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Multi-critical unitary random

matrix ensembles and the
general Painlevé II equation

By T. Claeys, A.B.J. Kuijlaars, and M. Vanlessen

Abstract

We study unitary random matrix ensembles of the form

Z−1
n,N | detM |2αe−N TrV (M)dM,

where α > −1/2 and V is such that the limiting mean eigenvalue density for
n,N → ∞ and n/N → 1 vanishes quadratically at the origin. In order to
compute the double scaling limits of the eigenvalue correlation kernel near
the origin, we use the Deift/Zhou steepest descent method applied to the
Riemann-Hilbert problem for orthogonal polynomials on the real line with
respect to the weight |x|2αe−NV (x). Here the main focus is on the construction
of a local parametrix near the origin with ψ-functions associated with a special
solution qα of the Painlevé II equation q′′ = sq + 2q3 − α. We show that qα
has no real poles for α > −1/2, by proving the solvability of the corresponding
Riemann-Hilbert problem. We also show that the asymptotics of the recurrence
coefficients of the orthogonal polynomials can be expressed in terms of qα in
the double scaling limit.

1. Introduction and statement of results

1.1. Unitary random matrix ensembles. For n ∈ N, N > 0, and α > −1/2,
we consider the unitary random matrix ensemble

(1.1) Z−1
n,N | detM |2αe−N TrV (M) dM,

on the space of n×n Hermitian matrices M , where V : R→ R is a real analytic
function satisfying

(1.2) lim
x→±∞

V (x)
log(x2 + 1)

= +∞.

Because of (1.2) and α > −1/2, the integral

(1.3) Zn,N =
∫
| detM |2αe−N TrV (M) dM
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converges and the matrix ensemble (1.1) is well- defined. It is well known, see
for example [11], [36], that the eigenvalues of M are distributed according to
a determinantal point process with a correlation kernel given by

(1.4) Kn,N (x, y) = |x|αe−
N

2
V (x)|y|αe−

N

2
V (y)

n−1∑
k=0

pk,N (x)pk,N (y),

where pk,N = κk,Nx
k + · · · , κk,N > 0, denotes the k-th degree orthonormal

polynomial with respect to the weight |x|2αe−NV (x) on R.
Scaling limits of the kernel (1.4) as n,N →∞, n/N → 1, show a remark-

able universal behavior which is determined to a large extent by the limiting
mean density of eigenvalues

(1.5) ψV (x) = lim
n→∞

1
n
Kn,n(x, x).

Indeed, for the case α = 0, Bleher and Its [5] (for quartic V ) and Deift et al.
[16] (for general real analytic V ) showed that the sine kernel is universal in the
bulk of the spectrum, i.e.,

lim
n→∞

1
nψV (x0)

Kn,n

(
x0 +

u

nψV (x0)
, x0 +

v

nψV (x0)

)
=

sinπ(u− v)
π(u− v)

whenever ψV (x0) > 0. In addition, the Airy kernel appears generically at
endpoints of the spectrum. If x0 is a right endpoint and ψV (x) ∼ (x0 − x)1/2

as x→ x0−, then there exists a constant c > 0 such that

lim
n→∞

1
cn2/3

Kn,n

(
x0 +

u

cn2/3
, x0 +

v

cn2/3

)
=

Ai (u)Ai ′(v)−Ai ′(u)Ai (v)
u− v

,

where Ai denotes the Airy function; see also [13].
The extra factor |detM |2α in (1.1) introduces singular behavior at 0 if

α 6= 0. The pointwise limit (1.5) does not hold if ψV (0) > 0, since Kn,n(0, 0) =
0 if α > 0 and Kn,n(0, 0) = +∞ if α < 0, due to the factor |x|α|y|α in (1.4).
However (1.5) continues to hold for x 6= 0 and also in the sense of weak∗

convergence of probability measures

1
n
Kn,n(x, x)dx ∗→ ψV (x)dx, as n→∞.

Therefore we can still call ψV the limiting mean density of eigenvalues. Observe
that ψV does not depend on α.

However, at a microscopic level the introduction of the factor | detM |2α
changes the eigenvalue correlations near the origin. Indeed, for the case of a
noncritical V for which ψV (0) > 0, it was shown in [35] that
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(1.6) lim
n→∞

1
nψV (0)

Kn,n

(
u

nψV (0)
,

v

nψV (0)

)

= π
√
u
√
v
Jα+ 1

2
(πu)Jα− 1

2
(πv)− Jα− 1

2
(πu)Jα+ 1

2
(πv)

2(u− v)
,

where Jν denotes the usual Bessel function of order ν.
We notice that universality results for orthogonal and symplectic en-

sembles of random matrices have been obtained only very recently, see [12],
[13], [14].

1.2. The multi-critical case. It is the goal of this paper to study (1.1) in
a critical case where ψV vanishes quadratically at 0, i.e.,

(1.7) ψV (0) = ψ′V (0) = 0, and ψ′′V (0) > 0.

The behavior (1.7) is among the possible singular behaviors that were classified
in [15]. The classification depends on the characterization of the measure
ψV (x)dx as the unique minimizer of the logarithmic energy

(1.8) IV (µ) =
∫∫

log
1

|x− y|
dµ(x)dµ(y) +

∫
V (x)dµ(x)

among all probability measures µ on R. The corresponding Euler-Lagrange
variational conditions give that for some constant ` ∈ R,

2
∫

log |x− y|ψV (y)dy − V (x) + ` = 0, for x ∈ supp(ψV ),(1.9)

2
∫

log |x− y|ψV (y)dy − V (x) + ` ≤ 0, for x ∈ R.(1.10)

In addition one has that ψV is supported on a finite union of disjoint intervals,
and

(1.11) ψV (x) =
1
π

√
Q−V (x),

where QV is a real analytic function, and Q−V denotes its negative part. Note
that the endpoints of the support correspond to zeros of QV with odd multi-
plicity.

The possible singular behaviors are as follows, see [15], [32].

Singular case I. Equality holds in the variational inequality (1.10) for some
x ∈ R \ supp(ψV ).

Singular case II. ψV vanishes at an interior point of supp(ψV ), which
corresponds to a zero of QV in the interior of the support. The multiplicity of
such a zero is necessarily a multiple of 4.

Singular case III. ψV vanishes at an endpoint to higher order than a square
root. This corresponds to a zero of the function QV in (1.11) of odd multiplicity
4k+1 with k ≥ 1. (The multipicity 4k+3 cannot occur in these matrix models.)
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In each of the above cases, V is called singular, or, otherwise, regular. The
above conditions correspond to a singular exterior point, a singular endpoint,
and a singular interior point, respectively.

In each of the singular cases one expects a family of possible limiting
kernels in a double scaling limit as n,N → ∞ and n/N → 1 at some critical
rate [4]. As said before we consider the case (1.7) which corresponds to the
singular case II with k = 1 at the singular point x = 0. For technical reasons
we assume that there are no other singular points besides 0. Setting t = n/N ,
and letting n,N →∞ such that t→ 1, we have that the parameter t describes
the transition from the case where ψV (0) > 0 (for t > 1) through the multi-
critical case (t = 1) to the case where 0 lies in a gap between two intervals of
the spectrum (t < 1). The appropriate double scaling limit will be such that
the limit limn,N→∞ n

2/3 (t− 1) exists.
The double scaling limit for α = 0 was considered in [2], [6], [7] for certain

special cases, and in [9] in general. The limiting kernel is built out of ψ-
functions associated with the Hastings-McLeod solution [25] of the Painlevé II
equation q′′ = sq + 2q3.

For general α > −1/2, we are led to the general Painlevé II equation

(1.12) q′′ = sq + 2q3 − α.

The Painlevé II equation for general α has been suggested by the physics papers
[1], [40]. The limiting kernels in the double scaling limit are associated with
a special distinguished solution of (1.12), which we describe first. We assume
from now on that α 6= 0.

1.3. The general Painlevé II equation. Balancing sq and α in the differ-
ential equation (1.12), we find that there exist solutions such that

(1.13) q(s) ∼ α

s
, as s→ +∞,

and balancing sq and 2q3, we see that there also exist solutions of (1.12) such
that

(1.14) q(s) ∼
√
−s
2
, as s→ −∞.

There is exactly one solution of (1.12) that satisfies both (1.13) and (1.14) (see
[26], [27], [30]) and we denote it by qα. This is the special solution that we
need. It corresponds to the choice of Stokes multipliers

s1 = e−πiα, s2 = 0, s3 = −eπiα;

see Section 2 below. We call qα the Hastings-McLeod solution of the general
Painlevé II equation (1.12), since it seems to be the natural analogue of the
Hastings-McLeod solution for α = 0.
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The Hastings-McLeod solution is meromorphic in s (as are all solutions of
(1.12)) with an infinite number of poles. We need that it has no poles on the
real line. From the asymptotic behavior (1.13) and (1.14) we know that there
are no real poles for |s| large enough, but that does not exclude the possibility
of a finite number of real poles. While there is a a substantial literature on
Painlevé equations and Painlevé transcendents, see e.g. the recent monograph
[22], we have not been able to find the following result.

Theorem 1.1. Let qα be the Hastings-McLeod solution of the general
Painlevé II equation (1.12) with α > −1/2. Then qα is a meromorphic function
with no poles on the real line.

1.4. Main result. To describe our main result, we recall the notion of
ψ-functions associated with the Painlevé II equation; see [20]. The Painlevé II
equation (1.12) is the compatibility condition for the following system of linear
differential equations for Ψ = Ψα(ζ; s).

(1.15)
∂Ψ
∂ζ

= AΨ,
∂Ψ
∂s

= BΨ,

where
(1.16)

A =
(
−4iζ2 − i(s+ 2q2) 4ζq + 2ir + α/ζ

4ζq − 2ir + α/ζ 4iζ2 + i(s+ 2q)

)
, and B =

(
−iζ q

q iζ

)
.

That is, (1.15) has a solution where q = q(s) and r = r(s) depend on s but
not on ζ, if and only if q satisfies Painlev é II and r = q′.

Given s, q and r, the solutions of

(1.17)
∂

∂ζ

(
Φ1(ζ)
Φ2(ζ)

)
= A

(
Φ1(ζ)
Φ2(ζ)

)
are analytic with branch point at ζ = 0. For α > −1/2 and s ∈ R, we take
q = qα(s) and r = q′α(s) where qα is the Hastings-McLeod solution of the

Painlevé II equation, and we define
(

Φα,1(ζ; s)
Φα,2(ζ; s)

)
as the unique solution of

(1.17) with asymptotics

(1.18) ei(
4
3
ζ3+sζ)

(
Φα,1(ζ; s)
Φα,2(ζ; s)

)
=
(

1
0

)
+O(ζ−1),

uniformly as ζ → ∞ in the sector ε < arg ζ < π − ε for any ε > 0. Note that
this is well-defined for every s ∈ R because of Theorem 1.1.

The functions Φα,1 and Φα,2 extend to analytic functions on C \ (−i∞, 0],
which we also denote by Φα,1 and Φα,2; see also Remark 2.33 below. Their
values on the real line appear in the limiting kernel. The following is the main
result of this paper.
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Theorem 1.2. Let V be real analytic on R such that (1.2) holds. Suppose
that ψV vanishes quadratically in the origin, i.e., ψV (0) = ψ′V (0) = 0, and
ψ′′V (0) > 0, and that there are no other singular points besides 0. Let n,N →∞
such that

lim
n,N→∞

n2/3(n/N − 1) = L ∈ R

exists. Define constants

(1.19) c =
(
πψ′′V (0)

8

)1/3

,

and

(1.20) s = 2π2/3L
[
ψ′′V (0)

]−1/3
wSV (0),

where wSV is the equilibrium density of the support of ψV (see Remark 1.3
below). Then

(1.21) lim
n,N→∞

1
cn1/3

Kn,N

( u

cn1/3
,

v

cn1/3

)
= Kcrit,α(u, v; s),

uniformly for u, v in compact subsets of R \ {0}, where

Kcrit,α(u, v; s) = −e
1
2
πiα[sgn(u)+sgn(v)] Φα,1(u; s)Φα,2(v; s)− Φα,1(v; s)Φα,2(u; s)

2πi(u− v)
.

(1.22)

Remark 1.3. The equilibrium measure of SV = supp(ψV ) is the unique
probability measure ωSV on SV that minimizes the logarithmic energy

I(µ) =
∫∫

log
1

|x− y|
dµ(x)dµ(y)

among all probability measures on SV . Since SV consists of a finite union of
intervals, and since 0 is an interior point of one of these intervals, ωSV has a
density wSV with respect to Lebesgue measure, and wSV (0) > 0. This number
is used in (1.20).

Remark 1.4. One can refine the calculations of Section 4 to obtain the
following stronger result:

(1.23)
1

cn1/3
Kn,N

( u

cn1/3
,

v

cn1/3

)
= Kcrit,α(u, v; s) +O

(
|u|α|v|α

n1/3

)
,

uniformly for u, v in bounded subsets of R \ {0}.

Remark 1.5. It is not immediate from the expression (1.22) that Kcrit,α

is real. This property follows from the symmetry

e
1
2
πiαsgn(u)Φα,2(u; s) = e

1
2
πiαsgn(u)Φα,1(u; s), for u ∈ R \ {0},
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which leads to the “real formula”

Kcrit,α(u, v; s) = − 1
π(u− v)

Im
(
e

1
2
πiα(sgn(u)−sgn(v))Φα,1(u; s)Φα,1(v; s)

)
;

see Remark 2.11 below.

Remark 1.6. For α = 0, the theorem is proven in [9]. The proof for the
general case follows along similar lines, but we need the information about the
existence of qα(s) for real s, as guaranteed by Theorem 1.1.

1.5. Recurrence coefficients for orthogonal polynomials. In order to prove
Theorem 1.2, we will study the Riemann-Hilbert problem for orthogonal poly-
nomials with respect to the weight |x|2αe−NV (x). This analysis leads to asymp-
totics for the kernel Kn,N , but also provides the ingredients to derive asymp-
totics for the orthogonal polynomials and for the coefficients in the recurrence
relation that is satisfied by them.

To state these results we introduce measures νt in the following way; see
also [9] and Section 3.2. Take δ0 > 0 sufficiently small and let νt be the
minimizer of IV/t(ν) (see (1.8) for the definition of IV ) among all measures
ν = ν+ − ν−, where ν± are nonnegative measures on R such that ν(R) = 1
and supp(ν−) ⊂ [−δ0, δ0]. We use ψt to denote the density of νt.

We restrict ourselves to the one-interval case without singular points ex-
cept for 0. Then supp(ψV ) = [a, b] and supp(ψt) = [at, bt] for t close to 1,
where at and bt are real analytic functions of t.

We write πn,N for the monic orthogonal polynomial of degree n with re-
spect to the weight |x|2αe−NV (x). Those polynomials satisfy a three-term re-
currence relation

(1.24) πn+1,N = (z − bn,N )πn,N − a2
n,Nπn−1,N ,

with recurrence coefficients an,N and bn,N . In the large n expansion of an,N
and bn,N , we observe oscillations in the O(n−1/3)-term. The amplitude of
the oscillations is proportional to qα(s), while in general the frequency of the
oscillations slowly varies with t = n/N .

Theorem 1.7. Let the conditions of Theorem 1.2 be satisfied and assume
that supp(ψV ) = [a, b] consists of one single interval. Consider the three-
term recurrence relation (1.24) for the monic orthogonal polynomials πk,N with
respect to the weight |x|2αe−NV (x). Then as n,N → ∞ such that n/N − 1 =
O(n−2/3),

an,N =
b− a

4
− qα(st,n) cos(2πnωt + 2αθ)

2c
n−1/3 +O(n−2/3),(1.25)

bn,N =
b+ a

2
+
qα(st,n) sin(2πnωt + (2α+ 1)θ)

c
n−1/3 +O(n−2/3),(1.26)
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where t = n/N , c is given by (1.19),

st,n =n2/3π

c
ψt(0),(1.27)

θ= arcsin
b+ a

b− a
,(1.28)

and

ωt =
∫ bt

0
ψt(x)dx.(1.29)

Remark 1.8. It was shown in [9] that d
dtψt(0)

∣∣
t=1

= wSV (0), which in
the situation of Theorem 1.7 implies that (since SV = [a, b] and ψt(0) is real
analytic as a function of t near t = 1),

ψt(0) = (t− 1)
1

π
√
−ab

+O((t− 1)2), as t→ 1.

Then it follows from (1.27) that st,n = n2/3(t − 1) 1
c
√
−ab + O(n−2/3) and we

could in fact replace st,n in (1.25) and (1.26) by

s∗t,n = n2/3(t− 1)
1

c
√
−ab

.

We prefer to use st,n since it appears more naturally from our analysis.

Remark 1.9. In [6], Bleher and Its derived (1.25) in the case where α = 0
and where V is a critical even quartic polynomial. They also computed the
O(n−2/3)-term in the large n expansion for an,N . For even V we have that
a = −b, θ = 0, ωt = 1/2 and thus cos(2πnωt + 2αθ) = (−1)n, so that (1.25)
reduces to

an,N =
b

2
− qα(st,n)(−1)n

2c
n−1/3 +O(n−2/3),

which is in agreement with the result of [6]. Also for even V the recurrence
coefficient bn,N vanishes which is in agreement with (1.26).

Remark 1.10. In [4] an ansatz was made about the recurrence coefficients
associated with a general (not necessarily even) critical quartic polynomial V
in the case α = 0. For fixed large N , the ansatz agrees with (1.25) and (1.26)
up to an N - dependent phase shift in the trigonometric functions.

Remark 1.11. Since the submission of this manuscript several new results
were obtained leading to a more complete description of the singular cases for
the random matrix ensemble (1.1). See the discussion in section 1.2 for the
singular cases I, II, and III.

The singular case I with α = 0 was treated in [19] and later in [8], [37],
[3]. For the singular case III with α = 0, see [10], where a connection with the
Painlevé I hierarchy was found.
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The non-singular case III with α 6= 0 is described by the Painlevé XXXIV
equation in [28].

1.6. Outline of the rest of the paper. In Section 2, we comment on the
Riemann-Hilbert problem associated with the Painlevé II equation. We also
prove the existence of a solution to this RH problem for real values of the
parameter s, and this existence provides the proof of Theorem 1.1. In Section 3,
we state the RH problem for orthogonal polynomials and apply the Deift/Zhou
steepest descent method. Our main focus will be the construction of a local
parametrix near the origin. For this construction, we will use the RH problem
from Section 2. In Section 4 and Section 5 finally, we use the results obtained
in Section 3 to prove Theorem 1.2 and Theorem 1.7.

2. The RH problem for Painlevé II and the proof of Theorem 1.1

As before, we assume α > −1/2.

2.1. Statement of the RH problem. Let Σ =
⋃
j Γj be the contour consist-

ing of four straight rays oriented to infinity,

Γ1 : arg ζ =
π

6
, Γ2 : arg ζ =

5π
6
, Γ3 : arg ζ = −5π

6
, Γ4 : arg ζ = −π

6
.

The contour Σ divides the complex plane into four regions S1, . . . , S4 as shown
in Figure 1. For α > −1/2 and s ∈ C, we seek a 2 × 2 matrix-valued func-
tion Ψα(ζ; s) = Ψα(ζ) (we suppress notation of s for brevity) satisfying the
following.

The RH problem for Ψα. (a) Ψα is analytic in C \ Σ.

S1

S2

S3

S4

Γ1Γ2

Γ3 Γ4

q0 π/6

�
��

��
��

�
��

�
��

��HH
HHH

HHH
HHH

HHHH

*

j

Y

�

Figure 1: The contour Σ consisting of four straight rays oriented to infinity.
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(b) Ψα satisfies the following jump relations on Σ \ {0},

Ψα,+(ζ) = Ψα,−(ζ)
(

1 0
e−πiα 1

)
, for ζ ∈ Γ1,(2.1)

Ψα,+(ζ) = Ψα,−(ζ)
(

1 0
−eπiα 1

)
, for ζ ∈ Γ2,(2.2)

Ψα,+(ζ) = Ψα,−(ζ)
(

1 e−πiα

0 1

)
, for ζ ∈ Γ3,(2.3)

Ψα,+(ζ) = Ψα,−(ζ)
(

1 −eπiα
0 1

)
, for ζ ∈ Γ4.(2.4)

(c) Ψα has the following behavior at infinity,

(2.5) Ψα(ζ) = (I +O(1/ζ))e−i(
4
3
ζ3+sζ)σ3 , as ζ →∞.

Here σ3 =
(

1 0
0 −1

)
denotes the third Pauli matrix.

(d) Ψα has the following behavior near the origin. If α < 0,

(2.6) Ψα(ζ) = O
(
|ζ|α |ζ|α
|ζ|α |ζ|α

)
, as ζ → 0,

and if α ≥ 0,

(2.7) Ψα(ζ) =



O

(
|ζ|−α |ζ|−α

|ζ|−α |ζ|−α

)
, as ζ → 0, ζ ∈ S1 ∪ S3,

O

(
|ζ|α |ζ|−α

|ζ|α |ζ|−α

)
, as ζ → 0, ζ ∈ S2,

O

(
|ζ|−α |ζ|α

|ζ|−α |ζ|α

)
, as ζ → 0, ζ ∈ S4.

Note that Ψα depends on s only through the asymptotic condition (2.5).

Remark 2.1. This RH problem is a generalization of the RH problem for
the case where α = 0, used in [2], [9].

Remark 2.2. By standard arguments based on Liouville’s theorem, see
e.g. [11], [33], it can be verified that the solution of this RH problem, if it
exists, is unique. Here it is important that α > −1/2.

In the following we need more information on the behavior of solutions of
the RH problem near 0. To this end, we make use of the following proposition,
cf. [27]. We use Gj to denote the jump matrix of Ψα on Γj as given by (2.1)–
(2.4).
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Proposition 2.3. Let Ψ satisfy conditions (a), (b), and (d) of the RH
problem for Ψα.

(1) If α− 1
2 /∈ N0, then there exists an analytic matrix-valued function E and

constant matrices Aj such that

(2.8) Ψ(ζ) = E(ζ)
(
ζ−α 0

0 ζα

)
Aj , for ζ ∈ Sj ,

where the branch cut of ζα is chosen along Γ4. The matrices Aj satisfy

(2.9) Aj+1 = AjGj , for j = 1, 2, 3,

and

(2.10) A2 =

(
0 −p−1

p p
2 cos(πα)

)
, for some p ∈ C \ {0}.

(2) If α − 1
2 ∈ N0, then there is logarithmic behavior of Ψ at the origin.

There exist an analytic matrix-valued function E and constant matrices
Aj such that

(2.11) Ψ(ζ) = E(ζ)
(

ζ−α 0
1
π ζ

α ln ζ ζα

)
Aj , for ζ ∈ Sj ,

where again the branch cuts of ζα and ln ζ are chosen along Γ4. The
matrices Aj satisfy

(2.12) Aj+1 = AjGj , for j = 1, 2, 3,

and for some p ∈ C,

(2.13) A2 =



(
0 −1
1 p

)
, if α− 1

2 is even,(
0 i

i p

)
, if α− 1

2 is odd.

Proof. (1) Define E by equation (2.8) with matrices Aj satisfying (2.9)
and (2.10). Then E is analytic across Γ1, Γ2, and Γ3 because of (2.9). For
ζ ∈ Γ4 there is a jump

(2.14) E+(ζ) = E−(ζ)
(
ζ−α 0

0 ζα

)
−
A4G4A

−1
1

(
ζα 0
0 ζ−α

)
+

.

Using ζα− = e2πiαζα+ and the explicit expressions for the matrices Gj and Aj ,
we get from (2.14) that E is analytic across Γ4 as well.
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What remains to be shown is that the possible isolated singularity of E
at the origin is removable. If α < 0 it follows from (2.6) and (2.8) that

E(ζ) = O
(
|ζ|2α 1
|ζ|2α 1

)
, as ζ → 0,

so that (since 2α > −1) the isolated singularity at the origin is indeed remov-
able. If α > 0 we have in sector S2 by (2.7), (2.8), and (2.10) that

E(ζ) = Ψ(ζ)A−1
2

(
ζα 0
0 ζ−α

)
=O

(
|ζ|α |ζ|−α
|ζ|α |ζ|−α

)(
∗ ∗
∗ 0

)(
ζα 0
0 ζ−α

)
= O

(
1 1
1 1

)
,

as ζ → 0, ζ ∈ S2, where ∗ denotes an unimportant constant. Hence the
singularity at the origin is not a pole. Moreover, from (2.7) and (2.8) it is also
easy to check that E does not have an essential singularity at the origin either.
Therefore the singularity is removable for the case α > 0 as well, and the proof
of part (1) is complete.

(2) The proof of part (2) is similar.

Remark 2.4. The matrix A2 in Proposition 2.3 is called the connection
matrix, cf. [20, 24]. In all cases we have detA2 = 1 and the (1, 1)-entry of A2

is zero.

2.2. Solvability of the RH Problem for Ψα. We shall prove that the RH
problem for Ψα is solvable for every s ∈ R. We do that, as in [16], [24], [43],
by showing that every solution of the homogeneous RH problem is identically
zero. Such a result is known as a vanishing lemma [23], [24].

We briefly indicate why the vanishing lemma is enough to establish the
solvability of the RH problem for Ψα. The RH problem is equivalent to a
singular integral equation on the contour Σ. The singular integral equation
can be stated in operator theoretic terms, and the operator is a Fredholm
operator of zero index. The vanishing lemma yields that the kernel is trivial,
and so the operator is onto which implies that the singular integral equation is
solvable, and therefore the RH problem is solvable. For more details and other
examples of this procedure see [16], [24], [43] and [29, App. A].

Proposition 2.5 (the vanishing lemma). Let α > −1/2 and s ∈ R.
Suppose that Ψ̂ satisfies conditions (a), (b), and (d) of the RH problem for
Ψα with the following asymptotic condition (instead of condition (c))

(2.15) Ψ̂(ζ)ei(
4
3
ζ3+sζ)σ3 = O(1/ζ), as ζ →∞.

Then Ψ̂ ≡ 0.
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Proof. As before, we use Gj to denote the jump matrix of Γj , given by
(2.1)–(2.4). Introduce an auxiliary matrix-valued function H with jumps only
on R, as follows.

(2.16) H(ζ) =



Ψ̂(ζ)ei(
4
3
ζ3+sζ)σ3 , for ζ ∈ S2 ∪ S4,

Ψ̂(ζ)G1e
i( 4

3
ζ3+sζ)σ3 , for ζ ∈ S1 ∩ C+,

Ψ̂(ζ)G−1
2 ei(

4
3
ζ3+sζ)σ3 , for ζ ∈ S3 ∩ C+,

Ψ̂(ζ)G3e
i( 4

3
ζ3+sζ)σ3 , for ζ ∈ S3 ∩ C−,

Ψ̂(ζ)G−1
4 ei(

4
3
ζ3+sζ)σ3 , for ζ ∈ S1 ∩ C−.

Then H satisfies the following RH problem.

The RH problem for H.

(a) H : C \ R → C2×2 is analytic and satisfies the following jump relations
on R \ {0},

(2.17)

H+(ζ) = H−(ζ)e−i(
4
3
ζ3+sζ)σ3

(
0 −e−πiα
eπiα 1

)
ei(

4
3
ζ3+sζ)σ3 , for ζ ∈ (−∞, 0),

H+(ζ) = H−(ζ)e−i(
4
3
ζ3+sζ)σ3

(
0 −eπiα

e−πiα 1

)
ei(

4
3
ζ3+sζ)σ3 , for ζ ∈ (0,∞).

(2.18)

(b) H(ζ) = O(1/ζ), as ζ →∞.

(c) H has the following behavior near the origin: If α < 0,

(2.19) H(ζ) = O
(
|ζ|α |ζ|α
|ζ|α |ζ|α

)
, as ζ → 0,

and if α > 0,

(2.20) H(ζ) =


O

(
|ζ|α |ζ|−α

|ζ|α |ζ|−α

)
, as ζ → 0, Im ζ > 0,

O

(
|ζ|−α |ζ|α

|ζ|−α |ζ|α

)
, as ζ → 0, Im ζ < 0.

The jumps in (a) follow from straightforward calculation. The vanishing
behavior (b) of H at infinity (in all sectors) follows from the triangular shape
of the jump matrices Gj , see (2.1)–(2.4). For example, for ζ ∈ S1∩C+ we have
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Re i(4
3ζ

3 + sζ) < 0 so that by (2.15) and (2.16)

H(ζ) = O(1/ζ)
(

1 0
e−πiαe2i(

4
3
ζ3+sζ) 1

)
= O(1/ζ), as ζ →∞.

The behavior near the origin in (c) follows from Proposition 2.3. This is
immediate for (2.19), while for α > 0, α − 1

2 6∈ N0, we have by (2.8), (2.9),
(2.10), and (2.16),

H(ζ)e−i(
4
3
ζ3+sζ)σ3 =


E(ζ)ζ−ασ3A2 = E(ζ)ζ−ασ3

(
0 ∗
∗ ∗

)
, if Im ζ > 0,

E(ζ)ζ−ασ3A4 = E(ζ)ζ−ασ3

(
∗ 0
∗ ∗

)
, if Im ζ < 0,

which yields (2.20) in case α− 1
2 6∈ N0, since E is analytic. Using (2.13) instead

of (2.10), we will see that the same argument works if α− 1
2 ∈ N0.

Next we define (cf. [16], [24], [43])

(2.21) M(ζ) = H(ζ)H(ζ̄)∗, for ζ ∈ C \ R,

where H∗ denotes the Hermitian conjugate of H. From condition (c) of the
RH problem for H it follows that M has the following behavior near the origin:

M(ζ) =


O

(
|ζ|2α |ζ|2α

|ζ|2α |ζ|2α

)
, as ζ → 0, in case α < 0,

O

(
1 1
1 1

)
, as ζ → 0, in case α > 0.

Since α > −1/2, it follows that each entry of M has an integrable singularity
at the origin. Because M(ζ) = O(1/ζ2) as ζ → ∞, and M is analytic in the
upper half plane, it then follows by Cauchy’s theorem that

∫
RM+(ζ)dζ = 0,

and hence by (2.21) ∫
R
H+(ζ)H−(ζ)∗dζ = 0.

Adding this equation to its Hermitian conjugate, we find

(2.22)
∫

R
[H+(ζ)H−(ζ)∗ +H−(ζ)H+(ζ)∗] dζ = 0.

Using (2.17), (2.18) and the fact that (ei(
4
3
ζ3+sζ)σ3)∗ = e−i(

4
3
ζ3+sζ)σ3 for ζ, s ∈ R

(here we use the fact that s is real!), we obtain from (2.22),

0 =
∫

R
H−(ζ)

(
0 0
0 2

)
H−(ζ)∗dζ = 2

∫
R

[
|(H−)12(ζ)|2 + |(H−)22(ζ)|2

]
dζ.
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This implies that the second column of H− is identically zero. The jump
relations (2.17) and (2.18) of H then imply that the first column of H+ is
identically zero as well.

To show that the second column of H+ and the first column of H− are
also identically zero, we use an idea of Deift et al. [16, Proof of Th. 5.3, Step 3].
Since the second column of H− is identically zero, the jump relations (2.17)
and (2.18) for H yield for j = 1, 2,

(Hj2)+ (ζ) = −esgn(ζ)πiαe−2i( 4
3
ζ3+sζ) (Hj1)− (ζ), for ζ ∈ R \ {0}.

Thus if we define for j = 1, 2,

(2.23) hj(ζ) =

{
Hj2(ζ), if Im ζ > 0,
Hj1(ζ), if Im ζ < 0,

then both h1 and h2 satisfy the following RH problem for a scalar function h.

The RH problem for h.

(a) h is analytic on C \ R and satisfies the following jump relation

h+(ζ) = −esgn(ζ)πiαe−2i( 4
3
ζ3+sζ)h−(ζ), for ζ ∈ R \ {0},

(b) h(ζ) = O(1/ζ) as ζ →∞.

(c) h(ζ) =

{
O(|ζ|α), as ζ → 0, in case α < 0,
O(|ζ|−α), as ζ → 0, in case α > 0.

Take ζ0 with Im ζ0 < −1 and define

(2.24) ĥ(ζ) =


ζα

(ζ−ζ0)αh(ζ), if Im ζ > 0,

ζα

(ζ−ζ0)α

(
−eπiαe−2i( 4

3
ζ3+sζ)

)
h(ζ), if −1 < Im ζ < 0,

where we use principal branches of the powers, so that ζα is defined with a
branch cut along the negative real axis. Then it is easy to check that ĥ is
analytic in Im ζ > −1, continuous and uniformly bounded in Im ζ ≥ −1, and

ĥ(ζ) = O(e−3|Re ζ|2), as ζ →∞ on the horizontal line Im ζ = −1.

By Carlson’s theorem, see e.g. [38], this implies that ĥ ≡ 0, so that h ≡ 0, as
well. This in turn implies that h1 ≡ 0 and h2 ≡ 0, so that H ≡ 0. Then also
Ψ̂ ≡ 0 and the proposition is proven.

As noted before, Proposition 2.5 has the following consequence.

Corollary 2.6. The RH problem for Ψα, see Section 2.1, has a unique
solution for every s ∈ R and α > −1/2.
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2.3. Proof of Theorem 1.1. Theorem 1.1 follows from the connection of
the RH problem for Ψα of Section 2.1 with the RH problem associated with the
general Painlevé II equation (1.12) as first described by Flaschka and Newell
[20, §3D].

Proof of Theorem 1.1. Consider the matrix differential equation

(2.25)
∂Ψ
∂ζ

= AΨ,

where A is as in (1.16) and s, q, and r are constants. For every k = 0, 1, . . . , 5,
there is a unique solution Ψk of (2.25) such that

Ψk(ζ) = (I +O(1/ζ))e−i(
4
3
ζ3+sζ)σ3

as ζ →∞ in the sector (2k − 1)π6 < arg ζ < (2k + 1)π6 . The function

(2.26) Ψ(ζ) = Ψk(ζ), for (2k − 1)π6 < arg ζ < (2k + 1)π6 ,

is then defined on C \ (Σ ∪ iR) and satisfies the following conditions.

(a) Ψ is analytic in C \ (Σ ∪ iR).

(b) There exist constants s1, s2, s3 ∈ C (Stokes multipliers) satisfying

(2.27) s1 + s2 + s3 + s1s2s3 = −2i sinπα

such that the following jump conditions hold, where all rays are oriented
to infinity,

Ψ+ =



Ψ−

(
1 0
s1 1

)
, on Γ1,

Ψ−

(
1 s2

0 1

)
, on iR+,

Ψ−

(
1 0
s3 1

)
, on Γ2,

Ψ+ =



Ψ−

(
1 s1

0 1

)
, on Γ3,

Ψ−

(
1 0
s2 1

)
, on iR−,

Ψ−

(
1 s3

0 1

)
, on Γ4.

(c) Ψ(ζ) = (I +O(1/ζ))e−i(
4
3
ζ3+sζ)σ3 , as ζ →∞.

The Stokes multipliers s1, s2, s3 depend on s, q and r. However, if q =
q(s) satisfies the second Painlevé equation q′′ = sq + 2q3 − α, and if r =
q′(s), then the Stokes multipliers are constant. In this way there is a one-to-
one correspondence between solutions of the Painlevé II equation and Stokes
multipliers s1, s2, s3 satisfying (2.27). This also means that there exists a
solution of the above RH problem which is built out of solutions of (2.25) if
and only if s is not a pole of the Painlevé II function that corresponds to
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the Stokes multipliers s1, s2, s3. The Painlevé II function itself may then be
recovered from the RH problem by the formula [20]

q(s) = lim
ζ→∞

2iζΨ12(ζ)e−i(
4
3
ζ3+sζ),

with Ψ12 the (1, 2)-entry of Ψ. In particular, condition (c) of the RH problem
can be strengthened to
(2.28)

Ψ(ζ) =
(
I +

1
2iζ

(
u(s) q(s)
−q(s) −u(s)

)
+O(1/ζ2)

)
e−i(

4
3
ζ3+sζ)σ3 , as ζ →∞,

where u = (q′)2 − sq2 − q4 + 2αq.
The RH problem for Ψα in Section 2.1 corresponds to

(2.29) s1 = e−πiα, s2 = 0, s3 = −eπiα.

These Stokes multipliers are very special in two respects [26], [30]. First,
since s2 = 0, the corresponding solution of the Painlevé II equation decays as
s→ +∞, i.e.,

(2.30) q(s) ∼ α

s
, as s→ +∞.

Secondly, since s1s3 = −1 the Painlevé II solution increases as s→ −∞, i.e.,

(2.31) q(s) ∼ ±
√
−s

2
, as s→ −∞,

where the choice s1 = e−πiα, s3 = −eπiα corresponds to the + sign, while the
interchange of s1 and s3 corresponds to the − sign in (2.31). Thus the special
choice (2.29) corresponds to qα, the Hastings-McLeod solution of the general
Painlevé II equation; see (1.13) and (1.14).

Then as a consequence of the fact that the RH problem for Ψα stated in
Section 2.1 is solvable for every real s by Corollary 2.6, we conclude that qα
has no poles on the real line, which proves Theorem 1.1.

Remark 2.7. Its and Kapaev [26] use a slightly modified, but equivalent,
version of the RH problem for Ψα. The solutions are connected by the trans-
formation

(2.32) Ψα ↔ e
πi

4
σ3Ψαe

−πi
4
σ3 ,

which results in a transformation of the Stokes multipliers sj ↔ (−1)jisj .

For later use, we record the following corollary.

Corollary 2.8. For every fixed s0 ∈ R, there exists an open neighbor-
hood U of s0 such that the RH problem for Ψα is solvable for every s ∈ U .
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Proof. Since qα is meromorphic in C, there is an open neighborhood of
s0 without poles. This implies [20] that the RH problem for Ψα is solvable for
every s in that open neighborhood of s0, as well.

Remark 2.9. The function Ψα(ζ; s) is analytic as a function of both ζ ∈
C \ Σ and s ∈ C \ Pα, where Pα denotes the set of poles of qα; see [20]. As a
consequence, one can check that (2.5), (2.6) and (2.7) hold uniformly for s in
compact subsets of C \ Pα.

Remark 2.10. The functions Φα,1 and Φα,2 defined by (1.15) and (1.18)
are connected with Ψα as follows. Define
(2.33)

Φα(ζ; s) =



Ψα(ζ; s)

(
1 0

e−πiα 1

)
, for ζ ∈ S1,

Ψα(ζ; s), for ζ ∈ S2,

Ψα(ζ; s)

(
1 0
eπiα 1

)
, for ζ ∈ S3,

Ψα(ζ; s)

(
1 −eπiα

0 1

)(
1 0

e−πiα 1

)
, for ζ ∈ S4, Re ζ > 0,

Ψα(ζ; s)

(
1 −e−πiα

0 1

)(
1 0
eπiα 1

)
, for ζ ∈ S4, Re ζ < 0.

Then it follows from the RH problem for Ψα that Φα is analytic on C\(−i∞, 0].
Moreover, we also see from (1.15) and (1.18) that

(2.34) Φα =
(

Φα,1 ∗
Φα,2 ∗

)
,

where ∗ denotes an unspecified unimportant entry. It also follows that Φα,1

and Φα,2 have analytic continuations to C \ (−i∞, 0].

Remark 2.11. We show that the kern Kcrit,α(u, v; s) is real. This will
follow from the identity
(2.35)

e
1
2
πiαsgn(u)Φα,2(u; s) = e

1
2
πiαsgn(u)Φα,1(u; s), for u ∈ R \ {0} and s ∈ R,

since obviously (2.35) implies that

Kcrit,α(u, v; s) = − 1
π(u− v)

Im
(
e

1
2
πiα(sgn(u)−sgn(v))Φα,1(u; s)Φα,1(v; s)

)
.

The identity (2.35) will follow from the RH problem. It is easy to check
that σ1Ψα(ζ; s)σ1, with σ1 = ( 0 1

1 0 ), also satisfies the RH conditions for Ψα.
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Because of the uniqueness of the solution of the RH problem, this implies

(2.36) Ψα(ζ; s) = σ1Ψα(ζ; s)σ1.

For ζ ∈ S4, the equality of the (2, 1) entries of (2.36) yields by (2.33) and (2.34)

(2.37) eπiαΦα,2(ζ; s) = Φα,1(ζ; s), for ζ ∈ S4, Re ζ > 0,

and

(2.38) e−πiαΦα,2(ζ; s) = Φα,1(ζ; s), for ζ ∈ S4, Re ζ < 0.

Since both sides of (2.37) are analytic in the right half-plane we find the identity
(2.35) for u > 0, and similarly since both sides of (2.38) are analytic in the left
half-plane, we obtain (2.35) for u < 0.

3. Steepest descent analysis of the RH problem

In this section we write the kernel Kn,N in terms of the solution Y of the
RH problem for orthogonal polynomials (due to Fokas, Its and Kitaev [21])
and apply the Deift/Zhou steepest descent method [18] to the RH problem for
Y to get the asymptotics for Y . These asymptotics will be used in the next
sections to prove Theorems 1.2 and 1.7.

We will restrict ourselves to the one-interval case, which means that ψV is
supported on one interval, although the RH analysis can be done in general. We
comment below in Remark 3.1 (see the end of this section) on the modifications
that have to be made in the multi-interval case.

As in Theorems 1.2 and 1.7 we also assume that besides 0 there are no
other singular points.

3.1. The RH problem for orthogonal polynomials. The starting point is
the RH problem that characterizes the orthogonal polynomials associated with
the weight |x|2αe−NV (x). The 2× 2 matrix-valued function Y = Yn,N satisfies
the following conditions.

The RH problem for Y .

(a) Y : C \ R→ C2×2 is analytic.

(b) Y+(x) = Y−(x)
(

1 |x|2αe−NV (x)

0 1

)
, for x ∈ R.

(c) Y (z) = (I +O(1/z))
(
zn 0
0 z−n

)
, as z →∞.

(d) Y has the following behavior near the origin,
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(3.1) Y (z) =


O

(
1 |z|2α

1 |z|2α

)
, as z → 0, if α < 0,

O

(
1 1
1 1

)
, as z → 0, if α ≥ 0.

Here we have oriented the real axis from the left to the right and Y+(x) (Y−(x))
in part (b) denotes the limit as we approach x ∈ R from the upper (lower) half-
plane. This RH problem possesses a unique solution given by [21] (see [33],
[35] for the condition (d)),
(3.2)

Y (z) =


1

κn,N
pn,N (z)

1
2πiκn,N

∫
R

pn,N (y)|y|2αe−NV (y)

y − z
dy

−2πiκn−1,Npn−1,N (z) −κn−1,N

∫
R

pn−1,N (y)|y|2αe−NV (y)

y − z
dy

 ,

for z ∈ C \ R, where pn,N (z) = κn,Nz
n + · · · , is the n-th degree orthonormal

polynomial with respect to the weight |x|2αe−NV (x), and κn,N is the leading
coefficient of pn,N .

The correlation kernel Kn,N can be expressed in terms of the solution of
this RH problem. Indeed, using the Christoffel-Darboux formula for orthogonal
polynomials, we get from (1.4), (3.2), and the fact that detY ≡ 1,

Kn,N (x, y) = |x|αe−
1
2
NV (x)|y|αe−

1
2
NV (y)κn−1,N

κn,N

×
pn,N (x)pn−1,N (y)− pn−1,N (x)pn,N (y)

x− y
(3.3)

= |x|αe−
1
2
NV (x)|y|αe−

1
2
NV (y) 1

2πi(x− y)
(
0 1

)
Y −1
± (y)Y±(x)

(
1
0

)
.

The asymptotics of Kn,N follows from a steepest descent analysis of the
RH problem for Y , see [9], [16], [17], [34], [35], [42]. The Deift/Zhou steepest
descent analysis consists of a series of explicit transformations Y 7→ T 7→ S

7→ R so that it leads to an RH problem for R which is normalized at infinity
and which has jumps uniformly close to the identity matrix I. Then R itself
is uniformly close to I. By going back in the series of transformations we then
have the asymptotics for Y from which the asymptotics of Kn,N in different
scaling regimes can be deduced.

The main issue of the present situation is the construction of a local
parametrix near 0 with the aid of the RH problem for Ψα introduced in Sec-
tion 2. For the case α = 0 this was done in [9] and we use the ideas introduced
in that paper.
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Throughout the rest of the paper we use the notation

(3.4) t = n/N, and Vt =
1
t
V.

3.2. First transformation Y 7→ T . In the first transformation we nor-
malize the RH problem at infinity. The standard approach would be to use
the equilibrium measure in the external field Vt, see [11], [39]. This is the
probability measure that minimizes

IVt(µ) =
∫∫

log
1

|x− y|
dµ(x)dµ(y) +

∫
Vt(x)dµ(x)

among all Borel probability measures µ on R. The minimizer for t = 1 has
density ψV which by assumption vanishes at the origin. For t < 1, the origin is
outside of the support and for t slightly less than 1, there is a gap in the support
around 0. An annoying consequence is that the equality in the variational
conditions is not valid near the origin. Therefore, a modified measure νt was
introduced in [9] to overcome this problem.

Here, we follow [9, §3]. We take a small δ0 > 0 so that ψV (x) > 0 for
x ∈ [−δ0, δ0] \ {0}, and we consider the problem to minimize IVt(ν) among all
signed measures ν = ν+ − ν− where ν± are nonnegative measures such that∫
dν = 1 and supp(ν−) ⊂ [−δ0, δ0]. There is a unique minimizer which we

denote by νt. This signed measure is absolutely continuous with density ψt
and its support St = [at, bt] is an interval if t is sufficiently close to 1. The
following variational conditions are satisfied: there exists a constant `t ∈ R
such that

2
∫

log |x− y|ψt(y)dy − Vt(x) + `t = 0, for x ∈ [at, bt],(3.5)

2
∫

log |x− y|ψt(y)dy − Vt(x) + `t ≤ 0, for x ∈ R.(3.6)

In addition, it was shown in [9] that for t sufficiently close to 1,

(3.7) ψt(x) =
1
π

(−Qt(x))1/2, for x ∈ [at, bt],

where

(3.8) Qt(z) =
(
V ′(z)

2t

)2

− 1
t

∫
V ′(z)− V ′(y)

z − y
ψt(y)dy.

For t > 1, we take the square root in (3.7) which is positive for x = 0, while
for t < 1 we take the square root which is negative for x = 0.

For the first transformation, we introduce the following ‘g-function’ asso-
ciated with νt,

(3.9) gt(z) =
∫

log(z − y)dνt(y) =
∫

log(z − y)ψt(y)dy, for z ∈ C \ R,
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where we take the branch cut of the logarithm along the negative real axis.
We define

(3.10) T (z) = e
1
2
n`tσ3Y (z)e−ngt(z)σ3e−

1
2
n`tσ3 , for z ∈ C \ R.

We also use the functions

ϕt(z) =
∫ z

bt

(Qt(s))1/2ds,(3.11)

ϕ̃t(z) =
∫ z

at

(Qt(s))1/2ds,(3.12)

where the path of integration does not cross the real axis. The relations that
exist between gt, ϕt and ϕ̃t are described in [9, §5.2]. Using these, we find that
T is the unique solution of the following RH problem.

The RH problem for T .

(a) T : C \ R→ C2×2 is analytic.

(b) T+(x) = T−(x)vT (x) for x ∈ R, with

vT (x) =



(
e2nϕt,+(x) |x|2α

0 e2nϕt,−(x)

)
, for x ∈ (at, bt),(

1 |x|2αe−2nϕt(x)

0 1

)
, for x ∈ (bt,∞),

[3ex]

(
1 |x|2αe−2nϕ̃t(x)

0 1

)
, for x ∈ (−∞, at).

(c) T (z) = I +O(1/z), as z →∞.

(d) T has the same behavior as Y near the origin, given by (3.1).

3.3. Second transformation T 7→ S. In this subsection, we open the lens
as in Figure 2. The opening of the lens is based on the factorization of the
jump matrix vT for x ∈ (at, bt), which is

vT (x) =
(
e2nϕt,+(x) |x|2α

0 e2nϕt,−(x)

)

=
(

1 0
|x|−2αe2nϕt,−(x) 1

)(
0 |x|2α

−|x|−2α 0

)(
1 0

|x|−2αe2nϕt,+(x) 1

)
.(3.13)

We deform the RH problem for T into an RH problem for S by opening a lens
around [at, bt] going through the origin, as shown in Figure 2. The precise form
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- -- -q q q
-

-

-

-

at 0 bt

Figure 2: The lens shaped contour ΣS going through the origin.

of the lens is not yet specified but for now we choose the lens to be contained
in the region of analyticity of V and we can do it in such a way that for any
given δ > 0, there exists γ > 0 so that, for every t sufficiently close to 1, we
have that

(3.14) Reϕt(z) < −γ,

for z on the upper and lower lips of the lens with the exception of δ-neighborhoods
of 0, a, and b. See also [9, §5.3].

Let ω be the analytic continuation of x 7→ |x|2α to C \ (iR); i.e.,

(3.15) ω(z) =

{
z2α, if Re z > 0,
(−z)2α, if Re z < 0.

The second transformation is then defined by
(3.16)

S(z) =



T (z), for z outside the lens,

T (z)

(
1 0

−ω(z)−1e2nϕt(z) 1

)
, for z in the upper parts of the lens,

T (z)

(
1 0

ω(z)−1e2nϕt(z) 1

)
, for z in the lower parts of the lens.

Then S is the unique solution of the following RH problem posed on the contour
ΣS which is the union of R with the upper and lower lips of the lens.

The RH problem for S.

(a) S : C \ ΣS → C2×2 is analytic.

(b) S+ = S−vS on ΣS , where
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vS(z) =



(
1 0

ω(z)−1e2nϕt(z) 1

)
, for z ∈ ΣS \ R,(

0 |z|2α

−|z|−2α 0

)
, for z ∈ (at, bt),(

1 |z|2αe−2nϕt(z)

0 1

)
, for z ∈ (bt,∞),(

1 |z|2αe−2nϕ̃t(z)

0 1

)
, for z ∈ (−∞, at).

(c) S(z) = I +O(1/z), as z →∞.

(d) S has the following behavior near the origin. If α < 0,

(3.17) S(z) = O
(

1 |z|2α
1 |z|2α

)
, as z → 0, z ∈ C \ ΣS ,

and if α ≥ 0,

(3.18) S(z) =


O

(
1 1
1 1

)
, as z → 0 from outside the lens,

O

(
|z|−2α 1
|z|−2α 1

)
, as z → 0 from inside the lens.

3.4. Parametrix away from special points. On the lips of the lens and on
(−∞, at)∪ (bt,∞), the jump matrix for S is close to the identity matrix if n is
large and t is close to 1. This follows from the inequality (3.14) and the fact
that ϕt(x) > 0 for x > bt and ϕ̃t(x) > 0 for x < at. Ignoring these jumps we
are led to the following RH problem.

The RH problem for P (∞).

(a) P (∞) : C \ [at, bt]→ C2×2 is analytic.

(b) P
(∞)
+ (x) = P

(∞)
− (x)

(
0 |x|2α

−|x|−2α 0

)
, for x ∈ (at, bt) \ {0}.

(c) P (∞)(z) = I +O(1/z), as z →∞.

Note that P (∞) depends on n and N through the parameter t. As in
[31], [33], [35] we construct P (∞) in terms of the Szegő function D associated
with |x|2α on (at, bt). This is an analytic function in C \ [at, bt], satisfying
D+(x)D−(x) = |x|2α for x ∈ (at, bt) \ {0}, which does not vanish anywhere in
C \ [at, bt]. It is easy to check that D is given by

(3.19) D(z) = zαφ

(
2z − at − bt
bt − at

)−α
, for z ∈ C \ [at, bt],
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where φ(z) = z + (z − 1)1/2(z + 1)1/2 is the conformal map from C \ [−1, 1]
onto the exterior of the unit circle. Since φ(z) = 2z + O(1/z) as z → ∞ we
have

lim
z→∞

D(z) =
(

4
bt − at

)−α
≡ D∞.

Now the transformed matrix-valued function

(3.20) P̂ (∞) = D−σ3
∞ P (∞)Dσ3

satisfies conditions (a) and (c) of the RH problem and it has the jump matrix(
0 1
−1 0

)
on (at, bt). The construction of P̂ (∞) has been done in [11], [16], [17],

and leads us to the solution of the RH problem for P (∞):
(3.21)

P (∞)(z) = Dσ3
∞

β(z)+β(z)−1

2
β(z)−β(z)−1

2i

β(z)−β(z)−1

−2i
β(z)+β(z)−1

2

D(z)−σ3 , for z ∈ C \ [at, bt],

where

(3.22) β(z) =
(z − bt)1/4

(z − at)1/4
, for z ∈ C \ [at, bt].

3.5. Parametrix near endpoints. The jump matrices of S and P (∞) are
not uniformly close to each other near the origin and near the endpoints of
[at, bt]. We surround a1 and b1 (the endpoints of SV ) with small disks Uδ(a)
and Uδ(b) of radius δ. For t sufficiently close to 1, the endpoints at and bt are
in these disks, and then local parametrices P (at) and P (bt) can be constructed
with Airy functions as in [11], [16], [17].

3.6. Parametrix near the origin. Near the origin a local parametrix will
be constructed with the aid of the RH problem for Ψα of Section 2. Let Uδ be
a small disk with center at 0 and radius δ > 0. We seek a 2× 2 matrix-valued
function P in Uδ, with the same jumps as S, with the same behavior as S
near the origin, which matches with P (∞) on the boundary ∂Uδ of the disk.
We thus seek a 2 × 2 matrix-valued function that satisfies the following RH
problem.

The RH problem for P .

(a) P is defined and analytic in Uδ′ \ ΣS for some δ′ > δ.

(b) On ΣS ∩ Uδ, P satisfies the jump relations

P+(z) = P−(z)
(

1 0
ω(z)−1e2nϕt(z) 1

)
, for z ∈ (ΣS \ R) ∩ Uδ,(3.23)

P+(x) = P−(x)
(

0 |x|2α
−|x|−2α 0

)
, for x ∈ (−δ, δ) \ {0}.(3.24)
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(c) P satisfies the matching condition

(3.25) P (z) = (I +O(n−1/3))P (∞)(z),

as n,N →∞ such that n2/3(n/N − 1)→ L, uniformly for z ∈ ∂Uδ \ΣS .

(d) P has the same behavior near the origin as S, given by (3.17) and (3.18).

In order to solve the RH problem for P we work as follows. First, we seek
P such that it satisfies conditions (a), (b), and (d). To do this, we transform
(in the first step) the RH problem into an RH problem for P̂ with constant
jump matrices. In the second step we solve the RH problem for P̂ explicitly
by using the RH problem for Ψα. In the final step we take also the matching
condition (c) into account.

Step 1: Transformation to constant jump matrices. In the first step we
transform the RH problem for P into an RH problem for P̂ with constant jump
matrices. We seek P in the form

P (z) = E(z)P̂ (z)enϕt(z)σ3e
1
2
πiασ3z−ασ3 , if Im z > 0,(3.26)

P (z) = E(z)P̂ (z)e−nϕt(z)σ3e
1
2
πiασ3

(
0 −1
1 0

)
z−ασ3 , if Im z < 0,(3.27)

where the invertible matrix-valued function E = En,N (we suppress notation
of the indices) is analytic in Uδ′ and where the branch cut of zα is chosen along
the negative real axis.

Using (3.24), (3.26) and (3.27), and keeping track of the branches of zα,
we can easily check that P̂ has no jumps on (−δ, δ) \ {0}. What remains are
jumps on the contour (ΣS \ R) ∩ Uδ =

⋃4
j=1 Σj , which is shown in Figure 3.

We have reversed the orientation of Σ2 and Σ3 towards infinity, so that now
the orientation of the Σj ’s corresponds to the orientation of the Γj ’s in Fig-
ure 1. The contour divides Uδ into four regions I , II , III and IV , also shown
in Figure 3.

We will now determine the jump relations for P̂ . By (3.15), (3.23), and
(3.26), P̂ should have the following jump matrix on Σ1,

P̂−(z)−1P̂+(z)(3.28)

= enϕt(z)σ3e
1
2
πiασ3z−ασ3

(
1 0

ω(z)−1e2nϕt(z) 1

)
zασ3e−

1
2
πiασ3e−nϕt(z)σ3

=
(

1 0
ω(z)−1z2αe−πiα 1

)
=
(

1 0
e−πiα 1

)
.

For z ∈ Σ2 we have, because of the reversal of the orientation, an extra minus
sign in the (2, 1)-entry of the jump matrix. The result is

(3.29) P̂−(z)−1P̂+(z) =
(

1 0
−ω(z)−1z2αe−πiα 1

)
=
(

1 0
−eπiα 1

)
,
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Σ1Σ2

Σ3 Σ4

I

II

III

IV

(
1 e−πiα

0 1

)

(
1 0

−eπiα 1

)

(
1 −eπiα
0 1

)

(
1 0

e−πiα 1

)

q0
*

j

Y

�

Figure 3: Contour and jumps for the RH problem for P̂ .

where the latter equality follows from the fact that ω(z)−1z2α = e2πiα by
(3.15), since Re z < 0 in this case. By equations (3.24) and (3.27), the jump
matrices for P̂ on Σ3 and Σ4 can be determined similarly. The result is that

(3.30) P̂+(z) =


P̂−(z)

(
1 e−πiα

0 1

)
, for z ∈ Σ3,

P̂−(z)

(
1 −eπiα

0 1

)
, for z ∈ Σ4.

We arrive at the following RH problem for P̂ . If it is satisfied by P̂ then P
defined by (3.26)–(3.27) satisfies the parts (a), (b), and (d) of the RH problem
for P .

The RH problem for P̂ .

(a) P̂ is defined and analytic in Uδ′ \
⋃
j Σj for some δ′ > δ.

(b) P̂ satisfies the following jump relations

(3.31) P̂+(z) =



P̂−(z)

(
1 0

e−πiα 1

)
, for z ∈ Σ1,

P̂−(z)

(
1 0

−eπiα 1

)
, for z ∈ Σ2,

P̂−(z)

(
1 e−πiα

0 1

)
, for z ∈ Σ3,

P̂−(z)

(
1 −eπiα

0 1

)
, for z ∈ Σ4.
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(c) P̂ has the following behavior near the origin. If α < 0,

(3.32) P̂ (z) = O
(
|z|α |z|α
|z|α |z|α

)
, as z → 0,

and if α ≥ 0,

(3.33) P̂ (z) =



O

(
|z|−α |z|−α

|z|−α |z|−α

)
, as z → 0, z ∈ I ∪ III ,

O

(
|z|α |z|−α

|z|α |z|−α

)
, as z → 0, z ∈ II ,

O

(
|z|−α |z|α

|z|−α |z|α

)
, as z → 0, z ∈ IV .

Note that if P̂ has the behavior near the origin as described in part (c) of the
RH problem, then P defined by (3.26) and (3.27) has the same behavior near
the origin as S, as required by part (d) of the RH problem for P .

Step 2: Construction of P̂ . Observe that the jump matrices and the
behavior near the origin of the RH problem for P̂ correspond exactly to the
jump matrices and the behavior near the origin of the RH problem for Ψα. We
use the solution of the latter RH problem to solve the RH problem for P̂ .

We seek P̂ in the form

(3.34) P̂ (z) = Ψα

(
n1/3f(z);n2/3st(z)

)
,

where f and st are analytic functions on Uδ which are real on (−δ, δ), and st
is such that

(3.35) n2/3st(z) ∈ C \ Pα, for z ∈ Uδ,

where Pα is the set of poles of qα. In addition, f is a conformal map from
Uδ onto a convex neighborhood f(Uδ) of 0 such that f(0) = 0 and f ′(0) > 0.
Depending on f we open the lens around [at, bt] such that that f(Σi) = Γi for
i = 1, 2, 3, 4, where the Γi’s are the jump contours for the RH problem for Ψα;
see Figure 1. Recall that the lens was not fully specified and we still have the
freedom to make this choice.

It remains to determine f and st so that the matching condition for P is
also satisfied. Here we again follow [9]. As in [9, §5.6] we take
(3.36)

f(z) =
[

3
4

∫ z

0
(−Q1(y))1/2dy

]1/3

= z

(
πψ′′V (0)

8

)1/3

+O
(
z2
)
, as z → 0,

and

(3.37) st(z)f(z) =
∫ z

0

(
(−Qt(y))1/2 − (−Q1(y))1/2

)
dy.
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Then f is analytic with f(0) = 0 and f ′(0) > 0, it does not depend on t,
and it is a conformal mapping on Uδ provided δ is small enough. Since the
right-hand side of (3.37) is analytic and vanishes for z = 0, we can divide by
f(z) and obtain an analytic function st. From [9, (5.26)], we get that there
exists a constant K > 0 such that

(3.38) |st(z)− πc1/3(t− 1)wSV (0)| ≤ K(t− 1)|z|+ o(t− 1) as t→ 1,

uniformly for z in a neighborhood of 0. Now assume that |n2/3(t − 1)| ≤ M

with n large enough. Then it easily follows from (3.38) and the fact that qα
has no real poles, that there exists a δ > 0, depending only on M , such that

(3.39) |Imn2/3st(z)| < min{|Im s| | s is a pole of qα} for |z| ≤ δ.

Then (3.35) holds and (3.34) is well-defined and analytic since Ψα(ζ; s) is jointly
analytic in its two arguments, see Remark 2.9.

It follows from (3.36) and (3.37) that

(3.40) −i
[

4
3
f(z)3 + st(z)f(z)

]
=

ϕt,+(0)− ϕt(z), if Im z > 0,

ϕt,+(0) + ϕt(z), if Im z < 0,

see also [9, §5.6]. Hence by (2.5), which by Remark 2.9 holds uniformly for s
in compact subsets of C \ Pα, we have

P̂ (z) = Ψα

(
n1/3f(z);n2/3st(z)

) [
I +O(1/n1/3)

]
enϕt,+(0)σ3(3.41)

×

e
−nϕt(z)σ3 , if Im z > 0,

enϕt(z)σ3 , if Im z < 0,

as n,N →∞, uniformly for z ∈ ∂Uδ.

Step 3: Matching condition. In the final step we determine E such that
the matching condition (c) of the RH problem for P is satisfied. By (3.26),
(3.27), and (3.41) we have for z ∈ ∂Uδ,

P (z) =


E(z)

[
I +O(1/n1/3)

]
enϕt,+(0)σ3e

1
2
πiασ3z−ασ3 , if Im z > 0,

E(z)
[
I +O(1/n1/3)

]
enϕt,+(0)σ3e

1
2
πiασ3

(
0 −1
1 0

)
z−ασ3 , if Im z < 0,

as n,N →∞. This has to match the outside parametrix P (∞), so that we are
led to the following definition for the prefactor E(z), for z ∈ Uδ:
(3.42)

E(z) =


P (∞)(z)zασ3e−

1
2
πiασ3e−nϕt,+(0)σ3 , if Im z > 0,

[1ex]P (∞)(z)zασ3

(
0 1
−1 0

)
e−

1
2
πiασ3e−nϕt,+(0)σ3 , if Im z < 0.
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Figure 4: The contour ΣR after the third and final transformation.

One can check as in [35], [41] that E is invertible and analytic in a full neighbor-
hood of Uδ. In addition we have the matching condition (3.25). This completes
the construction of the parametrix near the origin.

3.7. Third transformation: S 7→ R. Having the parametrices P (∞), P (at),
P (bt), and P , we now define

(3.43) R(z) =



S(z)P−1(z), for z ∈ Uδ,

S(z)
(
P (at)

)−1
(z), for z ∈ Uδ(a),

S(z)
(
P (bt)

)−1
(z), for z ∈ Uδ(b),

S(z)
(
P (∞)

)−1
(z), for z ∈ C \ (Uδ ∪ Uδ(a) ∪ Uδ(b) ∪ ΣS).

Then R has only jumps on the reduced system of contours ΣR shown in Fig-
ure 4, and R satisfies the following RH problem; cf. [9]. The circles around 0,
at and bt are oriented counterclockwise.

The RH problem for R.

(a) R : C \ ΣR → C2×2 is analytic.

(b) R+(z) = R−(z)vR(z) for z ∈ ΣR, with

(3.44) vR =



P (∞)(P (at))−1, on ∂Uδ(a),

P (∞)(P (bt))−1, on ∂Uδ(b),

P (∞)P−1, on ∂Uδ,

P (∞)vS(P (∞))−1, on the rest of ΣR.

(c) R(z) = I +O(1/z), as z →∞,

(d) R remains bounded near the intersection points of ΣR.
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Now we let n,N →∞ such that |n2/3(n/N − 1)| ≤M , so that δ does not
depend on n. Then it follows from the construction of the parametrices that

(3.45) vR =


I +O(1/n), on ∂Uδ(a) ∪ ∂Uδ(b),

I +O(n−1/3), on ∂Uδ,

[1ex]I +O(e−γn), on the rest of ΣR,

where γ > 0 is some fixed constant. All O-terms hold uniformly on their
respective contours.

For large n, the jump matrix of R is close to the identity matrix, both in
L∞ and in the L2-sense on ΣR. Then arguments as in [11], [16], [17] (which are
based on estimates on Cauchy operators as well as on contour deformations),
guarantee that

(3.46) R(z) = I +O(n−1/3), uniformly for z ∈ C \ ΣR,

as n,N →∞ such that |n2/3(n/N − 1)| ≤M .
This completes the steepest descent analysis. Following the effect of the

transformation on the correlation kernel Kn,N and using (3.46) we will prove
the main Theorem 1.2. This will be done in the next section. For the proof of
Theorem 1.7 we need to expand vR(z) in (3.45) up to order n−1/3, from which
it follows that

R(z) = I +
R(1)(z)
n1/3

+O(n−2/3), uniformly for z ∈ C \ ΣR,

with an explicitly computable R(1)(z). The asymptotic behavior of the recur-
rence coefficients is expressed in terms of R(1) and this leads to the proof of
Theorem 1.7 which will be given in Section 5.

Remark 3.1. The steepest descent analysis was done under the assump-
tion that supp(ψV ) consists of one interval. In the multi-interval case, the
construction of the outside parametrix P (∞) is more complicated, since it uses
Θ-functions as in [16, Lemma 4.3] and the Szegő function for multiple intervals
as in [35, §4]. With these modifications the asymptotic analysis can be carried
through in the multi-interval case without any additional difficulty.

4. Proof of Theorem 1.2

As in the statement of Theorem 1.2, we assume that n,N → ∞ with
n2/3(t − 1) → L, where t = n/N . Let M > |L| and take n sufficiently large
so that |n2/3(t − 1)| ≤ M . Let δ > 0 be such that (3.39) holds. We start by
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writing the kernel Kn,N explicitly in terms of the matrix-valued function Φα

defined in (2.33). For notational convenience we introduce

(4.1) B(z) = R(z)E(z),

where E and R are given by (3.42) and (3.43), respectively.

Proposition 4.1. Let x, y ∈ (−δ, δ) \ {0}. Then

(4.2)

Kn,N (x, y) =
1

2πi(x− y)
e

1
2
πiα(sgn(x)+sgn(y))

(
0 1

)
Φ−1
α

(
n1/3f(y);n2/3st(y)

)
×B−1(y)B(x)Φα

(
n1/3f(x);n2/3st(x)

)(1
0

)
,

where Φα is as given by (2.33).

Proof. From (3.3), (3.10), and the fact that NV = nVt, the kernel Kn,N

can be written as

Kn,N (x, y) = |x|αe
1
2
n(2gt,+(x)−Vt(x)+`t)|y|αe

1
2
n(2gt,+(y)−Vt(y)+`t)

× 1
2πi(x− y)

(
0 1

)
T−1

+ (y)T+(x)
(

1
0

)
.

Using the relation

2gt,+ − Vt + `t = −2ϕt,+ on [at, bt],

(see [9], and (3.16) to express T in terms of S), we find for x and y in
(at, bt) \ {0},

(4.3)
Kn,N (x, y) =

|x|αe−nϕt,+(x)|y|αe−nϕt,+(y)

2πi(x− y)
(
0 1

)( 1 0
−|y|−2αe2nϕt,+(y) 1

)
S−1

+ (y)

×S+(x)
(

1 0
|x|−2αe2nϕt,+(x) 1

)(
1
0

)

=
1

2πi(x− y)
(
−1 1

)
|y|−ασ3enϕt,+(y)σ3S−1

+ (y)

×S+(x)|x|ασ3e−nϕt,+(x)σ3

(
1
1

)
.

We further simplify this expression by writing S in terms of R and the
parametrix P near the origin. Consider the case that x ∈ (0, δ). Then, since
S+(x) = R(x)P+(x) by (3.43), we have by (3.26),

(4.4) S+(x) = B(x)P̂ (x)e
1
2
πiασ3enϕt,+(x)σ3 |x|−ασ3 , for x ∈ (0, δ),
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where B is given by (4.1). By (4.4), (3.34), and (2.33) we then find for
x ∈ (0, δ),

S+(x)|x|ασ3e−nϕt,+(x)σ3

(
1
1

)
(4.5)

= B(x)Φα

(
n1/3f(x);n2/3st(x)

)( 1 0
−e−πiα 1

)
e

1
2
πiασ3

(
1
1

)

= e
1
2
πiαsgn(x)B(x)Φα

(
n1/3f(x);n2/3st(x)

)(1
0

)
.

A similar calculation shows that (4.5) also holds for x ∈ (−δ, 0). Similarly, we
have

(4.6)
(
−1 1

)
|y|−ασ3enϕt,+(y)σ3S−1

+ (y)

= e
1
2
πiαsgn(y)

(
0 1

)
Φ−1
α

(
n1/3f(y);n2/3st(y)

)
B−1(y),

for y ∈ (−δ, δ) \ {0}. Inserting (4.5) and (4.6) into (4.3), we arrive at (4.2),
which proves the proposition.

Proof of Theorem 1.2. Let u, v ∈ R \ {0}, and put un = u/(cn1/3) and
vn = v/(cn1/3) with c given by (1.19). Note that, by (3.36),

(4.7) lim
n→∞

n1/3f(un) = u, lim
n→∞

n1/3f(vn) = v.

Furthermore, by (3.38), (1.19), and (1.20),

|n2/3st(z)− s| ≤ Kn2/3(t− 1)|z|+ n2/3o(t− 1) + |n2/3(t− 1)− L|πc1/3wSV (0)

uniformly for z in a neighborhood of 0. Then it easily follows that, since
n2/3(t− 1)→ L,

(4.8) lim
n,N→∞

n2/3st(un) = lim
n,N→∞

n2/3st(vn) = s.

Now, similarly, as in [35], we use the fact that the entries of B are analytic and
uniformly bounded in Uδ, to obtain

(4.9) lim
n,N→∞

B−1(vn)B(un) = I.

Inserting (4.7), (4.8), and (4.9) into (4.2), we find that

lim
n,N→∞

1
cn1/3

Kn,N (un, vn)

=
1

2πi(u− v)
e

1
2
πiα(sgn(u)+sgn(v))

(
0 1

)
Φ−1
α (v; s)Φα(u; s)

(
1
0

)
= −e

1
2
πiα(sgn(u)+sgn(v)) Φα,1(u; s)Φα,2(v; s)− Φα,1(v; s)Φα,2(u; s)

2πi(u− v)
.

This completes the proof of Theorem 1.2.
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5. Proof of Theorem 1.7

In this section we determine the asymptotic behavior of the recurrence
coefficients an,N and bn,N as n,N → ∞ such that |n2/3(n/N − 1)| ≤ M for
some M > 0. As in Theorem 1.7 we assume that SV = [a, b] is an interval, and
that there are no other singular points besides 0. Then it follows that supp(ψt)
consists of one interval [at, bt] if t is sufficiently close to 1. In addition we have
that the endpoints at and bt are real analytic functions in t, see [32, Th. 1.3],
so that

(5.1) at = a+O(n−2/3), bt = b+O(n−2/3),

since t = n/N = 1 +O(n−2/3).
We make use of the following result; see for example [11], [17]. Let Y

be the unique solution of the RH problem for Y . There exist 2 × 2 constant
(independent of z, but depending on n,N) matrices Y1, Y2 such that

Y (z)
(
z−n 0

0 zn

)
= I +

Y1

z
+
Y2

z2
+O(1/z3), as z →∞,

and

(5.2) an,N =
√

(Y1)12(Y1)21, bn,N = (Y1)11 +
(Y2)12

(Y1)12
.

We need to determine the constant matrices Y1 and Y2. For large |z| we have
by (3.10), (3.16) and (3.43) that

(5.3) Y (z) = e−
1
2
n`tσ3R(z)P (∞)(z)engt(z)σ3e

1
2
n`tσ3 .

So in order to compute Y1 and Y2 we need the asymptotic behavior of P (∞)(z),
engt(z)σ3 and R(z) as z →∞.

Asymptotic behavior of P (∞)(z) as z →∞. ¿From (3.19) and (3.22) it is
straightforward to determine the asymptotic behavior of the scalar functions
D(z) and β(z) as z →∞. Indeed, as z →∞,β(z)+β(z)−1

2
β(z)−β(z)−1

2i

β(z)−β(z)−1

−2i
β(z)+β(z)−1

2


= I − 1

4
(bt − at)

(
0 −i
i 0

)
1
z

+
i

8
(b2t − a2

t )
(
∗ 1
−1 ∗

)
1
z2

+O(1/z3),

and

D(z)−σ3 =
[
I − α

2
(bt + at)

(
1 0
0 −1

)
1
z

+
(
∗ 0
0 ∗

)
1
z2

+O(1/z3)
]
D−σ3
∞ ,
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where ∗ denotes an unspecified unimportant entry. Inserting these equations
into (3.21) and using (5.1) gives us the asymptotic behavior of P (∞) at infinity,

(5.4) P (∞)(z) = I +
P

(∞)
1

z
+
P

(∞)
2

z2
+O(1/z3), as z →∞,

with

P
(∞)
1 = Dσ3

∞

(
−α

2 (bt + at) i
4(bt − at)

− i
4(bt − at) α

2 (bt + at)

)
D−σ3
∞(5.5)

= Dσ3
∞

(
−α

2 (b+ a) i
4(b− a)

− i
4(b− a) α

2 (b+ a)

)
D−σ3
∞ +O(n−2/3),

and

P
(∞)
2 = Dσ3

∞

(
∗ i

8(α+ 1)(b2t − a2
t )

i
8(α− 1)(b2t − a2

t ) ∗

)
D−σ3
∞

(5.6)

= Dσ3
∞

(
∗ i

8(α+ 1)(b2 − a2)
i
8(α− 1)(b2 − a2) ∗

)
D−σ3
∞ +O(n−2/3).

Asymptotic behavior of engt(z)σ3 as z →∞. By (3.9),

(5.7) engt(z)σ3

(
z−n 0

0 zn

)
= I +

G1

z
+
G2

z2
+O(1/z3), as z →∞,

with

(5.8) G1 = −n
∫ bt

at

yψt(y)dy
(

1 0
0 −1

)
, G2 =

(
∗ 0
0 ∗

)
.

Asymptotic behavior of R(z) as z → ∞. The computation of R1 and
R2 is more involved. For z ∈ ∂Uδ ∩ C+, we have by (3.44), (3.26), (3.34),
and (3.42),

vR(z) = P (∞)(z)P−1(z)(5.9)

= P (∞)(z)zασ3e−
1
2
πiασ3e−nϕt(z)σ3Ψ−1

α (n1/3f(z);n2/3st(z))

× enϕt,+(0)σ3e
1
2
πiασ3z−ασ3(P (∞))−1(z).

Using (2.28) and (3.40), we then find

(5.10) vR(z) = I +
∆(1)(z)
n1/3

+O(n−2/3),
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where

(5.11) ∆(1)(z) = − 1
2if(z)

P (∞)(z)zασ3e−
1
2
πiασ3e−nϕt,+(0)σ3

×

(
uα(n2/3st(z)) qα(n2/3st(z))

−qα(n2/3st(z)) −uα(n2/3st(z))

)
enϕt,+(0)σ3e

1
2
πiασ3z−ασ3(P (∞))−1(z),

for z ∈ ∂Uδ ∩ C+. A similar calculation leads to an analogous formula for
z ∈ ∂Uδ ∩C−, which together with (5.11) shows that ∆(1) has an extension to
an analytic function in a punctured neighborhood of 0 with a simple pole at 0.

To calculate the residue at 0, we use (3.19) together with the fact that
φ+(x) = exp(i arccosx) for x ∈ [−1, 1] to find

lim
z→0+i0

D(z)
zα

= exp
(
−iα arccos

(
−bt + at
bt − at

))
,

so that by (3.20)
(5.12)

lim
z→0+i0

P (∞)(z)zασ3e−
1
2
πiασ3 = Dσ3

∞ P̂
(∞)
+ (0)eiαθtσ3 , with θt = arcsin bt+at

bt−at .

Also note that by (3.7), (3.11), and (1.29),

(5.13) −ϕt,+(0) = πi

∫ bt

0
ψt(x)dx = πiωt.

Now use (3.36), (1.19), (5.12), and (5.13) in (5.11) to find

(5.14) Res(∆(1); 0) = − 1
2ic

Dσ3
∞ P̂

(∞)
+ (0)ei(πnωt+αθt)σ3

×
(

uα(n2/3st(0)) qα(n2/3st(0))
[1ex]− qα(n2/3st(0)) −uα(n2/3st(0))

)
e−i(πnωt+αθ)σ3(P̂ (∞)

+ )−1(0)D−σ3
∞ .

Combining (3.37), (3.36), and (3.7) we see that n2/3st(0) = st,n as defined in
(1.27). From (3.20), (3.21), and (3.22) it follows that

P̂
(∞)
+ (0) =

(
β+(0)+β+(0)−1

2
β+(0)−β+(0)−1

2i
β+(0)−β+(0)−1

2i
β+(0)+β+(0)−1

2

)
,

where β+(0) = eiπ/4 (−bt/at)1/4.
We insert this into (5.14) and after some straightforward calculations we

find

(5.15) −Res(∆(1); 0) = Dσ3
∞ (r1σ1 + r2σ2 + r3σ3)D−σ3

∞ ,
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where the Pauli matrices are σ1 = ( 0 1
1 0 ), σ2 =

(
0 −i
i 0

)
, and σ3 =

(
1 0
0 −1

)
, and

r1 = − 1
2ic

(
uα(st,n)

bt − at
2
√
−atbt

+ qα(st,n)
bt + at

2
√
−atbt

sin(2πnωt + 2αθt)
)(5.16)

= − 1
2ic

(
uα(st,n)

b− a
2
√
−ab

+ qα(st,n)
b+ a

2
√
−ab

sin(2πnωt + 2αθ)
)

+O(n−2/3),

r2 =
qα(st,n)

2c
cos(2πnωt + 2αθt)(5.17)

=
qα(st,n)

2c
cos(2πnωt + 2αθ) +O(n−2/3),

r3 =
1
2c

(
qα(st,n)

bt − at
2
√
−atbt

sin(2πnωt + 2αθt) + uα(st,n)
bt + at

2
√
−atbt

)(5.18)

=
1
2c

(
qα(st,n)

b− a
2
√
−ab

sin(2πnωt + 2αθ) + uα(st,n)
b+ a

2
√
−ab

)
+O(n−2/3),

where we used (5.1).
From (5.10),

(5.19) R(z) = I +
R(1)(z)
n1/3

+O(n−2/3),

where R(1)
+ = R

(1)
− + ∆(1) on ∂Uδ and R(1)(z) → 0 as z → ∞. Since ∆(1) is

analytic with a simple pole at z = 0, we can find explicitly

(5.20) R(1)(z) =

−
1
zRes(∆(1); 0) + ∆(1)(z), for z ∈ Uδ,

−1
zRes(∆(1); 0), for z ∈ C \ U δ.

As in [17] the matrix-valued function R has the following asymptotic behavior
at infinity,

(5.21) R(z) = I +
R1

z
+
R2

z2
+O(1/z3), as z →∞.

The compatibility with (5.19) and (5.20) yields that

(5.22) R1 = −Res(∆(1); 0)n−1/3 +O(n−2/3), R2 = O(n−2/3).

Now, we are ready to determine the asymptotics of the recurrence coeffi-
cients.
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Proof of Theorem 1.7. Note that by (5.3), (5.4), (5.7) and (5.21),

(5.23) Y1 = e−
1
2
n`tσ3

[
P

(∞)
1 +G1 +R1

]
e

1
2
n`tσ3

and
(5.24)

Y2 = e−
1
2
n`tσ3

[
P

(∞)
2 +G2 +R2 +R1P

(∞)
1 +

(
P

(∞)
1 +R1

)
G1

]
e

1
2
n`tσ3 .

We start with the recurrence coefficient an,N . Inserting (5.23) into (5.2)
and using (5.5) and the facts that (G1)12 = (G1)21 = 0 (by (5.8)), and
(R1)12(R1)21 = O(n−2/3) (by (5.22)), we obtain

an,N =
[
(P (∞)

1 )12(P (∞)
1 )21 + (P (∞)

1 )12(R1)21 + (P (∞)
1 )21(R1)12 +O(n−2/3)

]1/2
=

[(
b− a

4

)2

+ i
b− a

4
(
D2
∞(R1)21 −D−2

∞ (R1)12

)
+O(n−2/3)

]1/2

=
b− a

4
+
i

2
(
D2
∞(R1)21 −D−2

∞ (R1)12

)
+O(n−2/3).

From (5.22) and (5.15) we then arrive at,

an,N =
b− a

4
− r2n−1/3 +O(n−2/3)(5.25)

=
b− a

4
− qα(st,n) cos(2πnωt + 2αθ)

2c
n−1/3 +O(n−2/3).

Next, we consider the recurrence coefficient bn,N . Inserting (5.23) and
(5.24) into (5.2), and using the facts that (G1)11 + (G1)22 = 0 (by (5.8)), and
(R2)12 = O(n−2/3) (by (5.22)) we obtain

bn,N = (P (∞)
1 )11 + (R1)11 +

(P (∞)
2 )12 + (R1P

(∞)
1 )12 +O(n2/3)

(P (∞)
1 +R1)12

= (P (∞)
1 )11 + (R1)11 +

(
1− (R1)12

(P (∞)
1 )12

+O(n−2/3)

)

×

(
(P (∞)

2 )12

(P (∞)
1 )12

+ (R1)11 +
(P (∞)

1 )22

(P (∞)
1 )12

(R1)12 +O(n−2/3)

)
.

From equations (5.5), (5.6), (5.22), and (5.15), we then arrive at

bn,N =
b+ a

2
+ 2(R1)11 + 2i

b+ a

b− a
D−2
∞ (R1)12 +O(n−2/3)(5.26)

=
b+ a

2
+ 2

(
r3 + i

b+ a

b− a
(r1 − ir2)

)
+O(n−2/3).
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Using (5.16), (5.17), and (5.18) in (5.26) we will see that the terms con-
taining uα cancel against each other. What remains are the terms containing
qα:

bn,N =
b+ a

2
+
qα(st,n)

c

[
b+ a

b− a
cos(2πnωt + 2αθ)(5.27)

+
2
√
−ab

b− a
sin(2πnωt + 2αθ)

]
n−1/3 +O(n−2/3).

Since b+a
b−a = sin θ and 2

√
−ab

b−a = cos θ, we can combine the two terms within
square brackets and the result is

(5.28) bn,N =
b+ a

2
+
qα(st,n) sin(2πnωt + (2α+ 1)θ)

c
n−1/3 +O(n−2/3).

Theorem 1.24 is proven by (5.25) and (5.28).
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