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The derivation problem for group algebras

By Viktor Losert

Abstract

If G is a locally compact group, then for each derivation D from L1(G)
into L1(G) there is a bounded measure μ ∈ M(G) with D(a) = a ∗ μ − μ ∗ a

for a ∈ L1(G) (“derivation problem” of B. E. Johnson).

Introduction

Let A be a Banach algebra, E an A-bimodule. A linear mapping
D : A → E is called a derivation, if D(a b) = a D(b) + D(a) b for all a, b ∈ A
([D, Def. 1.8.1]). For x ∈ E, we define the inner derivation adx : A → E by
adx(a) = x a − a x (as in [GRW]; adx = −δx in the notation of [D, (1.8.2)]).

If G is a locally compact group, we consider the group algebra A = L1(G)
and E = M(G), with convolution (note that by Wendel’s theorem [D, Th.
3.3.40], M(G) is isomorphic to the multiplier algebra of L1(G) and also to the
left multiplier algebra). The derivation problem asks whether all derivations
are inner in this case ([D, Question 5.6.B, p. 746]). The question goes back to
J. H. Williamson around 1965 (personal communication by H. G. Dales). The
corresponding problem when A = E is a von Neumann algebra was settled
affirmatively by Sakai [Sa], using earlier work of Kadison (see [D, p. 761] for
further references). The derivation problem for the group algebra is linked
to the name of B. E. Johnson, who pursued it over the years as a pertinent
example in his theory of cohomology in Banach algebras. He developed various
techniques and gave affirmative answers in a number of important special cases.

As an immediate consequence of the factorization theorem, the image of
a derivation from L1(G) to M(G) is always contained in L1(G). In [JS] (with
A. Sinclair), it was shown that derivations on L1(G) are automatically contin-
uous. In [JR] (with J. R. Ringrose), the case of discrete groups G was settled
affirmatively. In [J1, Prop. 4.1], this was extended to SIN-groups and amenable
groups (serving also as a starting point to the theory of amenable Banach al-
gebras). In addition, some cases of semi-simple groups were considered in [J1]
and this was completed in [J2], covering all connected locally compact groups.
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A number of further results on the derivation problem were obtained in [GRW]
(some of them will be discussed in later sections).

These problems were brought to my attention by A. Lau.

1. The main result

We use a setting similar to [J2, Def. 3.1]. Ω shall be a locally compact
space, G a discrete group acting on Ω by homeomorphisms, denoted as a left
action (or a left G-module), i.e., we have a continuous mapping (x, ω) �→ x ◦ ω

from G×Ω to Ω such that x ◦ (y ◦ω) = (xy) ◦ω, e ◦ω = ω for x, y ∈ G, ω ∈ Ω.
Then C0(Ω), the space of continuous (real- or complex-valued) functions on Ω
vanishing at infinity becomes a right Banach G-module by (h◦x)(ω) = h(x◦ω)
for h ∈ C0(Ω) , x ∈ G , ω ∈ Ω. The space M(Ω) of finite Radon measures
on the Borel sets B of Ω will be identified with the dual space C0(Ω)′ in the
usual way and it becomes a left Banach G-module by 〈x ◦ μ, h 〉 = 〈μ , h ◦ x〉
for μ ∈ M(Ω), h ∈ C0(Ω), x ∈ G (in particular, x ◦ δω = δx◦ω when μ = δω is
a point measure with ω ∈ Ω ; see also [D, §3.3] and [J2, Prop. 3.2]).

A mapping Φ: G → M(Ω) (or more generally, Φ: G → X, where X is a left
Banach G-module) is called a crossed homomorphism if Φ(xy) = Φ(x)+x◦Φ(y)
for all x, y ∈ G ([J2, Def. 3.3]; in the terminology of [D, Def. 5.6.35], this is a
G-derivation, if we consider the trivial right action of G on M(Ω) ). Now, Φ
is called bounded if ‖Φ‖ = supx∈G‖Φ(x)‖ < ∞. For μ ∈ M(Ω), the special
example Φμ(x) = μ − x ◦ μ is called a principal crossed homomorphism (this
follows [GRW]; the sign is taken opposite to [J2]).

Theorem 1.1. Let Ω be a locally compact space, G a discrete group with
a left action of G on Ω by homeomorphisms. Then any bounded crossed ho-
momorphism Φ from G to M(Ω) is principal. There exists μ ∈ M(Ω) with
‖μ‖ ≤ 2 ‖Φ‖ such that Φ = Φμ.

Corollary 1.2. Let G denote a locally compact group. Then any deriva-
tion D : L1(G) → M(G) is inner.

Using [D, Th. 5.6.34 (ii)], one obtains the same conclusion for all deriva-
tions D : M(G) → M(G).

Proof. As mentioned in the introduction, we have D(L1(G)) ⊆ L1(G)
and then D is bounded by a result of Johnson and Sinclair (see also [D, Th.
5.2.28]). Then by further results of Johnson, D defines a bounded crossed
homomorphism Φ from G to M(G) with respect to the action x ◦ ω = x ω x−1

of G on G ([D, Th. 5.6.39]) and (applying our Theorem 1.1) Φ = Φμ implies
D = adμ.

Corollary 1.3. Let G denote a locally compact group, H a closed sub-
group. Then any bounded derivation D : M(H) → M(G) is inner.
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Again, the same conclusion applies to bounded derivations D : L1(H) →
M(G).

Proof. M(H) is identified with the subalgebra of M(G) consisting of those
measures that are supported by H (this gives also the structure of an M(H)-
module considered in this corollary). As above, D defines a bounded crossed
homomorphism Φ from H to M(G) (for the restriction to H of the action
considered in the proof of 1.2) and our claim follows.

Corollary 1.4. For any locally compact group G, the first continuous
cohomology group H1(L1(G), M(G)) is trivial.

Note that

H1(M(G), M(G)) = H1(L1(G), M(G))

holds by [D, Th. 5.6.34 (iii)].

Proof. Again, this is contained in [D, Th. 5.6.39].

Corollary 1.5. Let G be a locally compact group and assume that T ∈
VN(G) satisfies T ∗ u − u∗ T ∈ M(G) for all u ∈ L1(G). Then there exists
μ ∈ M(G) such that T − μ belongs to the centre of VN(G).

Proof. This is Question 8.3 of [GRW]. With VN(G) denoting the von
Neumann algebra of G (see [GRW, §1]), M(G) is identified with the corre-
sponding set of left convolution operators on L2(G) (see [D, Th. 3.3.19]) and
is thus considered as a subalgebra of VN(G). By analogy, we also use the
notation S ∗T for multiplication in VN(G). Then adT (u) = T∗u−u∗T defines
a derivation from L1(G) to M(G) and (from Corollary 1.2) adT = adμ implies
that T − μ centralizes L1(G). Since L1(G) is dense in VN(G) for the weak
operator topology, it follows that T − μ is central.

Remark 1.6. If G is a locally compact group with a continuous action on Ω
(i.e., the mapping G × Ω → Ω is jointly continuous; by the theorem of Ellis,
this results from separate continuity), then Theorem 1.1 implies that bounded
crossed homomorphisms from G to M(Ω) are automatically continuous for
the w*-topology on M(Ω), i.e., for σ(M(Ω), C0(Ω)) (since in this case the
right action of G on C0(Ω) is continuous for the norm topology). This is
a counterpart to [D, Th. 5.6.34(ii)] which implies that bounded derivations
from M(G) to a dual module E′ are automatically continuous for the strong
operator topology on M(G) and the w*- topology on E′. See also the end of
Remark 5.6.
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2. Decomposition of M(Ω)

Let Ω be a left G-module as in Theorem 1.1. For μ, λ ∈ M(Ω), singularity
is denoted by μ ⊥ λ, absolute continuity by μ � λ, equivalence by μ ∼ λ

(⇔ μ � λ and λ � μ). The measure λ is called G-invariant if x ◦ λ = λ

for all x ∈ G. It is easy to see that the G-invariant elements form a norm-
closed sublattice M(Ω)inv in M(Ω) (which may be trivial). We introduce the
following notation:

M(Ω)inf = {μ ∈ M(Ω) : μ ⊥ λ for all λ ∈ M(Ω)inv},

M(Ω)fin = {μ ∈ M(Ω) : μ � λ for some λ ∈ M(Ω)inv} .

Sometimes, we will also write M(Ω)inf,G and M(Ω)fin,G to indicate dependence
on G. In the terminology of ordered vector spaces (see e.g., [Sch, §V.1.2]),
M(Ω)fin is the band generated by M(Ω)inv, and M(Ω)inf is the orthogonal
band to M(Ω)fin (and also to M(Ω)inv). For spaces of measures, bands are
also called L-subspaces. Since the action of G respects order and the absolute
value, it follows that M(Ω)inf and M(Ω)fin are G-invariant. Furthermore,

M(Ω) = M(Ω)inf ⊕ M(Ω)fin

and the norm is additive with respect to this decomposition.
This gives contractive, G-invariant projections to the two parts of the sum.

It follows that it will be enough to prove Theorem 1.1 separately for crossed
homomorphisms with values in one of the two components.

The proof of Theorem 1.1 will be organized as follows: In Section 3, we
recall some classical results. Sections 4–6 are devoted to M(Ω)inf (“infinite
type”). First (§§4, 5), we consider measures that are absolutely continuous
with respect to some (finite) quasi-invariant measure. We will work with the
extension of the action of G to the Stone-Čech compactification βG and in
Section 5, we describe an approximation procedure which will produce the
measure μ representing the crossed homomorphism (see Proposition 5.1). Then
in Section 6 the general case for M(Ω)inf is treated (Proposition 6.2). Finally,
Section 7 covers the case M(Ω)fin (“finite type”, see Proposition 7.1). Here
the behaviour of crossed homomorphisms is different and we will use weak
compactness and the fixed point theorem of Section 3. As explained above,
Propositions 6.2 and 7.1 will give a complete proof of Theorem 1.1.

Remark 2.1. A similar decomposition technique has been applied in [Lo,
proof of the proposition]. The distinction between finite and infinite types is
related to corresponding notions for von Neumann algebras (see e.g., [T, §V.7])
and the states on these algebras ([KS]). Some proofs for Sakai’s theorem (e.g.,
[JR]) also treat these cases separately.

In [GRW, §§5, 6], another sort of distinction was considered: for Ω = G

a locally compact group with the action x ◦ y = x y x−1 (see the proof of
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Corollary 1.2), they write N for the closure of the elements of G belonging
to relatively compact conjugacy classes. Then Cond. 6.2 of [GRW] (which
is satisfied e.g. for IN-groups or connected groups), implies that M(G \ N)
contains no nonzero G-invariant measures (G \ N denoting the set-theoretical
difference); thus M(G \ N) ⊆ M(G)inf . Then ([GRW, Th. 6.8]), they showed
that bounded crossed homomorphisms with values in M(G \N) are principal.
But, as Example 2.2 below demonstrates, M(G)inf is in general strictly larger
and in Sections 4 - 6 we will extend the method of [GRW] to M(Ω)inf .

Example 2.2. Put Ω = T2, where T = R/Z denotes the one-dimensional
torus group, H = SL(2, Z) with the action induced by the standard left action
of H on R2. This is related to the example G = SL(2, Z) � T2 discussed in
[GRW], since for G (in the notation of Remark 2.1 above, putting I = ( 1 0

0 1 ) ),
we have N = {±I}� T2 (this is the maximal compact normal subgroup of G)
and then M(Ω) ⊆ M(N) was a typical case left open in [GRW].

One can show (using disintegration and then unique ergodicity of irrational
rotations on T) that the extreme points of the set of H-invariant probability
measures on Ω can be described as follows: put K0 = (0), Kn = ( 1

n Z / Z )2,
K∞ = Ω (these are all the closed H-invariant subgroups of T2). Then the
extreme points are just the normalized Haar measures of the compact groups
Kn (n = 0, 1, . . . ,∞) and M(Ω)inv is the norm-closed subspace generated by
them. It follows that μ ∈ M(Ω)fin if and only if μ = u + ν, where u ∈ L1(T2)
(i.e., u is absolutely continuous with respect to Haar measure) and ν is an
atomic measure concentrated on (Q/Z)2 =

⋃
n∈N

Kn. Now, μ ∈ M(Ω)inf if
and only if μ ⊥ L1(T2) and μ gives zero weight to all points of (Q/Z)2.

Example 2.3. Put Ω = T which is now identified with the unit circle

{v ∈ R2 : ‖v‖ = 1}. For G = SL(2, R), we consider the action A ◦ v =
Av

‖Av‖ .

Here, although Ω is compact, there are no nonzero G-invariant measures
(we consider first the orthogonal matrices in G; uniqueness of Haar mea-
sure makes the standard Lebesgue measure of T the only candidate, but

this is not invariant under matrices
(

α 0
0 1

α

)
with α �= ±1 ). Thus M(Ω) =

M(Ω)inf in this example. In [GRW] after their L. 6.3, a generalized version of
their Condition 6.2 is formulated (this is slightly hidden on p. 382: “Suppose
now . . . ”). It implies also the nonexistence of G-invariant measures, but it
is applicable only for noncompact spaces Ω. The present example shows that
the condition of [GRW] does not cover all actions without invariant measures.
Of course (using the Iwasawa decomposition), Ω can be identified with the

(left) coset space of G by the subgroup
{(

α β

0 1
α

)
: α > 0, β ∈ R

}
, with the

action induced by left translation. Hence this is related to the semi-simple Lie
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group case and the methods of [J1, Prop. 4.3] (which were developed further in
[J2]) apply. This amounts to consideration first of the restricted action on an

appropriate subgroup, for example
{(

α 0
0 1

α

)
: α > 0

}
(see also the Remarks

4.3(a) and 5.6).

Further notation. Note that e will always mean the unit element of a group
G. If G is a locally compact group, L1(G), L∞(G) are defined with respect
to a fixed left Haar measure on G. Duality between Banach spaces is de-
noted by 〈 〉; thus for f ∈ L∞(G), u ∈ L1(G), we have 〈f, u〉 =

∫
G

f(x) u(x) dx.
We write 1 for the constant function of value one.

3. Some classical results

For completeness, we collect here some results (and fix notation) for Ba-
nach spaces of measures and describe a fixed point theorem that will be used
in the following sections.

All the elements of M(Ω) are countably additive set functions on B (the
Borel sets of Ω). For a nonnegative λ ∈ M(Ω) (we write λ ≥ 0), L1(Ω, λ) is
considered as a subset of M(Ω) in the usual way (see e.g., [D, App. A]).

Result 3.1 (Dunford-Pettis criterion). Assume that λ ∈ M(Ω), λ ≥ 0.
A subset K of L1(Ω, λ) is weakly relatively compact (i.e., for σ(L1, L∞)) if and
only if K is bounded and the measures in K are uniformly λ-continuous; this
means explicitly :

∀ ε > 0 ∃ δ > 0 : A ∈ B, λ(A) < δ implies |μ(A)| < ε for all μ ∈ K.

Be aware that weak topologies are always meant in the functional ana-
lytic sense ([DS, Def. A.3.15]). This is different from probabilistic terminology
(where “weak convergence of measures” usually refers to σ(M(Ω), Cb(Ω)) and
“vague convergence” to σ(M(Ω), C0(Ω)), i.e., to the w*-topology). Recall that
weak topologies are hereditary for subspaces (an easy consequence of the Hahn-
Banach theorem; see e.g. [Sch, IV.4.1, Cor. 2]), thus σ(M(Ω), M(Ω)′) induces
σ(L1, L∞) on L1(Ω, λ). By [DS, Th. IV.9.2] this characterizes, also, weakly
relatively compact subsets in M(Ω). Furthermore, by standard topological re-
sults ([D, Prop. A.1.7]), if K is as above, the weak closure K of such a set is
w*-compact as well, i.e., for σ(M(Ω), C0(Ω)).

Proof [DS, p. 387] (Dieudonné’s version). Observe that if λ({ω}) = 0 for
all ω, then (since λ is finite) uniform λ-continuity implies that K is bounded.

In addition, we will consider finitely additive measures. Let ba(Ω,B, λ)
denote the space of finitely additive (real- or complex-valued) measures μ on B
such that for A ∈ B, λ(A) = 0 implies μ(A) = 0. These spaces investigated in
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[DS, III.7], are Banach lattices; in particular, the expressions |μ|, μ ≥ 0, μ1 ⊥
μ2 are meaningful for finitely additive measures as well. (Using abstract
representation theorems for Boolean algebras, we see that all this could be
reduced to countably additive measures on certain “big” compact spaces, but
for our purpose, the classical viewpoint appears to be more suitable; some
authors use the term “charge” to distinguish from countably additive measures;
see [BB]).

Result 3.2. For λ ∈ M(Ω) with λ ≥ 0,

L1(Ω, λ)′′ ∼= L∞(Ω, λ)′ ∼= ba(Ω,B, λ) .

For an indicator function cA (A ∈ B), the duality is given by 〈μ, cA〉 =
μ(A)(μ ∈ ba(Ω,B, λ) ).

Proof [DS, Th. IV.8.16]. The result goes essentially back to Hildebrandt,
Fichtenholz and Kantorovitch. In addition, it follows that the canonical em-
bedding of L1(Ω, λ) into its bidual is given by the usual correspondence between
classes of integrable functions and measures.

Result 3.3 (Yosida-Hewitt decomposition). We have

ba(Ω,B, λ) ∼= L1(Ω, λ) ⊕ L1(Ω, λ)⊥,

where L1(Ω, λ)⊥ consists of the purely finitely additive measures in ba(Ω,B, λ).
More explicitly , every μ ∈ ba(Ω,B, λ) has a unique decomposition μ = μa + μs

with μa � λ, μs ⊥ λ. Furthermore, ‖μ‖ = ‖μa‖ + ‖μs‖.

Proof. [DS, Th. III.7.8].

Defining Pλ(μ) = μa, gives a projection Pλ : L1(Ω, λ)′′ → L1(Ω, λ) that is
a left inverse to the canonical embedding.

Result 3.4. For ν ∈ ba(Ω,B, λ), we have ν ⊥ λ (“ν is purely finitely
additive”) if and only if for every ε > 0 there exists A ∈ B such that λ(A) < ε

and ν is concentrated on A (this means that ν(B) = 0 for all B ∈ B with
B ⊆ Ω \ A; for ν ≥ 0, this is equivalent to ν(A) = ν(Ω)).

Proof. For the sake of completeness, we sketch the argument. It is rather
obvious that the condition above implies singularity of ν and λ. For the con-
verse, recall the formula for the infimum of two real measures (see e.g., [Se,
Prop. 17.2.4] or [BB, Th. 2.2.1]): (λ ∧ ν)(C) = inf {λ(C1) + ν(C \ C1) : C1 ∈
B, C1 ⊆ C}. We can assume that ν is real and then (using the Jordan de-
composition [DS, III.1.8]) that ν ≥ 0. If λ ∧ ν = 0 and ε > 0 is given, it
follows (with C = Ω) that there exist sets An ∈ B such that λ(An) <

ε

2n
and

ν(Ω \ An) <
ε

2n
. Put A =

⋃∞
n=1 An. Then σ-additivity of λ implies λ(A) < ε

and positivity of ν implies ν(Ω \ A) = 0.
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Lemma 3.5. Let (μn)∞n=1 be a sequence in ba(Ω,B, λ) = L1(Ω, λ)′′ with
μn ≥ 0 for all n. Assume that for some c ≥ 0 there exist An ∈ B (n = 1, 2, . . . )
such that lim inf μn(An) ≥ c and

∑∞
n=1 λ(An) < ∞. Let μ be any w*-cluster

point of the sequence (μn) (i.e., for σ(ba(Ω,B, λ), L∞(Ω, λ))). Then

‖μ − Pλ(μ)‖ = ‖μs‖ ≥ c .

Proof. Put Bn =
⋃

m≥n Am. Then λ(Bn) → 0 for n → ∞ and for
m ≥ n, we have μm(Bn) ≥ μm(Am). Since by Result 3.2, μm(Bn) = 〈μm, cBn

〉
and cBn

defines a w*-continuous functional on ba(Ω,B, λ), we conclude that
μ(Bn) ≥ c for all n. Since for n → ∞ absolute continuity implies that
〈Pλ(μ), cBn

〉 → 0, we arrive at lim inf μs(Bn) ≥ c.

Corollary 3.6. L1(Ω, λ)⊥ is “countably closed” for the w*-topology in
L1(Ω, λ)′′. This says that if C is a countable subset of L1(Ω, λ)⊥, then its
w*-closure C is still contained in L1(Ω, λ)⊥.

Proof. This is a special case of [T, Prop. III.5.8] (which is formulated
for general von Neumann algebras); see also [A, Th. III.5]. If C consists of
nonnegative elements, the result follows easily from Lemma 3.5. In the general
case, a direct argument can be given as follows. Put C = {μ1, μ2, . . . } (we may
assume that C is infinite). By Result 3.4, there exists An ∈ B with λ(An) < 1

2n

such that μn is concentrated on An. As before, put Bn =
⋃

m≥n Am. Then, if μ

is any cluster point of the sequence (μn), it easily follows that μ is concentrated
on Bn for all n. By Result 3.4, we obtain that μ ∈ L1(Ω, λ)⊥.

Remark 3.7. We have chosen the term “countably closed” to distinguish
from the classical notion “sequentially closed”. Corollary 3.6 applies also to
nets that are concentrated on a countable subset of L1(Ω, λ)⊥, whereas the
sequential closure usually restricts to convergent sequences.

It is not hard to see that L1(Ω, λ)⊥ is w*-dense in L1(Ω, λ)′′, unless the
support suppλ has an isolated point. This demonstrates again that the w*-
topology on L1(Ω, λ)′′ is highly nonmetrizable.

Result 3.8 (Fixed point theorem). Let X be a normed space, K a non-
empty weakly compact convex subset. Assume that a group G acts by affine
transformations A(x) on X (i.e., A(x) v = L(x) v + φ(x) for x ∈ G,
v ∈ X, where L(x) : X → X is linear, φ(x) ∈ X) and that K is G-invariant.
Furthermore, assume that supx∈G‖L(x)‖ < ∞. Then there exists a fixed point
v ∈ K for the action of G.

Proof. This follows from [La, Th. p. 123] “on the property (F2)”, where
the result is formulated for general locally convex spaces. For completeness, we
include a direct proof, similar to that of Day’s fixed point theorem (compare
[Gr, p. 50]). It is enough to show the result for linear transformations A(x)
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(otherwise, we pass to X̃ = X×C, K̃ = K×{1} and the usual linear extensions
Ã(x) of A(x) ). For v′ ∈ X ′, we get a bounded linear mapping Tv′ : X → l∞(G)
by Tv′(v) (x) = 〈 v′ , A(x) v〉 for v ∈ X , x ∈ G. Then Tv′(K) is weakly
compact and Tv′(v) (xy) = Tv′

(
A(y) v

)
(x). It follows that Tv′(v) is a weakly,

almost periodic, function on G (Tv′(v) ∈ WAP(G) ) for all v ∈ K. Let m

be the invariant mean on WAP(G) (compare [Gr, § 3.1]). We fix v ∈ K and
define v0 ∈ X ′′ by 〈v0, v

′〉 = m
(
Tv′(v)

)
. Then v0 ∈ K, since otherwise, the

separation theorem for convex sets would give some v′ ∈ X ′ and α ∈ R such
that Re 〈v′, w〉 ≤ α for all w ∈ K and Re 〈v0, v

′〉 > α which contradicts the
definition of v0. Then invariance of m easily implies that A(y) v0 = v0 for all
y ∈ G.

Remark 3.9. This is related to Ryll-Nardzewski’s fixed point theorem
([Gr, Th. A.2.2, p. 98]; in fact, the proof of the existence of an invariant
mean on WAP(G) uses this result). Ryll-Nardzewski’s fixed point theorem
does not need our uniform boundedness assumption on the transformations,
but it requires that the action of G be distal. Of course, as soon as one knows
that a fixed point exists, one can use a translation so that the origin becomes a
fixed point. Then uniform boundedness of the group of transformations {A(x)}
implies that the action has to be distal. But the assumptions above make it
possible to show the existence of a fixed point without having to verify distality
in advance (which appears to be a rather difficult task for the action that we
consider in §7).

More generally, the proof given above works if X is any (Hausdorff) locally
convex space, K is a compact convex subset of X and a group G acts on K by
continuous affine transformations A(x) such that the functions Tv′(v) (defined
as above) are weakly almost periodic for all v ∈ K , v′ ∈ X ′.

Corollary 3.10. A measure μ ∈ M(Ω) belongs to M(Ω)fin if and only
if the orbit {x ◦μ : x ∈ G} is weakly relatively compact. Thus M(Ω)fin consists
exactly of the WAP-vectors for the action of G on M(Ω).

Proof. Assume that μ � λ for some λ ∈ M(Ω)inv. In addition, we may
suppose that λ ≥ 0. Given ε > 0, there exists δ > 0 such that A ∈ B, λ(A) < δ

implies |μ(A)| < ε . Since λ(A) < δ implies (see also the beginning of §4)

λ(x−1 ◦ A) = 〈cx−1◦A , λ 〉 = 〈 cA , x ◦ λ〉 = λ(A) < δ ,

it follows that for all x ∈ G,

|x ◦ μ(A)| = |〈 cA, x ◦ μ〉| = |〈cA ◦ x, μ〉| = |〈cx−1◦A, μ 〉| = |μ(x−1 ◦ A)| < ε .

Thus, by the Dunford-Pettis criterion (Result 3.1), {x ◦ μ : x ∈ G} is weakly
relatively compact.

For the converse, recall that |x◦μ| = x◦|μ|; thus (using the existence of a
“control measure” for weakly compact subsets of M(Ω) – see [DS, Th. IV.9.2];
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and again Result 3.1) we may assume that μ ≥ 0 and (using the decomposition
of §2 and the part already proved) that μ ∈ M(Ω)inf . Let K be the (norm- or
weakly-) closed convex hull of {x◦μ : x ∈ G}. This is convex, G-invariant and,
by classical results, it is weakly compact. Thus, by the fixed point theorem
(Result 3.8), there exists λ ∈ M(Ω)inv with λ ∈ K. If λ �= 0, then since
{ν ∈ M(Ω) : ν ⊥ λ} is norm closed, it would follow that x ◦ μ is not singular
to λ for some x ∈ G. But this entails that μ is not singular to λ, contradicting
μ ∈ M(Ω)inf . Thus λ = 0. But by elementary arguments, ν(Ω) = μ(Ω) for all
ν ∈ K and this gives μ = 0.

4. Quasi-invariant measures

A probability measure λ ∈ M(Ω) is called quasi-invariant, if x ◦λ ∼ λ for
all x ∈ G. Then L1(Ω, λ) is a G-invariant L-subspace of M(Ω). Abstractly, if
X is a left Banach G-module (i.e., X is a Banach space and the transformations
v �→ x ◦ v are linear and bounded for each x ∈ G), then its dual X ′ becomes
a right G-module (as in [D, (2.6.4), p. 240]). By an easy computation, it
follows that the right G-action on L∞(Ω, λ) (∼= L1(Ω, λ)′ ) is given by the
same formula as that on C0(Ω) (see the beginning of §1). In a similar way,
the space of bounded Borel measurable functions on Ω can be embedded into
M(Ω)′ (see [D, Prop. 4.2.30]) and on this subspace the formula for the dual
action of G is the same (this was used in the proof of Corollary 3.10).

Recall that βG (the Stone-Čech compactification of the discrete group G)
can be made into a right topological semigroup (extending the multiplication
of G; see [HS, Ch. 4]).

Lemma 4.1. Let X be a left Banach G-module for which the action of G

is uniformly bounded.

(a) The bidual X ′′ becomes a left βG-module, extending the action of G

on X and such that for every fixed x ∈ G the mapping v �→ x ◦ v is
w*-continuous on X ′′ and for every fixed v ∈ X ′′, the mapping p �→ p ◦ v

is continuous from βG to X ′′ (with w*-topology σ(X ′′, X ′)).

(b) Any bounded crossed homomorphism Φ: G → X extends (uniquely) to a
continuous crossed homomorphism from βG to X ′′ (with w*-topology).

This extension will be denoted by the same letter, Φ.

Proof. (a) can be proved as in [D, Th. 2.6.15] (see also [HS, Th. 4.8]).
In fact, as an alternative definition, the product on βG can be obtained by
restriction of the first Arens product � on l1(G)′′. Similarly for (b), crossed
homomorphisms on semigroups can be defined by the same functional equation
as in the group case.
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Lemma 4.2. Assume that λ ∈ M(Ω)inf is a quasi-invariant probability
measure. Then there exists p ∈ βG such that p ◦ f ∈ L1(Ω, λ)⊥ for all f ∈
L1(Ω, λ).

Proof. It is easy to see that f ≥ 0 implies p◦f ≥ 0; consequently, it will be
enough to verify the property of p for a single f ∈ L1(Ω, λ) such that f(ω) > 0,
λ- a.e. (indeed, if p ◦ f ∈ L1(Ω, λ)⊥, then by positivity, p ◦ (h f) ∈ L1(Ω, λ)⊥

for h ∈ L∞ with 0 ≤ h ≤ 1 and by elementary measure theory, the set of
these products h f generates a norm dense subspace of L1(Ω, λ) ). We take the
constant function f = 1.

We argue by contradiction and assume that Pλ(p ◦ 1) �= 0 for all p ∈
βG (Pλ denoting the projection to L1(Ω, λ) defined after Result 3.3). Put
c = infp∈βG‖Pλ(p ◦ 1)‖. The first step is to show that the infimum is actually
attained at some point p0 ∈ βG (in particular, our assumption then implies
that c > 0 ).

Choose a sequence (pn)n≥1 in βG such that ‖Pλ(pn ◦ 1)‖ tends to c. Let
p0 = lim pni

∈ βG be a cluster point, obtained as limit of a net refining
the sequence. By Lemma 4.1(a), we have p0 ◦ 1 = w*- lim pni

◦ 1. Then let
w ∈ L1(Ω, λ)′′ be a w*-cluster point of the bounded net

(
Pλ(pni

◦ 1)
)
. By

Corollary 3.6, p0 ◦ 1−w (being the w*-limit of a further refinement of the net(
pni

◦1−Pλ(pni
◦1)

)
which is concentrated on a countable subset of L1(Ω, λ)⊥ )

belongs to L1(Ω, λ)⊥. Thus Pλ(p0 ◦ 1) = Pλ(w). Lower semicontinuity of the
norm implies ‖w‖ ≤ c, from which we get ‖Pλ(p0 ◦ 1)‖ = c.

Put g = Pλ(p0 ◦ 1). We claim that {x ◦ g : x ∈ G} should be relatively
weakly compact (then by Corollary 3.10, this will imply g ∈ M(Ω)fin, resulting
in a contradiction to λ ∈ M(Ω)inf and c > 0 ).

The claim will again be proved by contradiction. An equivalent condi-
tion to weak relative compactness of the set {x ◦ g : x ∈ G} is that the w*-
closure of this set in the bidual L1(Ω, λ)′′ is contained in L1(Ω, λ). Thus we
assume that this set has a w*-cluster point w ∈ L1(Ω, λ)′′ with w /∈ L1(Ω, λ).
Put w0 = w − Pλ(w) , c0 = ‖w0‖. Then w0 ⊥ L1(Ω, λ), c0 > 0. Ob-
serve that g, w, Pλ(w), w0 ≥ 0. By Result 3.4, there exists An ∈ B with
λ(An) < 1

2n , 〈w0, cAn
〉 = c0 . Then Pλ(w) ≥ 0 implies 〈w, cAn

〉 ≥ c0 , conse-
quently, there exists xn ∈ G such that

〈
xn ◦ g, cAn

〉
> c0 −

1
n

(n = 1, 2, . . . ) .

Let q ∈ βG be a cluster point of the sequence (xn) and put w′ = q ◦ g. Then
Lemma 3.5 implies ‖w′ − Pλ(w′)‖ ≥ c0 (put μn = xn ◦ g, considered as a
countably additive measure on Ω; then by Lemma 4.1(a), w′ is a w*-cluster
point of (μn) ). By Result 3.3, we have ‖w′‖ = ‖Pλ(w′)‖ + ‖w′ − Pλ(w′)‖ and
this gives ‖Pλ(w′)‖ ≤ ‖w′‖−c0. Note that xn◦(p0◦1) = xn◦g+xn◦(p0◦1−g)
and the second part of this sum belongs to L1(Ω, λ)⊥. As before, it follows
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that Pλ

(
q ◦ (p0 ◦ 1)

)
= Pλ(q ◦ g) = Pλ(w′) and this would imply (making use

of the semigroup structure of βG )

‖Pλ( qp0 ◦ 1 )‖ = ‖Pλ(w′)‖ ≤ ‖w′‖ − c0 ≤ c − c0 ,

contradicting the definition of c. This proves our claim and, as explained above,
completes the proof of Lemma 4.2.

Remark 4.3. (a) There are numerous examples of transformation groups
that admit a quasi-invariant probability measure but no finite invariant mea-
sure (see also §6). An easy example is Ω = R with G = Rd (i.e., R with discrete
topology) acting by x ◦ y = x + y. Then any measure λ that is equivalent to
standard Lebesgue measure will be quasi-invariant. βRd maps continuously to
the compactification [−∞,∞] of R. It is not hard to see that any p ∈ βRd

lying above ±∞ has the property that p ◦ L1(Ω, λ) ⊆ L1(Ω, λ)⊥ (intuitively
speaking: functions are “shifted out to infinity”).

In Example 2.3, the standard Lebesgue measure λ is quasi-invariant (but

not invariant) for the action of G. Put H =
{(

α 0
0 1

α

)
: α > 0

}
(∼= ]0,∞[ ).

Note that βHd maps continuously to the compactification [0,∞] of ]0,∞[.
It is not hard to see that any p ∈ βHd lying above 0,∞ has the property
that p ◦ L1(Ω, λ) ⊆ L1(Ω, λ)⊥. If p lies above ∞, we obtain for p ◦ 1 a finitely
additive measure on Ω that projects (by restricting the functional to continuous
functions) to 1

2(δ(1
0)

+ δ(−1
0 )

) (which is an H-invariant measure). Hence this
Example shows another interpretation of “infinity”.

(b) The case of quasi-invariant measures is used as an intermediate step
in the proof of the infinite case (Proposition 6.2). Quasi-invariance of λ is a
necessary condition for G- invariance of L1(Ω, λ). Of course, there are always
the actions of G on M(Ω) and that of βG on M(Ω)′′ defined by Lemma 4.1.
But without quasi-invariance, one cannot guarantee that for p ∈ βG and f ∈
L1(Ω, λ) the element p◦f belongs to the subspace L1(Ω, λ)′′ of M(Ω)′′. Working
with general elements of M(Ω)′′ (rather than ba(Ω,B, λ)) would make the
argument considerably more abstract. In the examples of (a), it is possible to
choose p ∈ βG so that p ◦ M(Ω) ⊆ M(Ω)⊥, but it is not clear if this can be
done in general (for the infinite part of the action; see also Remark 5.6).

(c) If G is a locally compact group and Gd denotes the group with
discrete topology, then βGd maps continuously to βG. If the action of G on
X is uniformly bounded and continuous (i.e., x �→ x ◦ v is continuous for each
v ∈ X ), then it is easy to see that p ◦ v depends for v ∈ X only on the image
of p ∈ βGd in βG. Thus p ◦ v is well defined for p ∈ βG. This applies in
particular to the action of G on L1(Ω, λ) when we have a continuous action of
G on Ω as in Remark 1.6. Thus, in the two examples above, we might have
said as well that p ◦ L1(Ω, λ) ⊆ L1(Ω, λ)⊥ for p ∈ βR \ R (resp., p ∈ βH \H ).
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The technical problem is that in general βG cannot be made into a semigroup
in a reasonable way (see [HS, Th. 21.47]); furthermore, p ◦ v cannot be defined
in the same way for v ∈ X ′′, i.e., one cannot speak of an “action” of βG on
X ′′. Therefore we are restricted to the discrete case.

5. The approximation procedure

We will generalize now the approach developed by G. Willis in Section 6
of [GRW] for bounded crossed homomorphisms with values in M(G \ N) (see
Remark 2.1); similar ideas were used in [J2] and earlier in [J1, p. 51ff]. The
main result is Proposition 5.1 which extends Theorem 6.8 of [GRW]. Tech-
nically, the main difference is to replace convergence to the “ideal point ∞”
as defined in [GRW, p. 380], by consideration instead of the extended crossed
homomorphism (Lemma 4.1(b)) at some point p ∈ βG satisfying the property
of Lemma 4.2.

Proposition 5.1. Assume that λ ∈ M(Ω)inf is a quasi-invariant prob-
ability measure and that p ∈ βG satisfies p ◦ L1(Ω, λ) ⊆ L1(Ω, λ)⊥. For a
bounded crossed homomorphism Φ: G → L1(Ω, λ) put u = Pλ

(
Φ(p)

)
. Then

u ∈ L1(Ω, λ) , ‖u‖ =
1
2
‖Φ‖ =

1
2

lim
x→p

‖Φ(x)‖ and

Φ(x) = u − x ◦ u for all x ∈ G (thus Φ is principal).

Let Pλ denote the projection L1(Ω, λ)′′ → L1(Ω, λ) defined after Result
3.3. The proof will be given at the end of the section after several lemmas. The
structure follows closely that of [GRW, §6]. The basic strategy is to study Φ at
those points x where ‖Φ(x)‖ comes close to ‖Φ‖. Throughout this section, we
fix p ∈ βG given by Lemma 4.2 and we make the convention that in expressions
of the type lim

x→p
F (x), where F is some function, x shall always be restricted to

elements of G (e.g., in Proposition 5.1 and Lemma 5.2, we do not claim that
‖Φ‖ = ‖Φ(p)‖ ).

Lemma 5.2 (see [GRW, L. 6.4]). ‖Φ‖ = lim
y→p

‖Φ(y)‖.

Proof. Consider ε > 0 and take some x0 ∈ G with

‖Φ(x0)‖ > ‖Φ‖ − ε .(1)

Put f = |Φ(x0)|. Then x−1
0 ◦ f ∈ L1(Ω, λ) , ‖x−1

0 ◦ f‖ = ‖Φ(x0)‖ and p ◦ f ∈
L1(Ω, λ)⊥. By Result 3.4, there exists B ∈ B such that

〈 p ◦ f , cB 〉 = 0(2)
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and

〈x−1
0 ◦ f , cB 〉 > ‖Φ(x0)‖ − ε >

(1)
‖Φ‖ − 2ε .(3)

Thus,

〈x−1
0 ◦ f , cΩ\B 〉 < 2ε .(4)

The defining equation for crossed homomorphisms implies that for all y ∈ G

we have
Φ(x0yx0) = Φ(x0) + x0 ◦ Φ(y) + x0y ◦ Φ(x0) .

This gives (since G acts isometrically on L1(Ω, λ) )

‖Φ‖ ≥ ‖Φ(x0yx0)‖ ≥ ‖x−1
0 ◦ Φ(x0) + y ◦ Φ(x0) ‖ − ‖Φ(y)‖ .(5)

Observe that by Lemma 4.1(a) and (2),

lim
y→p

〈 y ◦ f , cB 〉 = 〈 p ◦ f , cB 〉 = 0 .

Consequently, there exists a neighbourhood U of p such that

〈 y ◦ |Φ(x0)| , cB 〉 < ε for all y ∈ U .(6)

This implies that for y ∈ U ∩ G, we have

〈 y ◦ |Φ(x0)| , cΩ\B 〉 = ‖Φ(x0)‖ − 〈 y ◦ |Φ(x0)| , cB 〉 >
(1)

‖Φ‖ − 2ε .(7)

Decomposition of the integral defining the L1-norm into the domains B and
Ω \ B gives

‖x−1
0 ◦ Φ(x0) + y ◦ Φ(x0) ‖ ≥ 〈x−1

0 ◦ |Φ(x0)| − y ◦ |Φ(x0)|, cB 〉

+〈 y ◦ |Φ(x0)| − x−1
0 ◦ |Φ(x0)|, cΩ\B 〉

≥
(3),(6),(7),(4)

‖Φ‖ − 2ε − ε + ‖Φ‖ − 2ε − 2ε

= 2 ‖Φ‖ − 7ε.

Combined with (5), this yields ‖Φ(y)‖ > ‖Φ‖ − 8ε for all y ∈ U ∩ G.

Lemma 5.3. Take B ∈ B and ε > 0.

(a) Assume that x, z ∈ G satisfy the conditions

〈 |Φ(x)| , cB 〉 > ‖Φ‖ − ε and ‖Φ(z)‖ > ‖Φ‖ − ε .

Then 〈 |Φ(z)| , cB 〉 >
‖Φ‖
2

− 2ε .

(b) In addition to (a), assume that the condition 〈 z ◦ |Φ(x)| , cB 〉 < ε holds.

Then 〈 |Φ(z)| , cB 〉 <
‖Φ‖
2

+ 2ε.
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Proof (compare [GRW, L. 6.5]). For (a), assume that 〈 |Φ(z)| , cB 〉 ≤
‖Φ‖
2

− 2ε. Then, by the conditions of (a),

〈 |Φ(x) − Φ(z)|, cB〉 >
‖Φ‖
2

+ ε, 〈 |Φ(z)|, cΩ\B〉 >
‖Φ‖
2

+ ε ,

and furthermore 〈 |Φ(x)|, cΩ\B〉 < ε.

This implies 〈 |Φ(x) − Φ(z)|, cΩ\B 〉 >
‖Φ‖
2

and then ‖Φ(x) − Φ(z)‖ >

‖Φ‖ + ε. But, since Φ(x) − Φ(z) = z ◦ Φ(z−1x), this is a contradiction.

For (b), assume that 〈 |Φ(z)| , cB 〉 ≥ ‖Φ‖
2

+ 2ε. Using Φ(zx) = Φ(z) +

z ◦Φ(x), the condition of (b) implies 〈 |Φ(zx)| , cB 〉 >
‖Φ‖
2

+ ε. Furthermore,

the assumption gives 〈 |Φ(z)| , cΩ\B 〉 ≤ ‖Φ‖
2

− 2ε and (since the condition of

(a) implies ‖Φ(x)‖ > ‖Φ‖− ε ), we have 〈 z ◦ |Φ(x)| , cΩ\B 〉 > ‖Φ‖− 2ε. This

entails 〈 |Φ(zx)| , cΩ\B 〉 >
‖Φ‖
2

and combined, we get ‖Φ(zx)‖ > ‖Φ‖ + ε, a
contradiction.

Corollary 5.4 (compare[GRW, L. 6.5]). Assume that x ∈ G, B ∈ B,
ε > 0 are given such that

‖Φ(x) cB‖ > ‖Φ‖ − ε and 〈 p ◦ |Φ(x) | , cB 〉 = 0 .

Then there exists a neighbourhood U of p such that

‖Φ‖
2

− 2ε < ‖Φ(z) cB‖ <
‖Φ‖
2

+ 2ε for all z ∈ U ∩ G .

Proof. By Lemma 5.2 and Lemma 4.1 (a), the conditions of Lemma 5.3
are satisfied when z ∈ G is sufficiently close to p.

Lemma 5.5 (compare [GRW, L. 6.6]). Assume that B ∈ B satisfies the
condition 〈 p ◦ 1 , cB 〉 = 0. Then

(
Φ(x) cB

)
is a Cauchy-net in L1(Ω, λ) for

x → p. More explicitly : ∀ ε > 0, ∃U a neighbourhood of p such that
∥∥(

Φ(x) − Φ(y)
)
cB

∥∥ < ε ∀x, y ∈ U ∩ G.

Proof. Fix ε > 0 and take x0 ∈ G such that ‖Φ(x0)‖ > ‖Φ‖ − ε

24
. By

Result 3.4, there exists B1 ∈ B with B1 ⊇ B, satisfying

‖Φ(x0) cB1‖ > ‖Φ‖ − ε

24
, 〈 p ◦ 1 , cB1 〉 = 0 .

Note that this implies 〈 p ◦ |Φ(x0)| , cB1 〉 = 0 (see the beginning of the proof of
Lemma 4.2). By Corollary 5.4 and Lemma 5.2 there exists a neighbourhood
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U1 of p such that

‖Φ‖
2

− ε

12
< ‖Φ(z) cB1‖ <

‖Φ‖
2

+
ε

12
and(8)

‖Φ(z)‖ > ‖Φ‖ − ε

24
for all z ∈ U1 ∩ G .(9)

Fix some z ∈ U1 ∩ G. Then (repeating the argument with z, B1 instead of
x0, B ) there exists B2 ∈ B with B2 ⊇ B1, satisfying

‖Φ(z) cB2‖ > ‖Φ‖ − ε

24
and 〈 p ◦ f , cB2 〉 = 0 .(10)

Finally, we get a neighbourhood U2 of p, contained in U1 and such that

‖Φ‖
2

− ε

12
< ‖Φ(x) cB2‖ <

‖Φ‖
2

+
ε

12
for all x ∈ U2 ∩ G .(11)

Note that in combination with (8), this implies

‖Φ(x) cB2\B1
‖ < 2 · ε

12
=

ε

6
.(12)

This gives∥∥(
Φ(x) − Φ(z)

)
cΩ\B2

∥∥ ≥ ‖Φ(x) cΩ\B2
‖ − ‖Φ(z)cΩ\B2

‖

≥
(9),(11),(10)

‖Φ‖ − ε

24
−

(‖Φ‖
2

+
ε

12

)
− ε

24
=

‖Φ‖
2

− ε

6
,

and∥∥(
Φ(x) − Φ(z)

)
cB2\B1

∥∥ ≥ ‖Φ(z) cB2\B1
‖ − ‖Φ(x) cB2\B1

‖

≥
(10),(8),(12)

‖Φ‖ − ε

24
−

(‖Φ‖
2

+
ε

12

)
− ε

6
=

‖Φ‖
2

− 7ε

24
.

Since (see the proof of Lemma 5.3 (a) ), ‖Φ(x) − Φ(z)‖ ≤ ‖Φ‖, we get in
combination∥∥(

Φ(x) − Φ(z)
)
cB

∥∥≤
∥∥(

Φ(x) − Φ(z)
)
cB1

∥∥
≤‖Φ‖ −

(‖Φ‖
2

+
ε

6

)
−

(‖Φ‖
2

+
7ε

24

)

=
11ε

24
<

ε

2
for all x ∈ U2 ∩ G .

This leads to
∥∥(

Φ(x) − Φ(y)
)
cB

∥∥< ε for all x, y ∈ U2 ∩ G .

Proof of Proposition 5.1. For B ∈ B with 〈 p ◦ 1 , cB 〉 = 0 put

uB = lim
x→p

Φ(x) cB (in the norm topology)(13)

which defines an element of L1(Ω, λ) by Lemma 5.5. If B1 ∈ B is a subset of
B with

〈
|Φ(p) − Pλ(Φ(p)) | , cB1

〉
= 0 , then

〈uB, cB1〉 = lim
x→p

〈Φ(x), cB1〉 = 〈Φ(p), cB1〉 = 〈Pλ(Φ(p)) , cB1 〉 .
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The set of all cB1 , with B1 as above, generates (by Result 3.4) a w*–dense
subspace of L∞(B) (i.e., for σ(L∞, L1)). Thus, we conclude that

uB = Pλ(Φ(p)) cB for all B ∈ B with 〈 p ◦ 1 , cB 〉 = 0 .(14)

From Corollary 5.4 and (13), we get ‖uB‖ = limx→p ‖Φ(x) cB‖ ≤ ‖Φ‖
2 for all

B as above (the first condition of Corollary 5.4 can always be enforced by
temporarily enlarging the set B). Furthermore (again by Corollary 5.4), for
any ε > 0 there exists B as above such that limx→p ‖Φ(x)cB‖ ≥ ‖Φ‖

2 −2ε, thus
‖uB‖ ≥ ‖Φ‖

2 − 2ε. Combining this with (14), we get

‖Pλ(Φ(p)) ‖ =
‖Φ‖
2

(15)

for any bounded crossed homomorphism Φ: G → L1(Ω, λ).
Now, put u = Pλ(Φ(p)) , Φ1(x) = u−x◦u , Φ2(x) = Φ(x)−Φ1(x) (x ∈ G).

It is easy to see that Φ1,Φ2 : G → L1(Ω, λ) are bounded crossed homomor-
phisms, Φ1(p) = u − p ◦ u (by Lemma 4.1); hence (since p ◦ u ∈ L1(Ω, λ)⊥ )
we get Pλ(Φ1(p)) = u , Pλ(Φ2(p)) = 0 . Applying (15) to Φ2, we see that this
implies ‖Φ2‖ = 0; thus Φ = Φ1.

Remark 5.6. The element u ∈ L1(Ω, λ) such that Φ(x) = u − x ◦ u is
uniquely determined (λ ∈ M(Ω)inf implies that L1(Ω, λ) ⊆ M(Ω)inf ; u′

defines the same crossed homomorphism Φ if and only if u − u′ ∈ L1(Ω, λ) ∩
M(Ω)inv = (0) ).

Note that p just depends on λ and not on the particular crossed homo-
morphism Φ. Put W = {h ∈ L∞(Ω, λ) : 〈 p ◦ 1 , |h| 〉 = 0}. The condition
defining W is equivalent to w*- limx→p |h| ◦ x = 0 (in the definition of W ,
one can replace the constant function 1 by any function f ∈ L1(Ω, λ) such
that f(ω) > 0 λ-a.e.; see the beginning of the proof of Lemma 4.2). It
is not hard to see that W is a (proper) norm-closed, w*-dense subspace of
L∞(Ω, λ) and an ideal. It follows from the arguments in the proof of Propo-
sition 5.1 that u = σ(L1, W ) - limx→p Φ(x) and for pointwise products, one
has even u h = ‖ ‖1- limx→p Φ(x)h for all h ∈ W ; in particular, conver-
gence of Φ(x) holds in λ-measure as well ([DS, Def. III.2.6]). But observe that
σ( (L1)′′, L∞) - limx→p Φ(x) = Φ(p); thus convergence of Φ(x) to u = Pλ(Φ(p))
cannot take place in general for the weak topology (i.e., σ(L1, L∞) ; in par-
ticular, weak convergence is impossible if u is nonnegative and nonzero). In-
tuitively: half of the mass of Φ(x) drifts to infinity, the “location of infinity”
being determined by W .

In the first example of Remark 4.3(a), W contains all compactly supported
functions in L∞(R, λ). If W contains all the functions of compact support, one
can say that Φ(x) converges to u in the sense of w*-convergence of measures
(i.e., for σ(M(Ω), C0(Ω)) ). But even this need not be true in general. Con-
sider Example 2.2. Let Ω0 be a (countable) SL(2, Z)-orbit in T2 consisting
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of irrational points and choose an (atomic) probability measure λ on Ω0 giv-
ing nonzero weight to each of its points. Clearly, λ is quasi-invariant and, by
our discussion in Example 2.2, it belongs to M(Ω)inf . Similarly as above, it
follows from compactness of Ω that w*-convergence of Φ(x) to u is impossi-
ble whenever u ∈ L1(Ω, λ) is nonnegative and nonzero (there is a canonical
w*-continuous projection of L∞(Ω, λ)′ to M(Ω), given by the dual of the em-
bedding C0(Ω) → L∞(Ω, λ). In this example the image of p ◦u ∈ L1(Ω, λ)⊥ in
M(Ω) is nonzero; thus σ(M(Ω), C0(Ω)) - limx→p Φ(x) exists, but it is different
from u).

In the setting of [GRW, §6] (see our Remark 2.1), Condition 6.2 of [GRW]
makes it possible always to choose p so that W contains the functions of com-
pact support. One even gets a slightly stronger conclusion. Explicitly, if p is
some cluster point of the filter base W defined as in [GRW, after L. 6.3], then
their Condition 6.2 implies (considering now the G-module M(G \ N) ) that
p ◦μ belongs to M(G \N)⊥ (⊆ M(G \N)′′) for each μ ∈ M(G \N). It follows
from Theorem 6.8 of [GRW] that for each bounded crossed homomorphism
Φ: G → M(G\N), one has Φ = Φμ, with μ = w∗− limx→p Φ(x)(∈ M(G\N)).
Furthermore ([GRW, L. 6.7]), Φ(x) cB converges in norm to cBμ (when x → p)
for any relatively compact Borel set B, similarly under the generalized version
of their Condition 6.2, described after L. 6.3 of [GRW]. This does not need a
quasi-invariant measure controlling the range of Φ.

In the presence of a quasi-invariant probability measure λ, one can also
give a characterization of infiniteness of λ in the style of Condition 6.2 of
[GRW]: λ ∈ M(Ω)inf if and only if there exists an ideal K of compact subsets
of Ω such that supK∈K λ(K) = 1 and for each K ∈ K and each ε > 0 there
exists x ∈ G satisfying λ(x◦K) < ε (it is clear that this excludes the existence
of an invariant measure that is absolutely continuous with respect to λ ; for
the converse, take p ∈ βG as in Lemma 4.2, K = {K : 〈p ◦ 1, cK 〉 = 0} ) .
In examples, such a family K can often be obtained more directly, and then
one can define a filter base W as in [GRW, after L. 6.3] so that any cluster
point p of W satisfies the property of Lemma 4.2. In Example 2.2, when λ is
concentrated on a (countable) SL(2, Z)-orbit Ω0 in T2 consisting of irrational
points, one can take for K the finite subsets of Ω0 (the condition in [GRW,
after L. 6.3] amounts to the case where K consists of all compact subsets of Ω
and μ(x ◦ K) < ε is achievable for each probability measure μ ∈ M(Ω) ).

In Example 2.3 (where Ω is again compact), when choosing p as described
in Remark 4.3(a), lying above ∞, the space W contains all continuous functions
h on Ω with h

(±1
0

)
= 0 (but no other continuous functions). Here one can take

for K the compact subsets of Ω that do not contain
(±1

0

)
.

If G is a locally compact group with a continuous action on Ω, λ is a quasi-
invariant probability measure on Ω, Φ is a bounded crossed homomorphism
such that Φ(x) � λ for all x, then one can show (using Theorem 1.1) that
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Φ is continuous for the norm-topology on M(Ω) (compare Remark 1.6). If in
addition, G is σ-compact, the converse holds as well; i.e., there exists a quasi-
invariant probability measure as above (compare the proof of Proposition 6.2).

6. The infinite case

In this section, Theorem 1.1 is proved for bounded crossed homomor-
phisms with values in M(Ω)inf (Proposition 6.2). The proof reduces the prob-
lem to the case where a quasi-invariant “control measure” exists (Proposition
5.1). A major step is separated in the following lemma. Note that if H is
a subgroup of G, then M(Ω)inv,H ⊇ M(Ω)inv,G , M(Ω)inf,H ⊆ M(Ω)inf,G and
M(Ω)fin,H ⊇ M(Ω)fin,G (see §2 for notation). PH : M(Ω) → M(Ω)inf,H denotes
the corresponding projection with kernel M(Ω)fin,H .

Lemma 6.1. Assume that ρ ∈ M(Ω)inf,G. Then there exists a countable
subgroup H of G such that ρ ∈ M(Ω)inf,H .

Proof. By Corollary 3.10, {x◦ρ : x ∈ G} is not weakly relatively compact.
By Eberlein’s theorem (see [Sch, Th. 11.1]), there exists a sequence (xn) in G

such that {xn ◦ ρ : n ∈ N} is not weakly relatively compact. Let H0 be the
subgroup of G generated by (xn). Then ρ /∈ M(Ω)fin,H0 ; thus PH0(ρ) �= 0.
Observe that for H0 ⊆ H1, one has PH0 = PH0 ◦ PH1 = PH1 ◦ PH0 . Hence, by
an easy argument, we can choose a countable subgroup H0 so that

‖PH0ρ‖ = sup{‖PHρ‖ : H is a countable subgroup of G } .

Assume that PH0ρ �= ρ. Then (since PH0ρ ∈ M(Ω)inf,G) there exists a count-
able subgroup H1 of G with PH1(ρ − PH0ρ) �= 0 and we may assume that
H1 ⊇ H0. Then PH1ρ = PH0ρ+PH1(ρ−PH0ρ) and PH1(ρ−PH0ρ) � ρ−PH0ρ ⊥
PH0ρ. This would give ‖PH1ρ‖ > ‖PH0ρ‖ resulting in a contradiction. It fol-
lows that ρ = PH0ρ ∈ M(Ω)inf,H0 .

Proposition 6.2. Let Φ: G → M(Ω)inf be a bounded crossed homomor-

phism. Then there exists μ ∈ M(Ω)inf such that ‖μ‖ =
1
2
‖Φ‖ and Φ(x) =

μ − x ◦ μ for all x ∈ G.

Proof. (a) First, we assume that G = {xn : n = 1, 2, . . . } is countable.
Put

λ0 =
∞∑

n,m=1

1
2n+m

xn ◦ |Φ(xm)| , λ =
λ0

‖λ0‖
.

Then we have λ ∈ M(Ω)inf and it is a quasi-invariant probability measure such
that Φ(x) � λ for all x ∈ G. Now Proposition 6.2 follows in this case from
Lemma 4.2 and Proposition 5.1.
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(b) In the general case, we consider a countable subgroup H0 of G satisfy-
ing ‖Φ‖ = supx∈H0

‖Φ(x)‖. By Lemma 6.1, there exists a countable subgroup
H1 of G such that H1 ⊇ H0 and Φ(x) ∈ M(Ω)inf,H1 for all x ∈ H0. Put
Φ1(x) = PH1(Φ(x)). Then Φ1 : H1 → M(Ω)inf,H1 is a crossed homomorphism
satisfying ‖Φ1‖ = ‖Φ‖. By (a), there exists λ1 ∈ M(Ω)inf,H1 and μ ∈ L1(Ω, λ1)

such that λ1 is an H1-quasi-invariant probability measure, ‖μ‖ =
‖Φ‖
2

and

Φ1(x) = μ − x ◦ μ for x ∈ H1. This implies that Φ(x) = μ − x ◦ μ for x ∈ H0.
Fix an arbitrary y ∈ G. Then by Lemma 6.1, there exists a countable

subgroup H2 of G such that y ∈ H2 , Φ(y) ∈ M(Ω)inf,H2 and we may assume
H2 ⊇ H1. Put Φ2(x) = PH2(Φ(x)). As above, there exists an H2-quasi-
invariant probability measure λ2 ∈ M(Ω)inf,H2 and μ2 ∈ L1(Ω, λ2) such that

‖μ2‖ =
‖Φ‖
2

(
=

‖Φ2‖
2

)
and Φ2(x) = μ2 −x◦μ2 for all x ∈ H2. We claim that

μ2 = μ; then Φ(y) = Φ2(y) = μ − y ◦ μ and since this applies to an arbitrary
y ∈ G, this will prove Proposition 6.2.

We can assume that λ1 � λ2 (by the uniqueness statement in Remark
5.6, μ2 does not depend on λ2). Using Lebesgue decomposition, let λ⊥

1 ∈
M(Ω)inf,H2 be a probability measure such that λ1 +λ⊥

1 ∼ λ2 and λ1 ⊥ λ⊥
1 . Put

λ′
1 = PH1(λ⊥

1 ) and λ′′
1 = λ⊥

1 −λ′
1. Then L1(Ω, λ2) = L1(Ω, λ1)⊕L1(Ω, λ⊥

1 ) and
L1(Ω, λ⊥

1 ) = L1(Ω, λ′
1)⊕L1(Ω, λ′′

1) (since λ′
1 ⊥ λ′′

1). The H1-quasi-invariance of
λ1, λ2 implies that λ⊥

1 , λ′
1, λ

′′
1 are also H1-quasi-invariant. This gives a decom-

position μ2 = ν2+ν ′
2+ν ′′

2 with ν2 ∈ L1(Ω, λ1), ν ′
2 ∈ L1(Ω, λ′

1) , ν ′′
2 ∈ L1(Ω, λ′′

1).
Recall that PH1 = PH1 ◦ PH2 ; hence Φ1(x) = PH1(Φ2(x)) for x ∈ H1. Then
Φ2(x) = μ2 − x ◦ μ2 implies (since ν2, ν

′
2 ∈ M(Ω)inf,H1 , λ′′

1 ∈ M(Ω)fin,H1)
Φ1(x) = ν2−x◦ν2+ν ′

2−x◦ν ′
2. Because Φ1(x) � λ1, we get Φ1(x) = ν2−x◦ν2 for

x ∈ H1 and from Remark 5.6, it follows that ν2 = μ. Then ‖μ‖ = ‖μ2‖ =
‖Φ‖
2

implies ν ′
2, ν

′′
2 = 0, thus μ2 = μ, proving our claim. As explained above, this

completes the proof of Proposition 6.2.

Remark 6.3. It follows from the proof that there exists always a countable
subgroup H1 of G such that the restriction of Φ to H1 determines μ uniquely.

7. The finite case

In this section, Theorem 1.1 is proved for bounded crossed homomor-
phisms with values in M(Ω)fin (Proposition 7.1). Here we employ the ap-
proach (that already appears in [J1, §3]) using the relation between crossed
homomorphisms and affine actions of G, and then apply fixed point theorems.
The proof of weak relative compactness of the range of Φ uses estimates with
similar decomposition methods, as in the proof of Lemma 5.5.
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Proposition 7.1. Let Φ : G → M(Ω)fin be a bounded crossed homo-
morphism. Then Φ(G) is weakly relatively compact and there exists μ in the
closed convex hull of Φ(G) (in particular, it satisfies ‖μ‖ ≤ ‖Φ‖) such that
Φ(x) = μ − x ◦ μ for all x ∈ G.

Proof. (a) First, we want to show weak relative compactness of Φ(G).
We assume that Φ(G) is not weakly relatively compact. As in the proof of
Lemma 6.1, we may assume that G is countable. Since Φ(G) ⊆ M(Ω)fin, it
follows that there exists a G-invariant probability measure λ ∈ M(Ω) such
that Φ(G) ⊆ L1(Ω, λ). Put Ψ(x) = |Φ(x)| , K = Ψ(G) and let K be the
w*-closure of K in L1(Ω, λ)′′. By the Dunford-Pettis criterion (Result 3.1), K

is not weakly relatively compact; hence K �⊆ L1(Ω, λ). Put

c0 = sup { ‖w − Pλ(w)‖ : w ∈ K } .(16)

Then c0 > 0. Choose w ∈ K such that, putting

wa = Pλ(w) , ws = w − wa , c = ‖ws‖ ,(17)

we have

c >
c0

2
.(18)

Approximating w by a net from K, gives some p ∈ βG such that

w = w*- lim
y→p

Ψ(y)(19)

(as in §5, y is restricted to elements of G in this limit). By absolute continuity,
there exist δn (n = 1, 2, . . . ) satisfying

0 < δn ≤ 1
2n

and 〈wa , cA 〉 <
1
n

for all A ∈ B with λ(A) < δn .

(20)

By (17) and Result 3.4, there exist An ∈ B such that

〈ws , cAn
〉 = c and λ(An) < δn .(21)

Since w ≥ 0, it follows that wa, ws ≥ 0; hence 〈w , cAn
〉 ≥ c. By approxima-

tion (19), there exist yn ∈ G such that

〈Ψ(yn) , cAn
〉 > c − 1

n
.(22)

Again by absolute continuity, there exist δ′n satisfying

0 < δ′n ≤ 1
2n

and 〈Ψ(yn) , cA 〉 <
1
n

for all A ∈ B with λ(A) < δ′n .

(23)

Again by (17) and Result 3.4, there exist A′
n ∈ B such that

〈ws , cA′
n
〉 = c and λ(A′

n) < δ′n .(24)
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G-invariance of λ and (21) imply λ(y−1
n An) = λ(An) < δn. This gives

〈w , cy−1
n An\A′

n
〉 =

(24)
〈wa , cy−1

n An\A′
n
〉 <

(20)

1
n

.

Again by approximation (19), there exist y′n ∈ G such that

〈Ψ(y′n) , cA′
n
〉 > c − 1

n
and 〈Ψ(y′n) , cy−1

n An\A′
n
〉 <

1
n

.(25)

Put zn = yn y′n and Bn = An ∪ ynA′
n. Then by (20), (21), (23), (24), we have

Bn ∈ B and λ(Bn) <
1

2n−1
.(26)

Since Φ(zn) = Φ(yn)+yn◦Φ(y′n) and the right action of G on L∞(Ω, λ) satisfies
cA ◦ y = cy−1A for A ∈ B, we get

〈 |Φ(zn)| , cynA′
n
〉 ≥ 〈 |Φ(y′n)| , cA′

n
〉 − 〈 |Φ(yn)| , cynA′

n
〉(27)

>
(25),(23),(24)

c− 1
n

− 1
n

.

Next,we use

〈 |Φ(zn)| , cBn\ynA′
n
〉 = 〈 |Φ(zn)| , cAn\ynA′

n
〉(28)

≥ 〈 |Φ(yn)| , cAn\ynA′
n
〉 − 〈 yn ◦ |Φ(y′n)| , cAn\ynA′

n
〉 .

Now

〈yn ◦ |Φ(y′n)|, cAn\ynA′
n
〉 = 〈 |Φ(y′n)|, cy−1

n An\A′
n
〉 <

(25)

1
n

and
〈 |Φ(yn)|, cAn\ynA′

n
〉 ≥ 〈 |Φ(yn)|, cAn

〉 − 〈 |Φ(yn)|, cynA′
n
〉

>
(22),(23),(24)

c − 1
n
− 1

n
.

Combining these statements, we get from (28),

〈 |Φ(zn)| , cBn\ynA′
n
〉 > c − 3

n
.(29)

Together with (27), this gives

〈Ψ(zn) , cBn
〉 > 2 c − 5

n
.(30)

By Lemma 3.5, it follows from (26), (30) that any w*-cluster point w′ of(
Ψ(zn)

)
should satisfy ‖w′ −Pλw′‖ ≥ 2 c. But this contradicts the choice of c

in (18).

(b) For x ∈ G, put A(x)μ = x ◦ μ + Φ(x). In this way ([J1, Prop. 3.1]),
A(x) : M(Ω) → M(Ω) is a continuous affine transformation and we get an
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action of G on M(Ω). It is easy to see that A(x) Φ(y) = Φ(xy); thus Φ(G) is
invariant under the action. Let K1 be the closed convex hull of Φ(G). Then
K1 is also invariant under the action of G and by (a) it is weakly compact.
Therefore we can apply the fixed point theorem (Result 3.8). Let μ ∈ K1 be
a fixed point. Obviously, A(x)μ = μ is equivalent to Φ(x) = μ − x ◦ μ which
finishes the proof of the Proposition 7.1 (and also that of Theorem 1.1).

Remark 7.2. (a) Comparing the Propositions 6.2 and 7.1, one can see a
difference in the norm estimates for μ. In the case of C∗- algebras, some work
has been done on the norm of inner derivations (see e.g., [AS]). Clearly, Φν = 0
for ν ∈ M(Ω)inv, thus Φμ depends only on the coset of μ in M(Ω)/M(Ω)inv

(which will be denoted again by μ ), i.e., ‖Φμ‖ ≤ 2‖μ‖M(Ω)/M(Ω)inv
holds in

general and for μ ∈ M(Ω)inf , we get equality by Proposition 6.2. We want to
give an example showing that there are compact groups G for which inf {‖Φμ‖ :
μ ∈ M(G)fin , ‖μ‖M(G)/Z(M(G)) = 1} = 1 (for the action x ◦ ω = x ω x−1 used
in Corollary 1.2; in this case M(G)inv coincides with the centre Z

(
M(G)

)
of

the algebra M(G) ); i.e., the norm estimate in Proposition 7.1 cannot be im-
proved in general. Since ‖Φμ‖ = ‖ adμ‖, this applies also to the corresponding
derivations of L1(G).

First, we claim that it is sufficient to construct finite groups Hn and
μn ∈ M(Hn) for which ‖μn‖M(Hn)/Z(M(Hn)) = 1 and ‖Φμn

‖ → 1 for n → ∞.

Then one can take G =
∞∏

n=1
Hn. We put H ′

m =
∏

n�=m

Hn and, as usual, Hm is

identified with a subgroup of G (∼= Hm×H ′
m). In this way, μm ∈ M(G) and we

consider μ̄m = μm ∗λH′
m

(where λH′ denotes the normalized Haar measure of a
compact group H ′). Then μ̄m ∈ L1(G) ⊆ M(G)fin and ‖μ̄m‖1 = ‖μm‖M(Hm).
Recall that λH′

m
is a central idempotent in M(G). Thus for ν ∈ Z

(
M(G)

)
,

we have ν ∗ λH′
m

∈ Z
(
M(G)

)
and ‖μ̄m + ν ∗ λH′

m
‖ = ‖(μ̄m + ν) ∗ λH′

m
‖ ≤

‖μ̄m + ν‖. To compute the quotient norm, it is therefore enough to consider
ν with ν = ν ∗ λH′

m
, and then ν = ν0 ∗ λH′

m
with ν0 ∈ Z

(
M(Hm)

)
. It follows

that ‖μ̄m‖M(G)/Z(M(G)) = ‖μm‖M(Hm)/Z(M(Hm)) = 1 . Similarly, Φμ̄m
(x) =

Φμm
(xm) ∗ λH′

m
for all x = (xn) ∈ G and this implies ‖Φμ̄m

‖ = ‖Φμm
‖ → 1,

proving our claim.

We will now specialize to semidirect products of finite groups H = K �L,
i.e., K acts on L by automorphisms. Any subset A of L determines a measure
ρ on L < H, by putting ρ({v}) = 1 for v ∈ A, ρ({v}) = 0 otherwise. Then
it is easy to see that ‖ρ‖ = |A| (= cardinality of A) with the assumptions
that L is abelian, ‖Φρ‖ = maxx∈K |(x ◦ A) � A | (� denoting the symmetric
difference). Since |(x ◦ A) � A | = 2 (|A| − |(x ◦ A) ∩ A |), we get ‖Φρ‖ =
2

(
|A|−minx∈K |(x◦A)∩A |

)
. Furthermore, if A ⊆ K ◦ v for some v ∈ L, then

‖ρ‖M(H)/Z(M(H)) = min
(
|A|, |(K ◦ v) \ A|

)
.
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We choose K = Zt
s (Zs denotes the additive group of integers mods,

represented as the interval of integers [0, s − 1]; s ≥ 2 ) with t = [s ln 2] + 1
([·] denoting the integral part), L = K×K with the action x◦(y, z) = (y, z+x y)
(the product being taken coordinatewise), A = {(1, . . . , 1)} × [0, s − 2]t

(⊆ L). Then |A| = (s − 1)t < 1
2 st, hence ‖ρ‖M(H)/Z(M(H)) = |A| (note

that {(1, . . . , 1)} × K is the K-orbit containing A ). Since
∣∣([0, s − 2] + u) ∩

[0, s − 2]
∣∣ ≥ s − 2 for any u ∈ Zs, we get minx∈K |(x ◦ A) ∩ A| = (s − 2)t;

thus ‖Φρ‖ = 2
(
(s − 1)t − (s − 2)t

)
. Finally, putting μ =

1
|A| ρ, we arrive at

‖μ‖M(H)/Z(M(H)) = 1,
∥∥Φμ

∥∥ = 2
(
1 −

(
1 − 1

s − 1
)t

)
and since for s → ∞ this

approaches 1, we find the desired example.
(b) Let Φ be given as in Proposition 7.1 and construct μ ∈ M(Ω) according

to the method of the proof of Result 3.8. Take a probability measure λ ∈
M(Ω)inv with μ � λ. Then Φ(G) ⊆ L1(Ω, λ) and for every h ∈ L∞(Ω, λ) the
function x �→ 〈h , Φ(x)〉 is weakly almost periodic (consider Tv′(v) as in the
proof of Result 3.8 with v = 0 = Φ(e), v′ = h) and it has the mean 〈h, μ〉 (this
is the immediate analogue of the proof of [J1, Th. 2.5] for amenable groups; see
also [GRW, L. 2.1]). It follows easily from the invariance of the mean that for
any μ′ in the closed convex hull of Φ(G) (by classical results, the weak closure
coincides with the norm closure) the function x �→ 〈h , x ◦ μ′〉 has mean zero.
This implies that the measure μ is the unique element in the closed convex hull
of Φ(G) which satisfies Φ = Φμ. But observe that in general this will not give
the measure μ′ ∈ L1(Ω, λ) of minimal norm for which Φ = Φμ′ (e.g., in (a),
ρ = cA has minimal norm when |A| ≤ 1

2 |K ◦v|, but the corresponding measure

in the convex hull of Φρ(H) is cA− |A|
|K ◦ v| cK◦v ; its norm is 2 |A|

(
1− |A|

|K ◦ v|
)

and for |A| < 1
2 |K ◦ v| this is greater than |A| ).

Since μ is obtained by applying the invariant mean for weakly almost
periodic functions to Φ , the mapping Φ �→ μ is linear and gives a right inverse
to the mapping μ �→ Φμ. Hence M(Ω)fin decomposes into a direct sum of
M(Ω)inv and the space of all μ for which x �→ x ◦ μ has mean zero. The
corresponding projection of M(Ω)fin to M(Ω)inv has norm 1 (this is related to
[GRW, Cor. 2.6]). We have given an isomorphism between this complementary
subspace to M(Ω)inv and the space of bounded crossed homomorphisms with
values in M(Ω)fin (similarly for M(Ω) ). One can show that this isomorphism
is nonisometrical, unless M(Ω)fin = M(Ω)inv (i.e., the G-action is trivial on
the points in the supports of the invariant measures). On the infinite part
M(Ω)inf the corresponding isomorphism has norm 2 whenever M(Ω)inf �= (0).

On the other hand, there exist examples of systems G, Ω and μ �= 0 of
finite type such that ‖μ‖ = ‖Φμ‖, x �→ x◦μ has mean zero and μ is the measure
of minimal norm representing Φμ: When G = Z, Ω = {0, 1}Z, G acts on Ω by
shifting coordinates. Let λ be the product measure on Ω giving weight 1

2 to
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0 and 1 (“Bernoulli shift”) and put u(ω) = (−1)ω0 for ω = (ωn) ∈ Ω. Then
an easy computation gives that in L1(Ω, λ) we have ‖u − n ◦ u‖1 = 1 for all
n ∈ Z \ {0}. Thus ‖Φu‖ = ‖u‖1 = 1. Ergodicity of the shift implies that the
mean of x �→ x ◦ u is given by

∫
u dλ = 0 (constant function). Furthermore,

if μ0 ∈ Minv(Ω), its λ-continuous component must be a multiple of λ. Since
‖u− c‖1 > 1 for all c ∈ C \ {0}, it follows that ‖μ′‖ > 1 for all μ′ ∈ M(Ω) such
that Φμ′ = Φu and μ′ �= u.

It appears very likely that such examples do not exist in the original group
case (i.e., Ω = G with the action x ◦ ω = x ω x−1) used in Corollary 1.2.
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