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A counterexample to the strong version
of Freedman’s conjecture

By Vyacheslav S. Krushkal*

Abstract

A long-standing conjecture due to Michael Freedman asserts that the
4-dimensional topological surgery conjecture fails for non-abelian free groups,
or equivalently that a family of canonical examples of links (the generalized
Borromean rings) are not A − B slice. A stronger version of the conjecture,
that the Borromean rings are not even weakly A − B slice, where one drops
the equivariant aspect of the problem, has been the main focus in the search
for an obstruction to surgery. We show that the Borromean rings, and more
generally all links with trivial linking numbers, are in fact weakly A−B slice.
This result shows the lack of a non-abelian extension of Alexander duality in
dimension 4, and of an analogue of Milnor’s theory of link homotopy for general
decompositions of the 4-ball.

1. Introduction

Surgery and the s-cobordism conjecture, central ingredients of the geo-
metric classification theory of topological 4-manifolds, were established in the
simply-connected case and more generally for elementary amenable groups by
Freedman [1], [7]. Their validity has been extended to the groups of subex-
ponential growth [8], [13]. A long-standing conjecture of Freedman [2] asserts
that surgery fails in general, in particular for free fundamental groups. This
is the central open question, since surgery for free groups would imply the
general case, cf. [7].

There is a reformulation of surgery in terms of the slicing problem for a
special collection of links, the untwisted Whitehead doubles of the Borromean
rings and of a certain family of their generalizations; see Figure 2. (We work in
the topological category, and a link in S3 = ∂D4 is slice if its components bound
disjoint, embedded, locally flat disks in D4.) An “undoubling” construction [3]
allows one to work with a more robust link, the Borromean rings, but the slicing
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condition is replaced in this formulation by a more general A–B slice problem.
Freedman’s conjecture pinpoints the failure of surgery in a specific example
and states that the Borromean rings are not A − B slice. This approach to
surgery has been particularly attractive since it is amenable to the tools of link-
homotopy theory and nilpotent invariants of links, and partial obstructions are
known in restricted cases, cf [6], [10], [11]. At the same time it is an equivalent
reformulation of the surgery conjecture, and if surgery holds there must exist
specific A−B decompositions solving the problem.

The A−B slice conjecture is a problem at the intersection of 4-manifold
topology and Milnor’s theory of link homotopy [14]. It concerns codimension
zero decompositions of the 4-ball. Here a decomposition of D4, D4 = A∪B, is
an extension of the standard genus one Heegaard decomposition of ∂D4 = S3.
Each part A,B of a decomposition has an attaching circle (a distinguished
curve in the boundary: α ⊂ ∂A, β ⊂ ∂B) which is the core of the solid torus
forming the Heegaard decomposition of ∂D4. The two curves α, β form the
Hopf link in S3.

α

α

A

β βB

Figure 1: A 2-dimensional example of a decomposition (A,α), (B, β): D2 =
A ∪B, A is shaded; (α, β) are linked 0-spheres in ∂D2.

Figure 1 is a schematic illustration of a decomposition: an example drawn
in two dimensions. While the topology of decompositions in dimension 2 is
quite simple, they illustrate important basic properties. In this dimension
the attaching regions α, β are 0-spheres, and (α, β) form a “Hopf link” (two
linked 0-spheres) in ∂D2. Alexander duality implies that exactly one of the
two possibilities holds: either α vanishes as a rational homology class in A, or
β does in B. In dimension 2, this means that either α bounds an arc in A, as
in the example in Figure 1, or β bounds an arc in B. (See Figure 12 in §5 for
additional examples in 2 dimensions.)

Algebraic and geometric properties of the two parts A,B of a decompo-
sition of D4 are tightly correlated. The geometric implication of Alexander
duality in dimension 4 is that either (an integer multiple of) α bounds an
orientable surface in A or a multiple of β bounds a surface in B.
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Alexander duality does not hold for homotopy groups, and this difference
between being trivial homologically (bounding a surface) as opposed to ho-
motopically (bounding a disk) is an algebraic reason for the complexity of
decompositions of D4.

A geometric refinement of Alexander duality is given by handle structures:
under a mild condition on the handle decompositions which can be assumed
without loss of generality, there is a one-to-one correspondence between 1-
handles of each side and 2-handles of its complement. In general the interplay
between the topologies of the two sides is rather subtle. Decompositions of D4

are considered in more detail in Sections 2 and 4 of this paper.
We now turn to the main subject of the paper, theA−B slice reformulation

of the surgery conjecture. An n-component link L in S3 is A − B slice if
there exist n decompositions (Ai, Bi) of D4 and disjoint embeddings of all 2n
manifolds A1, B1, . . . , An, Bn into D4 so that the attaching curves α1, . . . , αn
form the link L and the curves β1, . . . , βn form an untwisted parallel copy
of L. Moreover, the re-embeddings of Ai, Bi are required to be standard –
topologically equivalent to the ones coming from the original decompositions
of D4. The connection of the A−B slice problem for the Borromean rings to
the surgery conjecture is provided by consideration of the universal cover of a
hypothetical solution to a canonical surgery problem [3], [4]. The action of the
free group by covering transformations is precisely encoded by the fact that the
re-embeddings of Ai, Bi are standard. A formal definition and a more detailed
discussion of the A−B slice problem are given in Section 2. The following is the
statement of Freedman’s conjecture [2], [4] concerning the failure of surgery.

Figure 2: The Borromean rings and their untwisted Whitehead double.

Conjecture 1. The untwisted Whitehead double of the Borromean rings
(Figure 2) is not a freely slice link. Equivalently, the Borromean rings are not
A−B slice.

Here a link is freely slice if it is slice, and in addition the fundamental
group of the slice complement in the 4-ball is freely generated by meridians to
the components of the link. An affirmative solution to this conjecture would
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exhibit the failure of surgery, since surgery predicts the existence of the free-
slice complement of the link above.

A stronger version of Freedman’s conjecture, that the Borromean rings
are not even weakly A − B slice, has been the main focus in the search for
an obstruction to surgery. Here a link L is weakly A − B slice if the re-
embeddings of Ai, Bi are required to be disjoint but not necessarily standard
in the definition above. To understand the context of this conjecture, consider
the simplest example of a decomposition D4 = A ∪ B where (A,α) is the
2-handle (D2×D2, ∂D2×{0}) and B is just the collar on its attaching curve β.
This decomposition is trivial in the sense that all topology is contained in one
side, A. It is easy to see that a link L is weakly A−B slice with this particular
choice of a decomposition if and only if L is slice. The Borromean rings is not a
slice link (cf [14]), so it is not weakly A−B slice with the trivial decomposition.
However to find an obstruction to surgery, one needs to find an obstruction for
the Borromean rings to be weakly A−B slice for all possible decompositions.

Freedman’s program in the A − B slice approach to surgery could be
roughly summarized as follows. First consider model decompositions, defined
using Alexander duality and introduced in [6] (see also Section 4). The main
step is then to show that any decomposition is algebraically approximated, in
some sense, by the models – in this case a suitable algebraic analogue of the
partial obstruction for model decompositions should give rise to an obstruction
to surgery. The first step, formulating an obstruction for model decomposi-
tions, was carried out in [11], [12]. We now state the main result of this paper
which shows that the second step is substantially more subtle than previously
thought, involving not just the submanifolds but also their embedding infor-
mation.

Theorem 1. Let L be the Borromean rings or more generally any link in
S3 with trivial linking numbers. Then L is weakly A−B slice.

The linking numbers provide an obstruction to being weakly A− B slice
(see §3), so in fact Theorem 1 asserts that a link is weakly A− B slice if and
only if it has trivial linking numbers.

To formulate the main ingredient in the proof of this result in the geometric
context of link homotopy, it is convenient to introduce the notion of a robust 4-
manifold. Recall that a link L in S3 is homotopically trivial if its components
bound disjoint maps of disks in D4. Otherwise, L is called homotopically
essential. (The Borromean rings is a homotopically essential link [14] with
trivial linking numbers.) Let (M,γ) be a pair (4-manifold, attaching curve in
∂M). The pair (M,γ) is robust if whenever several copies (Mi, γi) are properly
disjointly embedded in (D4, S3), the link formed by the curves {γi} in S3 is
homotopically trivial. The following question relates this notion to the A−B
slice problem: Given a decomposition (A,α), (B, β) of D4, is one of the two
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pairs (A,α), (B, β) necessarily robust? The answer has been affirmative for all
previously known examples, including the model decompositions [11], [12]. In
contrast, we prove

Lemma 2. There exist decompositions D4 = A ∪ B where neither of the
two sides A, B is robust.

This result suggests an intriguing possibility that there are 4-manifolds
which are not robust, but which admit robust embeddings into D4. (The defi-
nition of a robust embedding e : (M,γ) ↪→ (D4, S3) is analogous to the defini-
tion of a robust pair above, with the additional requirement that each of the
embeddings (Mi, γi) ⊂ (D4, S3) is equivalent to e.) Then the question relevant
for the surgery conjecture is: given a decomposition D4 = A∪B, is one of the

given embeddings A ↪→ D4, B ↪→ D4 necessarily robust?

Theorem 1 has a consequence in the context of topological arbiters, intro-
duced in [5]. Roughly speaking, it points out a substantial difference in the
structure of the invariants of submanifolds of D4, depending on whether they
are endowed with a specific embedding or not. We refer the reader to that
paper for the details on this application.

Section 2 reviews the background material on surgery and the A−B slice
problem which, for two-component links, is considered in Section 3; it is shown
that Alexander duality provides an obstruction for links with non-trivial linking
numbers. The proof of Theorem 1 starts in Section 4 with a construction of
the relevant decompositions of D4. The final section completes the proof of
the theorem.

Acknowledgements. This paper concerns the program on the surgery
conjecture developed by Michael Freedman. I would like to thank him for
sharing his insight into the subject on numerous occasions.

I would also like to thank the referee for the comments on the earlier
version of this paper.

2. 4-dimensional surgery and the the A−B slice problem

The surgery conjecture asserts that given a 4-dimensional Poincaré pair
(X,N), the sequence

ShTOP(X,N) −→ NTOP(X,N) −→ Lh4(π1X)

is exact (cf. [7, Ch. 11]). This result, as well as the 5-dimensional topological
s-cobordism theorem, is known to hold for a class of good fundamental groups.
The simply-connected case followed from Freedman’s disk embedding theorem
[1] allowing one to represent hyperbolic pairs in π2(M4) by embedded spheres.
Currently the class of good groups is known to include the groups of subex-
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ponential growth [8], [13] and it is closed under extensions and direct limits.
There is a specific conjecture for the failure of surgery for free groups [2]:

Conjecture 2.1. There does not exist a topological 4-manifold M , ho-
motopy equivalent to ∨3S1 and with ∂M homeomorphic to S0(Wh(Bor)), the
zero-framed surgery on the Whitehead double of the Borromean rings.

This statement is seen to be equivalent to Conjecture 1 in the introduction
by consideration of the complement in D4 of the slices for Wh(Bor). This is
one of a collection of canonical surgery problems with free fundamental groups,
and solving them is equivalent to the surgery theorem without restrictions on
the fundamental group. The A − B slice problem, introduced in [3], is a
reformulation of the surgery conjecture, and it may be roughly summarized
as follows. Assuming on the contrary that the manifold M in the conjecture
above exists, consider its universal cover M̃ . It is shown in [3] that the end
point compactification of M̃ is homeomorphic to the 4-ball. The group of
covering transformations (the free group on three generators) acts on D4 with
a prescribed action on the boundary, and roughly speaking the A − B slice
problem is a program for finding an obstruction to the existence of such actions.
To state a precise definition, consider decompositions of the 4-ball:

Definition 2.2. A decomposition of D4 is a pair of compact codimension
zero submanifolds with boundary A,B ⊂ D4, satisfying conditions (1) − (3)
below. Denote

∂+A = ∂A∩ ∂D4, ∂+B = ∂B ∩ ∂D4, ∂A = ∂+A∪ ∂−A, ∂B = ∂+B ∪ ∂−B.

(1) A ∪B = D4,
(2) A ∩B = ∂−A = ∂−B,

(3) S3 = ∂+A ∪ ∂+B is the standard genus 1 Heegaard decomposition of S3.

Recall the definition of an A−B slice link [4], [6]:

Definition 2.3. Given an n-component link L = (l1, . . . , ln) ⊂ S3, let
D(L) = (l1, l′1, . . . , ln, l

′
n) denote the 2n-component link obtained by adding an

untwisted parallel copy L′ to L. The link L is A−B slice if there exist decom-
positions (Ai, Bi), i = 1, . . . , n of D4 and self-homeomorphisms φi, ψi of D4,
i = 1, . . . , n such that all sets in the collection φ1A1, . . . , φnAn, ψ1B1, . . . , ψnBn
are disjoint and satisfy the boundary data: φi(∂+Ai) is a tubular neighborhood
of li and ψi(∂+Bi) is a tubular neighborhood of l′i, for each i.

The surgery conjecture is equivalent to the statement that the Borromean
rings (and a family of their generalizations) are A − B slice. The idea of
the proof of one implication is sketched above; the converse is also true: if
the generalized Borromean rings were A − B slice, consider the complement
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of the entire collection φi(Ai), ψi(Bi). Gluing the boundary according to the
homeomorphisms, one gets solutions to the canonical surgery problems (see
the proof of Theorem 2 in [3].)

The restrictions φi|Ai
, ψi|Bi

in the definition above provide disjoint embed-
dings into D4 of the entire collection of 2n manifolds {Ai, Bi}. Moreover, these
re-embeddings are standard: they are restrictions of self-homeomorphisms of
D4, so in particular the complement D4 r φi(Ai) is homeomorphic to Bi, and
D4 r ψi(Bi) ∼= Ai. This requirement that the re-embeddings are standard is
removed in the following definition:

Definition 2.4. A link L = (l1, . . . , ln) in S3 is weakly A−B slice if there
exist decompositions ((A1, α1), (B1, β1)), . . . , ((An, αn), (Bn, βn)) of D4 and
disjoint embeddings of all manifolds Ai, Bi into D4 so that the attaching curves
α1, . . . , αn form the link L and the curves β1, . . . , βn form an untwisted parallel
copy of L.

3. Abelian versus non-abelian Alexander duality

This section uses Alexander duality to show that the vanishing of the
linking numbers is a necessary condition in Theorem 1. Specifically, we prove

Proposition 3.1. Let L be a link with a non-trivial linking number.
Then L is not weakly A−B slice.

Proof. It suffices to consider 2-component links, since any sub-link of a
weakly A − B slice link is also weakly A − B slice. Let L = (l1, l2) with
lk(l1, l2) 6= 0, and consider any two decompositions D4 = A1 ∪B1 = A2 ∪B2.

Consider the long exact sequences of the pairs (Ai, ∂+Ai), (Bi, ∂+Bi),
where the homology groups are taken with rational coefficients:

0−→H2Ai−→H2(Ai, ∂+Ai)−→H1∂
+Ai−→H1Ai−→H1(Ai, ∂+Ai)−→0,

0−→H2Bi−→H2(Bi, ∂+Bi)−→H1∂
+Bi−→H1Bi−→H1(Bi, ∂+Bi)−→0.

Recall that ∂+Ai, ∂
+Bi are solid tori (regular neighborhoods of the at-

taching curves αi, βi). The claim is that for each i, the attaching curve on
exactly one side vanishes in its first rational homology group. Both of them
can’t vanish simultaneously, since the linking number is 1. Suppose neither
of them vanishes. Then the boundary map in each sequence above is trivial,
and rk H2(Ai) = rk H2(Ai, ∂+Ai). On the other hand, by Alexander duality
rk H2(Ai) = rk H1(Bi, ∂+Bi), rk H2(Ai, ∂+Ai) = rk H1(Bi). This is a contra-
diction, since H1∂

+Bi ∼= Q is in the kernel of H1Bi −→ H1(Bi, ∂+Bi).
Now to show that the link L = (l1, l2) is not weakly A − B slice, set

(Ci, γi) = (Ai, αi) if αi = 0 ∈ H1(Ai; Q) or (Ci, γi) = (Bi, βi) otherwise. If
L were weakly A − B slice, there would exist disjoint embeddings (C1, γ1) ⊂
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(D4, S3), (C2, γ2) ⊂ (D4, S3) so that γ1 is either l1 or its parallel copy, and γ2

is l2 or its parallel copy. Then lk(γ1, γ2) 6= 0, a contradiction.

Proposition 3.1 should be contrasted with Theorem 1. Milnor’s link-
homotopy invariant of the Borromean rings, µ123(Bor), equals 1 [14]. Also,
µ123, defined using the quotient π1/(π1)3 of the fundamental group by the
third term of the lower central series, is a non-abelian analogue of the linking
number of a link. Our result, Theorem 1, shows the lack of a non-abelian
extension of Alexander duality in dimension 4.

4. Decompositions of D4

This section starts the proof of Theorem 1 by constructing the relevant
decompositions of D4. The simplest decomposition D4 = A ∪ B where A is
the 2-handle D2 × D2 and B is just the collar on its attaching curve, was
discussed in the introduction. Now consider the genus one surface S with
a single boundary component α, and set A0 = S × D2. Moreover, one has
to specify its embedding into D4 to determine the complementary side, B.
Consider the standard embedding (take an embedding of the surface in S3,
push it into the 4-ball and take a regular neighborhood). Note that given
any decomposition, by Alexander duality the attaching curve of exactly one
of the two sides vanishes in it homologically, at least rationally. Therefore the
decomposition under consideration now may be viewed as the first level of an
“algebraic approximation” to an arbitrary decomposition.

A0

α1
α2

α β

H1
H2

B0

Figure 3

Proposition 4.1. Let A0 = S × D2, where S is the genus-one surface
with a single boundary component α. Consider the standard embedding (A0, α×
{0}) ⊂ (D4, S3). Then the complement B0 is obtained from the collar on its
attaching curve, S1 ×D2 × I, by attaching a pair of zero-framed 2-handles to
the Bing double of the core of the solid torus S1 ×D2 × {1}, Figure 3.
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A0 B0

0
α 0

0

β

Figure 4

The proof is a standard exercise in Kirby calculus; see for example [6]. A
precise description of these 4-manifolds is given in terms of Kirby diagrams in
Figure 4. Rather than considering handle diagrams in the 3-sphere, we find it
convenient to draw them in the solid torus, so that the 4-manifolds are obtained
from S1×D2× I by attaching the 1- and 2-handles as shown in the diagrams.
To make sense of the “zero framing” of curves which are not null-homologous
in the solid torus, recall that the solid torus is embedded into S3 = ∂D4 as the
attaching region of a 4-manifold, and the 2-handle framings are defined using
this embedding.

This example illustrates the general principle that (in all examples consid-
ered in this paper) the 1-handles of each side are in one-to-one correspondence
with the 2-handles of the complement. This is true since the embeddings in D4

considered here are all standard, and in particular each 2-handle is unknotted
in D4. The statement follows from the fact that 1-handles may be viewed as
standard 2-handles removed from a collar, a standard technique in Kirby cal-
culus (see Chapter 1 in [9]). Moreover, in each of our examples the attaching
curve α on the A-side bounds a surface in A, so that it has a zero framed
2-handle attached to the core of the solid torus. On the 3-manifold level, the
zero surgery on this core transforms the solid torus corresponding to A into
the solid torus corresponding to B. The Kirby diagram for B is obtained by
taking the diagram for A, performing the surgery as above, and replacing all
zeroes with dots, and conversely all dots with zeroes. (The 2-handles in all our
examples are zero-framed.)

Note that a distinguished pair of curves α1, α2, forming a symplectic basis
in the surface S, is determined as the meridians (linking circles) to the cores
of the 2-handles H1, H2 of B0 in D4. In other words, α1, α2 are fibers of the
circle normal bundles over the cores of H1, H2 in D4.

An important observation [6] is that this construction may be iterated:
consider the 2-handle H1 in place of the original 4-ball. The pair of curves
(α1, the attaching circle β1 of H1) forms the Hopf link in the boundary of H1.
In H1 consider the standard genus-one surfaces bounded by β1. As discussed
above, its complement is given by two zero-framed 2-handles attached to the
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A1

α

α

0

0 0

Figure 5

B1

β

β

0 0
Figure 6

Bing double of α1. Assembling the data, consider the new decomposition
D4 = A1 ∪ B1, Figures 5, 6. As above, the diagrams are drawn in solid tori
(complements in S3 of unknotted circles drawn dashed in the figures). The
handlebodies A1, B1 are examples of model decompositions [6] obtained by
iterated applications of the construction above. It is shown in [11], [12] that
such model handlebodies are robust, or in other words the Borromean rings are
not weakly A−B slice when restricted to the class of model decompositions.

We are now in a position to define the decomposition D4 = A∪B used in
the proof of Theorem 1.

Definition 4.2. Consider B = (B1 ∪ zero-framed 2-handle) attached as
shown in the Kirby diagram in Figure 7. The effect of this 2-handle on the
complement A = D4 r B is shown in Figure 8: it adds a 1-handle to the
diagram of A1. Figure 9 shows a handle diagram of A after a handle slide.
Note that a (1−, 2−) handle pair may be canceled, the result is given on the
left in Figure 12. This fact will be used in the proof of Theorem 1.

Imprecisely (up to homotopy, on the level of spines) B may be viewed
as a B1 ∪ 2-cell attached along the attaching circle β of B1, followed by a
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B

β

β

0 0

0

Figure 7

A

α

α

0

0

0

Figure 8

curve representing a generator of H1 of the second stage surface of B1. This
2-cell is schematically shown in the spine picture of B in the first part of
Figure 7 as a cylinder connecting the two curves. The shading indicates that
the new generator of π1 created by adding the cylinder is filled in with a disk.
Similarly, one checks that the effect of this operation on the A-side is that
one of the 2-handles at the second stage is connected-summed with the first
stage surface, Figure 8. (This is seen in the handle diagram by canceling a
1-, 2-handle pair, as shown in Figure 12.) Again, the shading indicates that no
new generators of π1 are created. The figures showing the spines are provided
only as a motivation for the construction; a precise description of A,B is of
course given by their handle diagrams. While the proof of Theorem 1 below
is given in terms of Kirby diagrams, it can easily be followed at the level of
spines.

5. Proof of Theorem 1: a relative slice problem

We start this section by recalling the technique which will be useful in
completing the proof of Theorem 1, the relative slice problem, introduced in
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α

0

0

0

Figure 9: A handle diagram for A after a handle slide.

[6]. The setup in our context is as follows: suppose two codimension zero
submanifolds M,N of D4 are given; each one has an attaching circle γ ⊂ ∂M ,
δ ⊂ ∂N . The submanifolds are proper in the sense that one has embeddings of
pairs (M,γ) ⊂ (D4, S3), (N, δ) ⊂ (D4, S3), where each circle γ, δ is unknotted
in the 3-sphere.

The problem that has to be analyzed is: can (M,γ), (N, δ) be embed-
ded disjointly into (D4, S3) so that the curves γ, δ form the Hopf link in the
3-sphere? Assume that M,N have handle decompositions, relative to the at-
taching regions S1 ×D2, with only 1- and 2-handles. Let γ, δ form the Hopf
link in ∂D4, and consider the 4-ball D′ = D4r(collar on ∂D4). To be precise,
denote the 1-handles of M,N by H1, H′1, and their 2-handles by H2, H′2. As
usual, we view the 1-handles of M,N as standard slices removed from their
collars. Denote these slices by H∗1, H′∗

1 . Then M,N embed disjointly into D4

if and only if there are disjoint embeddings of the 2-handles H2∪H′2, attached
to the collars, in the handlebody D′ ∪H∗1 ∪H′∗1.

γ

γ
H∗1

H2

M

δ δ

H′∗1

H′2
N

Figure 10

An example of M, N drawn in two dimensions is given in Figure 10, and a
solution to this relative-slice problem – disjoint embeddings of M, N in D4 with
their attaching circles γ, δ forming a Hopf link in ∂D4 – is shown in Figure 11.
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γ

γ

M

δ δ

H′∗1
N

D′

Figure 11: Disjoint embeddings of (M,γ), (N, δ) in Figure 10 into (D4, S3),
where γ, δ form a Hopf link in S3.

Note that the handle H2 of M in the solution goes over the “helping” handle
H′∗1 attached to D′.

Consider the decomposition D4 = A ∪ B constructed in Definition 4.2.
The proof of Theorem 1 follows from Lemmas 5.1 and 5.2 below.

Lemma 5.1. Let S denote the genus-one surface with one boundary com-
ponent, γ = ∂S. Denote by S0 its untwisted 4-dimensional thickening, S0 =
S ×D2, and set γ0 = γ × {0}. Then there exists a proper embedding (A,α) ⊂
(S0, γ0).

Proof. Kirby diagrams of A are given in Figures 8, 9. Observe that a (1-,
2-handle) pair in the diagram in Figure 9 may be canceled, the result is shown
on the left in Figure 12.

00

l1

l2

l3 l4

r2

r1

A

α

Figure 12

In light of Proposition 4.1, to prove that A embeds in S0 it suffices to show
that (A,α) embeds in the complement of a standard embedding of two zero-
framed 2-handles attached to the Bing double of a meridian to α in S3. This is
an instance of the relative-slice problem discussed above, where (M,γ) = (A,α)
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and N is obtained from a collar on δ by attaching 2-handles to the Bing
double of the core. (Note that (N, δ) equals (B0, β) considered in Sections 4;
see Figures 3 and 4.) This relative-slice problem is shown on the right in
Figure 12. The link is considered in the 3-sphere boundary of the 4-ball D′,
and the link l1, . . . , l4 has to be sliced in the handlebody D′ ∪ (2-handles H∗1)
where the handles are attached with zero framings along r1, r2. Here l1, l2 are
the attaching curves for the 2-handles of N and l3, l4 are the attaching curves
for the 2-handles of M . Note that the slices for l1, l2 constructed in the proof
are required to be standard in D4, to make sure that their complement is the
thickened surface S0.

A solution to this relative-slice problem is given in Figures 13, 14. The
slices are described in terms of the Morse function given by the radial coor-
dinate in the 4-ball D′. Denote the 3-sphere at the radius R from the origin
by S3

R, 0 < R ≤ 1. The link on the right in Figure 12 lies in ∂D′ = S3
1 . The

link components move by an isotopy for 1 > R > 3/4, and at R = 3/4 the
component l4 is connected-summed with a parallel copy of r2. The result is
denoted by l′4, Figure 13. Note that l′4 bounds a disk in S3

3/4 in the complement
of all other curves. To make the slice non-degenerate in terms of the Morse
function, let l′4 bound a disk as R decreases from 3/4 to 1/2, while all other
curves move by an isotopy. The link in S3

1/2 is shown on the right in Figure 13.

l1

l2

l3
l′4

r2r2

r1

R=3/4 R=1/2

Figure 13

The curves ri ⊂ ∂D′ bound disjoint embedded disks ∆i: the cores of the
zero-framed 2-handles H∗1 attached to D′. As the Morse function R changes
from 1 to 0, it is important to note that the curves ri move by an isotopy
and no other curves intersect them. Therefore, r1, r2 at each radius R0 bound
disjoint disks: the disks ∆i as above, union with the annuli corresponding to the
isotopy of ri for 1 > R > R0. Moreover, since the handles H∗1 attached to D′

are zero-framed, untwisted parallel copies of ri also bound disjoint embedded
disks.

Morse-theoretically the connected sum at R = 3/4 in Figure 13 corre-
sponds to a saddle point of the slice for l4. This slice is of the form shown
in Figure 15 (disregard the labels in that figure, which are used for a later
argument).
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To finish the proof of the relative-slice problem, let the link in S3
1/2 move

by an isotopy for 1/2 > R > 1/4, and at R = 1/4 the components l1, l2 are
connected-summed with r1, r2 as shown on the left in Figure 14. Denote the
resulting curves by l′1, l

′
2. The components l′1, l

′
2, l3 form the unlink. This is

seen by performing an isotopy (at 1/4 > R > 1/8) to the link on the right
in Figure 14. Now let all curves bound disks at 1/8 > R > 0. The slices for
l1, l2 again have the form shown in Figure 15; the slice for l3 has just a single
critical point.

l′1

l′2

l3

l′1 l′2

l3

R=1/4 R=1/8

Figure 14

This concludes the proof of the relative-slice problem. It remains to show
that the slices S1, S2 for l1, l2 constructed above are standard. We start by
recording the data involved in their construction. (γ, δ) is a Hopf link in ∂D4,
D′ = Dr(collar on ∂D4). Since the slices were described in terms of the radial
Morse function on D′, to be specific consider D′ as the 4-ball of radius 1 in D4

of radius 2. The curves l1, l2 are in the boundary of D′; extending them by
the product li × [1, 2] we will consider them as curves in ∂D4.

R = 2

R = 1

R = 1/4

li ri

l′i

Di D′i

D′′i

∆i

Figure 15: The 3-ball Bi.

For the rest of this argument, we only need to consider the curves l1, l2
and their slices; the slices for the other components are disregarded. Since
l1, l2 form the unlink they therefore bound disjoint embedded disks D1, D2 in
∂D4. We will show that the slices S1, S2 for l1, l2 are standard by constructing
disjoint embedded 3-balls B1, B2 in D4, with ∂Bi = Di ∪ Si for each i. The
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l′1

l′2
D1 D′1 D2 D′2

l′1

l′2

Figure 16: Disjoint disks D′′1 , D
′′
2 : on the left D′′1 is a band sum of D1, D

′
1, on

the right D′′2 is a band sum of D2, D
′
2.

existence of these 3-balls provides an isotopy in D4 from S1, S2 to D1, D2 and
shows that the slices are standard.

The construction of Si is illustrated in Figure 15. The vertical axis in this
figure corresponds to the radial component in D4. There is a single maximum
point given by the core ∆i of the 2-handle attached to D′ along ri. Recall
that ∆1, ∆2 are embedded in D4 in a standard way, and so they are isotopic
to disjoint embedded disks D′1, D′2 bounded by r1, r2 in the 3-sphere slice
∂D′ = S3

1 . The curves li, ri, and the disks bounded by them: Di, D
′
i move by

an isotopy as R decreases from 1 to 1/4 until the index 1 critical points of the
slices at R = 1/4 (shown in Figure 14).

The analysis of the disks at the level R = 1/4 is presented in Figure 16.
At the level of these critical points, the disks Di and D′i are band-summed,
and as a result, the disks D′′1 , D

′′
2 are disjoint. The component l′1 on the left

in Figure 16 bounds D′′1 , the component l′2 on the right bounds D′′2 . (Figure
16 has two copies of the link (l′1, l

′
2) just for convenience of visualization of

the disks D′′1 , D′′2 .) Finally, at R < 1/4 the disks D′′i move by an isotopy and
shrink to points.

We summarize the construction of the disjoint 3-balls Bi, i = 1, 2: in the
3-sphere S3

R, each component of S3
R ∩ Si bounds a disk: li = ∂Di, ri = ∂D′i,

l′i = ∂D′′i . These disks are the levels of the radial Morse function restricted to
Bi. This concludes the proof that (A,α) embeds into (S0, γ0).

Lemma 5.2. B embeds in a collar on its attaching curve. More precisely,
there exists a proper embedding (B, β) ⊂ (S1 ×D2 × [0, 1], S1 × {0} × {0}).

One needs to show that (B, β) embeds in the complement of a standard
disk bounded by the meridian to β. The proof is again a relative-slice problem,
shown in Figure 17. Here l1 is the meridian which is required to bound a
standard disk; l2, l3, l4 are the attaching curves of the 2-handles of B, and
r1, r2 are the attaching curves for the 2-handles attached to D′. Therefore the
link l1, . . . , l4 has to be sliced in D′∪r1,r2(zero-framed 2-handles), so that the
slice for l1 is standard in D4.
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l1

l2
l3

l4
r2

r1

Figure 17

l1

l2
l3

l4

r2

Figure 18

Taking a connected sum of l1 and r1 as shown in Figure 17, one gets the
link on the left in Figure 18. Now taking a connected sum of l2 and r2 results
in the trivial link, and the components are capped off with disjoint disks in
D′. The proof that the slice for l1 is standard is directly analogous to the
corresponding proof in Lemma 5.1.

Proof of Theorem 1 in the central case L = Bor, the Borromean rings,
follows from Lemmas 5.1, 5.2. The components li of Bor bound in D4 disjoint
embedded surfaces Si; S1 is a genus one surface, and S2, S3 are disks. Thinking
of the radial coordinate of D4 as time where ∂D4 corresponds to time 0, we see
that l1 bounds a surface S1 (shaded in Figure 19) at time 1/2 and the other two

l1

l2
l3

Figure 19
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components bound disjoint disks at t > 1/2. Consider three decompositions of
D4: (A1, B1) is the decomposition constructed in Section 4. Define (A2, B2)
and (A3, B3) to be the trivial decomposition: A2 = A3 = D2×D2, B2 = B3 are
collars on their attaching curves. Lemmas 5.1, 5.2 imply that the Borromean
rings are weakly A−B slice with these decompositions.

To prove Theorem 1 for all links with trivial linking numbers, a variation
of Lemmas 5.1, 5.2 is needed, for higher genus surfaces. That is, given any
g there is a decomposition D4 = Ag ∪ Bg such that Ag embeds in (surface
of genus g) × D2 and Bg embeds in a collar. These are variations of the
decompositions A,B in Definition 4.2; the case g = 2 is shown in Figure 20.
The proof is analogous to the proof of Lemmas 5.1, 5.2. To complete the
proof of Theorem 1, note that the components of any link with trivial linking
numbers bound disjoint embedded surfaces in D4.

0

0

0

0

0

0 0

0

0 0

0

Figure 20

Remark. If the embeddings (A,α) ⊂ (S0, γ0) ⊂ (D4, S3) and (B, β) ⊂
(M,γ) ⊂ (D4, S3), constructed in Lemmas 5.1, 5.2 were standard, then taking
the complement of the six submanifolds (three copies of each of A and B)
bounding the Borromean rings and their parallel copy in D4 and gluing up the
boundary, one would get a solution to a canonical surgery problem. Consider-
ing the generalized Borromean rings, one would get solutions to all canonical
problems, and therefore a proof of the topological 4-dimensional surgery con-
jecture for all fundamental groups. However the embeddings constructed in
the proof are not standard. This raises the question mentioned in the introduc-
tion: Given a decomposition D4 = A ∪ B, is one of the embeddings A ↪→ D4,
B ↪→ D4 necessarily robust?

University of Virginia, Charlottesville, VA
E-mail address: krushkal@virginia.edu



A COUNTEREXAMPLE TO FREEDMAN’S CONJECTURE 693

References

[1] M. Freedman, The topology of four-dimensional manifolds, J. Differential Geom. 17
(1982), 357–453.

[2] ———, The disk theorem for four-dimensional manifolds, Proc. ICM Warsaw (1983),
647–663.

[3] ———, A geometric reformulation of four dimensional surgery, Topology Appl. 24
(1986), 133–141.

[4] ———, Are the Borromean rings (A, B)-slice?, Topology Appl. 24 (1986), 143–145.

[5] M. Freedman and V. Krushkal, Topological arbiters, in preparation.

[6] M. Freedman and X. S. Lin, On the (A, B)-slice problem, Topology 28 (1989), 91–110.

[7] M. Freedman and F. Quinn, The Topology of 4-Manifolds, Princeton Math. Series 39,
Princeton, NJ, 1990.

[8] M. Freedman and P. Teichner, 4-Manifold Topology I, Invent. Math. 122 (1995), 509–
529.

[9] R. Kirby, Topology of 4-Manifolds, Lecture Notes in Mathematics 1374, Springer-Verlag,
1989.

[10] V. Krushkal, On the relative slice problem and 4-dimensional topological surgery, Math.
Ann. 315 (1999), 363–396.

[11] ———, Link groups of 4-manifolds, arXiv:math.GT/0510507.

[12] ———, Link groups and the A-B slice problem, arXiv:math.GT/0602105.

[13] V. Krushkal and F. Quinn, Subexponential groups in 4-manifold topology, Geom. Topol.
4 (2000), 407–430.

[14] J. Milnor, Link groups, Ann. of Math. 59 (1954), 177–195.

(Received October 27, 2006)


