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Entropy and the localization
of eigenfunctions

By Nalini Anantharaman

Abstract

We study the large eigenvalue limit for the eigenfunctions of the Laplacian,
on a compact manifold of negative curvature – in fact, we only assume that the
geodesic flow has the Anosov property. In the semi-classical limit, we prove
that the Wigner measures associated to eigenfunctions have positive metric
entropy. In particular, they cannot concentrate entirely on closed geodesics.

1. Introduction, statement of results

We consider a compact Riemannian manifold M of dimension d ≥ 2, and
assume that the geodesic flow (gt)t∈R, acting on the unit tangent bundle of
M , has a “chaotic” behaviour. This refers to the asymptotic properties of
the flow when time t tends to infinity: ergodicity, mixing, hyperbolicity. . . :
we assume here that the geodesic flow has the Anosov property, the main
example being the case of negatively curved manifolds. The words “quantum
chaos” express the intuitive idea that the chaotic features of the geodesic flow
should imply certain special features for the corresponding quantum dynamical
system: that is, according to Schrödinger, the unitary flow

(
exp(i~t∆

2 )
)
t∈R

acting on the Hilbert space L2(M), where ∆ stands for the Laplacian on M

and ~ is proportional to the Planck constant. Recall that the quantum flow
converges, in a sense, to the classical flow (gt) in the so-called semi-classical
limit ~ −→ 0; one can imagine that for small values of ~ the quantum system
will inherit certain qualitative properties of the classical flow. One expects, for
instance, a very different behaviour of eigenfunctions of the Laplacian, or the
distribution of its eigenvalues, if the geodesic flow is Anosov or, in the other
extreme, completely integrable (see [Sa95]).

The convergence of the quantum flow to the classical flow is stated in the
Egorov theorem. Consider one of the usual quantization procedures Op~, which
associates an operator Op~(a) acting on L2(M) to every smooth compactly
supported function a ∈ C∞c (T ∗M) on the cotangent bundle T ∗M . According
to the Egorov theorem, we have for any fixed t∥∥∥∥exp
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We study the behaviour of the eigenfunctions of the Laplacian,

−h2∆ψh = ψh

in the limit h −→ 0 (we simply use the notation h instead of ~, and now
− 1
h2 ranges over the spectrum of the Laplacian). We consider an orthonormal

basis of eigenfunctions in L2(M) = L2(M,dVol) where Vol is the Riemannian
volume. Each wave function ψh defines a probability measure on M :

|ψh(x)|2dVol(x),

that can be lifted to the cotangent bundle by considering the “microlocal lift”,

νh : a ∈ C∞c (T ∗M) 7→ 〈Oph(a)ψh, ψh〉L2(M),

also called Wigner measure or Husimi measure (depending on the choice of
the quantization Op~) associated to the eigenfunction ψh. If the quantization
procedure was chosen to be positive (see [Ze86, §3], or [Co85, 1.1]), then the
distributions νhs are in fact probability measures on T ∗M : it is possible to
extract converging subsequences of the family (νh)h→0. Reflecting the fact
that we considered eigenfunctions of energy 1 of the semi-classical Hamiltonian
−h2∆, any limit ν0 is a probability measure carried by the unit cotangent
bundle S∗M ⊂ T ∗M . In addition, the Egorov theorem implies that ν0 is
invariant under the (classical) geodesic flow. We will call such a measure ν0

a semi-classical invariant measure. The question of identifying all limits ν0

arises naturally: the Snirelman theorem ([Sn74], [Ze87], [Co85], [HMR87])
shows that the Liouville measure is one of them, in fact it is a limit along a
subsequence of density one of the family (νh), as soon as the geodesic flow acts
ergodically on S∗M with respect to the Liouville measure. It is a widely open
question to ask if there can be exceptional subsequences converging to other
invariant measures, like, for instance, measures carried by closed geodesics.
The Quantum Unique Ergodicity conjecture [RS94] predicts that the whole
sequence should actually converges to the Liouville measure, if M has negative
sectional curvature.

The problem was solved a few years ago by Lindenstrauss ([Li03]) in the
case of an arithmetic surface of constant negative curvature, when the func-
tions ψh are common eigenstates for the Laplacian and the Hecke operators;
but little is known for other Riemann surfaces or for higher dimensions. In
the setting of discrete time dynamical systems, and in the very particular
case of linear Anosov diffeomorphisms of the torus, Faure, Nonnenmacher and
De Bièvre found counterexamples to the conjecture: they constructed semi-
classical invariant measures formed by a convex combination of the Lebesgue
measure on the torus and of the measure carried by a closed orbit ([FNDB03]).
However, it was shown in [BDB03] and [FN04], for the same toy model, that
semi-classical invariant measures cannot be entirely carried on a closed orbit.
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1.1. Main results. We work in the general context of Anosov geodesic
flows, for (compact) manifolds of arbitrary dimension, and we will focus our
attention on the entropy of semi-classical invariant measures. The Kolmogorov-
Sinai entropy, also called metric entropy, of a (gt)-invariant probability measure
ν0 is a nonnegative number hg(ν0) that measures, in some sense, the complex-
ity of a ν0-generic orbit of the flow. For instance, a measure carried on a
closed geodesic has zero entropy. An upper bound on entropy is given by the
Ruelle inequality: since the geodesic flow has the Anosov property, the unit
tangent bundle S1M is foliated into unstable manifolds of the flow, and for
any invariant probability measure ν0 one has

(1.1.1) hg(ν0) ≤
∣∣∣∣∫
S1M

log Ju(v)dν0(v)
∣∣∣∣ ,

where Ju(v) is the unstable jacobian of the flow at v, defined as the jacobian of
g−1 restricted to the unstable manifold of g1v. In (1.1.1), equality holds if and
only if ν0 is the Liouville measure on S1M ([LY85]). Thus, proving Quantum
Unique Ergodicity is equivalent to proving that hg(ν0) = |

∫
S1M log Judν0| for

any semi-classical invariant measure ν0. But already a lower bound on the
entropy of ν0 would be useful. Remember that one of the ingredients of Elon
Lindenstrauss’ work [Li03] in the arithmetic situation was an estimate on the
entropy of semi-classical measures, proven previously by Bourgain and Linden-
strauss [BLi03]. If the (ψh) form a common eigenbasis of the Laplacian and all
the Hecke operators, they proved that all the ergodic components of ν0 have pos-
itive entropy (which implies, in particular, that ν0 cannot put any weight on a
closed geodesic). In the general case, our Theorems 1.1.1, 1.1.2 do not reach so
far. They say that many of the ergodic components have positive entropy, but
components of zero entropy, like closed geodesics, are still allowed – as in the
counterexample built in [FNDB03] for linear hyperbolic toral automorphisms
(called “cat maps” thereafter). For the cat map, [BDB03] and [FN04] could
prove directly – without using the notion of entropy – that a semi-classical
measure cannot be entirely carried on closed orbits ([FN04] proves that if ν0

has a pure point component then it must also have a Lebesgue component).
Denote

Λ = − sup
v∈S1M

log Ju(v) > 0.

For instance, for a d-dimensional manifold of constant sectional curvature −1,
we find Λ = d− 1.

Theorem 1.1.1. There exist a number κ̄ > 0 and two continuous decreas-
ing functions τ : [0, 1] −→ [0, 1], ϑ : (0, 1] −→ R+ with τ(0) = 1, ϑ(0) = +∞,
such that : If ν0 is a semi-classical invariant measure, and

ν0 =
∫
S1M

νx0 dν0(x)
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is its decomposition in ergodic components, then, for all δ > 0,

ν0

(
{x, hg(νx0 ) ≥ Λ

2
(1− δ)}

)
≥
(

κ̄

ϑ(δ)

)2

(1− τ(δ)).

This implies that hg(ν0) > 0, and gives a lower bound for the topological entropy
of the support, htop(supp ν0) ≥ Λ

2 .

What we prove is in fact a more general result about quasi-modes of order
h| log h|−1:

Theorem 1.1.2. There are a number κ̄ > 0 and two continuous decreas-
ing functions τ : [0, 1] −→ [0, 1], ϑ : (0, 1] −→ R+ with τ(0) = 1, ϑ(0) = +∞,
such that : If (ψh) is a sequence of normalized L2 functions with

‖(−h2∆− 1)ψh‖L2(M) ≤ ch| log h|−1,

then for any semi-classical invariant measure ν0 associated to (ψh), for any
δ > 0,

ν0

(
{x, hg(νx0 ) ≥ Λ

2
(1− δ)}

)
≥ (1− τ(δ))

(
κ̄

ϑ(δ)
− cϑ(δ)

)2

+

− cκ̄.

If c is small enough, this implies that ν0 has positive entropy.

Remark 1.1.3. The proof gives an explicit expression of ϑ and τ as contin-
uous decreasing functions of δ; they also depend on the instability exponents
of the geodesic flow. I believe, however, that this is far from giving an optimal
bound. In the case of a compact manifold of constant sectional curvature −1,
an attempt to keep all constants optimal in the proof would probably lead to
κ̄ = 1, τ is any number greater than 1 − δ

2 , and ϑ =
(
2(τ − (1 − δ/2))

)−1 –
which still does not seem optimal.

The main tool to prove Theorems 1.1.1 and 1.1.2 is an estimate given in
Theorem 1.3.3, which will be stated after we have recalled the definition of
entropy in subsection 1.2. The method only uses the Anosov property of the
flow, and should work for very general Anosov symplectic dynamical systems.
In [AN05], this is implemented (with considerable simplification) for the toy
model of the (Walsh-quantized) “baker’s map”, for which Quantum Unique
Ergodicity fails obviously. For that toy model we can also prove the following
improvement of Theorem 1.1.1:

Conjecture 1.1.4. For any semi-classical measure ν0,

hg(ν0) ≥ 1
2

∣∣∣∣∫
S1M

log Ju(v)dν0(v)
∣∣∣∣ .
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We believe this holds for any Anosov symplectic system. Conjecture 1.1.4,
if true, is optimal in the sense that the lower bound is reached for certain
counterexamples to Quantum Unique Ergodicity (QUE) encountered for the
baker’s map or the cat map. In the same paper [AN05], we also show that
Theorem 1.1.1 is optimal for the baker’s map, in the sense that we can con-
struct an ergodic semi-classical measure, with entropy Λ/2, whose support has
topological entropy Λ/2. Thus, Theorem 1.1.1 should not be interpreted as a
step in the direction of QUE, but rather as a general fact which holds even
when QUE is known to fail.

It seems that an improvement of Theorem 1.1.1 would have to rely on a
control of the multiplicities in the spectrum, which are expected to be much
lower for eigenfunctions of the Laplacian than in the case of the cat map or
the baker’s map (where they are of order (h| log h|)−1 for certain eigenvalues).
For a negatively curved d-dimensional manifold, the number of eigenvalues in
the spectral interval (h−2 − c(h| log h|)−1, h−2 + c(h| log h|)−1) is bounded by
(2c+K)hd−1| log h|−1, where 2chd−1| log h|−1 comes from the leading term in
Weyl’s law and Khd−1| log h|−1 is the remainder term obtained in [Be77]. The
possible behaviour of quasi-modes of order ch| log h|−1 depends in a subtle
way on the value of c, which controls the multiplicity and thus our degree
of freedom in forming linear combinations of eigenfunctions. The theorem
only proves the positive entropy of ν0 when c is small enough. On the other
hand, when c is not too close to 0, it should be possible to construct quasi-
modes of order ch| log h|−1 for which ν0 has positive entropy but nevertheless
puts positive mass on a closed geodesic. For the cat map, we note that the
counterexamples constructed in [FNDB03] concern eigenvalues of multiplicity
Ch| log h|−1 for a very precise value of C (related to the Lyapunov exponent),
and that the construction would not work for smaller values of C. For (genuine)
eigenfunctions of the Laplacian, such counterexamples should not be expected
if the multiplicity is really much lower than the general bound hd−1| log h|−1 –
however, just to improve the multiplicative constant in this bound requires a
lot of work (see [Sa-hp] in arithmetic situations).

Acknowledgements. I would like to thank Leonid Polterovich for giving
me the first hint that the results of [A04] could be related to the quantum
unique ergodicity problem. I am very grateful to Yves Colin de Verdière,
who taught me so much about the subject. Thanks to Peter Sarnak, Elon
Lindenstrauss, Lior Silberman and Akshay Venkatesh for thrilling discussions
in New-York and Princeton. Elon Lindenstrauss noticed that Theorem 1.1.1
was really about metric entropy, and not topological entropy as had appeared
in a preliminary version. Last but not least, I am deeply grateful to Stéphane
Nonnenmacher, who believed in this approach and encouraged me to go on.
The proof of Theorem 1.3.3 presented in this final version is the fruit of our
discussions.
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In the next paragraph we recall the definition of metric entropy in the
classical setting. Then, in paragraph 1.3, we try to adapt the construction
on a semi-classical level; we construct “quantum cylinder sets” and try to
evaluate their measures. Theorem 1.3.3 proves their exponential decay beyond
the Ehrenfest time, and gives the key to Theorems 1.1.1, 1.1.2.

1.2. Definition of entropy. Let S1M = P1t · · ·tPl be a finite measurable
partition of the unit tangent bundle S1M . The entropy of ν0 with respect to
the action of geodesic flow and to the partition P is defined by

hg(ν0, P ) = lim
n−→+∞

− 1
n

∑
(αj)∈{1,...,l}n+1

ν0(Pα0 ∩ g−1Pα1 · · · ∩ g−nPαn)

× log ν0(Pα0 ∩ g−1Pα1 · · · ∩ g−nPαn)

= inf
n∈N
− 1
n

∑
(αj)∈{1,...,l}n+1

ν0(Pα0 ∩ g−1Pα1 · · · ∩ g−nPαn)

× log ν0(Pα0 ∩ g−1Pα1 · · · ∩ g−nPαn).

The existence of the limit, and the fact that it coincides with the inf follow
from a subadditivity argument. The entropy of ν0 with respect to the action
of the geodesic flow is defined as

hg(ν0) = sup
P
hg(ν0, P ),

the supremum running over all finite measurable partitions P . For Anosov
systems, this supremum is actually reached for a well-chosen partition P (in
fact, as soon as the diameter of the Pis is small enough). In the proof of
Theorem 1.1.2, we will use the Shannon-MacMillan theorem which gives the
following interpretation of entropy: if ν0 is ergodic, then for ν0-almost all x,
we have

1
n

log ν0

(
P∨n(x)

)
−→

n−→+∞
−hg(ν0, P )

where P∨n(x) denotes the unique set of the form Pα0 ∩ g−1Pα1 · · · ∩ g−nPαn
containing x. It follows that, for any ε > 0, we can find a set of ν0-measure
greater than 1−ε that can be covered by at most en(hg(ν0,P )+ε) sets of the form
Pα0 ∩ g−1Pα1 · · · ∩ g−nPαn (for all n large enough).

The entropy is nonnegative, and bounded a priori from above; on a com-
pact d-dimensional riemannian manifold of constant sectional curvature −1,
the entropy of any measure is smaller than d−1; more generally, for an Anosov
geodesic flow, one has an a priori bound in terms of the unstable jacobian,
called the Ruelle inequality (see [KH]): hg(ν0) ≤ |

∫
S1M log Judν0|, with equal-

ity if and only if ν0 is the Liouville measure on S1M ([LY85]).
For our purposes, we reformulate slightly the definition of entropy. The

following definition, although equivalent to the usual one, looks a bit different,
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in that we only use partitions of the base M : the reason for doing so is that
we prefer to work with multiplication operators in paragraph 1.3, instead of
having to deal with more general pseudo-differential operators.

Let P = (P1, . . . Pl) be a finite measurable partition of M (instead of
S1M); we denote ε/2, (ε > 0) an upper bound on the diameter of the Pis. We
consider P as a partition of the tangent bundle, by lifting it to TM .

Let Σ = {1, . . . l}Z. To each tangent vector v ∈ S1M one can associate
a unique element I(v) = (αj)j∈Z ∈ Σ, such that gjv ∈ Pαj for all integers j.
Thus, we define a coding map I : S1M −→ Σ. If we define the shift σ acting
on Σ by

σ
(
(αj)j∈Z

)
= (αj+1)j∈Z,

then I ◦ g1 = σ ◦ I.
We introduce the probability measure µ0 on Σ, the image of ν0 under the

coding map I. More explicitly, the finite-dimensional marginals of µ0 are given
by

µ0

(
[α0, . . . , αn−1]

)
= ν0(Pα0 ∩ g−1Pα1 · · · ∩ g−n+1Pαn−1),

where we have denoted [α0, . . . , αn−1] the subset of Σ, formed of sequences in
Σ beginning with the letters (α0, . . . , αn−1). Such a set is called a cylinder set
(of length n). We will denote Σn the set of cylinder sets of length n: they form
a partition of Σ.

Since ν0 is carried by the unit tangent bundle, and is (gt)-invariant, its
image µ0 is σ-invariant. The entropy of µ0 with respect to the action of the
shift σ is

hσ(µ0) = lim
n−→+∞

− 1
n

∑
C∈Σn

µ0(C) logµ0(C)(1.2.1)

= inf
n
− 1
n

∑
C∈Σn

µ0(C) logµ0(C) = hg(ν0, P ).(1.2.2)

The fact that the limit exists and coincides with the inf comes from the remark
that the sequence (−

∑
C∈Σn

µ0(C) logµ0(C))n∈N is subadditive, which follows
from the concavity of the log and the σ-invariance of µ0 (see [KH]). We have
decided to work with time 1 of the geodesic flow; it is harmless to consider
partitions P depending only on the base, if the injectivity radius is greater
than one – which we can always assume. If the diameter of the Pis is small
enough, the partition P and its iterates under the flow generate the Borel
σ-field, which implies that hg(ν0) = hσ(µ0).

Note that the entropy (1.2.2) is an upper semi-continuous functional. In
other words, when a sequence of (gt)-invariant probability measures converges
in the weak topology, lower bounds on entropy pass to the limit. The difficulty
here is that we are in an unusual situation where we have a sequence of non-
commutative dynamical systems converging to a commutative one: standard
methods of dealing with entropy need to be adapted to this context.
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1.3. The semi-classical setting ; exponential decay of the measures of cylin-
der sets.

1.3.1. The measure µh. Since we will resort to microlocal analysis we have
to replace characteristic functions 1IPi by smooth functions. We will assume
that the Pi have smooth boundary, and will consider a smooth partition of
unity obtained by smoothing the characteristic functions 1IPi , that is, a finite
family of C∞ functions Ai ≥ 0 (i = 1, . . . , l), such that

l∑
i=1

Ai = 1.

We can consider the Ais as functions on TM , depending only on the base
point. For each i, denote Ωi a set of diameter ε that contains the support of
Ai in its interior.

In fact, the way we smooth the 1IPis to obtain Ai is rather crucial, and
will be discussed in subsection 2.1. Let us only say, for the moment, that the
Ai will depend on h in a way that

(1.3.1) Ahi −→
h−→0

1

uniformly in every compact subset in the interior of Pi, and

(1.3.2) Ahi −→
h−→0

0

uniformly in every compact subset outside Pi. We also assume that the smooth-
ing is done at a scale hκ (κ ∈ [0, 1/2)), so that the derivatives of Ahi are
controlled as

‖DnAhi ‖ ≤ C(n)h−nκ.

This ensures that certain results of pseudo-differential calculus are still appli-
cable to the functions Ahi (see Appendix A1).

We now construct a functional µh defined on a certain class of functions on
Σ. We see the functions Ai as multiplication operators on L2(M) and denote
Ai(t) their evolutions under the quantum flow:

Ai(t) = exp
(
− ith∆

2

)
◦Ai ◦ exp

(
it
h∆
2

)
.

We define the “measures” of cylinder sets under µh, by the expressions:

µh
(
[α0, . . . , αn]

)
= 〈Aαn(n). . . . Aα1(1)Aα0(0)ψh, ψh 〉L2(M)(1.3.3)

= 〈 e−in
~∆
2 Aαne

i ~∆
2 Aαn−1e

i ~∆
2 · · · ei

~∆
2 Aα0 ψh, ψh 〉L2(M).(1.3.4)

For C = [α0, . . . , αn−1] ∈ Σn, we will use the shorthand notation Ĉh for
the operator

Ĉh =Aαn−1(n− 1). . . . Aα1(1)Aα0(0)

= e−i(n−1) ~∆
2 Aαn−1e

i ~∆
2 Aαn−1e

i ~∆
2 · · · ei

~∆
2 Aα0 .
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The functional µh is only defined on the vector space spanned by char-
acteristic functions of cylinder sets. Note that µh is not a positive measure,
because the operators Ĉh are not positive. The first part of the following propo-
sition is a compatibility condition; the second part says that µh is σ-invariant
if ψh is an eigenfunction. The third condition holds if ψh is normalized in
L2(M).

Proposition 1.3.1. (i) For every n, for every cylinder [α0, . . . , αn−1] ∈
Σn, ∑

αn

µh
(
[α0, . . . , αn]

)
= µh

(
[α0, . . . , αn−1]

)
.

(ii) If ‖(−h2∆ − 1)ψh‖L2(M) ≤ ch| log h|−1, then for every n, for every
cylinder C = [α0, . . . , αn−1] ∈ Σn, and for any integer k,∣∣∣µh(σ−kC)− µh(C)

∣∣∣
=

∣∣∣∣∣∣
∑

α−1,··· ,α−k
µh
(
[α−k, . . . α−1, α0, .., αn−1]

)
− µh

(
[α0, .., αn−1]

)∣∣∣∣∣∣
≤ kc

2| log h|
(
‖Ĉhψh‖+ ‖Ĉ∗he

ikh∆
2 ψh‖

)
.

(iii) For every n ≥ 0, ∑
[α0,...,αn−1]

µh
(
[α0, . . . , αn−1]

)
= 1.

We assume in the rest of the paper that we have extracted from the sequence
(νh)−1/h2∈Sp(∆) a sequence (νhk)k∈N that converges to ν0 in the weak topology:
〈Ophk(a)ψhk , ψhk〉L2(M) −→

k−→+∞

∫
S1M adν0, for every a ∈ C∞c (TM). To simplify

notations, we forget about the extraction, and simply consider that νh −→
h−→0

ν0.

If the partition of unity (Ai) does not depend on h, the usual Egorov
theorem shows that µh converges, as h −→ 0, to a σ-invariant probability
measure defined by µ(A)

0 on Σ, defined by

µ
(A)
0

(
[α0, . . . , αn]

)
= ν0

(
Aα0 .Aα1 ◦ g1 . . . Aαn ◦ gn

)
.

Convergence here means that the measure of each cylinder set converges. Now,
suppose the partition of unity depends on h so as to satisfy (1.3.1), (1.3.2); we
may, and will, also assume that ν0 does not charge the boundary of P .

Proposition 1.3.2. The family (µh) converges to µ0 as h −→ 0.
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Proof. Let C = [α0, . . . , αn] be a given cylinder set. By the Egorov
theorem 4.2.3,

(1.3.5) ‖Ĉh −Oph
(
Aα0 Aα1 ◦ g1 . . . Aαn−1 ◦ gn−1

)
‖L2(M) = O(h1−2κ).

The function Aα0 Aα1 ◦ g . . . Aαn−1 ◦ gn−1 is nonnegative, and, as h −→
0, it converges uniformly to 1 on every compact subset in the interior of
Pα0 ∩ g−1Pα1 · · · ∩ g−n+1Pαn−1 , since Ai converges uniformly to 1 on every
compact subset in the interior of Pi (1.3.1). If we choose a positive quantiza-
tion procedure Oph, it follows from (1.3.5) that

lim inf
h−→0

µh(C) = lim inf
h−→0

〈Oph
(
Aα0 Aα1 ◦ g . . . Aαn−1 ◦ gn−1

)
ψh, ψh〉

≥ lim inf νh
(
int(Pα0 ∩ g−1Pα1 · · · ∩ g−n+1Pαn−1)

)
≥ ν0

(
int(Pα0 ∩ g−1Pα1 · · · ∩ g−n+1Pαn−1)

)
.

We have assumed that ν0 does not charge the boundary of the Pis, and thus
the last term coincides with ν0

(
Pα0∩g−1Pα1 · · ·∩g−n+1Pαn−1

)
. Similarly, using

(1.3.2) one can prove that

lim sup
h−→0

µh(C) ≤ ν0

(
Pα0 ∩ g−1Pα1 · · · ∩ g−n+1Pαn−1

)
.

This ends the proof since we assumed ν0 does not charge the boundary of the
partition P .

The key technical result of this paper, proved in Section 3, is an upper
bound on µh, valid for cylinder sets of large lengths.

1.3.2. Decay of the measures of cylinder sets. Because the geodesic flow is
Anosov, each energy layer SλM = {v ∈ TM, ‖v‖ = λ} (λ > 0) is foliated into
strong unstable manifolds of the geodesic flow. The unstable jacobian Ju(v)
at v ∈ TM is defined as the jacobian of g−1, restricted to the unstable leaf at
the point g1v. Given (α0, α1), we introduce the notation

Jun (α0, α1)

:= sup
(
{Ju(v0), v0 ∈ Pα0 , ‖v0‖ ∈ [1− ε, 1 + ε], g1(v0) ∈ Pα1} ∪ {e−3Λ}

)
.

Given a sequence (α0, . . . , αn), we denote

Jun (α0, . . . , αn) = Jun (α0, α1)Jun (α1, α2) · · · Jun (αn−1, αn).

Theorem 1.3.3 (The main estimate). Let χ ∈ C∞c (T ∗M) be compactly
supported in a neighbourhood of the unit tangent bundle, {v ∈ T ∗M, ‖v‖ ∈
[1− ε

2 , 1 + ε
2 ]}. Consider the operators Aαn(n)Aαn−1(n− 1) . . . Aα0Op(χ). For

every K > 0, there exists hK > 0 such that, uniformly for all h < hK, for all
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n ≤ K| log h|,∥∥Aαn(n)Aαn−1(n− 1) . . . Aα0Op(χ)
∥∥
L2(M)

≤ 2(2πh)−d/2Jun (α0, . . . , αn)1/2(1 +O(ε))n.

In our notation, remember that ε is also an upper bound on the diameter
of the support of the Ais. It is fixed, but can be taken arbitrarily small.

Using Feynman’s heuristics, the kernel of the operator

Aαn−1e
i ~∆

2 Aαn−1e
i ~∆

2 · · · ei
~∆
2 Aα0

can be written as a paths integral,

K(n, x, y;α0, . . . , αn) =
∑

γ(0)=x,γ(n)=y,γ(i)∈Pαi ,i=0,...,n

e
i

h

R n
0
‖γ̇‖2

2 .

It is known how to obtain a semi-classical expansion of this kernel in powers of
h, for fixed n, if the flow has no conjugate points (which means that the critical
points of the action

∫ n
0
‖γ̇‖2

2 are nondegenerate). As shown in [AMB92], the
Anosov property implies that the inverse of the hessian of the action at critical
points is bounded, uniformly with respect to time n. This explains how we are
able to make a semi-classical expansion of K(n, x, y;α0, . . . , αn) valid for large
n. In a former version of this paper we proved Theorem 1.3.3 using this idea
of paths integrals. This is, however, very delicate since it implies use of the
stationary phase method on spaces of arbitrarily large dimension. The simpler
proof presented here uses WKB methods, and was elaborated with Stéphane
Nonnenmacher.

In Part 2 we state Theorem 1.3.3 to prove Theorems 1.1.1, 1.1.2. Theorem
1.3.3 is proved in part 3.

The paper has two appendices. In A1 we collect some facts about small
scale pseudo-differential operators. In A2 we give details about the partition
of unity Ahi .

2. Proof of Theorem 1.1.1

We show how to prove Theorems 1.1.1 and 1.1.2, using Theorem 1.3.3. We
prove, in fact, the following. Let F ⊂ Σ be an invariant subset under the shift.
We define the topological entropy htop(F ) ≥ 0 by saying that htop(F ) ≤ λ if
and only if, for every δ > 0, there exists C such that F can be covered by
at most Cen(λ+δ) cylinders of length n (for all n). We consider normalized
quasi-eigenfunctions, ‖(−h2∆ − 1)ψh‖L2(M) ≤ ch| log h|−1, and we call µ0 a
semi-classical limit (transported on Σ by the coding map).
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Proposition 2.0.4. There exists a κ̄ > 0 such that, for all δ > 0, we can
find ϑ > 0 and τ ∈ (0, 1) such that, for every set F ⊂ Σ with htop(F ) ≤ Λ

2 (1−δ),

µ0(F ) ≤ (1− τ)
(

1−
( κ̄
ϑ
− cϑ

)2

+

)
+ τ + cκ̄.

The proof gives τ and ϑ as continuous decreasing functions of δ. The
proposition directly implies the main theorems: consider the invariant set Iδ =
{x, hg(µx0) ≤ Λ

2 (1 − δ)} ⊂ TM . By the Shannon-McMillan theorem, if we are
given any α > 0, there exists a subset Iαδ ⊂ Iδ, with ν0(Iδ \ Iαδ ) ≤ α, and such
that Iαδ (more precisely its image under the coding map) can be covered by
en(

Λ
2

(1−δ+α)) n-cylinders, for large n. Applying Proposition 2.0.4 for δ−α, we
find that

ν0(Iαδ ) ≤ (1− τ(δ − α))
(

1−
(

κ̄

ϑ(δ − α)
− ϑ(δ − α)c

)2

+

)
+ τ(δ − α) + cκ̄

and, letting α −→ 0,

ν0(Iδ) ≤ (1− τ(δ))
(

1−
(

κ̄

ϑ(δ)
− ϑ(δ)c

)2

+

)
+ τ(δ) + cκ̄;

in other words

ν0(S1M \ Iδ) ≥ (1− τ(δ))
(

κ̄

ϑ(δ)
− ϑ(δ)c

)2

+

− cκ̄.

The proof of Proposition 2.0.4 may be roughly explained as follows:

(a) Theorem 1.3.3 says that, for every cylinder C ∈ Σn,

|µh(C)| ≤ 2
e−nΛ/2

(2πh)d/2
(1 +O(ε))n,

uniformly for n ≤ K| log h| and h ≤ hK (K can be taken arbitrarily large).
Thus, for any θ ∈ (0, 1), a set of µh-measure greater than (1 − θ) cannot be
covered by less than (1− θ) (2πh)d/2

2 enΛ/2(1 +O(ε))−n cylinders of length n (see
subsection 2.2).

(b) If F ⊂ Σ is a σ-invariant set of topological entropy strictly less than
Λ
2 (1 − δ), there exists C such that, for every n ∈ N , F can be covered by

Cen(
Λ
2

(1−δ/2)) cylinder sets of length n (see subsection 2.3.)

The two observations (a) and (b) lead to the idea that it is difficult for
the limit measure µ0 to concentrate on a set of topological entropy less than
Λ/2.

Sketch of the proof. We start with a variant of observation (b), proved
in subsection 2.3:
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(b′) Let F ⊂ Σ be a σ-invariant set of topological entropy htop(F ) ≤
Λ
2 (1− δ). Then there exists a neighbourhood Wn1 of F , formed of cylinders of
length n1, such that, for N large enough, for every τ ∈ [0, 1],

]ΣN (Wn1 , τ) ≤ eN(Λ
2

(1−δ/4))e(1−τ)N(1+n1) log l,

where l is the number of elements of the partition P . We denoted ΣN (Wn1 , τ)
the set of N -cylinders [α0, . . . , αN−1] such that

]
{
j ∈ [0, N − n1], [αj , . . . , αj+n1−1] ∈Wn1

}
N − n1 + 1

≥ τ.

These correspond to orbits that spend a lot of time in the neighbourhood Wn1

of F .

If ε is small enough and τ is sufficiently close to 1, one can find ϑ such
that, for N ≥ ϑ| log h|,

(1− θ)(2πh)d/2eNΛ/2(1 +O(ε))n > eN(Λ
2

(1−δ/4))e(1−τ)N(1+n1) log l.

It follows from (a) and (b’) that

(2.0.1) |µh
(
ΣN (Wn1 , τ)

)
| ≤ 1− θ.

Then, using the σ-invariance of µh (say, in the case when the ψh are
genuine eigenfunctions), we want to write, for N = ϑ| log h|,

|µh (Wn1) |= | 1
N − n1

N−n1−1∑
k=0

µh

(
σ−kWn1

)
|(2.0.2)

= |µh
( 1
N − n1

N−n1−1∑
k=0

1Iσ−kWn1

)
|(2.0.3)

≤µh
(
ΣN (Wn1 , τ)

)
+ τ µh

(
ΣN (Wn1 , τ)c

)
(2.0.4)

≤ (1− τ)µh
(
ΣN (Wn1 , τ)

)
+ τ(2.0.5)

≤ (1− τ)(1− θ) + τ.(2.0.6)

Passing to the limit h −→ 0, we get µ0(Wn1) ≤ (1− τ)(1− θ) + τ ; hence

µ0(F ) ≤ (1− τ)(1− θ) + τ < 1.

For (2.0.4), we have used the fact that

1
N − n1

N−n1−1∑
k=0

1Iσ−kWn1
≤ 1

in general, and that
1

N − n1

N−n1−1∑
k=0

1Iσ−kWn1
≤ τ
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on ΣN (Wn1 , τ)c, the complement of ΣN (Wn1 , τ). Unfortunately, (2.0.4) is not
correct since µh is not a probability measure.

We know however that µh converges weakly to a probability measure, and
we may try to make this statement more quantitative. Semi-classical analysis
tells us that µh is close to being a probability measure when restricted to the
set of cylinders of length N ≤ κ̄| log h|, for κ̄ not too large. To sum up, the
inequality (2.0.1) only holds for N ≥ ϑ| log h| whereas the lines (2.0.2)–(2.0.6)
are valid for N ≤ κ̄| log h|; one cannot expect ϑ to be smaller than κ̄. To pass
from one time-scale to the other, we use a sub-multiplicativity property stated
in paragraph 2.2.

In paragraph 2.1 we give certain important facts about the partitions of
unity we want to use. In 2.2, we come back to observation (a) and prove the
crucial sub-multiplicativity lemma. Subsection 2.3 is dedicated to proving (b′).
In subsection 2.4 we show that, until a certain time κ̄| log h|, the measure µh
can be treated as a probability measure. Finally, we conclude as in (2.0.2)–
(2.0.6).

2.1. Partition of unity. For our purposes, we need to be more specific
about our partitions of unity (Ai). In order to apply semi-classical methods
we need the Ai to be smooth, and on the other hand we would like the family
Ai to behave almost like a family of orthogonal projectors: A2

i ' Ai, AiAj ' 0
for i 6= j.

Take a finite partition M = P1t · · ·tPl by sets of diameter less than ε/2.
By modifying slightly the Pis we may assume that the semi-classical measure
ν0 does not charge the boundary of the partition. Our partition of unity will
be defined by taking a convolution

(2.1.1) Ãhi (x) =
1
hκ

1IPi ∗ ζ
(
x/hκ

)
;

that is,

Ãhi (x) =
1
hκ

∫
ζ
( y
hκ

)
1IPi(x− y)dy,

where ζ is a nonnegative, smooth compactly supported function, of integral 1;
the convolution is to be unterstood in a local chart, and κ ≥ 0 will be chosen
later. Then, we take as a partition of unity the family

Ai =
Ãhi∑l
j=1 Ã

h
j

.

The partition of unity (Ai)1≤i≤l depends on h, and if κ > 0 it converges
weakly to (1IPi)1≤i≤l when h −→ 0. It has the following properties:

• Pi ⊂ supp Ai ⊂ B(Pi, ε/2) for all i, for h small enough. In accordance
with the notation of the previous sections, we denote Ωi = B(Pi, ε/2).
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• Ai2 = Ai except on a set of measure of order hκ.

• For i 6= j, AiAj = 0 except on a set of measure of order hκ.

We must choose κ so that semi-classical methods still work: that is,
κ < 1/2 (see Appendix A1).

In addition, we need to assume that there exists some p > 0 such that

• For all i, ‖(A2
i −Ai)ψh‖L2(M) = O(hp/2).

• For i 6= j, ‖AiAjψh‖L2(M) = O(hp/2).

In other words, the operators Ai act on ψh almost as a family of orthogonal
projectors. Because ‖ψh‖L2(M) = 1, it is always possible to construct the Ais
in order to satisfy all the requirements above; this requires moving slightly
the boundary of the partition Pi (of a distance h

1
2
( 1

2
−p)) before applying the

convolution (2.1.1). The construction is described in detail in Appendix A2.

2.2. A sub-multiplicative property. As already mentioned, we will have
to face the problem that the inequality |µh(C)| ≤ 2 e−nΛ/2

(2πh)d/2 (1 + O(ε))n is only

useful when 2 e−nΛ/2

(2πh)d/2 (1 + O(ε))n < 1, that is, n ≥ ϑ| log h| for a certain ϑ.
On the other hand, observation (a) is only useful if µh is close to being a
probability measure; semi-classical analysis tells us that this is the case on
the set of cylinders of length ≤ κ̄| log h|. A priori , κ̄ < ϑ, and to reconcile
the two regimes n ≤ κ̄| log h| and n ≥ ϑ| log h| we will need a certain sub-
multiplicativity property (Lemma 2.2.3 and 2.2.4).

We introduce, as in Theorem 1.3.3, a cut-off function χ which is compactly
supported in a neighbourhood of size ε/2 of the energy layer 1; and which is
identically ≡ 1 on a smaller neighbourhood. It should be noted that, for such
χ, we have ‖Oph(χ)ψh −ψh‖L2(M) = O(ch| log h|−1) +O(h∞), as follows from
the identity Op(1 − χ) = A(−h2∆ − 1) + R where A is a pseudo-differential
operator of order 0 and R is a smoothing operator (see Appendix A1).

Definition 2.2.1. (i) Let W be a subset of Σn, the set of n-cylinders in Σ;
we denote W c ⊂ Σn its complement. For a given h > 0 and θ ∈ [0, 1], we say
that W is an (h, (1− θ), n)-cover of Σ if∥∥∥∥∥ ∑

C∈W c

ĈhOph(χ)ψh

∥∥∥∥∥
L2(M)

≤ θ.(2.2.1)

(ii) We define

Nh(n, θ) = min {]W,W is a (h, (1− θ), n)-cover of Σ} ,

the minimal cardinality of an (h, (1− θ), n)-cover of Σ.
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Remember the notation: for C = [α0, . . . , αn−1] ∈ Σn, Ĉh stands for the
operator Ĉh = Aαn−1(n − 1). . . . Aα1(1)Aα0(0). In some sense, (2.2.1) means
that the measure of the complement of W is small. Note that we consider the
quantity ‖

∑
C∈W c ĈhOph(χ)ψh‖L2(M), and not

|
∑
C∈W c

µh(C)| = |
∑
C∈W c

〈Ĉhψh, ψh〉L2(M)|.

The reason is that we need a sub-multiplicative property of Nh(n, θ), stated
below. We will need the following lemma, proved in Appendix A1:

Lemma 2.2.2. There exist κ̄ and α > 0 such that, for all n ≤ κ̄| log h|,
for every subset W ⊂ Σn,

∥∥∥∥∥∑
C∈W
ĈhOph(χ)

∥∥∥∥∥
L2(M)

≤ 1 +O(hα).

Lemma 2.2.3 (Sub-multiplicativity 1). Suppose the (ψh) are eigenfunc-
tions; that is, (−h2∆− 1)ψh = 0.

If κ̄ and α are as in Lemma 2.2.2, then for every n ≤ κ̄| log h|, k ∈ N and
θ ∈ (0, 1),

Nh

(
kn, kθ(1 +O(nhα))

)
≤ Nh

(
n, θ
)k
.

The lemma can be adapted for approximate eigenfunctions:

Lemma 2.2.4 (Sub-multiplicativity 2). Suppose the (ψh) satisfy

‖(−h2∆− 1)ψh‖L2(M) ≤ ch| log h|−1.

If κ̄ and α are as in Lemma 2.2.2, then for every n ≤ κ̄| log h|, k ∈ N and
θ ∈ (0, 1),

Nh

(
kn,

(
kθ + k2n c| log h|−1

)
(1 +O(nhα))

)
≤ Nh

(
n, θ
)k
.

Proof. Given an (h, (1−θ), n)-cover of Σ, denotedW , we defineW k ⊂ Σkn

as the set of kn-cylinders [α0, . . . , αkn−1] such that [αjn, . . . , α(j+1)n−1] ∈W for
all j ∈ [0, k−1], and we show that W k is a (h, 1−kθ−k2n c| log h|−1, kn)-cover :

Each C ∈ (W k)c may be decomposed into the concatenation of k cylinders
of length n, C = C0C1 . . . Ck−1, one of which is not in W . Thus, we have
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(2.2.2)∥∥∥∥∥∥
∑

C∈(Wk)c

ĈhOph(χ)ψh

∥∥∥∥∥∥
L2(M)

=

∥∥∥∥∥∥
k−1∑
j=0

∑
Ci∈W for i>j,Cj∈W c,Ci∈Σn for i<j

Ĉk−1
h ((k − 1)n) . . . Ĉjh(jn) . . . Ĉ0

hOph(χ)ψh

∥∥∥∥∥∥
=

∥∥∥∥∥∥
k−1∑
j=0

∑
Ci∈W for i<j,Cj∈W c

Ĉk−1
h ((k − 1)n) . . . Ĉjh(jn)Oph(χ)ψh

∥∥∥∥∥∥ .
Using Lemma 2.2.2 to bound the norm of the operator∑

Ci∈W for i>j

Ĉk−1
h ((k − 1)n) . . . Ĉj−1

h ((j − 1)n)Oph(χ)

by (1 +O(hα))k−j , we see that (2.2.2) is less than

(1 +O(hα))n
k−1∑
j=0

‖
∑
Cj∈W c

Ĉjh(jn)Oph(χ)ψh‖

= (1 +O(hα))n
k−1∑
j=0

(
‖
∑
Cj∈W c

ĈjhOph(χ)ψh‖+O(jn c| log h|−1) + 2O(ch| log h|−1)

)
≤
(
kθ + k2n c| log h|−1

)
(1 +O(nhα)).

We used the fact that ‖
(

exp(ith∆)− e
it

h

)
ψh‖L2(M) ≤ tc| log h|−1 and the fact

that ‖Oph(χ)ψh − ψh‖L2(M) = O(ch| log h|−1) +O(h∞).

The next proposition is just an expression of Observation (a).

Proposition 2.2.5. For any K > 0, there exists hK > 0 such that for
h ≤ hK and N ≤ K| log h|,

Nh(N, θ) ≥ (1− θ)
2

(2πh)d/2eN
Λ
2 (1 +O(ε))−N .

Proof. Let W be an (h, (1− θ), N)-cover of Σ. We have

|
∑
C∈W c

〈ĈhOph(χ)ψh, ψh〉| ≤ ‖
∑
C∈W c

ĈhOph(χ)ψh‖ ≤ θ.

Using the fact that∑
C∈ΣN

〈ĈhOph(χ)ψh, ψh〉 = 〈Oph(χ)ψh, ψh〉 = 1 +O(ch| log h|−1) +O(h∞),
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we get
|
∑
C∈W
〈ĈhOph(χ)ψh, ψh〉| ≥ 1− θ +O(ch| log h|−1).

Thus,

1− θ +O(ch| log h|−1) ≤
∑
C∈W
|〈ĈhOph(χ)ψh, ψh〉| ≤ ]W

2e−N
Λ
2

(2πh)d/2
(1 +O(ε))N ,

where the last line comes from Theorem 1.3.3.

This immediately implies:

Lemma 2.2.6. Given any δ > 0, we may choose ϑ large enough, and ε

(the size of the partition) small enough, so that, for N = ϑ| log h|,

Nh(N, θ) >
(
1− θ

)
eN

Λ
2

(1− δ

16
).

As mentioned, semi-classical analysis is usually only valid until a certain
time κ̄| log h|, in general with κ̄ < ϑ. Lemma 2.2.4 is precisely the tool that
will allow us to reduce the time scale: starting from Lemma 2.2.6, it tells us
that, for N = κ̄| log h|, 0 ≤ κ̄ ≤ ϑ,

(2.2.3) Nh(N,
κ̄

ϑ
θ − cϑ) ≥ (1− θ)κ̄/ϑeN

Λ
2

(1− δ

16
).

2.3. A combinatorial lemma. Let us now put a precise statement behind
observation (b). If F is a set of small topological entropy, Lemma 2.3.1 below
says that the set of orbits spending a lot of time near F also has a small rate
of exponential growth.

Let us consider an invariant subset F ⊂ Σ of topological entropy htop(F ) ≤
Λ
2 (1 − δ). By definition, there exists n0 such that F can be covered by (at
most) en(htop(F )+ Λδ

4
) ≤ en

Λ
2

(1−δ/2) cylinders of length n, for all n ≥ n0. We
denote Wn ⊂ Σn a cover of minimal cardinality of F by n-cylinders. Given

N ∈ N, n ≤ N and τ ∈ [0, 1], we denote ΣN (Wn, τ) the set of N -cylinders
[α0, . . . , αN−1] such that

]
{
j ∈ [0, N − n], [αj , . . . , αj+n−1] ∈Wn

}
N − n+ 1

≥ τ.

The next lemma bounds the cardinality of ΣN (Wn, τ).

Lemma 2.3.1 (Counting cylinder sets). There exist n1 ≥ n0, and N0

such that, for every N ≥ N0 and for every τ ∈ [0, 1],

]ΣN (Wn, τ) ≤ eN
3Λδ
8 eNhtop(F )e(1−τ)N(1+n1) log l.
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Proof. Take n1 ≥ n0 large enough so that

lim
N−→+∞

1
N

log
(
N

bNn1
c

)
≤ Λδ

100
;

n1 is now fixed.
Given a sequence [α0 . . . , αN−1] ∈ ΣN , define a sequence of “stopping

times”:

τ0 = inf
{

0 ≤ j ≤ N − n1, [αj , . . . , αj+n1−1] ∈Wn1

}
,

τ ′0 = inf
{
τ0 ≤ j ≤ N − n1, [αj , . . . , αj+n1−1] 6∈Wn1

}
,

τ1 = inf
{
τ ′0 − 1 + n1 ≤ j ≤ N − n1, [αj , . . . , αj+n1−1] ∈Wn1

}
,

and so on:

τk+1 = inf
{
τ ′k − 1 + n1 ≤ j ≤ N − n1, [αj , . . . , αj+n1−1] ∈Wn1

}
,

τ ′k+1 = inf
{
τk ≤ j ≤ N − n1, [αj , . . . , αj+n1−1] 6∈Wn1

}
.

The sequence (τk) becomes stationary, equal to N − n1, for k ≥
⌊
N
n1

⌋
. Define

the intervals I0 = [τ0, τ
′
0 − 1 + n1 − 1],. . . ,Ik = [τk, τ ′k − 1 + n1 − 1]. If C =

[α0, . . . , αN−1] is in ΣN (Wn1 , τ), then the complement of ∪Ik has cardinality
less than (1− τ)(N − n1 + 1) + n1 ≤ (1− τ)N + n1.

A cylinder C = [α0, . . . , αN−1] ∈ ΣN (Wn1 , τ) is completely determined by
the following data:

(i) the intervals (Ik)0≤k≤bN/n1c,

(ii) the restriction of C to the union of the Iks,

(iii) the values of C outside the Iks.

Let us count in each case the number of possibilities:

(i) There are at most
(

N
bN/n1c

)2
possibilities, corresponding to the choices

of the endpoints of the intervals Ik; by our choice of n1, for N large enough
this is less than eN

Λδ
50 .

(ii) Each Ik can be split into a disjoint union of intervals of length n1 and
at most one interval of length less than n1. The intervals of length (exactly)
n1 thus obtained are at most N/n1, and they correspond to cylinders covering
F : there are at most (]Wn1)N/n1 possibilities. If n1 ≥ n0 this is less than(
en1(htop(F )+ Λδ

4
)
)N/n1

= eN(htop(F )+ Λδ
4

). For the remaining intervals, of length

strictly less than n1, there can be at most (1−τ)N of them; this gives l(1−τ)Nn1

possibilities.
(iii) For the values of α outside the Iks, the number of possible choices is

bounded by l(1−τ)N+n1 . Choose N0 such that ln1 ≤ eN0
Λδ
50 .

This ends the proof of Lemma 2.3.1.
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Remark 2.3.2. This estimate is very crude, since we argued as if all choices
in (i), (ii) and (iii) were independent.

We can now choose τ ∈ (0, 1) close enough to 1 so that

htop(F ) + (1− τ)N(1 + n1) log l +
3Λδ

8
≤ Λ

2

(
1− δ

8

)
;

now,

(2.3.1) ]ΣN (Wn, τ) ≤ eN
Λ
2 (1− δ

8),

for all N large enough.
Comparing (2.3.1) with (2.2.3), for h small enough and N = κ̄| log h|, we

have necessarily:

(2.3.2)

∥∥∥∥∥∥
∑

C∈ΣN (Wn1 ,τ)c

ĈhOph(χ)ψh

∥∥∥∥∥∥
L2

≥ κ̄

ϑ
θ − cϑ.

This is an attempt to say that the measure of the complement of ΣN (Wn1 , τ)
cannot be too small. We now have to relate (2.3.2) and

|µh(ΣN (Wn1 , τ)c)| =

∣∣∣∣∣∣
∑

C∈ΣN (Wn1 ,τ)c

〈Ĉhψh, ψh〉

∣∣∣∣∣∣ .
This is done in the next two paragraphs, and goes roughly as follows:

Imagine that the operators ĈhOph(χ) are orthogonal projectors, with or-
thogonal images for distinct cylinders C. Ideally, this would be the case if:

– the operators Ai were a family of orthogonal projectors (that is, if the
functions Ai were characteristic functions of disjoint sets);

– the operators Ai(t) commuted with one another for all t. If so, we could
write ∑

C∈ΣN (Wn1 ,τ)c

〈ĈhOph(χ)ψh, ψh〉=
∑

C∈ΣN (Wn1 ,τ)c

‖ĈhOph(χ)ψh‖2L2(2.3.3)

= ‖
∑

C∈ΣN (Wn1 ,τ)c

ĈhOph(χ)ψh‖2L2

so that (2.3.2) would imply the lower bound

|µh(ΣN (Wn1 , τ)c)| ≥
( κ̄
ϑ
θ − cϑ

)2

+
.

The Ais, unfortunately, are not characteristic functions of disjoint sets; they
form a smooth partition of unity; and the operators Ai(t) do not commute.
However,

– we have constructed the Ai so that they act on ψh almost as an orthogonal
family of projectors.
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– there exists κ̄ > 0 such that the operators Ai(t) almost commute for
|t| ≤ κ̄| log h|:

Proposition 2.3.3. For all κ̄ > 0, for every N ≤ 2κ̄| log h|, for every
permutation τ of {0, . . . , N}, for every sequence t0, . . . , tN such that |ti| ≤
κ̄| log h|, for every sequence α0, . . . , αN ,

‖Oph(χ)∗AαN (tN ) . . . ..Aα1(t1)Aα0(t0)Oph(χ)

−Oph(χ)∗Oph(χ)AατN (tτN ) . . . ..Aατ1(tτ1)Aατ0(tτ0)‖L2(M) = O(h1−2κ−3Λκ̄).

The proof is given in Appendix A1. This gives hope to prove (2.3.3), at
least up to a negligible remainder term:

2.4. Relating ‖
∑
ĈhOph(χ)ψh‖ and

∑
〈Ĉhψh, ψh〉. Remember that we

constructed the partition of unity (Ahi ) in such a way that:
There exists p > 0 such that

‖(A2
i −Ai)ψh‖L2(M) = O(hp/2) and ‖AiAjψh‖L2(M) = O(hp/2),

for all i and all j 6= i. Let us choose the parameter κ̄ so that the conclusion
of Proposition 2.3.3 holds. This ensures that there is no harm in treating the
Ĉh as orthogonal projectors in (2.3.2). Using Proposition 2.3.3, which allows
commutation of the operators Ai(t) and Oph(χ), for |t| ≤ κ̄| log h|, we find
that, for N ≤ κ̄| log h|, for C, C′ ∈ ΣN , C 6= C′,

|〈ĈhOph(χ)ψh, Ĉ′hOph(χ)ψh〉| = O(h1−2κ−3Λκ̄) +O(hp/2),

and

|〈ĈhOph(χ)ψh,Oph(χ)ψh〉 − 〈ĈhOph(χ)ψh, ĈhOph(χ)ψh〉|
= N

(
O(h1−2κ−3Λκ̄) +O(hp/2)

)
.

Then, for N ≤ κ̄| log h|,∑
C,C′∈ΣN ,C 6=C′

|〈ĈhOph(χ)ψh, Ĉ′hOph(χ)ψh〉| =
(
O(h1−2κ−3Λκ̄) +O(hp/2)

)
]Σ2

N

and∑
C∈ΣN

|〈ĈhOph(χ)ψh,Oph(χ)ψh〉 − 〈ĈhOph(χ)ψh, ĈhOph(χ)ψh〉|

= N
(
O(h1−2κ−3Λκ̄) +O(hp/2)

)
]ΣN .

Since the cardinality of ΣN grows exponentially, we take κ̄ small enough so
that, for N ≤ κ̄| log h|,∑

C,C′∈ΣN ,C 6=C′
|〈ĈhOph(χ)ψh, Ĉ′hOph(χ)ψh〉| = O(hκ̄)
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and∑
C∈ΣN

|〈ĈhOph(χ)ψh,Oph(χ)ψh〉 − 〈ĈhOph(χ)ψh, ĈhOph(χ)ψh〉| = O(hκ̄).

Remember also that ‖(Oph(χ) − 1)ψh‖L2(M) = O(ch) + O(h∞). For κ̄ small
enough and N ≤ κ̄| log h|, we find for every subset S ⊂ ΣN ,∑

C∈S
|µh(C)|= |

∑
C∈S

µh(C)|+O(hκ̄)(2.4.1)

=
∑
C∈S
‖ĈhOph(χ)ψh‖2 +O(hκ̄)(2.4.2)

= ‖
∑
C∈S
ĈhOph(χ)ψh‖2 +O(hκ̄).(2.4.3)

The point is that, when working on cylinders of size κ̄| log h|, the measure µh
is nonnegative, up to a negligible remainder term. The first line implies in
particular that

(2.4.4)
∑
C∈ΣN

|µh(C)| = 1 +O(hκ̄).

Coming back to (2.3.2), we get for N = κ̄| log h|, and n1 as in Lemma 2.3.1,∑
C∈ΣN (Wn1 ,τ)c

|µh(C)| ≥
( κ̄
ϑ
θ − cϑ

)2

+
+O(hκ̄)

and, because of (2.4.4),

(2.4.5)
∑

C∈ΣN (Wn1 ,τ)

|µh(C)| ≤ 1−
( κ̄
ϑ
θ − cϑ

)2

+
+O(hκ̄).

2.5. End of the proof. We use the σ-invariance of µh (Prop. 1.3.1 (ii)),
and we get, for N = κ̄| log h|,

|µh(Wn1)| ≤ | 1
N − n1

N−n1−1∑
k=0

µh(σ−kΣ(Wn1))|+ cκ̄(2.5.1)

= |µh
( 1
N − n1

N−n1−1∑
k=0

1Iσ−kΣ(Wn1 )

)
| + cκ̄(2.5.2)

≤
∑

C∈ΣN (Wn1 ,τ)

|µh(C)|+ τ
∑

C6∈ΣN (Wn1 ,τ)

|µh(C)| + cκ̄(2.5.3)

≤ (1− τ)
∑

C∈ΣN (Wn1 ,τ)

|µh(C)|+ τ + cκ̄+O(hκ̄)(2.5.4)

≤ (1− τ)
(

1−
( κ̄
ϑ
θ − cϑ

)2

+

)
+ τ + cκ̄+O(hκ̄).(2.5.5)
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For (2.5.3), we have used the fact that

1
N − n1

N−n1−1∑
k=0

1Iσ−kΣ(Wn1 ) ≤ 1,

in general, and that

1
N − n1

N−n1−1∑
k=0

1Iσ−kΣ(Wn1 ) ≤ τ

on ΣN (Wn1 , τ)c. In the next line, we have used (2.4.4); and we conclude thanks
to (2.4.5). Then, by Proposition 1.3.2, we can pass to the limit in (2.5.5), and
obtain

µ0(Wn1) ≤ (1− τ)
(

1−
( κ̄
ϑ
θ − cϑ

)2

+

)
+ τ + cκ̄.

Since F ⊂Wn1 , finally,

µ0(F ) ≤ (1− τ)
(

1−
( κ̄
ϑ
θ − cϑ

)2

+

)
+ τ + cκ̄.

Noting that this last estimate holds for every θ < 1, we get

µ0(F ) ≤ (1− τ)
(

1−
( κ̄
ϑ
− cϑ

)2

+

)
+ τ + cκ̄

which proves Proposition 2.0.4.

3. The main estimate

We prove Theorem 1.3.3 about the norm of the operator

Aαn(n) . . . Aα0Op(χ) = U−nAαnUAαn−1 . . . UAα0Op(χ)

(where we denote for simplicity U t = exp(ith∆
2 ) and U = U1). Since U t is

unitary, the norm of this operator is the same as the norm of AαnUAαn−1 . . .

. . . UAα0Op(χ).
The pseudo-differential operator Op(χ) is defined as (see Appendix A1)

Op(χ) =
∑
l

ϕl OP(χ) ϕl

where (ϕl) is an auxiliary partition of unity on M (
∑

l ϕl(x)2 ≡ 1) such that the
support of each ϕl is endowed with local coordinates in Rd. In local coordinates
in the support of ϕl, OP(χ) is then defined by the usual formula,

(3.0.1) OP(χ)f(x) = (2πh)−d
∫
f(z)ei

〈p,x−z〉
h χ(z, p)dzdp.
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The function χ will be chosen in the form χ(z, p) = χ1(‖p‖z) where χ1 is
a smooth function on R+ supported in [1 − ε/2, 1 + ε/2] with χ1 ≡ 1 in a
neighbourhood of 1. For x ∈ Ωα0 , we can write

(3.0.2) Op(χ)u(x) =
∫
u(z)δz(x)dz,

where we denote δz the function

(3.0.3) δz(x) =
∫
e
i〈p,x−z〉

h χ(z, p)
dp

(2πh)d
.

To be more precise, we should use an auxiliary partition of unity as in (3.0.1),
and write Op(χ)u(x) =

∑
l ϕl(x)

∫
ϕl(z)u(z)δz(x)dz; expressions such as (3.0.3)

should then be understood in local coordinates in the support of each ϕl. For
simplicity, and because these ϕl will play no role in the estimates, they will
not appear any more in the formulae.

If we can estimate the norm of AαnUAαn−1 . . . UAα0δz for any z, we can
use (3.0.2) to estimate the norm of AαnUAαn−1 . . . UAα0Op(χ)u for arbitrary
u. The estimates will be done by induction on n: we will propose an Ansatz
– that is, an approximate expression – for AαnUAαn−1 . . . UAα0δz, valid for
“large” n.

3.1. The Ansatz for n = 1. This first step is very standard, but we recall
the main ideas in order to fix our notation. We look for an Ansatz for U t.Aα0δz,
in the form

(3.1.1) u(t, x, z) =
∫
e
iS̄0(t,x,(z,p))

h

(
N−1∑
k=0

hkak(t, x, (z, p))

)
χ(z, p)

dp

(2πh)d
.

If we want u to solve
∂u

∂t
= ih

∆xu

2
up to order hN , the unknown functions S̄0 and ak should solve the partial
differential equations

(3.1.2)


∂S̄0
∂t +H(x, dxS̄0) = 0 (Hamilton-Jacobi equation)

∂ak
∂t = i∆ak−1

2 − 〈dak, dS̄0〉 − ak∆S̄0
2 (transport equation)

with initial conditions
S̄0(0, x, (z, p)) = 〈p, x− z〉

a0(0, x, (z, p)) = Aα0(x)

ak(0, x, (z, p)) = 0 for k > 1.

The Hamiltonian is, of course, given by the Riemannian metric, H(x, p) = ‖p‖2x
2 .
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Remark 3.1.1. Since the base point z is fixed in all the following calcula-
tions, we will omit it in the notation until Lemma 3.2.1.

Let us introduce the notation T s,t
S̄0(p)

(s ≤ t) for the unitary “flow” giving
the solutions of the time dependent equation

∂a

∂t
= −〈dxa, dxS̄0(t, x, p)〉 − a∆xS̄0(t, x, p)

2
with initial data a(s). The explicit expression is

(3.1.3) T s,t
S̄0(p)

(a)(x) =
a ◦ g−(t−s)(x, dxS̄0(t, x, p)

)√
Js,t
S̄0(p)

(x)

where gt is the geodesic flow; the function Js,t
S̄0(p)

defined on M is itself the
solution of

∂tJ
s,t
S̄0(p)

(x)

Js,t
S̄0(p)

(x)
+
〈dxJs,tS̄0(p)

, dxS̄0(t, x, p)〉

Js,t
S̄0(p)

(x)
= ∆xS̄0(t, x, p)

with initial condition Js,s
S̄0(p)

= 1. The solution of this equation is
(3.1.4)

Js,t
S̄0(p)

(
gt−s(x, dxS̄0(s, x, p))

)
= exp

∫ t

s
∆S̄0

(
τ, gτ−s(x, dxS̄0(s, x, p))

)
dτ ;

the interpretation is that Js,t
S̄0(p)

(
gt−s(x, dxS̄0(s, x, p))

)
is the jacobian of the

flow gt−s restricted to the lagrangian submanifold generated by S̄0(s, p), namely
LS̄0(s,p) = {(x, dxS̄0(s, x, p))}.

Remark 3.1.2. To give meaning to formulae such as (3.1.3) or (3.1.4), we
see functions onM as functions on the cotangent bundle, depending only on the
position. In other words, when we consider the function x 7→ gt(x, dS(x)) we
actually have in mind x 7→ πgt(x, dS(x)), where π is the projection T ∗M →M .

We have
a0(t, p) = T 0,t

S̄0(p)
Aα0 ,

and by the Duhamel formula,

ak(t, p) =
∫ t

0
T s,t
S̄0(p)

(
i∆ak−1

2

)
(s, p)ds.

The function u(t, x) (3.1.1) now satisfies the approximate equation

∂u

∂t
= ih

∆u
2
− ihN

∫
e
iS̄0(t,x,p)

h
∆aN−1

2
(t, x, p)χ(p)

dp

(2πh)d
;

the difference from the actual solution (with the same initial data) is bounded
by hN−d‖∆aN−1‖L2 ≤ hN−d‖Aα0‖C2N in L2 norm.
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At this stage, the Ansatz reads

(3.1.5) u(t, x) =
∫
e
iS̄0(t,x,p)

h

(
N−1∑
k=0

hkak(t, x, p)

)
χ(p)

dp

(2πh)d
.

For t away from 0, we can use the stationary phase method with respect to p
and replace (3.1.5) by an expression of the form

u(t, x) = (2πh)−d/2e
iS0(t,x)

h

(
N−1∑
k=0

hkb0k(t, x)

)

up to an error O(hN )‖Aα0‖C2N , where

S0(t, x) = S̄0(t, x, p(t, x))

b00(t, x) = a0(t, x, p(t, x))χ(p(t, x));

p(t, x) is the vector based at z, which allows reaching x in time t (unique if we
ask χ(p(t, x)) 6= 0). More generally, b0k(t, x) is a linear combination of

D2k
p a0(t, x, p(t, x))χ(p(t, x)),

D2(k−1)
p a1(t, x, p(t, x))χ(p(t, x)), . . . , ak(t, x, p(t, x))χ(p(t, x)),

and hence involves 2k derivatives of Aα0 :

(3.1.6) |dmx b0k(t, x)| ≤ C(m+ 2k)h−κ(m+2k)

(with C(0) = 1).
Taking t = 1, we find the expression

(3.1.7) u(1, x) = (2πh)−d/2e
iS0(1,x)

h

(
N−1∑
k=0

hkb0k(1, x)

)

as an approximation expression for UAα0δz, the difference from the actual
solution being bounded by hN−d‖Aα0‖C2N . Geometrically, the function S0(t, x)
(when restricted to x ∈ Ωα1) is the generating function of the lagrangian
manifold

LS0(t) := {(x, dxS0(t, x)), x ∈ Ωα1} = {(x, ξ) ∈ T ∗M,x ∈ Ωα1 ,

∃p ∈ T ∗zM s.t. ‖p‖z ∈ [1− ε/2, 1 + ε/2], (x, ξ) = gt(z, p)},

which is a union of “spheres” centered at z.

3.2. The Ansatz for n > 1. By induction on n, we now propose an Ansatz
for U tAαn . . . UAα1UAα0δz (0 ≤ t ≤ 1). Starting from (3.1.7) we need to find
an Ansatz for
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U tAαn . . . Aα2UAα1

(
e
iS0(1,x)

h

(
N−1∑
k=0

hkb0k(1, x)

))
.

We will use Φ(x) = e
iS0(1,x)

h (
∑N−1

k=0 hkb0k(1, x)) as a shorthand notation.

3.2.1. The functions Sn. The function S0(t) (0 < t ≤ 1) was defined in the
previous paragraph. We define Sk by induction: Given Sk−1(t) (0 < t ≤ 1),
we define Sk(t) as solution of the Hamilton-Jacobi equation

∂S

∂t
+H(x, dxS) = 0

with initial data Sk(0) = Sk−1(1); by the assumption about the injectivity
radius, no caustics are met for t ≤ 1, thus Sk(t) is well defined as a smooth
function on Ωαk+1 . If we denote

LSk(t) := {(x, dxSk(t, x)), x ∈ Ωαk+1}

the lagrangian manifold generated by Sk(t) , we have

LSk(t) ⊂ gtLSk(0) = gtLSk−1(1).

For an Anosov flow, the sphere bundle is transverse to the weak stable foliation.
The lagrangian LS0(1) ⊂ T ∗M is a union of (pieces of) spheres centered at z:
as a consequence, LSk(1) becomes exponentially close, as k −→ +∞, to a union
of (pieces of) unstable leaves.

3.2.2. The Ansatz. By induction on n, we define a sequence of func-
tions, bnk(t, x) (n ∈ N, k ≤ N , x ∈ M , t ∈ [0, 1]) such that an Ansatz for
U tAαn . . . Aα2UAα1 .Φ reads

U tAαn . . . Aα2UAα1 .Φ ∼ e
iSn(t,x)

h

(
N−1∑
k=0

hkbnk(t, x)

)
+RnN (t, x)

with a remainder term of order hN . We can make explicit the recurrence rela-
tion giving (bnk)k=0,...,N−1 in terms of (bn−1

k )k=0,...,N−1, as well as the remainder
term RnN :

Suppose that the Ansatz found at the previous step gave the expression

U tAαn−1 . . . Aα2UAα1 .Φ = e
iSn−1(t,x)

h

(
N−1∑
k=0

hkbn−1
k (t, x)

)
+Rn−1

N (t, x)

where Rn−1
N is a remainder term which we know how to control in L2 norm.

Then

U tAαn . . . Aα2UAα1 .Φ = U t

(
e
iSn−1(1,x)

h

(
N−1∑
k=0

hkcn−1
k (1, x)

))
+U tAαn

(
Rn−1
N

)
(x)
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where cn−1
k (t, x) = Aαn(x)bn−1

k (t, x). We now propose an Ansatz for

U t

(
e
iSn−1(1,x)

h

(
N−1∑
k=0

hkcn−1
k (1, x)

))
in the form

(3.2.1) vn(t, x) = e
iSn(t,x)

h

(
N−1∑
k=0

hkbnk(t, x)

)
.

For v to be an approximate solution of ∂tv = ih∆v
2 the coefficients should be

solutions of 
∂Sn
∂t +H(x, dxSn) = 0

∂bnk
∂t = i∆bnk−1

2 − 〈dbnk , dSn〉 −
bnk∆Sn

2

with initial conditions 
Sn(0, x) = Sn−1(1, x),

bnk(0, x) = cn−1
k (1, x).

Then vn solves ∂vn

∂t (t, x) = ih∆vn

2 (t, x)−ihNe
iSn(t,x)

h
∆bnN−1(t,x)

2 . By the Duhamel
formula,

U t

(
e
iSn−1(1,x)

h

(
N−1∑
k=0

hkcn−1
k (1, x)

))

= vn(t, x) + ihN
∫ t

0
e
i(t−s)h∆

2

(
e
iSn(s,x)

h

∆bnN−1(s, x)
2

)
ds.

We find the recurrence relation for the remainder terms:

RnN (t, x) = U tAαn
(
Rn−1
N

)
(x) + ihN

∫ t

0
e
i(t−s)h∆

2

(
e
iSn(s,x)

h

∆bnN−1(s, x)
2

)
.

This gives
(3.2.2)
‖RnN‖L2(M) ≤ ‖Rn−1

N ‖L2(M) + hN‖∆bnN−1‖2 ≤ ‖Rn−1
N ‖L2(M) + hN‖∆bnN−1‖∞.

The recurrence relations for the coefficients bnk can be written

(3.2.3) bnk(t, x) = T 0,t
Sn
cn−1
k (1, x) +

∫ t

0
T s,tSn

(
i∆
2
bnk−1(s, x)

)
ds

(cn−1
k = Aαn .b

n−1
k )

where

T s,tSn a(x) =
a ◦ g−(t−s)(x, dxSn(t, x)

)√
Js,tSn (x)
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and JSn is the jacobian of the geodesic flow acting on the lagrangian manifold
generated by Sn (defined as in (3.1.4) with S̄0(p) replaced by Sn). Since a
cut-off function Aαn is inserted at each recurrence step, no caustics are ever
met, and formula (3.2.1) defines a smooth function on M .

In vectorial notation, we can write bn = (bn0 , . . . , b
n
N−1) ∈ C∞([0, 1],M)N .

The recurrence relation becomes (I − Ln1 )bn = Ln0b
n−1 where Ln0 , L

n
1 act on

C∞([0, 1),M)N as follows,

Ln0 =


En 0

0
. . .
. . . . . .

0 0 En

 (a “diagonal” matrix)

and

Ln1 =


0 0

Fn∆
.. .
. . . . . .

0 Fn∆ 0

 (a “nilpotent” operator),

with

(Enf)(t) = T 0,t
Sn

(Aαnf(1)) and (Fnf)(t) =
i

2

∫ t

0
T s,tSn f(s)ds.

The recurrence relation can be inverted,

bn =

(
N−1∑
k=0

[Ln1 ]k
)
Ln0 b

n−1.

It is easy to iterate this formula. We note that

[Ln1 ]knLn0 [Ln−1
1 ]kn−1Ln−1

0 · · · [L1
1]k1L1

0 = 0

unless k1 + · · ·+ kn ≤ N − 1. Thus, the formula expressing bn in terms of b0 is

bn =
∑

k1+···+kn≤N−1

[Ln1 ]knLn0 [Ln−1
1 ]kn−1Ln−1

0 · · · [L1
1]k1L1

0 b
0.

In the end, the formula expressing bnk in terms of b0k (k = 0, . . . , N − 1) is

bnk =
∑

j=0,...,N−1

 ∑
k1+···+kn=k−j≤N

(Fn∆)knEn(Fn−1∆)kn−1En−1 · · · (F 2∆)k1E1

 b0j .

We see in particular that the total number of derivatives of b0 involved is never
more than 2N .
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3.2.3. Higher derivatives. We need to control the derivatives dmbnk for
m ≤ 2(N − k). Using the previous ideas we write a recurrence relation giving

Bn = Bn(t, x) :=
(
bn0 (t, x), dbn0 (t, x), . . . . . . . . . , d2Nbn0 (t, x),

bn1 (t, x), dbn1 (t, x), . . . , d2(N−1)bn1 (t, x),

. . . ,

bnN−1(t, x), . . . , d2bnN−1(t, x)
)

in terms of Bn−1 (x ∈ M, t ∈ [0, 1]). In accordance with this disposition in
array, we will denote B(k,m) = dmbk (0 ≤ k ≤ N − 1,m ≤ 2(N − k)).

Differentiating the recurrence relation (3.2.3) with respect to x, we get a
relation of the form

dmbnk(t, x) =
∑
j≤m

T 0,t
Sn
djcn−1

k (1, x).θnmj(x)(3.2.4)

+
∑
j≤m

∫ t

0
T s,tSn d

j+2bnk−1(s, x).αnmj(s, x)ds.

(cn−1
k = Aαnb

n−1
k ).

In this formula we denote

T s,tSn d
ja(x) =

djag−(t−s)(x,dSn(t,x))√
Js,tSn (x)

,

θnmj(x) is an m-linear form sending (TxM)m to (Tg−t(x,dSn(t,x))M)j , αnmj(s, x)
is an m-linear form sending (TxM)m to (Tg−(t−s)(x,dSn(t,x))M)j+2.

The functions θ and α are uniformly bounded. We do not need to know
their explicit expression, except for θnmm: the latter can easily be shown to be

θnmm(x) = (dg−t(x,dSn(t,x)))
⊗m.

In these formulae, x 7→ g−t(x,dSn(t,x)) is seen as a function from M to itself; see
Remark 3.1.2.

In vectorial form, the recurrence relation (3.2.4) can be written as

(I −Mn
1 )Bn = (Mn

0,0 +Mn
0,1)Bn−1,

where Mn
1 is the nilpotent operator of order N ,

Mn
1 B

n =

∑
j≤m

∫ t

0
T s,tSn d

j+2bnk−1(s, x).αnmj(s, x)ds


0≤k≤N−1, 0≤m≤2(N−k)

,

Mn
0,0 is the diagonal operator

Mn
0,0B

n−1 =
(
T tSnd

mcn−1
k (1, x).θnmm(x)

)
0≤k≤N−1, 0≤m≤2(N−k)

,
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and M0,1 is the nilpotent operator of order ≤ 2N ,

M0,1B
n−1 =

∑
j<m

T 0,t
n djcn−1

k .θnmj


0≤k≤N−1, 0≤m≤2(N−k)

.

As before, the recurrence relation can be inverted:

Bn =

∑
k≤N

[Mn
1 ]k

(Mn
0,0 +Mn

0,1

)
Bn−1,

then iterated,

(3.2.5) Bn =
∑

k1,...,kn,ε1,...,εn

[Mn
1 ]knMn

0,εn . . . [M
1
1 ]k1M1

0,ε1B
0.

Because of the special forms of Mn
1 and Mn

0,1, the only terms that contribute
to Bn

(k,m) are those for which
∑
ki ≤ k,

∑
εi ≤ m+ 2(

∑
ki) (hence

∑
ki ≤ N

and
∑
εi ≤ 2N).

Call C a uniform bound for the differential forms θ and α. Remember
that cn−1

k = Aαnb
n−1
k , with ‖DmAαn‖ ≤ C(m)h−κm. It follows easily that the

operators of type M1 and M0,1 satisfy bounds of the form

sup
t∈[0,1]

|(M1B(t, x))(k,m)|

≤ C sup
t∈[0,1]

sup
m′≤m+2

|B(t, x)(k−1,m′)|C(m+ 2−m′)h−κ(m+2−m′)

and

sup
t∈[0,1]

|(M0,1B(t, x))(k,m)|

≤ C sup
t∈[0,1]

sup
m′≤m−1

|B(t, x)(k,m′)C(m− 1−m′)|h−κ(m−1−m′).

For M0,0, we have, for every (k,m) (0 ≤ k ≤ N−1,m ≤ 2(N−k)) and every x,

∣∣(Mn
0,0B(t, x))(k,m)

∣∣ ≤ 1√
J0,n
Sn

(x)

∣∣∣B(1, g−t(x, dSn(t, x)))(k,m).(dg
−t
(x,dSn(t,x)))

⊗m
∣∣∣ .

If we put this estimate in (3.2.5), and use the composition property for the
jacobian, J0,t

Sk
(x)Js,1Sk−1

(g−t(x, dSk(x, t)) = Js,t+1
Sk−1

(x), we find
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(3.2.6) |Bn(1, x)(k,m)| ≤ C̃(k,m)
1√

J0,n
S1

(x)

∑
P
ki≤k,

P
εi≤m+2k

C
P
ki+

P
εi

·

(
sup

(k′≤k,m′≤m+2k)

h−κ(m+2(k−k′)−m′)
∣∣∣dm′b0k′(0, g−n(x, dSn(1, x)))

∣∣∣ ∣∣∣dg−n(x,dSn(1,x))

∣∣∣m′)

≤ C̃(k,m)
1√

J0,n
S1

(x)

( ∑
P
ki≤k,

P
εi≤m+2k

1
)
Cm+3kh−κ(m+2k) sup

m′≤m

∣∣∣dg−n(x,dSn(1,x))

∣∣∣m′ .
We used (3.1.6) in the last line. Although it does not really matter, we note
that C(0, 0) = 1.

Let us inspect the behaviour of each term when n gets large. The term
J0,n
S1

(x) is the same as the product

J0,1
Sn

(x)J0,1
Sn−1

(
g−1(x, dSn(1, x))

)
. . . J0,1

Sk

(
g−(n−k)(x, dSn(1, x))

)
. . . J0,1

S1

(
g−(n−1)(x, dSn(1, x))

)
.

Note that
(
J0,n
S1

(x)
)−1 is the jacobian of g−n, going from the lagrangian LSn(1)

to LS1(0), evaluated at (x, dSn(1, x)). As we saw, LSk(1) converges uniformly
to a weak-unstable leaf as k gets large, so that

(
J0,1
Sk

(g−(n−k)(x, dSn(1, x))
)−1

converges to Ju
(
g−(n−k+1)(x, dSn(1, x)) for large k. Taking Cesaro means, we

have
1
n

log J0,n
S1

(x) +
1
n

n∑
k=1

log Ju
(
g−(n−k+1)(x, dSn(1, x))

)
−→ 0.

It follows that we can bound (JnS1
(x))−1/2 ≤ Jun (α0, . . . , αn)1/2(1 + O(ε))n for

large n.
The next point is to note that |dg−n(x,dSn(1,x))| grows polynomially in n

(uniformly in x ∈ M): if L is a d-dimensional submanifold, transversal to the
strong stable foliation, then dg−n is bounded on gnL, independently of n. We
apply this principle to L = LS1(0). There is a polynomial correction due to the
fact that L is not contained in a fixed energy layer; the energy can vary in the
interval [1 − ε/2, 1 + ε/2], so we also have to take into account the derivative
of gn with respect to energy, which grows linearly in n.

Finally we note that the number of terms (
∑P

ki≤k,
P
εi≤m+2k 1) in (3.2.6)

is polynomial in n, it is at most C̃(k,m)nm+3k. We have proved the following
estimates (we reinsert the variable z that was omitted in the calculations; see
Remark 3.1.1):

Lemma 3.2.1. For all k ≤ N , for all m ≤ 2(N − k), for all n,

|dmbnk(1, x, z)| ≤ C(k,m)nm+3kJun (α0, . . . , αn)1/2(1 +O(ε))nh−κ(m+2k),

if x is such that g−k(x, dSn(1, x, z)) ∈ Ωαn+1−k for all k = 0, . . . , n. Otherwise,
bnk(1, x, z) ≡ 0.
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Comparing with (3.2.1), (3.2.2), we find

Lemma 3.2.2.

|vn(1, x, z)| ≤ Jun (α0, . . . , αn)1/2(1 +O(ε))n
N−1∑
k=0

C(k, 0)n3khk(1−2κ);

‖RnN‖L2(M) ≤ nhN sup
k≤N−1,m≤2(N−k)

|dmb0k| ≤ nhNC(N)h−2κN .

We can now prove:

Corollary 3.2.3. For any K > 0, there exists hK such that, for all
h < hK,

‖UAαnUAαn−1 . . . UAα0Op(χ)δz‖L2(M)

≤ 2(2πh)−d/2Jun (α0, . . . , αn)1/2(1 +O(ε))n

uniformly for n ≤ K| log h| and z in M .

Proof. We have

‖UAαnUAαn−1 . . . UAα0Op(χ)δz − (2πh)−d/2vn(1, ., z)‖L2(M)

≤ (2πh)−d/2‖RnN‖L2(M).

Let K > 0 be given. We can choose N large enough, and hK such that

(2πh)−d/2nC(N)hN(1−2κ) << Jun (α0, . . . , αn)1/2(1 +O(ε))n

for n ≤ K| log h| and h < hK. This ensures that the remainder term RnN
is negligible. We also choose hK such that

∑N−1
k=0 C(k, 0)n3khk(1−2κ) ≤ 2 if

h < hK.

Theorem 1.3.3 is now a direct consequence of this corollary and of the
decomposition (3.0.2).

4. Appendix A1: Small scale differential calculus

4.1. Definition of Oph. Let Ω ⊂ Rd be an open set, and U = Ω×Ω. The
space of symbols of order m is defined as:

Σm(U × Rd) :=
{
a ∈ C∞(U × Rd; C)/

for every compact K ⊂ U, for all α, β, there exists C,

|Dα
zD

β
ξ a(z, ξ)| ≤ C(1 + |ξ|)m−|β| for all (z, ξ) ∈ K × Rd

}
.

We denote Σ−∞ = ∩m∈ZΣm the space of regularizing symbols – it contains in
particular the space of smooth compactly supported functions, C∞c (U × Rd).



468 NALINI ANANTHARAMAN

Semi-classical symbols of order m and degree l (depending on a small
parameter h) are defined as follows:

Σm,l = {ah(z, ξ) = hl
∞∑
j=0

hjaj(z, ξ), aj ∈ Σm−j}.

This means that ah(x, ξ) has an asymptotic development in powers of h, in the
sense that

a− hl
N−1∑
j=0

hjaj ∈ hl+NΣm−N

uniformly in h. In this semiclassical context, the space of regularizing symbols
is Σ−∞,+∞ = ∩m≥0Σ−m,m.

Let a = a(x, y; ξ) ∈ Σm,l
c (Ω × Ω × Rd). The subscript c means that the

support of a in Ω × Ω is proper; in other words, for every compact K ⊂ Ω,
there exists a compact K ′ ∈ Ω such that a(x, y, ξ) = 0 for x ∈ K and y 6∈
K ′. Define OP(a)u(x) = (2πh)−d

∫
e
i

h
(x−y|ξ)a(x, y, ξ)u(y)dydξ, well defined if

u is smooth. Denote Ψm,l
c (Ω) the space of these operators, called (proper)

pseudo-differential operators of degree l and order m; Ψ−∞,∞c (Ω) consists of
regularizing operators, which means here that the kernel is smooth and all its
derivatives are O(h∞) uniformly on compact sets. An operator in Ψ0,0

c (Ω) acts
continuously from L2(Ω) to L2

loc(Ω), uniformly in h. There exists an integer
Nd depending on the dimension d such that, for all a ∈ Σ0,0

c , for every compact
set K, ‖OPh(a)‖L2(K) ≤ (‖a‖0,K + h1/2‖Da‖0,K + · · ·+ hNd/2‖DNda‖0,K).

Now let M be a smooth compact d-dimensional manifold. Choose a finite
partition of unity ϕl (

∑
ϕ2
l ≡ 1), such that the support of each ϕl is endowed

with local coordinates in Rd; for a ∈ Σm,0(T ∗M), we define :

Oph(a) =
∑
l

OP(ϕl(x)ϕl(y)a(x, ξ)) ,

where each term in the sum is defined in local coordinates thanks to the pre-
vious formula. The map a 7→ Oph(a) thus defined depends on the choice of
the partition of unity, and of local coordinates. Its image, however, is well de-
fined up to regularizing operators. The algebra Ψm,0(M) of pseudodifferential
operators on M is thus well defined, modulo regularizing operators.

4.2. Small scale symbols. We defined Oph(a) when ah(x, ξ) is smooth
and has a nice behaviour when ξ −→ ∞, h −→ 0. However, a more careful
study shows that certain aspects of the theory are still valid if the derivatives
of the symbols are allowed to explode at a reasonable rate, when h −→ 0. The
theory is developed in detail in [DS]; we just point out a few facts that are
useful in the paper. The main tool is the following variant of the stationary
phase method.
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Lemma 4.2.1. Let (a(h))h∈(0,1] be a family of C∞ functions on Rd × Rd,
with a fixed compact support, and satisfying the following estimates on the
derivatives:

‖Dna(h)‖0 ≤ Cnh−nκ

for all n ∈ N, for some κ ∈ [0, 1/2) and some sequence of positive real numbers
(Cn).

(i) The integral
∫

Rd×Rd a
(h)(x, ξ)e

i〈ξ,x〉
2h dxdξ obeys the following asymptotics

as h −→ 0:
1

(2πh)d

∫
Rd×Rd

a(h)(x, ξ)e
i〈ξ,x〉

2h dxdξ = a(h)(0, 0) +O(h1−2κ).

One can even write an asymptotic development to all orders in powers
of h.

(ii) If, for all h, 0 6∈ supp a(h), then

1
(2πh)d

∫
Rd×Rd

a(h)(x, ξ)e
i〈ξ,x〉

2h dxdξ = O(h∞).

It follows that certain results of pseudo-differential calculus still hold if the
derivatives of the symbols do not explode faster than powers of h−κ (κ < 1/2).
For instance:

Theorem 4.2.2 (Calderon-Vaillancourt Theorem). On a d-dimensional
compact manifold, there exists an integer Nd such that, for all a ∈
C∞(T ∗M),

‖Oph(a)‖L2(M) ≤ (‖a‖0 + h1/2‖Da‖0 + · · ·+ hNd/2‖DNda‖0).

In particular, if a(h) depends on h in a way that

‖Dna(h)‖0 ≤ Cnh−nκ

for all n ∈ N, for some κ ∈ [0, 1/2) and some sequence of real numbers (Cn),
then the operators Oph(a(h)) are uniformly bounded in L2(M).

One can then show:

Theorem 4.2.3. Let (a(h)) and (b(h)) be two families of C∞ functions on
T ∗M , with a common compact support, and satisfying estimates of the form

‖Dna(h)‖0 ≤ Cnh−nκ

and
‖Dnb(h)‖0 ≤ Cnh−nκ.

Then
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(i) ‖Oph(a(h))Oph(b(h))−Oph(a(h)b(h))‖L2(M) = O(h1−2κ).

(ii) ‖ [Oph(a(h)),Oph(b(h))] ‖L2(M) = O(h1−2κ).

(iii) If, for all h, supp a(h) ∩ supp b(h) = ∅, then

‖Oph(a(h))Oph(b(h))‖L2(M) = O(h∞).

(iv) (Egorov Theorem) For any given t,

‖Oph(a(h))(t)−Oph(a(h) ◦ gt)‖L2(M) = O(h1−2κ).

Remember the notation: A(t) = e
−ith∆

2 Ae
ith∆

2 , for any operator A.
We will also need a result about the range of validity of the Egorov theo-

rem.

Theorem 4.2.4 (Ehrenfest time for the evolution of observables, from
[BR02]). There exists Λ > 0 such that, for every κ ∈ [0, 1/2), if (a(h)) is a
family of C∞ functions on T ∗M , with a common compact support, satisfying
estimates of the form

‖Dna(h)‖0 ≤ Cnh−nκ,

then for κ̄ > 0

sup
|t|≤κ̄| log h|

‖Oph(a(h))(t)−Oph(a(h) ◦ gt)‖L2(M) = O(h1−2κ−2Λκ̄),

for all h ∈ (0, 1].

This follows directly from the arguments in [BR02]; the assumptions that
the symbol a(h) and its derivatives are bounded can be relaxed to ‖Dna(h)‖0 ≤
Cnh

−nκ. For the number Λ we can take an upper bound for the Lyapunov
exponents of the geodesic flow.

Putting together Theorem 4.2.3 and Theorem 4.2.4, we obtain:

Corollary 4.2.5. For every κ ∈ [0, 1/2), if (a(h)), (b(h)) are families of
C∞ functions on TM , with a common compact support, and satisfying esti-
mates of the form

‖Dna(h)‖0 ≤ Cnh−nκ,

‖Dnb(h)‖0 ≤ Cnh−nκ,

then there exists a constant C such that

‖ [Oph(a(h))(t),Oph(b(h))] ‖L2(M) ≤ Ch1−2κ−2Λκ̄

for all κ̄ > 0 and all |t| ≤ κ̄| log h|.

We can prove Lemma 2.3.3:
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Corollary 4.2.6. Let χ be an energy cut-off, supported in a neighbour-
hood of the energy layer {‖v‖ = 1}. For all κ̄ > 0 for every N ≤ 2κ̄| log h|,
for every permutation τ of {0, . . . , N}, for every sequence t0, . . . , tN such that
|ti| ≤ κ̄| log h|, for every sequence α0, . . . , αN ,

‖Oph(χ)∗AαN (tN ) . . . ..Aα1(t1)Aα0(t0)Oph(χ)

−Oph(χ)∗Oph(χ)AατN (tτN ) . . . ..Aατ1(tτ1)Aατ0(tτ0)‖L2(M) = O(h1−2κ−3Λκ̄).

Proof. In the case when τ is a transposition of two consecutive integers,
the proposition follows directly from Corollary 4.2.5, since the functions Aα
satisfy ‖DnAα‖0 ≤ C(n)h−κn.

Otherwise, the result can be proved noting that one can write any permu-
tation of {0, . . . , N} as the product of at most (N + 1)2 such transpositions.

As a corollary we can prove Lemma 2.2.2:

Corollary 4.2.7. Let χ be an energy cut-off, supported in a neighbour-
hood of the energy layer {‖v‖ = 1}. There exist κ̄ and α > 0 such that, for all
n ≤ κ̄| log h|, for every subset W ⊂ Σn,

‖
∑
C∈W
ĈhOph(χ)‖L2(M) ≤ 1 +O(hα).

Proof. Define Bi =
√
Ai. By Corollary 4.2.6, we have∑

C∈W
〈ĈOph(χ)ψ,ψ〉=

∑
[α0,...,αn]∈W

‖Bαn(n) . . . Bα0Oph(χ1/2)ψ‖2L2(M)

+ ]W.O(h1−2κ−3Λκ̄).

We see that each operator ĈOph(χ) is close to being a positive operator, and we
know their sum has norm less than 1+O(h). Of course we should choose κ̄ small
enough so that the remainder term remains small, i.e. ]W.O(h1−2κ−3Λκ̄) =
O(hα) – this is possible since ]W grows exponentially with n.

5. Appendix A2: construction of the partition of unity (Ahi )

The purpose of this appendix is to show how to construct the Ai so as to
satisfy the requirements of subsection 2.1.

Of course, this holds if we have the property: There exists p > 0 such that∫
B
|ψh(x)|2dVol(x) = O(hp),

where B is the tubular neighbourhood of size hκ of the boundary of the parti-
tion P . Thus, we try to modify very slightly the partition P so that its bound-
ary is piecewise smooth, and the smooth hypersurfaces (Sk)k=1,...,L forming



472 NALINI ANANTHARAMAN

the boundary satisfy

(5.0.1)
∫
Vk(hκ)

|ψh(x)|2dVol(x) = O(hp)

where Vk(hκ) is a tubular neighbourhood of Sk of size hκ.
Starting with an initial partition P (0) = P whose boundary consists of a

finite number of smooth hypersurfaces (Sk(0))k=1,...,L, we can deform it slightly
to a partition P (h), with boundary components (Sk(h))k=1,...,L that satisfy
(5.0.1). The new partition will depend on h, but in a way that does not affect
the proof of Theorem 1.1.1: in our construction the boundary components
(Sk(h))k=1,...,L will converge to the original (Sk(0))k=1,...,L.

We start with a simple remark. Consider an open subset U ⊂M equipped
with a chart Φ : U −→ Rd that sends U to the cube (−2, 2)d. Let S̃ ⊂
[−1, 1]d−1, S̃(0) = S̃×{0} ⊂ (−2, 2)d, and S(0) = Φ−1(S̃). And more generally,
given 0 < ε < 1 and 0 < s < 1/4, we define

S̃ε = {x ∈ (−2, 2)d−1, d(x, S̃) ≤ ε} ⊂ (−2, 2)d−1,

S̃ε(m,h) = S̃ε × {mh1/2−s},
Ṽε(m,h) = S̃ε × [(m− 1/2)h1/2−s, (m+ 1/2)h1/2−s

and, finally,

Sε(m,h) = Φ−1(S̃ε(m,h)),

Vε(m,h) = Φ−1(Ṽε(m,h))

(the latter is a tubular neighbourhood of size h1/2−s of the former); m is an
integer in [−h−1/2+2s, h−1/2+2s]. Since∑

m∈[−h−1/2+2s,h−1/2+2s]

∫
Vε(m,h)

|ψh(x)|2dVol(x) ≤ 1

there must exist an m0 ∈ [−h−1/2+2s, h−1/2+2s] (depending on h) such that∫
Vε(m0,h)

|ψh(x)|2dVol(x) ≤ h1/2−2s.

This means that Sε(m0, h) satisfies (5.0.1) with κ = 1/2− s and p = 1/2− 2s
(which is even better than what we need). Besides, Sε(m0, h) is at distance hs

from Sε(0).
We conclude that there is a hypersurface hs-close to S(0) that satis-

fies (5.0.1).
Let us now consider a partition P (0), with boundary components

(Sk(0))k=1,...,L. For every k, we know that there exists a hypersurface Skε (h)
hs-close to Skε (0) that satisfies (5.0.1) with p = 1/2 − 2s. We need to show,
in addition, that for each k, there exists Sk(h) ∈ Skε (h) such that the Sk(h)s
form the boundary of a new partition.
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Although this is probably always true for general partitions with piecewise
smooth boundary, we will avoid a tedious combinatorial argument by consid-
ering only special “cubic” partitions that we describe below: In the universal
cover M̃ , consider a polyhedral fundamental domain D(0) for the action of
Γ = π1(M), whose boundary is piecewise smooth; consider also an open, rel-
atively compact subset U ⊂ M , containing D(0), and equipped with a chart
Φ : U −→ Rd that sends U to the cube (−2, 2)d. Given α > 0, one has
a partition of (−2, 2)d into cubes of size ε, delimited by the hypersurfaces
S̃k,m(0) = {xk = mε} (k = 1, . . . , d, m ∈ Z, |m| ≤ 2/ε). This partition gives
a partition of U which, restricted to the fundamental domain D(0), gives our
partition P (0) of M . More precisely, the boundary of P (0) is formed by the
image in M of

– parts of the Sk,m(0) = Φ−1(S̃k,m(0));
– the boundary of D(0).
Most elements of P (0) are sent to cubes by the chart Φ, except for those

intersecting the boundary of the fundamental domain, which look like a cube
cut by a smooth hypersurface.

The boundary of the “polyhedra” D(0) consists of a finite number of
smooth hypersurfaces Sk(0); applying the previous procedure, we can find
some Skε (h) satisfying (5.0.1) and such that

– for each k, we can find a subset Sk(h) ⊂ Skε (h) such that the Sk(h)s
form the boundary of a new fundamental domain D(h).

– Sk(h) is at distance hs from Sk(0).
In the cube (−2, 2)d, always by the same procedure, we can move the

S̃k,m(0)s to
S̃k,m(h) = {xk = mα+m0(k,m)h1/2−s}

(m0(k,m) ∈ [−h−1/2+2s, h−1/2+2s] as previously) so that

Sk,m(h) := Φ−1(S̃k,m(h))

satisfies (5.0.1), for every k,m. Besides, the S̃k,m(h) still delimit a partition
of (−2, 2)d into cubes and thus the Sk,m(h) delimit a partition of the open set
U ∈M .

This partition of U , restricted to the fundamental domain D(h), gives our
partition P (h) of M . More precisely, the boundary of P (h) is formed by the
image in M of

– parts of the Sk,m(h) = Φ−1(S̃k,m(0));
– the boundary of D(h).
The boundary of the new partition P (h) satisfies (5.0.1) and converges to

the boundary of P (0), in the C∞ topology, when h −→ 0. The characteristic
function of Pi(h) converges to the characteristic function of Pi(0), uniformly
on every compact set not intersecting the boundary of Pi(0) (for every i =
1, . . . , l).
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We finally construct the smooth partition of unity Ahi by applying the
convolution (2.1.1) to Pi(h) instead of Pi.
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Current address: Centre de Mathématiques Laurent Schwartz - Ecole Poly-
technique, Palaiseau, France
E-mail address: nalini@math.polytechnique.fr

References

[A04] N. Anantharaman, On the zero-temperature or vanishing viscosity limit for cer-
tain Markov processes arising from Lagrangian dynamics, J. Eur. Math. Soc.
(JEMS) 6 (2004), 207–276.

[AN05] N. Anantharaman and S. Nonnenmacher, Semi-classical entropy of the Walsh-
quantized baker’s map, preprint.

[AMB92] S. Aubry, R. S. McKay, and C. Baesens, Equivalence of uniform hyperbolicity for
symplectic twist maps and phonon gap for Frenkel-Kontorova models, Physica D
56 (1992), 123–134.

[Be77] P. Berard, On the wave equation on a compact Riemannian manifold without
conjugate points, Math. Z . 155 (1977), 249–276.
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