Euclidean norm, and ζ̂ = ζ
τ as above. Then ω vanishes quadrat-

ically at q0, in fact is a sum of squares, so |dω| ≤ C ′1ω1/2, and in particular

(6.9) |τ−1Hpω| ≤ C ′′1ω1/2.

Were we merely using the symbol calculus for Ψb(X) or ‘Ψ(X)’, this is all that
would matter. Since this is not the case, we need, more explicitly,

τ−1Hpω= f0 +
∑
i

fiτ
−1ξi +

∑
i,j

fijτ
−2ξiξj ,(6.10)

fi, fij ∈ C∞(bT ∗X), |fi|, |fij | ≤ C1ω
1/2,

where fi, fij are homogeneous of degree 0, which follows from (6.3).
Next, we use the variable η = −x·ξ

|τ | to measure propagation. Since

η = −x · ξ
|τ |

= −
∑
j

σj |τ |−1,

η is a homogeneous degree zero C∞ function on a conic neighborhood of q0 in
bT ∗X \ o; hence it (or more precisely its pullback by π) is a C∞, π-invariant
function on T ∗X. This function indeed measures the flow along bicharacteris-
tics near q0 since at points q̃0 in π̂−1({q0}), where thus p = 0,

(6.11) |τ |Hpη(q̃0) = τ2
0 − |ζ0|2y0 = c0τ

2
0 > 0,
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due to (6.4), where we used that q0 ∈ H. Again, if we could use ‘Ψ(X)’, all
we would need is that |τ |Hpη > c0τ

2/2 > 0 on U0, which is automatic if the
neighborhood U0 is small enough. Now, however, we need the more explicit
expression

|τ |−1Hpη = τ−2(2τ2 − 2|ζ|2 − 2p) + g0 +
∑
i

ξiτ
−1gi +

∑
i,j

gijτ
−2ξiξj ,

gi, gij ∈ C∞(bT ∗X), |gi|, |gij | ≤ C1ω
1/2,

where gi, gij are homogeneous of degree 0, which again follows from (6.3) and
(6.8) (which allows to estimate factors like xk in terms of ω1/2).

We are now ready to define the symbol a of A. For ε > 0, δ > 0, with
other restrictions to be imposed later on, let

(6.12) φ = η +
1
ε2δ

ω,

so that φ is a homogeneous degree zero C∞ function on a conic neighborhood
of q0 in bT ∗X \ o; we can again regard it as a π-invariant function on T ∗X \ o.
(Here ε−2 plays the role of β in the analogous – normal – propagation estimate
of [24].)

Let χ0 ∈ C∞(R) be equal to 0 on (−∞, 0] and χ0(t) = exp(−1/t) for t > 0.
Thus, χ′0(t) = t−2χ0(t). Let χ1 ∈ C∞(R) be 0 on (−∞, 0], 1 on [1,∞), with
χ′1 ≥ 0 satisfying χ′1 ∈ C∞c ((0, 1)). Finally, let χ2 ∈ C∞c (R) be supported in
[−2c1, 2c1], identically 1 on [−c1, c1], where c1 is such that |σ|2/τ2 < c1/2 in
Σ̇ ∩ U0. Thus, χ2(|σ|2/τ2) is a cutoff in |σ|/|τ |, with its support properties
ensuring that dχ2(|σ|2/τ2) is supported in |σ|2/τ2 ∈ [c1, 2c1], hence outside Σ̇.
It should be thought of as a factor that microlocalizes near the characteristic
set but effectively commutes with P . Then, for A0 > 0 large, to be determined,
let

(6.13) a = χ0(A−1
0 (2− φ/δ))χ1(η/δ + 2)χ2(|σ|2/τ2);

so a is a homogeneous degree zero C∞ function on a conic neighborhood of q0

in bT ∗X. Indeed, as we see momentarily, for any ε > 0, a has compact support
inside this neighborhood (regarded as a subset of bS∗X, i.e. quotienting out
by the R+-action) for δ sufficiently small; so in fact it is globally well-defined.
In fact, on supp a we have φ ≤ 2δ and η ≥ −2δ. Since ω ≥ 0, the first of these
inequalities implies that η ≤ 2δ, so that on supp a

(6.14) |η| ≤ 2δ.

Hence,

(6.15) ω ≤ ε2δ(2δ − η) ≤ 4δ2ε2.

In view of (6.8) and (6.7), this shows that for any ε > 0, a is supported in U ,
provided δ > 0 is sufficiently small. The role that A0 large plays is that it
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increases the size of the first derivatives of a relative to the size of a, hence it
allows us to give a bound for a in terms of a small multiple of its derivative
along the Hamilton vector field. This is crucial as we need to deal with weight
factors, such as |τ |s+1/2 in the next paragraph, if the weight factors do not
commute with P . In this case, they can be arranged to commute (at least
microlocally, which suffices), so we could eliminate A0, but its presence is
helpful if one is to weaken the assumptions on the structure of P .

This is the point where the technical argument needs significantly more
details than the motivational one. So we start with the motivation. Thus, by
(6.9), (6.15),

|τ |−1Hpφ = |τ |−1Hpη + |τ |−1 1
ε2δ

Hpω≥ c0/2−
1
ε2δ

C ′′1ω
1/2

≥ c0/2− 2C ′′1 ε
−1 ≥ c0/4 > 0

provided that ε > 8C′′1
c0

, i.e. that ε is not too small. We fix some such ε for the
rest of the arguments in this paragraph, and then we will take δ > 0 sufficiently
small. With this,

Hpa
2 = −b2 + e, b = |τ |1/2(2|τ |−1Hpφ)1/2(A0δ)−1/2(χ0χ

′
0)1/2χ1χ2,

with e arising from the derivative of χ1χ2. Here χ0 stands for χ0(A−1
0 (2− φ

δ )),
etc. Since η < 0 on supp dχ1 while supp dχ2 is disjoint from the characteristic
set, both being regions disjoint from WFb(u), i[A∗A,P ] is positive modulo
terms that we can a priori control, so the standard positive commutator ar-
gument gives an estimate for Bu, where B has symbol b. Replacing a by
a|τ |s+1/2, we still have a positive commutator (in this case τ , or rather Dt,
actually commutes with P , but in any case we could use A0 to bound the addi-
tional commutator term), which now gives (with the new B) that Bu ∈ L2(X),
which means in particular that q0 /∈WF1,s

b (u).
This argument is of course very imprecise. The technically correct version

is the following. First, for ε, δ > 0 still to be determined (i.e. ε is not yet fixed;
the previous paragraph was motivational only),

(6.16)

|τ |−1Hpφ= |τ |−1Hpη +
1
ε2δ
|τ |−1Hpω

=−2pτ−2 + τ−2(2τ2 − 2|ζ|2y) + g0 +
∑
i

τ−1ξigi +
∑
ij

τ−2ξiξjgij

+
1
ε2δ

(
f0 +

∑
ξiτ
−1fi +

∑
τ−2ξiξjgij

)
.

Let B̃ ∈ Ψ1/2
b (X) with

(6.17) b̃ = σb,1/2(B̃) = |τ |1/2(A0δ)−1/2(χ0χ
′
0)1/2χ1χ2 ∈ C∞(bT ∗X \ o),
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and let A ∈ Ψ0
b(X) with σb,0(A) = a. Again, χ0 stands for χ0(A−1

0 (2 − φ
δ )),

etc. Also, let C ∈ Ψ0
b(X) have symbol σb,0(C) = |τ |−1(2τ2 − 2|ζ|2y)1/2ψ where

ψ ∈ S0(bT ∗X) is identically 1 on U considered as a subset of bT ∗X. Then an
explicit calculation using Lemma 2.8 and P = D2

t −∆,

∆ =
∑
i,j

Aij(x, y)Dxi
Dxj

+
∑
i,j

2Cij(x, y)Dxi
Dyj

+
∑
i,j

Bij(x, y)Dyi
Dyj

+ P1,

P1 ∈ Diff1(X), gives, in accordance with (6.16),

(6.18) i[A∗A,P ]

= R′P + B̃∗
(
C∗C +R0 +

∑
i

Dxi
Ri +

∑
ij

Dxi
RijDxj

)
B̃ +R′′ + E + E′

with

R0 ∈Ψ0
b(X), Ri ∈ Ψ−1

b (X), Rij ∈ Ψ−2
b (X),

R′ ∈Ψ−1
b (X), R′′ ∈ Diff2 Ψ−2

b (X), E,E′ ∈ Diff2 Ψ−1
b (X),

with WF′b(E) ⊂ η−1((−∞,−δ]) ∩ U , WF′b(E′) ∩ Σ̇ = ∅ (E arises from the
commutator of P with an operator with symbol χ1(η/δ + 2), while E′ from
the commutator of P with an operator with symbol χ2(|σ|2/τ2)) and with
r0 = σb,0(R0), ri = σb,−1(Ri), rij ∈ σb,−2(Rij),

|r0| ≤ C2

(
1 +

1
ε2δ

)
ω1/2, |τri| ≤ C2

(
1 +

1
ε2δ

)
ω1/2, |τ2rij | ≤ C2

(
1 +

1
ε2δ

)
ω1/2,

and supp rj lying in ω ≤ 9δ2ε2. Thus,

|r0| ≤ 3C2(δε+ ε−1), |τri| ≤ 3C2(δε+ ε−1), |τ2rij | ≤ 3C2(δε+ ε−1).

Having calculated the commutator, we proceed to estimate the ‘error
terms’ R0, Ri, Rij as operators. We start with R0. As follows from the
standard square root construction to prove the boundedness of ps.d.o’s on L2,
there exists R′0 ∈ Ψ−1

b (X) such that

‖R0v‖ ≤ 2 sup |r0| ‖v‖+ ‖R′0v‖

for all v ∈ L2(X). Here ‖ · ‖ is the L2(X)-norm, as usual. Thus, we can
estimate, for any γ > 0,

|〈R0v, v〉| ≤ ‖R0v‖ ‖v‖ ≤ 2 sup |r0| ‖v‖2 + ‖R′0v‖ ‖v‖
≤ 6C2(δε+ ε−1)‖v‖2 + γ−1‖R′0v‖2 + γ‖v‖2.

Now we turn to Ri. Let T ∈ Ψ−1
b (X) be elliptic (which we use to keep

track of the orders of ps.d.o’s), T− ∈ Ψ1
b(X) a parametrix, so T−T = Id +F ,

F ∈ Ψ−∞b (X). Then there exist R′i ∈ Ψ−1
b (X) such that

‖Riw‖ = ‖Ri(T−T − F )w‖≤‖(RiT−)(Tw)‖+ ‖RiFw‖
≤ 6C2(δε+ ε−1)‖Tw‖+ ‖R′iTw‖+ ‖RiFw‖
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for all w with Tw ∈ L2(X). Similarly, there exist R′ij ∈ Ψ−1
b (X) such that

‖(T−)∗Rijw‖ ≤ 6C2(δε+ ε−1)‖Tw‖+ ‖R′ijTw‖+ ‖(T−)∗RijFw‖

for all w with Tw ∈ L2(X). Thus,

|〈RiDxi
v, v〉| ≤ 6C2(δε+ ε−1)‖TDxi

v‖ ‖v‖
+2γ‖v‖2 + γ−1‖R′iTDxi

v‖2 + γ−1‖FiDxi
v‖2.

Writing Dxj
v = T−Tv − Fv in the right factor, and taking the adjoint of T−,

we have

|〈RijDxi
v,Dxj

v〉| ≤ 6C2(δε+ ε−1)‖TDxi
v‖ ‖TDxj

v‖
+2γ‖TDxj

v‖2 + γ−1‖R′ijTDxi
v‖2 + γ−1‖FijDxi

v‖2

+‖RijDxi
v‖ ‖FDxj

v‖,

with Fi, Fij ∈ Ψ−∞b (X).
Let Λr have symbol (recall that s ≥ 1/2)

(6.19) |τ |s+1/2(1 + r|τ |2)−s, r ∈ [0, 1),

so that Ar = AΛr ∈ Ψ0
b(X) for r > 0 and it is uniformly bounded in Ψs+1/2

bc (X).
In similar constructions, in general, the commutator [P,Λr] can be controlled
by the other terms using A0 for A0 large; in the present setting [P,Λr] = 0.

Now, by (6.18),

(6.20)

〈i[A∗rAr, P ]u, u〉= ‖CB̃Λru‖2 + 〈R′PΛru,Λru〉+ 〈R0B̃Λru, B̃Λru〉
+
∑
〈RiDxi

B̃Λru, B̃Λru〉+
∑
〈RijDxi

B̃Λru,Dxj
B̃Λru〉

+〈R′′Λru,Λru〉+ 〈(E + E′)Λru,Λru〉

On the other hand, as Ar ∈ Ψ0
b(X) for r > 0 and u ∈ H1

0 (X), so A∗rAru ∈
H1

0 (X),

〈[A∗rAr, P ]u, u〉= 〈A∗rArPu, u〉 − 〈PA∗rAru, u〉(6.21)

= 〈ArPu,Aru〉 − 〈Aru,ArPu〉 = 2i Im〈ArPu,Aru〉;

then the pairing makes sense for r > 0 since Ar ∈ Ψ0
b(X).

Assume for the moment that WF−1,s+3/2
b (Pu)∩U = ∅; this is certainly the

case in our setup if q0 /∈WF−1,∞
b (Pu), but this assumption is a little stronger

than q0 /∈ WF−1,s+1
b (Pu), which is what we need to assume for the second

paragraph in the statement of Proposition 6.2. We deal with the weakened
hypothesis q0 /∈ WF−1,s+1

b (Pu) at the end of the proof. Returning to (6.21),
the utility of the commutator calculation is that we have good information
about Pu (this is where we use that we have a microlocal solution of the
PDE!). Namely, we estimate the right-hand side as
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|〈ArPu,Aru〉| ≤ |〈(T−)∗ArPu, TAru〉|+ |〈ArPu, FAru〉|(6.22)

≤‖(T−)∗ArPu‖H−1(X)‖TAru‖H1(X)

+‖ArPu‖H−1(X)‖FAru‖H1(X).

Since (T−)∗Ar is uniformly bounded in Ψs+3/2
bc (X), TAr is uniformly bounded

in Ψs−1/2
bc (X), both with WF′b in U , with WF−1,s+3/2

b (Pu), resp. WF1,s−1/2
b (u)

disjoint from them, we deduce (using Lemma 3.13 and its H−1 analogue) that
|〈(T−)∗ArPu, TAru〉| is uniformly bounded. Similarly, taking into account
that FAr is uniformly bounded in Ψ−∞b (X), we see that |〈ArPu, FAru〉| is also
uniformly bounded, so that |〈ArPu,Aru〉| is uniformly bounded for r ∈ (0, 1].
Similarly, |〈R′PΛru,Λru〉| is uniformly bounded for r ∈ (0, 1].

Thus, for some C3 > 0 depending only on the dimension of X (via the
number of terms),

(6.23)

‖CB̃Λru‖2≤ 2|〈ArPu,Aru〉|+ |〈(E + E′)Λru,Λru〉|+ |〈R′PΛru,Λru〉|
+
(
6C2(δε+ ε−1) + C3γ

)
‖B̃Λru‖2 + γ−1‖R′0B̃Λru‖2

+6C2(δε+ ε−1)‖B̃Λru‖
∑
i

‖TDxi
B̃Λru‖

+γ−1
∑
i

‖TR′iDxi
B̃Λru‖2 + γ‖B̃Λru‖2

+
(
6C2(δε+ ε−1) + C3γ

)∑
i

‖TDxi
B̃Λru‖2

+γ−1
∑
ij

‖R′ijTDxi
B̃Λru‖2

+γ−1
∑
i

‖FiDxi
B̃Λru‖2 + γ−1

∑
ij

‖FijDxi
B̃Λru‖2

+
∑
ij

‖RijDxi
B̃Λru‖ ‖FDxj

B̃Λru‖.

All terms but the ones involving C2 or γ (not γ−1) remain bounded as r → 0.
The C2 and γ terms can be estimated by writing TDxi

= Dxi
T ′i +T ′′i for some

T ′i , T
′′
i ∈ Ψ−1

b (X), and using Lemma 4.2 (in the form (6.1)) where necessary.
We further estimate ‖B̃Λru‖ in terms of ‖CB̃Λru‖ and ‖u‖H1

loc(X) using that
C is elliptic on WF′b(B). We conclude, by taking ε sufficiently large, then γ, δ0

sufficiently small, that there exist γ > 0, ε > 0, δ0 > 0 and C4 > 0, C5 > 0
such that for δ ∈ (0, δ0),

C4‖B̃Λru‖2≤ 2| Im〈ArPu,Aru〉|+ |〈(E + E′)Λru,Λru〉|+ |〈R′PΛru,Λru〉|
+γ−1‖R′0B̃Λru‖2 + C5γ

−1‖dXT 2B̃Λru‖2

+C5(‖u‖H1
loc(X) + ‖Pu‖H−1

loc (X)).
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Letting r → 0 now keeps the right-hand side bounded, proving that ‖B̃Λru‖
is uniformly bounded as r → 0, hence B̃Λ0u ∈ L2(X) (cf. the proof of
Proposition 4.6). In view of Lemma 4.2 (in the form (6.1)) this proves that
q0 /∈WF1,s

b (u), and hence proves the first statement of the proposition.
In fact, recalling that we needed q0 /∈ WF−1,s+3/2

b (Pu) for the uniform
boundedness in (6.22), this proves a slightly weaker version of the second state-
ment of the proposition with WF−1,s+1

b (Pu) replaced by WF−1,s+3/2
b (Pu). For

the more precise statement we modify (6.22); this is the only term in (6.23)
that needs modification to prove the optimal statement. Let T̃ ∈ Ψ−1/2

b (X)
be elliptic, T̃− ∈ Ψ1/2

b (X) a parametrix, F̃ = T̃−T̃ − Id ∈ Ψ−∞b (X). Then,
similarly to (6.22), we have for any γ > 0,

|〈ArPu,Aru〉| ≤ |〈(T̃−)∗ArPu, T̃Aru〉|+ |〈ArPu, F̃Aru〉|(6.24)

≤ γ−1‖(T̃−)∗ArPu‖2H−1(X) + γ‖T̃Aru‖2H1(X)

+‖ArPu‖H−1(X)‖F̃Aru‖H1(X).

The last term on the right-hand side can be estimated as before. As (T̃−)∗Ar
is bounded in Ψs+1

bc (X) with WF′b disjoint from U , we see that
‖(T̃−)∗ArPu‖H−1(X) is uniformly bounded. Moreover, ‖dX T̃AΛru‖2 can be es-
timated, using Lemma 4.2 (in the form (6.1)), by ‖DtT̃AΛru‖2 modulo terms
that are uniformly bounded as r → 0. The principal symbol of DtT̃A is
τσb,−1/2(T̃ )a, with a = χ0χ1χ2, where χ0 stands for χ0(A−1

0 (2 − φ
δ )), etc.,

while the principal symbol b̃ of B̃ is given by (6.17), so we can write:

|τ |1/2a= |τ |1/2χ0χ1χ2

=A−1
0 (2− φ/δ)|τ |1/2(χ0χ

′
0)1/2χ1χ2 = A

−1/2
0 δ1/2(2− φ/δ)b̃,

where we used that

χ′0(A−1
0 (2− φ/δ)) = A2

0(2− φ/δ)−2χ0(A−1
0 (2− φ/δ))

when 2 − φ/δ > 0, while a, b̃ vanish otherwise. Correspondingly, as
|τ |1/2σb,−1/2(T̃ ) is C∞, homogeneous degree zero, near the support of a in
bT ∗X \ o, we can write DtT̃A = GB̃ + F , G ∈ Ψ0

b(X), F ∈ Ψ−1/2
b (X).

Correspondingly, modulo terms that are bounded as r → 0, ‖DtT̃AΛru‖2
(hence ‖dX T̃AΛru‖2) can be estimated from above by C6‖B̃Λru‖2. Thus,
modulo terms that are bounded as r → 0, for γ > 0 sufficiently small,
γ‖T̃Aru‖2H1(X) can be absorbed into ‖CB̃Λru‖2. As the treatment of the
other terms on the right-hand side of (6.23) requires no change, we deduce as
above that B̃Λ0u ∈ L2(X), which (in view of Lemma 4.2 and (6.1)) proves
that q0 /∈WF1,s

b (u), completing the proof of the iterative step.
We need to make one more remark to prove the proposition for WF1,∞

b (u),
namely we need to show that the neighborhoods of q0 which are disjoint from
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WF1,s
b (u) do not shrink uncontrollably to {q0} as s → ∞. This argument

parallels the last paragraph of the proof of [4, Prop. 24.5.1]. In fact, note
that above we have proved that the elliptic set of B̃ = B̃s is disjoint from
WF1,s

b (u). In the next step, when we are proving q0 /∈ WF1,s+1/2
b (u), we

decrease δ > 0 slightly (by an arbitrary small amount), thus decreasing the
support of a = as+1/2 in (6.13), to make sure that supp as+1/2 is a subset
of the elliptic set of the union of B̃s with the region η < 0, and hence that
WF1,s

b (u) ∩ supp as+1/2 = ∅. Each iterative step thus shrinks the elliptic set
of B̃s by an arbitrarily small amount, which allows us to conclude that q0 has
a neighborhood U ′ such that WF1,s

b (u) ∩ U ′ = ∅ for all s. This proves that
q0 /∈ WF1,∞

b (u), and indeed that WF1,∞
b (u) ∩ U ′ = ∅, for if A ∈ Ψm

b (X) with
WF′b(A) ⊂ U ′ then Au ∈ H1(X) by Lemma 3.9 and Corollary 3.11.

Again, this can be modified to allow Neumann boundary conditions.
Namely, rather than consider [A∗rAr, P ], we work directly with the quadratic
form; see (4.8). Thus, writing w = (x, y, t) and g̃ for the semi-Riemannian
metric g − dt2, while J dw is the volume form of g + dt2, and 〈·, ·〉 is the
corresponding inner product on L2(X), (4.8) shows that

〈A∗rAru, f〉 − 〈f,A∗rAru〉=
∑
ij

〈g̃ijDwi
u,Dwj

A∗rAru〉(6.25)

−
∑
ij

〈g̃ijDwi
A∗rAru,Dwj

u〉.

Then the replacement of (6.21) is achieved by expanding the right-hand side:∑
ij

〈g̃ijDwi
u,Dwj

A∗rAru〉 −
∑
ij

〈g̃ijDwi
A∗rAru,Dwj

u〉(6.26)

=
∑
ij

〈g̃ijDwi
u, [Dwj

, A∗rAr]u〉+
∑
ij

〈g̃ijDwi
u,A∗rArDwj

u〉

−
∑
ij

〈[g̃ijDwi
, A∗rAr]u,Dwj

u〉 −
∑
ij

〈A∗rArg̃ijDwi
u,Dwj

u〉

=
∑
ij

〈g̃ijDwi
u, [Dwj

, A∗rAr]u〉 −
∑
ij

〈[g̃ijDwi
, A∗rAr]u,Dwj

u〉;

the second and fourth terms in the middle cancel as A∗rAr is symmetric. If
there were no boundary present, i.e. if ∂X = ∅, we could of course write the
right-hand side as

−
∑
ij

〈([D∗wj
, A∗rAr]g̃

ijDwi
+D∗wj

[g̃ijDwi
, A∗rAr])u, u〉

= 〈[D2
t −∆, A∗rAr]u, u〉.
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Formally this is indeed the same commutator as the one considered in (6.21).
The actual expression, the right-hand side of (6.26), can be analyzed much as in
the Dirichlet problem, when Lemma 2.8 is used to compute the commutators.

To illustrate the form that (6.25) takes, replace A∗rAr by A∗A temporarily,
now σb,0(A∗A) = a2. Thus, by Lemma 2.8, up to terms of similar form with
vanishing symbol at x = 0, y = y0, t = t0, the right-hand side of (6.25) is, 1

i

times, ∫ ∑
ij

gijDxi
u C̃Dxj

uJ dw +
∫ ∑

ij

gijC̃Dxi
uDxj

uJ dw,

where the summation is only over the coordinates vanishing at the corner
(i.e. x1, . . . , xk), and C̃ ∈ Ψ−1

b (X) with σb,−1(C̃) = |τ |−1(A0δ)−1χ0χ
′
0χ

2
1χ

2
2; cf.

(6.17) and the sentence afterwards. We can subtract this from the PDE (which
corresponds to restriction to the characteristic set of P , or allowing the term
R′P in (6.18)), considered in the form∫ ∑

ij

g̃ijDwi
uDwj

C̃u J dw +
∫ ∑

ij

g̃ijDwi
C̃uDwj

uJ dw,

plus terms involving f . Now, we commute the C through the Dwi
, Dwj

(the
commutators are lower order in terms of b-differential order, so we ignore
them), to obtain an expression for∫ ∑

ij

gijDȳi
u C̃Dȳj

uJ dw +
∫ ∑

ij

gijC̃Dȳi
uDȳj

uJ dw,

ȳ = (y, t) as usual. Shifting the tangential derivatives Dȳi
over and rearranging

we get (modulo lower order terms), B̃ as in (6.17), and C also as there,∫
CB̃uCB̃u J dw = ‖CB̃u‖2.

The neglected error terms can be treated much as in the Dirichlet problem,
giving the desired positivity estimate.

7. Glancing points

We again need a technical lemma, roughly stating that when applied to
solutions of Pu = 0, u ∈ H1

0 (X), microlocally near G, Dxi
is not merely

bounded by Dt, but Dxi
is small compared to Dt. Such an estimate is natural

since p|x=0 = τ2−|ξ|2y−|ζ|2y gives τ−2|ξ|2 ≤ C(τ−2|p|+ |x|+ |1− τ−2|ζ|2y|), and
1− τ−2|ζ|2y is homogeneous of degree zero and vanishes at G; so the right-hand
side is small near G. Below, a δ-neighborhood refers to a δ-neighborhood with
respect to the metric associated to any Riemannian metric on the manifold
bT ∗X, and we identify bS∗X as the unit ball bundle with respect to some fibre
metric on bT ∗X.
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Lemma 7.1. Suppose u ∈ H1
0,loc(X), k is fixed, and suppose that we are

given K ⊂ bS∗X compact satisfying

K ⊂ G ∩ T ∗Fk,reg \WF−1,s+1/2
b (Pu).

Then there exist δ0 > 0 and C0 > 0 with the following property. Let δ < δ0,
U ⊂ bS∗X open in a δ-neighborhood of K, and A = {Ar : r ∈ (0, 1]} be
a bounded family of ps.d.o’s in Ψs

bc(X) with WF′b(A) ⊂ U , and with Ar ∈
Ψs−1

b (X) for r ∈ (0, 1].
Then there exist G ∈ Ψs−1/2

b (X), G̃ ∈ Ψs+1/2
b (X) with WF′b(G),WF′b(G̃)

⊂ U and C̃0 = C̃0(δ) > 0 such that for all r > 0,∑
i

‖Dxi
Aru‖2≤C0δ‖DtAru‖2

+C̃0

(
‖u‖2H1

loc(X)+‖Gu‖2H1(X)+‖Pu‖2
H−1

loc (X)
+‖G̃Pu‖2H−1(X)

)
.

The meaning of ‖u‖H1
loc(X) and ‖Pu‖2

H−1
loc (X)

is stated in Remark 4.1.

Remark 7.2. As K is compact, this is essentially a local result. In particu-
lar, we may assume that K is a subset of bT ∗X over a suitable local coordinate
patch. Moreover, we may assume that δ0 > 0 is sufficiently small so that Dt is
elliptic on U .

Proof. By Lemma 4.2 and (6.1), applied with K replaced by WF′b(A) in
the hypothesis (note that the latter is compact), we already know that

‖dXAru‖2 ≤‖DtAru‖2

+ C ′0

(
‖u‖2H1

loc(X) + ‖Gu‖2H1(X) + ‖Pu‖2
H−1

loc (X)
+ ‖G̃Pu‖2H−1(X)

)
.

(7.1)

for some C ′0 > 0 and for some G, G̃ as in the statement of the lemma. Thus, we
only need to show that if we replace the left-hand side by

∑
i ‖Dxi

Aru‖2 (i.e.
we drop the tangential derivatives, at least roughly speaking), the constant in
front of ‖DtAru‖2 can be made small.

As a first step, we freeze the coefficients at Fk, i.e. replace Aij(x, y), etc.,
by Aij(0, y). Writing Aij(x, y) = Aij(0, y) +

∑
xlA

′
ijl(x, y) as in the proof of

Proposition 4.6, we deduce that if the operators Ar are supported in |x| < δ,
then (4.5) holds; i.e.,∣∣∣ ∫

X

∑
xlA

′
ijlDxi

AruDxj
Aru

∣∣∣ ≤ Cδ∑
i′,j′

‖Dxi′Aru‖ ‖Dxj′Aru‖.

Analogous estimates also hold whenAij(x, y)−Aij(0, y) is replaced byBij(x, y)−
Bij(0, y) or Cij(x, y). Combined with (7.1) above, this gives that
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X

(∑
ij

Aij(0, y)Dxi
AruDxj

Aru+
∑
ij

Bij(0, y)Dyi
AruDyj

Aru
)

≤ (1 + C1δ)‖DtAru‖2

+ C ′′0 (‖u‖2H1
loc(X) + ‖Gu‖2H1(X) + ‖Pu‖2

H−1
loc (X)

+ ‖G̃Pu‖2H−1(X)),

and hence, after rearrangement, that∫
X

∑
ij

Aij(0, y)Dxi
AruDxj

Aru

≤
∫
X

(
(D2

t −
∑

Bij(0, y)Dyi
Dyj

)AruAru
)

+ C1δ‖DtAru‖2

+C ′′0
(
‖u‖2H1

loc(X) + ‖Gu‖2H1(X) + ‖Pu‖2
H−1

loc (X)
+ ‖G̃Pu‖2H−1(X)

)
.

It thus suffices to prove that

(7.2)
∣∣∣ ∫

X

((
D2
t −

∑
Bij(0, y)Dyi

Dyj

)
AruAru

)∣∣∣
≤ C2δ‖DtAru‖2 + C̃2(δ)

(
‖u‖2H1

loc(X) + ‖Gu‖2H1(X)

)
,

which we proceed to do.
Let ψ ∈ C∞(bS∗X) (which can thus be identified with a homogeneous

degree zero function on bT ∗X \ o) with ψ ≡ 1 near WF′b(A), suppψ ⊂ U ,
|ψ| ≤ 1, and let F ∈ Ψ0

b(X) be such that

WF′b(F ) ⊂ U, WF′b
(
DtFDt − (D2

t −
∑

BijDyi
Dyj

)
)
∩WF′b(A) = ∅(7.3)

f = σb,0(F ) = ψ
(

1− τ−2
∑

Bijζiζj

)
.

Such ψ and F exist, since Dt is elliptic on WF′b(A). Now,∣∣∣∣∫
X

((
DtFDt −

(
D2
t −

∑
Bij(0, y)Dyi

Dyj

))
AruAru

)∣∣∣∣ ≤ C ′2‖u‖2H1
loc(X)

since (DtFDt− (D2
t −
∑
BijDyi

Dyj
))Ar is uniformly bounded in Ψ−∞b (X), by

the first line of (7.3). Moreover,

sup |f | ≤ C3δ

since |1 − τ−2
∑
Bijζiζj | < C3δ on a δ-neighborhood of K. Indeed, 1 −

τ−2
∑
Bijζiζj is a homogeneous degree zero C∞ function on a neighborhood

of K in bT ∗X (hence C∞ near K in bS∗X) which vanishes at G ∩ T ∗Fk. Since
there exists F ′ ∈ Ψ−1

b (X) with WF′b(F ′) ⊂ U satisfying

‖Fv‖ ≤ 2 sup |f | ‖v‖+ ‖F ′v‖

for all v ∈ L2(X), we deduce that ‖Fv‖ ≤ 2C3δ‖v‖+ ‖F ′v‖ for all v ∈ L2(X).
Applying this with v = DtAru, and estimating ‖F ′v‖ using Lemma 3.13, (7.2)
follows, which in turn completes the proof of the lemma.
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We are now ready to state and prove the tangential propagation estimate.
First, local coordinates (x, y, t) near p ∈ Fi,reg give a product decomposition of
a neighborhood of p ∈ Fi,reg in X of the form U × V , U ⊂ [0,∞)k, V ⊂ Rl+1

(where k is the codimension of Fi in X), hence of T ∗X as T ∗U × T ∗V . We
denote the projection T ∗X → T ∗V by πei . Explicitly, in local coordinates
(x, y, t, ξ, ζ, τ) on T ∗X,

πei (x, y, t, ξ, ζ, τ) = (y, t, ζ, τ).

Since πi : T ∗Fi,reg
X → bṪ ∗X is the restriction of π to T ∗Fi,reg

X, πei is an extension
of πi in the sense that πei |T ∗Fi,reg

X∩(T ∗U×T ∗V ) = πi. The tangential propagation
estimate is then the following:

Proposition 7.3. Let u ∈ H1
0,loc(X). Given K ⊂ bS∗X compact with

(7.4) K ⊂ (G ∩ T ∗Fi,reg) \WF−1,∞
b (Pu),

there exist constants C0 > 0, δ0 > 0 such that the following holds. If q0 =
(y0, t0, ζ0, τ0) ∈ K and for some 0 < δ < δ0, C0δ ≤ ε < 1 and for all α =
(x, y, t, ξ, ζ, τ) ∈ Char(P )

α ∈ T ∗Fj,reg
X and |πei (α− exp(−δHp)(π̂−1(q0)))| ≤ εδ and |x(α)| ≤ εδ(7.5)

⇒ πj(α) /∈WFb(u),

then q0 /∈WFb(u). Here recall that π̂ = π|Char(P ).

Remark 7.4. In the estimate (7.5), Hp can be replaced by any C∞ vector
field which agrees with Hp at the point π̂−1(q0), since flow to distance δ along
a vector field only depends on the vector field evaluated at the initial point of
the flow, up to committing an error O(δ2). In particular, it can be replaced
by the vector field W [ defined below. Similarly, changing the initial point of
the flow by O(δ2) will not affect the endpoint up to an error O(δ2). Thus,
estimate (7.5) can be further rewritten, at the cost of changing C0 again, as

(7.6)

α ∈ T ∗Fj,reg
X and |πei (exp(δW [)(α))− ξ0| ≤ εδ and |x(exp(δW [)(α))| ≤ εδ
⇒ πj(α) /∈WFb(u);

here we also interchanged the roles of the intial and final points of the flow.

Proof. The proof is very similar to the previous one and now the positive
commutator construction follows that of Melrose and Sjöstrand [13], as well as
[24] in N -body scattering without bound states. Thus, we take local coordi-
nates as above, i.e. of the form (x, y, t) with the Fj intersecting the coordinate
neighborhood defined by the vanishing of components of x. We can use t− t0
now to measure propagation, since τ−1Hp(t − t0) = 2 > 0. More precisely, to
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allow for both signs of τ and yet keep the sign of the derivative along Hp fixed,
we need to take

η̃ = (sign τ)(t− t0)

as the propagation variable, so that |τ |−1Hpη̃ = 2. However, for the sake of
notational simplicity and clarity, we take τ0 > 0, and make all symbols below
supported in τ > 0 – the general setting only requires replacing t− t0 by η̃ in
(7.11) below.

Then we could construct ω0 ∈ C∞(T ∗Fi) (defined near q0) to measure the
squared distance from the integral curve of

(7.7) W [ = 2τ∂t −Hh, h(y, ζ) = ζ ·B(y)ζ

through q0; this can be achieved by solving a Cauchy problem as in [13], [24].
In fact, this does not need to be done precisely – after all, W [ is only an
approximation to Hp in the very first place. Thus, all we need is for ω0 to be
the sum of squares of 2l homogeneous degree zero functions ρj :

ω0 =
2l∑
j=1

ρ2
j , W

[ρj(q0) = 0, ρj(q0) = 0,

dρj(q0), j = 1, . . . , 2l, linearly independent at q0. Since dimFj = l+1, dρj(q0),
j = 1, . . . , 2l, together with dt (t is also homogeneous degree zero), span the
cotangent space of the quotient of T ∗Fi by the R+-action, for dimensional
reasons (note that W [t(q0) 6= 0). In particular,

|τ−1W [ω0| ≤ C ′1ω
1/2
0

(
ω

1/2
0 + |t− t0|

)
Then we extend ω0 to a function on bT ∗X (using the coordinates (x, y, t, σ, ζ, τ)).
Now,

(7.8) ω = ω0 + |x|2.

Then the ‘naive’ estimate, playing an analogous role to (6.9) in the hyperbolic
region, is

|τ−1Hpω| ≤ C̃ ′′1ω1/2
(
ω1/2 + |t− t0|+ τ−2|ξ|2

)
(7.9)

≤C ′′1ω1/2
(
ω1/2 + |t− t0|+ τ−2|p|

)
,

where we used that p|x=0 = τ2 − |ξ|2y − |ζ|2y lets us estimate

τ−2|ξ|2 ≤ C(τ−2|p|+ |x|+ ω
1/2
0 + |t− t0|),

due to 1 − τ−2|ζ|2y being homogeneous degree zero and vanishing at G (recall
from the beginning of the section that this last estimate motivates Lemma 7.1).
Note that (7.9) is much more precise than (6.9): we have a factor of ω1/2 +
|t − t0| + τ−2|p| in addition to ω1/2. This is crucial since we need to get the
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direction of propagation right. Again, we in fact need a more explicit version
of this:

τ−1Hpω= f0 +
∑
i

fiτ
−1ξi +

∑
i,j

fijτ
−2ξiξj ,(7.10)

fi, fij ∈ C∞(bT ∗X), |fi| ≤ C1ω
1/2
(
ω1/2 + |t− t0|

)
, |fij | ≤ C1ω

1/2

fi, fij homogeneous of degree 0. Note that the estimates on fij are weaker
than the estimates on fi. In fact, fij arises from the 2

∑
(∂yk

Aij)ξiξj∂ζk
term

of Hp in (6.3); when applied to ρ2
j , it gives a result of the stated form. The

reason for the sufficiency of this weaker estimate is that at π̂−1(q0), ξ = 0, the
fij term can be estimated using P (as will be done below), as was already done
at a formal level in (7.9).

Finally, we let

(7.11) φ = t− t0 +
1
ε2δ

ω,

and define a almost as in (6.13), with η replaced by t− t0, namely:

(7.12) a = χ0

(
A−1

0 (2− φ/δ)
)
χ1

(
(t− t0 + δ)/εδ + 1

)
χ2

(
|σ|2/τ2

)
.

The slight difference is in the argument of χ1, in order to microlocalize more
precisely in the ‘hypothesis region’, i.e. where u is a priori assumed to have no
wave front set. This is natural, since for the hyperbolic points we only needed
to prove that singularities cannot stay at the given boundary face Fi,reg, while
for glancing points we need to get the correct direction of propagation. We
always assume ε < 1, so that on supp a we have

φ ≤ 2δ and t− t0 ≥ −εδ − δ ≥ −2δ.

Since ω ≥ 0, the first of these inequalities implies that t− t0 ≤ 2δ; so on supp a

(7.13) |t− t0| ≤ 2δ.

Hence,

(7.14) ω ≤ ε2δ
(

2δ − (t− t0)
)
≤ 4δ2ε2.

Moreover, on supp dχ1,

(7.15) t− t0 ∈ [−δ − εδ,−δ], ω1/2 ≤ 2εδ,

so that this region lies in (7.6) after ε and δ are both replaced by appropriate
constant multiples; namely, the present δ should be replaced by δ/2τ0.
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We again start with the imprecise motivational argument. Thus, using
(7.9), (7.14), τ−1Hp(t− t0) = 2 = c0 > 0, we deduce that at p = 0,

τ−1Hpφ=Hp(t− t0) +
1
ε2δ

Hpω

≥ c0/2−
1
ε2δ

C ′′1ω
1/2
(
ω1/2 + |t− t0|

)
≥ c0/2− 2C ′′1

(
δ +

δ

ε

)
≥ c0/4 > 0

provided that δ < c0
16C′′1

, ε
δ > 16C′′1

c0
, i.e. that δ is small, but ε/δ is not too

small. Roughly, ε can go to 0 at most proportionally to δ (with an appropriate
constant) as δ → 0. (Recall also that ε < 1, so that there is an upper bound
as well for ε, but this is of no significance as we let δ → 0. It is also worth
remembering that in the hyperbolic region, ε roughly played the same role as
it does here, but was bounded below by an absolute constant, rather than by
a suitable multiple of δ, hence could not go to 0 as δ → 0.) With this, we can
proceed exactly as in the hyperbolic region, so (recall that τ > 0 on supp a!)
that

Hpa
2 = −b2 + e, b = τ1/2(2τ−1Hpφ)1/2(A0δ)−1/2(χ0χ

′
0)1/2χ1χ2,

with e arising from the derivative of χ1χ2. Again, χ0 stands for χ0(A−1
0 (2− φ

δ )),
etc. In view of (7.15) and (7.6) on the one hand, and that dχ2 is disjoint from
the characteristic set on the other, both supp dχ1 and supp dχ2 are disjoint
from WFb(u). Thus, i[A∗A,P ] is positive modulo terms that we can a priori
control, and so the standard positive commutator argument gives an estimate
for Bu, where B has symbol b. Replacing a by aτ s+1/2, we still have a positive
commutator (again, Dt actually commutes with P , but in any case we could
use A0 to bound the additional commutator term), which now gives (with the
new B) that Bu ∈ L2(X), which means in particular that q0 /∈WF1,s

b (u).
The detailed proof is analogous to the hyperbolic case, with the biggest

difference being the treatment of the fij term in τ−1Hpω. First,

τ−1Hpφ= τ−1Hp(t− t0) +
1
ε2δ

τ−1Hpω(7.16)

= 2 +
1
ε2δ

(
f0 +

∑
i

fiτ
−1ξi +

∑
i,j

fijτ
−2ξiξj

)
.

Let B̃ ∈ Ψ1/2
b (X) with

b̃ = σb,0(B̃) = τ1/2(A0δ)−1/2(χ0χ
′
0)1/2χ1χ2 ∈ C∞(bT ∗X \ o),

and let A ∈ Ψ0
b(X) with σb,0(A) = a. Again, χ0 stands for χ0(A−1

0 (2 − φ
δ )),

etc. Also, let C ∈ Ψ0
b(X) have symbol σb,0(C) =

√
2ψ where ψ ∈ S0(bT ∗X) is
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identically 1 on U considered as a subset of bT ∗X. Then an explicit calculation
using Lemma 2.8 gives, in accordance with (7.16),

i[A∗A,P ]

= R′P + B̃∗
(
C∗C +R0 +

∑
i

Dxi
Ri +

∑
ij

Dxi
RijDxj

)
B̃ +R′′ + E + E′

with

R0 ∈Ψ0
b(X), Ri ∈ Ψ−1

b (X), Rij ∈ Ψ−2
b (X),

R′ ∈Ψ−1
b (X), R′′ ∈ Diff2 Ψ−2

b (X), E,E′ ∈ Diff2 Ψ−1
b (X),

with WF′b(E) ⊂ η−1((−∞,−δ]) ∩ U , WF′b(E′) ∩ Σ̇ = ∅ (E arises from the
commutator of P with an operator with symbol χ1(η/δ + 2), while E′ arises
from the commutator of P with an operator with symbol χ2(|σ|2/τ2)). Now,
r0 = σb,0(R0), ri = σb,−1(Ri), rij ∈ σb,−2(Rij), and

|r0| ≤
C2

ε2δ
ω1/2(|t−t0|+ω1/2), |τri| ≤

C2

ε2δ
ω1/2(|t−t0|+ω1/2), |τ2rij | ≤

C2

ε2δ
ω1/2,

and supp rj lies in ω1/2 ≤ 3εδ, |t− t0| < 3δ. Thus,

|r0| ≤ 3C2

(
δ +

δ

ε

)
, |τri| ≤ 3C2

(
δ +

δ

ε

)
, |τ2rij | ≤ 3C2ε

−1.

Thus, the R0 and Ri terms can be treated exactly as in the hyperbolic case,
i.e. as in the proof of Proposition 6.2. That is, as in the hyperbolic setting, let
T ∈ Ψ−1

b (X) be elliptic, T− ∈ Ψ1
b(X) be a parametrix, so that T−T = Id +F ,

F ∈ Ψ−∞b (X). Then there exist R′0, R
′
i ∈ Ψ−1

b (X) such that for any γ > 0,

|〈R0v, v〉| ≤ ‖R0v‖ ‖v‖ ≤ 2 sup |r0| ‖v‖2 + ‖R′0v‖ ‖v‖

≤ 6C2

(δ
ε

+ δ
)
‖v‖2 + γ−1‖R′0v‖2 + γ‖v‖2,

‖Riw‖ = ‖Ri(T−T − F )w‖≤‖(RiT−)(Tw)‖+ ‖RiFw‖

≤ 6C2

(δ
ε

+ δ
)
‖Tw‖+ ‖R′iTw‖+ ‖RiFw‖

for all w with Tw ∈ L2(X). Hence

|〈RiDxi
v, v〉| ≤ 6C2

(δ
ε

+ δ
)
‖TDxi

v‖ ‖v‖

+2γ‖v‖2 + γ−1‖R′iTDxi
v‖2 + γ−1‖FiDxi

v‖2,

with Fi ∈ Ψ−∞b (X).
However, the Rij term must be treated separately, since microlocally

τ−1Dxi
is small (bounded by a constant multiple of δ), and not merely bounded,

which is all we needed both in the proof of Proposition 6.2 and here for the
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R0 and Ri terms. This is accomplished by the use of Lemma 7.1. Namely, as
in the hyperbolic setting, there exist R′ij ∈ Ψ−1

b (X) such that

‖(T−)∗Rijw‖ ≤ 6C2ε
−1‖Tw‖+ ‖R′ijTw‖+ ‖(T−)∗RijFw‖

for all w with Tw ∈ L2(X). Thus,

|〈RijDxi
v,Dxj

v〉| ≤ 6C2ε
−1‖TDxi

v‖ ‖TDxj
v‖

+γ‖TDxj
v‖2 + γ−1‖R′ijTDxi

v‖2 + γ−1‖FijDxi
v‖2

+‖RijDxi
v‖ ‖FDxj

v‖,

with Fij ∈ Ψ−∞b (X). For v = B̃ru, B̃r = B̃Λr, Lemma 7.1 thus gives

|〈RijDxi
B̃ru,Dxj

B̃ru〉| ≤ 6C ′2
δ

ε
‖B̃ru‖2 + γ‖B̃ru‖2

+γ−1‖R′ijTDxi
B̃ru‖2 + γ−1‖FijDxi

B̃ru‖2

+‖RijDxi
B̃ru‖ ‖FDxj

B̃ru‖.

For δ < δ0, δ
ε < C ′0 sufficiently small, we finish the proof as in the hyperbolic

setting, showing that B̃Λ0u ∈ L2(X), and hence that q0 /∈WF1,s
b (u).

Again, (7.12) needs to be modified slightly to show q0 /∈WF1,∞
b (u). Now

we take, with ν ≤ 1,

a = χ0

(
A−1

0 (1 + ν − φ/δ)
)
χ1

(
(t− t0 + δ)/εδ + ν

)
χ2(|σ|2/τ2);

i.e., we replace 2 by 1 + ν in the argument of χ0, and we replace 1 by ν

in the argument of χ1. In the iterative step we decrease ν by an arbitrarily
small amount, which suffices to prove q0 /∈ WF1,∞

b (u); see also the proof of
Proposition 6.2 here, and the proof of [4, Prop. 24.5.1].

The results of this section can be adapted to Neumann boundary condi-
tions, using the argument presented at the end of the previous section.

8. Propagation of singularities

An argument of Melrose and Sjöstrand [13], [14] (see also [4, Ch. XXIV]
and [11]) allows us to conclude our main result concerning the singularities of
solutions of the wave equation. The proof presented below essentially follows
Lebeau’s paper [11, Prop. VII.1]. Correspondingly, we only give the proof at
H in full detail; at G the arguments are sketched, but the details are precisely
as in Lebeau’s case. We mostly discuss the Dirichlet boundary condition; the
results are also valid for Neumann boundary conditions, see Theorem 8.5, and
the arguments presented need no modification at all in that case. We thus
have the following theorem.
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Theorem 8.1.Suppose that u∈H1
0,loc(X). Then WF1,∞

b (u)\WF−1,∞
b (Pu)

⊂ Σ̇, and it is a union of maximally extended generalized broken bicharacter-
istics of P in Σ̇ \WF−1,∞

b (Pu).
In fact, if u ∈ H1,m

0,loc(X) for some m ≤ 0, then for all s ∈ R ∪ {∞},
WF1,s

b (u) \WF−1,s+1
b (Pu) ⊂ Σ̇, and it is a union of maximally extended gen-

eralized broken bicharacteristics of P in Σ̇ \WF−1,s+1
b (Pu).

Remark 8.2. Suppose that for each boundary hypersurface Hj , we are
given Dirichlet data gj ∈ C∞(Hj), which are compatible, so that at Hi ∩Hj ,
gi|Hi∩Hj

= gj |Hi∩Hj
for all i, j. Then there is g ∈ C∞(X) with g|Hj

= gj .
Now, if u ∈ H1

loc(X) and u|Hj
= gj , then v = u − g ∈ H1

0,loc(X). Thus,
the theorem is applicable to v. Since Pv = Pu − Pg and Pg ∈ C∞(X),
WF−1,∞

b (Pu) = WF−1,∞
b (Pv), and similarly WF1,∞

b (u) = WF1,∞
b (v), we de-

duce that WF1,∞
b (u) \WF−1,∞

b (Pu) is a union of maximally extended gener-
alized broken bicharacteristics of P in Σ̇ \WF−1,∞

b (Pu).

Remark 8.3. As already expained in the introduction, we can relax the
hypothesis u ∈ H1

0,loc(X) in the results of Sections 4–7 to u ∈ H1,m
b,0,loc(X),

m ≤ 0, without changing the arguments, except for replacing the H1
loc(X)

norms by the H1,m
b,loc norms for the ‘background terms’, such as ‖u‖H1

loc(X)

in Lemma 4.2 (and (6.1)), and analogously for ‖Pu‖H−1
loc (X). The microlocal

norms, in which we are gaining regularity, such as those of Gu and G̃Pu in
Lemma 4.2 and (6.1) are unchanged! Indeed, now we merely need to apply
Lemma 3.18 in place of Lemma 3.13.

The point of this generalization is to allow more singular (approximate)
solutions of the wave equation, such as its fundamental solution. An alternative
way to deal with these solutions is to regularize them in time (which one can do
without destroying, say, Pu = 0), and to use the H1

0,loc(X) results; but stating
(and proving) the result for u ∈ H1,m

b,0,loc(X) is the neater way to proceed.

Corollary 8.4.Suppose that Pu= 0, u∈H1
0,loc(X). Then WFb(u)⊂ Σ̇,

and it is a union of maximally extended generalized broken bicharacteristics of
P in Σ̇.

The theorem for Neumann boundary conditions takes the following form.

Theorem 8.5. Suppose that u ∈ H1
loc(X) and f ∈ Ḣ−1

loc (X). Suppose also
that for all v ∈ H1

c (X),

(8.1) 〈Dtu,Dtv〉 − 〈dMu, dMv〉 = 〈f, v〉.

Then WF1,s
b (u) \WF−1,s+1

b (f) ⊂ Σ̇, and it is a union of maximally extended
generalized broken bicharacteristics of P in Σ̇ \WF−1,s+1

b (f).
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In fact, if u ∈ H1,m
loc (X) for some m ≤ 0, and (8.1) holds for all v ∈

H1,−m
c (X) then for all s ∈ R ∪ {∞}, WF1,s

b (u) \WF−1,s+1
b (f) ⊂ Σ̇, and it

is a union of maximally extended generalized broken bicharacteristics of P in
Σ̇ \WF−1,s+1

b (f).

Proof of Theorem 8.1. For notational simplicity, we state the proof for
WF1,∞

b (u). The case of general s only requires notational changes. Note that
WF1,∞

b (u)\WF−1,∞
b (Pu) ⊂ Σ̇ by Proposition 4.6, so that we only need to prove

that it is a union of maximally extended generalized broken bicharacteristics
of P in Σ̇ \WF−1,∞

b (Pu).
We start by remarking that for every V ⊂ Σ̇ and q ∈ V , the set R of

generalized broken bicharacteristics γ defined on open intervals including 0,
satisfying γ(0) = q, and with image in V , has a natural partial order; namely,
if γ : (α, β)→ V , γ′ : (α′, β′)→ V , then γ ≤ γ′ if the domains satisfy (α, β) ⊂
(α′, β′) and γ = γ′|(α,β). Moreover, any non-empty totally ordered subset has
an upper bound: one can take the generalized broken bicharacteristic with
domain given by the union of the domains of those in the totally ordered
subset, and which extends these, as an upper bound. Hence, by Zorn’s lemma,
if R is not empty, it has a maximal element. Note that we can also work with
intervals of the form (α, 0], α < 0, instead of open intervals.

We only need to prove that for every q0 ∈WF1,∞
b (u) \WF−1,∞

b (Pu) there
exists a generalized broken bicharacteristic γ : [−ε0, ε0] → Σ̇, ε0 > 0, with
γ(0) = q0 and such that γ(t) ∈ WF1,∞

b (u) \WF−1,∞
b (Pu) for t ∈ [−ε0, ε0].

In fact, once this statement is shown, taking V = WF1,∞
b (u) \WF−1,∞

b (Pu),
q = q0, in the argument of the previous paragraph, we see that R is non-
empty, hence has a maximal element. We need to show that such an element,
γ : (α, β) → Σ̇, is maximal in Σ̇ \ WF−1,∞

b (Pu) as well, i.e., if V = Σ̇ \
WF−1,∞

b (Pu), q = q0, in the first paragraph. But if γ′ : (α′, β′) → Σ̇ is any
proper extension of γ, with say α′ < α, with image in Σ̇ \WF−1,∞

b (Pu), then
γ′(α) ∈WF1,∞

b (u) since WF1,∞
b (u) is closed, and γ maps into it. Hence by our

assumption there is a generalized broken bicharacteristic γ̃ : (α− ε′, α+ ε′)→
WF1,∞

b (u) \WF−1,∞
b (Pu), ε′ > 0, γ̃(α) = γ′(α). Piecing together γ̃|(α−ε′,α]

and γ, directly from Definition 1.1, gives a generalized broken bicharacteristic
which is a proper extension of γ, with image in WF1,∞

b (u) \WF−1,∞
b (Pu),

contradicting the maximality of γ.
Indeed, it suffices to show that for any i, if

(8.2) q0 ∈WF1,∞
b (u) \WF−1,∞

b (Pu) and q0 ∈ T ∗Fi,reg

then there exists a generalized broken bicharacteristic γ : [−ε0, 0]→ Σ̇, ε0 > 0,

(8.3) γ(0) = q0, γ(t) ∈WF1,∞
b (u) \WF−1,∞

b (Pu), t ∈ [−ε0, 0].

For the existence of a generalized broken bicharacteristic on [0, ε0] can be
demonstrated similarly by replacing the forward propagation estimates by
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backward ones. Directly from Definition 1.1, piecing together the two gen-
eralized broken bicharacteristics gives one defined on [−ε0, ε0].

We proceed to prove that (8.2) implies (8.3) by induction on i. For i = 0,
this is certainly true by Hörmander’s theorem on propagation of singularities,
and if codimFi = 1, it follows from the Melrose-Sjöstrand theorem.

Now, suppose that (8.2)⇒(8.3) has been proved for all j with Fi ( Fj
and that q0 ∈ H ∩ T ∗Fi,reg satisfies (8.2). We use below the notation of
the proof of Proposition 6.2. Let U ⊂ ∪Fi⊂Fj

T ∗Fj,reg be a neighborhood of
q0 = (0, y0, t0, ζ0, τ0) in Σ̇ which is given by equations of the form |x| < δ′,
|y− y0| < δ′, |t− t0| < δ′, |τ − τ0| < δ′, |ζ − ζ0| < δ′, δ′ > 0, such that Hpη > 0
on π̂−1(U) and U ∩WF−1,∞

b (Pu) = ∅. (Recall that π̂ = π|Char(P ).) Such a
neighborhood exists since q0 /∈ WF−1,∞

b (Pu) and Hpη(q̃0) = τ2
0 − |ζ|2 > 0

for every q̃0 ∈ π̂−1(q0). Also let U ′ be a subset of U defined by replacing δ′

by a smaller δ′′ > 0, and let ε0 > 0 be such that for any generalized broken
bicharacteristic γ with γ(0) ∈ U ′, γ|[−ε0,ε0] ∈ U . By Proposition 6.2, there is a
sequence of points qn ∈ Σ̇ such that qn ∈WF1,∞

b (u), qn → q0 as n → ∞, and
η(qn) < 0 for all n, so we may assume that qn ∈ U ′ for all n. By the inductive
hypothesis, for each n, there exists a generalized broken bicharcteristic

(8.4) γ̃n : (−ε′n, 0]→ (WF1,∞
b (u) \WF−1,∞

b (Pu)) ∩
⋃
Fi(Fj

T ∗Fj,reg

with γ̃n(0) = qn. We now use the argument of the first paragraph of the proof
(after the introductory remark about s) with V = (WF1,∞

b (u)\WF−1,∞
b (Pu))∩⋃

Fi(Fj
T ∗Fj,reg, and q = qn. Thus, γ̃n ∈ R, which is hence non-empty, hence

has a maximal element. We let

(8.5) γn : (−εn, 0]→ (WF1,∞
b (u) \WF−1,∞

b (Pu)) ∩
⋃
Fi(Fj

T ∗Fj,reg

be a maximal element of R; it may happen that −εn = −∞.
We claim that εn ≥ ε0. For suppose that εn < ε0. By Corollary 5.6,

γn extends to a generalized broken bicharacteristic on [−εn, 0]; we continue to
denote this by γn. Since εn < ε0, γn is a generalized broken bicharacteristic
with image in U ; indeed the closure of the image is still in U . Taking into
account that η is increasing on generalized broken bicharacteristics in U since
Hpη > 0 there, we conclude that

−|τ(γn(t))|−1(x(γn(t)) · ξ(γn(t))) = η(γn(t)) ≤ η(γn(0)) < 0

for t ∈ [−εn, 0]; hence x(γn(t)) 6= 0. Thus, γn(−εn) ∈ ∪Fi(Fj
T ∗Fj,reg. More-

over, γn(−εn) ∈WF1,∞
b (u) since WF1,∞

b (u) is closed, and γn|(−εn,0] maps into
it. Thus, by the inductive hypothesis, there is a generalized broken bicharac-
teristic,

(8.6) γ̃n : (α,−εn]→ (WF1,∞
b (u) \WF−1,∞

b (Pu)) ∩
⋃
Fi(Fj

T ∗Fj,reg
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with α < −εn, γ̃n(−εn) = γn(−εn). Hence, piecing together γ̃n and γn gives a
generalized broken bicharacteristic mapping into (WF1,∞

b (u)\WF−1,∞
b (Pu))∩⋃

Fi(Fj
T ∗Fj,reg and extending γn, which contradicts the maximal property of

γn. Thus, εn ≥ ε0 as claimed.
By Proposition 5.5, applied with K = WF1,∞

b (u) ∩ U , there is a subse-
quence of γn|[−ε0,0] converging uniformly to a generalized broken bicharacter-
istic

γ : [−ε0, 0]→WF1,∞
b (u).

In particular, γ(0) = q0 and γ(t) ∈WF1,∞
b (u) for all t ∈ [−ε0, 0], providing the

inductive step.
Turning now to q0 ∈ G ∩ T ∗Fi,reg, we repeat the argument of Melrose-

Sjöstrand, as presented in Lebeau’s paper [11, Prop. VII.1]. We very briefly
outline the proof below; the detailed version follows Lebeau’s closely, with
some changes in the notation. Let U ⊂ ∪Fi⊂Fj

T ∗Fj,reg \WF−1,∞
b (Pu) be a

neighborhood of q0, U0 a smaller neighborhood, as above. We take ε0 > 0 small.
Suppose that 0 < ε < ε0, q ∈ U0. Let

R1
q,ε = {generalized broken bicharacteristics γ : [−ε, 0]→WF1,∞

b (u),(8.7)

γ(0) = q, γ(t) /∈ G ∩ T ∗Fi,reg for t ∈ (−ε, 0]},
R2
q,ε = {generalized broken bicharacteristics

γ : [−ε′, 0]→WF1,∞
b (u), ε′ ∈ (0, ε),

γ(0) = q, γ(t) /∈ G ∩ T ∗Fi,reg for t ∈ (−ε′, 0],

γ(−ε′) ∈ G ∩ T ∗Fi,reg}.

Moreover, reflecting the inequalities in (7.5), let

(8.8) B(q, ε) = {q′ ∈ Σ̇ : max{|πei (q′)− q|, |x(q′)|} ≤ ε}.

Let C0 > 0 be as in Proposition 7.3. For q ∈ G ∩ T ∗Fi,reg, let

(8.9) D(q, ε) = B(exp(−εHp)(π̂−1(q)), C0ε
2) ∩WF1,∞

b (u),

and for q /∈ G ∩ T ∗Fi,reg, let

(8.10) D(q, ε) = {γ(−ε) : γ ∈ R1
q,ε} ∪ {B(exp(−(ε− ε′)Hp)(π̂−1(γ(ε′)),

C0(ε− ε′)2) ∩WF1,∞
b (u) : γ ∈ R2

q,ε}.

The reason for introducing D(q, ε) is that it is a good candidate for the be-
ginning point of a generalized broken bicharacteristic segment in WF1,∞

b (u),
defined over an interval of length ε, and ending in q.

Indeed, for q ∈ G ∩ T ∗Fi,reg ∩WF1,∞
b (u), we deduce from Proposition 7.3

that D(q, ε) 6= ∅. For q ∈ WF1,∞
b (u) \ (G ∩ T ∗Fi,reg), by the inductive hy-

pothesis, the previous part of the proof concerning H ∩ T ∗Fi,reg, and the first
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two paragraphs (after the introductory remark about s) with V = WF1,∞
b (u)\

((G ∩ T ∗Fi,reg) ∪WF−1,∞
b (Pu), q = q0, there is a maximally extended gen-

eralized broken bicharacteristic γ with image in V . By the argument of the
second paragraph, this is either defined on all of [−ε, 0], or only on (−ε′, 0] with
0 < ε′ < ε, in which case γ(−ε′) ∈ G ∩T ∗Fi,reg, hence again by Proposition 7.3
we conclude that D(q, ε) 6= ∅. Thus, for all q ∈ U ∩WF1,∞

b (u) we have deduced
D(q, ε) 6= ∅.

For each integer N ≥ 1 now we define a sequence of 2N + 1 points qj,N ,
j ∈ N, 0 ≤ j ≤ 2N , which will be used to construct points γ(−j2−Nε0)
on the desired generalized broken bicharacteristic γ : [−ε0, 0] → WF1,∞

b (u)
through q0. Namely, let ε = 2−Nε0, q0,N = q0, and choose qj+1,N ∈ D(qj,N , ε).
Let JN = {−j2−Nε0 : 0 ≤ j ≤ 2N} ⊂ [−ε0, 0], J = ∪∞N=1JN . We write
γN (t) = qj,N for t = −j2−Nε0. For each t ∈ J , the sequence γN (t) (defined for
large N) stays in a compact set. Hence there exists a subsequence γNk

such
that for all t ∈ J , γNk

(t) converges to some γ(t).
This defines γ : [−ε0, 0] → WF1,∞

b (u) at elements of J . One can check
exactly as in Lebeau’s proof (which we have been following very closely) that
γ extends to a continuous map defined on [−ε0, 0], and that it is a generalized
broken bicharacteristic. This completes the inductive step for tangential points
q0 ∈ G ∩ T ∗Fi,reg, hence the proof of the theorem.
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[9] V. Ja. Ivrĭı, Wave fronts of solutions of boundary value problems for symmetric hyper-
bolic systems. III. Systems with characteristics of variable multiplicity, Sibirsk. Mat.
Zh. 21 (1980), 74–81.

[10] J. B. Keller, Diffraction of a shock or an electromagnetic pulse by a right-angled wedge,
J. Appl. Phys. 23 (1952), 1267–1268.

[11] G. Lebeau, Propagation des ondes dans les variétés à coins, Ann. Scient. École Norm.
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