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Invertibility of random matrices:
norm of the inverse

By Mark Rudelson*

Abstract

Let A be an n × n matrix, whose entries are independent copies of a
centered random variable satisfying the subgaussian tail estimate. We prove
that the operator norm of A−1 does not exceed Cn3/2 with probability close
to 1.

1. Introduction

Let A be an n × n matrix, whose entries are independent, identically
distributed random variables. The spectral properties of such matrices, in
particular invertibility, have been extensively studied (see, e.g. [M] and the
survey [DS]). While A is almost surely invertible whenever its entries are
absolutely continuous, the case of discrete entries is highly nontrivial. Even in
the case, when the entries of A are independent random variables taking values
±1 with probability 1/2, the precise order of probability that A is singular is
unknown. Komlós [K1], [K2] proved that this probability is o(1) as n → ∞.
This result was improved by Kahn, Komlós and Szemerédi [KKS], who showed
that this probability is bounded above by θn for some absolute constant θ < 1.
The value of θ has been recently improved in a series of papers by Tao and Vu
[TV1], [TV2] to θ = 3/4 + o(1) (the conjectured value is θ = 1/2 + o(1)).

However, these papers do not address the quantitative characterization of
invertibility, namely the norm of the inverse matrix, considered as an operator
from Rn to Rn. Random matrices are one of the standard tools in geometric
functional analysis. They are used, in particular, to estimate the Banach-
Mazur distance between finite-dimensional Banach spaces and to construct
sections of convex bodies possessing certain properties. In all these questions
condition number or the distortion ‖A‖ ·

∥∥A−1
∥∥ plays the crucial role. Since

the norm of A is usually highly concentrated, the distortion is determined by
the norm of A−1. The estimate of the norm of A−1 is known only in the case
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when A is a matrix with independent N(0, 1) Gaussian entries. In this case
Edelman [Ed] and Szarek [Sz2] proved that

∥∥A−1
∥∥ ≤ c

√
n with probability

close to 1 (see also [Sz1] where the spectral properties of a Gaussian matrix
are applied to an important question from geometry of Banach spaces). For
other random matrices, including a random ±1 matrix, even a polynomial
bound was unknown. Proving such a polynomial estimate is the main aim of
this paper.

More results are known about rectangular random matrices. Let Γ be an
N × n matrix, whose entries are independent random variables. If N > n,
then such a matrix can be considered as a linear operator Γ : Rn → Y , where
Y = ΓRn. If we consider a family Γn of such matrices with n/N → α for a
fixed constant α > 1, then the norms of (N−1/2 · Γn|Y )−1 converge a.s. to
(1 −

√
α)−1, provided that the fourth moments of the entries are uniformly

bounded [BY]. The random matrices for which n/N = 1− o(1) are considered
in [LPRT]. If the entries of such a matrix satisfy certain moment conditions
and n/N > 1 − c/ log n, then

∥∥(Γ|Y )−1
∥∥ ≤ C(n/N) · n−1/2 with probability

exponentially close to 1.
The proof of the last result is based on the ε-net argument. To describe

it we have to introduce some notation. For p ≥ 1 let Bn
p denote the unit ball

of the Banach space `np . Let E ⊂ Rn and let B ⊂ Rn be a convex symmetric
body. Let ε > 0. We say that a set F ⊂ Rn is an ε-net for E with respect to
B if

E ⊂
⋃
x∈F

(x+ εB).

The smallest cardinality of an ε-net will be denoted by N(E,B, ε). For a
point x ∈ Rn, ‖x‖ stands for the standard Euclidean norm, and for a linear
operator T : Rn → Rm, ‖T‖ denotes the operator norm of T : `n2 → `m2 . Let
E ⊂ Sn−1 be a set such that for any fixed x ∈ E there is a good bound for
the probability that ‖Γx‖ is small. We shall call such a bound the small ball
probability estimate. If N(E,Bn

2 , ε) is small, this bound implies that with high
probability ‖Γx‖ is large for all x from an ε-net for E. Then the approximation
is used to derive that in this case ‖Γx‖ is large for all x ∈ E. Finally, the
sphere Sn−1 is partitioned in two sets for which the above method works. This
argument is applicable because the small ball probability is controlled by a
function of N , while the size of an ε-net depends on n < N .

The case of a square random matrix is more delicate. Indeed, in this case
the small ball probability estimate is too weak to produce a nontrivial estimate
for the probability that ‖Γx‖ is large for all points of an ε-net. To overcome this
difficulty, we use the ε-net argument for one part of the sphere and work with
conditional probability on the other part. Also, we will need more elaborate
small ball probability estimates than those employed in [LPRT]. To obtain
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such estimates we use the method of Halász, which lies in the foundation of
the arguments of [KKS], [TV1], [TV2].

Let P (Ω) denote the probability of the event Ω, and let Eξ denote the ex-
pectation of the random variable ξ. A random variable β is called subgaussian
if for any t > 0

(1.1) P (|β| > t) ≤ C exp(−ct2).

The class of subgaussian variables includes many natural types of random
variables, in particular, normal and bounded ones. It is well-known that the tail
decay condition (1.1) is equivalent to the moment condition

(
E|β|p

)1/p ≤ C ′√p
for all p ≥ 1.

The letters c, C,C ′ etc. denote unimportant absolute constants, whose
value may change from line to line. Besides these constants, the paper contains
many absolute constants which are used throughout the proof. For the reader’s
convenience we use a standard notation for such important absolute constants.
Namely, if a constant appears in the formulation of Lemma or Theorem x.y,
we denote it Cx.y or cx.y.

The main result of this paper is the polynomial bound for the norm of
A−1. We shall formulate it in terms of the smallest singular number of A:

sn(A) = min
x∈Sn−1

‖Ax‖ .

Note that if the matrix A is invertible, then
∥∥A−1

∥∥ = 1/sn(A).

Theorem 1.1. Let β be a centered subgaussian random variable of vari-
ance 1. Let A be an n × n matrix whose entries are independent copies of β.
Then for any ε > c1.1/

√
n

P
(
∃x ∈ Sn−1 | ‖Ax‖ < ε

C1.1 · n3/2

)
< ε

if n is large enough.

More precisely, we prove that the probability above is bounded by ε/2 +
4 exp(−cn) for all n ∈ N.

The inequality in Theorem 1.1 means that
∥∥A−1

∥∥ ≤ C1.1 · n3/2/ε with
probability greater than 1 − ε. Equivalently, the smallest singular number of
A is at least ε/(C1.1 · n3/2).

An important feature of Theorem 1.1 is its universality. Namely, the
probability estimate holds for all subgaussian random variables, regardless of
their nature. Moreover, the only place where we use the assumption that β is
subgaussian is Lemma 3.3 below.
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2. Overview of the proof

The strategy of the proof of Theorem 1.1 is based on the step-by-step
exclusion of the points with singular small ball probability behavior. Since all
coordinates of the vector Ax are identically distributed, it will be enough to
consider the distribution of the first coordinate, which we shall denote by Y .
If the entries of A have absolutely continuous distribution with a bounded
density function, then for any t > 0,P (|Y | < t) ≤ Ct. However, for a general
random matrix, in particular, for a random ±1 matrix, this estimate holds
only for t > t(x), where the cut-off level t(x) is determined by the distribution
of the coordinates of x.

We shall divide the sphere Sn−1 into several parts according to the values
of t(x). For each part, except for the last one, we use the small ball probability
estimate combined with the ε-net argument. However, the balance between
the bound for the probability and the size of the net will be different at each
case. More regular distribution of the coordinates of the vector x will imply
bounds for the small ball probability P (‖Ax‖ < ρ) for smaller values of ρ. To
apply this result to a set of vectors, we shall need a finer ε-net.

Proceeding this way, we establish a uniform lower bound for ‖Ax‖ for
the set of vectors x whose coordinates are distributed irregularly. This leaves
the set of vectors x ∈ Sn−1 with very regularly distributed coordinates. This
set contains most of the points of the sphere, so the ε-net argument cannot be
applied here. However, for such vectors x the value of t(x) will be exceptionally
small, so that their small ball probability behavior will be close to that of an
absolutely continuous random variable. This, together with the conditional
probability argument, will allow us to conclude the proof.

Now we describe the exclusion procedure in more detail. First, we consider
the peaked vectors, namely the vectors x, for which a substantial part of the
norm is concentrated in a few coordinates. For such vectors t(x) is a constant.
Translating this into the small ball probability estimate for the vector Ax, we
obtain P (‖Ax‖ < C

√
n) ≤ cn for some c < 1. Since any peaked vector is close

to some coordinate subspace of a small dimension, we can construct a small
ε-net for the set of peaked vectors. Applying the union bound we show that
‖Ax‖ > C

√
n for any vector x from the ε-net, and extend it by approximation

to all peaked vectors.
For the set of spread vectors, which is the complement of the set of peaked

vectors, we can lower the cut-off level t(x) to c/
√
n. This in turn implies the

small ball probability estimate P (‖Ax‖ < C) ≤ (c/
√
n)n. This better estimate

allows us to construct a finer ε-net for the set of the spread vectors. However,
an ε-net for the whole set of the spread vectors will be too large to guarantee
that the inequality ‖Ax‖ ≥ C holds for all of its vectors with high probability.
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Therefore, we shall further divide the set of the spread vectors into two subsets
and apply the ε-net argument to the smaller one.

To this end we consider only the coordinates of the vector x whose absolute
values lie in the interval [r/

√
n,R/

√
n] for some absolute constants 0 < r < 1

< R. We divide this interval into subintervals of the length ∆. If a substantial
part of the coordinates of x lie in a few such intervals, we call x a vector of a
∆-singular profile. Otherwise, x is called a vector of a ∆-regular profile. At the
first step we set ∆ = c/n. For such ∆ the set of vectors of a ∆-singular profile
admits an ε net of cardinality smaller than (c

√
n)n. Therefore, combining the

small ball probability estimate for the spread vectors with the ε-net argument,
we prove that the estimate ‖Ax‖ ≥ C holds for all vectors of a ∆-singular
profile with probability exponentially close to 1.

Now it remains to treat the vectors of a ∆-regular profile. For such vectors
we prove a new small ball probability estimate. Namely, we show that for
any such vector x, the cut-off level t(x) = ∆, which implies that P (‖Ax‖ <
C∆
√
n) ≤ (c∆)n. The proof of this result is much more involved than the

previous small ball probability estimates. It is based on the method of Halász
which uses the estimates of the characteristic functions of random variables.
To take advantage of this estimate we split the set of vectors of a c/n-regular
profile into the set of vectors of ∆-singular and ∆-regular profiles for ∆ = ε/n.
For the first set we repeat the ε-net argument with a different ε. This finally
leads us to the vectors of ε/n-regular profile.

For such vectors we employ a different argument. Assume that
∥∥A−1

∥∥ is
large. This means that the rows a1, . . . , an of A are almost linearly dependent.
In other words, one of the rows, say the last, is close to the linear combination
of the other. Fixing on the first n − 1 rows, we choose a vector x of an ε/n-
regular profile for which ‖A′x‖ is small, where A′ is the matrix consisting of
the first n − 1 rows of A. Such a vector depends only on a1, . . . , an−1. The
almost linear dependence implies that the random variable Z =

∑n
j=1 an,jxj

belongs to a small interval I ⊂ R, which is defined by a1, . . . , an−1. Since x
has an ε/n-regular profile, the small ball probability estimate implies that the
probability that Z ∈ I, and therefore the probability that

∥∥A−1
∥∥ is large, will

be small.

3. Preliminary results

Assume that l balls are randomly placed in k urns. Let V ∈ {1, . . . , k}l
be a random vector whose i-th coordinate is the number of balls contained
in the i-th urn. The distribution of V , called random allocation, has been
extensively studied, and many deep results are available (see [KSC]). We need
only a simple combinatorial lemma.
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Lemma 3.1. Let k ≤ l and let X(1), . . . , X(l) be i.i.d. random variables
uniformly distributed on the set {1, . . . , k}. Let η < 1/2. Then with probability
greater than 1 − ηl there exists a set J ⊂ {1, . . . , l} containing at least l/2
elements such that

(3.1)
k∑
i=1

|{j ∈ J | X(j) = i}|2 ≤ C(η)
l2

k
.

Remark 3.2. The proof yields C(η) = η−16. This estimate is by no means
exact.

Proof. Let X = (X(1), . . . , X(l)). For i = 1, . . . , k denote

Pi(X) = |{j | X(j) = i}|.

Let 2 < α < k/2 be a number to be chosen later. Denote

I(X) = {i | Pi(X) ≥ α l

k
}.

For any X we have
∑k

i=1 Pi(X) = l, so that |I(X)| ≤ k/α. Set

J(X) = {j | X(j) ∈ I(X)}.

Assume that |J(X)| ≤ l/2. Then for the set J ′(X) = {1, . . . , l}\J(X) we have
|J ′(X)| ≥ l/2 and

k∑
i=1

|{j ∈ J ′(X) | X(j) = i}|2 =
∑

i/∈I(X)

P 2
i (X) ≤ k ·

(
α
l

k

)2

=
α2l2

k
.

Now we have to estimate the probability that |J(X)| ≥ l/2. To this end
we estimate the probability that J(X) = J and I(X) = I for fixed subsets
J ⊂ {1, . . . , l} and I ⊂ {1, . . . , k} and sum over all relevant choices of J and I.
We have

P (|J(X)| ≥ l/2) ≤
∑
|J |≥l/2

∑
|I|≤k/α

P (J(X) = J, I(X) = I)

≤
∑
|J |≥l/2

∑
|I|≤k/α

P (X(j) ∈ I for all j ∈ J)

≤ 2l(k/α) ·
(

k

k/α

)
· (1/α)l/2

≤ k · (eα)k/α · (4/α)l/2,

since the random variables X(1), . . . , X(l) are independent. If k ≤ l and
α > 100, the last expression does not exceed α−l/8. To complete the proof,
set α = η−8 and C(η) = α2. If η > (2/k)1/8, then the assumption α < k/2 is
satisfied. Otherwise, we can set C(η) > (k/2)2, for which the inequality (3.1)
becomes trivial.
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The following result is a standard large deviation estimate (see e.g. [DS]
or [LPRT], where a more general result is proved).

Lemma 3.3. Let A = (ai,j) be an n × n matrix whose entries are i.i.d.
centered subgaussian random variables of variance 1. Then

P (‖A : Bn
2 → Bn

2 ‖ ≥ C3.3

√
n) ≤ exp(−n).

We will also need the volumetric estimate of the covering numbers
N(K,D, t) (see e.g. [P]). Denote by |K| the volume of K ⊂ Rn.

Lemma 3.4. Let t > 0 and let K,D ⊂ Rn be convex symmetric bodies. If
tD ⊂ K, then

N(K,D, t) ≤ 3n|K|
|tD|

.

4. Halász type lemma

Let ξ1, . . . , ξn be independent centered random variables. To obtain the
small ball probability estimates below, we must bound the probability that∑n

j=1 ξj is concentrated in a small interval. One standard method of obtaining
such bounds is based on the Berry-Esséen theorem (see, e.g. [LPRT]). However,
this method has certain limitations. In particular, if ξj = tjεj , where tj ∈ [1, 2]
and εj are ±1 random variables, then the Berry-Esséen theorem does not “feel”
the distribution of the coefficients tj , and thus does not yield bounds better
than c/

√
n for the small ball probability. To obtain better bounds we use the

approach developed by Halász [Ha1], [Ha2].

Lemma 4.1. Let c > 0, 0 < ∆ < a/(2π) and let ξ1, . . . , ξn be independent
random variables such that Eξi = 0, P (ξi > a) ≥ c and P (ξi < −a) ≥ c. For
y ∈ R set

S∆(y) =
n∑
j=1

P (ξj − ξ′j ∈ [y − π∆, y + π∆]),

where ξ′j is an independent copy of ξj. Then for any v ∈ R,

P

∣∣∣∣∣∣
n∑
j=1

ξj − v

∣∣∣∣∣∣ < ∆

 ≤ C

n5/2∆

∫ ∞
3a/2

S2
∆(y) dy + ce−c

′n.

Proof. For t ∈ R define

ϕk(t) = E exp(iξkt)
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and set

ϕ(t) = E exp

(
it

n∑
k=1

ξk

)
=

n∏
k=1

ϕk(t).

Then by a lemma of Esséen [E], for any v ∈ R,

Q = P

∣∣∣∣∣∣
n∑
j=1

ξj − v

∣∣∣∣∣∣ < ∆

 ≤ c∫
[−π/2,π/2]

|ϕ(t/∆)| dt.

Let ξ′k be an independent copy of ξk and let νk = ξk−ξ′k. Then P (|νk| > 2a) ≥
2c2 = c̄. We have

(4.1) |ϕk(t)|2 = E cos νkt

and since |x|2 ≤ exp(−(1− |x|2)) for any x ∈ C,

|ϕ(t)| ≤

(
n∏
k=1

exp
(
−1 + |ϕk(t)|2

))1/2

= exp

(
−1

2

n∑
k=1

(1− |ϕk(t)|2)

)
.

Define a new random variable τk by conditioning on |νk| > 2a. For a Borel set
A ⊂ R put

P (τk ∈ A) =
P (νk ∈ A \ [−2a, 2a])

P (|νk| > 2a)
.

Then by (4.1),

1− |ϕk(t)|2 ≥ E(1− cos τkt) · P (|νk| > 2a) ≥ c̄ · E(1− cos τkt),

so that
|ϕ(t)| ≤ exp(−c′f(t)),

where

f(t) = E
n∑
k=1

(1− cos τkt).

Let T (m, r) = {t | f(t/∆) ≤ m, |t| ≤ r} and let

M = max
|t|≤π/2

f(t/∆).

Then, obviously, M ≤ n. To estimate M from below, notice that

M = max
|t|≤π/2

f(t/∆) ≥ 1
π

∫ π/2

−π/2
E

n∑
k=1

(1− cos(τk/∆)t) dt

= E
n∑
k=1

(
1− 2

π
· sin(τk/∆)π/2

τk/∆

)
≥ cn,

since |τk|/∆ > 2a/∆ > 4π.
To estimate the measure of T (m,π/2) we use the argument of [Ha1]. For

reader’s convenience we present a complete proof.
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Lemma 4.2. Let 0 < m < M/4. Then

|T (m,π/2)| ≤ c
√
m

M
· |T (M/4, π)|.

Proof. Let l =
√
M/4m. Taking the integer part if necessary, we may

assume that l is an integer. For k ∈ N set

Sk = {
k∑
j=1

tj | tj ∈ T (m,π/2)}.

Note that S1 = T (m,π/2). Since

1− cosα = 2 sin2(α/2)

and

sin2

 k∑
j=1

αj

 ≤
 k∑
j=1

| sinαj |

2

≤ k
k∑
j=1

sin2 αj ,

we conclude that

(4.2) Sk ⊂ T (k2m, kπ/2).

For k ≤ l we have k2m < M , so that (−π/2, π/2) \ T (k2m, kπ/2) 6= ∅. For a
Borel set A let µ(A) = |A ∩ [−π, π]|, where |B| denotes the Lebesgue measure
of B. Now we shall prove by induction that for all k ≤ l

µ(Sk) ≥ (k/2) · µ(S1).

Obviously, µ(S2) = |S2| ≥ 2 · |S1|, and so this inequality holds for k = 2.
Assume that µ(Sk−1) ≥ (k − 1)/2 · µ(S1). Note that the sets Sk are closed.
Let v ∈ (−π/2, π/2) be a boundary point of Sk. Such point exists since Sk ⊂
T (k2m,π/2), and so (−π/2, π/2)\Sk 6= ∅. Let {vj}∞j=1 be a sequence of points
in (−π/2, π/2)\Sk converging to v. Then (vj−S1)∩Sk−1 = ∅, so by continuity
we have

µ((v − S1) ∩ Sk−1) = 0.

Since the set S1 is symmetric, this implies

µ((v + S1) ∪ Sk−1) = µ(v + S1) + µ(Sk−1).

Both sets on the right-hand side are contained in Sk+1 (to see this for Sk−1

note that 0 ∈ S2). Since v + S1 ⊂ [−π, π], the induction hypothesis implies

µ(Sk+1) ≥ µ(v + S1) + µ(Sk−1) ≥ µ(S1) +
k − 1

2
· µ(S1) =

k + 1
2
· µ(S1).

Finally, by (4.2), Sl ∩ [−π, π] ⊂ T (l2m,π), and so

|T (l2m,π)| ≥ µ(Sl) ≥
l

2
· µ(S1) =

l

2
· |T (m,π/2)|.
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We continue to prove Lemma 4.1. Recall that

Q ≤ C
∫

[−π/2,π/2]
|ϕ(t/∆)| dt ≤ C

∫
[−π/2,π/2]

exp(−c′f(t/∆)) dt

≤ C̄
∫ n

0
|T (m,π/2)|e−c′m dm.

Applying Lemma 4.2 for 0 ≤ m ≤M/4 and using the trivial bound |T (m,π/2)|
≤ π for m > M/4, we obtain

(4.3) Q ≤ C ′√
M
· |T (

M

4
, π)|+ ce−C

′M/16 ≤ C ′√
M
· |T (

M

4
, π)|+ ce−c

′n.

To complete the proof we have to estimate the measure of T = T (M/4, π)
from above. For any t ∈ T we have

g(t) =
n∑
k=1

E cos(τkt/∆) ≥ n−M/4 ≥ n/2.

Let w(x) = (1−|x|/π) ·χ[−π,π](x) and put W = ŵ. Then W ≥ 0 and W (t) ≥ c
for |t| ≤ π. Hence by Parceval’s equality,

|T | ≤
(n

2

)−2
∫
T
|g(t)|2 ≤ C

(n
2

)−2
∫

R
W 2(t)|g(t)|2 dt

=
C

n2

∫
R

∣∣∣∣∣E
n∑
k=1

w(τk/∆− y)

∣∣∣∣∣
2

dy.

Since w ≤ χ[−π,π], the last expression does not exceed

C

n2

∫
R

(
n∑
k=1

P (
τk
∆
∈ [y − π, y + π])

)2

dy

≤ C

n2∆

∫
R

(
n∑
k=1

P (τk ∈ [z − π∆, z + π∆])

)2

dz.

Since τk /∈ [−2a, 2a] and π∆ < a/2, we can integrate only over R\[−3a/2, 3a/2].
Substituting this estimate into (4.3), we get

Q ≤ C

n5/2∆

∫
R\[−3a/2,3a/2]

(
n∑
k=1

P (τk ∈ [z − π∆, z + π∆])

)2

dz + ce−c
′n.

To finish the proof, recall that the variables τk are symmetric. This allows us to
change the integration set in the previous inequality to (3a/2,∞). Moreover,
if z ∈ (3a/2,∞), then

P (τk ∈ [z − π∆, z + π∆]) ≤ 1
c̄
· P (νk ∈ [z − π∆, z + π∆]),

so that the random variables τk can be replaced by νk = ξk − ξ′k.
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Remark 4.3. A more delicate analysis shows that the term ce−c
′n in the

formulation of Lemma 4.1 can always be eliminated. However, we shall not
prove it since this term does not affect the results below.

We shall apply Lemma 4.1 to weighted copies of the same random variable.
To formulate the result we have to introduce a new notion.

Definition 4.4. Let x ∈ Rm. For ∆ > 0 define the ∆-profile of the vector
x as a sequence {Pk(x,∆)}∞k=1 such that

Pk(x,∆) = |{j | |xj | ∈ (k∆, (k + 1)∆]}.

Theorem 4.5. Let β be a random variable such that Eβ = 0 and
P (β > c) ≥ c′, P (β < −c) ≥ c′ for some c, c′ > 0. Let β1 . . . βm be inde-
pendent copies of β. Let ∆ > 0 and let (x1 . . . xm) ∈ Rm be a vector such that
a < |xj | < λa for some a > 0 and λ > 1. Then for any ∆ < a/(2π) and for
any v ∈ R

P

∣∣∣∣∣∣
m∑
j=1

βjxj − v

∣∣∣∣∣∣ < ∆

 ≤ C4.5

m5/2

∞∑
k=1

P 2
k (x,∆).

Here C4.5 depends only on λ.

Proof. We shall apply Lemma 4.1 to the random variables ξj = xjβj .
Let M(R) be the set of all probability measures on R. Consider the

function F :M(R)→ R+ defined by

F (µ) =
∫ ∞

3a/2
S̃2

∆(y) dy,

where

S̃∆(y) =
m∑
j=1

µ(
1
|xj |
· [y − π∆, y + π∆]).

Since F is a convex function onM(R), it attains the maximal value at an
extreme point of this set, i.e. at some delta-measure δt, t ∈ R. Note that in
this case

S̃∆(y) = |{j | t|xj | ∈ [y − π∆, y + π∆]} =
m∑
j=1

χ(t|xj | − y),

where χ = χ[−π∆,π∆] is the indicator function of [−π∆, π∆]. For t < 1
2λ we

have t|xj | < a/2, so S̃∆(y) = 0 for any y ≥ 3a/2, and thus F (δt) = 0. If t ≥ 1
2λ ,

then

F (δt) =
m∑
j=1

m∑
l=1

∫ ∞
3a/2

χ(t|xj | − y)χ(t|xl| − y) dy

≤ 2π∆|{(j, l) | t
∣∣|xj | − |xl|∣∣ ≤ π∆}| = g(t).
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Since the function g is decreasing,

F (δt) ≤ g(
1

2λ
) ≤ 2π∆

∞∑
l=1

|{j |
∣∣∣|xj | − l∆∣∣∣ ≤ 2π∆ · λ}|2

≤ C̄∆
∞∑
k=1

|{j | |xj | ∈ (k∆, (k + 1)∆]}|2.

The last inequality holds since we can cover each interval [l∆ − 2π∆λ, l∆ +
2π∆λ] by at most 2πλ+ 2 intervals (k∆, (k + 1)∆].

Let µ be the distribution of the random variable β − β′, where β′ is an
independent copy of β. Applying Lemma 4.1 to the random variables ξj =
xj · βj , we have

P

∣∣∣∣∣∣
m∑
j=1

βjxj − v

∣∣∣∣∣∣ < ∆

 ≤ C

m5/2∆
F (µ) + ce−c

′m

≤ C ′

m5/2

∞∑
k=1

|{j | |xj | ∈ (k∆, (k + 1)∆]}|2 + ce−c
′m.

Since the sum on the right-hand side is at least m, the second term is negligible
compare to the first one. Thus,

P

∣∣∣∣∣∣
m∑
j=1

βjxj − v

∣∣∣∣∣∣ < ∆

 ≤ 2C ′

m5/2

∞∑
k=1

|{j | |xj | ∈ (k∆, (k + 1)∆]}|2.

5. Small ball probability estimates

Let G be an n× n Gaussian matrix. If x ∈ Sn−1 is any unit vector, then
y = Gx is the standard Gaussian vector in Rn. Hence for any t > 0 we have
P (|yj | < t) ≤ t ·

√
2/π for any coordinate. Moreover,

P (‖y‖ ≤ t ·
√
n) ≤ (2π)−n/2vol(t

√
nBn

2 ) ≤ (Ct)n.

We would like to have the same small ball probability estimates for the random
vector y = Ax. However, it is easy to see that it is impossible to achieve such
estimate for all directions x ∈ Sn−1. Indeed, if A is a random ±1 matrix
and x = (1/

√
2, 1/
√

2, 0 . . . 0), then P (yj = 0) = 1/2 and P (y = 0) = 2−n.
Analyzing this example, we see that the reason that the small ball estimate
fails is the concentration of the Euclidean norm of x on a few coordinates. If
the vector x is “spread”, we can expect a more regular behavior of the small
ball probability.

Although we cannot prove the Gaussian type estimates for all directions
and all t > 0, it is possible to obtain such estimates for most directions provided
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that t is sufficiently large (t > t0). Moreover, the more we assume about the
regularity of distribution of the coordinates of x, the smaller value of t0 we can
take. This general statement is illustrated by the series of results below.

The first result is valid for any direction. The following lemma is a par-
ticular case of [LPRT, Prop. 3.4].

Lemma 5.1. Let A be an n × n matrix with i.i.d. subgaussian entries.
Then for every x ∈ Sn−1

P (‖Ax‖ ≤ C5.1

√
n) ≤ exp(−c5.1n).

The example considered at the beginning of this section shows that this
estimate cannot be improved for a general random matrix.

If we assume that all coordinates of the vector x are comparable, then
we have the following lemma, which is a particular case of Proposition 3.4
[LPRTV2] (see also Proposition 3.2 [LPRT]).

Lemma 5.2. Let β be a random variable such that Eβ = 0, Eβ2 = 1 and
let β1, . . . , βm be independent copies of β. Let 0 < r < R and let x1, . . . , xm ∈ R
be such that r/

√
m ≤ |xj | ≤ R/

√
m for any j. Then for any t ≥ c5.2/

√
m and

for any v ∈ R

P

∣∣∣∣∣∣
m∑
j=1

βjxj − v

∣∣∣∣∣∣ < t

 ≤ C5.2t.

Here c5.2 and C5.2 depend only on r and R.

Proof. The proof is based on the Berry-Esséen theorem (cf., e.g., [St,
§2.1]).

Theorem 5.3. Let (ζj)mi=1 be a sequence of independent random variables
with expectation 0 and finite third moments, and let A2 :=

∑m
j=1 E|ζj |2. Then

for every τ ∈ R,

∣∣∣P( m∑
j=1

ζj < τA
)
− P (g < τ)

∣∣∣ ≤ (c/A3)
m∑
j=1

E|ζj |3,

where g is a Gaussian random variable with N(0, 1) distribution and c ≥ 1 is
a universal constant.

Let ζj = βjxj . Then A2 :=
∑m

j=1 Eζ2
j = ‖x‖2 ≥ r2. Since the random

variables βj are copies of a subgaussian random variable β, E|β|3 ≤ C for
some absolute constant C. Hence, E

∑m
j=1 |ζj |3 ≤ C

∑m
j=1 |xj |3 ≤ C ′/

√
m. By
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Theorem 5.3 we get

P

∣∣∣∣∣∣
m∑
j=1

βjxj − v

∣∣∣∣∣∣ < t

 ≤ P
(
v − t
c
≤ g < v + t

c

)
+

c′√
m

≤ C ′′t+
c′√
m
≤ 2C ′′t,

provided t ≥ C′′

c′
√
m

.

If x = (1/
√
m, . . . , 1/

√
m), then

P

∣∣∣∣∣∣
m∑
j=1

βjxj

∣∣∣∣∣∣ = 0

 ≥ C/√m.
This shows that the bound t ≥ c5.2/

√
m in Lemma 5.2 is necessary.

The proofs of Lemma 5.1 and Lemma 5.2 are based on Paley-Zygmund
inequality and the Berry-Esséen theorem respectively. To obtain the linear
decay of small ball probability for t ≤ c5.2/

√
m, we use the third technique,

namely Halász method. However, since the formulation of the result requires
several technical assumptions on the vector x, we postpone it to Section 7,
where these assumptions appear.

To translate the small ball probability estimate for a single coordinate
to a similar estimate for the norm we use the Laplace transform technique,
developed in [LPRT]. The following lemma improves the argument used in the
proof of Theorem 3.1 [LPRT].

Lemma 5.4. Let ∆ > 0 and let Y be a random variable such that for any
v ∈ R and for any t ≥ ∆,

P (|Y − v| < t) ≤ Lt.

Let y = (Y1, . . . , Yn) be a random vector, whose coordinates are independent
copies of Y . Then for any z ∈ Rn

P
(
‖y − z‖ ≤ ∆

√
n
)
≤ (C5.4L∆)n.
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Proof. We have

P
(
‖y − z‖ ≤ ∆

√
n
)

= P

(
n∑
i=1

(Yi − zi)2 ≤ ∆2n

)

= P

(
n− 1

∆2

n∑
i=1

(Yi − zi)2 ≥ 0

)

≤ E exp

(
n− 1

∆2

n∑
i=1

(Yi − zi)2

)

= en ·
n∏
i=1

E exp(− 1
∆2

(Yi − zi)2).

To estimate the last expectation we use the small ball probability estimate
for the random variable Y , assumed in the lemma. Note that if t < ∆, then
P (|Y − z| < t) ≤ L∆ for any z ∈ R. Hence,

E exp(− 1
∆2

(Yi − zi)2) =
∫ 1

0
P
(

exp
(
− 1

∆2
(Yi − zi)2

)
> s

)
ds

=
∫ ∞

0
2ue−u

2
P (|Yi − zi| < ∆u) du

≤
∫ 1

0
2ue−u

2
L∆ du+

∫ ∞
1

2ue−u
2
L∆u du

≤ C̄L∆.

Substituting this into the previous inequality, we get

P
(
‖y − z‖ ≤ ∆

√
n
)
≤ (e · C̄L∆)n.

6. Partition of the sphere

To apply the small ball probability estimates proved in the previous section
we have to decompose the sphere into different regions depending on the distri-
bution of the coordinates of a point. We start by decomposing the sphere Sn−1

in two parts following [LPRT], [LPRTV1], [LPRTV2]. We shall define two sets:
VP – the set of vectors, whose Euclidean norm is concentrated on a few coor-
dinates, and VS – the set of vectors whose coordinates are evenly spread. Let
r < 1 < R be the numbers to be chosen later. Given x = (x1, . . . , xn) ∈ Sn−1,
set σ(x) = {i | |xi| ≤ R/

√
n}. Let PI be the coordinate projection on the set

I ⊂ {, . . . , n}. Set

VP = {x ∈ Sn−1 |
∥∥Pσ(x)x

∥∥ < r},
VS = {x ∈ Sn−1 |

∥∥Pσ(x)x
∥∥ ≥ r}.
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First we shall show that with high probability ‖Ax‖ ≥ C
√
n for any x ∈ VP .

For a single vector x ∈ Rn this probability was estimated in Lemma 5.1.
We shall combine this estimate with an ε-net argument.

Lemma 6.1. For any r < 1/2

logN(VP , Bn
2 , 2r) ≤

n

R
· log

(
3R
r

)
.

Proof. If x ∈ Bn
2 , then |{1, . . . , n} \ σ(x)| ≤ n/R. Hence, the set VP is

contained in the sum of two sets: rBn
2 and

WP = {x ∈ Bn
2 | |supp(x)| ≤ n/R2}.

Since WP is contained in the union of unit balls in all coordinate subspaces of
dimension l = n/R, Lemma 3.4 implies

N(WP , B
n
2 , r) ≤

(
n

l

)
·N(Bl

2, B
l
2, r) ≤

(
n

l

)
·
(

3
r

)l
.

Finally,

logN(VP , Bn
2 , 2r) ≤ logN(WP , B

n
2 , r) ≤ l · log

(
3n
lr

)
≤ n

R
· log

(
3R
r

)
.

Recall that C5.1 < C3.3. Set r = C5.1/2C3.3 and choose the number R > 1
so that

1
R
· log

(
3R
r

)
<
c5.1

2
.

For these parameters we prove that the norm of Ax is bounded below for all
x ∈ VP with high probability.

Lemma 6.2.

P
(
∃x ∈ VP | ‖Ax‖ ≤ C5.1

√
n/2

)
≤ 2 exp(−c5.1n).

Proof. By Lemma 6.1 and the definition of r and R, the set VP contains
a (C5.1/2C3.3)-net N in the `2-metric of cardinality at most exp(c5.1n/2). Let

Ω0 = {ω | ‖A‖ > C3.3

√
n}

and let

ΩP = {ω | ∃x ∈ N ‖A(ω)x‖ ≤ C5.1

√
n}.

Then Lemma 5.1 implies

P (Ω0) + P (ΩP ) ≤ exp(−n) + exp(−c5.1n) ≤ 2 exp(−c5.1n).
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Let ω /∈ ΩP . Pick any x ∈ VP . There exists y ∈ N such that ‖x− y‖2 ≤
C5.1/2C3.3. Hence

‖Ax‖ ≥ ‖Ay‖ − ‖A(x− y)‖ ≥ C5.1

√
n− ‖A : Bn

2 → Bn
2 ‖ · ‖x− y‖2

≥ C5.1

2
√
n.

For x = (x1, . . . , xn) ∈ VS denote

(6.1) J(x) =
{
j | r

2
√
n
≤ |xj | ≤

R√
n

}
.

Note that ∑
j∈J(X)

x2
j ≥

∑
j∈σ(X)

x2
j −

r2

2
≥ r2

2
,

so that
|J(x)| ≥ (r2/2R2) · n =: m.

Let 0 < ∆ < r/2
√
n be a number to be chosen later. We shall cover the

interval [ r
2
√
n
, R√

n
] by

k =
⌈
R− r/2√

n∆

⌉
consecutive intervals (j∆, (j + 1)∆], where j = k0, (k0 + 1), . . . , (k0 + k), and
k0 is the largest number such that k0∆ < r/2

√
n. Then we shall decompose

the set VS into two subsets: one containing the points whose coordinates are
concentrated in a few such intervals, and the other containing points with
evenly spread coordinates. This will be done using the ∆-profile, defined in
4.4. Note that if m coordinates of the vector x are evenly spread among k

intervals, then
∞∑
i=1

P 2
i (x,∆) ∼ m2

k
∼ m5/2∆.

This observation leads to the following

Definition 6.3. Let ∆ > 0 and let Q > 1. We say that a vector x ∈ VS
has a (∆, Q)-regular profile if there exists a set J ⊂ J(x) such that |J | ≥ m/2
and

∞∑
i=1

P 2
i (x|J ,∆) ≤ Qm5/2∆ =: C6.3Q ·

m2

k
.

Here x|J is the restriction of x to the set J .
If such a set J does not exist, we call x a vector of (∆, Q)-singular profile.
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Note that
∑∞

i=1 P
2
i (x|J ,∆) ≥ m/2. Hence, if ∆ < m−3/2/2, then every

vector in VS will be a vector of a (∆, Q)-singular profile.
Vectors of regular and singular profile will be treated differently. Namely,

in Section 7 we prove that vectors of regular profile satisfy the small ball prob-
ability estimate of the type Ct for t ≥ ∆. This allows us to use conditioning
to estimate the probability that ‖Ax‖ is small for some vector x of regular
profile. In Section 8 we prove that the set of vectors of singular profile admits
a small ε-net. This fact combined with Lemma 5.2 allows us to estimate the
probability that there exists a vector x of singular profile such that ‖Ax‖ is
small using the standard ε-net argument.

7. Vectors of a regular profile

To estimate the small ball probability for a vector of a regular profile we
apply Theorem 4.5.

Lemma 7.1. Let ∆ ≤ r
4π
√
n

. Let x ∈ VS be a vector of (∆, Q)-regular
profile. Then for any t ≥ ∆

P

∣∣∣∣∣∣
n∑
j=1

βjxj − v

∣∣∣∣∣∣ < t

 ≤ C7.1Q · t.

Proof. Let J ⊂ {1, . . . , n}, |J | ≥ m/2 be the set from Definition 6.3.
Denote by EJc the expectation with respect to the random variables βj , where
j ∈ Jc = {1, . . . , n} \ J . Then

P

∣∣∣∣∣∣
n∑
j=1

βjxj − v

∣∣∣∣∣∣ < t


= EJcP

∣∣∣∣∣∣
∑
j∈J

βjxj − (v +
∑
j∈Jc

βjxj)

∣∣∣∣∣∣ < t | βj , j ∈ Jc
 .

Hence, it is enough to estimate the conditional probability.
Recall that β is a centered subgaussian random variable of variance 1. It

is well-known that such a variable satisfies P (β > c) ≥ c′, P (β < −c) ≥ c′

for some absolute constants c, c′. Moreover, a simple Paley-Zygmund type
argument shows that these estimates hold if we assume only that Eβ = 0 and
the second and the fourth moment of β are comparable. Hence, for t = ∆ the
lemma follows from Theorem 4.5, where we set a = r/

√
n, λ = R/r.

To prove the lemma for other values of t, assume first that t = ∆s =
2s∆ < r

4π
√
n

for some s ∈ N. Consider the ∆s-profile of x|J :

Pl(x|J ,∆s) = |{j ∈ J | |xj | ∈ (l∆s, (l + 1)∆s]}|.
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Notice that each interval (l∆s, (l+1)∆s] is a union of 2s intervals (i∆, (i+1)∆].
Hence

∞∑
l=1

P 2
l (x|J ,∆s) ≤ 2s

∞∑
i=1

P 2
i (x|J ,∆) ≤ 2sQm5/2∆ = Qm5/2t.

Applying Theorem 4.5 with ∆ replaced by ∆s and v′ = v +
∑

j∈Jc βjxj , we
obtain

P

∣∣∣∣∣∣
∑
j∈J

βjxj − (v +
∑
j∈Jc

βjxj)

∣∣∣∣∣∣ < t | βj , j ∈ Jc
 ≤ C4.5Qt.

For 2s∆ < t < 2s+1∆ the result follows from the previous inequality applied
for t = 2s∆. If t ≥ c5.2/

√
m =

√
2 c5.2R
r
√
n

, Lemma 5.2 implies

P

∣∣∣∣∣∣
∑
j∈J

βjxj − (v +
∑
j∈Jc

βjxj)

∣∣∣∣∣∣ < t | βj , j ∈ Jc
 ≤ C5.2t ≤ C5.2Qt.

Finally, if r
4π
√
n
< t <

√
2 c5.2R
r
√
n

, the previous inequality applied to t0 =
√

2 c5.2R
r
√
n

implies

P

∣∣∣∣∣∣
∑
j∈J

βjxj − (v +
∑
j∈Jc

βjxj)

∣∣∣∣∣∣ < t | βj , j ∈ Jc
 ≤ C5.2Qt0 ≤ CQt,

where C = C5.2 ·
√

2 c5.2R
r · 4π

r .

Now we estimate the probability that ‖A(ω)x‖ is small for some vector of
a regular profile.

Theorem 7.2. Let ∆ > 0 and let U be the set of vectors of (∆, Q)-regular
profile. Then

P
(
∃x ∈ U | ‖Ax‖ ≤ ∆

2
√
n

)
≤ C7.1Q∆n.

Proof. Set

s =
∆

2
√
n
.

Let Ω be the event described in Theorem 7.2. Denote the rows of A by
a1, . . . , an. Note that since

min
x∈Sn−1

‖Ax‖ = min
u∈Sn−1

∥∥ATu∥∥ ,
for any ω ∈ Ω there exists a vector u = (u1, . . . , un) ∈ Sn−1 such that

u1a1 + . . .+ unan = z,
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where ‖z‖ < s. Then Ω = ∪nk=1Ωk, where Ωk is the event |uk| ≥ 1/
√
n. Since

the events Ωk have the same probability, it is enough to estimate P (Ωn).
To this end we condition on the first n− 1 rows of the matrix A = A(ω):

P (Ωn) = Ea1,...,an−1P (Ωn | a1, . . . , an−1).

Here Ea1,...,an−1 is the expectation with respect to the first n − 1 rows of the
matrix A. Take any vector y ∈ U such that

n−1∑
j=1

〈aj , y〉2 < s2.

If such a vector does not exist, then ‖Ay‖ ≥ s for all y ∈ U , and so ω /∈ Ω.
Note that the vector y can be chosen using only a1, . . . , an−1. We have

an =
1
un

(u1a1 + . . .+ un−1an−1 − z),

so that for ω ∈ Ωn

|〈an, y〉| =
1
|un|

∣∣∣∣∣∣
n−1∑
j=1

uj〈aj , y〉 − 〈z, y〉

∣∣∣∣∣∣
≤
√
n


n−1∑
j=1

u2
j

1/2n−1∑
j=1

〈aj , y〉2
1/2

+ ‖z‖

 ≤ 2
√
n · s = ∆.

The row an is independent of a1, . . . , an−1. Hence, Lemma 7.1 implies

P (Ωn | a1, . . . , an−1) ≤ P (|〈an, y〉| ≤ ∆ | a1, . . . , an−1)

= P

∣∣∣∣∣∣
n∑
j=1

βn,jyj

∣∣∣∣∣∣ ≤ ∆ | a1, . . . , an−1

 ≤ C7.1Q∆.

Taking the expectation with respect to a1, . . . , an−1, we obtain P (Ωn) ≤ C7.1Q∆,
and so

P (Ω) ≤ n · P (Ωn) ≤ C7.1Q∆n.

8. Vectors of a singular profile

We prove first that the set of vectors of singular profile admits a small
∆-net in the `∞-metric.

Lemma 8.1. Let C8.1n
−3/2 ≤ ∆ ≤ n−1/2, where C8.1 = 2R3

r2 and let WS

be the set of vectors of (∆, Q)-singular profile. Let η < 1 be such that

C(η) < C6.3Q,
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where C(η) is the function defined in Lemma 3.1. Then there exists a ∆-net
N in WS in `∞-metric such that

|N | ≤
(
C8.1

∆
√
n
ηc8.1

)n
.

Remark 8.2. Lemma 3.4 implies that there exists a ∆-net for Sn−1 in the
`∞-metric with less than (C/∆

√
n)n points. Thus, considering only vectors

of a singular profile, we gain the factor ηc8.1·n in the estimate of the size of a
∆-net.

Proof. Let J ⊂ {1, . . . , n} and denote J ′ = {1, . . . , n} \ J . Let WJ ⊂WS

be the set of all vectors x of a (∆, Q)-singular profile for which J(x) = J .
We shall construct ∆-nets in each WJ separately. To this end we shall use
Lemma 3.1 to construct a ∆-net for the set PJWJ , where PJ is the coordinate
projection on RJ . Then the product of this ∆-net and a ∆-net for the ball BJ ′

2

will form a ∆-net for the whole WJ .
Assume that J = {1, . . . , l}, where l ≥ m. Let I1, . . . , Ik be consecutive

subintervals (i∆, (i+ 1)∆], i = k0, . . . , k0 + k, covering the interval [ r
2
√
n
, R√

n
],

which appear in the definition of profile. Recall that

k =
⌈
R− r/2√

n∆

⌉
The restriction on ∆ implies that k ≤ m. Let di be the center of the interval
Ii. Set

MJ = {x ∈ RJ | |xj | ∈ {d1, . . . , dk} for j ∈ J}.

Then |MJ | = (2k)l. Let NJ be the set of all x ∈ MJ for which there exists
a vector y ∈ WJ such that −∆/2 < yj − xj ≤ ∆/2 for all j ∈ J . The set NJ
forms a ∆-net for WJ in the `∞ metric. To estimate its cardinality we use the
probabilistic method.

LetX(1), . . . , X(l) be independent random variables uniformly distributed
on the set {1, . . . , k}. LetN ⊂ {1, . . . , k}l be the set of all l-tuples (v(1), . . . , v(l))
such that |xj | = dv(j), j = 1, . . . , l for some x = (x1, . . . , xl) ∈ NJ . Since both
MJ and NJ are invariant under changes of signs of the coordinates,

P ((X(1), . . . , X(l)) ∈ N) =
|NJ |
|MJ |

.

Let (X(1), . . . , X(l)) ∈ N and let x ∈ Rl be such that xj = dX(j). Let y ∈WJ

be a vector such that −∆/2 < yj − xj ≤ ∆/2 for all j ∈ J . Then for any
j ∈ J, yj ∈ Ii implies that X(j) = i. Let E ⊂ J be any set containing at least
m/2 elements. Then

∞∑
i=1

P 2
i (y|E ,∆) =

k∑
i=1

|{j ∈ E | X(j) = i}|2.
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Since y is a vector of a singular profile, this implies

k∑
i=1

|{j ∈ E | X(j) = i}|2 ≥ Qm5/2∆ = C6.3 ·Q
m2

k
> C(η) · m

2

k
.

Now Lemma 3.1 implies that P ((X(1), . . . , X(l)) ∈ N) ≤ ηl, and so

|NJ | ≤ (2kη)l =
(
R− 2r
∆
√
n
η

)l
.

To estimate the cardinality of the ∆-net for the whole WJ we use Lemma 3.4.
Since ∆ ≤ 1/

√
|J |, ∆BJ

∞ ⊂ BJ
2 , so that

N(PJ ′WJ , B
J ′

∞,∆) ≤ N(BJ ′

2 , B
J ′

∞,∆) ≤ 3n−l
|BJ ′

2 |
|∆BJ ′

∞|
≤
(

c

∆
√
n− l

)n−l
.

Because the function f(t) = (a/t)t is increasing for 0 < t < a/e, the right-hand
side of the previous inequality is bounded by (c/∆

√
n)n. Hence,

N(WJ , B
n
∞,∆) ≤ N(PJWJ , B

J
∞,∆) ·N(PJ ′WJ , B

J ′

∞,∆)

≤ |NJ | ·
(

c

∆
√
n

)n
≤
(

c′

∆
√
n
ηl/n

)n
Finally, set

N =
⋃
|J |≥m

NJ .

Then

|N | ≤
n∑

l=m

∑
|J |=l

|NJ | ≤ 2n
(

c′

∆
√
n
ηm/n

)n
.

Thus, Lemma 8.1 holds with c8.1 = m/n = r2

2R2 .

Now we are ready to show that ‖Ax‖ ≥ c for all vectors of a (∆, Q)-
singular profile with probability exponentially close to 1.

Theorem 8.3. There exists an absolute constant Q0 with the following
property. Let ∆ ≥ C8.3n

−3/2, where C8.3 = max(c5.2, C8.1). Denote by Ω∆ the
event that there exists a vector x ∈ VS of (∆, Q0)-singular profile such that
‖Ax‖ ≤ ∆

2 n. Then
P (Ω∆) ≤ 3 exp(−n).

Proof. We consider two cases. First, we assume that ∆ ≥ ∆1 = c5.2/n. In
this case we estimate the small ball probability using Lemma 5.2 and the size of
the ε-net using Lemma 8.1. Note that only the second estimate uses the profile
of the vectors. Then we conclude the proof with the standard approximation
argument.
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The case ∆ ≤ ∆1 is more involved. From Case 1 we know that there exists
Q1 such that all vectors of (∆1, Q1)-singular profile satisfy ‖Ax‖ ≥ ∆1

2 n with
probability at least 1−e−n. Hence, it is enough to consider only vectors whose
profile is regular on the scale ∆1 and singular on the scale ∆. For these vectors
we use the regular profile in Lemma 7.1 to estimate the small ball probability
and singular profile in Lemma 8.1 to estimate the size of the ε-net. The same
approximation argument finishes the proof.

Case 1. Assume first that ∆ ≥ ∆1 = c5.2/n. Let Q1 > 1 be a number
to be chosen later. LetM be the smallest ∆

2C3.3
-net in the set of the vectors of

(∆, Q1)-singular profile in `∞ metric.
Let x ∈ VS and let J = J(x) be as defined in (6.1). Denote Jc =

{1, . . . , n} \ J . Then Lemma 5.2 implies

P

∣∣∣∣∣∣
n∑
j=1

βjxj

∣∣∣∣∣∣ ≤ t
 = EJcP

∣∣∣∣∣∣
∑
j∈J

βjxj +
∑
j∈Jc

βjxj

∣∣∣∣∣∣ ≤ t | βj , j ∈ Jc


≤ C5.2t

for all t ≥ c5.2/
√
n. Since ∆

√
n ≥ c5.2/

√
n, by Lemma 5.4,

P (‖Ax‖ ≤ ∆n) ≤ (C5.4∆
√
n)n

and so,

P (∃x ∈M | ‖Ax‖ ≤ ∆n) ≤ |M|(C5.4∆
√
n)n.(8.1)

We shall show that Q1 can be chosen so that the last quantity will be less than
e−n. Recall that by Lemma 8.1, there exists a ∆-net N for the set of vectors
of (∆, Q1)-singular profile satisfying

|N | ≤
(
C8.1

∆
√
n
ηc8.1

)n
,

provided

(8.2) C(η) < C6.3Q1.

Covering each cube of size ∆ with the center in N by the cubes of size ∆
2C3.3

and using Lemma 3.4, we obtain

|M| ≤ |N | ·N(∆Bn
∞,∆B

n
∞,

1
2C3.3

) ≤
(

6C8.1 · C3.3

∆
√
n

ηc8.1
)n

.

Substitution of this estimate into (8.1) yields

P (∃x ∈M | ‖Ax‖ ≤ ∆n) ≤
(

6C8.1 · C3.3

∆
√
n

ηc8.1
)n
· (C5.4∆

√
n)n

≤ (C ′ηc8.1)n.
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Now choose η so that C ′ηc8.1 < 1/e and choose Q1 satisfying (8.2). With this
choice the probability above is smaller than e−n. Combining this estimate with
Lemma 3.3, we have that ‖A‖ ≤ C3.3

√
n and ‖Ax‖ ≥ ∆n for all x ∈ M with

probability at least 1− 2e−n.
Let y ∈ VS be a vector of (∆, Q1)-singular profile. Choose x ∈ M such

that ‖x− y‖∞ ≤
∆

2C3.3
. Then ‖x− y‖ ≤ ∆

√
n

2C3.3
and

‖Ay‖ ≥ ‖Ax‖ − ‖A(x− y)‖ ≥ ∆n− ‖A‖ ‖x− y‖ ≥ ∆
2
n.

Case 2. Assume that C8.3n
−3/2 ≤ ∆ < ∆1 = c5.2/n. Let Ω1 be the event

that ‖Ax‖ < ∆1
2 n = c5.2/2 for some vector of (∆1, Q1)-singular profile. We

proved in Case 1 that

(8.3) P (Ω1) < 2e−n.

Let Q2 > 1 be a number to be chosen later and let W be the set of all vectors
of (∆1, Q1)-regular and (∆, Q2)-singular profile. By Lemma 7.1 any vector
x ∈W satisfies

P

∣∣∣∣∣∣
n∑
j=1

βjxj

∣∣∣∣∣∣ ≤ t
 ≤ C7.1Q1t

for all t ≥ ∆1.
Now we can finish the proof as in Case 1. Since ∆

√
n ≥ ∆1, Lemma 5.4

implies
P (‖Ax‖ ≤ ∆n) ≤ (C ′∆

√
n)n

for any x ∈W . Here C ′ = C5.4 · C7.1Q1.
Let N be the smallest ∆

2C3.3
-net in W in `∞ metric. Note that ∆ ≥

C8.3n
−3/2 ≥ C8.1n

−3/2. Arguing as in the Case 1, we show that

|N | ≤
(

6C8.1 · C3.3

∆
√
n

ηc8.1
)n

for any η satisfying

(8.4) C(η) < C6.3Q2.

Hence,

P (∃x ∈ N | ‖Ax‖ ≤ ∆n) ≤ |N |(C ′∆
√
n)n ≤ (C ′′ηc8.1)n.

Choose η so that the last quantity is less than e−n and choose Q2 so that
(8.4) holds. Then the approximation argument used in Case 1 shows that the
inequality

‖Ay‖ ≥ ∆
2
n

holds for any y ∈W with probability greater than 1− e−n. Combining it with
(8.3), we complete the proof of Case 2. Finally, we unite two cases setting
Q0 = max(Q1, Q2).
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9. Proof of Theorem 1.1

To prove Theorem 1.1 we combine the probability estimates of the previous
sections. Let ε > c1.1/

√
n, where the constant c1.1 will be chosen later. Define

the exceptional sets:

Ω0 = {ω | ‖A‖ > C3.3

√
n},

ΩP = {ω | ∃x ∈ VP ‖Ax‖ < C5.1

√
n }.

Then Lemma 3.3 and Lemma 6.2 imply

P (Ω0) + P (ΩP ) ≤ 3 exp(−c5.1n).

Let Q0 be the number defined in Theorem 8.3. Set

∆ =
ε

2C7.1Q0 · n
.

The assumption on ε implies ∆ ≥ C8.3n
−3/2 if we set c1.1 = 2C7.1Q0 · C8.3.

Denote by WS the set of vectors of (∆, Q0)-singular profile and by WR the set
of vectors of (∆, Q0)-regular profile. Set

ΩS = {ω | ∃x ∈WS ‖Ax‖ <
∆
2
n =

1
4C7.1Q0

ε},

ΩR = {ω | ∃x ∈WR ‖Ax‖ <
∆

2
√
n

=
1

4C7.1Q0
ε · n−3/2}.

By Theorem 8.3, P (ΩS) ≤ 3e−n, and by Theorem 7.2, P (ΩR) ≤ ε/2. Since
Sn−1 = VP ∪WS ∪WR, we conclude that

P (ω | ∃x ∈ Sn−1 ‖Ax‖ < 1
2C7.1Q0

ε · n−3/2} ≤ ε/2 + 4 exp(−c5.1n) < ε

for large n.

Remark 9.1. The proof shows that the set of vectors of a regular profile
is critical. On the other sets the norm of Ax is much greater with probability
exponentially close to 1.
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