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On the dimensions of conformal repellers.
Randomness and parameter dependency

By Hans Henrik Rugh

Abstract

Bowen’s formula relates the Hausdorff dimension of a conformal repeller to
the zero of a ‘pressure’ function. We present an elementary, self-contained proof
to show that Bowen’s formula holds for C1 conformal repellers. We consider
time-dependent conformal repellers obtained as invariant subsets for sequences
of conformally expanding maps within a suitable class. We show that Bowen’s
formula generalizes to such a repeller and that if the sequence is picked at
random then the Hausdorff dimension of the repeller almost surely agrees with
its upper and lower box dimensions and is given by a natural generalization of
Bowen’s formula. For a random uniformly hyperbolic Julia set on the Riemann
sphere we show that if the family of maps and the probability law depend real-
analytically on parameters then so does its almost sure Hausdorff dimension.

1. Random Julia sets and their dimensions

Let (U, dU ) be an open, connected subset of the Riemann sphere avoiding
at least three points and equipped with a hyperbolic metric. Let K ⊂ U be
a compact subset. We denote by E(K,U) the space of unramified conformal
covering maps f : Df → U with the requirement that the covering domain
Df ⊂ K. Denote by Df : Df → R+ the conformal derivative of f , see equation
(2.4), and by ‖Df‖ = supf−1K Df the maximal value of this derivative over
the set f−1K. Let F = (fn) ⊂ E(K,U) be a sequence of such maps. The
intersection

(1.1) J(F) =
⋂
n≥1

f−1
1 ◦ · · · ◦ f−1

n (U)

defines a uniformly hyperbolic Julia set for the sequence F . Let (Υ, ν) be a
probability space and let ω ∈ Υ → fω ∈ E(K,U) be a ν-measurable map.
Suppose that the elements in the sequence F are picked independently, each
according to the law ν. Then J(F) becomes a random ‘variable’. Our main
objective is to establish the following
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Theorem 1.1. I. Suppose that E(log ‖Dfω‖) < ∞. Then almost surely,
the Hausdorff dimension of J(F) is constant and equals its upper and lower
box dimensions. The common value is given by a generalization of Bowen’s
formula.

II. Suppose in addition that there is a real parameter t having a complex ex-
tension so that: (a) The family of maps (ft,ω)ω∈Υ depends analytically upon t.
(b) The probability measure νt depends real-analytically on t. (c) Given any
local inverse, f−1

t,ω , the log-derivative logDft,ω◦f−1
t,ω is (uniformly in ω ∈ Υ) Lip-

schitz with respect to t. (d) For each t the condition number ‖Dft,ω‖·‖1/Dft,ω‖
is uniformly bounded in ω ∈ Υ.

Then the almost sure Hausdorff dimension obtained in part I depends real-
analytically on t. (For a precise definition of the parameter t we refer to Section
6.3, for conditions (a), (c) and (d) see Definition 6.8 and Assumption 6.13,
and for (b) see Definition 7.1 and Assumption 7.3. We prove Theorem 1.1 in
Section 7).

Example 1.2. Let a ∈ C and r ≥ 0 be such that |a| + r < 1
4 . Suppose

that cn ∈ C, n ∈ N are i.i.d. random variables uniformly distributed in the
closed disk B(a, r) and that Nn, n ∈ N are i.i.d. random variables distributed
according to a Poisson law of parameter λ ≥ 0. We consider the sequence of
maps F = (fn)n∈N given by

(1.2) fn(z) = zNn+2 + cn.

An associated ‘random’ Julia set may be defined through

(1.3) J(F) = ∂ {z ∈ C : fn ◦ · · · ◦ f1(z) →∞}.

We show in Section 6 that the family verifies all conditions of Theorem 1.1,
parts I and II with a 4-dimensional real parameter t = (re a, im a, r, λ) in the
domain determined by |a| + r < 1/4, r ≥ 0, λ ≥ 0. For a given parameter
the Hausdorff dimension of the random Julia set is almost surely constant and
equals the upper/lower box dimensions. The common value d(a, r, λ) depends
real-analytically upon re a, im a, r and λ. Note that the sequence of degrees
(Nn)n∈N almost surely is unbounded when λ > 0.

Rufus Bowen, one of the founders of the Thermodynamic Formalism
(henceforth abbreviated TF), saw more than twenty years ago [Bow79] a natu-
ral connection between the geometric properties of a conformal repeller and the
TF for the map(s) generating this repeller. The Hausdorff dimension dimH(Λ)
of a smooth and compact conformal repeller (Λ, f) is precisely the unique zero
scrit of a ‘pressure’ function P (s,Λ, f) having its origin in the TF. This relation-
ship is now known as ‘Bowen’s formula’. The original proof by Bowen [Bow79]
was in the context of Kleinian groups and involved a finite Markov partition
and uniformly expanding conformal maps. Using TF he constructed a finite
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Gibbs measure of zero ‘conformal pressure’ and showed that this measure is
equivalent to the scrit-dimensional Hausdorff measure of Λ. The conclusion
then follows.

Bowen’s formula applies in many other cases. For example, when dealing
with expanding ‘Markov maps’, the Markov partition need not be finite and
one may eventually have a neutral fixed point in the repeller [Urb96], [SSU01].
One may also relax on smoothness of the maps involved, C1 being sufficient.
McCluskey and Manning in [MM83], were the first to note this for horse-shoe
type maps. Barreira [Bar96] and also Gatzouras and Peres [GP97] were also
able to demonstrate that Bowen’s formula holds for classes of C1 repellers. A
priori , the classical TF does not apply in this setup. McCluskey and Manning
used nonunique Gibbs states to show this. Gatzouras and Peres circumvene
the problem by using an approximation argument and then apply the classical
theory. Barreira, following the approach of Pesin [Pes88], defines the Hausdorff
dimension as a Caratheodory dimension characteristic. By extending the TF
itself, Barreira gets closer to the core of the problem and may also consider
maps somewhat beyond the C1 case mentioned. The proofs are, however, fairly
involved and do not generalize easily either to a random set-up or to a study
of parameter-dependency.

In [Rue82], Ruelle showed that the Hausdorff dimension of the Julia set of
a uniformly hyperbolic rational map depends real-analytically on parameters.
The original approach of Ruelle was indirect, using dynamical zeta-functions,
[Rue76]. Other later proofs are based on holomorphic motions, (see [Zin99]
as well as [UZ01] and [UZ04]). In another context, Furstenberg and Kesten,
[FK60], had shown, under a condition of log-integrability, that a random prod-
uct of matrices has a unique almost sure characteristic exponent. Ruelle, in
[Rue79], required in addition that the matrices contracted uniformly a posi-
tive cone and satisfied a compactness and continuity condition with respect
to the underlying probability space. He showed that under these conditions if
the family of postive random matrices depends real-analytically on parameters
then so does the almost sure characteristic exponent of their product. He did
not, however, allow the probability law to depend on parameters. We note
here that if the matrices contract uniformly a positive cone, the topological
conditions in [Rue79] may be replaced by the weaker condition of measur-
ablity + log-integrability. We also mention the more recent paper, [Rue97],
of Ruelle. It is in spirit close to [Rue79] (not so obvious at first sight) but
provides a more global and far more elegant point of view to the question of
parameter-dependency. It has been an invaluable source of inspiration to our
work.

In this article we depart from the traditional path pointed out by TF. In
Part I we present a proof of Bowen’s formula, Theorem 2.1, for a C1 conformal
repeller which bypasses measure theory and most of the TF. Measure theory
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can be avoided essentially because Λ is compact and the only element remaining
from TF is a family of transfer operators which encodes geometric facts into
analytic ones. Our proof is short and elementary and releases us from some of
the smoothness conditions imposed by TF.

An elementary proof of Bowen’s formula should be of interest on its own,
at least in the author’s opinion. It generalizes, however, also to situations where
a ‘standard’ approach either fails or manages only with great difficulties. We
consider classes of time-dependent conformal repellers. By picking a sequence
of maps within a suitable equi-conformal class one may study the associated
time-dependent repeller. Under the assumption of uniform equi-expansion and
equi-mixing and a technical assumption of sub-exponential ‘growth’ of the in-
volved sequences we show, Theorem 3.7, that the Hausdorff and box dimensions
are bounded within the unique zeros of a lower and an upper conformal pres-
sure. Similar results were found by Barreira [Bar96, Ths. 2.1 and 3.8]. When
it comes to random conformal repellers, however, the approach of Pesin and
Barreira seems difficult to generalize. Kifer [Kif96] and later, Crauel and Flan-
doni [CF98] and also Bogenschütz and Ochs [BO99], using time-dependent TF
and Martingale arguments, considered random conformal repellers for certain
classes of transformations, but under the smoothness restriction imposed by
TF. In Theorem 4.4, a straight-forward application of Kingman’s sub-ergodic
theorem, [King68], allows us to deal with this case without such restrictions.
In addition we obtain very general formulae for the parameter-dependency of
the Hausdorff dimension.

Part II is devoted to random Julia sets on hyperbolic subsets of the Rie-
mann sphere. Here statements and hypotheses attain much more elegant forms;
cf. Theorem 1.1 and Example 1.2 above. Straight-forward Koebe estimates
enables us to apply Theorem 4.4 to deduce Theorem 5.3 which in turn yields
Theorem 1.1, part (I).1 The parameter dependency is, however, more subtle.
The central ideas are then the following:

(1) We introduce a ‘mirror embedding’ of our hyperbolic subset and then a
related family of transfer operators and cones having a natural (real-)
analytic structure.

(2) We compute the pressure function using a hyperbolic fixed point of a
holomorphic map acting upon cone-sections. When the family of maps
depends real-analytically on parameters, then the real-analytical depen-
dency of the dimensions, Theorem 6.20, follows from an implicit function
theorem.

1Within the framework of TF, methods of [Kif96], [PW96], [CF98] or [BO99] can also be
used to prove this part.
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(3) The above mentioned fixed point is hyperbolic. This implies an exponen-
tial decay with respect to ‘time’ and allows us in Section 7.1 to treat a
real-analytic parameter dependency with respect to the underlying prob-
ability law. This concludes the proof of Theorem 1.1.

Acknowledgement. I am grateful to the anonymous referee for useful
remarks and suggestions, in particular for suggesting the use of Euclidean
derivates rather than hyperbolic derivatives in Section 6.

2. Part I: C1 conformal repellers and Bowen’s formula

Let (Λ, d) be a nonempty compact metric space without isolated points
and let f : Λ → Λ be a continuous surjective map. Throughout Part I we will
write interchangeably fx or f(x) for the map f applied to a point x. We say
that f is C1 conformal at x ∈ Λ if and only if the following double limit exists:

(2.4) Df(x) = lim
u 6=v→x

d(fu, fv)
d(u, v)

.

The limit is called the conformal derivative of f at x. The map f is said to be
C1 conformal on Λ if it is so at every point of Λ. A point x ∈ Λ is said to be
critical if and only if Df(x) = 0.

The product Dfn(x) = Df(fn−1(x)) · · ·Df(x) along the orbit of x is the
conformal derivative for the n’th iterate of f . The map is said to be uniformly
expanding if there are constants C > 0, β>1 for which Dfn(x) ≥ Cβn for all
x ∈ Λ and n ∈ N. We say that (Λ, f) is a C1 conformal repeller if

(C1) f is C1 conformal on Λ,
(C2) f is uniformly expanding,
(C3) f is an open mapping.

For s ∈ R we define the dynamical pressure of the s-th power of the
conformal derivative by the formula:

(2.5) P (s,Λ, f) = lim inf
n

1
n

log sup
y∈Λ

∑
x∈Λ:fn

x =y

(Dfn(x))−s .

We then have the following:

Theorem 2.1 (Bowen’s formula). Let (Λ, f) be a C1 conformal repeller.
Then, the Hausdorff dimension of Λ coincides with its upper and lower box
dimensions and is given as the unique zero of the pressure function P (s,Λ, f).

Many similar results, proved under various restrictions, appear in the liter-
ature, see e.g. [Bow79], [Rue82], [Fal89], [Bar96], [GP97] and our introduction.
It seems to be the first time that it is stated in the above generality. For clarity
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of the proof we will here impose the additional assumption of strong mixing.
We have delegated to Appendix A a sketch of how to remove this restriction.
We have chosen to do so because (1) the proof is really much more elegant
and (2) there seems to be no natural generalisation when dealing with the
time-dependent case (apart from trivialities).

More precisely, to any given δ > 0 we assume that there is an n0 = n0(δ) ∈
N (denoted the δ-covering time for the repeller) such that for every x ∈ Λ:

(C4) fn0B(x, δ) = Λ.

For the rest of this section (Λ, f) will be assumed to be a strongly mixing
C1 conformal repeller, thus verifying (C1)–(C4).

Recall that a countable family {Un}n∈N of open sets is a δ-cover(Λ) if
diam Un < δ for all n and their union contains (here equals) Λ. For s ≥ 0 we
set

Mδ(s,Λ) = inf

{∑
n

(diam Un)s : {Un}n∈N is a δ−cover(Λ)

}
∈ [0,+∞].

Then M(s,Λ) = limδ→0Mδ(s,Λ) ∈ [0,+∞] exists and is called the s-di-
mensional Hausdorff measure of Λ. The Hausdorff dimension is the unique
critical value scrit = dimHΛ ∈ [0,∞] such that M(s,Λ) = 0 for s > scrit
and M(s,Λ) = ∞ for s < scrit. The Hausdorff measure is said to be finite if
0 < M(scrit,Λ) <∞.

Alternatively we may replace the condition on the covering sets by con-
sidering finite covers by open balls B(x, δ) of fixed radii, δ > 0. Then the limit
as δ → 0 of Mδ(s,Λ) need not exist so we replace it by taking lim sup and
lim inf. We then obtain the upper, respectively the lower s-dimensional box
‘measure’. The upper and lower box dimensions, dimBΛ and dimBΛ, are the
corresponding critical values. It is immediate that

0 ≤ dimHΛ ≤ dimBΛ ≤ dimBΛ ≤ +∞.

Remark 2.2. Let J(f) denote the Julia set of a uniformly hyperbolic ratio-
nal map f of the Riemann sphere. There is an open (hyperbolic) neighborhood
U of J(f) such that V = f−1U is compactly contained in U and such that f has
no critical points in V . When d is the hyperbolic metric on U , (J(f), d|J(f))
is a compact metric space and one verifies that (J(f), f) is a C1 conformal
repeller.

Remark 2.3. Let X be a C1 Riemannian manifold without boundaries
and let f : X → X be a C1 map. It is an exercise in Riemannian geometry to
see that f is uniformly conformal at x ∈ X if and only if f∗x : TxX → TfxX is a
conformal map of tangent spaces and in that case, Df(x) = ‖f∗x‖. When dim
X < ∞, condition (C3) follows from (C1)–(C2). We note also that being C1

(the double limit in equation 2.4) rather than just differentiable is important.
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2.1. Geometric bounds. We will first establish sub-exponential geomet-
ric bounds for iterates of the map f . In the following we say that a sequence
(bn)n∈N of positive real numbers is sub-exponential or of sub-exponential
growth if and only if limn

n
√
bn = 1. For notational convenience we will also

assume that Df(x) ≥ β > 1 for all x ∈ Λ. This can always be achieved in
the present set-up by considering a high enough iterate of the map f possibly
redefining β.

Define the divided difference,

(2.6) f [u, v] =

{
d(fu,fv)
d(u,v) u 6= v ∈ Λ,

Df(u) u = v ∈ Λ.

Our hypothesis on f implies that f [·, ·] is continuous on the compact set Λ×Λ,
and not smaller than β > 1 on the diagonal of the product set. We let ‖Df‖ =
supu∈ΛDf(u) < +∞ denote the maximal conformal derivative on the repeller.

Choose 1 < λ0 < β. Uniform continuity of f [·, ·] and (uniform) openness
of the map f show that we may find δf > 0 and then λ1 = λ1(f) < +∞ such
that

(C2′) λ0 ≤ f [u, v] ≤ λ1 whenever u, v ∈ Λ and d(u, v) < δf ,

(C3′) B(fx, δf ) ⊂ fB(x, δf ) for all x ∈ Λ.

The constant δf gives a scale below which f is injective, uniformly ex-
panding and (locally) onto. We note that Λ 6⊂ B(x, δf ) for any x ∈ Λ (or else
Λ would be reduced to a point). In the following we will assume that values of
δf > 0, λ0 > 1 and λ1 < +∞ have been found so as to satisfy conditions (C2’)
and (C3’).

We define the distortion of f at x ∈ Λ and for r > 0 as follows:

(2.7) εf (x, r) = sup{ log
f [u1, u2]
f [u3, u4]

: all ui ∈ B(x, δf ) ∩ f−1B(fx, r)}.

This quantity tends to zero as r → 0+ uniformly in x ∈ Λ (with the same
compactness and continuity as before). Thus,

ε(r) = sup
x∈Λ

εf (x, r)

tends to zero as r → 0+. When x ∈ Λ and the ui’s are as in (2.7) then also:

(2.8)
∣∣∣∣log

f [u1, u2]
Df(u3)

∣∣∣∣ ≤ ε(r) and
∣∣∣∣log

Df(u1)
Df(u2)

∣∣∣∣ ≤ ε(r).

For n ∈ N ∪ {0} we define the n-th ‘Bowen ball’ around x ∈ Λ

Bn(x) ≡ Bn(x, δf , f) = {u ∈ Λ : d(fkx , f
k
u ) < δf , 0 ≤ k ≤ n}.
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We say that u is n-close to x ∈ Λ if u ∈ Bn(x). The Bowen balls act as
‘reference’ balls, getting uniformly smaller with increasing n. In particular,
diam Bn(x) ≤ 2 δf λ−n0 , i.e. tends to zero exponentially fast with n. We also
see that for each x ∈ Λ and n ≥ 0 the map

f : Bn+1(x) → Bn(fx)

is a uniformly expanding homeomorphism.
Expansiveness of f means that closeby points may follow very different

future trajectories. Our assumptions assure, however, that closeby points have
very similar backwards histories. The following two lemmas emphasize this
point:

Lemma 2.4 (Pairing). For each y, w ∈ Λ with d(y, w) < δf and for every
n ∈ N the sets f−n{y} and f−n{z} may be paired uniquely into pairs of n-close
points.

Proof. Take x ∈ f−n{y}. The map fn : Bn(x) → B0(fnx ) = B(y, δf )
is a homeomorphism. Thus there is a unique point u ∈ f−n{z} ∩ Bn(x). By
construction, x ∈ Bn(u) if and only if u ∈ Bn(x). Therefore x ∈ f−n{y}∩Bn(u)
is the unique pre-image of y in the n-th Bowen ball around u and we obtain
the desired pairing.

Lemma 2.5 (Sub-exponential distortion). There is a sub-exponential se-
quence (cn)n∈N such that given any two points z and u which are n-close to
x ∈ Λ (x 6= u) one has

1
cn
≤ d(fnu , f

n
x )

d(u, x) Dfn(z)
≤ cn and

1
cn
≤ Dfn(x)
Dfn(z)

≤ cn.

Proof. For all 1 ≤ k ≤ n we have that fku ∈ Bn−k(fkx ). Therefore,
d(fku , f

k
x ) < δfλ

k−n
0 and the distortion bound (2.8) implies that

| log
d(fnu , f

n
x )

d(u, x) Dfn(z)
| ≤ ε(δf ) + ε(δfλ−1

0 ) + · · ·+ ε(δfλ1−n
0 ) ≡ log cn.

Since limr→0 ε(r) = 0 it follows that 1
n log cn → 0, whence that the sequence

(cn)n∈N is of sub-exponential growth. This yields the first inequality and the
second is proved e.g. by taking the limit u→ x.

Remark 2.6. When ε(t)/t is integrable at t = 0+ one verifies that the
distortion stays uniformly bounded, i.e. that cn ≤ ε(δf ) +

∫ δf

0
ε(t)
t

dt
log λ < ∞

uniformly in n. This is the case, e.g. when ε is Hölder continuous at zero.

2.2. Transfer operators. Let M(Λ) denote the Banach space of bounded,
real valued functions on Λ equipped with the sup-norm. We denote by χ

U
the
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characteristic function of a subset U ⊂ Λ and we write 1 = χ
Λ

for the constant
function 1(x) = 1, ∀x ∈ Λ. For φ ∈ M(Λ) and s ≥ 0 we define the positive
linear transfer2 operator,

(Lsφ)y ≡ (Ls,fφ)y ≡
∑

x∈Λ:fx=y

(Df(x))−s φx, y ∈ Λ.

Since Λ has a finite δf -cover and Df is bounded these operators are necessarily
bounded. The n’th iterate of the operator Ls is given by

(Lnsφ)y =
∑

x∈Λ:fn
x =y

(Dfn(x))−s φx.

It is of importance to obtain bounds for the action upon the constant function.
More precisely, for s ≥ 0 and n ∈ N, we denote

(2.9) Mn(s) ≡ sup
y∈Λ

Lns1(y) and mn(s) ≡ inf
y∈Λ

Lns1(y).

We then define the lower, respectively, the upper pressure through

−∞ ≤ P (s) ≡ lim inf
n

1
n

logmn(s) ≤ P (s) ≡ lim sup
n

1
n

logMn(s) ≤ +∞.

Lemma 2.7 (Operator bounds). For each s ≥ 0 the upper and lower
pressures agree and are finite. We write P (s) ≡ P (s) = P (s) ∈ R for the
common value. The function P (s) is continuous, strictly decreasing and has a
unique zero, scrit ≥ 0.

Proof. Fix s ≥ 0. Since the operator is positive, the sequences Mn =
Mn(s) andmn = mn(s), n ∈ N are sub-multiplicative and super-multiplicative,
respectively. Thus,

(2.10) mkmn−k ≤ mn ≤Mn ≤MkMn−k, ∀ 0 < k < n.

This implies convergence of both n
√
Mn and n

√
mn, the limit of the former

sequence being the spectral radius of Ls acting upon M(Λ). Let us sketch
a standard proof for the first sequence: Fixing k ≥ 1 we write n = pk + r

with 0 ≤ r < k. Since k is fixed, lim supn max0<r<k
n
√
Mr = 1. But then

lim supn
n
√
Mn = lim supp pk

√
Mpk ≤ k

√
Mk. Taking lim inf (with respect to k)

on the right-hand side we conclude that the limit exists. A similar proof works
for the sequence (mn)n∈N. Both limits are nonzero (≥ m1 > 0) and finite
(≤ M1 < ∞). We need to show that the ratio Mn/mn is of sub-exponential
growth.

2The ‘transfer’-terminology, inherited from statistical mechanics, refers here to the ‘trans-
fer’ of the encoded geometric information at a small scale to a larger scale, using the dynamics
of the map, f .
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Consider w, z ∈ Λ with d(w, z) < δf and n > 0. The Pairing Lemma
shows that we may pair the pre-images f−n{w} and f−n{z} into pairs of n-
close points, say (wα, zα)α∈In

, over a finite index set In which possibly depends
on the pair (w, z). Applying the second distortion bound in Lemma 2.5 to each
pair yields

(2.11) Lns 1(z) ≥
(

1
cn

)s
Lns 1(w).

Choose w ∈ Λ such that Lns 1(w) ≥ Mn/2. Given an arbitrary y ∈ Λ
our strong mixing assumption (C4), with n0 = n0(δf ), implies that the set
B(w, δf ) ∩ f−n0{y} contains at least one point. Using (2.11) we obtain

Ln+n0
s 1(y) =

∑
z:f

n0
z =y

(Dfn0(z))−s Lns 1(z) ≥ (‖Df‖n0cn)
−s Mn

2
.

Thus,

(2.12) mn+n0 ≥ (‖Df‖n0cn)−sMn/2

and since cn is of sub-exponential growth then so is Mn/mn+n0 and therefore
also Mn+n0/mn+n0 ≤Mn0Mn/mn+n0 .

The functions, s log β+P (s) and s log ‖Df‖+P (s), are nonincreasing and
nondecreasing, respectively. Also 0≤P (0)<+∞. It follows that s 7→ P (s) is
continuous and that P has a unique zero scrit ≥ 0.

Remark 2.8. Super- and sub-multiplicativity (2.10) imply the bounds3

mn(s) ≤ enP (s) ≤Mn(s), n ∈ N.

Clearly, if the distortion constants cn are uniformly bounded then so is the
ratio Mn(s)/mn(s) ≤ K(s) <∞.

In order to prove Theorem 2.1 it suffices to show that scrit ≤ dimH(Λ)
and dimB(Λ) ≤ scrit.

2.3. dimH(Λ)≥ scrit. Let U ⊂ Λ be an open nonempty subset of diameter
not exceeding δf . We will iterate U by f until the size of fkU becomes ‘large’
compared to δf . As long as fk stays injective on U the set {z ∈ U : fkz = y}
contains at most one element for any y ∈ Λ. Therefore, for such k-values

(2.13) (LksχU )(y) ≤ sup
z∈U

(
Dfk(z)

)−s
, ∀ y ∈ Λ.

Choose x = x(U) ∈ U and let k = k(U) ≥ 0 be the largest positive integer for
which U ⊂ Bk(x). In other words:

3Such bounds are useful in applications as they imply computable rigorous bounds for the
dimensions.
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(a) d(f lx, f
l
u) < δf for 0 ≤ l ≤ k and all u ∈ U and

(b) d(fk+1
x , fk+1

u ) ≥ δf for some u ∈ U .

Note that k(U) is finite because the open set U contains at least two distinct
points which are going to be separated when iterating. Because of (a) fk is
injective on U so that (2.13) applies. On the other hand, (a) and (b) imply
that there is u ∈ U for which δf ≤ d(fk+1

x , fk+1
u ) ≤ λ1(f)d(fku , f

k
x ) where λ1(f)

was the maximal dilation of f on δf -separated points. Our sub-exponential
distortion estimate shows that for any z ∈ U

δf/λ1(f)
diam U

1
Dfk(z)

≤ d(fku , f
k
x )

d(u, x)
1

Dfk(z)
≤ ck.

Inserting this in (2.13) and using the definition of mn(s) we see that for any
y ∈ Λ,

(LksχU )(y) ≤ (diam U)s (
λ1(f)ck
δf

)s 1 ≤ (diam U)s
[
(
λ1(f)ck
δf

)s
1

mk(s)

]
Lks1.

Choosing now 0 < s < scrit, the sequence mk(s) tends exponentially fast to
infinity (when scrit = 0 there is nothing to show). Since the sequence ((ck)s)k∈N
is sub-exponential the factor in square-brackets is uniformly bounded in k, say
by γ1(s) < ∞ (independent of U). Positivity of the operator implies that for
any n ≥ k(U) we have

LnsχU ≤ γ1(s) (diam U)s Lns1.

If (Uα)α∈N is an open δf -cover of the compact set Λ then it has a finite
sub-cover, say Λ ⊂ Uα1 ∪ . . .∪Uαm

. Taking now n = max{k(Uα1), . . . , k(Uαm
)}

we obtain

Lns1 ≤
m∑
i=1

LnsχUαi

≤ γ1(s)
m∑
i=1

(diam Uαi
)s Lns1 ≤ γ1(s)

∑
α

(diam Uα)s Lns1.

This equation shows that
∑

α(diam Uα)s is bounded uniformly from below
by 1/γ1(s) > 0. The Hausdorff dimension of Λ is then not smaller than s,
whence not smaller than scrit.

2.4. dimBΛ ≤ scrit. Fix 0 < r < r0 ≡ δf

λ1(f)n0
and let x ∈ Λ. This

time we wish to iterate a ball U = B(x, r) until it has a ‘large’ interior and
contains a ball of size δf . This may, however, not be good enough (cf. Figure 1).
We also need to control the distortion. Again these two goals combine nicely
when considering the sequence of Bowen balls Bk ≡ Bk(x), k ≥ 0. It forms a
sequence of neighborhoods of x, shrinking to {x}. Hence, there is a smallest
integer k = k(x, r) ≥ 1 such that Bk ⊂ U . Note that k must be strictly positive,
or else Λ = fn0B0 ⊂ fn0B(x, r0) ⊂ B(fn0(x), δf ) which is not possible. Now,



706 HANS HENRIK RUGH

B f  (x)

f  (U)k

k

Figure 1: An iterate fk(U) which covers B = B(fk(x), δf ) but not in the
‘right’ way.

fk maps Bk homeomorphically onto B0(fkx ) = B(fkx , δf ) and positivity of Ls
shows that

LksχU ≥ LksχBk
≥ inf

z∈Bk

(
Dfk(z)

)−s
χ
B(fk

x ,δf )
.

By assumption Bk−1 6⊂ U and so there must be a point y ∈ Bk−1 with
d(y, x) ≥ r. As y is (k − 1)-close to x our distortion estimate shows that for
any z ∈ Bk ⊂ Bk−1,

δf
r

‖Df‖
Dfk(z)

>
d(fk−1

y , fk−1
x )

d(y, x)
1

Dfk−1(z)
≥ 1
ck−1

.

Therefore,
LksχU ≥ rs(δfck−1‖Df‖)−sχB(fk

x ,δf )
.

If we iterate another n0 = n0(δf ) times then fn0B(fkx , δf ) covers all of Λ due
to mixing and using the definition of Mn(s) we have

Lk+n0
s χ

U
≥ rs(δfck−1‖Df‖1+n0)−s1 ≥ (4r)s

[
(4‖Df‖1+n0δfck−1)−s

Mk+n0(s)

]
Lk+n0
s 1.

When s > scrit, Mk+n0(s) tends expontially fast to zero. As the rest is
sub-exponential, the quantity in the square brackets is uniformly bounded
from below by some γ2(s) > 0. Using the positivity of the operator we see that

(2.14) LnsχU ≥ γ2(s)(4r)sLns1,

whenever n ≥ k(x, r) + n0.
Now, let x1, . . . , xN be a finite maximal 2r separated set in Λ. Thus,

the balls {B(xi, 2r)}i=1,...,N cover Λ whereas the balls {B(xi, r)}i=1,...,N are
mutually disjoint. For n ≥ maxi k(xi, r) + n0,

Lns1 ≥
∑
i

LnsχB(xi,r)
≥ γ2(s) N(4r)sLns1.
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We have deduced the bound,
N∑
i=1

(diam B(xi, 2r))s ≤ 1/γ2(s).

This shows that dimBΛ does not exceed s, whence not scrit. We have proven
Theorem 2.1 in the case of a strongly mixing repeller and refer to Appendix A
for the extension to the general case.

Corollary 2.9. If ε(t)t is integrable at t = 0+ and the repeller is strongly
mixing (cf. Remark A.1) then the Hausdorff measure is finite and between
1/γ1(scrit) > 0 and 1/γ2(scrit) < +∞.

Proof. The hypothesis implies that for fixed s the sequences (cn(s))n and
Mn(s)/mn(s) in the sub-exponential distortion and operator bounds, respec-
tively, are both uniformly bounded in n (Remarks 2.6 and 2.8). All the (finite)
estimates may then be carried out at s = scrit and the conclusion follows.
(Note that no measure theory was used to reach this conclusion).

3. Time dependent conformal repellers

Let (K, d) denote a complete metric space without isolated points and let
∆ > 0 be such that K is covered by a finite number, say N∆ balls of size ∆. To
avoid certain pathologies we will also assume that (K, d) is ∆-homogeneous,
i.e. that there is a constant 0 < δ < ∆ such that for any y ∈ K

(3.15) B(y,∆) \B(y, δ) 6= ∅.

For example, if K is connected or consists of a finite number of connected
components then K is ∆-homogeneous.

Let β > 1 and let ε : [0,∆] → [0,+∞[ be an ε-function, i.e. a continu-
ous function with ε(0) = 0. In the following we will consider C1-conformal
unramified covering maps of the form

f : Ωf → K

from a nonempty (not necessarily connected) domain Ωf ⊂ K onto K and of
finite maximal degree domax(f) = maxy∈K deg(f ; y) ∈ N. More precisely, we
will consider the class E = E(∆, β, ε) of such maps that in addition verify the
following ‘equi-uniform’ requirements:

Assumption 3.1. There are constants 0 < δ(f) ≤ ∆ and λ1(f) < +∞,
and a function δf : x ∈ Ωf 7→ [δ(f),∆] such that :

(T0) For all distinct x, x′ ∈ f−1{y} (with y ∈ K) the balls B(x, 2δf (x)) and
B(x′, 2δf (x′)) are disjoint (local injectivity).
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(T1) For all x ∈ Ωf : B(f(x),∆) ⊂ f (B(x, δf (x)) ∩ Ωf ) (openness).

(T2) For all u, x ∈ Ωf with d(u, x) < δf (x): β ≤ f [u, x] ≤ λ1(f) (dilation).

(T3) For all x ∈ Ωf : εf (x, r) ≤ ε(r), ∀ 0 < r ≤ ∆ (distortion).

Here, f [·, ·] is the divided difference from equation (2.6) and the distortion,
a restricted version of equation (2.7), for x ∈ Ωf and r > 0 is given by

εf (x, r) = sup
{ ∣∣∣∣log

f [u1, x]
Df(u2)

∣∣∣∣ : u1, u2 ∈ B(x, δf (x)) ∩ f−1B(f(x), r)
}
.

We tacitly understand by writing f−1{y} that we are looking at the pre-images
of y ∈ K within Ωf , i.e. where the map is defined. We also write ‖Df‖ for the
supremum of the conformal derivative of f over its domain of definition Ωf .
By (T2) and by setting u = x we also see that

(3.16) β ≤ ‖Df‖ ≤ λ1(f).

When f ∈ E(∆, β, ε) and f(x) = y ∈ K then by ∆-homogeneity (3.15)
and property (T1), there must be u ∈ B(x, δf (x)) with f(u) ∈ B(y,∆)\B(y, δ)
and δ as in (3.15). By the above definition of the distortion, εf (x, r), it follows
that

(3.17) 0 < κ ≡ δe−ε(∆) ≤ δf (x)Df(x), ∀x ∈ Ωf .

In the following let F = (fk)k∈N ⊂ E(∆, β, ε) be a fixed sequence of such
mappings and let us fix δfk

(x), δ(fk) = infx∈Ωfk
δfk

(x) > 0 and λ1(fk) so as to
satisfy conditions (T0)–(T3). Let Ω0(F) = K and for n ≥ 1 define

Ωn(F) = f−1
1 ◦ · · · ◦ f−1

n (K)

and then
Λ(F) =

⋂
n≥0

Ωn(F).

Letting σ(F) = (fk+1)k∈N denote the shift of the sequence we set Λt =
Λ(σt(F)), t ≥ 0. Recall that K was assumed complete (though not neces-
sarily compact) and each δ(fk) is strictly positive. It follows then that each
Λt is closed, whence complete. Each Λt also has finite open covers of arbitrar-
ily small diameters (obtained by pulling back a finite ∆-cover of K), whence
each Λt is compact and nonempty. Also ft(Λt−1) = Λt so we have obtained a
time-dependent sequence of compact conformal repellers,

Λ0
f1−→ Λ1

f2−→ Λ2 −→ · · · .

For t ≥ 0, k ≥ 0 we denote by f
(k)
t = ft+k ◦ · · · ◦ ft+1 the k’th iterated map

from Ωk(σt(F)) onto K (f (0)
t is the identity map on K). We write simply

f (k) ≡ f
(k)
0 : Ωk(F) → K for the iterated map starting at time zero and
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Df (k)(x) for the conformal derivative of this iterated map.

For n ≥ 0, x ∈ Ωn(F) (and similarly for u ∈ Ωn(F)) we write xj = f (j)(x),
0 ≤ j ≤ n for its iterates. Using this notation we define for n ≥ 0 the n’th
Bowen ball around x:

Bn(x) = {u ∈ Ωn(F) : d(xj , uj) < δfj+1(xj), 0 ≤ j ≤ n}

and then for n ≥ 1 also the (n− 1,∆)-Bowen ball around x ∈ Ωn(F):

Bn−1,∆(x) = {u ∈ Bn−1(x) ∩ Ωn(F) : d(xn, un) < ∆}.

Then f (n) : Bn−1,∆(x) → B(f (n)(x),∆), n ≥ 1, is a uniformly expanding
homeomorphism for all x ∈ Ωn(F). When u ∈ Bn−1,∆(x) we say that u and
x are (n − 1,∆)-close. Our hypotheses imply that being (n − 1,∆)-close is a
reflexive relation (perhaps not so obvious since δf (x) depends on x) as is shown
in the proof of the following:

Lemma 3.2 (Pairing). For n ∈ N, y, w ∈ K with d(y, w) < ∆, the sets
(f (n))−1{y} and (f (n))−1{w} may be paired uniquely into pairs of (n − 1,∆)-
close points.

Proof. Fix f = fn and let x ∈ f−1{y}. By (T1), f(B(x, δf (x)) ∩ Ωf )
contains B(f(x),∆) 3 w. Let z ∈ f−1{w} ∩ B(x, δf (x)) be at a distance
d(x, z) < δf (x) ≤ ∆ to x. We claim that then also x ∈ B(z, δf (z)). If not
so, there must be x′ ∈ B(z, δf (z)) ∩ f−1{y} for which d(x′, z) < δf (z) ≤
d(x, z) < δf (x) so that d(x, x′) < 2δf (x) and this contradicts (T0). But then
also the point z must be unique: If z, z′ ∈ f−1{w} ∩ B(x, δf (x)) then x ∈
B(z, δf (z)) ∩ B(z′, δf (z′)) implies z = z′ by (T0). Returning to the sequence
of mappings we obtain by recursion in n the unique pairing.

Lemma 3.3 (Sub-exponential distortion). There is a sub-exponential se-
quence (cn)n∈N (depending on the equi-distortion function ε but not on the
actual sequence of maps) such that the following holds: Given n ≥ 1 and
points z and u that are (n− 1,∆)-close to x ∈ Ωn(F), x 6= u we have

1
cn
≤ d(f (n)(u), f (n)(x))

d(u, x) Df (n)(z)
≤ cn and

1
cn
≤ Df (n)(x)
Df (n)(z)

≤ cn.

Proof. As in Lemma 2.5, but more precisely, we have log cn = ε(∆) +
ε(∆/β) + · · ·+ ε(∆/βn−1).

For s ≥ 0, f ∈ E(∆, β, ε) we define as before a transfer operator Ls,f :
M(K) →M(K) by setting:

(3.18) (Ls,fφ)(y) ≡
∑

x∈f−1{y}

(Df(x))−s φx, y ∈ K, φ ∈M(K).
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We write L(n)
s = Ls,fn

◦· · ·◦Ls,f1 for the n’th iterated operator fromM(K)
to M(K), n ∈ N. We denote by 1 = χ

K
the constant function which equals

one on K. As in (2.9) we define for n ∈ N (omitting the dependency on F in
the notation):

Mn(s) ≡ sup
y∈Λn

L(n)
s 1(y) and mn(s) ≡ inf

y∈Λn

L(n)
s 1(y)

and then the lower and upper s-conformal pressures:

−∞ ≤ P (s) ≡ lim inf
n

1
n

logmn(s) ≤ P (s) ≡ lim sup
n

1
n

logMn(s) ≤ +∞.

These limits need not be equal nor finite. As in Lemma 2.7 one shows that both
s log β + P (s) and s log β + P (s) are nonincreasing so that the functions P (s)
and P (s) are strictly decreasing (when finite). Regarding explicit formulae, we
have e.g. for the lower pressure, similar to (2.5):

P (s) = lim inf
n

1
n

log inf
y∈Λn

∑
x∈(f (n))−1{y}

(
Df (n)(x)

)−s
.

We define the following lower and upper critical exponents with values in
[0,+∞]:

scrit = sup{s ≥ 0 : P (s) > 0} and scrit = inf{s ≥ 0 : P (s) ≤ 0}.

It will be necessary to make some additional assumptions on mixing and
growth rates. For our purposes the following suffices:

Assumption 3.4. (T4) There is n0 ∈ N such that the sequence (fk)k∈N
is (n0,∆)-mixing, i.e. for any t ∈ N ∪ {0} and x ∈ Λt:

f
(n0)
t (B(x,∆) ∩ Λt) = Λt+n0 .

(T5) The sequence (λ1(fk))k∈N is sub-exponential, i.e.

lim
k

1
k

log λ1(fk) = 0.

Lemma 3.5. Assuming (T0)–(T5) we have (the limits need not be finite):

P (s) = lim sup
n

1
n

logmn(s) = lim sup
n

1
n

logMn(s),

P (s) = lim inf
n

1
n

logmn(s) = lim inf
n

1
n

logMn(s).

Proof. We proceed as in the last half of the proof of the operator bounds,
Lemma 2.7. Through a small modification, notably replacing δf by ∆, and
making use of mixing, condition (T4), and the distortion bounds in Lemma
3.3 we deduce similarly to (2.12) that

mn+n0(s) ≥ (‖Dfn+1‖ · · · ‖Dfn+n0‖cn)−sMn(s)/2,
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in which the sequence cn is sub-exponential. Due to (3.16), (T5) and as n0

is fixed the sequence Mn(s)/mn+n0(s) is of sub-exponential growth. Whether
finite or not, the above lim inf’s and lim sup’s agree.

Lemma 3.6. Assuming (T0)–(T5) we have the following dichotomy : Ei-
ther Λ0 is a finite set or Λ0 is a perfect set.

Proof. Suppose that Λk is a singleton for some k ∈ N. Then also Λn is a
singleton for all n ≥ k and Λ0 is a finite set because all the (preceeding) maps
are of finite degree. Suppose instead that no Λk is reduced to a singleton and
let us take x ∈ Λ0 as well as n ≥ 0. By (T4) there is z ∈ Λn ∩ B(f (n)(x),∆),
z 6= f (n)(x). Because of Lemma 3.2, z must have an n’th pre-image in Λ0

distinct from x and at a distance less than β−n∆ to x. Thus, x is a point of
accumulation of other points in Λ0.

We have the following (see [Bar96, Ths. 2.1 and 3.8] for similar results):

Theorem 3.7. Let Λ0 denote the time-zero conformal repeller for a se-
quence of E(∆, β, ε)-maps, (fk)k∈N, verifying conditions (T0)–(T5). Then there
exist the following inequalities (note that the first is actually an equality), re-
garding dimensions of Λ0 = Λ(F):

scrit = dimHΛ0 ≤ dimBΛ0 ≤ dimBΛ0 ≤ scrit.

If, in addition, lim 1
n logmn(scrit) = 0 then scrit = scrit and all the above di-

mensions agree.

Proof. When Λ0 is a finite set it is easily seen that P (0) = 0 and then
that scrit = scrit = 0 in agreement with our claim. In the following we assume
that Λ0 has no isolated points.

(scrit ≤ dimHΛ0): Let U ⊂ Λ0 be a nonempty open subset (for the induced
topology on Λ0) of diameter not exceeding δ(f1). Choose x = x(U) ∈ U and let
k = k(U) ≥ 0 be the largest integer (finite as Λ0 was without isolated points)
such that U ⊂ Bk(x). Then there is u ∈ U \ Bk+1(x) ⊂ Bk(x) \ Bk+1(x) for
which we must have δ(fk+2) ≤ d(xk+1, uk+1) ≤ λ1(fk+1)d(xk, uk). Proceeding
as in section 2.3 we obtain the bound

L(k)
s χ

U
≤ (diam U)s

[(
λ1(fk+1)ck
δ(fk+2)

)s 1
mk(s)

]
L(k)
s χ

Λ0
.

By hypothesis (T5), λ1(fk) is a sub-exponential sequence. Because of ∆-
homogeneity, or more precisely (3.17) and (T2), we see that δ(fk) ≥ κ/λ1(fk)
is also sub-exponential. If scrit = 0 there is nothing to show. If 0 ≤ s < scrit
then mk(s) tends to infinity exponentially fast (recall that P (s) is strictly de-
creasing in s) and the factor in the square bracket is uniformly bounded from
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above by a constant γ1(s) <∞. We thus arrive at

L(k)
s χ

U
≤ γ1(s) (diam U)s L(k)

s χ
Λ0
.

We may proceed as in Section 2.3 to conclude that dimHΛ0 ≥ scrit.

(scrit ≥ dimHΛ0): To obtain this converse inequality we will use a stan-
dard trick which amounts to constructing explicit covers of small diameter and
giving bounds for their Hausdorff measure.

Let n ≥ 1. By our initial assumption we may find a finite ∆-cover
{V1, . . . , VN∆} of Λn (because K has this property). Let i ∈ {1, . . . , N∆}
and pick xi ∈ Vi ∩ Λn and write (f (n))−1{xi} =

⋃
α∈Ii

{xi,α} over a finite
index set Ii. By Lemma 3.2 we see that to each xi,α there corresponds a pre-
image Vi,α = (f (n))−1Vi ∩ Bn−1,∆(xi,α) (the union over α yields a partition of
(f (n))−1Vi). Whence, by Lemma 3.3,

diam Vi,α≤
2cn∆

Df (n)(xi,α)
.

Then ∑
α

(diam Vi,α)s≤ (2cn∆)s(LnsχΛ0
)(xi)

and consequently ∑
i,α

(diam Vi,α)s≤ [N∆(2cn∆)sMn(s)].

Let s > scrit. Then P (s) < 0 and there is a sub-sequence nk, k ∈ N, for which
mnk

(s) and, by Lemma 3.5, also Mnk
(s) tend exponentially fast to zero. For

that sub-sequence the expression in the square brackets is uniformly bounded
in nk. Since diam Vi,α ≤ 2cn∆ β−n which tends to zero with n the family
{Vi,α}nk

exhibits covers of Λ0 of arbitrarily small diameter. This implies that
dimH(Λ) does not exceed s nor scrit.

(dimBΛ0 ≤ scrit): For the upper bound on the box dimensions, consider
for 0 < r ≤ δ

λ1(f1)
(with δ > 0 as in (3.15)) and x ∈ Λ0 the ball U = B(x, r).

Let k = k(x, r) ≥ 2 be the smallest integer such that Bk−1,∆(x) ⊂ U . Note
that ∆-homogeneity (3.15) shows that B(f1(x),∆) 6⊂ B(f1(x), δ). By (T1)
and (T2), B0,∆(x) 6⊂ B(x, δ

λ1(f1)
), so that a fortiori, k ≥ 2. We then have

L(k)
s χ

U
≥ L(k)

s χ
Bk−1,∆(x)

≥ inf
z∈Bk−1,∆(x)

(
Df (k)(z)

)−s
χ
B(f (k)(x),∆)

.

By definition of k there is y ∈ Bk−2,∆(x)\U , so that in particular, d(y, x) ≥ r.
When z ∈ Bk−1,∆(x), Lemma 3.3 shows that

∆
r

‖Dfk‖
Df (k)(z)

≥ d(f (k−1)(y), f (k−1)(x))
d(y, x) Df (k−1)(z)

≥ 1
ck−1

and we deduce that

L(k)
s χ

U
≥ rs(ck−1∆‖Dfk‖)−sχB(f (k)(x),∆)

.
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Iterating another n0 times we will by hypothesis (T4) cover all of Λk+n0 . Rea-
soning as in Section 2.4, we see that

L(k+n0)
s χ

U
≥ (4r)s

(4ck−1∆
n0∏
j=0

‖Dfk+j‖)−s
1

Mk+n0(s)

L(k+n0)
s χ

Λ0
.

If s > scrit the sequence, Mk(s), tends to zero exponentially fast (recall that
P (s) is strictly decreasing at scrit). The sub-exponential bounds in hypothesis
(T5) imply that the factor in the brackets remains uniformly bounded from
below. We may proceed to conclude that dimBΛ does not exceed s, whence
not scrit.

Finally, for the last assertion suppose that 1
n logmn(scrit) = 0, i.e. the limit

exists and equals zero (cf. the remark below). Lemma 3.5 shows that the lower
and upper pressures agree so that P (scrit) = P (scrit) = 0. Now, both pressure
functions are strictly decreasing (because β > 1). Therefore, scrit = scrit and
the conclusion follows.

Remark 3.8. A Hölder inequality (for fixed n) shows that s 7→ 1
n logMn

is convex in s. Convexity is preserved when taking limsup (but in general
not when taking liminf) so that s 7→ P (s) is convex. Even if 1

n log Mn(scrit)
converges, however, it can happen that lim sup 1

n log Mn(s) = +∞ for s < scrit.
In that case convergence of 1

n logMn(scrit) could be towards a strictly negative
number and scrit could turn out to be strictly smaller than scrit.

4. Random conformal maps and parameter-dependency

The distortion function ε gives rise to a natural metric on E ≡ E(∆, β, ε).
We assume in the following that ε is extended to all of R+ and is a strictly
increasing concave function (or else replace it by an extension of its concave
‘hull’ and make it strictly increasing). For f, f̃ ∈ E we set dE(f, f̃) = +∞
if there is y ∈ K for which deg(f ; y) 6= deg(f̃ ; y). Note that by pairing,
deg(f ; y) is locally constant. When the local degrees coincide everywhere we
proceed as follows: For y ∈ K, we let Πy denote the family of bijections,
π : f−1y

1:1−→ f̃−1y, and for x ∈ f−1y we set

(4.19) ρπ,x(f, f̃) = ε

(
β

β − 1
d(x, π(x))

)
+

∣∣∣∣∣log
Df̃ ◦ π(x)
Df(x)

∣∣∣∣∣ .
The distance between f and f̃ is then defined as:

(4.20) dE(f, f̃) = sup
y∈K

inf
π∈Πy

sup
x∈f−1(y)

ρπ,x(f, f̃).

Let f1, f2, f3 be maps at a finite ‘distance’. Fixing y ∈ K we pick corresponding
bijections, π1 : f−1

1 y
1:1−→ f−1

2 y and π2 : f−1
2 y

1:1−→ f−1
3 y. For x ∈ f−1

1 y our
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hypotheses on ε imply that ρπ2◦π1,x(f1, f3) ≤ ρπ1,x(f1, f2)+ρπ2,π1(x)(f2, f3) from
which we deduce that dE fulfills a triangular inequality. It is then checked that
indeed, dE defines a metric on E .

Lemma 4.1. Let u ≤ ∆ and dE(f, f̃) ≤ ε(u). Then for all y, ỹ ∈ K with
d(y, ỹ) < u there exists a pairing (xα, x̃α)α∈J (for some finite index set J) of
f−1(y) and f̃−1(ỹ) for which ∀α ∈ J ,

d(xα, x̃α) < u and

∣∣∣∣∣log
Df(xα)

Df̃(x̃α)

∣∣∣∣∣ ≤ 2ε(u).

Proof. Let y ∈ K and choose a bijection π : f−1(y) 1:1−→ f̃−1(y) for
which ρπ,x(f, f̃) ≤ ε(u), ∀x ∈ f−1y. For any fixed x ∈ f−1y we then have:

(a) ε
(

β
β−1d(x, π(x))

)
≤ ε(u) and (b) | log D ef(π(x))

Df(x)
| ≤ ε(u). As ε is strictly

increasing (a) implies d(x, π(x)) ≤ (1 − 1
β )u. Since d(y, ỹ) < u ≤ ∆ Lemma

3.2 gives a (unique) pairing j : f̃−1y
1:1−→ f̃−1ỹ for which j(x′) ∈ B(x′, δef (x′))

and d(x′, j(x′)) ≤ d(y, ỹ)/β < u/β, x′ ∈ f̃−1y. We then obtain a pairing
j ◦ π : f−1y

1:1−→ f̃−1y
1:1−→ f̃−1ỹ (in general not unique) for which d(x, x̃) <

u(1 − 1
β ) + u

β = u, x̃ = j ◦ π(x) as wanted. By definition of the distortion we

also have | log D ef(x′)

D ef(j(x′))
| ≤ ε(d(y, ỹ)) ≤ ε(u). Setting x′ = π(x), x̃ = j(π(x))

and combining this with the bound from (b), we see that the last claim follows.

Given two sequences, F = (fn)n∈N and F̃ = (f̃n)n∈N, in E , we define their
distance (with some further caution one could replace sup by lim-sup),

d∞(F , F̃) = sup
n
dE(fn, f̃n).

For compact sets, A and B, we write distH(A,B) for their Hausdorff distance.

Proposition 4.2. When d∞(F , F̃) ≤ r = ε(u) ≤ ε(∆) then:

distH(Λ(F),Λ(F̃)) ≤ u,∣∣∣P (s,F)− P (s, F̃)
∣∣∣ ≤ 2rs, s ≥ 0 and(

1 +
2r

log β

)−1

≤ scrit(F)

scrit(F̃)
≤ 1 +

2r
log β

.

(If P (s,F) equals ±∞ then so does P (s, F̃). If scrit(F) equals +∞ then so
does scrit(F̃)). Now, the upper pressures P and upper critical value scrit have
the same bounds.

Proof. Let x ∈ Λ(F). By the pairing in Lemma 4.1, the decreasing se-
quence An = {x̃ ∈ Ωn(F̃) : d(f (j)(x), f̃ (j)(x̃)) ≤ u, 0 ≤ j ≤ n} has a nonempty



ON THE DIMENSIONS OF CONFORMAL REPELLERS 715

intersection (which could contain more than one point): ∅ 6=
⋂
n≥0An ⊂ Λ(F̃).

A point in this intersection is at a distance not exceeding u to x ∈ Λ(F).
Interchanging the roles of F and F̃ we conclude that distH(Λ(F),Λ(F̃)) ≤ u.

Given y ∈ Λn(F) we may thus find ỹ ∈ Λn(F̃) at a distance not exceeding
u ≤ ∆. We perform a recursive pairing of their pre-images at distances less
than u and with ε(u) ≤ r. Using Lemma 4.1 for the bounds on the derivatives
we obtain

1
k

∣∣∣∣∣∣log
L

(k)
s,F1(y)

L
(k)

s, eF1(ỹ)

∣∣∣∣∣∣ ≤ 2rs.

The second claim then follows by taking suitable limits. For the last claim
suppose e.g. that sc = scrit(F) < s̃c = scrit(F̃) < +∞ and that P (sc,F) =
P (s̃c, F̃) = 0. Now, s 7→ P (s, F̃) + s log β is nonincreasing so (s̃c − sc) log β ≤
P (sc, F̃)−P (s̃c, F̃) = P (sc, F̃)−P (sc,F) ≤ 2rsc. Thus, s̃c/sc ≤ 1 + 2r

log β and
the last bound follows.

Associated to the metric space (E , dE) there is a corresponding Borel
σ-algebra and this allows us to construct measurable maps into E . In the
following let (Ω, µ) be a probability space and let τ : Ω → Ω be a µ-ergodic
transformation. We use E to denote an average with respect to µ.

Definition 4.3. We write EΩ ≡ EΩ(∆, β, ε) for the space of measurable
maps, f : ω ∈ (Ω, µ) 7→ fω ∈ (E , dE), whose image is almost surely separable
(i.e. the image of a subset of full measure contains a countable dense set).
Following standard conventions we say that the map is Bochner-measurable.

We write Fω = (fτn−1ω)n∈N for the sequence of maps fibered at the orbit
of ω ∈ Ω. Denote by f (n)

ω = fτn−1(ω) ◦ · · · ◦ fω, n ∈ N (and f (0)
ω = id) the

iterated map defined on the domain, Ωn(Fω) = f−1
ω ◦ f−1

τ(ω) ◦ · · · ◦ f−1
τn−1(ω)(K)

(and Ω0(Fω) = K). The ‘random’ Julia set is then the compact, nonempty
intersection

(4.21) J(f)ω ≡ Λ(Fω) =
⋂
n≥0

Ωn(Fω).

Lemma 4.1 implies that (f1, . . . , fn) ∈ En 7→ f−1
1 ◦ · · · ◦ f−1

n (K) ⊂ K is
continuous when K is equipped with the Hausdorff topology for its nonempty
subsets. It follows that ω 7→ Ωn(Fω) is measurable. Uniform contraction
implies that Ωn(Fω) converge exponentially fast to Λ(Fω) in the Hausdorff
topology, whence the ‘random’ conformal repeller, Λ(Fω), is measurable for
the Hausdorff σ-algebra.

Using the estimates from the previous proposition, the function, (f1, . . .

. . . , fn) ∈ En 7→Mn(s, (f1, . . . , fn)), is continuous. Almost sure separability of
{fω : ω ∈ Ω} ⊂ E implies then that ω 7→ Mn(s,Fω) is measurable (with the
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standard Borel σ-algebra on the reals). For example, if V1, V2 are open subsets
of E , the pre-image of V1×V2 by ω 7→ (fω, fτω) is f−1(V1)∩τ−1f−1(V2) which is
measurable. The function, P (s,Fω), being a lim sup of measurable functions,
is then also measurable (and the same is true for mn and P ). We define the
distance between f , f̃ ∈ EΩ to be

(4.22) dE,Ω(f , f̃) = µ-ess sup
ω
dE(fω, f̃ω) ∈ [0,+∞].

Theorem 4.4. Let τ be an ergodic transformation on (Ω, µ) and let f =
(fω)ω∈Ω ∈ EΩ be Bochner-measurable (Definition 4.3). We suppose that there
is n0 < ∞ such that (a.s.) the sequence Fω = (fτn−1ω)n∈N is (n0,∆)-mixing
(Condition (T4) in Assumption 3.4).

We suppose also that E log ‖Df‖ < +∞. (We say that the family is of
bounded average logarithmic dilation). Then

(a) For any s ≥ 0 and µ-almost surely, the pressure functions, P (s,Fω) and
P (s,Fω), are independent of ω and equal in value. We write P (s, f) for
this almost sure common value. The various dimensions of the random
conformal repeller Λ(Fω) agree (a.s.) in value. Their common value is
(a.s.) constant and given by

sc(f) ≡ sup{s ≥ 0 : P (s, f) > 0} ∈ [0,+∞].

(b) sc(f) is finite if and only if P (0, f) < +∞ (this is the case, e.g. if
E log domax(f) <∞) and

E log domin(f)
E log ‖Df‖

≤ sc(f) ≤
E log domax(f)
−E log ‖1/Df‖

.

(c) If P (0, f) < +∞ the map f ∈ (EΩ, dE,Ω) 7→ log sc(f) is 2
log β -Lipschitz at

distances ≤ ε(∆).

Proof. Write φ(ω) = log ‖Dfω‖ ≥ log β > 0 and similarly φ(n)(ω) =
log ‖Df (n)

ω ‖. Then φ(n)(ω) ≤ φ(k)(ω) + φ(n−k) ◦ τk(ω), 0 < k < n and since φ
is integrable we get by Kingman’s subergodic theorem [King68] that the limit

log β ≤ lim
n

1
n
φ(n)(ω) < +∞

exists (and is constant) µ-almost surely. As a consequence,

lim
n

1
n
φ ◦ τn(ω) = lim

n+ 1
n

1
n+ 1

φ(n+1)(ω)− 1
n
φ(n)(ω) = 0

µ-almost surely. Thus the sequence of maximal dilations is almost surely sub-
exponential (Condition (T5) of Assumption 3.4). Condition (T4) of that as-
sumption is a.s. verified by the hypotheses stated in our Theorem. It follows
by Theorem 3.7 that the Hausdorff dimension of the random repeller Λ(Fω)
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a.s. is given by scrit(Fω). In order to prove (a) we must show that (a.s.) the
value is constant and equals scrit(Fω).

The family mn(s,Fω) is super-multiplicative, i.e.

mn(s,Fω) ≥ mn−k(s,Fτkω)mk(s,Fω),

for 0 < k < n and ω ∈ Ω. Writing log+ x = max{0, log x}, x > 0, we have

E log+

1
m1(s,Fω)

≤ s E log ‖Df‖.

As the latter quantity is assumed finite we may for s fixed apply Kingman’s
super-ergodic theorem to mn, i.e. the sub-ergodic theorem to the sequence
1/mn to deduce that the limit

lim
n

1
n

logmn(s,Fω) ∈ (−∞,+∞]

exists (and is constant) µ-almost surely. In view of Lemma 3.5 this implies
(a.s.) that P (s,Fω) = P (s,Fω) = const(s). We write P (s, f) for this a.s.
limit.

From the expression for the operator and for fixed n and ω ∈ Ω, we see
that the sequence ‖Df (n)

ω ‖smn(s,Fω) is a nondecreasing function of s. The
same is then true for

s
1
n

log ‖Df (n)
ω ‖+

1
n

logmn(s,Fω).

Apply now Kingman’s sub-ergodic, respectively super-ergodic, theorem to
these two terms. We are allowed to do so because the first (a.s.) has a fi-
nite limit, bounded by sE log ‖Df‖. It follows that

sE log ‖Df‖+ P (s, f) ∈ (−∞,+∞]

is a nondecreasing function of s. Similarly, we see that

s log β + P (s, f) ∈ (−∞,+∞]

is nonincreasing. The latter bound shows that P (s, f) is strictly decreasing in
s which implies that sc(f) ≡ scrit = scrit ∈ [0,+∞]. From the two bounds we
also obtain the following dichotomy: Either (1) P (0, f) = ∞, P (s, f) is infinite
for all s ≥ 0 and scrit = scrit = +∞, or (2) P (0, f) < +∞ in which case the
function s 7→ P (s, f) is continuous, strictly decreasing and has a unique zero
scrit = scrit ∈ [0,+∞). In either case, Theorem 3.7 shows that the common
value (a.s.) equals all of the various dimensions. This proves (a) and also the
first part of (b).

We have the following bounds for the action of the transfer operator Ls,f
upon a positive function φ > 0:

(4.23)
domin(f)
‖Df‖s

minφ ≤ Ls,f φ ≤ domax(f) ‖ 1
Df

‖s maxφ.
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Here, domax(f) and domin(f) denotes the maximal, respectively, the minimal
pointwise degree of the map, f . The estimate in (b) for the dimensions is
obtained then by taking averages as above. Finally, (c) is a consequence of
Proposition 4.2 and the fact that scrit a.s. equals the dimensions.

Example 4.5. Let K = {φ ∈ `2(N) : ‖φ‖ ≤ 1} and denote by en, n ∈
N, the canonical basis for `2(N). The domains Dn = Cl B(2

3en,
1
6), n ∈ N,

maps conformally onto K by x 7→ 6(x − 2
3en). For each n ∈ N we consider

the conformal map fn of degree n which maps D1 ∪ . . . ∪ Dn onto K by the
above mappings. Finally let ν be a probability measure on N. Picking an
i.i.d. sequence of the mappings fn according to the distribution ν we obtain a
conformal repeller for which all dimensions almost surely agree. In this case
we have equality for the estimates in Theorem 4.4 (b) so that the a.s. common
value for the dimensions is given by∑

n n ν(n)
log 6

.

Finiteness of the dimension thus depends on n having finite average or not (cf.
also [DT01, Ex. 2.1]).

The Lipschitz continuity of the dimensions with respect to parameters is
somewhat misleading because it is with respect to our particular metric on E .
In practice, when constructing parametrized families of mappings it is really
the modulus of continuity of Df , i.e. the ε-function in E(K,∆, ε), that comes
into play:

Example 4.6. We consider here just the case of one stationary map f ∈ E .
Let Tt, t ≥ 0, be a Lipschitz motion of (Ωf , f) in E(K,∆, ε). By this we
mean that T−1

t : Ωf → K, t ≥ 0, is a family of conformal injective mappings
with T0(x) = x, d(x, T−1

t x) ≤ b t, | logDT−1
t (x)| ≤ c t (for t ≥ 0) and such

that f ◦ Tt : T−1
t Ωf → K belongs to E(K,∆, ε) for t ≥ 0. One checks that

dE(f ◦ Tt, f) ≤ ε
(

β
β−1b t

)
+ c t (use f̃ = f ◦ Tt and π = T−1

t in (4.19)). By
Theorem 4.4 (c), the map t 7→ d(t) = dimHΛ(f ◦ Tt) for t small verifies:

| log
d(t)
d(0)

| ≤ 2
log β

(
ε

(
β

β − 1
b t

)
+ c t

)
.

When Thermodynamic Formalism applies, in particular when a bit more
smoothness is imposed, a similar result could be deduced within the framework
(and restrictions) of TF. I am not aware, however, of any results published on
this.
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5. Part II: Random Julia sets and parameter dependency

Let U ⊂ Ĉ be an open nonempty connected subset of the Riemann sphere
omitting at least three points. We denote by (U, dU ) the set U equipped with
a hyperbolic metric dU . As U will be fixed throughout we will usually write
d = dU for this hyperbolic metric. As normalisation we use ds = 2|dz|/(1−|z|2)
on the unit disk D and the hereby induced metric for the hyperbolic Riemann
surface U (cf. Remark 5.1 below). In particular, for the unit disk and z ∈ D
we have

dD(0, z) = log
1 + |z|
1− |z|

, |z| = tanh
dD(0, z)

2
.

We write B(u, r) ≡ BU (u, r) for the hyperbolic ball of radius r > 0 centered
at u ∈ (U, d), BD(u, r) for the similar hyperbolic ball in (D, dD), u ∈ D and
BC(u, r) = {z ∈ C : |z − u| < r} for a standard Euclidean ball in C.

Recall that when K ⊂ U is a compact subset the inclusion mapping
(IntK, dIntK) ↪→ (IntK, dU ) is a strict contraction [CG93, Th. 4.2, p.13] by
some factor β = β(K,U) > 1 depending on K and U only. We consider the
family E(K,U) of finite degree unramified conformal covering maps

f : Df → U

for which the domain Df is a subset of the compact set K. We may assume
without loss of generality that K is the closure of its own interior. Our first
goal is to show that such maps a fortiori verify conditions (T0)–(T3) from the
previous section, in which the set K is the same as here and the metric d on
K is the restriction of the hyperbolic metric dU to K.

Let ` = `(K,U) > 0 be the infimum length of closed noncontractible
curves (sometimes called essential loops) intersecting K and let α = tanh(`/4)
(we set ` = +∞ and α = tanh(+∞) ≡ 1 when U is simply connected). We
define the constant

(5.24) ∆ = ∆(K,U) = log
1 + α/10
1− α/10

and for 0 ≤ r < `/2 the ε-function

(5.25) ε`(r) = −6 log
(

1− tanh(r/2)
tanh(`/4)

)
.

One has: tanh ∆
2 = α

10 , ∆ < `/20 and ε`(∆) < 1.

Remark 5.1. We recall some facts about universal covering maps of Rie-
mann surfaces: Let φ : D → U be a universal conformal covering map of U .
For x, y ∈ U their hyperbolic distance is defined as dU (x, y) = min{dD(x̂, ŷ)}
where the minimum is taken over lifts x̂ ∈ φ−1{x} and ŷ ∈ φ−1{y} of x and
y, respectively. If p, p′ ∈ φ−1{y} are two disctinct lifts of a point y ∈ K then
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dD(p, p′) ≥ `. Otherwise the geodesic connecting p and p′ projects to a closed
noncontractible curve in U intersecting K and of length < `, contradicting our
definition of `. For the same reason, the map φ : BD(p, `/2) → B(y, `/2) must
be a conformal bijection which preserves distances to y; i.e., if z ∈ BD(p, `/2)
then dD(z, p) = dU (φ(z), y). Note, however, that φ need not be an isometry on
the full disc, since two points in B(y, `/2) \K may have lifts closer than their
lifts in BD(p, `/2).

We have the following

Lemma 5.2. Let f ∈ E(K,U). Write ‖Df‖ = ‖Df‖f−1K for the maximal
conformal derivative of f on the set f−1K. Define λ1(f) = 3

2‖Df‖. Let
x ∈ Df ∩ f−1K and set

(5.26) δf (x) = min{log
8 Df(x) + α

8 Df(x)− α
,∆}.

Let also δ(f) = min{log 8‖Df‖+α
8‖Df‖−α ,∆} > 0 be the minimum value of δf (x) over

the compact set Df ∩ f−1K. Then B(x, δf (x)) ⊂ Df and we have the follow-
ing properties:

(0) If x′ 6= x is another pre-image of f(x), then B(x, 2δf (x)) and
B(x′, 2δf (x′)) are disjoint.

(1) f is univalent on the hyperbolic disk B(x, δf (x)) and B(fx,∆) ⊂
fB(x, δf (x)).

(2) β ≤ f [u, x] ≤ λ1(f) for u ∈ B(x, δf (x)).

(3) If u, v ∈ B(x, δf (x)) and fu, fv ∈ B(fx, r) with 0 < r ≤ ∆ then

(5.27)
∣∣∣∣log

(
d(fx, fu)

d(x, u)Df(v)

)∣∣∣∣ ≤ ε`(r).

Proof. Let C be a connected component of Df ⊂ K and fix an x ∈ C for
which y = f(x) ∈ K ⊂ U . Pick universal conformal covering maps, φx : D → U

and φy : D → U , for which φx(0) = x and φy(0) = y. Let Ĉ = φ−1
x C ⊂ D

be the lift of the connected component C containing x. The composed map,
f ◦ φx : Ĉ → U is a conformal covering map of U . Since φy : D → U is a
universal covering there is a unique (conformal) map, ψ = ψx,y : D → Ĉ, such
that ψx,y(0) = 0 and (cf. Figure 2)

f ◦ φx ◦ ψx,y ≡ φy : D → U.

By definition of the hyperbolic metric the conformal derivative of f at x is
given by

λ ≡ Df(x) = 1/|ψ′(0)|.
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Ψ

φx

x f
y

φy

00

Figure 2: An illustration of a covering map of degree 2 and its ‘inverse’ in
the universal cover. Cuts along the dotted lines become arcs in the lift. One
fundamental domain is sketched in each cover.

More generally, if u = φx(ψ(z)) ∈ C, z ∈ D then

Df(u) = 1/Dψ(z) =
1

|ψ′(z)|
1− |ψ(z)|2

1− |z|2
.

The value does not depend on the choices of covering maps because the con-
formal line element ds = 2|dz|/(1 − |z|2) is invariant under conformal auto-
morphisms of the unit disk (both in the source and in the image).

The map ψ : (D, dD) → (Ĉ, d bC) is nonexpanding [CG93, Th. 4.1, p. 12].
As C ⊂ K the inclusion (C, dC) ↪→ (U, dU ) is β−1-Lipschitz. In the covering

space also (Ĉ, d bC) ↪→ (D, dD) is β−1-Lipschitz so the composed map (D, dD)
ψ→

(C, dC) ↪→ (U, dU ) must be β−1-Lipschitz. The map ψ need not, however, be
univalent on all of D because a noncontractible loop in C may be contractible
in U (as is the case in Figure 2). On the other hand, the map φy : BD(0, `/2) →
B(y, `/2) = B(f(x), `/2) is a conformal bijection (Remark 5.1). Writing jy for
the inverse of this map we see that

(5.28) hx = φx ◦ ψ ◦ jy : B(f(x), `/2) → B(x, `/(2β))

defines a local inverse of f . The map ψ is univalent on the disk BD(0, `/2) =
BC(0, α) so that

g : t ∈ D 7→ ψ(tα)
αψ′(0)

∈ C
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is univalent and verifies g(0) = 0 and g′(0) = 1. The Koebe distortion theorem
[CG93, Th. 1.6, p 3] applied to g shows that if |z| < α (recall that λ = Df(x) =
1/|ψ′(0)|) then

(5.29)

1
(1 + |z|/α)2

≤
∣∣∣∣λψ(z)

z

∣∣∣∣ ≤ 1
(1− |z|/α)2

,

1− |z|/α
(1 + |z|/α)3

≤
∣∣λψ′(z)∣∣ ≤ 1 + |z|/α

(1− |z|/α)3
.

With our definition of δf (x) we have that BD(0, δf (x)) ⊂ BC(0, α/8λ). Using
the first bound in (5.29) for |z| = α we see that

(5.30) BD(0, 2δf (x)) ⊂ BC(0, α/4λ) ⊂ ψBC(0, α) = ψBD(0, `/2).

Since 1
10

1
(1− 1

10
)2

= 10
9·9 ≤ 1/8 and 1

5
1

(1+ 1
5
)2

= 5
6·6 ≥ 1/8 we also have:

(5.31) ψBC(0,
α

10
) ⊂ BC(0,

α

8λ
) ⊂ ψBC(0,

α

5
).

Going back to hyperbolic distances and U , noting that also ψBC(0, α/10) ⊂
BC(0, α/10) (we need this here because we want δf (x) ≤ ∆; cf. Assumption
3.1 above), we obtain

(5.32) hxB(y,∆) ⊂ B(x, δf (x)) ⊂ B(x, 2δf (x)) ⊂ hxB(y, `/2)

with ∆ and δf (x) as in (5.24) and (5.26). In particular, B(x, δf (x)) ⊂ C ⊂ Df .

Property (0): Let x′ be another pre-image of y distinct from x. Suppose
that B(x, 2δf (x)) ∩B(x′, 2δf (x′)) 6= ∅. By the last inclusion in (5.32) we may
find a path γ from x to x′ whose image f(γ) is a loop of length < `/2+`/2 = `,
contains y and is noncontractible in U . This contradicts the definition of `.

Property (1): The first inclusion in (5.32) implies that fB(x, δf (x)) ⊃
B(f(x),∆). Concerning the local inverse we have hxB(y, `/2) ⊃ B(x, δf (x))
so that the map f is univalent on B(x, δf (x)).

Property (2), f [u, x] ≥ β: For

u ∈ B(x, δf (x)) ⊂ B(x, 2δf (x)) ⊂ hxB(f(x), `/2)

we have: d(u, x) = d(hx(f(u)), hx(f(x))) ≤ β−1d(f(u), f(x)).

Property (2)′, f [u, x] ≤ λ1(f): By Schwarz’ Lemma, |ψ(z)| ≤ |z|, z ∈ D.
Also, from the expression dD(z, 0) = log 1+|z|

1−|z| = 2|z|
∫ 1
0

dt
1−|z|2t2 , it follows that

1 ≤ dD(z, 0)
dD(ψ(z), 0)

|ψ(z)|
|z|

≤ 1
1− |z|2

, z ∈ D.
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Now, let |z| < α and set u = φx(ψ(z)). Using also the first bound in (5.29) we
obtain

(5.33) (1− |z|/α)2 ≤ f [u, x]
Df(x)

=
dD(z, 0)

dD(ψ(z), 0)λ
≤ (1 + |z|/α)2

1− |z|2
.

When u ∈ B(x, δf (x)) then |ψ(z)| ≤ α
8λ and by (5.31) we must have |z| ≤

α/5 ≤ 1/5. Thus,

f [x, u] ≤ (1 + 1/5)2

1− (1/5)2
Df(x) =

3
2
Df(x) ≤ λ1(f), u ∈ B(x, δf (x)).

Property (3): Let |z|, |w| ≤ r < α and set u = φx(ψ(z)), v = φx(ψ(w)). By
(5.29), the second inequality,

1− r/α

(1 + r/α)3
(1− r2) ≤ Df(x)

Df(v)
= λ|ψ′(w)| 1− |w|2

1− |ψ(w)|2
≤ 1 + r/α

(1− r/α)3
.

Multiplying this and the inequality in (5.33) we obtain∣∣∣∣log
f [u, x]
Df(v)

∣∣∣∣ ≤ log
(1 + r/α)3

(1− r/α)3(1− r2)2
≤ 6 log

1
1− r/α

,

i.e. (5.27) with the ε` function as defined in (5.25).

The above lemma implies that conditions (T0)–(T3) of the previous sec-
tion are verified for our class of maps E(K,U) when setting Ωf = Df ∩ f−1K

and looking at the metric space (K, dU ), the ε-function ε` and finally β, ∆
and δf (x) as defined above. We may also proceed as in Section 4 and consider
E(K,U) as a metric space, whence also as a Borel measurable space.

Theorem 5.3. Let τ be an ergodic transformation on (Ω, µ). Let (fω)ω∈Ω

∈ EΩ(K,U) be a measurable family satisfying E(log ‖Dfω‖) < +∞. Then
µ-almost surely the various dimensions of the random Julia set J(f)ω, equation
(4.21), agree and are given as the unique zero sc(f) of the pressure function
P (s, f) from Theorem 4.4 (a).

Proof. We will apply Theorem 4.4. The assumption of bounded aver-
age logarithmic dilation is included in our hypothesis. We need to show that
(n0,∆)-mixing holds for some n0. This follows, however, directly from con-
nectivity of U and the properties of our conformal maps. The diameter of K
is finite within U . Given two points y and z in K, choose a geodesic between
them of length not greater than the diameter of K. By taking preimages we
obtain paths of exponentially shrinking lengths. It suffices to take n0 such
that diam K/βn0 ≤ ∆ to assure that (T4) of Assumption 3.4 holds. An
area estimate for f ∈ E(K,U) yields: do(f)Area(K) =

∫
f−1K |Df |

2dArea ≤
‖Df‖2Area(K), whence the degree of f verifies:

(5.34) do(f) ≤ ‖Df‖2.
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Therefore, E(log do(fω)) < +∞ and we may apply Theorem 4.4 (b) to obtain
the desired conclusion. For φ ≥ 0 we also have by change of variables,∫

K
Ls=2φ dA =

∫
f−1K

φ dA ≤
∫
K
φ dA,

which incidently shows that scrit ≤ 2 (as it should be !).

6. Mirror embedding and real-analyticity
of the Hausdorff dimension

The dependence of the Hausdorff dimension on parameters may be stud-
ied through the dependence of the pressure function on those parameters. A
complication arises, namely that our transfer operators do not depend analyt-
ically on the expanding map. In [Rue82], Ruelle circumvented this problem
in the case of a (nonrandom) hyperbolic Julia set by instead looking at an
associated dynamical zeta-function. Urbański and Zdunik [UZ04] considered a
holomorphic motion and constructed a family of operators that depends ana-
lytically on parameters, through a conjugation with the holomorphic motion.
Here, we tackle the problem differently and introduce a mirror embedding : We
embed our function space into a larger space and semi-conjugate our family
of transfer operators to operators with an explicit real-analytic dependency on
parameters and mappings. We establish a Perron-Frobenius theorem through
the contraction of cones of ‘real-analytic’ functions. The pressure function may
then be calculated as the averaged action of the operator on a hyperbolic fixed
point (cf. [Rue79], [Rue97]) which has the wanted dependence on parameters.
Finally as the pressure function cuts the horisontal axis transversally the result
will follow from another implicit function theorem.

6.1. Mirror extension and mirror embedding. Possibly after conjugation
with a Möbius transformation we may assume that U is a hyperbolic subset
of C, i.e. that U does not contain the point at infinity as well as (at least)
two other points. The compact subset K ⊂ U is then a bounded subset of the
complex plane. We write U = {z : z ∈ U} for the complex conjugated domain
(not the closure) and we define the mirror extension of U as the product
Û = U × U ⊂ C2. Given two points ξ = (ξ1, ξ2) and ζ = (ζ1, ζ2) in Û we
define their Û -distance to be dbU (ξ, ζ) = max{dU (ξ1, ζ1), dU (ξ2, ζ2)}. The map
z ∈ U 7→ (z, z) ∈ Û is then an isometric embedding of U onto the mirror
diagonal,

diag U = {(z, z) : z ∈ U} ⊂ Û .

The ‘exchange-conjugation’

c(u, v) = (v, u), (u, v) ∈ U × U
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defines an involution on the mirror extension leaving invariant the mirror di-
agonal. Let X ⊂ Û be an open subset. We call X mirror symmetric if and
only if c(X) = X. We say that X is connected to the diagonal if any con-
nected component of X has a nonempty intersection with diag U . We write
A(X) = C0(Cl X) ∩ Cω(X) for the space of holomorphic functions on X,
having a continuous extension to Cl X.

Lemma 6.1. Let X ⊂ Û be an open, mirror symmetric subset, connected
to the diagonal and let A = A(X). Then

(1) A is a unital Banach algebra (in the sup-norm) with a complex involution,

φ∗(u, v) = φ(v, u) ≡ φ(v, u), (u, v) ∈ X, φ ∈ A.

(2) Denote AR = {φ ∈ A : φ∗ = φ}, the space of self-adjoint elements in A.
Such functions are real-valued on the mirror diagonal and A = AR⊕iAR.

(3) A function φ ∈ A is uniquely determined by its restriction to (diag U)
∩X. (For this, mirror-symmetry of X is not needed).

Proof. (1) and (2) are clear. Suppose now that φ vanishes on the mirror
diagonal. Because any point in X is path-connected to the diagonal it suffices
to show that φ vanishes on an open neighborhood of a diagonal point (y, y) ∈
X∩diag U . For u, v small enough we have a convergent power series expansion,

φ(y + u, y + v) =
∑
k,l≥0

ak,lu
kvl.

Setting u = r eiθ, v = u, we obtain for r small enough:

0 = φ(y + u, y + u) =
∑
m≥0

rm
m∑
k=0

ak,m−ke
i(2k−m)θ,

which vanishes if and only if ak,l = 0 for all k, l ≥ 0.

Let G(K) denote the geodesic closure of K. This set is constructed as
follows: For x, u ∈ K denote by {z ∈ γ | γ : x→ u} the set of points belonging
to the shortest geodesic(s) connecting x with u in U . Then G(K) = Cl

⋃
{z ∈

γ | γ : x→ u, x, u ∈ K}. With the constant ∆ as in (5.24) we write K∆ ⊂ U

for the open ∆ neighborhood of the compact set K and G∆ for the closed ∆-
neighborhood of G(K). The set G∆ is contained in the diam K∆-neighborhood
of K, whence it is compact and by construction connected in (U, dU ). Since
∞ /∈ U , G∆ is also a compact subset of U in (C, dC) so there is a constant
rc > 0 such that

(6.35) BC(y, rc) ⊂ U, ∀y ∈ G∆.

The setG∆ is compact both for the hyperbolic and the Euclidean metric so
that these two metrics must be smoothly (in fact, real-analytically) equivalent
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when restricted to G∆. Writing ds = µU (z)|dz| for the hyperbolic metric it
follows that there is C <∞ for which

(6.36)
1
C
≤ µU (z) ≤ C, ∀z ∈ G∆.

The constants rc and C will be used frequently in the following.

6.2. Mirror extended transfer operators and cone contractions. Let K̂∆

denote the open ∆-neighborhood of diag K in (Û , dbU ). Let f ∈ E(K,U) and
let f̂ = (f, f) be the mirror extended map. For ŷ = (y, y) ∈ diag (K), we write
for its mirror-preimages:

Pbf (ŷ) ≡ f̂−1{ŷ} ∩ diag K ≡ {(xi, xi)}i∈J

where f−1{y} = {xi}i∈J for some index set J . We wish to define an analytic
continuation of this ensemble to preimages of points in Cl K̂∆. Given ξ ∈
Cl K̂∆ we pick a point ŷ ∈ diag K ∆-close to ξ, i.e. such that dbU (ŷ, ξ) =
max{d(y, ξ1), d(y, ξ2)} ≤ ∆. For each i ∈ J , xi ∈ f−1{y}, we write hxi

:
B(y, `/2) → B(xi, `/2β) for the local inverse of f as defined in (5.28). We
write hxi

(z) = hxi
(z) for the conjugated map and claim that

Pbf (ξ) ≡ {(hxi
(ξ1), hxi

(ξ2)
)}

i∈J ⊂ K̂∆/β

yields the desired analytic continuation and that this continuation is unique
(up to a permutation of J). Local analyticity is clear. To see that it is well-
defined (and unique), suppose that ŵ = (w,w) ∈ diag K is another point for
which d(ŵ, ξ) ≤ ∆. Then d(y, w) ≤ d(y, ξ1) + d(w, ξ1) ≤ 2∆ < `/10 so that
B(w,∆) ⊂ B(y, `/2). Setting zi = hxi

(w) we see that

(6.37) (hxi
)|B(w,∆) = (hzi

)|B(w,∆).

But then hzi
(ξ1) = hxi

(ξ1) and hzi
(ξ2) = hxi

(ξ2). Interchanging the roles
of y and w we see that Pbf (ξ) is independent of the choices made (up to a
permutation of J). In the following we will denote by

(6.38) Dbf = {v ∈ Pbf (ξ) : ξ ∈ K̂∆}

the set of all pre-images of points in K̂∆ obtained this way. We have the
inclusions,

f̂−1diag K ∩ diag K ⊂ Dbf ⊂ f̂−1K̂∆ ∩ K̂∆/β .

By construction, Dbf is connected to diag K. It turns out to be convenient to

define a metric on the subset Cl K̂∆ ⊂ Û , better tailored to suit our purposes
than dbU .
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Definition 6.2. For ξ, ζ ∈ Cl K̂∆,

(6.39) d∆(ξ, ζ) = inf{dbU (ξ, ŷ) + dbU (ζ, ŵ) + dbU (ŷ, ŵ)}

where the infimum is taken over all ŷ, ŵ ∈ diag K for which dbU (ξ, ŷ) ≤ ∆ and
dbU (ζ, ŵ) ≤ ∆.

Remark 6.3. Thus, when measuring the distance d∆(ξ, ζ) between points
that are off-diagonal, we first find ∆-close points on the diagonal and then
consider the total length of the concatenated path γ : ξ → ŷ → ŵ → ζ.
Compactness of diag K ensures that the infimum is actually realized for some
such admissible path γ. Note that a shortest geodesic from ŷ to ŵ may be
realized by (α, α) where α is a shortest geodesic from y to w. In particular,
and this is our motivation for making the above definition, the path γ may be
chosen so that it stays within Ĝ∆, the closed ∆-neighborhood of diag G(K)
(the mirror diagonal of the geodesic closure of K).

Lemma 6.4. Define gf(x, x) = log |f ′(x)|, x ∈ f−1K. Then

(1) gf has a unique holomorphic extension, gbf ∈ A(Dbf ).
(2) For ξ, ζ ∈ Cl K̂∆, let γ be a minimal admissible path as in the previous

remark. Let v ∈ Pbf (ξ) and w ∈ Pbf (ζ) be connected by an f̂-preimage of γ.
Then there exists the following estimate (with the constants rc and C from
(6.35) and (6.36)): ∣∣∣gbf (v)− gbf (u)

∣∣∣ ≤ 4C
rc

d∆(ξ, ζ).

Proof. (1) We define gbf locally as (v1, v2) ∈ Cl Dbf 7→ 1
2 log(f ′(v1)f ′(v2))

for a suitable choice of logarithmic branch. Analyticity, and by Lemma 6.1
then also uniqueness, follow if we can show how to choose the branch globally.
First, take ŷ = (y, y) ∈ diag K, xi ∈ f−1{y}, i ∈ J and let hxi

: B(y, `/2) →
B(xi, `/2β) be a local inverse of f as above. We define

gxi
: (z1, z2) ∈ B(y, `/2)×B(y, `/2) 7→ gx1(z1, z2) = −1

2
log h′xi

(z1)h′xi
(z2)

with the normalization gxi
(z, z) = − log |h′xi

(z)|, z ∈ B(y, `/2). This is well-
defined because of simply connectedness of the product and because hxi

has
no critical points.

For ξ = (ξ1, ξ2) ∈ Cl K̂∆, let ŷ = (y, y) ∈ diag K be ∆-close to ξ. We claim
that gxi

(ξ1, ξ2) is independent of the choices made (i.e., y and xi). Suppose
that ŵ = (w,w) ∈ diag K is another point, ∆-close to ξ, and set zi = hxi

(w).
Since d(y, w) ≤ 2∆ < `/2−∆ we have

(hxi
)|B(w,∆) = (hzi

)|B(w,∆)
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so that h′xi
(u)h′xi

(u) = h′zi
(u)h′zi

(u) > 0 for all u ∈ B(w,∆). By our choice
of branches their logarithms then agree (are real-valued) and for (ξ1, ξ2) ∈
B(w,∆)×B(w,∆) we then have log h′xi

(ξ1)h
′
xi

(ξ2) = log h′zi
(ξ1)h

′
zi

(ξ2) ∈ C, as
claimed. (In fact, our proof shows that gf extends to a holomorphic function
on a neighborhood of Cl Dbf ).

(2) Given a point, (z1, z2), on the path γ there is a local inverse h with
complex conjugate h defined in a neighborhood of z1 and z2, respectively.
Calculating the differential we have

−2 dgbf (z1, z2) =
h′′(z1)
h′(z1

dz1 +
h
′′(z2)

h
′(z2

dz2.

As z1, z2 ∈ G∆ we see by (6.35) that h extends to a univalent function on
B(z1, rc) so the fundamental Köebe estimate shows that |h′′(z1)|/|h′(z1)| ≤ 4

rc
.

The same holds for h at z2 so that by integrating the above bound along γ and
using (6.36) we get

|gbf (v)− gbf (w)| ≤ 2
rc

∫
γ:ξ→ζ

(|dz1|+ |dz2|) ≤
4C
rc

d∆(ξ, ζ).

Recall that A(K̂∆) = C0(Cl K̂∆) ∩ Cω(K̂∆) denotes the space of holo-
morphic functions on K̂∆ having a continuous extension to the boundary. We
define for s ∈ C the (bounded and linear) operator, L

s,bf : A(K̂∆) → A(K̂∆)
(with gbf from Lemma 6.4):

(6.40) L
s,bf φ(ξ) =

∑
v∈P bf (ξ)

e−sg bf (v)φ(v), φ ∈ A(K̂∆), ξ ∈ Cl K̂∆.

Remark 6.5. When restricted to a diagonal point ŷ = (y, y) ∈ diag K we
have L

s,bf φ(y, y) =
∑

x∈f−1(y) |f ′(x)|−sφ(x, x) (cf. Lemma 6.4). This restriced
operator thus acts in the same way as our usual transfer operator (3.18), Ls,f ,
in the nonanalytic setting except that we use here the Euclidean derivate |f ′(x)|
instead of the hyperbolic derivative Df(x). Because of (6.36) this is, however,
irrelevant for the spectral properties, whence the way that we determine the
Hausdorff dimension (the two operators are conjugated through a multiplica-
tion by µU (z) which is smooth and bounded from above and below on G∆).

For the moment let us fix a real value of s ≥ 0. Then L
s,bf preserves

AR(K̂∆), the space of self-adjoint elements. We define for σ > 0 a closed
proper convex cone:

(6.41) Cσ = {φ ∈ AR(K̂∆) : |φ(ξ)− φ(η̂)| ≤ φ(η̂)(eσd∆(ξ,bη) − 1),

ξ ∈ Cl K̂∆, η̂ ∈ diag K}.
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l = 1

Cσ

Cσ
′

Figure 3: The cone contraction. The sliced cone Cσ′,`=1 has an R-neighborhood
which is contained in Cσ.

Given φ1, φ2 ∈ Cσ −{0}, we define β(φ1, φ2) = inf{λ > 0 : λφ1− φ2 ∈ Cσ}
and write dC = log(β(φ1, φ2)β(φ2, φ1)) ∈ [0,+∞] for the corresponding projec-
tive Hilbert metric (cf. [Bir67], [Liv95], [Rugh02]). Fix a point ŷ0 = (y0, y0) ∈
diag (K) and denote by ` ∈ A(K̂∆)′ the (real-analytic) linear functional

`(φ) = φ(ŷ0), φ ∈ A(K̂∆).

We use this to introduce the sliced cone

Cσ,`=1 ≡ {φ ∈ Cσ : `(φ) = 1}.

Lemma 6.6 (Cone contraction). Let s ≥ 0 and choose σ = σ(s) > 0
large enough so that

σ′ = σ′(s) ≡ 4C
rc
s+

1
β
σ < σ.

Then there is θ = θ(K,U, σ, s) < 1 such that for every f ∈ E(K,U) the operator
L = L

s,bf maps Cσ into Cσ′ and is a θ-Lipschitz contraction for the Hilbert
metric dCσ

. Furthermore,

(a) There is k = k(K,U, σ) > 0 such that ∀φ ∈ Cσ: `(φ) ≥ k‖φ‖
(b) There is R = R(K,U, σ, s) > 0 such that ∀φ ∈ Cσ′,`=1: B(φ,R) ⊂ Cσ.

Proof. Fix ξ = (ξ1, ξ2) ∈ Cl K̂∆, η̂ = (η, η) ∈ diag (K) and let γ = (γ1, γ2)
be an admissible path as in Remark 6.3 that minimizes d ≡ d∆(ξ, η̂) and stays
within Ĝ∆. Taking pre-images by f̂ of the path γ we obtain a pairing (i ∈ J)
of vi ∈ Pbf (ξ) and ui ∈ Pbf (η̂) ⊂ diag K (and also with xi ∈ Pbf (ŷ)). We then
have

(6.42) d∆(ui, vi) ≤ β−1d and d∆(xi, vi) ≤ β−1∆
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because of contraction of the local inverse maps and because a path pre-image is
again admissible in the sense of Remark 6.3. By Lemma 6.4, we have |gbf (ui)−
gbf (vi)| ≤ 4C

rc
d. Combining this with the first bound in (6.42) and the definition

of the cone we obtain:

|Lφ(ξ)− Lφ(η̂)| ≤
∑
i∈J

∣∣∣e−sg bf (vi)φ(vi)− e−sg bf (ui)φ(ui)
∣∣∣

≤
∑
i∈J

|e−sg bf (vi)| |φ(vi)− φ(ui)|+ |e−sg bf (vi) − e−sg bf (ui)| φ(ui)

≤ (e
4C

rc
sd(eβ

−1σd − 1) + (e
4C

rc
sd − 1))Lφ(η̂)

≤ (eσ
′d − 1)Lφ(η̂),

with σ′ = 4C
rc
s + β−1σ. Thus, L : Cσ → Cσ′ and we get for the projective

diameter (for this standard calculation we refer to e.g. [Liv95] or [Rugh02,
App. A, eq. (A.148)]):

(6.43) diamCσ
Cσ′ ≤ ρ ≡ 2 log

σ + σ′

σ − σ′
+ σ′D∆ <∞,

with D∆ =diam K+∆ being an upper bound for the d∆ distance of points ξ ∈
K̂∆ and η̂ ∈ diag K. By Birkhoff’s theorem (see [Bir67], [Liv95] or [Rugh02,
Lemma A.4]), this implies a uniform contraction for the hyperbolic metric on
Cσ. Writing θ = tanh(ρ/4) < 1 we have for φ1, φ2 ∈ Cσ:

dC(Lφ1,Lφ2) ≤ θ dC(φ1, φ2).

Property (a) is clear from the definition of the cone which shows that

|φ(ξ)| ≤ φ(ŷ0) eσd∆(ξ,by0) ≤ `(φ) eσD∆ ≡ 1
k
`(φ), φ ∈ Cσ, ξ ∈ K̂∆,

with k = exp(−σD∆) > 0. To see (b) we set κ = 2
tanh(∆/2) and let φ ∈ A(K̂∆).

We claim that for η̂ = (η, η) ∈ diag(K) and ξ ∈ Cl K̂∆:

(6.44) |φ(ξ)− φ(η̂)| ≤ ‖φ‖κ d∆(η̂, ξ).

For d∆(ξ, η̂) ≥ ∆/2 this inequality is clear; so assume that 0 < d ≡ d∆(ξ, η̂) <
∆/2. Let p : D → U be a universal covering map with p(0) = η, p(z1) = ξ1
and p(z2) = ξ2. Denoting B = BD(0,∆) = BC(0, tanh ∆

2 ) and B̂ = B ×B, we
see that φ ◦ p̂ is analytic on B̂. Then also t ∈ D 7→ a(t) ≡ φ ◦ p̂( td tanh ∆

2 ξ)
is analytic so that by Schwarz’ lemma, |a(t) − a(0)| ≤ 2|t| ‖φ‖. Setting t =

d
tanh(∆/2) we obtain:

|φ(ξ)− φ(η̂)| ≤ 2‖φ‖
tanh(∆/2)

d∆(ξ, η̂).
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Consider h ∈ Cσ′,`=1 and φ ∈ AR(K̂∆). In order for h+ φ to belong to Cσ
we need that ∣∣∣∣h(ξ) + φ(ξ)

h(η̂) + φ(η̂)
− 1
∣∣∣∣ ≤ exp(σd∆(ξ, η̂))− 1

is verified for all ξ ∈ Cl K̂∆ and η̂ ∈ diag (K). With d = d∆(ξ, η̂) this is the
case provided

|h(ξ)− h(η̂)|+ |φ(ξ)− φ(η̂)| ≤ (h(η̂)− ‖φ‖)(eσd − 1).

Using that h ∈ Cσ′ , `(h) = 1 ≤ 1
k h(η̂) and the above distortion estimate (6.44)

for φ we obtain as a sufficient condition that for all d > 0,

‖φ‖ ≤ k
eσd − eσ

′d

κd+ eσd − 1
.

As d→ 0 the right-hand side tends to k(σ−σ′)/(κ+σ) > 0 and in the d→∞
limit it tends to k > 0. It follows that it has a minimum R > 0 and we have
shown property (b).

Consider now a sequence L1,L2, . . . of operators as in the above lemma.
We write L(n) = Ln ◦ Ln−1 ◦ · · · ◦ L1 for the n’th iterated operator.

Lemma 6.7. There are constants c1, c2 <∞ (and θ < 1 from Lemma 6.6)
such that for h, h′ ∈ Cσ′,`=1, φ ∈ A(K̂∆) and n ≥ 0:

(1)

∥∥∥∥∥ L(n)h

`(L(n)h)
− L(n)h′

`(L(n)h′)

∥∥∥∥∥ ≤ c1θ
n,

(2)

∥∥∥∥∥ L(n)φ

`(L(n)h)
− L(n)h

`(L(n)h)
`(L(n)φ)
`(L(n)h)

∥∥∥∥∥ ≤ c2θ
n‖φ‖.

Proof. Outer regularity, i.e. Property (a) of the above lemma, and a
computation4 show that (with k from Lemma 6.6 (a)):

‖φ1 − φ2‖ ≤
2
k
(ed(φ1,φ2) − 1), ∀ φ1, φ2 ∈ Cσ,`=1.

When φ1, φ2 ∈ L(n)Cσ′ , `(φ1) = `(φ2) = 1 and n ≥ 0 we have that dCσ
(φ1, φ2) ≤

θnρ, with ρ from eq. (6.43). Therefore,

‖φ1 − φ2‖ ≤
2
k
(eθ

nρ − 1)

which is smaller that c1θn for a suitable choice of c1. This yields the first
bound.

4See e.g. [Rugh02, App. A, Lemma A.3] for this computation.
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For the second bound note that B(h,R) ⊂ Cσ. For φ ∈ AR(K̂∆) (small),
one has dC(h+ φ, h) ≤ 2

R‖φ‖+ o(‖φ‖) and therefore∥∥∥∥∥ L(n)(h+ φ)
`(L(n)(h+ φ))

− L(n)(h)
`(L(n)(h))

∥∥∥∥∥ ≤ 2
k
θn

2
R
‖φ‖+ o(‖φ‖)

By linearizing this bound (and losing a factor of at most
√

2) we may extend
this bound to any complex φ ∈ A(K̂∆) to obtain the second inequality with
c2 =

√
2 4
kR .

6.3. Analytic conformal families and mirror extensions. Let OC ⊂ Cn

be an open nonempty ball, invariant under complex conjugation and denote
by OR = OC ∩ Rn its real (nonempty) section. Recall that U ⊂ C so that
Cl K∆ ⊂ U is a compact subset of C. As in the previous section we will
work with the Euclidean derivative, f ′ = df

dz , of f rather than the hyperbolic
derivative Df .

Definition 6.8. Let t ∈ OC ⊂ Cn → ft ∈ E(K,U) be a continuous map.

(1) (ft)t∈OC is an analytic family if {(t, z) : t ∈ OC, z ∈ Dft
} 7→ ft(z) ∈ C is

analytic.

We say that the family ft verifies an L-Lipschitz condition (0 < L < +∞)
if for any z ∈ K∆ and any local inverse f−1

t (z) (see Remarks 6.9 and 6.10
below) the map t ∈ OC 7→ log ∂ft

∂z ◦ f
−1
t (z) ∈ C is L-Lipschitz (for some,

whence any, local choice of logarithmic branch).

(2) We define the condition number of f ∈ E(K,U) to be

Γ(f) = ‖f ′‖f−1K ‖1/f ′‖f−1K .

It is no lack of generality to assume that the parameters are one-dimen-
sionial (n = 1). We may also assume that OC = D, i.e. is the unit-disk so that
OR = D ∩ R =] − 1, 1[ is its real section. In the following let t ∈ D 7→ ft ∈
E(K,U) be an analytic family, verifying an L-Lipschitz condition.

We obtain a conjugated analytic family if we set Df t
≡ (Dft

) ⊂ U and

for x′ ∈ Df t
, f t(x′) ≡ ft(x

′). Then f t(x′) is analytic in t and x′ on the
domain {(t, z) : t ∈ D, z ∈ Df t

}. We also define for t ∈ D the product map
Ft : (x, x′) ∈ Dft

×Df t
7→ (ft(x), f t(x′)) ∈ U × U . Again, this map is analytic

in x, x′ and t on its domain of definition. Note that when t ∈ D ∩ R then
Ft = f̂t = (ft, ft).

Let y ∈ Cl K∆ and fix x0 ∈ f−1
0 {y}. Let h0,x0 denote a local inverse of f0,

equation (5.28), for which h0,x0(y) = x0. By the implicit function theorem we
may find an analytic continuation xt ∈ f−1

t {y} along any path in D emanating
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vt

v0

ut

u0

U

F0 Ft η

di
ag

K

ξ

U

U

di
ag

K

U

Figure 4: An inverse vt ∈ F−1
t (ξ) obtained by lift and analytic continuation.

from t = 0. Simple connectness of D and of B(y, `/2) show that h0,x0 extends
to an analytic map

(6.45) t ∈ D, z ∈ B(y, `/2) 7→ ht,x0(z) ∈ f−1
t {z} ⊂ U.

In particular, for fixed z ∈ B(y, `/2), the map t ∈ (D, dD) 7→ zt = ht,x0(z) ∈
(U, d) ≡ (U, dU ) is a contraction, i.e.

(6.46) d(ht,x0(z), z) = d(zt, z0) ≤ dD(t, 0), z ∈ B(y, `/2).

Similarly, we see that the map

(6.47) t ∈ D, w ∈ B(y, `/2) 7→ ht,x0(w) ∈ f−1
t {w} ⊂ U

is well-defined, analytic and a contraction with respect to t.

Remark 6.9. We may now give a more precise statement of the Lipschitz
condition in 6.8 (2): If ht,x0(z) is a local inverse of f as in (6.45) then (again
for any branch of log)

(6.48)
∣∣∣∣ ∂∂t log

∂ht,x0(z)
∂z

∣∣∣∣ ≤ L, ∀t ∈ D, z ∈ B(f0(x0), `/2).

Remark 6.10. Suppose that φ ∈ Cω(D) with φ(0) = 1 and −L ≤ log |φ(t)|
≤ L, t ∈ D. If we choose a logarithmic branch so that log(φ(0)) = 0 then If we
choose a logarithmic branch so that log(φ(0)) = 0 then

|log φ(t)| ≤ 2L
π

log
1 + |t|
1− |t|

.

(Apply Schwarz’ inequality to the map t ∈ D 7→ tan π log φ(t)
4L ∈ D). As a con-

sequence, a Lipschitz condition on log f ′, log |f ′| or log(Df) are all equivalent
if we shrink the domain in t and allow for a larger Lipschitz constant L (cf.
Remark 6.5).
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Let ξ ∈ Cl K̂∆ be ∆-close to ŷ = (y, y) ∈ diag K. As above we associate
to each xi0 ∈ f

−1
0 (y), i ∈ J local inverses, ht,xi

0
and h

t,xi
0
. Then

(6.49) PFt
(ξ) = {vit}i∈J ≡ {(ht,xi

0
(ξ1), ht,xi

0
(ξ2)}i∈J , t ∈ D

yields a unique analytic continuation (a holomorphic motion) of the pre-images
in Pbf0(ξ) (see Figure 4). Using (6.46) as well as its conjugated version we see
for any i ∈ J that

(6.50) dbU (vit, v
i
0) ≤ dD(t, 0).

For t real the second bound in (6.42) implies that vit ∈ Cl K̂∆/β . When making
t complex we want to remain within K̂∆ and by the above it suffices to have
∆/β + dD(t, 0) < ∆ or, equivalently,

(6.51) |t| < tanh
(

∆
2

(1− 1
β

)
)
.

When this condition is fulfilled we may analytically continue the trans-
fer operator in t. For t ∈ D the domain of Ft is DFt

=
⋃
{PFt

(ξ) : ξ ∈
K̂∆}. We note that gbf0 from Lemma 6.4 extends uniquely (same proof) to
an analytic function gFt

on {(z, t) : z ∈ DFt
, t ∈ D}, with a continuous exten-

sion to the domain {(z, t) : z ∈ Cl DFt
, t ∈ D} (locally this is defined as

−1
2 log(h′t,x0

(ξ1)h
′
t,x0

(ξ2)) for a suitable choice of x0 and logarithmic branch).
For s ∈ C and t verifying (6.51) we define an operator Ls,Ft

∈ L(A(K̂∆)) by
setting:

(6.52) Ls,Ft
φ(ξ) =

∑
v∈PFt (ξ)

e−s gFt (v)φ(v), φ ∈ A(K̂∆), ξ ∈ Cl K̂∆.

Lemma 6.11. Let h∈Cσ′. Choose x0∈f−1
0 K and set λ=log |f ′(x0)|>0.

Let ξ ∈ Cl K̂∆, η̂ ∈ diag K and let γ be a minimizing path for d∆(ξ, η̂) (cf.
Remark 6.3). For dD(t, 0) < ∆(1 − 1

β ), let vt ∈ PFt
(ξ) and ut ∈ PFt

(η̂) be
pre-images (analytic in t) that join a pre-image by F−1

t of the path γ and for
which u0 ∈ diag K. Then∣∣∣∣∣ h(vt)e−s(gFt (vt)−λ)

h(u0)e−s0(gF0 (u0)−λ)
− 1

∣∣∣∣∣ ≤ eq(ξ,bη,s,t) − 1

with

q(ξ, η̂, s, t) = |s− s0| log Γ(f0) +
(
σ + |s|L

2

)
dD(t, 0) +

(
σ

β
+ |s|4C

rc

)
d∆(ξ, η̂).

Proof. The defining equation for the cone, equation (6.41), shows that
h ∈ Cσ′ verifies ∣∣∣∣ h(vt)h(u0)

− 1
∣∣∣∣ ≤ eσd∆(vt,u0) − 1.
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The distance in the exponent may be bounded as follows, cf. (6.50) and (6.42):

d∆(vt, u0) ≤ d∆(vt, v0) + d∆(v0, u0) ≤ dD(t, 0) +
1
β
d∆(ξ, η̂).

By Lemma 6.4,

|gF0(v0)− gF0(u0)| ≤
4C
rc

d∆(ξ, η̂).

A small modification of the proof of that lemma, with a t-derivative rather
than a z-derivative and by (6.48), also shows that

|gFt
(vt)− gF0(v0)| ≤

1
2

∫ t

0

∣∣∣∣∣ ∂∂t log

(
∂ht,x(t)

∂z
(ξ1)

∂ht,x(t)

∂z
(ξ2)

)∣∣∣∣∣ |dt|(6.53)

≤L |t| ≤ L

2
dD(t, 0),

with ht,x(t) being a suitable inverse of ft. By definition 6.8(3) of the condition
number for f ′ and writing u0 = (z0, z0) ∈ diag K we also obtain

|gF0(u0)− λ| =
∣∣log |f ′(z0)| − log |f ′(x0)|

∣∣ ≤ log Γ(f).

The inequality ∣∣∣∏ eai − 1
∣∣∣ ≤ e

P
|ai| − 1

is valid for any finite set of complex numbers, a1, . . . , an. Now, insert the four
estimates above to obtain the claimed inequality.

We define

(6.54) πs,Ft
(φ) =

Ls,Ft
φ

`(Ls,Ft
φ)
, φ ∈ A(K̂∆),

for all φ for which the denominator does not vanish.

Lemma 6.12. Let ft ∈ E(K,U), t ∈ D verify an L-Lipschitz condition.
Choose x0 ∈ f−1

0 K and set λ = log |f ′(x0)| > 0. For s0 ≥ 0 we let W s0 denote
the open neighborhood of (s0, 0) ⊂ C× C consisting of all (s, t) that verify

|s− s0| log Γ(f0) +
(
σ + |s|L

2

)
dD(t, 0) < log

4
3

and dD(t, 0) < ∆
(

1− 1
β

)
.

Define ρ(s) = k
4 exp (−σ′(|s|)D∆) > 0, with k and σ′(|s|) = σ

β + 4C
rc
|s| from

Lemma 6.6 and D∆ = diam K + ∆. Let h ∈ Cσ′,`=1 and denote B(r) =
{φ ∈ A(K̂∆) : ‖φ‖ ≤ r}.

Then for (s, t) ∈W s0 and φ, φ1 ∈ B(ρ(s)):

(6.55) 1 ≤ ‖πs,Ft
(h+ φ)‖ ≤ 1

k ρ(s)
+ 1,

(6.56)
∣∣∣∣`(esλLs,Ft

(h+ φ))
`(es0λLs0,F0(h))

− 1
∣∣∣∣ ≤ 2

3
.
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and

(6.57)
∣∣∣∣log

`(Ls,Ft
(h+ φ))

`(Ls,Ft
(h+ φ1))

∣∣∣∣ ≤ ‖φ− φ1‖
ρ(s)

.

Furthermore, the map, (s, t, φ) ∈W s0×B(ρ(s)) 7→ πs,Ft
(h+φ) is real-analytic.

Real-analyticity means it is analytic (in norm) and that for (t, s) ∈ W s0 ∩ R2

and φ ∈ AR(K̂∆)∩B(ρ(s)), i.e. a selfadjoint element in B(ρ(s)), the image is
also in AR(K̂∆).

Proof. Let η ∈ diag K. We first use our previous lemma for ξ = η. We let
q = q(η, η, s, t) and ut, vt(= ut) be as in that lemma. Our assumptions imply
that eq − 1 < 1

3 and therefore∣∣∣h(ut)e−s(gFt (ut)−λ) − h(u0)e−s0(gF0 (u0)−λ)
∣∣∣ ≤ 1

3
h(u0)e−s0(gF0 (u0)−λ).

Summing this inequality over all pairs of pre-images and then dividing by the
right hand side we obtain

(6.58)
∣∣∣∣ `(esλLs,Ft

h)
`(es0λLs0,F0h)

− 1
∣∣∣∣ ≤ 1

3
.

In particular, |`(esλLs,Ft
h)| ≥ 2

3e
s0λ`(Ls0,F0h), for all (s, t) ∈ W s0 . Now, for

general ξ ∈ Cl K̂∆ and when (s, t) ∈ W s0 we have that eq = eq(ξ,η,s,t) ≤
4
3 exp(σ′(|s|)D∆) = k

3ρ(s) . Thus,

|e−s(gFt (vt)−λ)| ≤ k

3ρ(s)
e−s0(gF0 (u0)−λ) ≤ 1

3ρ(s)
e−s0(gF0 (u0)−λ)h(u0).

Summing over pre-images, we obtain

(6.59) ‖esλLs,Ft
‖ ≤ 1

3ρ(s)
`(es0λLs0,F0h).

When ‖φ‖ ≤ ρ(s),

(6.60)
|`(esλLs,Ft

φ)|
`(es0λLs0,F0h)

≤ 1
3
.

Since also ‖h‖ ≤ 1
k we obtain the upper bound in (6.55):

‖πs,Ft
(h+ φ)‖ =

‖esλLs,Ft
(h+ φ)‖

|`(esλLs,Ft
(h+ φ)|

≤
1

3ρ(s)‖h+ φ‖
2
3 −

1
3

≤ 1
kρ(s)

+ 1.

The lower bound is clear. The bound in (6.56) follows from (6.58) and (6.60).
From (6.58) and (6.59) we also obtain∣∣∣∣ `Ls,Ft

φ)
`(Ls,Ft

h)

∣∣∣∣ ≤ ‖φ‖
3ρ(s)

3
2

=
‖φ‖

2ρ(s)
≤ 1

2
.
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Using the inequality | log 1+a
1+b | ≤ 2|a − b|, valid when |a|, |b| ≤ 1

2 , we obtain
(6.57). For the real-analyticity of our map, π, note that Ls,Ft

(h + φ) from
equation (6.52) is real-analytic in the sense described in the lemma, because
(Ls,Ft,ω

(h+φ))∗=Ls,F t,ω
(h+(φ)∗), φ ∈ A(K̂∆). The linear form ` : A(K̂∆)→C

is real-valued on AR(K̂∆) and by (6.56) uniformly bounded away from zero
when acting upon Ls,Ft

(h + φ), (s, t) ∈ W s0 , φ ∈ B(ρ(s)). Therefore,
πs,Ft

(h+ φ) is real-analytic on the stated domain.

6.4. Analytic measurable sections. Let us now return to the probability
space (Ω, µ) and an invertible5 µ-ergodic transformation τ : Ω → Ω.

We view the space Ω×A(K̂∆) as a (trivial) fiber bundle over Ω with each
fiber being A(K̂∆). We denote by A the set of essentially bounded measurable
sections of this fiber bundle and write ‖Φ‖ for the µ-essential sup of an element
Φ ∈ A. Since A(K̂∆) is separable, measurability and Bochner-measurability
are here the same. Also A is a unital Banach algebra when we define the ana-
lytic operations to be performed fiber-wise. To see this note that measurability
is preserved under such operations and also by taking uniform limits. We write
AR for the subspace of real-analytic sections. Let Cσ,`=1(Ω) denote the space
of ‘sliced’ measurable sliced cone-sections of Ω×Cσ,`=1. This space is bounded
in AR. We define OC ⊂ Cn and OR = OC ∩ Rn as in the previous section and
recall that U ⊂ C so that K̂∆ is a compact subset of the complex plane.

Assumption 6.13. Let t ∈ OC → (ft,ω)ω∈Ω ∈ EΩ(K,U) be a continous
map such that :

(1) For each ω ∈ Ω the map t ∈ OC → ft,ω ∈ E(K,U) is analytic in the
sense of Definition 6.8. (Note that we are implicitly assuming that for
each fixed t ∈ OC the mapping ω ∈ Ω 7→ ft,ω ∈ E(K,U) is measurable as
in Definition 4.3).

(2) For ω ∈ Ω the map t ∈ D 7→ ft,ω verifies an L-Lipschitz condition as in
Definition 6.8 and for the same number 0 < L <∞.

(3) The condition numbers Γ(f0,ω), ω ∈ Ω are uniformly bounded by some
Γ < +∞.

(4) E (log ‖f ′0,ω‖f−1
0,ωK

) < +∞ (cf. also Remark 6.5).

As before, it is no restriction to assume that the parameter space is one-
dimensional and that OC = D. In the following we will thus consider an
analytic family t ∈ D 7→ (ft,ω)ω∈Ω ∈ EΩ(K,U) verifying Assumption 6.13

5Invertibility of τ may be avoided. We have imposed it here in order to simplify the
proofs.
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above. Let Ft,ω = (ft,ω, f t,ω) denote the (holomorphic) mirror-extension of ft,ω
and let s0 = dimH(J(f0,·)) ∈ [0, 2] be the (a.s.) Hausdorff dimension of the
random Julia set at t = 0 (Theorem 5.3). We choose σ = σ(s0) and σ′ = σ′(s0)
so as to verify the Cone contraction conditions in Lemma 6.6. Let W s0 ⊂ C2

and s 7→ ρ(s) be chosen as in Lemma 6.12 and let h ∈ Cσ′,`=1(Ω). By the very
same lemma we obtain for (s, t) ∈W s0 that

πs,t(Φ)ω ≡ πs,Ft,ω
(Φτ−1ω) =

Ls,Ft,ω
Φτ−1ω

`(Ls,Ft,ω
Φτ−1ω)

, Φ ∈ B(h, ρ(s)), ω ∈ Ω

defines a map πs,t : B(h, ρ(s)) → A whose image is bounded in norm by
1

kρ(s) +1. It takes the value of Φ at the shifted fiber τ−1ω, acts with the transfer
operator, normalises according to ` and assigns it to the fiber at ω. Note that
we use τ−1 here because we iterate by composing with the operator to the left.
Measurability of the image is a consequence of the map (s, Ft) 7→ Ls,Ft

being
continous and ` being nonzero on the image. We write π(n)

s0,0
: Cσ′,`=1(Ω) →

Cσ′,`=1(Ω) for the n’th iterated map of πs0,0 restricted to the sliced cone-section.
The reader may note that the (nonnormalised) family (Ls,Ft,ω

)ω∈Ω need
not be uniformly norm-bounded, whence need not even define a bounded linear
operator when acting upon sections of A. This is the case e.g. for our example
in the introduction.

Lemma 6.14. There are constants, c1, c2 < +∞ such that

(1) For h,h′ ∈ Cσ′,`=1(Ω)

‖π(n)
s0,0

(h)− π
(n)
s0,0

(h′)‖ ≤ c1 θ
n.

(2) Taking the derivative in A of π(n)
s0,0

at the point h ∈ Cσ′,`=1(Ω) gives

‖Dhπ
(n)
s0,0

(h)‖ ≤ c2 θ
n.

(3) For h ∈ Cσ′,`=1(Ω) the map

(s, t) ∈W s0 , Φ ∈ B(h, ρ(s)) 7→ πs,t(Φ) ∈ A

is real-analytic.

Proof. (1) and (2) are reformulations of the bounds already given in
Lemma 6.7 (with the constants from that lemma). By the last part of Lemma
6.12, each πs,t(Φ)ω is real-analytic in (s, t) ∈ W s0 and Φ ∈ B(h, ρ(s)) (for
fixed ω). The bound (6.55) shows that πs,t(Φ)ω is uniformly bounded in ω ∈ Ω.
A Cauchy formula (with r > 0 small enough)

t 7→

(∮
|t′−t|=r

πs,t′(Φ)ω
t′ − t

dt′

2πi

)
ω∈Ω

,
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then enables us to recover a power series in the t-variable (similarly for s and Φ)
within A. The map is real-analytic in the sense that it maps (s, t) ∈W s0 ∩R2,
Φ ∈ B(h, ρ(s)) ∩ AR into AR.

First, we consider the real case fixing for the moment (s, t) ∈W s0∩R2 and
letting h(0) ≡ 1 ∈ AR be the unit section of our bundle. We define recursively
iterates h(n+1)

s,t = πs,t(h
(n)
s,t ) ∈ Cσ′,`=1(Ω), n ≥ 0. Lemma 6.14 shows that

‖h(n+m)
s,t − h(n)

s,t ‖ ≤ c1θ
n which tends exponentially fast to zero. The sequence

thus converges uniformly in AR towards a fixed point

(6.61) h∗s,t = πs,t(h∗s,t) ∈ Cσ′,`=1(Ω), (s, t) ∈W s0 ∩ R2.

We are interested in the normalisation factor,

(6.62) ps,t,ω = `(Ls,Ft,ω
h∗s,t,τ−1ω)

at the fixed point. This function is real and strictly positive (recall that for
the moment s and t are real). By Theorems 5.3 and 4.4 (a) we know that for
µ-a.s. the upper and lower pressures agree and are independent of ω. As in
Theorem 4.4 we write P (s, ft,·) for this (a.s.) common value of the pressure.

Lemma 6.15. We have for (s, t) ∈W s0 ∩R2 the following formula for the
pressure:

P (s, ft,·) =
∫

Ω
log ps,t,ω dµ(ω).

Proof. The embedding j : z ∈ K → (z, z) ∈ diag K ⊂ Û induces a
pull-back j∗ : Cσ′ → M(K). On M(K) (before the mirror embedding) we
act with the operator Ls,ft,ω

from equation (3.18) (except for the fact that we
here use the Euclidean derivative; cf. Remark 6.5) and on the cone with the
mirror extended operator L

s,bft,ω
(recall that t is real here so that Ft,ω = f̂t,ω).

Consider h ∈ Cσ′,`=1. Then Ls,ft,ω
j∗h = j∗L

s,bft,ω
h and the cone properties

show that k ≤ h|diag K ≤ 1
k (with k from Lemma 6.6 (a)). We write L(n)

s,t,ω =

Ls,ft,τn−1ω
◦ · · · ◦ Ls,ft,ω

and similarly for L(n)
s,t,ω. As stated above the pressure

may be calculated µ-a.s. as an upper pressure and so for µ-almost every ω ∈ Ω
we have:

(6.63) P (s, ft,·) = lim
n

1
n

log ‖L(n)
s,t,ω‖M(K).

It follows that for µ-almost every ω ∈ Ω:

P (s, ft,·) = lim
n

1
n

log ‖L(n)
s,t,ω‖M(K)(6.64)

= lim
n

1
n

log `(L(n)
s,t,ωh

∗
s,t,τ−1ω) = lim

n

n−1∑
k=0

1
n

log ps,t,τkω.



740 HANS HENRIK RUGH

Use (5.34) and note that 1
L ≤ ‖f ′t,ω/f ′0,ω‖ ≤ L to see that for 0 ≤ s ≤ 2:

(6.65) k
(
L‖f ′0,ω‖

)−s ≤ ps,t,ω ≤
1
k

(
‖f ′0,ω‖L

)2
.

By Assumption 6.13, E(log ‖f ′0,ω‖) < +∞ and so also | log ps,t,ω| is µ-integrable.
By Birkhoff’s theorem, (6.64) converges µ-almost surely towards the integral
of log p as desired.

Remark 6.16. The pressure does not depend on the choice of ` (of course,
it should not). If one makes another choice ˜̀ for the normalisation this simply
introduces a co-cycle that vanishes upon integration.

Remark 6.17. Equation (6.64) shows that the use of the fixed point, h,
transforms the sub-additive (with respect to n) quantity, log ‖L(n)

s,t,ω‖, into an
additive quantity. This is really the crux of the matter of the proof and explains
why we are so interested in the fixed point of π (see also [Rue97]).

We will use the following real-analytic version of the implicit function
theorem:

Theorem 6.18 (Implicit Function Theorem). Let π : C2 × A → A be
a real-analytic map defined on a neighborhood of (x0, φ0) ∈ R2 × AR. Let
T0 = Dφπ(x0, φ0) ∈ L(A) denote the φ-derivative of this map at (x0, φ0).
Suppose that φ0 = π(x0, φ0) ∈ AR and that the spectral radius of the derivative,
ρ(T0), is strictly smaller than 1. Then there exists a neighborhood U ⊂ C2 of
x0 and a real-analytic map (unique if U is small enough) x ∈ U 7→ φ(x) ∈ A
for which φ0 = φ(x0) and φ(x) = π(x, φ(x)) for all x ∈ U .

Proof. The map

Γ(x, φ) = (1− T0)−1(π(x, φ)− φ0 − T0(φ− φ0)) + φ0

is real-analytic and verifies Γ(x0, φ0) = φ0 and DφΓ(x0, φ0) = 0. We may
therefore find a neighborhood U of x0 and a closed neighborhood W of φ0

such that Γ is a uniform contraction on the real-analytic sections, U → W .
The fixed point φ(x) = Γ(x, φ(x)), x ∈ U , is then itself a real-analytic section
and has the desired properties.

Lemma 6.19. The fixed point h∗s,t = πs,t(h∗s,t) from equation (6.61) and
the logarithmic normalisation from equation (6.62) with ω fixed, log ps,t,ω ex-
tends to real-analytic functions on an open neighborhood U s0 ⊂ C2 of (s0, 0).

Proof. Lemma 6.14 (2) shows that the spectral radius of Dhπs0,0(h∗s0,0)
does not exceed θ < 1. By the above Implicit Function Theorem there is a
real-analytic map

(s, t) ∈ U s0 7→ h∗s,t = πs,t(h∗s,t) ∈ B(h∗s0,0, ρ(s)) ⊂ A,
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defined in a neighborhood U s0 ⊂ W s0 of (s0, 0) and extending the fixed point
found previously for real s and t. On this complex neighborhood we define as
before the function ps,t,ω = `(Ls,Ft,ω

h∗s,t,τ−1ω) ∈ C. For fixed ω this function is
analytic in (s, t) ∈ U s0 .

Set λω = log |f ′0,ω(x0,ω)| with x0,ω ∈ f−1
0,ωK. Lemma 6.12, equation (6.56),

shows that the function

γs,t,ω =
esλωps,t,ω
es0λωps0,0,ω

is analytic in (s, t) ∈ W s0 and verifies |γs,t,ω − 1| ≤ 2/3. Therefore, γs,t,ω has
a well-defined logarithm, log γs,t,ω, analytic in (s, t) ∈ W s0 and bounded by
log 3 in absolute value. We then obtain the following very explicit formula for
analytic continuation of the logarithm of the normalization factor:

(6.66) log ps,t,ω = (s0 − s)λω + log ps0,0,ω + log γs,t,ω.

In the case when the ergodic measure does not depend on parameters we
obtain the following:

Theorem 6.20. Let τ be an ergodic transformation on a fixed measure
space (Ω, µ). Let (ft,ω)ω∈Ω ∈ EΩ(K,U) be an analytic family verifying a uni-
form L-Lipschitz condition and with uniform bounded condition numbers, i.e.
Assumption 6.13 above. Then (a.s.) the Hausdorff dimension of the ran-
dom Julia set J(ft)ω, equation (4.21), is independent of ω and depends real-
analytically upon t.

Proof. Let U s0 be as in the previous lemma. The pressure function in
Lemma 6.15 then has an analytic extension to that neighborhood. To see this
note that all terms in (6.66) are absolutely µ-integrable so that

P(s, t) =
∫

Ω
log ps,t,ω µ(dω), (s, t) ∈ U s0

is well-defined and yields a real-analytic extension of the pressure. Consider
now t ∈ D ∩R. Theorem 5.3 shows that (a.s.) d(t) = dimHJ(ft,·)ω is indepen-
dent of ω and that P(d(t), t) = P (d(t), ft,·) = 0 whenever (d(t), t) ∈ U s0 , t ∈ R.
Now P is real-analytic and ∂P

∂s (d(t), t) = ∂
∂sP (s, ft,·)|s=d(t) ≤ − log β < 0 for

real t-values. We may then apply another implicit function theorem to P and
conclude that there is an open neighborhood V0 ⊂ C of 0 and a real-analytic
function t ∈ V0 7→ (d̂(t), t) ∈ U s0 such that P(d̂(t), t) = 0 for all t ∈ V0. The
function d̂(t) yields the desired real-analytic extension of the dimension.

7. Proof of Theorem 1.1

We now consider the case when both the conformal maps and the ergodic
measure depend on parameters. When the ergodic measure µt itself depends



742 HANS HENRIK RUGH

real-analytically on t (Definition 7.1 below) then Theorem 6.20 extends trivially
to include this (we leave the details to the reader). This situation occurs rarely
in practice and is subsequently not of particular interest. We shall here consider
the case of i.i.d. random variables but refer to Remark 7.4 for an alternative
approach using Gibbs measures.

7.1. Parameter dependency of the measure. Let Υ be a measure space
and consider M ≡ M(Υ), the Banach space of complex measures on Υ in
the variation norm, ‖ν‖1 =

∫
Υ d|ν| (see e.g. [Lang93, VII, §3]). The set of

probability measures P ≡ {ν ∈ M : ν ≥ 0, ν(Υ) = 1} forms a real affine
subspace of M.

Let m : Υ → [1,+∞[ be measurable and not smaller than one. We define
the stronger norm on M1,

(7.67) ‖ν‖m =
∫

Υ
m d|ν|,

and we denote by Mm the Banach space of complex measures on Υ for which
‖ν‖m is finite.

Definition 7.1. We say that a family of measures νt ∈ M, t ∈ D is a
real-analytic family of probability measures with respect to the weight m ≥ 1
if νt ∈ P when t ∈ D ∩ R =]− 1, 1[ (i.e. is a genuine probability measure for t
real) and if

t ∈ D 7→ νt ∈Mm

is norm-analytic. Since m ≥ 1, such a family is also real-analytic with respect
to the weight 1.

Example 7.2. The Poission law pλ(k) = e−λ λ
k

k! , k ∈ N, is real-analytic in
λ ≥ 0 with respect to the weight 1 + K (with K(k) = k). It has a complex
extension to every λ ∈ C with variation norms

‖pλ‖1 = e|λ|−reλ and ‖pλ‖1+K = (1 + |λ|)e|λ|−reλ.

Theorem 1.1 is formulated in terms of independent random variables. We
reformulate this in terms of an ergodic transformation as follows: Let νt be a
real-analytic family of probability measures on a measure space Υ (Definition
7.1) depending on the complex parameter t ∈ D (again it is no lack of generality
to assume that the parameter is one-dimensional). When t ∈ D ∩ R is real νt
is indeed a probability measure and we define

(Ω, µt) = (
∏
Z

Υ,⊗Zνt)

to be the (Kolmogorov extension of the) direct product of probability spaces.
We let τ be the shift on this space, i.e. (τ(ω))n = (ω)n+1, n ∈ Z. Then τ is
an invertible ergodic transformation of (Ω, µt).
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Let the family ft,ω (with t ∈ D, ω ∈ Υ) be as in Theorem 1.1. We define
ft,ω = ft,(ω)0 on the extended space, Ω. Then (fn)n≥1 = (ft,ω, ft,τω, ft,τ2ω, . . .)
corresponds to the sequence of random conformal maps described in Theorem
1.1. As in the previous section we assume that U ⊂ C so that K is compact
in C. By Lemma 6.15 we obtain for t real the pressure as an integral:

P (s, ft,·) =
∫

Ω
log ps,t,ωdµt(ω).

We encounter here the following problem: In general when t is complex
µt does not make any sense (as a measure). Even when t 6= t′ are real, µt and
µt′ are in general mutually singular measures. In spite of these caveats we will
show that, nevertheless, the pressure P extends to a real-analytic function in
a neighborhood of (s0, 0). This suffices to prove Theorem 1.1 after repetition
of the last part of the proof of Theorem 6.20.

Assumption 7.3. We consider the weight m(ω) = 1 +
∣∣log ‖f ′0,ω‖

∣∣ on
Υ and assume that the family νt, t ∈ D, is real-analytic with respect to the
weight m.

Let h∗s,t, (s, t) ∈ U s0 be the fixed point obtained from Lemma 6.19. Re-
call that Dhπs0,0(h∗s0,0) has spectral radius not greater than θ < 1. Possibly
shrinking the neighborhood U1 ⊂ U s0 of (s0, 0), continuity of the derivative,
Dhπs,t, implies that we may find ρ1 > 0, C1 <∞, θ < θ1 < 1 such that for all
Φ ∈ B(h∗s0,0, ρ1) and n ≥ 0,

‖π(n)
s,t (Φ)− h∗s,t‖ ≤ C1θ

n
1 and π

(n)
s,t (Φ) ∈ B(h∗s0,0, ρ(s)).

Shrinking the neighborhood further, (s0, 0) ∈ U2 ⊂ U1, mere continuity of π
shows that we may also find k1 ∈ N such that (1 being the constant unit-section
of A)

π
(k1)
s,t (1) ∈ B(h∗s0,0, ρ1), ∀(s, t) ∈ U2.

Since ‖ν0‖ = 1 and νt is analytic,

D0 = {(s, t) : (s, t) ∈ U2, ‖νt‖1 < 1/θ1}

defines a complex neighborhood of (s0, 0). For (s, t) ∈ U2 set h(k)
s,t ≡ π

(k)
s,t (1),

k ∈ N. The operator Ls,Ft,ω0
depends only on the first symbol ω0 = (ω)0

of ω and since Ω is a direct product we see that h(n)
s,t,ω0,...,ω−(n−1)

= h(n)
s,t,ω,

n ≥ 1 depends only on the n symbols (ω0, . . . , ω−(n−1)) of ω. It follows that

p
(n)
s,t,ω ≡ `(Ls,Ft,ω0

h(n)
s,t,τ−1ω) = `(Ls,Ft,ω0

h
(n)
s,t,ω−1,...,ω−n

), n ∈ N only depends on
n+1 symbols of ω. Now, by the choice of k1 we may proceed as in Lemma 6.19
to see that log p(k1)

s,t,ω extends to a real-analytic function of (s, t) ∈ D0. Using
(6.56) and (6.65) we see that∣∣∣log p(k1)

s,t,ω

∣∣∣ ≤ const(s)(1 + | log ‖f ′0,ω0
‖ |)
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and for n ≥ k1 we get because of (6.57):∣∣∣∣∣log
p
(n+1)
s,t,ω

p
(n)
s,t,ω

∣∣∣∣∣ = ‖h(n+1)
s,t,τ−1ω − h(n)

s,t,τ−1ω‖
ρ(s)

≤ const(s) θn1 .

Integrating with respect to the analytic continuation of our probability measure
we see that

(7.68)
∫ ∣∣∣log p(k1)

s,t,ω

∣∣∣ d|νt|(ω0) · · · d|νt|(ω−k1) ≤ const(s) ‖νt‖m ‖νt‖k1
1

and also that for n ≥ k1

(7.69)
∫ ∣∣∣∣∣log

p
(n+1)
s,t,ω

p
(n)
s,t,ω

∣∣∣∣∣ d|νt|(ω0) · · · d|νt|(ω−(n+1)) ≤ const(s) θn1 ‖νt‖n+2
1 .

The sum of all these terms (the latter for all n ≥ k1) is bounded by

const(s)

‖νt‖m‖νt‖k1
1 +

∑
n≥k1

θn1 ‖νt‖n+2
1


which converges uniformly on compact subsets of D0. The following function:

P(s, t)≡
∫

log p(k1)
s,t,ωdνt(ω0) · · · dνt(ω−k1)

+
∑
n≥k1

∫
log

p
(n+1)
s,t,ω

p
(n)
s,t,ω

dνt(ω0) · · · dνt(ω−(n+1))

therefore defines an analytic function of (s, t) ∈ D0. For t real we have∫
log p(k1)

s,t,ωdνt(ω0) · · · dνt(ω−k1) =
∫

log p(k1)
s,t,ωdµt(ω)

and similarly for the integral in the sum; so the function reduces in this case
to

P(s, t) =
∫ log p(k1)

s,t,ω +
∑
n≥k1

log
p
(n+1)
s,t,ω

p
(n)
s,t,ω

 dµt(ω)

=
∫

log ps,t,ωdµt(ω) = P (s, ft,·).

In other words P(s, t), (s, t) ∈ D0 provides us with the desired real-analytic
continuation of the pressure. As mentioned before we may proceed as in the
proof of Theorem 6.20 to conclude the proof of Theorem 1.1.

Remark 7.4. An alternative generalisation would be to pick the maps ft,ω
according to a Gibbs measure on a shift space over a finite alphabet. The
Hausdorff dimension also here depends real-analytically (use the exponential
decay of correlations to see this) upon the Hölder potential defining the Gibbs
state. This result does not, however, cover example 1.2 in the introduction.
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8. Proof of Example 1.2

We define for 0 ≤ ρ < 1 the complex annulus Aρ = {z ∈ C : ρ < |z| < 1/ρ}
(= C∗ for ρ = 0). The conditions on parameters may be written as

|a|+ r ≤ k2

4
,

where k is a constant 0 < k < 1. We set U = Ak2/2 and K = Ak/2 (a compact
subset of U).

The maps under consideration, f = zN+2 + c, then belongs to E(K,U).
The neighborhood K∆ may be written as Aκ for a suitable value of κ ∈
]k2/2, k/2[. For w = f(z) ∈ K∆ we have

f ′(z) = (N + 2)zN+1 = (N + 2)
w − c

z
,

which is comparable to N (because both w and z belong toK∆). The condition
E(log ‖Df‖) < +∞ is then equivalent to E(N) < +∞ which is clearly verified
for a Poisson distribution of N . Also, the condition numbers ‖f ′‖ ‖1/f ′‖ are
uniformly bounded (this is in fact true for the family of all maps f ∈ E(K,U)
for which f−1U is connected). Writing f(z) = zN+2 + a + rξ, with ξ a ran-
dom variable uniformly distributed in D, we obtain an explicit (real-) analytic
parametrization of f in terms of a and r.

To see that a local inverse depends uniformly Lipshitz in parameters con-
sider e.g.:

∂f−1

∂a
= −∂f

∂a
/
∂f

∂z
= − 1

N + 2
z

w − c
,

which is uniformly bounded on K∆. Similarly,
∂

∂a
log f ′ ◦ f−1 =

N + 1
z

(− w − c

(N + 2)z
) =

N + 1
N + 2

c− w

z2
,

which is again uniformly bounded, independent of the value of N (but only just
so!). Finally, the Poisson distribution is real-analytic in the parameter λ ≥ 0
and with respect to the weight 1 + N (Example 7.2). We are in a position
where we may apply Theorem 1.1, thus proving our claims in Example 1.2.

Appendix A. Removing the mixing condition

Our mixing condition (C4) was convenient but not strictly necessary. For
completeness we will show how to get rid of this condition. In the following
we write δ = δf for the injectivity constant associated with f (Section 2.1).
Our first reduction replaces (C4) by topological transitivity. This amounts to
saying that there is n0 = n0(δ) such that

(C4′)
n0⋃
k=0

fk(B(x, δ) ∩ Λ) = Λ.
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Repeating the previous steps we see that (2.12) is replaced by the inequality

max
0≤k≤n0

mn+k ≥ (‖Df‖n0cn)−sMn/2

from which the operator distortion bounds follow. The proof of the lower
bounds for the Hausdorff dimension does not change and in the upper bounds
for the Box dimension the left-hand side of the inequality (2.14) is replaced by∑

0≤j≤n0
Lj+n0χB(x,r) which leads to the bound

N∑
i=1

(diam B(xi, 2r))s ≤ 4sγ2(s)
∑

0≤j≤n0

‖Ljs‖.

In the general situation we will replace Λ by a subset Λ′ of the same
dimensions but which is f -invariant and topologically transitive. First, define
a local pressure at x ∈ Λ within Λ:

P x(s,Λ) = lim sup
n

1
n

logLns1Λ(x).

From the very definition it is clear that

(A.70) P x(s,Λ) ≤ P fx(s,Λ).

Also if x ∈ Λ and y ∈ Λ are at a distance less than δ, the ratio of Lns1(x) and
Lns1(y) are sub-exponentially bounded in n. The local pressures at x and y

are thus the same. Say that two points x, y ∈ Λ are δ-connected if and only if
there is a finite sequence of points

x0 = x, x1, . . . , xn, xn+1 = y ⊂ Λ

for which d(xi, xi+1) < δ for all 0 ≤ i ≤ n. This partitions Λ into δ-connected
components Λ = Λ1 ∪ . . . ∪ Λm. Each Λi is δ-separated from its complement,
whence open and compact within Λ. Thus there is a uniform bound on the
number Nδ of intermediate points needed to connect any x and y within the
same component.

The partition is not Markovian. For example, for a connected hyperbolic
Julia set there is only one δ-connected component. It does, however, enjoy
some Markov like properties: If fΛi ∩ Λj 6= ∅ then fΛi ⊃ Λj . To see this note
that if x ∈ Λi, y = f(xi) ∈ Λj and v ∈ B(y, δ) ⊂ Λj then there is (a unique)
u ∈ B(x, δ) ⊂ Λi for which f(u) = v and thus v ∈ Λi. This shows that fΛi
is δ-connected, whence contains Λj . We may introduce a transition matrix,
writing tji = 1 when fΛi ⊃ Λj and zero otherwise. A partial ordering among
the partition elements Λi is then given by

Λi ≺ Λj if and only if ∃n = n(i, j) : tnji ≥ 1

and an equivalence relation,

Λi ∼ Λj if and only if Λi ≺ Λj and Λj ≺ Λi.
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The equivalence classes provides a new partition of Λ:

Λ = C1 ∪ . . . ∪ Ck

which inherits the partial ordering from before. Each equivalence class is topo-
logically transitive and the local pressures are constant on each class (because
of (A.70)). Writing Pi for the pressure on class i we also see that Pi ≤ Pj for
i ≺ j.

Consider now the critical s-value scrit and let Ci0 be a class which is minimal
for the inherited partial ordering and such that the local pressure vanishes for
some, whence every point in this class P x(scrit,Λ) = 0, x ∈ Ci0 . We denote by

Λ′ = ∩j≥0f
−jCi0

the corresponding f invariant subset of the class. This subset is topologically
transitive (clear) and we claim that this set has Hausdorff and box dimensions
that agree and equal scrit. For this it suffices to show that the pressure of that
subset P (scrit,Λ′, f) vanishes.

For 1 ≤ i ≤ k, we define:

Niφ(= Ns,iφ) = χCi
Lsφ = Ls((χCi

◦f)φ).

If Ci ≺ Cj and they are not equal then NiNj ≡ 0 and the spectral radius,
rsp(Ni), of Ni does not exceed that of Nj . Similarly, if Ci and Cj are not
related then NiNj = NjNi ≡ 0. In either case we have (Ni + Nj)n = Nn

i +
NjN

n−1
i + · · ·Nn−1

j Ni +Nn
j , which implies that rsp(Ni +Nj) does not exceed

max{rsp(Nj), rsp(Ni)}. When Ls =
∑

i : Ci⊂Λ′ Ns,i, it follows that rsp(Lscrit) =
rsp(Ni0). But this implies precisely that P (scrit,Λ′, f) = 0.

Remark A.1. In this setting, even when distortions remain uniformly
bounded the Hausdorff measure need not be finite (essentially because the
powers of a matrix of spectral radius-one need not be bounded when the
eigenvalue-one is not simple).
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