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Abstract

In this paper we extend the results obtained in [9], [10] to manifolds with
SpinC-structures defined, near the boundary, by an almost complex structure.
We show that on such a manifold with a strictly pseudoconvex boundary, there
are modified ∂̄-Neumann boundary conditions defined by projection operators,
Reo

+ , which give subelliptic Fredholm problems for the SpinC-Dirac operator,
ðeo

+ . We introduce a generalization of Fredholm pairs to the “tame” category.
In this context, we show that the index of the graph closure of (ðeo

+ ,Reo
+ ) equals

the relative index, on the boundary, between Reo
+ and the Calderón projector,

Peo
+ . Using the relative index formalism, and in particular, the comparison

operator, T eo
+ , introduced in [9], [10], we prove a trace formula for the rel-

ative index that generalizes the classical formula for the index of an elliptic
operator. Let (X0, J0) and (X1, J1) be strictly pseudoconvex, almost complex
manifolds, with φ : bX1 → bX0, a contact diffeomorphism. Let S0,S1 de-
note generalized Szegő projectors on bX0, bX1, respectively, and Reo

0 , Reo
1 , the

subelliptic boundary conditions they define. If X1 is the manifold X1 with its
orientation reversed, then the glued manifold X = X0 �φ X1 has a canonical
SpinC-structure and Dirac operator, ðeo

X . Applying these results and those of
our previous papers we obtain a formula for the relative index, R-Ind(S0, φ

∗S1),

R-Ind(S0, φ
∗S1) = Ind(ðe

X) − Ind(ðe
X0

,Re
0) + Ind(ðe

X1
,Re

1).(1)

For the special case that X0 and X1 are strictly pseudoconvex complex mani-
folds and S0 and S1 are the classical Szegő projectors defined by the complex
structures this formula implies that

R-Ind(S0, φ
∗S1) = Ind(ðe

X) − χ′
O(X0) + χ′

O(X1),(2)
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which is essentially the formula conjectured by Atiyah and Weinstein; see [37].
We show that, for the case of embeddable CR-structures on a compact, contact
3-manifold, this formula specializes to show that the boundedness conjecture
for relative indices from [7] reduces to a conjecture of Stipsicz concerning the
Euler numbers and signatures of Stein surfaces with a given contact boundary;
see [35].

Introduction

Let X be an even dimensional manifold with a SpinC-structure; see [21].
A compatible choice of metric, g, and connection ∇S/, define a SpinC-Dirac
operator, ð which acts on sections of the bundle of complex spinors, S/. This
bundle splits as a direct sum S/ = S/e⊕S/o. If X has a boundary, then the kernels
and cokernels of ðeo are generally infinite dimensional. To obtain a Fredholm
operator we need to impose boundary conditions. In this instance, there are no
local boundary conditions for ðeo that define elliptic problems. In our earlier
papers, [9], [10], we analyzed subelliptic boundary conditions for ðeo obtained
by modifying the classical ∂̄-Neumann and dual ∂̄-Neumann conditions for X,

under the assumption that the SpinC-structure near to the boundary of X is
that defined by an integrable almost complex structure, with the boundary
of X either strictly pseudoconvex or pseudoconcave. The boundary condi-
tions considered in our previous papers have natural generalizations to almost
complex manifolds with strictly pseudoconvex or pseudoconcave boundary.

A notable feature of our analysis is that, properly understood, we show
that the natural generality for Kohn’s classic analysis of the ∂̄-Neumann prob-
lem is that of an almost complex manifold with a strictly pseudoconvex contact
boundary. Indeed it is quite clear that analogous results hold true for almost
complex manifolds with contact boundary satisfying the obvious generaliza-
tions of the conditions Z(q), for a q between 0 and n; see [14]. The principal
difference between the integrable and non-integrable cases is that in the latter
case one must consider all form degrees at once because, in general, ð2 does
not preserve form degree.

Before going into the details of the geometric setup we briefly describe the
philosophy behind our analysis. There are three principles:

1. On an almost complex manifold the SpinC-Dirac operator, ð, is the
proper replacement for ∂̄ + ∂̄∗.

2. Indices can be computed using trace formulæ.

3. The index of a boundary value problem should be expressed as a relative
index between projectors on the boundary.

The first item is a well known principle that I learned from reading [6]. Tech-
nically, the main point here is that ð2 differs from a metric Laplacian by an
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operator of order zero. As to the second item, this is a basic principle in the
analysis of elliptic operators as well. It allows one to take advantage of the
remarkable invariance properties of the trace. The last item is not entirely
new, but our applications require a substantial generalization of the notion
of Fredholm pairs. In an appendix we define tame Fredholm pairs and prove
generalizations of many standard results. Using this approach we reduce the
Atiyah-Weinstein conjecture to Bojarski’s formula, which expresses the index
of a Dirac operator on a compact manifold as a relative index of a pair of
Calderón projectors defined on a separating hypersurface. That Bojarski’s for-
mula would be central to the proof of formula (1) was suggested by Weinstein
in [37].

The Atiyah-Weinstein conjecture, first enunciated in the 1970s, was a
conjectured formula for the index of a class of elliptic Fourier integral opera-
tors defined by contact transformations between co-sphere bundles of compact
manifolds. We close this introduction with a short summary of the evolution
of this conjecture and the prior results. In the original conjecture one began
with a contact diffeomorphism between co-sphere bundles: φ : S∗M1 → S∗M0.

This contact transformation defines a class of elliptic Fourier integral opera-
tors. There are a variety of ways to describe an operator from this class; we
use an approach that makes the closest contact with the analysis in this paper.

Let (M, g) be a smooth Riemannian manifold; it is possible to define
complex structures on a neighborhood of the zero section in T ∗M so that the
zero section and fibers of π : T ∗M → M are totally real; see [24], [16], [17]. For
each ε > 0, let B∗

εM denote the co-ball bundle of radius ε, and let Ωn,0B∗
εM

denote the space of holomorphic (n, 0)-forms on B∗
εM with tempered growth

at the boundary. For small enough ε > 0, the push-forward defines maps

Gε : Ωn,0B∗
εM −→ C−∞(M),(3)

such that forms smooth up to the boundary map to C∞(M). Boutet de Monvel
and Guillemin conjectured, and Epstein and Melrose proved that there is an
ε0 > 0 so that, if ε < ε0, then Gε is an isomorphism; see [11]. With S∗

εM =
bB∗

εM, we let Ωn,0
b S∗

εM denote the distributional boundary values of elements
of Ωn,0B∗

εM. One can again define a push-forward map

Gbε : Ωn,0
b S∗

εM −→ C−∞(M).(4)

In his thesis, Raul Tataru showed that, for small enough ε, this map is also an
isomorphism; see [36]. As the canonical bundle is holomorphically trivial for
ε sufficiently small, it suffices to work with holomorphic functions (instead of
(n, 0)-forms).

Let M0 and M1 be compact manifolds and φ : S∗M1 → S∗M0 a contact
diffeomorphism. Such a transformation canonically defines a contact diffeo-
morphism φε : S∗

εM1 → S∗
εM0 for all ε > 0. For sufficiently small positive ε,
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we define the operator:

F φ
ε f = G1

bεφ
∗
ε[G

0
bε]

−1f.(5)

This is an elliptic Fourier integral operator, with canonical relation essentially
the graph of φ. The original Atiyah-Weinstein conjecture (circa 1975) was a for-
mula for the index of this operator as the index of the SpinC-Dirac operator on
the compact SpinC-manifold B∗

εM0�φ B∗
εM1. Here X denotes a reversal of the

orientation of the oriented manifold X. If we let Sj
ε denote the Szegő projectors

onto the boundary values of holomorphic functions on B∗
εMj , j = 0, 1, then,

using the Epstein-Melrose-Tataru result, Zelditch observed that the index of
F φ

ε could be computed as the relative index between the Szegő projectors, S0
ε ,

and [φ−1]∗S1
ε φ∗, defined on S∗

εM0; i.e.,

Ind(F φ
ε ) = R-Ind(S0

ε , [φ−1]∗S1
ε φ∗).(6)

Weinstein subsequently generalized the conjecture to allow for contact trans-
forms φ : bX1 → bX0, where X0, X1 are strictly pseudoconvex complex man-
ifolds with boundary; see [37]. In this paper Weinstein suggests a variety of
possible formulæ depending upon whether or not the Xj are Stein manifolds.

Several earlier papers treat special cases of this conjecture (including the
original conjectured formula). In [12], Epstein and Melrose consider operators
defined by contact transformations φ : Y → Y, for Y an arbitrary compact,
contact manifold. If S is any generalized Szegő projector defined on Y, then
they show that R-Ind(S, [φ−1]∗Sφ∗) depends only on the contact isotopy class
of φ. In light of its topological character, Epstein and Melrose call this relative
index the contact degree of φ, denoted c-deg(φ). It equals the index of the
SpinC-Dirac operator on the mapping torus Zφ = Y × [0, 1]/(y, 0) ∼ (φ(y), 1).
Generalized Szegő projectors were originally introduced by Boutet de Monvel
and Guillemin, in the context of the Hermite calculus; see [5]. A discussion
of generalized Szegő projectors and their relative indices, in the Heisenberg
calculus, can be found in [12].

Leichtnam, Nest and Tsygan consider the case of contact transformations
φ : S∗M1 → S∗M0 and obtain a cohomological formula for the index of F φ

ε ;
see [23]. The approaches of these two papers are quite different: Epstein and
Melrose express the relative index as a spectral flow, which they compute by
using the extended Heisenberg calculus to deform, through Fredholm opera-
tors, to the SpinC-Dirac operator on Zφ. Leichtnam, Nest and Tsygan use the
deformation theory of Lie algebroids and the general algebraic index theorem
from [27] to obtain their formula for the index of F φ

ε . In this paper we also
make extensive usage of the extended Heisenberg calculus, but the outline of
our argument here is quite different from that in [12].

One of our primary motivations for studying this problem was to find a for-
mula for the relative index between pairs of Szegő projectors, S0,S1, defined by
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embeddable, strictly pseudoconvex CR-structures on a compact, 3-dimensional
contact manifold (Y, H). In [7] we conjectured that, among small embeddable
deformations, the relative index, R-Ind(S0,S1) should assume finitely many
distinct values. It is shown there that the relative index conjecture implies that
the set of small embeddable perturbations of an embeddable CR-structure on
(Y, H) is closed in the C∞-topology.

Suppose that j0, j1 are embeddable CR-structures on (Y, H), which bound
the strictly pseudoconvex, complex surfaces (X0, J0), (X1, J1), respectively. In
this situation our general formula, (2), takes a very explicit form:

R-Ind(S0,S1) = dimH0,1(X0, J0) − dimH0,1(X1, J1)

+
sig[X0] − sig[X1] + χ[X0] − χ[X1]

4
.

(7)

Here sig[M ] is the signature of the oriented 4-manifold M and χ(M) is its
Euler characteristic. In [35], Stipsicz conjectures that, among Stein mani-
folds (X, J) with (Y, H) as boundary, the characteristic numbers sig[X], χ[X]
assume only finitely many values. Whenever Stipsicz’s conjecture is true it
implies a strengthened form of the relative index conjecture: the function
S1 �→ R-Ind(S0,S1) is bounded from above throughout the entire deformation
space of embeddable CR-structures on (Y, H). Many cases of Stipsicz’s conjec-
ture are proved in [30], [35]. As a second consequence of (7) we show that, if
dimMj = 2, then Ind(F φ

ε ) = 0.

Acknowledgments. Boundary conditions similar to those considered in
this paper, as well as the idea of finding a geometric formula for the relative
index were first suggested to me by Laszlo Lempert. I would like to thank
Richard Melrose for our years of collaboration on problems in microlocal anal-
ysis and index theory; it provided many of the tools needed to do the current
work. I would also like to thank Alan Weinstein for very useful comments on
an early version of this paper. I am very grateful to John Etnyre for references
to the work of Ozbagci and Stipsicz and our many discussions about contact
manifolds and complex geometry, and to Julius Shaneson for providing the
proof of Lemma 10. I would like to thank the referee for many suggestions
that improved the exposition and for simplifying the proof of Proposition 10.

1. Outline of results

Let X be an even dimensional manifold with a SpinC-structure and let
S/ → X denote the bundle of complex spinors. A choice of metric on X

and compatible connection, ∇S/, on the bundle S/ define the SpinC-Dirac
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operator, ð :

ðσ =
dim X∑
j=0

c(ωj) · ∇S/
Vj

σ,(8)

with {Vj} a local framing for the tangent bundle and {ωj} the dual coframe.
Here c(ω)· denotes the Clifford action of T ∗X on S/. It is customary to split ð

into its chiral parts: ð = ðe + ðo, where

ðeo : C∞(X;S/eo) −→ C∞(X;S/oe).

The operators ðo and ðe are formal adjoints.
An almost complex structure on X defines a SpinC-structure, and bundle

of complex spinors S/; see [6]. The bundle of complex spinors is canonically
identified with ⊕q≥0Λ0,q. We use the notation

Λe =
�n

2
�⊕

q=0

Λ0,2q, Λo =
�n−1

2
�⊕

q=0

Λ0,2q+1.(9)

These bundles are in turn canonically identified with the bundles of even and
odd spinors, S/eo, which are defined as the ±1-eigenspaces of the orientation
class. A metric g on X is compatible with the almost complex structure, if for
every x ∈ X and V, W ∈ TxX, we have:

gx(JxV, JxW ) = gx(V, Y ).(10)

Let X be a compact manifold with a co-oriented contact structure H ⊂
TbX, on its boundary. Let θ denote a globally defined contact form in the given
co-orientation class. An almost complex structure J defined in a neighborhood
of bX is compatible with the contact structure if, for every x ∈ bX,

JxHx ⊂ Hx, and for all V, W ∈ Hx,

dθx(JxV, W ) + dθx(V, JxW ) = 0,

dθx(V, JxV ) > 0, if V 
= 0.

(11)

We usually assume that g �H×H= dθ(·, J ·). If the almost complex structure
is not integrable, then ð2 does not preserve the grading of S/ defined by the
(0, q)-types.

As noted, the almost complex structure defines the bundles T 1,0X, T 0,1X

as well as the form bundles Λ0,qX. This in turn defines the ∂̄-operator. The
bundles Λ0,q have a splitting at the boundary into almost complex normal and
tangential parts, so that a section s satisfies:

s �bX= st + ∂̄ρ ∧ sn, where ∂̄ρ�st = ∂̄ρ�sn = 0.(12)

Here ρ is a defining function for bX. The ∂̄-Neumann condition for sections
s ∈ C∞(X; Λ0,q) is the requirement that

∂̄ρ�[s]bX = 0;(13)
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i.e., sn = 0. As before this does not impose any requirement on forms of degree
(0, 0).

The contact structure on bX defines the class of generalized Szegő pro-
jectors acting on scalar functions; see [10], [12] for the definition. Using the
identifications of S/eo with Λ0,eo, a generalized Szegő projector, S, defines a
modified (strictly pseudoconvex) ∂̄-Neumann condition as follows:

Rσ00 d= S[σ00]bX = 0,

Rσ01 d= (Id−S)[∂̄ρ�σ01]bX = 0,

Rσ0q d= [∂̄ρ�σ0q]bX = 0, for q > 1.

(14)

We choose the defining function so that st and ∂̄ρ ∧ sn are orthogonal; hence
the mapping σ → Rσ is a self adjoint projection operator. Following the
practice in [9], [10] we use Reo to denote the restrictions of this projector to
the subbundles of even and odd spinors.

We follow the conventions for the SpinC-structure and Dirac operator on
an almost complex manifold given in [6]. Lemma 5.5 in [6] states that the
principal symbol of ðX agrees with that of the Dolbeault-Dirac operator ∂̄+∂̄∗,
and that (ðeo

X ,Reo) are formally adjoint operators. It is a consequence of our
analysis that, as unbounded operators on L2,

(ðeo
X ,Reo)∗ = (ðoe

X ,Roe).(15)

The almost complex structure is only needed to define the boundary condition.
Hence we assume that X is a SpinC-manifold, where the SpinC-structure is
defined in a neighborhood of the boundary by an almost complex structure J.

In this paper we begin by showing that the analytic results obtained in
our earlier papers remain true in the almost complex case. As noted above,
this shows that integrability is not needed for the validity of Kohn’s estimates
for the ∂̄-Neumann problem. By working with SpinC-structures we are able
to fashion a much more flexible framework for studying index problems than
that presented in [9], [10]. As before, we compare the projector R defining
the subelliptic boundary conditions with the Calderón projector for ð, and
show that these projectors are, in a certain sense, relatively Fredholm. These
projectors are not relatively Fredholm in the usual sense of say Fredholm pairs
in a Hilbert space, used in the study of elliptic boundary value problems. We
circumvent this problem by extending the theory of Fredholm pairs to that
of tame Fredholm pairs. We then use our analytic results to obtain a formula
for a parametrix for these subelliptic boundary value problems that is precise
enough to prove, among other things, higher norm estimates. The extended
Heisenberg calculus introduced in [13] remains at the center of our work. The
basics of this calculus are outlined in [10].
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If Reo are projectors defining modified ∂̄-Neumann conditions and Peo are
the Calderón projectors, then we show that the comparison operators,

T eo = ReoPeo + (Id−Reo)(Id−Peo)(16)

are graded elliptic elements of the extended Heisenberg calculus. As such there
are parametrices Ueo that satisfy

T eoUeo = Id−Keo
1 , UeoT eo = Id−Keo

2 ,(17)

where Keo
1 , Keo

2 are smoothing operators. We define Hilbert spaces, HUeo to
be the closures of C∞(bX;S/eo �bX) with respect to the inner products

〈σ, σ〉Ueo = 〈σ, σ〉L2 + 〈Ueoσ,Ueoσ〉L2 .(18)

The operators ReoPeo are Fredholm from rangePeo ∩ L2 to rangeReo ∩HUeo .

As usual, we let R-Ind(Peo,Reo) denote the indices of these restrictions; we
show that

Ind(ðeo,Reo) = R-Ind(Peo,Reo).(19)

Using the standard formalism for computing indices we show that

R-Ind(Peo,Reo) = trReoKeo
1 Reo − trPeoKeo

2 Peo.(20)

There is some subtlety in the interpretation of this formula in that ReoKeo
1 Reo

act on HUeo . But, as is also used implicitly in the elliptic case, we show that the
computation of the trace does not depend on the topology of the underlying
Hilbert space. Among other things, this formula allows us to prove that the
indices of the boundary problems (ðeo,Reo) depend continuously on the data
defining the boundary condition and the SpinC-structure, allowing us to employ
deformation arguments.

To obtain the gluing formula we use the invertible double construction
introduced in [3]. Using this construction, we are able to express the relative
index between two generalized Szegő projectors as the index of the SpinC-Dirac
operators on a compact manifold with corrections coming from boundary value
problems on the ends. Let X0, X1 be SpinC-manifolds with contact bound-
aries. Assume that the SpinC-structures are defined in neighborhoods of the
boundaries by compatible almost complex structures, such that bX0 is contact
isomorphic to bX1; let φ : bX1 → bX0 denote a contact diffeomorphism. If X1

denotes X1 with its orientation reversed, then X̃01 = X0 �φ X1 is a compact
manifold with a canonical SpinC-structure and Dirac operator, ðeo

X̃01
. Even if

X0 and X1 have globally defined almost complex structures, the manifold X̃01,

in general, does not. In case X0 and X1, are equal, as SpinC-manifolds, then
X̃01, is the invertible double introduced in [3], where the authors show that
ðX̃01

is an invertible operator.
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Let S0,S1 be generalized Szegő projectors on bX0, bX1, respectively. If
Re

0, Re
1 are the subelliptic boundary conditions they define, then the main

result of this paper is the following formula:

R-Ind(S0,S1) = Ind(ðe
X̃01

) − Ind(ðe
X0

,Re
0) + Ind(ðe

X1
,Re

1).(21)

As detailed in the introduction, such a formula was conjectured, in a more
restricted case, by Atiyah and Weinstein; see [37]. Our approach differs a
little from that conjectured by Weinstein, in that X̃01 is constructed using
the extended double construction rather than the stabilization of the almost
complex structure on the glued space described in [37]. A result of Cannas da
Silva implies that the stable almost complex structure on X̃01 defines a SpinC-
structure, which very likely agrees with that used here; see [15]. Our formula
is very much in the spirit suggested by Atiyah and Weinstein, though we have
not found it necessary to restrict to X0, X1 to be Stein manifolds (or even
complex manifolds), nor have we required the use of “pseudoconcave caps” in
the non-Stein case. It is quite likely that there are other formulæ involving the
pseudoconcave caps and they will be considered in a subsequent publication.

In the case that X0 is isotopic to X1 through SpinC-structures compatible
with the contact structure on Y, then X̃01, with its canonical SpinC-structure,
is isotopic to the invertible double of X0 � X1. In [3] it is shown that in this
case, ðeo

X̃01
are invertible operators and hence Ind(ðeo

X̃01
) = 0. Thus (21) states

that

R-Ind(S0,S1) = Ind(ðe
X1

,Re
1) − Ind(ðe

X0
,Re

0).(22)

If X0 X1 are diffeomorphic complex manifolds with strictly pseudoconvex
boundaries, and the complex structures are isotopic as above (through com-
patible almost complex structures), and the Szegő projectors are those defined
by the complex structure, then formula (77) in [9] implies that Ind(ðe

Xj
,Re

j) =
χ′
O(Xj) and therefore:

R-Ind(S0,S1) = χ′
O(X1) − χ′

O(X0).(23)

When dimC Xj = 2, this formula becomes:

R-Ind(S0,S1) = dimH0,1(X0) − dimH0,1(X1),(24)

which has applications to the relative index conjecture in [7]. In the case
that dimC Xj = 1, a very similar formula was obtained by Segal and Wilson,
see [33], [19]. A detailed analysis of the complex 2-dimensional case is given in
Section 12, where we prove (7).

In Section 11 we show how these results can be extended to allow for vector
bundle coefficients. An interesting consequence of this analysis is a proof,
which makes no mention of K-theory, that the index of a classically elliptic
operator on a compact manifold M equals that of a SpinC-Dirac operator on the
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glued space B∗M �S∗M B∗M. Hence, using relative indices and the extended
Heisenberg calculus, along with Getzler’s rescaling argument we obtain an
entirely analytic proof of the Atiyah-Singer formula.

Remark 1. In this paper we restrict our attention to the pseudoconvex
case. There are analogous results for other cases with non-degenerate dθ(·, J ·).
We will return to these in a later publication. The subscript + sometimes
refers to the fact that the underlying manifold is pseudoconvex. Sometimes,
however, we use ± to designate the two sides of a separating hypersurface. The
intended meaning should be clear from the context.

2. The symbol of the Dirac operator and its inverse

In this section we show that, under appropriate geometric hypotheses, the
results of Sections 2–5 of [10] remain valid, with small modifications, for the
SpinC-Dirac operator on an almost complex manifold, with strictly pseudocon-
vex boundary. As noted above the SpinC-structure only needs to be defined
by an almost complex structure near the boundary. This easily implies that
the operators T eo

+ are elliptic elements of the extended Heisenberg calculus.
To simplify the exposition we treat only the pseudoconvex case. The results
in the pseudoconcave case are entirely analogous. For simplicity we also omit
vector bundle coefficients. There is no essential difference if they are included;
the modifications necessary to treat this case are outlined in Section 11.

Let X be a manifold with boundary, Y. We suppose that (Y, H) is a contact
manifold and X has an almost complex structure J, defined near the boundary,
compatible with the contact structure, with respect to which the boundary is
strictly pseudoconvex; see [2]. We let g denote a metric on X compatible with
the almost complex structure: for every x ∈ X, V, W ∈ TxX,

gx(JxV, JxW ) = gx(V, W ).(25)

We suppose that ρ is a defining function for the boundary of X that is negative
on X. Let ∂̄ denote the (possibly non-integrable) ∂̄-operator defined by J. We
assume that JH ⊂ H, and that the one form,

θ =
i

2
∂̄ρ �TbX ,(26)

is a contact form for H. The quadratic form defined on H × H by

L(V, W ) = dθ(V, JW )(27)

is assumed to be positive definite. In the almost complex category this is the
statement that bX is strictly pseudoconvex.

Let T denote the Reeb vector field: θ(T ) = 1, iT dθ = 0. For simplicity we
assume that

g �H×H= L and g(T, V ) = 0, ∀V ∈ H.(28)
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Note that (25) and (28) imply that J is compatible with dθ in that, for all
V, W ∈ H,

dθ(JV, JW ) = dθ(V, W ) and dθ(V, JV ) > 0 if V 
= 0.(29)

Definition 1. Let X be a SpinC-manifold with almost complex structure
J, defined near bX. If the SpinC-structure near bX is that specified by J,

then the quadruple (X, J, g, ρ) satisfying (25)–(28) defines a normalized strictly
pseudoconvex SpinC-manifold.

On an almost complex manifold with compatible metric there is a SpinC-
structure so that the bundle of complex spinors S/ → X is a complex Clifford
module. As noted above, if the SpinC-structure is defined by an almost complex
structure, then S/ � ⊕Λ0,q. Under this isomorphism, the Clifford action of a
real one-form ξ is given by

c(ξ) · σ d= (ξ − iJξ) ∧ σ − ξ�σ.(30)

It is extended to the complexified Clifford algebra complex linearly. We largely
follow the treatment of SpinC-geometry given in [6], though with some modi-
fications to make easier comparisons with the results of our earlier papers.

There is a compatible connection ∇S/ on S/ and a formally self adjoint
SpinC-Dirac operator defined on sections of S/ by

ðσ =
1
2

2n∑
j=1

c(ωj) · ∇S/
Vj

σ,(31)

with {Vj} a local framing for the tangent bundle and {ωj} the dual coframe.
Here we differ slightly from [6] by including the factor 1

2 in the definition of ð.

This is so that, in the case that J is integrable, the leading order part of ð is
∂̄ + ∂̄∗ (rather than 2(∂̄ + ∂̄∗)), which makes for a more direct comparison with
results in [9], [10].

The spinor bundle splits into even and odd components S/eo, and the Dirac
operator splits into even and odd parts, ðeo, where

ðeo : C∞(X;S/eo) −→ C∞(X;S/oe).(32)

Note that, in each fiber, Clifford multiplication by a nonzero co-vector gives
an isomorphism S/eo ↔ S/oe.

Fix a point p on the boundary of X and let (x1, . . . , x2n) denote normal
coordinates centered at p. This means that

1. p ↔ (0, . . . , 0).

2. The Hermitian metric tensor gij̄ in these coordinates satisfies

gij̄ =
1
2
δij̄ + O(|x|2).(33)
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If V ∈ TpX is a unit vector, then V 0,1 = 1
2(V + iJV ), and

〈V 0,1, V 0,1〉g =
1
2
.(34)

Without loss of generality we may also assume that the coordinates are
“almost complex” and adapted to the contact geometry at p: that is the vectors
{∂xj

} ⊂ TpX satisfy

Jp∂xj
= ∂xj+n

for j = 1, . . . , n,

{∂x2 , . . . , ∂x2n
} ∈ TpbX,

{∂x2 , . . . , ∂xn
, ∂xn+2 , . . . , ∂x2n

} ∈ Hp.

(35)

We let
zj = xj + ixj+n.

As dρ �bX= 0, equation (35) implies that

ρ(z) = − 2
α

Re z1 + 〈az, z〉 + Re(bz, z) + O(|z|3).(36)

In this equation α > 0, a and b are n×n complex matrices, with a = a∗, b = bt,

and

〈w, z〉 =
n∑

j=1

wj z̄j and (w, z) =
n∑

j=1

wjzj .(37)

With these normalizations we have the following formulæ for the contact form
at p :

Lemma 1. Under the assumptions above

θp = − 1
2α

dxn+1 and dθp =
n∑

j=2

dxj ∧ dxj+n.(38)

Proof. The formula for θp follows from (36). The normality of the
coordinates, (28) and (35) implies that, for a one-form φp we have

dθp =
n∑

j=2

dxj ∧ dxj+n + θp ∧ φp.(39)

The assumption that the Reeb vector field is orthogonal to Hp and (35) imply
that ∂xn+1 is a multiple of the Reeb vector field. Hence φp = 0.

For symbolic calculations the following notation proves very useful: a
term which is a symbol of order at most k vanishing at p, to order l, is denoted
by Ok(|x|l). As we work with a variety of operator calculi, it is sometimes
necessary to be specific as to the sense in which the order should be taken.
The notation OC

j refers to terms of order at most j in the sense of the symbol
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class C. If no symbol class is specified, then the order is, with respect to
the classical, radial scaling. If no rate of vanishing is specified, it should be
understood to be O(1).

If {fj} is an orthonormal frame for TX, then the Laplace operator on the
spinor bundle is defined by

Δ =
2n∑

j=1

∇S/
fj
◦ ∇S/

fj
−∇S/

∇g
fj

fj
.(40)

Here ∇g is the Levi-Civita connection on TX. As explained in [6], the reason
for using the SpinC-Dirac operator as a replacement for ∂̄ + ∂̄∗ is because of
its very close connection to the Laplace operator.

Proposition 1. Let (X, g, J) be a Hermitian, almost complex manifold
and ð the SpinC-Dirac operator defined by these data. Then

ð2 =
1
2
Δ + R,(41)

where R : S/ → S/ is an endomorphism.

After we change to the normalizations used here, e.g. 〈V 0,1, V 0,1〉g = 1
2 ,

this is Theorem 6.1 in [6]. Using this result we can compute the symbols of ð

and ð2 at p. Recall that

∇g∂xk
= O(|x|).(42)

We can choose a local orthonormal framing for S/, {σJ} (J = (j1, . . . , jq) with
1 ≤ j1 < · · · < jq ≤ n) so that

σJ − dz̄J = O(|x|) and ∇S/σJ = O(|x|)(43)

as well.
With respect to this choice of frame, the symbol of ð, in a geodesic normal

coordinate system, is

σ(ð)(x, ξ) = d1(x, ξ) + d0(x).(44)

Because the connection coefficients vanish at p we obtain:

d1(x, ξ) = d1(0, ξ) + O1(|x|), d0(z) = O0(|x|).(45)

The linear polynomial d1(0, ξ) is the symbol of ∂̄ + ∂̄∗ on Cn with respect to
the flat metric. This is slightly different from the Kähler case where d1(x, ξ)−
d1(0, ξ) = O1(|x|2). First order vanishing is sufficient for our applications, we
only needed the quadratic vanishing to obtain the formula for the symbol of
ð2, obtained here from Proposition 1.

Proposition 1 implies that

σ(ð2)(x, ξ) = σ(
1
2
Δ + R)(x, ξ) = Δ2(x, ξ) + Δ1(x, ξ) + Δ0(x),(46)
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where Δj is a polynomial in ξ of degree j and

Δ2(x, ξ) = Δ2(0, ξ) + O2(|x|2),
Δ1(x, ξ) = O1(|x|), Δ0(x, ξ) = O0(1).

(47)

Because we are working in geodesic normal coordinates, the principal symbol
at p is

Δ2(0, ξ) =
1
2
|ξ|2 ⊗ Id .(48)

Here Id is the identity homomorphism on the appropriate bundle. These for-
mulæ are justified in Section 11, where we explain the modifications needed to
include vector bundle coefficients.

The manifold X can be included into a larger manifold X̃ (the invertible
double) in such a way that its SpinC-structure and Dirac operator extend
smoothly to X̃ and such that the extended operators ðeo are invertible. We
return to this construction in Section 7. Let Qeo denote the inverses of ðeo

extended to X̃. These are classical pseudodifferential operators of order −1.

We set X̃ \ Y = X̃+ � X̃−, where X̃+ = X; note that ρ < 0 on X̃+, and
ρ > 0 on X̃−. Let r± denote the operations of restriction of a section of S/eo,

defined on X̃ to X̃±, and γε the operation of restriction of a smooth section of
S/eo to Yε = {ρ−1(ε)}. Define the operators

K̃eo
±

d= r±Qeoγ∗
0 : C∞(Y ;S/oe �Y ) −→ C∞(X̃±;S/eo).(49)

Here γ∗
0 is the formal adjoint of γ0. We recall that, along Y, the symbol

σ1(ðeo, dρ) defines an isomorphism

σ1(ðeo, dρ) : S/eo �Y −→ S/oe �Y .(50)

Composing, we get the usual Poisson operators

Keo
± =

∓
i‖dρ‖K̃eo

± ◦ σ1(ðeo, dρ) : C∞(Y ;S/eo �Y ) −→ C∞(X̃±;S/eo),(51)

which map sections of S/eo �Y into the nullspaces of ðeo
± . The factor ∓ is inserted

because ρ < 0 on X.

The Calderón projectors are defined by

Peo
± s

d= lim
∓ε→0+

γεKeo
± s for s ∈ C∞(Y ;S/eo �Y ).(52)

The fundamental result of Seeley is that Peo
± are classical pseudodifferential

operators of order 0. The ranges of these operators are the boundary values
of elements of ker ðeo

± . Seeley gave a prescription for computing the symbols
of these operators using contour integrals, which we do not repeat here, as we
shall be computing these symbols in detail in the following sections; see [32].
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Remark 2 (Notational remark). Unlike in [9], [10], the notation Peo
+ and

Peo
− refers to the Calderón projectors defined on the two sides of a separating

hypersurface in a single manifold X̃, with an invertible SpinC-Dirac operator.
This is the more standard usage; in this case we have the identities Peo

+ + Peo
−

= Id . In our earlier papers Peo
+ are the Calderón projectors on a pseudoconvex

manifold, and Peo
− , the Calderón projectors on a pseudoconcave manifold.

Given the formulæ above for σ(ð) and σ(ð2) the computation of the sym-
bol of Qeo proceeds exactly as in the Kähler case. As we only need the principal
symbol, it suffices to do the computations in the fiber over a fixed point p ∈ bX.

Set

σ(Qeo) = q = q−1 + q−2 + . . . .(53)

We summarize the results of these calculations in the following proposition:

Proposition 2. Let (X, J, g, ρ) define a normalized strictly pseudocon-
vex SpinC-manifold. For p ∈ bX, let (x1, . . . , x2n) denote boundary adapted,
geodesic normal coordinates centered at p. The symbols of Qeo at p are given
by

q−1(ξ) =
2d1(ξ)
|ξ|2 ,

q−2 = O−2(|z|).
(54)

Here ξ are the coordinates on T ∗
p X defined by {dxj}, |ξ| is the standard

Euclidean norm, and d1(ξ) is the symbol of ∂̄ + ∂̄∗ on Cn with respect to the
flat metric. For k ≥ 2:

q−2k =
lk∑

j=0

O2j(1)
|ξ|2(k+j)

, q−(2k−1) =
l′k∑

j=0

O2j+1(1)
|ξ|2(k+j)

.(55)

The terms in the numerators of (55) are polynomials in ξ of the indicated
degrees.

In order to compute the symbol of the Calderón projector, we introduce
boundary adapted coordinates, (t, x2, . . . , x2n), where

t = −α

2
ρ(z) = x1 + O(|x|2).(56)

Note that t is positive on a pseudoconvex manifold and dt is an inward pointing,
unit co-vector.

We need to use the change of coordinates formula to express the symbol
in the new variables. From [18] we obtain the following prescription: Let w =
φ(x) be a diffeomorphism and c(x, ξ) the symbol of a classical pseudodifferential
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operator C. Let (w, η) be linear coordinates in the cotangent space; then
cφ(w, η), the symbol of C in the new coordinates, is given by

cφ(φ(x), η) ∼
∞∑

k=0

∑
θ∈Ik

(−i)k∂θ
ξ c(x, dφ(x)tη)∂θ

x̃ei〈Φx(x̃),η〉

θ!

∣∣∣∣
x=x̃

,(57)

where

Φx(x̃) = φ(x̃) − φ(x) − dφ(x)(x̃ − x).(58)

Here Ik are multi-indices of length k. Our symbols are matrix-valued; e.g. q−2

is really (q−2)pq. As the change of variables applies component by component,
we suppress these indices in the computations that follow.

In the case at hand, we are interested in evaluating this expression at
z = x = 0, where we have dφ(0) = Id and

Φ0(x̃) = (−α

2
[〈az̃, z̃〉 + Re(bz̃, z̃) + O(|z̃|3)], 0, . . . , 0).

This is exactly as in the Kähler case, but for two small modifications: In the
Kähler case α = 1 and a = Id . These differences slightly modify the symbolic
result, but not the invertibility of the symbols of T eo

+ . As before, only the k = 2
term is of importance. It is given by

− iξ1

2
tr[∂2

ξjξk
q(0, ξ)∂2

xjxk
φ(0)].(59)

To compute this term we need to compute the Hessians of q−1 and φ(x)
at x = 0. We define the 2n × 2n real matrices A, B so that

〈az, z〉 = 〈Ax, x〉 and Re(bz, z) = 〈Bx, x〉;(60)

if a = a0 + ia1 and b = b0 + ib1, then

A =
(

a0 −a1

a1 a0

)
B =

(
b0 −b1

−b1 −b0

)
.(61)

Here a0t = a0, a1t = −a1, and b0t = b0, b1t = b1. With these definitions we see
that

∂2
xjxk

φ(0) = −α(A + B).(62)

As before we compute:

∂2q−1

∂ξk∂ξj
= −4

d1 Id +ξ ⊗ ∂ξd
t
1 + ∂ξd1 ⊗ ξt

|ξ|4 + 16d1
ξ ⊗ ξt

|ξ|6 .(63)

Here ξ and ∂ξd1 are regarded as column vectors. The principal part of the
k = 2 term is

qc
−2(ξ) = iξ1α tr

[
(A + B)

(
−2

Id d1 + ξ ⊗ ∂ξd
t
1 + ∂ξd1 ⊗ ξt

|ξ|4 + 8d1
ξ ⊗ ξt

|ξ|6
)]

.

(64)
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Observe that qc
−2 depends linearly on A and B. It is shown in Proposition 6

of [10] that the contribution, along the contact direction, of a matrix with the
symmetries of B vanishes. Because q−2 vanishes at 0 and because the order of
a symbol is preserved under a change of variables we see that the symbol of
Qeo at p is

q(0, ξ) =
2d1(ξ)
|ξ|2 + qc

−2(ξ) + O−3(1).(65)

As before the O−3-term contributes nothing to the extended Heisenberg prin-
cipal symbol of the Calderón projector. Only the term

qcA
−2(ξ) = 2iξ1α

[
−trAd1

|ξ|4 + 4
d1〈Aξ, ξ〉

|ξ|6 − 2
〈Aξ, ∂ξd1〉

|ξ|4
]

(66)

makes a contribution. To find the contribution of qcA
−2 to the symbol of the

Calderón projector, we need to compute the contour integral

pc
−2±(p, ξ′) =

1
2π

∫
Γ±(ξ′)

qcA
−2(ξ)dξ1.(67)

Let ξ = (ξ1, ξ
′). As this term is lower order, in the classical sense, we only need

to compute it for ξ′ along the contact line. We do this computation in the next
section.

3. The symbol of the Calderón projector

We are now prepared to compute the symbol of the Calderón projector; it
is expressed as 1-variable contour integral in the symbol of Qeo. If q(t, x′, ξ1, ξ

′)
is the symbol of Qeo in the boundary adapted coordinates, then the symbol of
the Calderón projector is

p±(x′, ξ′) =
1
2π

∫
Γ±(ξ′)

q(0, x′, ξ1, ξ
′)dξ1 ◦ σ1(ðeo,∓idt).(68)

Here we recall that q(0, x′, ξ1, ξ
′) is a meromorphic function of ξ1. For each

fixed ξ′, the poles of q lie on the imaginary axis. For t > 0, we take Γ+(ξ′)
to be a contour enclosing the poles of q(0, x′, ·, ξ′) in the upper half-plane, for
t < 0, Γ−(ξ′) is a contour enclosing the poles of q(0, x′, ·, ξ′) in the lower half-
plane. In a moment we use a residue computation to evaluate these integrals.
For this purpose we note that the contour Γ+(ξ′) is positively oriented, while
Γ−(ξ′) is negatively oriented.

The Calderón projector is a classical pseudodifferential operator of order 0
and therefore its symbol has an asymptotic expansion of the form

p± = p0± + p−1± + . . . .(69)
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The contact line, Lp, is defined in T ∗
p Y by the equations

ξ2 = · · · = ξn = ξn+2 = · · · = ξ2n = 0,(70)

and ξn+1 is a coordinate along the contact line. Because t = −α
2 ρ, the positive

contact direction is given by ξn+1 < 0. As before we have the principal symbols
of Peo

± away from the contact line:

Proposition 3. If X̃ is an invertible double, containing X as an open
set, and p ∈ bX with coordinates normalized at p as above, then

peo
0±(0, ξ′) =

doe
1 (±i|ξ′|, ξ′)

|ξ′| ◦ σ1(ðeo,∓idt).(71)

Along the contact directions we need to evaluate higher order terms; as
shown in [10], the error terms in (65) contribute terms that lift to have Heisen-
berg order less than −2. To finish our discussion of the symbol of the Calderón
projector we need to compute the symbol along the contact direction. This
entails computing the contribution from qcA

−2. As before, the terms arising from
the holomorphic Hessian of ρ do not contribute anything to the symbol of the
Calderón projector. However, the terms arising from ∂2

zj z̄k
still need to be com-

puted. To do these computations, we need to have an explicit formula for the
principal symbol d1(ξ) of ð at p. For the purposes of these and our subsequent
computations, it is useful to use the chiral operators ðeo. As we are working in
a geodesic normal coordinate system, we only need to find the symbols of ðeo

for Cn with the flat metric. Let σ denote a section of Λeo. We split σ into its
normal and tangential parts at p:

σ = σt +
dz̄1√

2
∧ σn, i∂z̄1

σt = i∂z̄1
σn = 0.(72)

With this splitting we see that

ðeσ =
√

2
(

∂z̄1 ⊗ Idn Dt

−Dt −∂z1 ⊗ Idn

) (
σt

σn

)
,

ðoσ =
√

2
(
−∂z1 ⊗ Idn −Dt

Dt ∂z̄1 ⊗ Idn

) (
σn

σt

)
,

(73)

where Idn is the identity matrix acting on the normal, or tangential parts of
Λeo �bX and

Dt =
n∑

j=2

[∂zj
ej − ∂z̄j

εj ] with ej = i√2∂z̄j
and εj =

dz̄j√
2
∧ .(74)

It is now a simple matter to compute deo
1 (ξ):

de
1(ξ) =

1√
2

(
(iξ1 − ξn+1) ⊗ Idn d(ξ′′)

−d(ξ′′) −(iξ1 + ξn+1) ⊗ Idn

)
,

do
1(ξ) =

1√
2

(
−(iξ1 + ξn+1) ⊗ Idn −d(ξ′′)

d(ξ′′) (iξ1 − ξn+1) ⊗ Idn

)
,

(75)
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where ξ′′ = (ξ2, . . . , ξn, ξn+2, . . . , ξ2n) and

d(ξ′′) =
n∑

j=2

[(iξj + ξn+j)ej − (iξj − ξn+j)εj ].(76)

As ε∗j = ej we see that d(ξ′′) is a self-adjoint symbol.

The principal symbols of T eo
+ have the same block structure as in the

Kähler case. The symbol qc
−2 produces a term that lifts to have Heisenberg

order −2 and therefore, in the pseudoconvex case, we only need to compute
the (2, 2) block arising from this term.

We start with the nontrivial term of order −1.

Lemma 2. If X is either pseudoconvex or pseudoconcave,

1
2π

∫
Γ±(ξ′)

2iξ1α trAd1(ξ1, ξ
′)dξ1

|ξ|4 = − iα trA∂ξ1 .d1

2|ξ′| .(77)

Remark 3. As d1 is a linear polynomial, ∂ξ1d1 is a constant matrix.

Proof. See Lemma 1 in [10].

We complete the computation by evaluating the contribution from the
other terms in qcA

−2 along the contact line.

Proposition 4. For ξ′ along the positive (negative) contact line,

1
2π

∫
Γ±(ξ′)

[qcA
−2(p, ξ)]dξ1 = −α(a0

11 − 1
2 trA)

|ξ′| ∂ξ1d1.(78)

If ξn+1 < 0, then we use Γ+(ξ′), whereas if ξn+1 > 0, then we use Γ−(ξ′).

Proof. To prove this result we need to evaluate the contour integral with

ξ′ = ξ′c = (0, . . . , 0, ξn+1, 0, . . . , 0),

recalling that the positive contact line corresponds to ξn+1 < 0. Hence, along
the positive contact line |ξ′| = −ξn+1. We first compute the integrand along ξ′c.

Lemma 3. For ξ′ along the contact line,[
2de

1(ξ)〈Aξ, ξ〉 − |ξ|2〈Aξ, ∂ξd
e
1〉

|ξ|6
]

=
a0

11

|ξ|4 de
1(ξ),(79)

[
2do

1(ξ)〈Aξ, ξ〉 − |ξ|2〈Aξ, ∂ξd
o
1〉

|ξ|6
]

=
a0

11

|ξ|4 do
1(ξ).(80)
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Proof. As a1 is skew symmetric, a1
11 = 0; we observe that along the

contact line

〈Aξ, ξ〉 = a0
11(ξ

2
1 + ξ2

n+1),

〈Aξ, ∂ξd
e
1〉 = a0

11

(
(iξ1 − ξn+1) ⊗ Id 0

0 −(iξ1 + ξn+1) ⊗ Id

)
= a0

11d
e
1,

〈Aξ, ∂ξd
o
1〉 = a0

11

(
−(iξ1 + ξn+1) ⊗ Id 0

0 (iξ1 − ξn+1) ⊗ Id

)
= a0

11d
o
1.

(81)

As ξ2
1 +ξ2

n+1 = |ξ|2 for ξ′ along the contact line these formulæ easily imply (79)
and (80).

The proposition is an easy consequence of these formulæ.

For subsequent calculations we set

β
d=

1
2

trA − a0
11 =

n∑
j=2

[∂2
xj

ρ + ∂2
yj

ρ]x=p.(82)

As a corollary, we have a formula for the −1 order term in the symbol of the
Calderón projector

Corollary 1. In the normalizations defined above, along the contact di-
rections,

peo
−1(0, ξ′) = − iαβ∂ξ1d

oe
1

|ξ′| ◦ σ1(ðeo,∓idt).(83)

Remark 4. In the Kähler case α = 1 and β = n − 1. The values of these
numbers turn out to be unimportant. It is only important that α > 0 and that
they depend smoothly on local geometric data, which they obviously do.

We have shown that the order −1 term in the symbol of the Calderón
projector, along the appropriate half of the contact line, is given by the right-
hand side of equation (83). It is determined by the principal symbol of Qeo and
does not depend on the higher order geometry of bX. As all other terms in the
symbol of Qeo contribute terms that lift to have Heisenberg order less than −2,

these computations allow us to find the principal symbols of T eo
+ and extend

the main results of [10] to the pseudoconvex almost complex category. As
noted above, the off diagonal blocks have Heisenberg order −1, so the classical
terms of order less than zero cannot contribute to their principal parts.

We now give formulæ for the chiral forms of the subelliptic boundary
conditions defined in [9] as well as the isomorphisms σ1(ðeo,∓idt). Let S be a
generalized Szegő projector.
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Lemma 4. According to the splittings of sections of Λeo given in (72), the
subelliptic boundary conditions, defined by the generalized Szegő projector S,

on even (odd) forms are given by Reo
+ σ �bX= 0, where

Re
+σ �bX=

⎛
⎝S 0

0 0
0

0 Id

⎞
⎠

⎡
⎣σt

σn

⎤
⎦

bX

, Ro
+σ �bX=

⎛
⎝1 − S 0

0 Id
0

0 0

⎞
⎠

⎡
⎣σn

σt

⎤
⎦

bX

.

(84)

Lemma 5. The isomorphisms at the boundary between Λeo and Λoe are
given by

σ1(ðeo
± ,∓idt)σt =

±√
2
σt, σ1(ðeo

± ,∓idt)σn =
∓√
2
σn.(85)

Thus far, we have succeeded in computing the symbols of the Calderón
projectors to high enough order to compute the principal symbols of T eo

+ as
elements of the extended Heisenberg calculus. The computations have been
carried out in a coordinate system adapted to the boundary. This suffices to
examine the classical parts of the symbols. Recall that the positive contact
direction L+, is given at p by ξ′′ = 0, ξn+1 < 0. As before we obtain:

Proposition 5. If (X, J, g, ρ) is a normalized strictly pseudoconvex SpinC-
manifold, then, on the complement of the positive contact direction, the classi-
cal symbols Rσ0(T eo

+ ) are given by

Rσ0(T e
+)(0, ξ′) =

1
2|ξ′|

(
(|ξ′| + ξn+1) Id −d(ξ′′)

d(ξ′′) (|ξ′| + ξn+1) Id

)
,

Rσ0(T o
+)(0, ξ′) =

1
2|ξ′|

(
(|ξ′| + ξn+1) Id d(ξ′′)

−d(ξ′′) (|ξ′| + ξn+1) Id

)
.

(86)

These symbols are invertible on the complement of L+.

Proof. See Proposition 8 in [10].

4. The Heisenberg symbols of T eo
+

To compute the Heisenberg symbols of T eo
+ we change coordinates, one last

time, to get Darboux coordinates at p. Up to this point we have used the coor-
dinates (ξ2, . . . , ξ2n) for T ∗

p bX, which are defined by the coframe dx2, . . . , dx2n,

with dxn+1 the contact direction. Recall that the contact form θ, defined by the
complex structure and defining function ρ, is given by θ = i

2 ∂̄ρ. The symplectic
form on H is defined by dθ. At p we have

θp = − 1
2α

dxn+1, dθp =
n∑

j=2

dxj ∧ dxj+n.(87)
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By comparison with equation (5) in [10], we see that properly normalized
coordinates for T ∗

p bX (i.e., Darboux coordinates) are obtained by setting

η0 = −2αξn+1, ηj = ξj+1, ηj+n−1 = ξj+n+1 for j = 1, . . . , n − 1.(88)

As usual we let η′ = (η1, . . . , η2(n−1)); whence ξ′′ = η′.
As a first step in lifting the symbols of the Calderón projectors to the

extended Heisenberg compactification, we re-express them, through order −1
in the ξ-coordinates:

pe
+(ξ′) =

1
2|ξ′|

[(
(|ξ′| − ξn+1) Id d(ξ′′)

d(ξ′′) (|ξ′| + ξn+1) Id

)
− αβ

(
Id 0
0 Id

)]
,(89)

po
+(ξ′) =

1
2|ξ′|

[(
(|ξ′| + ξn+1) Id d(ξ′′)

d(ξ′′) (|ξ′| − ξn+1) Id

)
− αβ

(
Id 0
0 Id

)]
.(90)

Various identity and zero matrices appear in these symbolic computations.
Precisely which matrix is needed depends on the dimension, the parity, etc.
We do not encumber our notation with these distinctions.

In order to compute Hσ(T eo
+ ), we represent the Heisenberg symbols as

model operators and use operator composition. To that end we need to quan-
tize d(η′) as well as the terms coming from the diagonals in (89), (90). For
the pseudoconvex side, we need to consider the symbols on positive Heisenberg
faces, where the function |ξ′| + ξn+1 vanishes.

We express the various terms in the symbol peo
+ , near the positive contact

line as sums of Heisenberg homogeneous terms

|ξ′| =
η0

2α
(1 + OH

−2),

|ξ′| − ξn+1 =
η0

α
(1 + OH

−2), |ξ′| + ξn+1 =
α|η′|2

η0
(1 + OH

−2),(91)

d(ξ′′) =
n−1∑
j=1

[(iηj + ηn+j−1)ej − (iηj − ηn+j−1)εj ].

Recall that the notation OH
j denotes a term of Heisenberg order at most j. To

find the model operators, we use the quantization rule, equation (20) in [10]
(with the + sign), obtaining

ηj − iηn+j−1 ↔ Cj
d= (wj − ∂wj

),

ηj + iηn+j−1 ↔ C∗
j

d= (wj + ∂wj
),

|η′|2 ↔ H
d=

n−1∑
j=1

w2
j − ∂2

wj
.

(92)



SUBELLIPTIC SpinC DIRAC OPERATORS, III 321

The following standard identities are useful

n−1∑
j=1

C∗
j Cj − (n − 1) = H =

n−1∑
j=1

CjC
∗
j + (n − 1).(93)

We let D+ denote the model operator defined, using the + quantization, by
d(ξ′′):

D+ = i
n−1∑
j=1

[Cjej − C∗
j εj ].(94)

This operator can be split into even and odd parts, Deo
+ and these chiral forms

of the operator are what appear in the model operators below.
With these preliminaries, we can compute the model operators for Pe

+ and
Id−Pe

+ in the positive contact direction. They are:

eHσ(Pe
+)(+)=

⎛
⎝ Id αDo

+

η0

αDe
+

η0

α2H−α2βη0

η2
0

⎞
⎠ , eHσ(Id−Pe

+)(+)=

⎛
⎝α2H+α2βη0

η2
0

−αDo
+

η0

−αDe
+

η0
Id

⎞
⎠.

(95)

The denominators involving η0 are meant to remind the reader of the Heisen-
berg orders of the various blocks: η−1

0 indicates a term of Heisenberg order −1
and η−2

0 a term of order −2. Similar computations give the model operators in
the odd case:

eHσ(Po
+)(+)=

⎛
⎝α2H−α2βη0

η2
0

αDo
+

η0

αDe
+

η0
Id

⎞
⎠ , eHσ(Id−Po

+)(+)=

⎛
⎝ Id −αDo

+

η0

−αDe
+

η0

α2H+α2βη0

η2
0

⎞
⎠.

(96)

Let π′
0 = eHσ(+)(S); it is a self-adjoint rank-one projection defined by a com-

patible almost complex structure on H. We use the ′ to distinguish this rank-
one projection, from the rank-one projection π0 defined by the CR-structure
on the fiber of the cotangent bundle at p. The model operators for Reo

+ in the
positive contact direction are:

eHσ(Re
+)(+) =

⎛
⎝π′

0 0
0 0

0

0 Id

⎞
⎠ , eHσ(Ro

+)(+) =

⎛
⎝1 − π′

0 0
0 Id

0

0 0

⎞
⎠ .(97)

We can now compute the model operators for T eo
+ on the upper Heisenberg

face.

Proposition 6. If (X, J, g, ρ) is a normalized strictly pseudoconvex SpinC-
manifold, then, at p ∈ bX, the model operators for T eo

+ , in the positive contact
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direction, are given by

eHσ(T e
+)(+) =

⎛
⎜⎝π′

0 0
0 0

−
[
1 − 2π′

0 0
0 Id

]
αDo

+

η0

αDe
+

η0

α2H−α2βη0

η2
0

⎞
⎟⎠ ,(98)

eHσ(T o
+)(+) =

⎛
⎜⎝π′

0 0
0 0

[
1 − 2π′

0 0
0 Id

]
αDo

+

η0

−αDe
+

η0

α2H+α2βη0

η2
0

⎞
⎟⎠ .(99)

Proof. Observe that the Heisenberg orders of the blocks in (98) and (99)
are (

0 −1
−1 −2

)
.(100)

Proposition 6 in [10] shows that all other terms in the symbol of the Calderón
projector lead to diagonal terms of Heisenberg order at most −4, and off di-
agonal terms of order at most −2. This, along with the computations above,
completes the proof of the proposition.

This brings us to the generalization, in the non-Kähler case, of Theorem
1 in [10]:

Theorem 1. Let (X, J, g, ρ) be a normalized strictly pseudoconvex SpinC-
manifold, and S a generalized Szegő projector, defined by a compatible defor-
mation of the almost complex structure on H induced by the embedding of bX

as the boundary of X. The comparison operators, T eo
+ , are elliptic elements of

the extended Heisenberg calculus, with parametrices having Heisenberg orders(
0 1
1 1

)
.(101)

Proof. The proof is identical to the proof of Theorem 1 in [10]: we need
to show that the principal symbols of T eo

+ are invertible, which is done in the
next section.

5. Invertibility of the model operators

In this section we produce inverses for the model operators σH(T eo
+ )(+).

We begin by writing down inverses for the model operators using the pro-
jector compatible with the CR-structure induced at p by J. We denote this
projector by π0 to distinguish it from π′

0 = σH
0 (p)(S). In this section, we let

eHσ(T eo
+ )(+), denote the model operators with this projector to distinguish it

from eHσ(T ′ eo
+ )(+), the model operators with π′

0. As before, the inverse in the
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general case is a finite rank perturbation of this case. For the computations in
this section we recall that α is a positive number.

The operators {Cj} are called the creation operators and the operators
{C∗

j } the annihilation operators. They satisfy the commutation relations

[Cj , Ck] = [C∗
j , C∗

k ] = 0, [Cj , C
∗
k ] = −2δjk.(102)

The operators D± act on sums of the form

ω =
n−1∑
k=0

∑
I∈I′

k

fI ω̄
I ;(103)

here I ′
k are increasing multi-indices of length k. We refer to the terms with

|I| = k as the terms of degree k. For an increasing k-multi-index I = 1 ≤ i1 <

i2 < · · · < ik ≤ n − 1, ω̄I is defined by

ω̄I =
1

2
k

2

dz̄i1 ∧ · · · ∧ dz̄ik
.(104)

The projector π0 and the operator D+ satisfy the following relation:

Lemma 6. Let π0 be the symbol of the generalized Szegő projector compat-
ible with the CR-structure defined on the fiber of TpbX by the almost complex
structure; then [

π0 0
0 0

]
Do

+ = 0.(105)

Proof. See Lemma 7 in [10]

This lemma simplifies the analysis of the model operators for T eo
+ . The

following lemma is useful in finding their inverses.

Lemma 7. Let Πq denote projection onto the terms of degree q;

Πqω =
∑
I∈I′

q

fI ω̄
I .(106)

The operators D+ satisfies the identity

D2
+ =

n−1∑
j=1

CjC
∗
j ⊗ Id +

n−1∑
q=0

2qΠq.(107)

Proof. See Lemma 9 in [10].

As before eHσ(T eo
+ )(+) are Fredholm elements (in the graded sense), in

the isotropic algebra. Notice that this is a purely symbolic statement in the
isotropic algebra. The blocks have isotropic orders(

0 1
1 2

)
.(108)



324 CHARLES L. EPSTEIN

The leading order part in the isotropic algebra is independent of the choice
of generalized Szegő projector. In the former case we can think of the opera-
tor as defining a map from H1(Rn−1;E1) ⊕ H2(Rn−1;E2) to H1(Rn−1;F1) ⊕
H0(Rn−1;F2) for appropriate vector bundles E1, E2, F1, F2. It is as maps be-
tween these spaces that the model operators are Fredholm.

Proposition 7. The model operators, eHσ(T eo
+ )(+), are graded Fredholm

elements in the isotropic algebra.

Proof. See Proposition 7 in [10].

The operators De
+ and Do

+ are adjoint to one another. From (107) and
the well known properties of the harmonic oscillator, it is clear that De

+Do
+ is

invertible. As De
+ has a one-dimensional null space this easily implies that Do

+

is injective with image orthogonal to the range of π0, while De
+ is surjective.

With these observations we easily invert the model operators.
Let [De

+]−1u denote the unique solution to the equation

De
+v = u,

orthogonal to the null space of De
+. We let

�
u =

(
1 − π0 0

0 Id

)
u;(109)

this is the projection onto the range of Do
+ and

u0 =
(

π0 0
0 0

)
u,(110)

denotes the projection onto the nullspace of De
+. We let [Do

+]−1 denote the
unique solution to

Do
+v =

�
u.

Proposition 7 shows that these partial inverses are isotropic operators of or-
der −1.

With this notation we find the inverse of eHσ(T e
+)(+). The vector [u, v]

satisfies

eHσ(T e
+)(+)

[
u

v

]
=

[
a

b

]
(111)

if and only if

u = a0 + [αDe
+]−1(α2H − α2β)[αDo

+]−1�a + [αDe
+]−1b,

v = −[αDo
+]−1�a.

(112)
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Writing out the inverse as a block matrix of operators, with appropriate factors
of η0 included, gives:

[eHσ(T e
+)(+)]−1

=

⎡
⎢⎢⎣

(
π0 0
0 0

)
+ [De

+]−1(H − β)[Do
+]−1

(
1 − π0 0

0 Id

)
η0[αDe

+]−1

−η0[αDo
+]−1

(
1 − π0 0

0 Id

)
0

⎤
⎥⎥⎦ .

(113)

The isotropic operators [αDeo
+ ]−1 are of order −1, whereas the operator,

[De
+]−1(H − β)[Do

+]−1,

is of order zero. The Schwartz kernel of π0 is rapidly decreasing. From this we
conclude that the Heisenberg orders, as a block matrix, of the parametrix for
[eHσ(T e

+)(+)] are (
0 1
1 1

)
.(114)

We get a 1 in the lower right corner because the principal symbol of this
entry, a priori of order 2, vanishes. As a result, the inverses of the model
operators have Heisenberg order at most 1, which in turn allows us to use this
representation of the parametrix to deduce the standard subelliptic 1

2 -estimates
for these boundary value problems.

The solution for the odd case is given by

u = a0 + [De
+]−1(H + β)[Do

+]−1�a − [αDe
+]−1b,

v = [αDo
+]−1�a.

(115)

Once again the (2, 2) block of [eHσ(T o
+)(+)]−1 vanishes, and the principal sym-

bol has the Heisenberg orders indicated in (114).
For the case that π′

0 = π0, Lemma 6 implies that the model operators
satisfy

[eHσ(T eo
+ )(+)]∗ = eHσ(T oe

+ )(+).(116)

From Proposition 7, we know that these are Fredholm operators. Since we
have shown that all the operators eHσ(T eo

+ )(+) are surjective, i.e., have a left
inverse, it follows that all are in fact injective and therefore invertible. In
all cases this completes the proof of Theorem 1 in the special case that the
principal symbol of S equals π0.

We now show that the parametrices for eHσ(T ′ eo
+ )(+) differ from those

with classical Szegő projectors by operators of finite rank. The Schwartz ker-
nels of the correction terms are in the Hermite ideal, and so do not affect the
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Heisenberg orders of the blocks in the parametrix. As before the principal
symbol in the (2, 2) block vanishes.

With these preliminaries and the results from the beginning of Section 7
in [10], we can now complete the proof of Theorem 1. As noted above,
eHσ(T eo

+ )(+) denotes the model operators with the projector π0, and
eHσ(T ′ eo

+ )(+) the model operators with projector π′
0.

Proposition 8. If π′
0 is the principal symbol of a generalized Szegő pro-

jection, which is a deformation of π0, then eHσ(T ′ eo
+ )(+) are invertible ele-

ments of the isotropic algebra. The inverses satisfy

[eHσ(T ′ eo
+ )(+)]−1 = [eHσ(T eo

+ )(+)]−1 +
(

c1 c2

c3 0

)
.(117)

Here c1, c2, c3 are finite rank operators in the Hermite ideal.

Proof. In the formulæ below we let z0 denote the unit vector spanning
the range of π0, and z′0, the unit vector spanning the range of π′

0.

Proposition 7 implies that eHσ(T ′ eo
+ )(+) are Fredholm operators. Since,

as isotropic operators, the differences

eHσ(T ′ eo
+ )(+) − eHσ(T eo

+ )(+)

are finite rank operators, it follows that eHσ(T ′ eo
+ )(+) have index zero. It

therefore suffices to construct a left inverse.
We begin with the + even case by rewriting the equation

eHσ(T ′ e
+ )(+)

[
u

v

]
=

[
a

b

]
,(118)

as [
π′

0 0
0 0

]
[u + αDo

+v] =
[
π′

0 0
0 0

]
a,[

1 − π′
0 0

0 Id

]
αDo

+v = −
[
1 − π′

0 0
0 Id

]
a,

αDe
+u + (α2H − α2β)v = b.

(119)

We solve the middle equation in (119) first. Let

A1 = (
z′0 ⊗ zt

0

〈z′0, z0〉
− π0)Π0a,(120)

and note that π0A1 = 0. Corollary 2 in [10] shows that the model operator
in (120) provides a globally defined symbol. The section v is determined as
the unique solution to

αDo
+v = −(

�
a − A1).(121)
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By construction (1 − π′
0)(a0 + A1) = 0 and therefore the second equation is

solved. The section
�
u is now uniquely determined by the last equation in (119):

�
u = [αDe

+]−1(b + (α2H − α2β)[αDo
+]−1(

�
a − A1)).(122)

This leaves only the first equation, which we rewrite as[
π′

0 0
0 0

]
u0 =

[
π′

0 0
0 0

]
(a − αDo

+v − �
u).(123)

It is immediate that

u0 =
z0 ⊗ z′t0
〈z0, z′0〉

Π0(a − αDo
+v − �

u).(124)

By comparing these equations to those in (112) we see that [eHσ(T ′ e
+ )(+)]−1

has the required form. The finite rank operators are finite sums of terms
involving π0, z0 ⊗ z′t0 and z′t0 ⊗ z0, and are therefore in the Hermite ideal.

The solution to in the + odd case is given by

v = [αDo
+]−1(

�
a − A1),

�
u = [αDe

+]−1[(α2H + α2β)v − b],

u0 =
z0 ⊗ z′t0
〈z0, z′0〉

Π0(a + αDo
+v − �

u).

(125)

As before A1 is given by (120). Again the inverse of eHσ(T ′ o
+ )(+) has the

desired form.

As noted above, the operators eHσ(T ′ eo
+ )(+) are Fredholm operators of

index zero. Hence, solvability of the equations

eHσ(T ′ eo
+ )(+)

[
u

v

]
=

[
a

b

]
,(126)

for all [a, b], implies the uniqueness and therefore the invertibility of the model
operators. This completes the proof of Theorem 1. We now turn to applications
of these results.

Remark 5. For the remainder of the paper T eo
+ is used to denote the com-

parison operator defined by Reo
+ , where the rank-one projections are given by

the principal symbol of S.

6. Consequences of ellipticity

As in the Kähler case, the ellipticity of the operators T eo
+ implies that the

graph closures of (ðeo
+ ,Reo

+ ) are Fredholm and moreover,

(ðeo
+ ,Reo

+ )∗ = (ðoe
+ ,Roe

+ ).(127)
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Given the ellipticity of T eo
+ , the proofs of these statements are identical to the

proofs in the Kähler case. For later usage, we introduce some notation and
state these results.

Let Ueo
+ denote a 2-sided parametrix defined so that

T eo
+ Ueo

+ = Id−Keo
1 , Ueo

+ T eo
+ = Id−Keo

2 ,(128)

with Keo
1 , Keo

2 finite rank, smoothing operators. The principal symbol compu-
tations show that Ueo

+ has classical order 0 and Heisenberg order at most 1.

Such an operator defines a bounded map from H
1
2 (bX) to L2(bX).

Proposition 9. The operators Ueo
+ define bounded maps

Ueo
+ : Hs(bX;F ) → Hs− 1

2 (bX;F )

for s ∈ R. Here F is an appropriate vector bundle over bX.

The mapping properties of the boundary parametrices allow us to show
that the graph closures of the operators (ðeo

+ ,Reo
+ ) are Fredholm.

Theorem 2. Let (X, J, g, ρ) define a normalized strictly pseudoconvex
SpinC-manifold. The graph closures of (ðeo

+ ,Reo
+ ), are Fredholm operators.

Proof. The proof is exactly the same as the proof of Theorem 2 in [10].

We also obtain the standard subelliptic Sobolev space estimates for the
operators (ðeo

+ ,Reo
+ ).

Theorem 3. Let (X, J, g, ρ) define a normalized strictly pseudoconvex
SpinC-manifold. For each s ≥ 0, there is a positive constant Cs such that
if u is an L2-solution to

ðeo
+ u = f ∈ Hs(X) and Reo

+ [u]bX = 0

in the sense of distributions, then

‖u‖
Hs+ 1

2
≤ Cs[‖ðeo

+ u‖Hs + ‖u‖L2 ].(129)

Proof. Exactly as in the Kähler case.

Remark 6. In the case s = 0, there is a slightly better result: the Poisson
kernel maps L2(bX) into H(1,− 1

2
)(X) and therefore the argument shows that

there is a constant C0 such that if u ∈ L2, ðeo
+ u ∈ L2 and Reo

+ [u]bX = 0, then

‖u‖(1,− 1
2
) ≤ C0[‖f‖L2 + ‖u‖L2 ].(130)

This is just the standard 1
2 -estimate for the operators (ðeo

+ ,Reo
+ ).
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It is also possible to prove localized versions of these results. The higher
norm estimates have the same consequences as for the ∂̄-Neumann problem.
Indeed, under certain hypotheses these estimates imply higher norm estimates
for the second order operators considered in [9]. We identify the adjoints:

Theorem 4. Let (X, J, g, ρ) define a normalized strictly pseudoconvex
SpinC-manifold which yields the following relations:

(ðeo
+ ,Reo

+ )∗ = (ðoe
+ ,Roe

+ ).(131)

As a corollary of Theorem 4, we get estimates for the second order oper-
ators ðoe

+ ðeo
+ , with subelliptic boundary conditions.

Corollary 2. Let (X, J, g, ρ) define a normalized strictly pseudoconvex
SpinC-manifold. For s ≥ 0 there exist constants Cs such that if u ∈ L2,

ðeo
+ u ∈ L2, ðoe

+ ðeo
+ u ∈ Hs and Reo

+ [u]bX = 0,Roe
+ [ðeo

+ u] = 0 in the sense of
distributions, then

‖u‖Hs+1 ≤ Cs[‖ðoe
+ ðeo

+ u‖Hs + ‖u‖L2 ].(132)

We close this section by considering (Peo
+ ,Reo

+ ) as a tame Fredholm pair,
as defined in the appendix. To apply the functional analytic framework set
up in the appendix, we use as the family of separable Hilbert spaces the
L2-Sobolev spaces Hs(bX;F ), where F are appropriate vector bundles. The
norms on these spaces can be selected to satisfy the conditions (262) and (263).
In this setting the algebra of tame operators certainly includes the extended
Heisenberg calculus. In this setting the smoothing operators are operators in
eHΨ−∞,−∞,−∞(bX;F, G), i.e., operators from sections of F to sections of G

(two vector bundles) with a Schwartz kernel in C∞(bX × bX).
An immediate corollary of Theorem 1 is:

Corollary 3. Let (X, J, g, ρ) define a normalized strictly pseudoconvex
SpinC-manifold, and let Peo

+ be the Calderón projectors for ðeo
+ . If Reo

+ are
projectors defining modified ∂̄-Neumann boundary conditions, then (Peo

+ ,Reo
+ )

are tame Fredholm pairs.

If Ueo
+ are parametrices for T eo

+ , and Keo
1 , Keo

2 are smoothing operators
that satisfy

T eo
+ Ueo

+ = Id−Keo
1 , Ueo

+ T eo
+ = Id−Keo

2 ,(133)

then Theorem 15 immediately implies:

Theorem 5. Let (X, J, g, ρ) define a normalized strictly pseudoconvex
SpinC-manifold, and let Peo

+ be Calderón projectors for ðeo
+ . If Reo

+ are pro-
jectors defining a modified ∂̄-Neumann boundary condition, then

R-Ind(Peo
+ ,Reo

+ ) = trL2(Peo
+ Keo

2 Peo
+ ) − trL2(Reo

+ Keo
1 Reo

+ ).(134)
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If Peo
+ Keo

2 Peo
+ have Schwartz kernels κeo

2 (x, y) and Reo
+ Keo

1 Reo
+ have Schwartz

kernels κeo
1 (x, y), then Lidskii’s theorem, see [22], implies that

R-Ind(Peo
+ ,Reo

+ ) =
∫
bX

κeo
2 (x, x)dS(x) −

∫
bX

κeo
1 (x, x)dS(x).(135)

This formula, coupled with (19), is very useful for showing the constancy of
the index under smooth isotopies of the structures involved in its definition.

7. Invertible doubles and the Calderón projector

In order to better understand the functorial properties of sub-elliptic
boundary value problems and prove the Atiyah-Weinstein conjecture, it is
important to be able to deform the SpinC-structure and projectors without
changing the indices of the operators. We now consider the dependence of the
various operators on the geometric structures. Of particular interest is the
dependence of the Calderón projector on (J, g, ρ). To examine this we need to
consider the invertible double construction from [3] in greater detail. We also
want to express the indices of (ðeo

+ ,Reo
+ ) as the relative indices of the tame

Fredholm pairs (Peo
+ ,Reo

+ ).
We now recount the invertible double construction from [3]. We begin

with a compact manifold X with boundary, with a metric g, complex spinor
bundles S/eo → X, and h a Hermitian metric on S/eo. Let Y = bX and suppose
that an identification of a neighborhood U of bX with Y × [−1, 0]t is fixed.
We assume that dt is a outward pointing unit co-vector. With respect to
this collar neighborhood, we say that X has a cylindrical end if S/eo, h and
g are independent of the “normal variable,” t. In this case, the invertible
double of (X, g, h, S/eo) is defined to be X̃ = X �Y X; here X is X with the
opposite orientation. We denote the components of X̃ \Y ×{0} by X+(t < 0),
X−(t > 0). The smooth structure on X̃ is obtained by gluing Y × [−1, 0] ⊂ X+

to Y × [0, 1] ⊂ X−, along Y × {0}. As S/eo, h and g are independent of t it is
clear that they extend smoothly to X̃.

Because the orientation of X− is reversed, to get a smooth bundle of
complex spinors we glue S/eo �Y to S/oe �Y using

c(−dt) · σ+ �Y ×0−∼ σ− �Y ×0+ .(136)

In [3] it is shown that this defines a smooth Clifford module over X̃ and hence
a SpinC-structure. We let ðeo

X̃
denote the Dirac operator, and use the notation

ðeo
X±

d= ðeo
X̃

�C∞(X±;S/eo) .(137)

From the construction and results in [3], the following identities are obvious:

ker ðeo
X± = ker ðoe

X∓.(138)
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In [3] it is shown that ðeo
X̃

are invertible operators; we denote the inverses by
Qeo.

If (X, J, g) is an almost complex manifold with boundary, then it can be
included into a larger manifold X ′ that has a cylindrical end. It is clear that
this can be done with smooth dependence on (J, g). We fix an identification
of a neighborhood U of bX with [−3,−2] × Y. Using this identification we
smoothly glue Y × [−2, 0] to X. Denote this manifold by X ′. Using Lemma 8
below we easily show that the almost complex structure can be extended to
X ′ so that by the time we reach t = −1 it is independent of t. Hence we
can also extend S/eo to X ′. Using the Seeley extension theorem we can extend
(g, h) to Y × [−2,−1] in such a way that the extended metric tensors depend
continuously, in the C∞-topology, on (g, h) �Y ×[−3,−2], and (g, h) also has a
product structure by the time we reach Y × {−1}. Everything can be further
extended to Y × [−1, 0] so that it is independent of t, and hence X ′, with this
hermitian spin-structure, has a cylindrical end. Compatible connections can be
chosen on S/eo so that both the metric and spin geometries of X̃ ′ = X ′�Y ×{0}X ′

depends smoothly on the geometry of (X, J, g, h). In particular the symbols of
ðeo

X̃′ depend smoothly on the symbols of ðeo
X .

We let Qeo
X̃′ be the inverses of ðeo

X̃′ . These are classical pseudodifferential
operators of order −1, whose symbols depend smoothly on the symbols of ðeo

X̃′

and therefore, in turn on the geometric data on X. Throughout the discussion
below we use the fact that the operator norms of a pseudodifferential operator
depend continuously on finite semi-norms of the “full” symbol of the operator;
see [18].

We state a general result:

Proposition 10. Let M be a compact manifold and E, F complex vector
bundles over M. Let {Aτ ∈ Ψ1(M ;E, F ) : τ ∈ T} be a compact smooth family
of invertible elliptic pseudodifferential operators. For any s ∈ R the family
of inverses A−1

τ is a norm continuous family of operators from Hs(M ;F ) to
Hs+1(M ;E).

Proof. As {Aτ} is a smooth family of pseudodifferential operators of
order 1, for each s ∈ R, τ �→

[
Aτ : Hs → Hs−1

]
is norm continuous. We can

write

Aτ = Aτ0(I − Eτ,τ0)(139)

where

Eτ,τ0 = A−1
τ0

(Aτ0 − Aτ ).(140)

For any fixed τ0, the operators Eτ,τ0 are a smooth family of pseudodifferential
operators of order zero, with Eτ0,τ0 = 0. Hence for any fixed s, there is a δs

such that |τ − τ0| < δs implies that operator norm of Eτ,τ0 : Hs → Hs is less
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than 1
2 . Hence (139) implies that A−1

τ is given by the series:

A−1
τ = A−1

τ0
+

∞∑
k=1

Ek
τ,τ0

, A−1
τ0

,(141)

which converges in the norm topology of operators from Hs to Hs+1, thus
completing the proof of the proposition.

Once the collar neighborhood is fixed, we can define the Calderón pro-
jectors for the hypersurface t = 0 : The Calderón projectors Peo

± are defined
by

Peo
± g = lim

ε→0+
γ∓εQ

eoγ∗
0c(∓dt)g.(142)

Here γε is the operation of restriction to the submanifold t = ε. In fact, we can
define a pair of Calderón projectors for any hypersurface t = t0 lying in the
collared part of the manifold. In [3] it is shown that,

Peo
+ + Peo

− = Id .(143)

We can extend t smoothly to all of X̃ ′ so that it is negative on the original
manifold X, and positive on the interior of X̃ ′ \X ′. The following result is very
useful in our analysis.

Proposition 11. Let X be a SpinC-manifold with boundary and let X̃ ′

be an invertible double for X. If Peo
± are the Calderón projectors defined by the

above prescription, then the adjoints satisfy :

Peo ∗
± = c(±dt)Poe

∓ c(±dt)−1.(144)

Proof. We give the proof for the + even case; the odd and − cases
are identical. Let f and g be smooth sections of S/e �bX , and let G denote
the extension of g to the collar neighborhood of bX that is constant in t. As
[Qeo]∗ = Qoe, the definition implies that

〈f,Pe ∗
+ g〉 = 〈Pe

+f, g〉 = lim
ε→0−

〈γεQ
eγ∗

0c(−dt)f, G〉

= lim
ε→0−

〈c(−dt)f, γ0Q
oγ∗

εG〉.
(145)

The proof of the proposition follows from the observations that ε < 0 in (145),
c(−dt)∗ = c(dt), and

lim
ε→0−

γ0Q
oγ∗

εG = Po
−c(dt)−1g.(146)

This follows because uε = Qoγ∗
εG solves ðouε = 0 in the subset

X̃ ′
ε = {x : t(x) > ε}.

It is easy to see that, as ε ↑ 0, this is a uniformly bounded family of solutions,
which converges uniformly on X̃ ′− to u0 = Qoγ∗

0G. Clearly the restrictions to
t = 0 converge to Po

−c(dt)−1g.
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This proposition has an interesting and useful corollary

Corollary 4. Suppose that X is SpinC-manifold, with a cylindrical end
and Peo

± are defined using the inverse of ðeo
X̃

on the invertible double X̃. Then
these are self-adjoint projection operators.

Proof. We do the even-+ case, the others are identical. Proposition 11
shows that Pe ∗

+ = c(dt)Po
−c(dt)−1. On the other hand, because X̃ is obtained

by doubling across bX, we have (138), implying that

rangePe
+ = rangePe ∗

+ .(147)

Generally,

[rangePe
+]⊥ = kerPe ∗

+ = range(Id−Pe ∗
+ ) = range(Id−Pe

+),(148)

and therefore 〈Pef, (Id−Pe)g〉 = 0, for all pairs, f, g. These relations imply
that

Pe ∗
+ Pe

+ = Pe and Pe ∗
+ (Id−Pe

+) = 0,(149)

from which the conclusion is immediate.

The symbols of Peo
± are smooth functions of the symbols of Qeo

X̃′ . Using the
norm continuity of Qeo

X̃′ we conclude that the Calderón projectors also depend
continuously, in the uniform norm topology, on the geometric data on X.

Proposition 12. Suppose that {(X, Jτ , gτ , ρτ ) : τ ∈ T} is a compact
smooth family of normalized strictly pseudoconvex SpinC-manifolds. The
Calderón projectors, Peo

±τ , defined by the invertible double construction are
smooth families of pseudodifferential operators of order zero, and

τ �→
[
Peo
±τ : L2(bX;S/eo) → L2(bX;S/eo)

]
(150)

are continuous in the uniform norm topology.

Proof. First we show that Peo
±τ is a norm continuous family of operators on

L2. Let Qeo
τ denote the inverse of ðeo

τ , the SpinC-Dirac operator on the invertible
double defined by the data (X, Jτ , gτ , ρτ ), and Q̃eo

τ a parametrix with

ðeo
τ Q̃eo

τ = Id−K1τ , Q̃eo
τ ðeo

τ = Id−K2τ .(151)

Proposition 10 shows that Qeo
τ : L2(X;S/oe) → H1(X;S/eo) are norm continuous

families. The inverse and the parametrix are related by

Qeo
τ = Q̃eo

τ + Qeo
τ K1τ and Qeo

τ = Q̃eo
τ + K2τQ

eo
τ .(152)

Recall that the restriction maps from H(1,− 1
2
)(X±;S/eo) → L2(bX±;S/eo) are

continuous. The second statement of the proposition is an easy consequence
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of this fact, the relation (152), and the observation that

Q̃eo
τ : L2(bX;S/eo) → H(1,− 1

2
)(X±;S/eo) and K1τ : L2(bX;S/eo) → H1(X;S/eo)

(153)

are norm continuous families. The proof that the maps in (153) define norm
continuous families is a simple adaptation of the argument showing that the
norm of a pseudodifferential operator is bounded by a finite semi-norm of its
full symbol, which we leave to the interested reader.

To see that Peo
±τ is a smooth family of pseudodifferential operators we use

the relation (152), to conclude that

Peo
±τ = P̃eo

±τ (Id +k′
1τ ) + k2τPeo

±τk1τ ,(154)

where P̃eo
±τ is the smooth family of pseudodifferential operators defined by

using the parametrices, Q̃eo
τ , in the definition of the Calderón projector, (142),

and k′
1τ , k1τ , k2τ are smooth families of smoothing operators. This relation,

combined with the L2-norm continuity of τ �→ Peo
±τ , show that Peo

±τ is a smooth
family of pseudodifferential operators.

We can suppose that the contact structure induced on the boundary of the
family (X, Jτ , gτ , ρτ ) is fixed and we let Reo

+τ denote a smooth family of modified
∂̄-Neumann conditions. The nontrivial part of such a family is a smooth family
of generalized Szegő projectors τ �→ Sτ . In [12] it is shown that such a family
is norm continuous as a family of maps τ �→ [Sτ : L2(bX) → L2(bX)].

Theorem 6. If {(X, Jτ , gτ , ρτ ) : τ ∈ T} is a compact smooth family of
normalized strictly pseudoconvex SpinC-manifolds and Reo

+τ is a smooth family
of modified ∂̄-Neumann conditions, then R-Ind(Peo

+τ ,Reo
+τ ) is constant.

Proof. Proposition 12 shows that the operators T eo
+τ are a smooth family

of extended Heisenberg operators and therefore so are the parametrices Ueo
+τ .

Hence the residual terms

Keo
1τ = Id−T eo

+τUeo
+τ , Keo

2τ = Id−Ueo
+τT eo

+τ(155)

are smooth families of smoothing operators. As τ �→ Peo
+τ and τ �→ Reo

+τ

are norm continuous as maps from L2 to itself, the operators Peo
+τK

eo
2τPeo

+τ

and Reo
+τK

eo
1τReo

+τ are continuous in the trace norm. It follows from (134)
that R-Ind(Peo

+τ ,Reo
+τ ) depends continuously on τ. As it is integer-valued, it is

constant.

We close this section by showing that we can always “flatten the end” of a
normalized strictly pseudoconvex SpinC-manifold. Fix a collar neighborhood,
U, of bX so that U � bX× [−1, 0]t. We can also normalize so that the 1-jet of t

along t = 0 equals that of ρ. We first homotope the Hermitian metric through
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a family {gs : s ∈ [0, 1
2 ]} so that the g0 = g, and g 1

2
has a product structure in

U. Moreover we can fix the metric on bX throughout this homotopy. For each
s there is a unique positive definite endomorphism As of TX so that, for all
vector fields V, W, we have

g(V, W ) = gs(AsV, AsW ).(156)

If we set Js = AsJA−1
s , then this is a smooth family of almost complex

structures {Js} compatible with gs, and Js �t=0 remaining fixed. Finally,
with the metric in U fixed to equal g 1

2
, we can deform J 1

2
through a family

{Js : s ∈ [12 , 1]} so that:

1. Js = J 1
2

outside of a small neighborhood of bX.

2. J1 has a product structure within a smaller neighborhood of bX.

3. Js is compatible with g 1
2

for s ∈ [12 , 1].

4. Js �t=0= J �t=0 .

That this is possible follows from the fact that the space of almost complex
structures compatible with g 1

2
can be represented as sections of a smooth fiber

bundle J with fiber equal to SO(2n)/U(n). This representation is obtained
by using J �t=0, pulled back to the collar neighborhood, to define a reference
structure. By compactness, there is an ε < 0 so that the section of J �ε≤t≤0

defined by J 1
2

lies in a neighborhood of J retractable onto the “zero section,”
defined by the reference structure. Hence we can perform the homotopy de-
scribed. We let gs = g 1

2
for s ∈ [12 , 1] and ρs = t for all s. For later application

we summarize the results of this discussion as a lemma and we refer to this
process as flattening the end.

Lemma 8. Let (X, J, g, ρ) be a normalized strictly pseudoconvex SpinC-
manifold. There exists a smooth family {(X, Js, gs, ρs) : s ∈ [0, 1]} of normal-
ized strictly pseudoconvex SpinC-manifolds with

1. The structure at s = 0 is equal to the given structure.

2. Throughout the homotopy, the data remain fixed along bX.

3. The space (X, J1, g1, ρ1) has a cylindrical end.

8. The relative index formula

In this section we prove the formula in (19), expressing Ind(ðeo
+ ,Reo

+ ) as
the relative index of the tame Fredholm pair (Peo

+ ,Reo
+ ), and derive several

consequences of this formula.
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Theorem 7. Let (X, J, g, ρ) be a normalized strictly pseudoconvex SpinC-
manifold, and Reo

+ projections defining a modified ∂̄-Neumann problems, then

Ind(ðeo
+ ,Reo

+ ) = R-Ind(Peo
+ ,Reo

+ ).(157)

Proof. We give the proof for the even case; the odd case is identical. The
kernel of (ðe

+,Re
+) consists of smooth forms σ that satisfy

ðe
+σ = 0 and Re

+[σ]bX = 0.(158)

The first condition implies that Pe
+[σ]bX = [σ]bX , and therefore σ ∈ kerRe

+Pe
+.

Conversely, by the unique continuation theorem for ker ðeo
± , any form in the

range of Pe
+ that lies in the kernel of Re

+ defines a unique form in ker(ðe
+,Re

+).
Thus

ker(ðe
+,Re

+) � kerRe
+Pe

+ �rangePe
+

.

The cokernel of Re
+Pe

+ is isomorphic to the null space of

Pe ∗
+ : rangeRe

+ → rangePe ∗
+ .(159)

Proposition 11 and equation (143) show that

Pe ∗
+ = c(dt)(Id−Po

+)c(dt)−1.(160)

This identity, along with (97), shows that the cokernel of Re
+Pe

+ is isomorphic
to the null space of Ro

+ acting on rangePo
+, which, by the first part of this

argument, is isomorphic to ker(ðo
+,Ro

+). Applying Theorem 4, we complete the
proof of the theorem.

As a corollary we have

Corollary 5. Let (X, J, g, ρ) be a normalized, strictly pseudoconvex SpinC-
manifold, and Reo

+ projection operators defining modified ∂̄-Neumann condi-
tions. Then

R-Ind(Peo
+ ,Reo

+ ) = −R-Ind(Id−Peo
+ , Id−Reo

+ ).(161)

Proof. We give the proof for the even case; the odd case is identical.
First suppose that (X, J, g, ρ) has a cylindrical end. In this case Pe

+ = Pe ∗
+

and therefore (143) and Proposition 11 imply that

Id−Pe
+ = c(dt)Po

+c(dt)−1.(162)

As Id−Re
+ = c(dt)Ro

+c(dt)−1, the relation (157) implies that

R-Ind(Id−Pe
+, Id−Re

+) = R-Ind(Po
+,Ro

+) = Ind(ðo
+,Ro

+) = − Ind(ðe
+,Re

+).
(163)

The corollary, in this case, follows with one further application of (157).
We treat the general case by deformation. Lemma 8 gives a smooth family

{(X, Js, gs, ρs) : s ∈ [0, 1]} such that (X, J1, g1, ρ1) has a cylindrical end and the
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data along bX are fixed. As the metric, almost complex structure and defining
function remain constant along bX, the family {(X, Js, gs, ρs) : s ∈ [0, 1]}
satisfies the hypotheses of Theorem 6 and therefore R-Ind(Id−Peo

+s, Id−Reo
+s)

and R-Ind(Peo
+s,Reo

+s) are independent of s. The argument above shows that

R-Ind(Id−Peo
+1, Id−Reo

+1) = −R-Ind(Peo
+1,Reo

+1),(164)

completing the proof of the theorem.

As a corollary of the corollary we have the following result.

Corollary 6. The operators T eo
+ are tame Fredholm operators of index

zero.

Proof. The first statement follows from the ellipticity of T eo
+ in the ex-

tended Heisenberg calculus. The indices of T eo
+ are computed using the trace

formula:

Ind(T eo
+ ) = trKeo

2 − trKeo
1 .(165)

Using formula (134) and its analogue for R-Ind(Id−Peo
+ , Id−Reo

+ ), we see that

R-Ind(Peo
+ ,Reo

+ ) + R-Ind(Id−Peo
+ , Id−Reo

+ )(166)

= trPeo
+ Keo

2 Peo
+ − trReo

+ Keo
1 Reo

+

+ tr(Id−Peo
+ )Keo

2 (Id−Peo
+ ) − tr(Id−Reo

+ )Keo
1 (Id−Reo

+ ).

It is a simple computation to show that the right hand side of (166) equals

(167) trKeo
2 − trKeo

1

+ tr[Peo
+ Keo

2 ,Peo
+ ] + tr[Peo

+ , Keo
2 Peo

+ ] − tr[Reo
+ Keo

1 ,Reo
+ ] − tr[Reo

+ , Keo
1 Reo

+ ].

The commutators on the right hand side of (167) are of the form tr[K, A]
where K is a smoothing operator and A is bounded. As such terms vanish,
this corollary follows from (165)–(167) and Corollary 5.

9. The Agranovich-Dynin formula

In [9] we proved a generalization of the Agranovich-Dynin formula for
subelliptic boundary conditions, assuming that the SpinC-structure arises from
an integrable almost complex structure. In this section we show that the
integrability is not necessary.

Theorem 8. Let (X, J, h, ρ) be a normalized strictly pseudoconvex SpinC-
manifold. Let S1 and S2 be two generalized Szegő projections and Re

+1,Re
+2

the modified ∂̄-Neumann conditions they define. Then

R-Ind(S1,S2) = Ind(ðe,Re
+2) − Ind(ðe,Re

+1).(168)
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Proof. We apply Theorem 7 to conclude that

Ind(ðe
+,Re

+2) − Ind(ðe
+,Re

+1) = R-Ind(Pe
+,Re

+2) − R-Ind(Pe
+,Re

+1).(169)

By relabeling we may assume that R-Ind(S1,S2) ≥ 0. In [12] it is shown that
S2 can be deformed, through a smooth family of generalized Szegő projections
to a projection S3 which is a sub-projection of S1. That is S1 = S3 + P, where
P is a finite rank orthogonal projection, with a smooth kernel and

S3P = PS3 = 0.(170)

If {Re
+s : s ∈ [2, 3]} is the associated family of modified ∂̄-Neumann conditions,

then the proof of Theorem 6 applies equally well to show that R-Ind(Pe
+,Re

+s)
is constant. So we are reduced to showing that

R-Ind(S1,S2) = R-Ind(S1,S3) = R-Ind(Pe
+,Re

+3) − R-Ind(Pe
+,Re

+1),(171)

with S3 a finite corank sub-projection of S1. For convenience we apply Lemma 8
to deform to a structure with a cylindrical end, so that we can assume
that Pe

+ is self-adjoint. Theorem 16 in the appendix applies to show that
R-Ind(Pe

+,Re
+3) − R-Ind(Pe

+,Re
+1) is the index of the operator

Re
+3Pe

+Re
+1 : L2 ∩ rangeRe

+1 −→ K ∩ rangeRe
+3,(172)

where K is an appropriately defined Hilbert space. Let Ue
+j , j = 1, 3, denote

parametrices for T e
+j . The space K is defined as the closure of C∞ with respect

to the inner product defined by

‖u‖2
K = ‖u‖2

L2 + ‖Ue ∗
+1Ue

+3u‖2
L2 .(173)

We can rewrite

Re
+3Pe

+Re
+1 = Re

+3T e
+3T e ∗

+1Re
+1.(174)

We recall that the difference Re
+1−Re

+3 is a smoothing operator and therefore
so is T e

+1 − T e
+3. Hence the operator on the right-hand side of (174) has the

same index as

Re
+3T e

+3T e ∗
+3Re

+1.(175)

It is a simple matter to show that [Re
+3, T e

+3T e ∗
+3 ] = 0 and therefore, as

[Re
+3]

2 = Re
+3, we are reduced to computing the index of

Re
+3T e

+3T e ∗
+3Re

+3Re
+1.(176)

We think of this as a composition

Re
+3Re

+1 : L2 ∩ rangeRe
+1 → L2 ∩ rangeRe

+3(177)

with

W = Re
+3T e

+3T e ∗
+3Re

+3 : L2 ∩ rangeRe
+3 → rangeRe

+3 ∩ K.(178)
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The index of the operator in (177) is R-Ind(S1,S3) = R-Ind(S1,S2); hence we
are left to show that W has index zero.

As T e
+1 − T e

+3 is a smoothing operator, the space defined by the inner
product in (173) is unchanged if Ue ∗

+1 is replaced by Ue ∗
+3; thus W is a bounded

operator. The operator

V = Re
+3Ue ∗

+3Ue
+3Re

+3 : rangeRe
+3 ∩ K → L2 ∩ rangeRe

+3(179)

is a parametrix for Re
+3T e

+3T e ∗
+3Re

+3. If

VW = Re
+3 −Re

+3KRe
+3,(180)

where K is smoothing, then

WV = Re
+3 −Re

+3K
∗Re

+3.(181)

Hence the Ind(W) is given by

Ind(W) = tr(Re
+3K

∗Re
+3) − tr(Re

+3KRe
+3).(182)

But this means it must be zero, because the right hand side of (182) is a purely
imaginary number. This completes the proof of Theorem 8.

Remark 7. The proof of the Atiyah-Weinstein conjecture is a small mod-
ification of the proof of the Agranovich-Dynin formula.

10. The Atiyah-Weinstein conjecture

In [37] Weinstein considers the following situation: let X0, X1 be strictly
pseudoconvex Stein manifolds with boundary. The CR-structures on bX0 and
bX1 define Szegő projectors S0,S1 as projectors onto the nullspaces of ∂̄b-
operators acting on functions. Suppose that there is a contact diffeomorphism
φ : bX1 → bX0. Weinstein describes a construction, using stable almost com-
plex structures, for gluing X0 to X1 via φ, to obtain a compact manifold X

with a well defined SpinC-structure. Weinstein conjectures that

R-Ind(S0, [φ−1]∗S1φ
∗) = Ind(ðe

X).(183)

He also gives a conjecture for a formula when X0, or X1 is a Stein space and not
a Stein manifold. As described in the introduction, these conjectures evolved
from conjectures, made jointly with Michael Atiyah in the 1970s, for the in-
dices of elliptic Fourier integral operators defined by contact transformations
between co-sphere bundles of compact manifolds.

In this section we prove a more general formula, covering all these cases.
As noted earlier, we do not use the stable almost complex structure construc-
tion to build a SpinC-structure on X, but rather a simple extension of the
invertible double construction. It seems clear that these two constructions
lead to the same SpinC-structure on the glued space.
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Our set-up is the following: we have two normalized strictly pseudocon-
vex SpinC-manifolds, (Xk, Jk, gk, ρk), k = 0, 1, and a co-orientation preserving
contact diffeomorphism of their boundaries, φ : bX1 → bX0. On each of these
boundaries we choose a generalized Szegő projector, S0,S1. Using the contact
diffeomorphism we obtain a second Szegő projector on bX0, where

S ′
1 = φ−1∗S1φ

∗.(184)

We can extend the contact diffeomorphism to a diffeomorphism of collar
neighborhoods of the boundaries. Let us heretofore suppose that such an
identification is fixed. The two compatible, almost-complex structures can
now be regarded as being defined on a neighborhood of one and the same
contact manifold. We show below that there is a homotopy, {Js : s ∈ [0, 1]},
through compatible almost complex structures joining J0 to J1. Using this and
our collar neighborhood construction we can add collars to X0, X1, obtaining
SpinC-manifolds X̂0, X̂1 with cylindrical ends and identical structures on a
collar neighborhood of their boundaries. We describe this construction more
precisely below.

Using the obvious extension of the invertible double construction, we can
now build a compact space

X̃01 = X̂0 �bX̂j
X̂1,(185)

with a well defined isotopy class of SpinC-structures and Dirac operator ðe
X̃01

.

The operators ðeo
X̃01

need not be invertible, nor have index zero. In the sequel
we refer to this as the extended double construction.

Theorem 9. Let (Xk, jk, gk, ρk), k = 0, 1, be normalized strictly pseudo-
convex SpinC-manifolds, and suppose that φ : bX1 → bX1 is a co-orientation-
preserving contact diffeomorphism. Suppose S0,S1 are generalized Szegő pro-
jections on bX0, bX1, respectively, which define modified ∂̄-Neumann conditions
Re

+j on Xj . With S ′
1 as defined in (184) and X̃01 as defined in (185) we have

R-Ind(S0,S ′
1) = Ind(ðe

X̃01
) − Ind(ðe

X0
,Re

+0) + Ind(ðe
X1

,Re
+1).(186)

In the sequel, we refer to the indices of the boundary value problems
in (186) as the boundary terms.

Remark 8. This includes Weinstein’s conjectured formula: we take the
CR-structures J0, J1 to be integrable, and X0, X1 to be compact complex
manifolds with the given boundary. The classical Szegő projectors are used
for S0,S1, respectively. In this case, it is shown in Section 7 of [9] that the
indices of the boundary value problems in (186) are renormalized holomorphic
Euler characteristics:

Ind(ðe
Xj

,Re
j) = χ′

O(Xj) =
n∑

q=1

dimH0,q(Xj)(−1)q.(187)
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Hence (186) gives

R-Ind(S0,S1) = Ind(ðe
X̃01

) − χ′
O(X0) + χ′

O(X1).(188)

If X0 and X1 are Stein manifolds then χ′
O(Xj) = 0, j = 0, 1.

Applying the Atiyah-Singer theorem for a Dirac operator we obtain a
(partially) cohomological formula for the index.

Corollary 7. With the hypotheses of Theorem 9,

R-Ind(S0,S ′
1) = 〈e 1

2
c1Â(X̃01), X̃01〉 − Ind(ðe

X0
,Re

+0) + Ind(ðe
X1

,Re
+1),(189)

with c1 = c1(S/e) the canonical class of the SpinC-structure on X̃01.

Remark 9. The terms Ind(ðe
X0

,Re
+0) and Ind(ðe

X1
,Re

+1) are essential parts
of this formula as they capture the non-symbolic nature of the relative index.
In the case that X0, X1 are the co-ball bundles of compact manifolds, an equiv-
alent formula appears in [23]. A related formula for a contact self map is given
in [12].

If φ′ is a different choice of contact diffeomorphism, then ψ = φ′ ◦ φ−1 is
a contact automorphism of bX0. The projector

S ′′
1 = [φ′]−1∗S1φ

′∗ = ψ−1∗S ′
1ψ

∗.(190)

The cocycle formula, proved in [12] shows that

R-Ind(S0,S ′′
1 ) = R-Ind(S0,S ′

1) + c-deg(ψ),(191)

where c-deg(ψ) is the contact degree. This is shown to be a topological invari-
ant of the isotopy class of ψ in the contact mapping class group. A formula
for c-deg(ψ) as the index of a Dirac operator on the mapping torus of ψ, ðZψ

is also provided; i.e.,

c-deg(ψ) = Ind(ðZψ
).(192)

Using the cohomological expression for Ind(ðZψ
), one can easily show that the

contact degree always vanishes if dim Y = 3. Hence, if dimR Xj = 4, then the
R-Ind(S0,S ′

1) does not depend on the choice of contact diffeomorphism.

Proof of Theorem 9. We now turn to the details of the proof of Theorem 9.
We suppose that the extension of φ has been applied to identify a neighborhood
of bX0 with a neighborhood of bX1. We then apply Lemma 8 to reduce to the
situation that (Xk, Jk, gk, ρk), k = 0, 1, have cylindrical ends. This deformation
does not change the index of the operators (ðe

Xk
,Re

k).
We use j0, j1 to denote the compatible almost CR-structures defined on

H by J0, J1, respectively. The set of almost CR-structures compatible with a
given contact form is contractible. Let {js : s ∈ [0, 1]} denote a deformation of
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the compatible almost CR-structure j0 to the compatible almost CR-structure
j1 through compatible almost CR-structures. The contact form, θ is fixed
throughout this deformation and hence, so is the Reeb vector field T. Let πH

denote the projection of TY × [0, 1] to H (pulled back to Y × [0, 1]) along
span{T, ∂t}. We extend the almost CR-structure to an almost complex struc-
ture, J on TY × [0, 1] by setting JT = ∂t. With this definition, the function t

satisfies

θ �Y ×{t}=
i

2
∂̄t �Y ×{t}.(193)

We extend θ to Θ defined on TY × [0, 1] by setting

Θ(∂t) = 0.(194)

The metric on the collar is given by

ds2
Y ×{s} = dt2 + Θ · Θ + dθ(πH ·, jsπH ·).(195)

Observe that we can reparametrize the family {js} so that both ends of
Y ×[0, 1] are cylindrical. To do this we choose a smooth non-decreasing function
ϕ : [0, 1] → [0, 1] with ϕ(s) = 0 for s ∈ [0, 1

4 ] and ϕ(s) = 1 for s ∈ [34 , 1]. If
we replace {js} with {jϕ(s)}, then the foregoing construction defines an almost
complex structure on Y × [0, 1] with both ends cylindrical and agreeing with
the given structures. We summarize this construction in a lemma.

Lemma 9. Suppose that (Y, H) is a contact manifold with contact form
θ and two compatible almost CR-structures j0, j1. Then there is an almost
complex structure on Y ×[0, 1] with both ends cylindrical. The structure induced
on Y × {1} is strictly pseudoconvex and agrees with j1, while that on Y × {0}
is strictly pseudoconcave and agrees with j0, with its co-orientation reversed.
For all members of the family the relation (193) holds.

We use Lemma 9 to define an almost complex structure on Y × [0, 1]. For
each 0 ≤ τ ≤ 1 we set X̂τ

0 = X0 �Y ×{τ} (Y × [0, τ ]). The relative index formula
and Theorem 6 imply that Ind(ðe

X̂τ
0
,Re

+0) is independent of τ. The boundary of

X̂1
0 is cylindrical and isomorphic to a neighborhood of the (flattened) boundary

of X1, hence we can glue X̂1
0 to X1 to obtain

X̃01 = X̂1
0 �Y ×{1} X1.(196)

This is a manifold with a SpinC-structure and Dirac operator ðe
X̃01

. Let Pe
+0

denote the Calderón projector on bX̂1
0 , defined by the invertible double con-

struction, and Pe
+1 defined on bX1 via the invertible double construction. Since

these two manifolds agree in neighborhoods of their respective boundaries, it
is clear that Pe

+0 − Pe
+1 is a smoothing operator.
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We can use the boundary projector Re ′
+1 to define a boundary condition on

X̂1
0 . Because Ind(ðe

X̂1
0
,Re

+0) = Ind(ðe
X0

,Re
+0), the Agranovich-Dynin formula

(Theorem 8) implies that

R-Ind(S0,S ′
1) = − Ind(ðe

X̂1
0
,Re

+0) + Ind(ðe
X̂1

0
,Re ′

+1)

= − Ind(ðe
X0

,Re
+0) + Ind(ðe

X̂1
0
,Re ′

+1),
(197)

and therefore

(198) R-Ind(S0,S ′
1) + Ind(ðe

X0
,Re

+0) − Ind(ðe
X1

,Re ′
+1)

= Ind(ðe
X̂1

0
,Re ′

+1) − Ind(ðe
X1

,Re ′
+1).

The relative index formula (Theorem 7) implies that

Ind(ðe
X̂1

0
,Re ′

+1) = R-Ind(Pe
+0,Re ′

+1),

Ind(ðe
X1

,Re ′
+1) = R-Ind(Pe

+1,Re ′
+1).

(199)

To complete the proof we need to show that

R-Ind(Pe
0+,Re ′

+1) − R-Ind(Pe
+1,Re ′

+1) = R-Ind(Pe
+0,Pe

+1).(200)

This is done in Proposition 13. As Pe
+1 = Id−Pe

−1 it follows that

R-Ind(Pe
+0,Pe

+1) = R-Ind(Pe
+0, Id−Pe

−1).(201)

Applying Bojarski’s formula (see Theorem 24.1 in [3]), we therefore conclude
that:

R-Ind(Pe
+0,Pe

+1) = Ind(ðe
X̃01

).(202)

Theorem 9 follows from (198)–(202). The proof of (200) is essentially the same
as the proof of the Agranovich-Dynin formula.

Proposition 13. Let X0, X1 be normalized strictly pseudoconvex SpinC-
manifolds with cylindrical ends. Suppose that a collar neighborhood of bX0 is
isomorphic to a collar neighborhood of bX1. Let Re

+ be a modified ∂̄-Neumann
condition defined on bX0 � bX1 and Pe

+j , j = 0, 1, are the Calderón projectors
defined via the invertible double construction on Xj , j = 0, 1. Now,

R-Ind(Pe
0+,Re

+) − R-Ind(Pe
+1,Re

+) = R-Ind(Pe
+0,Pe

+1).(203)

Proof. We give an outline. As in the proof of Theorem 8, we consider the
map

A = Pe
+1Re

+Pe
+0 = Pe

+1T e ∗
1+ T e

+0Pe
+0.(204)

Step 1. We show that A is a Fredholm map from L2 ∩ rangePe
+0 to

K ∩ rangePe
+1, with index

R-Ind(Pe
0+,Re

+) − R-Ind(Pe
+1,Re

+).
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Here K is the closure of C∞ with respect to the inner product defined by

‖u‖2
K = ‖u‖2

L2 + ‖Ue
+0Ue ∗

+1u‖2
L2 .(205)

Step 2. We then observe that, as Pe
+0 − Pe

+1 is a smoothing operator, so
is T e

+0 − T e
+1. Hence the index of A equals that of

B = Pe
+1T e ∗

1+ T e
+1Pe

+0 : L2 rangePe
+0 → K ∩ rangePe

+1.(206)

Step 3. As before, the commutator [Pe
+1, T e ∗

1+ T e
+1] = 0; hence we can

replace B with

B = Pe
+1T e ∗

1+ T e
+1Pe

+1Pe
+0,(207)

which we think of as a composition of Fredholm maps

Pe
+1Pe

+0 : L2 ∩ rangePe
+0 → L2 ∩ rangePe

+1 and

W =Pe
+1T e ∗

1+ T e
+1Pe

+1 : L2 ∩ rangePe
+1 → K ∩ rangePe

+1.
(208)

The index of the first term is R-Ind(Pe
+0,Pe

+1).

Step 4. To complete the proof we need to show that Ind(W) = 0. Again,
this is a formally self-adjoint operator, so the vanishing of the index follows
from the trace formula.

Step 1 essentially follows from Theorem 16 in the appendix. For clarity
we outline the argument. Showing that A is a Fredholm map, as indicated,
follows easily from the commutation relations

(Id +K)Pe
+0Ue

+0 = Ue
+0Re

+( Id +K),

(Id +K)Re
+Ue ∗

+1 = Ue ∗
+1Pe

+1(Id +K),
(209)

where we use K to denote a variety of smoothing operators. To compute its
index we factor it as the composition of

Re
+Pe

+0 : L2 ∩ rangePe
+0 → H∩ rangeRe

+ and

Pe
+1Re

+ : H ∩ rangeRe
+ → K ∩ rangePe

+1.
(210)

Here H is the closure of C∞ with respect to the inner product defined by

‖u‖2
H = ‖u‖2

L2 + ‖Ue
+0u‖2

L2 ,(211)

and K is the closure of C∞ with respect to the inner product defined by

‖u‖2
K = ‖u‖2

L2 + ‖Ue
+0Ue ∗

+1u‖2
L2 .(212)

That Re
+Pe

+0 is a Fredholm map with respect to these spaces and has index

R-Ind(Pe
+0,Re

+)

follows immediately from the results in the appendix.
We now show that the second map in (210) is Fredholm and has index

−R-Ind(Pe
+1,Re

+).
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Using the commutation relations, (209), it follows easily that this map is
bounded. The commutation relations imply that the map Re

+Ue ∗
+1Pe

+1 : K → H
is bounded and satisfies

Pe
+1Re

+[Re
+Ue ∗

+1Pe
+1] = Pe

+1(Id−K1)Pe
+1 and

[Re
+Ue ∗

+1Pe
+1]Pe

+1Re
+ = Re

+(Id−K2)Re
+

(213)

for K1, K2 smoothing operators. This shows that Pe
+1Re

+ is Fredholm. As
follows from the results in the appendix, the index of this operator is given by

Ind(Pe
+1Re

+) = trPe
+1K1Pe

+1 − trRe
+K2Re

+,(214)

where as usual, we can use the L2-topology to compute the traces. Comparing
this to (296) we see that

Ind(Pe
+1Re

+) = −R-Ind(Pe
+1,Re

+).(215)

As Pe
+1Re

+Pe
+0 is the composition of the Fredholm maps in (210), this com-

pletes step 1.
Step 2 is obvious as

A − B = Pe
+1KPe

+0,(216)

for K a smoothing operator. We now turn to step 3. Using the commutation
relations in (209), we easily show that W is a Fredholm map with parametrix
V = Pe

+1Ue
+1Ue ∗

+1Pe
+1. As before, if

VW = Pe
+1 − Pe

+1KPe
+1,(217)

for K a smoothing operator, then

WV = Pe
+1 − Pe

+1K
∗Pe

+1.(218)

Step 4 is completed, as before, by using the trace formula

Ind(W) = trPe
+1KPe

+1 − trPe
+1K

∗Pe
+1.(219)

Because the right-hand side is a purely imaginary number, this relation implies
that the index is zero. This completes the proof of the proposition.

With this proposition the proof of Theorem 9 is complete. As noted above,
the Atiyah-Weinstein conjecture is an immediate consequence of Theorem 9.

11. Vector bundle coefficients

The foregoing analysis applies equally well if we consider the SpinC-Dirac
operators acting on sections of E ⊗ S/, where E → X is a complex vector
bundle. The results in this paper rest entirely on the properties of the principal
symbols of the comparison operators, T eo

+ . The computations of these principal
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symbols follow from equations (44)–(48). These, in turn, are consequences
of the geometric statements in equations (41)–(43), as well as (33). These
geometric normalizations continue to be possible if we twist the spin bundle
with a Hermitian vector bundle.

Let ∇S/ denote the compatible connection on the SpinC-bundle and ∇E ,

an Hermitian connection on E. The connection

∇S/⊗E = ∇S/ ⊗ IdE + IdS/ ⊗∇E ,(220)

is a compatible connection on S/⊗E. We fix a point p ∈ bX, and let (x1, . . . , x2n)
be normal coordinates at p. Let {σJ} be a local frame field for S/, satisfying (43),
and {el} a local framing for E with

∇Eel = O(|x|).(221)

In this case {σJ ⊗ el} is a local framing for S/ ⊗ E that satisfies

∇S/⊗EσJ ⊗ el = O(|x|).(222)

Let ðE be the SpinC-Dirac operator acting on sections of S/ ⊗ E. Because
the coordinates are normal, (222) implies that

ðE

∑
J,l

aJ,lσJ ⊗ el =
1
2

∑
J,l

2n∑
j=1

c(dxj) ·
[
(∂xj

aJ,l)σJ ⊗ el + aJ,l∇S/⊗EσJ ⊗ el

]

=
∑
J,l

2n∑
j=1

[∂̄ + ∂̄∗]Cn [aJ,ldz̄J ⊗ el] + O1(|x|) + O0(|x|).

(223)

It is a general result about Dirac operators that [ðE ]2 = Δ+R, where Δ is the
Laplace operator and R is an operator of order zero. We compute the action
of the Laplace operator in the normal coordinates at p :

Δ
∑
J,l

aJ,lσJ ⊗ el

=
2n∑

j,k=1

(δjk + O(|x|2))[∇S/⊗E
∂xj

∇S/⊗E
∂xk

aJ,lσJ ⊗ el −∇S/⊗E
∇g

∂xj
∂xk

aJ,lσJ ⊗ el]

=
∑
J,l

2n∑
j=1

∂2
xj

aJ,lσJ ⊗ el + O2(|x|2) + 2∂xj
aJ,l∇S/⊗E

∂xj
σJ ⊗l

+ O1(|x|) + O0(1).

(224)

Using once again that ∇S/⊗E
∂xj

σJ ⊗ el = O(|x|) we see that

Δ
∑
J,l

aJ,lσJ ⊗ el =
∑
J,l

2n∑
j=1

∂2
xj

aJ,lσJ ⊗ el + O2(|x|2) + O1(|x|) + O0(1).

(225)
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These formulæ demonstrate that the necessary symbolic conditions are
satisfied by ðE and ð2

E . As described in [10], complex vector bundle coeffi-
cients are easily incorporated into the generalized Szegő projector formalism,
and therefore the results proved in the previous sections apply equally well
when vector bundle coefficients are included. We do not wish to exhaustively
enumerate these generalizations, but simply list a few results.

We let Peo
±E denote the Calderón projectors with bundle coefficients and

Reo
+E the modified ∂̄-Neumann conditions defined by a generalized Szegő pro-

jector SE . As before we set

T eo
+E = Reo

+EPeo
+E + (Id−Reo

+E)(Id−Peo
+E).(226)

The basic analytic result is:

Theorem 10. Let (X, J, g, ρ) be a normalized strictly pseudoconvex SpinC-
manifold, (E, h) → X a Hermitian vector bundle and SE a generalized Szegő
projector acting on sections of E. The principal symbol of SE is defined by a
compatible deformation of the almost complex structure on H induced by the
embedding of bX as the boundary of X. Then the operators T eo

+E are elliptic, in
the extended Heisenberg calculus, with parametrices having Heisenberg orders(

0 1
1 1

)
.(227)

As before, this result shows that the graph closures of (ðeo
+E ,Reo

+E) are
Fredholm and

(ðeo
+E ,Reo

+E)∗ = (ðoe
+E ,Roe

+E).(228)

Moreover, the (Peo
+E ,Reo

+E) are tame Fredholm pairs with

Ind(ðeo
+E ,Reo

+E) = R-Ind(Peo
+E ,Reo

+E).(229)

We have the Agranovich-Dynin formula:

Theorem 11. Let (X, J, h, ρ) be a normalized strictly pseudoconvex SpinC-
manifold, and E → X a Hermitian vector bundle. Let SE1 and SE2 be two
generalized Szegő projections and Re

+E1,Re
+E2 the modified ∂̄-Neumann con-

ditions they define; then

R-Ind(SE1,SE2) = Ind(ðe
+E,Re

+E2) − Ind(ðe
+E ,Re

+E1).(230)

Finally, we have the Atiyah-Weinstein conjecture for this case. Over
X0, X1 we have bundles E0 → X0, E1 → X1. If Φ denotes the extension of
the contact diffeomorphism to a neighborhood of bXj , then we need to assume
that, in the collar neighborhood, Φ∗E1 is isomorphic to E0, via a bundle map
Ψ. Altogether we get a vector bundle E → X̃01, which may depend on the
choice of Ψ.
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Theorem 12. Let (Xk, jk, gk, ρk), k = 0, 1, be normalized strictly pseudo-
convex SpinC-manifolds, with Ej → Xj , j = 0, 1, Hermitian vector bundles.
Suppose that φ : bX1 → bX1 is a co-orientation-preserving contact diffeomor-
phism, and Ψ : E0 → Φ∗E1, is a bundle equivalence, covering φ. Suppose that
SE0 ,SE1 are generalized Szegő projections on bX0, bX1, respectively, which de-
fine modified ∂̄-Neumann conditions Re

+Ej
on Xj . If S ′

E1
= Ψ−1SE1Ψ, X̃01 as

defined in (185), and E is the bundle over X̃01 defined by gluing E0 to Φ∗E1

via Ψ, then

R-Ind(SE0
,S ′

E1
) = Ind(ðe

X̃01E
) − Ind(ðe

X0E0
,Re

+E0
) + Ind(ðe

X1E1
,Re

+E1
).

(231)

12. The relative index conjecture

In [7] we defined the relative index for pairs of embeddable CR-structures
on 3-dimensional manifolds with the same underlying contact structure. In
those papers we used the opposite convention to that employed in the current
series of papers and therefore the relative index defined there is minus that
defined here. With the present convention, Proposition 8.1 in [7] implies that
if S0 is the Szegő projector defined by a “reference” embeddable CR-structure
0T 0,1Y on (Y, H), and S1 is the Szegő projector defined by a sufficiently small,
embeddable deformation, 1T 0,1Y, of this CR-structure, then

R-Ind(S0,S1) ≥ 0.(232)

In [7] we showed that, for n ∈ N, the set of embeddable deformations of 0T 0,1Y

that satisfy R-Ind(S0,S1) ≤ n is closed in the C∞-topology. This motivated
our relative index conjecture, which asserts (with our current sign convention)
that S1 → R-Ind(S0,S1) is bounded from above, among sufficiently small,
embeddable deformations, 1T 0,1Y, of 0T 0,1Y. In [8] we establish this conjecture
for CR-structures that bound pseudoconcave manifolds X−, satisfying either

H2
c (X−; Θ⊗[−Z]) = 0 or,

H2
c (X−; Θ) = 0 and H1(Z;NZ) = 0.

(233)

Here Z ⊂⊂ X− is a smooth, compact holomorphic curve with positive normal
bundle, and Θ is the tangent sheaf of X−.

Suppose that j0, j1 define CR-structures, on a 3-dimensional contact man-
ifold (Y, H), which bound strictly pseudoconvex complex manifolds (X0, J0),
(X1, J1). If S0,S1 are the classical Szegő projectors defined by j0, j1, respec-
tively, then formula (188) gives:

R-Ind(S0,S1) = Ind(ðe
X̃01

) + dimH0,1(X0, J0) − dimH0,1(X1, J1).(234)
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The Atiyah-Singer index theorem provides a cohomological formula for
Ind(ðe

X̃01
) :

Ind(ðe
X̃01

) =
c2
1(S/

e)[X̃01] − sig[X̃01]
8

.(235)

Here S/e is the +-spinor bundle defined on X̃01 by the extended double con-
struction, and sig[M ] is the signature of the oriented 4-manifold M.

In [31] a general formula is given relating the characteristic numbers on a
compact SpinC 4-manifold, M :

c2(S/e)[M ] =
c2
1(S/

e)[M ] − 3 sig[M ] − 2χ[M ]
4

.(236)

Here [M ] denotes the fundamental class of the oriented manifold M. This
formula is stated as an exercise, whose solution we briefly explain: One first
shows that, if L is a Hermitian line bundle, then the Chern-Weil representative
of c2(S/e⊗L)−c2

1(S/
e⊗L)/4 does not depend on L. Hence we can locally represent

S/e ⊗ L as S/e
0, where S/e

0 is the +-spinor bundle coming from a locally defined
Spin-bundle. Using the expression for the curvature of S/e ⊗L that arises from
such a local representation, we show that the Chern-Weil representative of
c2(S/e) − c2

1(S/
e)/4 agrees with that of −(p1(M) + 2e(M)), where p1 is the first

Pontryagin class and e is the Euler class.
Putting (236) into (235) gives:

Ind(ðe
X̃01

) =
2c2(S/e)[X̃01] + sig[ tX01] + χ[X̃01]

4
.(237)

Note that on X0, S/e � Λ0,0X0 ⊕ Λ0,2X0, and on X1, S/e � Λ0,1X1. Since S/e

has a global section over X0 and over the part of X̃01 coming from the neck
joining X0 to X1, and a neighborhood of the boundary of X1, we can choose
a metric for S/e so that the Chern-Weil representative of c2(S/e) is supported in
the interior of X1. Over X1

S/e = Λ0,1X1 = [T 0,1X1]∗ � T 1,0X1,

and therefore it follows that c2(S/e) �X1= e(X1). Recalling that the orientation
of X1 is reversed in X̃01, and using the additivity of the signature and Euler
characteristic, we obtain

Ind(ðe
X̃01

) =
2e(X1)[−X1] + sig[X0] − sig[X1] + χ[X0] + χ[X1]

4

=
sig[X0] − sig[X1] + χ[X0] − χ[X1]

4
.

(238)

Using this formula in (234) completes the proof of the following theorem.
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Theorem 13. Let (Y, H) be a compact 3-dimensional co-oriented, contact
manifold, and let j0, j1 be CR-structures with underlying plane field H. Sup-
pose that (X0, J0), (X1, J1) are strictly pseudoconvex complex manifolds with
boundary (Y, H, j0), (Y, H, j1), respectively. If S0, S1 are the classical Szegő
projectors defined by these CR-structures then

R-Ind(S0,S1) = dimH0,1(X0, J0) − dimH0,1(X1, J1)

+
sig[X0] − sig[X1] + χ[X0] − χ[X1]

4
.

(239)

Remark 10. If (M, S/e, S/o) is a compact SpinC 4-manifold, then

dSW(M) =
c2
1(S/

e)[M ] − 3 sig[M ] − 2χ[M ]
4

(240)

is the formal dimension of the moduli space of solutions to the Seiberg-Witten
equations; see [26]. Our calculations show that for manifolds X̃01 � X0 � X1,

with SpinC-structure defined by the invertible double construction,

dSW(X̃01) = −χ[X1].(241)

Reversing the orientation of X̃01 gives X̃10 and interchanges S/e with S/o, so
that

dSW(X̃10) = −χ[X0].(242)

Note finally that, under the hypotheses of Theorem 13, equation (239) implies
that

sig[X0] − sig[X1] + χ[X0] − χ[X1]
4

∈ Z.(243)

Formula (239) has a direct bearing on the relative index conjecture.

Corollary 8. Let (Y, H) be a compact 3-dimensional, co-oriented con-
tact manifold. Suppose that among Stein manifolds (X, J) with pseudocon-
vex boundary (Y, H) the signature, sig(X) and Euler characteristic χ(X) as-
sume only finite many values. Then, among embeddable deformations, S1 of a
given embeddable reference CR-structure, S0, the relative index R-Ind(S0,S1)
is bounded from above.

Proof. Suppose that X is a strictly pseudoconvex complex manifold
with boundary (Y, H). We can assume that X is minimal; i.e., all inessential
compact varieties are blown down. Bogomolov and DeOliveira proved that one
can deform the complex structure on X to obtain a Stein manifold; see [1]. Such
a deformation does not change the topological invariants sig[X], χ[X]. Thus
among minimal strictly pseudoconvex complex manifolds X, with boundary
(Y, H), the numbers sig[X], χ[X] assume only finitely many values, and the
corollary follows from (239).
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If X0 is diffeomorphic to X1, then (239) implies that

R-Ind(S0,S1) = dimH0,1(X0, J0) − dimH0,1(X1, J1).(244)

For such deformations of the CR-structure we see that

R-Ind(S0,S1) ≤ dimH0,1(X0, J0).(245)

This becomes an equality if (X, J1) is a Stein manifold. It says that a singu-
lar Stein surface, with H0,1(X0, J0) 
= 0, has a larger algebra of holomorphic
functions than its smooth (Stein) deformations. If both (X0, J0) and (X1, J1)
are Stein manifolds, then the relative index is zero.

For some time it was believed that a given compact, contact 3-manifold
should have, at most, finitely many diffeomorphism classes of Stein fillings. In-
deed this expectation has been established for some classes of contact
3-manifolds. Eliashberg proved that the 3-sphere, with its standard contact
structure, has a unique Stein filling. McDuff extended this to the lens spaces
L(p, 1) for p 
= 4, with contact structure induced from S3. Stipsicz showed
the uniqueness of the Stein filling for the only fillable contact structure on
the 3-torus; see [34]. Lisca showed that other lens spaces have finitely many
diffeomorphism classes of fillings; see [25]. Ohta and Ono proved the finiteness
statement for simple and simple elliptic isolated singularities; see [28], [29]. For
most of these cases, the local form of the relative index conjecture was proved
by other means in [8].

Recently, I. Smith and Ozbagci and Stipsicz have produced examples of
compact, contact 3-manifolds that arise as the boundaries of infinitely many
diffeomorphically distinct Stein manifolds; see [30]. In the examples of Ozbagci
and Stipsicz, the signatures and Euler characteristics of the 4-manifolds are
all equal. In a later paper Stipsicz conjectured that, given a 3-dimensional
compact, contact manifold, (Y, H), the signatures and Euler characteristics
for Stein manifolds with boundary (Y, H) should assume only finitely many
distinct values; see [35]. Using Corollary 8, this conjecture would clearly imply
the strengthened form of the relative index conjecture.

Stipsicz has established his conjecture in a variety of cases, among them,
the boundaries of circle bundles in line bundles of degree n over surfaces of
genus g, provided

|n| > 2g − 2.(246)

This allows us to extend the result proved in [8], where the relative index
conjecture was established for circle bundles under the assumption that |n| ≥
4g − 3. Stipsicz also proved his conjecture for the Seifert fibered 3-manifold
Σ(2, 3, 11), and so the relative index conjecture holds in this case as well.

Even if the Stipsicz conjecture is false, it would not necessarily invalidate
our conjecture. The relative index conjecture is a conjecture for sufficiently
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small embeddable deformations of the CR-structure. It could well be that as
one moves through the infinitely many diffeomorphism types, arising among
the fillings, the deformations of the CR-structure on the boundary become
large. Conversely, when such bounds do exist, a global upper bound for the
relative index follows from (239) and Corollary 8.

13. Further interesting special cases

We consider some other special cases of the index formulæ proved above.

13.1. Co-ball bundles. First we consider the original Atiyah-Weinstein
conjecture which concerns pairs of co-ball bundles, X0 = B∗M0, X1 = B∗M1

and a contact diffeomorphism of their boundaries, φ : S∗M1 → S∗M0. In this
case there is a complex structure on each of the manifolds, well defined up to
isotopy. In these structures, X0, X1 are Stein manifolds and therefore

χ′
O(X0) = χ′

O(X1) = 0.(247)

If S0, S1 are the classical Szegő projectors defined by the complex structures
on X0, X1, respectively, then equations (188) and (247) imply that, with S ′

1 =
[φ−1]∗S1φ

∗,

R-Ind(S0,S ′
1) = Ind(ðe

Xφ
),(248)

where

Xφ = B∗M0 �φ B∗M1.(249)

As noted in the introduction, the mapping φ and the complex structures
on the ball bundles define a class of elliptic Fourier integral operators. Let
F φ : C∞(M0) → C∞(M1) be an element of this class. From the definition of
F φ it is clear that its index equals R-Ind(S0,S ′

1), and therefore

Ind(F φ) = Ind(ðe
Xφ

).(250)

Let Φ denote the homogeneous extension of φ to B∗M1 \ {0}. If Φ extends
smoothly across the zero section, i.e., φ is defined as the differential of a diffeo-
morphism f : M0 → M1, then the glued space Xφ is essentially an invertible
double. Hence Ind(ðe

Xφ
) = 0, and we have:

Proposition 14. If Φ extends smoothly across the zero section of B∗M1,

then IndF φ = 0.

The case of a pair of co-ball bundles is treated in [23], where equivalent
results are proved.

In the 3-dimensional case, we can use formula (238) to obtain:

Ind(F φ) =
sig[X0] − sig[X1] + χ[X0] − χ[X1]

4
,(251)
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where X0 = B∗M0 and X1 = B∗M1. Note that Xj retracts onto Mj . Hence
H2(Xj , Z) is one dimensional, and generated by the zero section, [Mj ]. The self
intersection of the zero section in a vector bundle equals the Euler charteristic
of the bundle. In this case it is clear that, for j = 0, 1,

χ[Xj ] = χ[Mj ] and sig[Xj ] =

⎧⎪⎨
⎪⎩
−1 if χ[Mj ] < 0
0 if χ[Mj ] = 0
1 if χ[Mj ] > 0.

(252)

Using (251) and (252) we easily prove that, in the 3-dimensional case,
Ind(F φ) vanishes.

Theorem 14. Let M0, M1 be compact, oriented 2-manifolds and suppose
that φ is a co-orientation-preserving contact diffeomorphism, φ : S∗M1 →
S∗M0. Then

Ind(F φ) = 0.

Proof. The theorem follows from the formulæ above and the following
lemma:

Lemma 10. If Y is the co-sphere bundle of an oriented compact surface,
M, then

H1(M ; Q) � H1(Y ; Q).(253)

Proof of lemma. The Leray spectral sequence implies that there is a
short exact sequence:

0 −−−→ Z/χ[M ]Z −−−→ H1(Y ; Z) −−−→ H1(M ; Z) −−−→ 0.(254)

Taking the tensor product with Q leaves the sequence exact and proves the
lemma.

The theorem follows from the lemma as it implies that χ[M0] = χ[M1].

Remark 11. A similar vanishing theorem in dimension 3 is proved in [12]
for φ : Y → Y a contact self map.

13.2. The Atiyah-Singer index theorem. Let M be a compact manifold
without boundary, and let E, F be complex vector bundles over M. Let P be an
elliptic pseudodifferential operator of order zero, P : C∞(M ;E) → C∞(M ;F ).
We can use our theorem to give an analytic proof of the K-theoretic step in
the original proof of the Atiyah-Singer theorem, which states that the index of
P equals that of a Dirac operator on the glued space:

TM = B∗M �S∗M B∗M.(255)
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Because the Grauert tube B∗
εM is a Stein manifold, Oka’s principle implies that

the lifted bundles π∗E, π∗F have well defined complex structures. Let GE
bε, G

F
bε

be the maps from Ob(B∗
εM ;E), Ob(B∗

εM ;F ) to C∞(M ;E), C∞(M ;F ), respec-
tively, defined by pushforward. As noted above these maps are isomorphisms
for small enough ε.

Let SE
ε ,SF

ε be classical Szegő projectors onto the boundary values of holo-
morphic sections of π∗E, π∗F, respectively. If

σP ∈ C∞(S∗M ; Hom(π∗E, π∗F ))

is the principal symbol of P, then, for sufficiently small ε > 0, the composition,

FP s = GF
bεSF

ε σPSE
ε [GE

bε]
−1s(256)

is a pseudodifferential operator with principal symbol σP ; see [4]. The opera-
tors GF

bε, G
E
bε are invertible and therefore

Ind(P ) = Ind(FP ) = Ind(SF
ε σPSE

ε ),(257)

where the last term in (257) is the index of a Toeplitz operator.
The Toeplitz index in (257) is easily seen to equal the relative index

Ind(SF
ε σPSE

ε ) = R-Ind(SE
ε , [σP ]−1SF

ε σP ).

This relative index is computed in Theorem 12. Equation (137) in [9] and the
fact that B∗

εM is a Stein manifold imply that the boundary terms in (231)
vanish, and therefore

Ind(P ) = Ind(ðe
TM, VP

).(258)

Here VP is the bundle obtained by gluing π∗E to π∗F along S∗M via the
symbol of P. This assertion is an important step, proved by K-theory, in the
original proof of the Atiyah-Singer theorem. The relative index formalism in
this paper, along with results from [9] provide a completely analytic proof of
this statement.

13.3. Higher dimensional complex manifolds. Suppose that (X, J0) is a
strictly pseudoconvex complex n-dimensional manifold, and J1 is a deformation
of the complex structure on X that is again strictly pseudoconvex. For our
purposes it is sufficient if the deformation takes place through a smooth family,
{Js : s ∈ [0, 1]}, of strictly pseudoconvex almost complex structures. Let
X̃01 denote the SpinC-manifold obtained by gluing (X, J0) to (X, J1), via the
extended double construction. Because J0 is homotopic to J1, it follows that
the space X̃01 is isotopic, as a SpinC-manifold, to the invertible double, X̃0, of
(X, J0). Using the results of Chapter 9 in [3] we conclude that

Ind(ðe
X̃01

) = Ind(ðe
X̃0

) = 0.(259)
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In this case, (186) implies that

R-Ind(S0,S1) = χ′
O(X, J1) − χ′

O(X, J0).(260)

Thus for CR-structures that can be obtained by deformation of the complex
structure through almost complex structures on a fixed manifold, the relative
index is simply the change in the renormalized holomorphic Euler characteris-
tic. The relative index is again non-negative for small integrable deformations.
Hence, if the deformation arises from a deformation of the almost complex
structure on X, then we get the semi-continuity result for the renormalized
Euler characteristic:

χ′
O(X, J1) ≥ χ′

O(X, J0).(261)

14. Appendix A: Tame Fredholm pairs

In this appendix we present a generalization of the theory of Fredholm
pairs and the index theory for such pairs. We give this discussion in a fairly
general functional analytic setting. We suppose that there is a nested family of
separable Hilbert spaces (Hs, ‖ · ‖s), labeled by s ∈ R. If s < t, then Ht ⊂ Hs

and

‖x‖s ≤ ‖x‖t for all x ∈ Ht.(262)

The intersection

H∞ =
∞⋂

s=−∞
Hs

is assumed to be dense in Hs for all s ∈ R. We also define

H−∞ =
∞⋃

s=−∞
Hs.

The inner product on H0 is assumed to satisfy the generalized Hölder inequal-
ity. For all x, y ∈ H∞ we have:

|〈x, y〉| ≤ ‖x‖s‖y‖−s.(263)

Indeed, we suppose that H ′
s � H−s and we consider several classes of operators

generalizing notions from the theory of pseudodifferential operators.

Definition 2. A tame operator T is an operator defined on H−∞ for which
there is a fixed m ∈ R such that, for all s ∈ R,

THs ⊂ Hs−m,(264)

and the map T : Hs → Hs−m is bounded. In this case we say that T has
order m.
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For x, y in H∞ we define the formal adjoint, T ∗ of the tame operator T

by duality:

〈Tx, y〉 = 〈x, T ∗y〉.(265)

In fact, this extends by continuity to x ∈ H∞ and y ∈ H−∞ or x ∈ H−∞ and
y ∈ H∞. The definition of tameness implies that Tx ∈ H0, for x ∈ H∞; so
this notion of adjoint is consistent with the L2-adjoint. In this appendix the
notation T ∗ always refers to the formal adjoint.

Lemma 11. If T is a tame operator of order m, then its formal adjoint
T ∗ is as well.

Proof. We use the fact that H ′
s � H−s. Let x, y ∈ H∞ and fix a value of s.

For x, y ∈ H∞ we have 〈Tx, y〉 = 〈x, T ∗y〉. The generalized Cauchy-Schwarz
inequality implies that

|〈x, T ∗y〉| ≤ ‖Tx‖−s‖y‖s ≤ C‖x‖−s+m‖y‖s.(266)

This inequality implies that for y ∈ H∞,

‖T ∗y‖s−m ≤ C‖y‖s;(267)

as H∞ is dense in Hs this proves the lemma.

It is clear that, under composition, the set of tame operators defines a star
algebra.

Definition 3. A tame operator K that maps H−∞ to H∞ is called a
smoothing operator. For any s ∈ R, we suppose that, when acting on Hs,

a smoothing operator is a trace class operator.

A tame operator K is smoothing if and only if it is a tame operator of
order m for every m ∈ (0,−∞). It is clear that the class of smoothing operators
is closed under adjoints and defines a two sided ideal in the algebra of tame
operators.

Definition 4. A tame operator T is tamely elliptic if there is a tame op-
erator U so that

TU = Id−K1, UT = Id−K2,(268)

where K1, K2 are smoothing operators. The operator U is called a parametrix
for T.

As the smoothing operators are closed under taking adjoints, if T is tamely
elliptic, then so is T ∗. If T is invertible in any reasonable sense and tamely
elliptic, then it follows easily that U − T−1 is a smoothing operator.
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If T is a tame operator of non-positive order, then the operator Id +T ∗T is
self-adjoint and invertible on H0. We make the following additional assumption:

If T has non-positive order then Id +T ∗T is tamely elliptic.
This is true of any operator calculus with a good symbol map. Tame smoothing
operators are compact operators and therefore, acting on H−∞, an elliptic
operator has a finite dimensional kernel contained in H∞. If T is elliptic then
so is T ∗ and it also has a finite dimensional kernel, which is contained in H∞.

We define the tame index of a tamely elliptic operator to be

t-Ind(T ) = dim kerT − dim kerT ∗.(269)

We define the H0-domain of tame operator T to be the graph closure, in
the H0-norm, of T acting on H∞.

Dom0(T ) = {x ∈ H0 : ∃ < xn >⊂ H∞ with xn → x and Txn → Tx in H0}.
(270)

As H∞ ⊂ Dom0(T ) it is clear that Dom0(T ) is dense in H0.

Lemma 12. The operator (T, Dom0(T )) is a densely defined, closed oper-
ator.

Proof. If the order of T is non-positive, then T it is bounded on H0 and
therefore Dom0(T ) = H0. Now assume that the order of T is m > 0. Let
〈xn〉 ⊂ Dom0(T ). Suppose that 〈xn〉 converges to x in H0 and 〈Txn〉 converges
to y in H0. For each n we can choose a sequence 〈xnj〉 ⊂ H∞ so that xnj → xn

and Txnj → Txn in H0. We can easily extract a subsequence 〈xnkjk
〉 that

converges to x and so that 〈Txnkjk
〉 converges to y. As T has order m ≥ 0,

〈Txnkjk
〉 converges to Tx in H−m. By duality and the density of H∞, it is

immediate that y = Tx, and therefore x ∈ Dom0(T ).

If U is an operator of positive order, Dom0(U) is a Hilbert space with the
inner product

〈x, y〉U = 〈x, y〉 + 〈Ux, Uy〉.(271)

For x ∈ H∞ this can be rewritten,

〈x, (Id +U∗U)y〉,(272)

where (Id +U∗U)y is an element of H−∞. This identifies the Hilbert space dual
to Dom0(U) with (Id +U∗U) Dom0(U) ⊂ H−∞.

The following observation is useful:

Lemma 13. Let U be a tame operator of non-negative order and K a
smoothing operator. The map K : Dom0(U) → H0 is compact.

Proof. This follows because the unit ball in Dom0(U) is contained in the
unit ball in H0. Thus its image under K is a precompact subset of H0.
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Proposition 15. Let T be a tame elliptic operator of non-positive order.
Let U denote a parametrix for T ; then T : H0 → Dom0(U) is a Fredholm
operator. Moreover,

Ind(T ) = t-Ind(T ).(273)

Proof. We first observe that TH0 ⊂ Dom0(U). Let x ∈ H0 and let
〈xn〉 ⊂ H∞ converge to x in H0. Note that 〈Txn〉 ⊂ H∞. As T is of non-positive
order Txn → Tx in H0 as well. As UTxn = xn−K2xn and UTx = x−K2x, it is
clear that UTxn converges to UTx in H0, thus verifying that TH0 ⊂ Dom0(U).
Hence, the operator U maps Dom0(U) boundedly onto H0. It follows from
Lemma 13 that T : H0 → Dom0(U) has a left and right inverse, up to a
compact error, and is therefore a Fredholm operator. The null space of T acting
on H−∞ is contained in H∞; hence ker T does not depend on the topology. To
complete the proof we need to show that the coker T is isomorphic to the kernel
of the formal adjoint T ∗.

As TT ∗(Id +U∗U) = I + TT ∗ + K1, and (Id +U∗U)TT ∗ = I + TT ∗ + K2,

for smoothing operators K1, K2 it follows from the assumption that Id +TT ∗

is tamely elliptic and that Id +U∗U is tamely elliptic as well. Hence the null-
space of (Id +U∗U) is contained in H∞ and is therefore trivial. Indeed, as
an operator on H0 we can identify (Id +U∗U) as the self-adjoint operator
defined by Friedrichs’ extension from the symmetric quadratic form 〈·, ·〉U .

This operator is self-adjoint and therefore invertible. The cokernel of T is
isomorphic to the set of y in Dom0(U) with

〈Tx, y〉U = 0(274)

for all x ∈ H∞. Using the extension of the pairing 〈·, ·〉 to H∞ × H−∞, we see
that this implies that T ∗(Id +U∗U)y = 0. As T ∗(Id +U∗U) is tamely elliptic,
y ∈ H∞. Thus the coker T is isomorphic to (Id +U∗U)−1 kerT ∗, completing
the proof of the proposition.

A bounded operator P is a projection if P 2 = P. The following elementary
fact about bounded projections is very useful:

Lemma 14. Suppose that H is a Hilbert space and P : H → H is a
bounded projection operator. Then rangeP is a closed subspace of H.

Proof. This follows immediately from the observation that rangeP =
ker(Id−P ).

Definition 5. A tame projection P is a projection that is also a tame
operator of order 0. A pair of tame projections (P, R) defines a tame Fredholm
pair if the operator

T = RP + (I − R)(I − P )(275)
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is tamely elliptic. We let U denote a parametrix for T.

Proposition 16. If (P, R) are a tame Fredholm pair, then

RP : H0 ∩ rangeP −→ Dom0(U) ∩ rangeR(276)

is a Fredholm operator.

Proof. We first need to show that RP is bounded from H0 to Dom0(U).
Letting x ∈ H∞, as URP = UTP we have

‖RPx‖2
U = ‖RPx‖2

0 + ‖UTPx‖2
0

= ‖RPx‖2
0 + ‖(Id−K2)Px‖2

0

≤ C‖x‖2
0.

(277)

This establishes the boundedness. Moreover R : Dom0(U) → Dom0(U) is a
bounded map. This follows from the identity RT = TP, which implies that

UR(Id−K1) = (Id−K2)PU.(278)

As URK1 is a smoothing operator and P is order 0, for x ∈ Dom0(U),

‖URx‖ = ‖(PU + URK1 − K2PU)x‖ ≤ C[‖Ux‖ + ‖x‖].(279)

Hence Lemma 14 implies that H0 ∩ rangeP and Dom0(U)∩ rangeR are closed
subspaces of their respective Hilbert spaces and are therefore Hilbert spaces
in their own rights. Similarly we can show that PUR : Dom0(U) → H0 is
bounded. That the map is Fredholm follows from the identities:

(PUR)(RP ) = PUTP = P (Id−K2)P,

(RP )(PUR) = RTUR = R(Id−K1)R,
(280)

which imply that the map in (276) is a bounded map between Hilbert spaces,
invertible up to a compact error.

Definition 6. For (P, R) a tame Fredholm pair we let R-Ind(P, R) denote
the Fredholm index of the operator in (276). The number R-Ind(P, R) is also
called the relative index of P and R.

The relative index can be identified with difference of the dimensions of
null spaces. This is a relative index analogue of Proposition 15.

Proposition 17. Let (P, R) be a tame Fredholm pair. Then

R-Ind(P, R) = dim[kerRP �PH−∞ ] − dim[kerP ∗R∗ �R∗H−∞ ].(281)

Proof. By definition

R-Ind(P, R) = dim[kerRP �PH0 ] − dim[coker PR �PH0 ].(282)
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Ellipticity of T implies that

kerRP �PH−∞⊂ PH∞,(283)

so that the first terms in (281) and (282) agree. Using the representation of
Dom0(U)′ as (Id +U∗U) Dom0(U) we see that

coker PR �PH0� {v ∈ Dom0(U)′ ∩ rangeR∗ : 〈RPu, v〉 = 0 for all u ∈ H0}.
(284)

The right-hand side of (284) is certainly contained in kerP ∗R∗ �R∗H−∞ . Again
ellipticity implies that this subspace is contained in H∞ and therefore is also
contained in Dom0(U)′ ∩ rangeR∗. This proves (281)

Remark 12. If K : H → H is a trace class operator, then we use trH(K)
to denote its trace as an operator on H. A priori, the definition of the trace
class and the value of the trace appear to depend on the inner product on H.

In many cases one can show that the value of the trace is independent of the
inner product.

The operators RK1R and PK2P are smoothing operators and therefore
trace class operators on H0. In order to use the standard trace formula for the
index we need to show that RK1R : Dom0(U) → Dom0(U) is trace class and
that

trDom0(U)(RK1R) = trH0(RK1R).(285)

Theorem VI.2.23 in [20] implies that
√

Id +U∗U is a (possibly unbounded)
self-adjoint operator with domain Dom0(U). Moreover

√
Id +U∗U has a bounded

inverse, (Id +U∗U)−
1
2 and

〈x, y〉U = 〈
√

Id +U∗Ux,
√

Id +U∗Uy〉, ∀x, y ∈ Dom0(U).(286)

To show that RK1R is a trace class operator on Dom0(U) we need to verify
that there is an M so that, for every pair of orthonormal bases {f1

j }, {f2
j } of

Dom0(U), we have
∞∑

j=1

|〈RK1Rf1
j , f2

j 〉U | ≤ M.(287)

As RK1R is a smoothing operator, RK1Rf1
j ∈ H∞ ⊂ Dom0(Id +U∗U), hence

the Friedrichs extension theorem and (286) imply that
∞∑

j=1

|〈RK1Rf1
j , f2

j 〉U | =
∞∑

j=1

|〈(Id +U∗U)RK1Rf1
j , f2

j 〉|.(288)

For i = 1 or 2 we let

ei
j = (Id +U∗U)

1
2 f i

j ,(289)



SUBELLIPTIC SpinC DIRAC OPERATORS, III 361

where {e1
j}, {e2

j} are orthonormal bases for H0. As (Id +U∗U)−
1
2 is a bounded

self adjoint operator, we obtain:

(290)
∞∑

j=1

|〈RK1Rf1
j , f2

j 〉U |

=
∞∑

j=1

|〈(Id +U∗U)−
1
2 (Id +U∗U)RK1R(Id +U∗U)−

1
2 e1

j , e
2
j 〉|.

The operator (Id +U∗U)RK1R is a smoothing operator and therefore a trace
class operator on H0. The operator (Id +U∗U)−

1
2 is bounded on H0, which

shows that (Id +U∗U)−
1
2 (Id +U∗U)RK1R(Id +U∗U)−

1
2 is also a trace class

operator on H0. Hence there exists an upper bound M for the sum on the
right-hand side of (290), valid for any pair of orthonormal bases {e1

j}, {e2
j}.

This completes the proof that

RK1R : Dom0(U) → Dom0(U)

is a trace class operator.
To compute the trace we select an orthonormal basis {fj} of Dom0(U)

and let {ej} be the corresponding orthonormal basis of H0. Arguing as above
we conclude that

trDom0(U)(RK1R) =
∞∑

j=1

〈(Id +U∗U)−
1
2 (Id +U∗U)RK1R(Id +U∗U)−

1
2 ej , ej〉

= trH0

(
Id +U∗U)−

1
2 (Id +U∗U)RK1R(Id +U∗U)−

1
2

)
.

(291)

The operator (Id +U∗U)−
1
2 (Id +U∗U)RK1R is H0-trace class and the operator

(Id +U∗U)−
1
2 is H0 bounded. Therefore

(292) trH0

(
(Id +U∗U)−

1
2 (Id +U∗U)RK1R(Id +U∗U)−

1
2

)
= trH0 [(Id +U∗U)−

1
2 ]2(Id +U∗U)RK1R = trH0 RK1R.

This completes the proof of the following result:

Proposition 18. If (P, R) is a tame Fredholm pair then RK1R : Dom0(U) →
Dom0(U) is a trace class operator and

trDom0(U)(RK1R) = trH0(RK1R).(293)

To obtain a trace formula for R-Ind(P, R) we need to compute the traces
of RK1R and PK2P restricted to the ranges of R and P respectively. Let
{e1

j} be an orthonormal basis for the range of P and {e2
j} be an orthonormal
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basis for the orthocomplement of the range. Note that P ∗e2
j = 0 for all j and

therefore

〈PK2Pe2
j , e

2
j 〉 = 〈PK2Pe2

j , P
∗e2

j 〉 = 0.(294)

This shows that

trH0(PK2P ) =
∞∑

j=1

〈PK2Pe1
j , e

1
j 〉.(295)

Similar considerations apply to trDom0(U)(RK1R) and trH0(RK1R). From these
observations we obtain:

Theorem 15. If (P, R) is a tame Fredholm pair, then

R-Ind(P, R) = trH0(PK2P ) − trH0(RK1R).(296)

Proof. This follows from (280), Proposition 18 and Theorem 15 in Chap-
ter 30 of [22].

In applications, H0 is often L2(M ;E) where M is a compact manifold
and E → M is a vector bundle. Theorem 15 and Lidskii’s theorem imply that
R-Ind(P, R) can be computed by integrating the Schwartz kernels of PK2P

and RK1R along the diagonal. This is a very useful fact.
Finally we have a logarithmic property for relative indices.

Theorem 16. Let (P, Q) and (Q, R) be tame Fredholm pairs. For an
appropriately defined Hilbert space, HUV , RQP is a tame Fredholm operator
from rangeP ∩ H0 to rangeQ ∩ HUV and

Ind(RQP ) = R-Ind(P, Q) + R-Ind(Q, R).(297)

Proof. For S = QP + (Id−Q)(Id−P ) and T = RQ + (Id−R)(Id−Q), let
U, V be parametrices, with

SU = Id−K1, US = Id−K2,

TV = Id−K3, V T = Id−K4.
(298)

We define the Hilbert spaces HU , HV and HUV as the closures of H∞ with
respect to the inner products

‖x‖2
U = ‖x‖2 + ‖Ux‖2, ‖x‖2

V = ‖x‖2 + ‖V x‖2, ‖x‖2
UV = ‖x‖2 + ‖UV x‖2.

(299)

By definition, QP : rangeP ∩ H0 → rangeQ ∩ HU and RQ : rangeQ ∩ H0 →
rangeR∩HV are Fredholm with indices R-Ind(P, Q),R-Ind(Q, R), respectively.
To prove the theorem we need to show that

RQ : rangeQ ∩ HU −→ rangeR ∩ HUV(300)
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is Fredholm and has index R-Ind(Q, R). The proofs of these statements make
use of the commutation relations QS = SP, RT = TQ, which, along with (298)
imply that

UQ(Id−K1) = (Id−K2)PU and V R(Id−K3) = (Id−K4)QV.(301)

First we show that Q acts boundedly on HU and R acts boundedly on
HUV , so that we can apply Lemma 14. Using (301) and the fact that the
smoothing operators are a two-sided ideal we see that for x ∈ H∞,

‖UQx‖ = ‖(UQK1 + PU − K2PU)x‖ ≤ C1[‖Ux‖ + ‖x‖.(302)

In the following computation K denotes a variety of smoothing operators:

‖UV Rx‖ = ‖(UQV + K)x‖ = ‖(PUV + K)x‖ ≤ C2[‖UV x‖ + ‖x‖].(303)

The constants C1, C2 are independent of x. This shows that rangeQ∩HU and
rangeR ∩ HUV are closed subspaces.

The operator QV R is a parametrix for the operator in (300). First we see
that QV R : rangeR ∩ HUV → rangeQ ∩ HU is bounded:

‖UQV Rx‖ = ‖(UQK1 + PU − K2PU)V R‖ ≤ C‖x‖UV .(304)

That it is a parametrix follows from

(QV R)(RQ) = Q(Id−K4)Q and (RQ)(QV R) = R(Id−K3)R.(305)

The null-space of RQ �QHU
agrees with the null-space of RQ acting on QH−∞.

We use the operator (Id +V ∗U∗UV ) to identify the dual space H ′
UV of HUV

as a subspace of H−∞ via the pairing 〈·, ·〉. With this identification, the cok-
ernel of the operator in (300), is isomorphic to the null-space of Q∗R∗ acting
on R∗H ′

UV . As in the proof of Proposition 17, we see that the cokernel is
therefore isomorphic to the null-space of Q∗R∗ acting on R∗H−∞. This, along
with Proposition 17, shows that the index of the operator in (300) equals
R-Ind(Q, R). The theorem now follows from the standard logarithmic prop-
erty for the Fredholm indices of operators acting on Hilbert spaces.
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