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The strong Macdonald conjecture and
Hodge theory on the loop Grassmannian

By Susanna Fishel, Ian Grojnowski, and Constantin Teleman

Abstract

We prove the strong Macdonald conjecture of Hanlon and Feigin for re-
ductive groups G. In a geometric reformulation, we show that the Dolbeault
cohomology Hq(X; Ωp) of the loop Grassmannian X is freely generated by de
Rham’s forms on the disk coupled to the indecomposables of H•(BG). Equat-
ing the two Euler characteristics gives an identity, independently known to
Macdonald [M], which generalises Ramanujan’s 1ψ1 sum. For simply laced
root systems at level 1, we also find a ‘strong form’ of Bailey’s 4ψ4 sum. Fail-
ure of Hodge decomposition implies the singularity of X, and of the algebraic
loop groups. Some of our results were announced in [T2].

Introduction

This article address some basic questions concerning the cohomology of
affine Lie algebras and their flag varieties. Its chapters are closely related,
but have somewhat different flavours, and the methods used in each may well
appeal to different readers. Chapter I proves the strong Macdonald constant
term conjectures of Hanlon [H1] and Feigin [F1], describing the cohomologies
of the Lie algebras g[z]/zn of truncated polynomials with values in a reductive
Lie algebra g and of the graded Lie algebra g[z, s] of g-valued skew polynomials
in an even variable z and an odd one s (Theorems A and B). The proof uses
little more than linear algebra, and, while Nakano’s identity (3.15) effects a
substantial simplification, we have included a brutal computational by-pass in
Appendix A, to avoid reliance on external sources.

Chapter II discusses the Dolbeault cohomology Hq(Ωp) of flag varieties of
loop groups. In addition to the “Macdonald cohomology”, the methods and
proofs draw heavily on [T3]. For the loop Grassmannian X := G((z))/G[[z]],
we obtain the free algebra generated by copies of the spaces C[[z]] and C[[z]]dz,
in bi-degrees (p, q) = (m, m), respectively (m + 1, m), as m ranges over the
exponents of g. Moreover, de Rham’s operator ∂ : Hq(Ωp) → Hq(Ωp+1) is
induced by the differential d : C[[z]] → C[[z]]dz on matching generators.

A noteworthy consequence of our computation is the failure of Hodge
decomposition,
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Hn(X; C) �=
⊕

p+q=n
Hq(X; Ωp).

Because X is a union of projective varieties, this implies that X is not smooth,
in the sense that it is not locally expressible as an increasing union of smooth
complex-analytic sub-varieties (Theorem 5.4). We are thus dealing with a
homogeneous variety which is singular everywhere. We are unable to offer a
geometric explanation of this striking fact.

Our results generalise to an arbitrary smooth affine curve Σ. The Mac-
donald cohomology involves now the Lie algebra g[Σ, s] of g[s]-valued algebraic
maps, while X is replaced by the thick flag variety XΣ of Section 7. Answering
the question in this generality requires more insight than is provided by the
listing of co-cycles in Theorem B. Thus, after re-interpreting the Macdonald
cohomology as the (algebraic) Dolbeault cohomology of the classifying stack
BG[[z]], and the flag varieties XΣ as moduli of G-bundles on Σ trivialised near
∞, we give in Section 8 a uniform construction of all generating Dolbeault
classes. Inspired by the Atiyah-Bott description of the cohomology genera-
tors for the moduli of G-bundles, our construction is a Dolbeault refinement
thereof, based on the Atiyah class of the universal bundle, with the invariant
polynomials on g replacing the Chern classes.

The more geometric perspective leads us to study Hq(X; Ωp⊗V) for certain
vector bundles V; this ushers in Chapter III. In Section 12, we find a beautiful
answer for simply laced groups and the level 1 line bundle O(1). In general,
we can define, for each level h ≥ 0 and G-representation V , the formal Euler
series in t and z with coefficients in the character ring of G:

Ph,V =
∑

p,q
(−1)q(−t)pch Hq (X; Ωp(h) ⊗ V) ,

where the vector bundle V is associated to the G-module V as in Section 11.8
and z carries the weights of the C×-scaling action on X. These series, ex-
pressible using the Kac character formula, are affine analogues of the Hall-
Littlewood symmetric functions, and their complexity leaves little hope for
an explicit description of the cohomologies. On the other hand, the finite
Hall-Littlewood functions are related to certain filtrations on weight spaces
of G-modules, studied by Kostant, Lusztig and Ranée Brylinski in general.
We find in Section 12.2 that such a relationship persists in the affine case at
positive level. Failure of the level zero theory is captured precisely by the Mac-
donald cohomology, or by its Dolbeault counterpart in Chapter II, whereas
the good behaviour at positive level relies on a higher-cohomology vanishing
(Theorem E).

We emphasise that finite-dimensional analogues of our results (Remarks
11.1 and 11.10), which are known to carry geometric information about the
G-flag variety G/B and the nilpotent cone in g, can be deduced from standard
Hodge theory or other cohomology vanishing results (the Grauert-
Riemenschneider theorem, applied to the moment map μ : T ∗(G/B) → g∗).
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No such general theorems are available in the loop group case; our results pro-
vide a substitute for this. Developing the full theory would take us too far
afield, and we postpone it to a future paper, but Section 11 illustrates it with
a simple example.

Finally, just as the strong Macdonald conjecture refines a combinatorial
identity, our new results also have combinatorial applications. Comparing our
answer for Hq(X; Ωp(h)) with the Kac character formula for Ph,C leads to
q-basic hyper-geometric summation identities. For SL2, this is a specialisation
of Ramanujan’s 1ψ1 sum. For general affine root systems, these identities were
independently discovered by Macdonald [M]. The level one identity for SL2

comes from a specialised Bailey 4ψ4 sum; its extension to simply laced root
systems seems new.

Most of the work for this paper dates back to 1998, and the authors have
lectured on it at various times; the original announcement is in [T2], and a
more leisurely survey is [Gr]. We apologise for the delay in preparing the final
version.
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Definitions and notation

Our (Lie) algebras and vector spaces are defined over C. Certain vector
spaces, such as C[[z]], have natural inverse limit topologies, and ∗-superscripts
will then indicate their continuous duals; this way, C[[z]]∗∗ ∼= C[[z]]. Completed
tensor products or powers of such spaces will be indicated by ⊗̂, Ŝp, Λ̂p.

(0.1) Lie algebra (co)homology. The Lie algebra homology Koszul com-
plex 1 [Ko] of a Lie algebra L with coefficients in a module V is Λ•L ⊗ V ,
homologically graded by •, with differential

δ(λ1 ∧ . . . ∧ λn ⊗ v)

=
∑

p
(−1)pλ1 ∧ . . . ∧ λ̂p ∧ . . . ∧ λn ⊗ λp(v)

+
∑

p<q
(−1)p+q[λp, λq] ∧ λ1 ∧ . . . ∧ λ̂p ∧ . . . ∧ λ̂q ∧ . . . ∧ λn ⊗ v;

hats indicate missing factors. Its homology H•(L;V ) is the Lie algebra ho-
mology of L with coefficients in V . If g ⊆ L is a sub-algebra, δ descends to
the quotient (Λ(L/g) ⊗ V ) /g (Λ(L/g) ⊗ V ) of co-invariants under g, which re-
solves the relative homology H•(L, g;V ). We denote by H•(L) the homology
with coefficients in the trivial one-dimensional module.

Dual to these are the cohomology complexes, with underlying spaces
Hom(Λ•L;W ); the cohomology is denoted H•(L;W ), or H•(L, g;W ) in the
relative case. They are the full duals of the homologies, when W is the full
dual of V . If W is an algebra and L acts by derivations, the Koszul complex is
a differential graded algebra. Similarly, the homology complex is a differential
graded co-algebra, when V is a co-algebra and L acts by co-derivations.

0.2 Remark. More abstractly, Hk(L;V ) = TorL
k (C;V ) and Hk(L;V ) =

Extk
L(C;V ) in the category of L-modules. If g ⊆ L is reductive, and L (via ad)

and V are semi-simple g-modules, the relative homologies are the Tor groups
in the category of g-semi-simple L-modules.

(0.3) Exponents. Either of the following statements defines the exponents
m1, . . . , m� of a reductive Lie algebra g of rank �:

• the algebra (Sg∗)g of polynomials on g which are invariant under the
co-adjoint action is a free symmetric algebra generated in degrees m1 +
1, . . . , m� + 1;

• the sub-algebra (Λg)g of ad-invariants in the full exterior algebra of g is
a free exterior algebra generated in degrees 2m1 + 1, . . . , 2m� + 1.

1Also called the Chevalley complex.
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For instance, when g = gln, � = n and (m1, . . . , mn) = (0, . . . , n − 1). The
first algebra is also naturally isomorphic to the cohomology H•(BG; C), if we
set deg g = 2.

(0.4) Generators. Most cohomologies in this paper will be free graded
polynomial (or power series) algebras, which are canonically described by iden-
tifying their spaces of indecomposables2 with those for H•(BG), tensored with
suitable graded vector spaces V • (cf. Theorem B). However, we can choose
once and for all a space Gen•(BG) spanned by homogeneous free generators
for the cohomology, and identify our cohomologies as the free algebras on
Gen•(BG)⊗ V •. There are many choices of generators,3 but our explicit con-
structions of cohomology classes from invariant polynomials serve to ‘canonise’
this second description.

(0.5) Fourier basis. When G is semi-simple, we will choose a compact form
and a basis of self-adjoint elements ξa in g, orthonormal in the Killing form.
Call, for m ≥ 0, ψa(−m) and σa(−m) the elements of Λ1g[z]∗ and S1g[z]∗ dual
to the basis zm · ξa of the Lie algebra g[z]. We abusively write ξ[a,b] for [ξa, ξb],
and similarly ψ[a,b](m) for ad∗

ξa
ψb(m), etc.

I. The strong Macdonald conjecture

1. Statements

(1.1) Background. The strong Macdonald conjectures describe the coho-
mologies of the truncated Lie algebras g[z]/zn and of the graded Lie algebra
g[z, s]. The first conjecture is due to Hanlon [H1], who also proved it for gln

[H2]. The conjecture may have been independently known to Feigin [F1], who
in [F2] related it to the cohomology of g[z, s]. Feigin also outlined a computa-
tion of the latter; but we are unsure whether it can be carried out as indicated.4

While we could not fill the gap, we do confirm the conjectures by a different
route: we compute the cohomology of g[z, s] by finding the harmonic co-cycles
in the Koszul complex, in a suitable metric. Feigin’s argument then recovers
the cohomology of the truncated Lie algebra.

The success of our Laplacian approach relies on the specific metric used
on the Koszul complex and originates in the Kähler geometry of the loop

2Recall that the space of indecomposables of a nonnegatively graded algebra A• is
A>0/(A>0)2. If A• is a free algebra over A0, a graded A0-lifting of the indecomposables
in A• gives a space of algebra generators.

3Natural examples for GLn include the Chern classes and the traces TrF k of the universal
curvature form F .

4One particular step, the lemma on p. 93 of [F2], seems incorrect: the analogous statement
fails for absolute cohomology when Q = ∂/∂ξ, and nothing in the suggested argument seems
to account for that.
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Grassmannian. The latter is responsible for an identity between two different
Laplacians, far from obvious in Lie algebra form, which implies here that the
harmonic co-cycles form a sub-algebra and allows their computation. We do
not know of a computation in the more obvious Killing metric: its harmonic
co-cycles are not closed under multiplication.

Truncated algebras. The following affirms Hanlon’s original conjecture
for reductive g. Note that the cohomology of g[z]/zn decomposes by z-weight,
in addition to the ordinary grading.

Theorem A. H•(g[z]/zn) is a free exterior algebra on n · � generators,
with n generators in cohomology degree 2m+1 and z-weights equal to the nega-
tives of 0, mn+1, mn+2, . . . , mn+n−1, for each exponent m = m1, . . . , m�.

1.2 Remark. (i) Ignoring z-weights leads to an abstract ring isomorphism
H•(g[z]/zn) ∼= H•(g)⊗n.

(ii) The degree-wise lower bound dimH•(g[z]/zn) ≥ dimH•(g)⊗n holds
for any Lie algebra g. Namely, g[z]/zn is a degeneration of g[z]/(zn − ε), as
ε → 0. When ε �= 0, the quotient is isomorphic to g⊕n, whose cohomology is
H•(g)⊗n, and the ranks are upper semi-continuous. However, this argument
says nothing about the ring structure.

(iii) There is a natural factorisation H•(g[z]/zn) = H•(g)⊗H•(g[z]/zn, g),
and the first factor has z-weight 0. Indeed, reductivity of g leads to a spectral
sequence [Ko] with

Ep,q
2 = Hq(g) ⊗ Hp(g[z]/zn, g) ⇒ Hp+q(g[z]/zn),

whose collapse there is secured by the evaluation map g[z]/zn → g, which pro-
vides a lifting of the left edge Hq(g) in the abutment and denies the possibility
of higher differentials.

(1.3) Relation to cyclic homology. A conceptual formulation of Theorem A
was suggested independently by Feigin and Loday. Given a skew-commutative
algebra A and any Lie algebra g, an invariant polynomial Φ of degree (m + 1)
on g determines a linear map from the dual of HC

(m)
n (A), the mth Adams

component of the nth cyclic homology group of A, to Hn+1(g ⊗ A) (see our
Theorem B for the case of interest here, and [T2, (2.2)], or the comprehensive
discussion in [L] in general). When g is reductive, Loday suggested that these
maps might be injective, and that H•(g⊗A) might be freely generated by their
images, as Φ ranges over a set of generators of the ring of invariant polynomials.
The Adams degree m will then range over the exponents m1, . . . , m�. Thus, for
A = C, HC

(m)
n = 0 for n �= 2m, while HC

(m)
2m = C; we recover the well-known

description of H•(g). For g = gl∞ and any associative, unital, graded A, this is
the theorem of Loday-Quillen [LQ] and Tsygan [Ts]. It emerges from its proof
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that Theorem A affirms Loday’s conjecture for C[z]/zn, while (1.5) below does
the same for the graded algebra C[z, s]. (The conjecture fails in general [T2].)

(1.4) The super-algebra. The graded space g[z, s] of g-valued skew polyno-
mials in z and s, with deg z = 0 and deg s = 1, is an infinite-dimensional graded
Lie algebra, isomorphic to the semi-direct product g[z] � sg[z] (for the adjoint
action), with zero bracket in the second factor. We shall give three increasingly
concrete descriptions in Theorems 1.5, 1.10, B for its (co)homology. We start
with homology, which has a natural co-algebra structure. As in Remark 1.2.iii,
we factor H•(g[z, s]) as H•(g) ⊗ H•(g[z, s], g); the first factor behaves rather
differently from the rest and is best set aside.

1.5 Theorem. H•(g[z, s], g) is isomorphic to the free, graded co-com-
mutative co-algebra whose space of primitives is the direct sum of copies of
C[z] · s⊗(m+1), in total degree 2m + 2, and of C[z]dz · s⊗m, in total degree
2m + 1, as m ranges over the exponents m1, . . . , m�. The isomorphism re-
spects (z, s)-weights.

1.6 Remark. (i) The total degree • includes that of s. As multi-linear
tensors in g[z, s], both types of cycles have degree m + 1.
(ii) A free co-commutative co-algebra is isomorphic, as a vector space, to the
graded symmetric algebra on its primitives; but there is no a priori algebra
structure on homology.

The description (1.5) is not quite canonical. If P(k) is the space of kth
degree primitives in the quotient co-algebra Sg/[g,Sg], canonical descriptions
of our primitives are⊕

m
P(m+1) ⊗ C[z] · s(ds)m,⊕

m
P(m+1) ⊗

C[z] · (ds)m + C[z]dz · s(ds)m−1

d (C[z] · s(ds)m−1)
.

(1.7)

The right factors are the cyclic homology components HC
(m)
2m+1 and HC

(m)
2m of

the nonunital algebra C[z, s] � C. The last factor, HC
(m)
2m , is identifiable with

C[z]dz · s(ds)m−1, for m �= 0, and with C[z]/C if m = 0. This description is
compatible with the action of super-vector fields in z and s (see Remark 2.5
below), whereas (1.5) only captures the action of vector fields in z.

(1.8) Restatement without super-algebras. There is a natural isomorphism
between H•(L; Λ•V ) and the homology of the semi-direct product Lie algebra
L � V , with zero bracket on V [Ko]. Its graded version, applied to L = g[z]
and the odd vector space V = sg[z], is the equality

Hn(g[z, s], g) =
⊕

p+q=n

Hq−p (g[z], g; Sp(sg[z])) ;(1.9)
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note that elements of sg[z] carry homology degree 2 (Remark 1.6.i). We can
restate Theorem 1.5 as follows:

1.10 Theorem. H• (g[z], g; S(sg[z])) is isomorphic to the free graded co-
commutative co-algebra with primitive space C[z] · s⊗(m+1), in degree 0, and
primitive space C[z]dz · s⊗m in degree 1, as m ranges over the exponents
m1, . . . , m�. The isomorphism preserves z-and s-weights.

(1.11) Cohomology. While H•(g[z, s], g) is obtained from (1.9) by duality,
infinite-dimensionality makes it a bit awkward, and we opt for a restricted
duality, defined using the direct sum of the (s, z)-weight spaces in the dual
of the Koszul complex (0.1). These weight spaces are finite-dimensional and
are preserved by the Koszul differential. The resulting restricted Lie algebra
cohomology H•

res(g[z, s], g) is the direct sum of weight spaces in the full dual
of (1.9).

Theorem B. H•
res (g[z], g; Sg[z]∗) is isomorphic to the free graded com-

mutative algebra generated by the restricted duals of
⊕

m P(m+1) ⊗ C[z] and⊕
m P(m+1) ⊗ C[z]dz, in cohomology degrees 0 and 1 and symmetric degrees

m + 1 and m, respectively.
Specifically, an invariant linear map Φ : Sm+1g → C determines linear

maps

SΦ : Sm+1g[z] → C[z],

σ0 · σ1 · . . . · σm → Φ (σ0(z), σ1(z), . . . , σm(z))

EΦ : Λ1 (g[z]/g) ⊗ Smg[z] → C[z]dz,

ψ ⊗ σ1 · . . . · σm → Φ (dψ(z), σ1(z), . . . , σm(z)) .

The coefficients SΦ(−n), EΦ(−n) of zn, resp. zn−1dz are restricted 0- and 1-
cocycles and H•

res is freely generated by these, as Φ ranges over a generating
set of invariant polynomials on g.

To illustrate, here are the cocycles associated to the Killing form on g

(notation as in §0.5):

S(−n) =
∑

1≤a≤dim G

0≤p≤n

σa(−p)σa(p − n), E(−n) =
∑

1≤a≤dim G

0<p≤n

pψa(−p)σa(p − n).

We close this section with two generalisations of Theorem B. The first will
be proved in Section 4; the second relies on more difficult techniques, and will
only be proved in Section 10.

(1.12) The Iwahori sub-algebra. Let us replace g[z] with an Iwahori sub-
algebra B ⊂ g[z], the inverse image of a Borel sub-algebra b ⊂ g under the
evaluation at z = 0. Note that the cocycles SΦ(0) generate a copy of (S•g∗)g



THE STRONG MACDONALD CONJECTURE 183

within H2•
res (g[z, s], g). With h := b/[b, b], isomorphic to a Cartan sub-algebra,

a similar inclusion S•h∗ → H2•
res (B[s], h) results from identifying h∗ with the

B-invariants in B∗. Recall that (Sg∗)g embeds in Sh∗ (as the Weyl-invariant
sub-algebra). It turns out that, when passing from g[z] to B, the factor (Sg∗)g

is replaced with Sh∗.

1.13 Theorem. H•
res (B[s], h) ∼= H•

res (g[z, s], g) ⊗(S(sg)∗)G S(sh)∗.

(1.14) Affine curves. Our second generalisation replaces g[z] by the
g-valued algebraic functions on a smooth affine curve Σ. The space g[Σ] has no
restricted dual as in Section 1.11, so we use full duals in the Koszul complex;
consequently, the cohomology will be a power series algebra. Moreover, there
is now a contribution from the cohomology with constant coefficients, whereas
before we had H•(g[z], g; C) = C, by [GL]. The last cohomology is described
in (10.6).

1.15 Theorem. For a smooth affine curve Σ, the cohomology

H• (g[Σ]; (Sg[Σ])∗)

is densely generated over H•(g[Σ]; C) by the full duals of P(m+1) ⊗ Ω0[Σ] and
P(m+1)⊗Ω1[Σ], in cohomology degrees 0 and 1 and symmetric degrees m+1 and
m, respectively. Generating co-cycles are constructed as in Theorem B, and the
algebra is completed in the inverse limit topology defined by the order-of-pole
filtration on Ωi[Σ].

2. Proof for truncated algebras

Assuming Theorem B, we now explain how Feigin’s construction in [F2]
proves Theorem A, the conjecture for truncated Lie algebras. Its shadow is the
specialisation t = qn in the combinatorial literature (s = zn in our notation).
We can resolve g[z]/zn by the differential graded Lie algebra (g[z, s], ∂) with
differential ∂s = zn, {

sg[z] ∂:s �→zn

−−−−→ g[z]
} ∼−→ g[z]/zn.(2.1)

This identifies H∗ (g[z]/zn) with the hyper-cohomology of (g[z, s], ∂), and
H• (g[z]/zn, g) with the relative one of the pair ((g[z, s], ∂), g). Recall that
hyper-cohomology is computed by a double complex, where Koszul’s differen-
tial is supplemented by the one induced by ∂. This leads to a convergent
spectral sequence, with

Ep,q
1 = Hq−p

res (g[z], g; Sp(g[z])∗res) ⇒ Hp+q (g[z]/zn, g) .(2.2)

The Ep,q
1 term arises by ignoring ∂, and is the portion of Hp+q

res (g[z, s], g) with
s-weight (−p), cf. (1.9). If we assign weight 1 to z and weight n to s, then
(g[z, s], ∂) carries this additional z-grading, preserved by ∂ and hence by the
spectral sequence.
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2.3 Lemma. Let n > 0. Ep,q
2 is the free skew-commutative algebra gener-

ated by the dual of the sum of vector spaces s⊗mC[z]dz/d (znC[z]), placed in
bi-degrees (p, q) = (m, m + 1), as m ranges over m1, . . . , m�. The z-weight of
s is n.

Proof of Theorem A. The E2 term of Lemma 2.3 already meets the dimen-
sional lower bound for our cohomology (Remark 1.2.iii). Therefore, E2 = E∞
is the associated graded ring for a filtration on H• (g[z]/zn, g), compatible with
the z-grading. However, freedom of E∞ as an algebra forces H• to be isomor-
phic to the same, and we get the desired description of H• (g[z]/zn) from the
factorisation (1.2.i).

Proof of Lemma 2.3. The description in Theorem B of the generating
cocycles EΦ and SΦ of E1 allows us to compute δ1. The SΦ have nowhere to
go, but for EΦ : Λ1 ⊗ Sm → C[z]dz, we get

(δ1EΦ) (σ0 · . . . · σm) = EΦ (∂(σ0 · . . . · σm))

=
∑

k
EΦ (znσk ⊗ σ0 · . . . · σ̂k · . . . · σm)

=
∑

k
Φ (σ0 · . . . · d(znσk) · . . . · σm)(2.4)

= (m + 1)n · zn−1dz · Φ(σ0 · . . . · σm)

+ zn · dΦ (σ0 · . . . · σm)

=
(
(m + 1)n · zn−1dz · SΦ + zn · dSΦ

)
(σ0 · . . . · σm) ,

and so δ1 is the transpose of the linear operator (m + 1)n · zn−1dz ∧ +zn · d,
from C[z] to C[z]dz. This has no kernel for n > 0, and its co-kernel is
C[z]dz/d (znC[z]).

2.5 Remark. (i) On g[z, s], ∂ is given by the super-vector field zn∂/∂s.
This acts on the presentation (1.7) of the homology primitives,

zn∂/∂s : C[z] · s(ds)m → C[z] · (ds)m + C[z]dz · s(ds)m−1

d (C[z] · s(ds)m−1)
.(2.6)

Identifying the target space with C[z]dz ·s(ds)m−1 by projection, we can check
that zk · s(ds)m maps to (mn + n + k) · zn+k−1dz · s(ds)m−1. This map agrees
with (the dual of) the differential δ1 in the preceding lemma, confirming our
claim that the description (1.7) was natural.

(ii) If n = 0, the map in (2.6) is surjective, with 1-dimensional kernel; so
Ep,q

∞ now lives on the diagonal, and equals (Spg∗)g. This is, in fact, a correct
interpretation of H∗(0, g; C).
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3. The Laplacian on the Koszul complex

In preparation for the proof of Theorem B, we now study the Koszul
complex for the pair (g[z, s], g) and establish the key formula (3.11) for its
Laplacian.

(3.1) For explicit work with g[z]-co-chains, we introduce the following
derivations on Λ⊗S := Λ(g[z]/g)∗res⊗Sg[z]∗res, describing the brutally truncated
adjoint action of g[z, z−1]:

ada(m) : ψb(n) →
{

ψ[a,b](m + n), if m + n < 0,

0, if m + n ≥ 0;
(3.2)

Ra(m) : σb(n) →
{

σ[a,b](m + n) if m + n ≤ 0,

0, if m + n > 0.
(3.3)

Notation is as in Section 0.5, m ∈ Z and a, b range over A := {1, . . . ,dim g}.
Let

∂̄ =
∑

a∈A;m>0

{ψa(−m) ⊗ Ra(m) + ψa(−m) · ada(m) ⊗ 1/2} ,(3.4)

where ψa(−m) doubles notationally for the appropriate multiplication opera-
tor. The notation ∂̄ stems from its geometric origin as a Dolbeault operator
on the loop Grassmannian of G.

3.5 Definition. The restricted Koszul complex
(
C•, ∂̄

)
for the pair (g[z], g)

with coefficients in Sg[z]∗res is the g-invariant part of Λ• ⊗ S, with differential
(3.4).

(3.6) The metric and the Laplacian. Define a hermitian metric on Λ ⊗ S
by setting

〈σa(m)|σb(n)〉 = 1, 〈ψa(m)|ψb(n)〉 = −1/n, if m = n and a = b,

and both products to zero otherwise; we then take the multi-linear extension.
For example, ‖σa(m)n‖2 = n!. The hermitian adjoints to (3.2) are the deriva-
tions defined by

ada(m)∗ψb(n) =
n − m

n
ψ[a,b](n − m), or zero, if n ≥ m.(3.2∗)

The R’s of (3.3) satisfy the simpler relation Ra(m)∗ = Ra(−m). The adjoint
of (3.4) is

∂̄∗ =
∑

a∈A;m>0

{ψa(−m)∗ ⊗ Ra(−m) + ada(m)∗ ◦ ψa(−m)∗ ⊗ 1/2} .(3.4∗)

A (restricted) Koszul cocycle in the kernel of the Laplacian � :=
(
∂̄ + ∂̄∗)2 =

∂̄∂̄∗ + ∂̄∗∂̄ is called harmonic. Since ∂̄, ∂̄∗ and � preserve the orthogonal de-
composition into the finite-dimensional (z, s)-weight spaces, elementary linear
algebra gives the following “Hodge decomposition”:
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3.7 Proposition. The map from harmonic cocycles Hk ⊂ Ck to their
cohomology classes, via the decompositions ker ∂̄ = Im ∂̄ ⊕ Hk, Ck = Im ∂̄ ⊕
Hk ⊕ Im ∂̄∗, is a linear isomorphism.

To investigate �, we introduce the following adjoint pairs of operators:

da(m) : σb(n) → ψ[a,b](m + n), or zero, if m + n ≥ 0,(3.8)

da(m)ψb(n) = 0;

da(m)∗ : ψb(n) → −σ[a,b](n − m)/n, or zero, if n > m,(3.8∗)

da(m)∗σb(n) = 0,

extended to odd-degree derivations of Λ ⊗ S. Finally, let

D : =
∑

m>0;a∈A

da(−m)da(−m)∗,(3.9)

� : =
∑

a∈A;m>0

1
m

[Ra(−m) + ada(−m)] [Ra(m) + ada(−m)∗] .(3.10)

3.11 Theorem. On C•, � = � + D. In particular, the harmonic forms
are the joint kernel in Λ⊗S of the derivations da(−m)∗, as a ∈ A, m > 0, and
Ra(m) + ada(−m)∗, as a ∈ A, m ≥ 0.

It follows that the harmonic co-cycles form a sub-algebra, since they are
cut out by derivations. We shall identify them in Section 4; the rest of this
section is devoted to proving (3.11).

First proof of (3.11). Introduce yet another operator

K :=
∑

a,b∈A; m>0

(
R[a,b](0) + ad[a,b](0)

)
· ψa(−m) ∧ ψb(−m)∗.(3.12)

Note that the ψ ∧ ψ∗ factor could equally well be written in first position,
because∑

a,b

[
ad[a,b](0), ψa(−m) ∧ ψb(−m)∗

]
=

∑
a,b

(
ψ[[a,b],a](−m) ∧ ψb(−m)∗ + ψa(−m) ∧ ψ[[a,b],b](−m)∗

)
=

∑
a,b

(
ψ[a,b](−m) ∧ ψ[a,b](−m)∗ − ψ[a,b](−m) ∧ ψ[a,b](−m)∗

)
= 0.

As the first factor represents the total co-adjoint action of g on Λ ⊗ S, K = 0
on the sub-complex C• of g-invariants, and Theorem 3.11 is a special case of
the following lemma.

3.13 Lemma. � = � + D + K on Λ ⊗ S.
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Proof. All the terms are second-order differential operators on Λ ⊗ S. It
suffices, then, to verify the identity on quadratic germs. The brutal calculations
are performed in the appendix.

Second proof of (3.11). Let V be a negatively graded g[z]-module, such
that zmg maps V (n) to V (n + m). Assume that V carries a hermitian inner
product, compatible with the hermitian involution on the zero-modes g ⊆ g[z],
for which the graded pieces are mutually orthogonal. For us, V will be Sg[z]∗res.
Write Ra(m) for the action of zmξa on V and define, for m ≥ 0, Ra(−m) :=
Ra(m)∗. Define � and � as before; our conditions on V ensure the finiteness
of the sums. Define an endomorphism of V ⊗ Λ(g[z]/g)∗res by the formula

TΛ
V :=

∑
a,b∈A

m,n>0

{
[Ra(m), Rb(−n)] − R[a,b](m − n)

}
⊗ ψa(−m) ∧ ψb(−n)∗.(3.14)

Our theorem now splits up into the two propositions that follow; the first is
known as Nakano’s Identity, the second describes TΛ

V when V = Sg[z]∗res.

3.15 Proposition ([T1, Prop. 2.4.7]). On Ck, � = � + TΛ
S + k.

3.16 Remark. (i) Our Ra(m) is the θa(m) of [T1, §2.4], whereas the oper-
ators Ra(m) there are zero here, as is the level h. The constant 2c from [T1] is
replaced here by 1, because of our use of the Killing form, instead of the basic
inner product. A sign discrepancy in the definition of TΛ

V arises, because our
ξa here are self-adjoint, and not skew-adjoint as in [T1].

(ii) [T1] assumed finite dimensionality of V , but our grading condition is
an adequate substitute.

3.17 Proposition. On Λk ⊗ S, D = TΛ
S + k.

Proof. Both sides are second-order differential operators on Λ⊗S and kill
1⊗S, so it suffices to check the equality on the following three terms of degree
≤ 2. Note that TΛ

S = 0 on Λ⊗1, and that
∑

a ψ[a,[a,b]](−n) = ψb(−n), because∑
a ad(ξa)2 = 1 on g.

Dψb(−n) =
∑
a∈A

0<m≤n

da(−m)σ[a,b](m − n)/n

=
∑
a∈A

0<m≤n

ψ[a,[a,b]](−n)/n = ψb(−n);

D
(
ψb(−n) ∧ ψc(−p)

)
= Dψb(−n) ∧ ψc(−p) + ψb(−n) ∧ Dψc(−p)

= 2 · ψb(−n) ∧ ψc(−p);
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D
(
σc(−p) · ψd(−q)

)
= σc(−p) · Dψd(−q)

+
1
q

∑
a∈A

0<m≤q

σ[a,d](m − q) · ψ[a,c](−m − p)

= σc(−p) · ψd(−q) + TΛ
S

(
σc(−p) · ψd(−q)

)
,

with the last equality following from

TΛ
S

(
σc(−p) · ψd(−q)

)
=

1
q

∑
a∈A

0<m

{
[Ra(m), Rd(−q)] − R[a,d](m − q)

}
σc(−p) · ψa(−m)

=
1
q

∑
a∈A

0<m≤p+q

σ[a,[d,c]](m − q − p) · ψa(−m)

−1
q

∑
a∈A

0<m≤p

σ[d,[a,c]](m − q − p) · ψa(−m)

−1
q

∑
a∈A

0<m≤p+q

σ[[a,d],c](m − q − p) · ψa(−m)

=
1
q

∑
b∈A

0<m≤p+q

σ[d,[a,c]](m − q − p) · ψa(−m)

+
1
q

∑
a∈A

0<m≤p

σ[d,[a,c]](m − q − p) · ψa(−m)

=
1
q

∑
a∈A

p<m≤q

σ[d,a](m − q − p) · ψ[c,a](−m).

4. The harmonic forms and proof of Theorem B

We now use Theorem 3.11 to identify the harmonic forms in C•; version
(B) of the strong Macdonald conjecture follows by assembling Propositions 4.5,
4.8 and 4.10.

(4.1) Relabelling ψ. It will help to identify Λ (g[z]/g)∗res with Λg[z]∗res by
the isomorphism d/dz : g[z]/g ∼= g[z]. This amounts to relabelling the exterior
generators, with ψa(−m) now denoting what used to be (m + 1) ·ψa(−m− 1)
(m ≥ 0). Relations (3.2∗) and (3.8∗) now become

ada(−m)∗ψb(−n) = ψ[a,b](m − n),
da(−m − 1)∗ψb(−n) = σ[a,b](m − n),

}
or zero, if m > n.(4.2)
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According to (3.11), the harmonic forms in the relative Koszul complex (3.4)
are the forms in Λg[z]∗res⊗Sg[z]∗res killed by da(−m−1)∗ and Ra(m)+ada(−m)∗,
as m ≥ 0 and a ∈ A.

(4.3) The harmonic forms. The graded vector space g[[z, s]] := g[[z]] ⊕
sg[[z]] carries the structure of a super-scheme, if we declare functions to be the
skew polynomials in finitely many of the components zmg, szmg. It carries
the adjoint action of the super-group scheme G[[z, s]], which is a semi-direct
product G[[z, s]] ∼= G[[z]] � sg[[z]].

4.4 Lemma. Identifying Λg[z]∗res⊗Sg[z]∗res with the (skew) polynomials on
g[[z, s]], the operators da(−m−1)∗ and Ra(m)+ada(−m)∗, as m ≥ 0, generate
the co-adjoint action of g[z, s].

Proof. This is clear from (4.2): da(−m − 1)∗ is the co-adjoint action of
s · zmξa.

4.5 Proposition. The harmonic forms in C• correspond to those skew
polynomials on g[[z, s]] which are invariant under the adjoint action of G[[z, s]].

Proof. Lie algebra and group invariance of functions are equivalent, be-
cause the action is locally finite and factors, locally, through the finite-dimen-
sional quotients g[z, s]/zN .

4.6 Remark. The super-language can be avoided by identifying g[[z, s]]
with the tangent bundle to its even part g[[z]], after we have declared the tan-
gent spaces to be odd: the skew polynomials become the polynomial differential
forms on g[[z]], and the invariant skew functions under G[[z, s]] correspond to
the basic forms under the Ad-action of G[[z]].

(4.7) The invariant skew polynomials. The (GIT) quotient g//G :=
Spec(Sg∗)G is the space P of primitives in the co-algebra Sg/[g,Sg]. The
quotient map q : g → P induces a morphism Q : g[[z, s]] → P [[z, s]], which is
invariant under the adjoint action of G[[z, s]].

4.8 Proposition. The ad-invariant skew polynomials on g[[z, s]] are pre-
cisely the pull-backs by Q of the skew polynomials on P [[z, s]].

Proof. Elements Λg[z]∗res ⊗ Sg[z]∗res are algebraic sections of the vector
bundle Λg[z]∗res over g[[z]]. As such, they are uniquely determined by their
restriction to Zariski open subsets. The analogue holds for P . Now, the open
subset grs ⊂ g of regular semi-simple elements is an algebraic fibre bundle, via
q, over the open subset P r ⊂ P of regular conjugacy classes. Let grs[[z, s]] be
the pull-back of grs under the evaluation morphism s = z = 0. Because of the
local product structure, it is clear that ad-invariant polynomials over grs[[z, s]]
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are precisely the pull-backs by Q of functions on P r[[z, s]]. In particular, the
pull-back of polynomials from P [[z, s]] to g[[z, s]] is injective.

Now, let f be an invariant polynomial on g[[z, s]]. Its restriction to
grs[[z, s]] has the form g ◦ Q, for some regular function g on P r[[z, s]]. Let
gr ⊂ g be the open subset of regular elements. A theorem of Kostant’s ensures
that q : gr → P is a submersion. In particular, it has local sections everywhere,
so the morphism Q : gr[[z, s]] → P [[z, s]] has local sections also. We can use
local sections to extend our g from P r[[z, s]] to P [[z, s]], because f was every-
where defined upstairs. The extension of g is unique, and its Q-lifting must
agree with f everywhere, as it does so on an open set. So we have written g

as a pull-back.

(4.9) Relation to SΦ and EΦ. A polynomial Φ on P defines a map P [[z]] →
C[[z]] by point-wise evaluation, and the mth coefficient Φ(−m) of the image
series is a polynomial on P [[z]]. The analogue holds for differential forms, or
skew polynomials on our super-schemes (4.6).

4.10 Proposition. Let Φ1, . . . ,Φ� be a basis of linear functions on P
and let Φk(m) (m ≤ 0) be the associated Fourier mode basis of linear functions
on P [[z]]. After ψ-relabelling as in Section 4.1, the cocycles Sk(m) and Ek(m)
associated to Φk in (B) are the Q-lifts of Φk(m) and dΦk(m).

Proof. For Sk(m), this is the obvious equality Φk(m)◦Q = (Φk◦q)(m), the
(−m)th Fourier mode of Φ◦q on g[[z]]. For Ek(m), observe that when replacing
skew polynomials on X[[z, s]] by forms on X[[z]] as in Remark 4.6 (X = g, P ),
Q is the differential of its restriction g[[z]] → P [[z]], while Ek(m−1) = dSk(m),
after our relabelling.

(4.11) The super-Iwahori algebra. We now deduce Theorem 1.13 from B.
Let exp(B) be the closed Iwahori subgroup of G[[z]], whose Lie algebra is the
z-adic completion Bz of B. We write H•

exp(B)(V ), H•
G[[z]](V ) for the algebraic

group cohomologies of exp(B), resp. G[[z]] with coefficients in a representation
V . Applying van Est’s spectral sequence gives

H• (B, h; SB∗
res) = H•

exp(B) (SB∗
res) ,

H•
res (g[z], g; Sg[[z]]∗res) = H•

G[[z]] (Sg[z]∗res) .

We now relate the right-hand terms using Shapiro’s spectral sequence

Ep,q
2 = Hp

G[[z]]

(
Rq IndG[[z]]

exp(B)SB∗
res

)
⇒ Hp+q

exp(B) (SB∗
res) ,

whose collapse is a consequence of the following lemma, which, combined with
the freedom of Sh∗ as a (Sg∗)g-module, also completes the proof of Theorem
1.13. Write Rq Ind for Rq IndG[[z]]

exp(B).
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4.12 Lemma. Ind SB∗
res = Sg[z]∗res ⊗(Sg∗)g Sh∗, with the adjoint action of

G[[z]] on the first factor on the right ; whereas Rq Ind SB∗
res = 0 for q > 0.

Proof. Rq Ind SB∗
res is the qth sheaf cohomology of the algebraic vector

bundle SB∗
res over the quotient variety G[[z]]/ exp(B) ∼= G/B, and hence also

the qth cohomology of the structure sheaf O over the variety G[[z]]×exp(B) Bz,
with the adjoint action of exp(B) on Bz. Splitting Bz as b × zg[[z]] and
shearing off the second factor identifies this variety with (G ×B b) × zg[[z]].
The factor G×B b maps properly and generically finitely to g via μ : (g, β) →
gβg−1. The canonical bundle upstairs is trivial, and a theorem of Grauert and
Riemenschneider ensures the vanishing of higher cohomology of O, and thus
of the higher Rq Ind’s.

The functions on G ×B b are identified with Sh∗ ⊗(Sg∗)G Sg∗ by the Stein
factorisation of μ,

G ×B b
(π,μ)−−−→ h ×g//G g → g,

where π : b → h is the natural projection and the second arrow the second pro-
jection. (The middle space is regular in co-dimension three, therefore normal.)
Using this and evaluation at z = 0, we can factor the conjugation morphism
G[[z]]×exp(B) Bz → g[[z]] into the G[[z]]-equivariant maps below, of which the
first has proper and connected fibres,

G[[z]] ×exp(B) Bz → h ×g//G g[[z]] → g[[z]].

This exhibits the space of functions Ind SB∗
res on G[[z]] ×exp(B) Bz to be as

claimed.

II. Hodge theory

We now turn to a remarkable application of the strong Macdonald the-
orem: the determination of Dolbeault cohomologies Hq(Ωp) and the Hodge-
de Rham sequence for flag varieties of loop groups. For the loop Grassman-
nian X, these are described formally from H•(BG) and de Rham’s operator
d : C[[z]] → C[[z]]dz on the formal disk (Theorem C). In particular, we find
that the sequence collapses at E2, and not at E1, as in the case of smooth
projective varieties. This failure of Hodge decomposition is unexpected, given
the (ind-)projective nature of X; surprisingly for a homogeneous space, the
explanation lies in the lack of smoothness.

Similar results hold for other flag varieties, associated as in Section 7
below to a smooth affine curve Σ; the Dolbeault groups and first differentials
in the Hodge sequence arise from d : Ω0[Σ] → Ω1[Σ] (Theorem D). This is in
concordance with the Hodge decomposition established in [T4] for the closed
curve analogue of our flag varieties, the moduli stack of G-bundles over a
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smooth projective curve. Evidently, the failure of Hodge decomposition for
flag varieties is rooted in the same phenomenon for open curves, but we do not
feel that we have a satisfactory explanation.

The description of Dolbeault groups is unified conceptually in Section 8,
where we construct generating co-cycles. We also interpret the Macdonald
cohomology of Chapter I as the Dolbeault cohomology of the classifying stack
BG[[z]]. That is also the moduli stack of principal G-bundles on the formal
disk; its relevance arises by viewing the flag varieties as moduli spaces of
G-bundles over the completion of Σ, trivialised in a formal neighbourhood
of the divisor at infinity. The construction leads to the proofs in Section 9,
and our arguments feed back in Section 10 into some new Lie algebra results,
including the proof of Theorem 1.15 on the cohomology of g[Σ, s].

To keep the statements straightforward, G will be simple and simply con-
nected.

5. Dolbeault cohomology of the loop Grassmannian

(5.1) The loop Grassmannian. By the loop group LG of G we mean the
group G((z)) of formal Laurent loops; it is an ind-group-scheme, filtered by
the order of the pole. (The order, but not the ind-structure, depends on a
choice of closed embedding G into affine space.) The loop Grassmannian of G

is the quotient (ind-)variety X := LG/G[[z]] of LG. This is ind-projective—an
increasing union of closed projective varieties—and in fact Kodaira-embeds in
a direct limit projective space [Ku]. The largest ind-projective quotient of LG

is the full flag variety LG/ exp(B), which is a bundle over X with fibre the
full G-flag manifold G/B; the other ind-projective quotients correspond to the
subgroups of LG containing exp(B).

As a homogeneous space, X is formally smooth, so there is an obvi-
ous meaning for the algebraic differentials Ωp. The Dolbeault cohomologies5

Hq(X; Ωp) carry a translation action of the loop group, and a grading from
the C×-action scaling z (the loop rotation).

5.2 Proposition. H•(X; Ω•) is the direct product of its z-weight spaces,
and the action of LG is trivial.

Proof. The sheaves Ωp are sections of the pro-vector bundles associ-
ated to the co-adjoint action of G[[z]] on the full duals of the exterior powers
of g((z))/g[[z]]. These bundles carry a decreasing filtration ZnΩp (n > 0) by
z-weight, and are complete thereunder. The associated sheaves GrnΩp are

5We retain the analytic term Dolbeault cohomology to indicate the presence of differential
forms, even when using algebraic sheaf cohomology; the distinction is immaterial for X, by
GAGA.
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sections of finite-dimensional bundles, stemming from the co-adjoint action of
G[[z]] on GrnΛp {g((z))/g[[z]]}∗. This action factors through G by the evalua-
tion z = 0. The cohomologies of the GrnΩp are then finite-dimensional, trivial
LG-representations [Ku]; so, then, are the cohomologies H∗(X; Ωp/ZnΩp) of
the z-truncations, which are finite extensions of such representations.

The Ωp/ZnΩp give a surjective system of sections over any ind-affine open
subset of X. The Mittag-Leffler condition for their cohomologies is clear by
finite-dimensionality; we conclude the equality

H∗(X; Ωp) = lim
n

H∗(X; Ωp/ZnΩp)

and the proposition.

Our main theorem describes the Dolbeault groups of X and the action
thereon of de Rham’s operator ∂ : Ωp → Ωp+1. The z-adic completeness,
ensured by the previous proposition, stems from the close relation of X with
the formal disk (cf. the discussion of thick flag varieties in §7).

Theorem C. (i) H•(X; Ω•) is the z-adically completed skew power se-
ries ring generated by copies of C[[z]] and C[[z]]dz, lying in Hm(Ωm) and
Hm(Ωm+1), respectively.

(ii) De Rham’s differential ∂ : Hq(X; Ωp) → Hq(X; Ωp+1) is the derivation
induced by d : C[[z]] → C[[z]]dz on generators. Its cohomology is the free
algebra on � generators in bi-degrees (m, m).

In both cases, m ranges over the exponents m1, . . . , m� of g.

The generators are constructed in Theorem 8.5, and the theorem will be
proved in Section 9.

(5.3) Failure of Hodge decomposition. In the analytic topology, de Rham’s
complex (Ω•, ∂) resolves the constant sheaf C. GAGA implies that the hyper-
cohomology H•(X; Ω•, ∂) agrees with the complex cohomology H•(X; C). Re-
call [GR] that X is homotopy equivalent to the group ΩG of based continuous
loops, or again, to the double loop space Ω2BG of the classifying space. Its
complex cohomology is freely generated by the S2-transgressions of the gener-
ators of H2•(BG; C) ∼= (S•g∗)G. Theorem C implies that the differential ∂1 on
Hq(Ωp) resolves the complex cohomology of X. In other words, the Hodge-de
Rham spectral sequence induced by ∂ on Ω• collapses at E2.

As X is ind-projective, formally smooth and reduced [LS], we might
have expected a Hodge decomposition of its complex cohomology into the
Hq(X; Ωp). Failure of this has the following consequence, as announced in
[T2]. The proof is lifted from [ST, §7]. We emphasise that the result as-
serts more than the absence of a global expression for X as a union of smooth
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projective sub-varieties (indeed, there is a cleaner argument for this last fact,
[Gr]).

5.4 Theorem. X is not a smooth complex manifold : that is, it cannot
be expressed, locally in the analytic topology, as an increasing union of smooth
complex sub-manifolds.

Because X is homogeneous, it is singular everywhere. The same is true
for the full flag variety LG/ exp(B), and for the loop group LG itself.

Proof of (5.4). Expressing X as a union of projective sub-varieties Yn

(for instance, the closed Bruhat varieties) gives an equivalence of X with the
(0-stack) represented, over the category of complex schemes of finite type,
by the groupoid

∐
Yn ⇒

∐
Yn. The two structural maps are the identity

and the family of inclusions Yn ↪→ Yn+1. In more traditional terms, this
gives a simplicial resolution Y•

ε−→X of X by a simplicial variety whose space
of n-simplices is a union of projective varieties, for each n. Resolution of
singularities and the method of hyper-coverings in [D] allows us to replace
Y• by a smooth simplicial resolution X•

ε−→ X (in the topology generated by
proper surjective maps). The total direct image Rε∗ of de Rham’s complex
(Ω•, ∂;F ) with its Hodge filtration

F pΩ• :=
[
Ωp ∂−→ Ωp+1 ∂−→ . . .

]
is the DuBois complex [DuB] on X. The associated graded complex Ωp :=
GrpRε∗(Ω•, ∂;F ) is the ‘correct’ singular-variety analogue of the pth Hodge-
graded sheaf of the constant sheaf C. Because X• is simplicially projective,
the cohomology of Ωp satisfies the Hodge decomposition

Hn(X; C) ∼=
⊕

p+q=n

Hq(X; Ωp).(5.5)

The key properties of the DuBois complex are locality in the analytic topology
and independence of simplicial resolution. The restriction in [DuB] to finite-
dimensional varieties need not trouble us: the arguments there show that Ωp

is well-defined, up to canonical isomorphism, in the bounded-below derived
category of coherent sheaves over the site of analytic spaces, in the topology
generated by both projective morphisms and open covers. Here, we are study-
ing the hyper-cohomology of these Ωp in the restricted site of analytic spaces
over X. These properties would lead to a quasi-isomorphism Ωp ∼ Ωp, If X

was a complex manifold in the sense of Theorem 5.4. But then, (5.5) conflicts
with Theorem C.
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6. Application: A 1ψ1 summation

The Hq(X; Ωp) are graded by z-weight, with finite-dimensional weight
spaces. The z-weighted holomorphic Euler characteristics for all p can be
collected in the E-series

E(z, t) :=
∑

p,q
(−1)q(−t)p dimz Hq (X, Ωp) ∈ Z[[z, t]].(6.1)

(6.2) The Kac formula. The Mittag-Leffler conditions in the proof of
Proposition 5.2 imply the convergence of the spectral sequence for the
Z-filtration,

Er,s
1 = Hr+s (X; GrrΩp) ⇒ Hr+s (X; Ωp) ,

whence it follows that our Euler characteristic is already computed by E1.
Because Gr Ωp is a product of bundles associated to irreducible representations
of G[[z]], the E(z, t) can be described explicitly using the Kac character formula
[K]. Choose a maximal torus T ⊂ G and recall that the affine Weyl group Waff

is the semi-direct product of the finite Weyl group by the co-root lattice. This
Waff acts on Fourier polynomials on T and in z, whereby a co-root γ sends
the Fourier mode eλ of T to z〈λ|γ〉eλ. (The Weyl group acts in the obvious
way, and z is unaffected.) The desired formula is the infinite sum of infinite
products, where α ranges over the roots of g,

∑
w∈Waff

∏
n>0
α

w

(
1 − tzneα

1 − zneα

)
·
∏
α>0

w(1 − eα)−1 ·
∏
n>0

[
1 − tzn

1 − zn

]�

.(6.3)

The summands are the w-transforms of the quotient of the (T, z, t)-character
of the fibre

∑
p(−t)pGr Ωp at the base-point of X by the Kac denominator.

The sum expands into a formal power series in z and t, with characters of T

as coefficients.

(6.4) Relation to Ramanujan’s 1ψ1 sum. Factoring affine Weyl elements
as γ · w (co-root times finite Weyl element) and leaving out, for now, we see
that the third factor converts (6.3) into

∑
γ

∏
n>0
α

1 − tzn+〈α|γ〉eα

1 − zn+〈α|γ〉eα
·

∑
w∈W

∏
α>0

(1 − z〈wα|γ〉ewα)−1,

where we have substituted α → wα in the first product, in order to make it
w-independent. The second factor, the sum over W , is identically 1, by the
Weyl denominator formula. Equating now (6.3) with our answer in Theorem C
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gives the following identity:∑
γ

∏
n>0
α

1 − tzn+〈α|γ〉eα

1 − zn+〈α|γ〉eα
=

∏
1≤k≤�
n≥0

(1 − zn+1)(1 − tmk+1zn+1)
(1 − tzn+1)(1 − tmkzn)

.

The third factor in 6.3 has been moved to the right side. It is part of the
statement that the left-hand side is constant, as a function on T .

For G = SL2, we obtain, after setting eα = u, the identity∑
m

∏
n>0

(1 − tzn+2mu2)(1 − tzn−2mu−2)
(1 − zn+2mu2)(1 − zn−2mu−2)

=
1

1 − t

∏
n>0

(1 − zn)(1 − t2zn)
(1 − tzn)2

which also follows from a 3-variable specialisation of Ramanujan’s 1ψ1 sum
[T2, §5]. (Note that our sum contains the even terms only; the “other half”
of the specialised 1ψ1 sum is carried by the twisted SL2 loop Grassmannian,
the odd component of LG/G[[z]] for G = PSL2.) Thus, Theorem C is a
strong form of (specialised) 1ψ1 summation, generalised to (untwisted) affine
root systems. We later learned that (the “weak” forms of) such generalised
summation formulae, for all affine root systems, were independently discovered
and proved by Macdonald [M].

7. Thick flag varieties

Related and, in a sense, opposite to X is the quotient variety X :=
LG/G[z−1]. This is a scheme covered by translates of the open cell U ∼=
G[[z]]/G, the G[[z]]-orbit of 1. Generalisations of X are associated to smooth
affine curves Σ, with divisor at infinity D in their smooth completion Σ. These
generalised flag varieties are the quotients XΣ := LDG/G[Σ] of a product LDG

of loop groups, defined by local coordinates centred at the points of D, by the
ind-subgroup G[Σ] of G-valued regular maps. Variations decorated by bundles
of G-flag varieties, attached to points of Σ, also exist, and our results can be
easily extended to those, but we shall not spell that out. When a distinction
is needed, we call the XΣ and their variations thick flag varieties of LG.

(7.1) Relation to moduli spaces. One formulation of the uniformisation
theorem of [LS] equates XΣ with the moduli space pairs (P, σ) of algebraic
principal G-bundles P over Σ, equipped with a section σ over the formal neigh-
bourhood D̂ of the divisor at infinity. In other words, XΣ is the moduli space
of relative G-bundles over the pair (Σ, D̂), and we also denote it by M(Σ, D̂).
Here, M stands for the stack of morphisms to BG, the classifying stack of G

[T3, App. B]; thus, M(Σ) is the moduli stack of G-bundles over the closed
curve. The corresponding description of X is the moduli space of pairs, con-
sisting of a G-bundle over P1 and a section over P1 \ {0}; this is the moduli
space M(P1, P1 \ {0}) of bundles over the respective pair. In this sense, X is
the X associated to the formal disk around 0. Slightly more generally, M(Σ,Σ)
is the product of loop Grassmannians associated to the points of D.
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The thick flag varieties are smooth in an obvious geometric sense: the
open cell in X is isomorphic to the vector space g[[z]]/g, while X is a principal
G[[z]]-bundle over M(Σ). In their case, failure of Hodge decomposition in
Theorem D below should be attributed to their “noncompactness”.

(7.2) Technical note on spaces. We shall use the terms space or, abusively,
variety, for the homogeneous spaces of LG. They live in a suitable world
of contravariant functors on complex schemes: thus, the functor XΣ sends
a scheme S to the set Hom (S,XΣ) of isomorphism classes of bundles over
(S×Σ, S×D̂), and the ambient world is the category of sheaves over the topos
of complex schemes, in the smooth (or étale) topology. To include stacks, we
must enrich the structure to include the simplicial sheaves and their homotopy
category; [T3] gives a brief introduction to this jargon. For the stack M and
the thin flag variety X, we can confine ourselves to the sub-category of schemes
of finite type, because the two are covered by sub-stacks, respectively varieties
of finite type. This restriction to finite type is necessary when discussing the
Hodge structure.

(7.3) Cohomology and Hodge structure. Recall now the analogue of the
homotopy equivalence X ∼ ΩG for thick varieties XΣ. The natural morphism
from XΣ = M(Σ, D̂) to the stack M(Σ, D) of G-bundles on (Σ, D) (trivialised
over D) is a fibre bundle in affine spaces; in particular, it is a homotopy
equivalence. Similarly to [T3, Th. 1′], in which D = ∅, this last stack has the
homotopy type of the space of the continuous maps from Σ to BG, based at
D; the equivalence is the forgetful functor from the stack of (D-based) analytic
bundles to that of continuous bundles.6

Generators of the algebra H•(M(Σ, D), Q) arise by transgressing those of
H•(BG) along a basis of cycles in H•(Σ, D); the latter is also the Borel-Moore
homology HBM

• (Σ). As the classifying morphism (Σ, D) × M(Σ, D) → BG

for the universal bundle is algebraic, the construction of generating classes is
compatible with Hodge structures and we obtain as in [T3, Ch. IV]

7.4 Proposition. H•(M(Σ, D)), with its Hodge structure, is the free al-
gebra generated by GenH•(BG)⊗HBM

• (Σ), with the natural Hodge structures
on the factors.

Recall [D] that the Hodge structure on BG is pure of type (p, p). We can
use the isomorphism H•(XΣ) ∼= H•(M(Σ, D)) to define the Hodge structure
on XΣ, which is a scheme of infinite type. (By the argument in §7.2, it agrees
with the structure of the functor represented by XΣ over the schemes of finite
type.)

6This can be seen from the Atiyah-Bott construction of M(Σ).
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(7.5) Differentials. Denote by Ωp the sheaf of algebraic differential
p-forms on any of our flag varieties. On X, this is the sheaf of sections of
a pro-vector bundle, dual to ΛpTX, but on thick flag varieties, it corresponds
to an honest vector bundle, albeit of infinite rank. There is a de Rham differ-
ential ∂ : Ωp → Ωp+1.

7.6 Proposition (Algebraic de Rham). H• (XΣ; (Ω•, ∂)) = H•(XΣ; C),
the former being the algebraic sheaf (hyper)cohomology, the latter defined in
the analytic topology.

Proof. For X, we use the standard Čech argument for the covering by the
affine Weyl translates of the open cell; each finite intersection of the covering
sets is a complement of finitely many coordinate hyperplanes in g[[z]]/g, where
de Rham’s theorem is obvious. The more general XΣ are bundles in affine
spaces over the (smooth, locally Artin) stacks M(Σ, D); de Rham’s theorem
for the total space follows from its knowledge on the fibres and on the base.

There results a convergent Hodge-de Rham spectral sequence

Ep,q
1 = Hq(X; Ωp), Ep,q

∞ = GrpHp+q(X; C),(7.7)

with the graded parts Grp of H∗ associated to the näıve Hodge filtration, the
images of the truncated hyper-cohomologies H∗ (

X; (Ω≥p, ∂)
)
. We note in pass-

ing that, just as in the case of X, the LG-action on Hq(Ωp) is trivial [T3,
Rem. 8.10].

Theorem D. (i) H•(XΣ; Ω•) is the free skew-commutative algebra gen-
erated by copies of Ω0[Σ] and of Ω1[Σ], in Hm(Ωm), respectively Hm(Ωm+1),
as m ranges over the exponents of g.

(ii) The first Hodge-de Rham differential ∂1 is induced by de Rham’s op-
erator d : Ω0[Σ] → Ω1[Σ] on generators, and the spectral sequence collapses
at E2.

The theorem will be proved in Section 9. Assuming it, we see that Propo-
sition 7.4 implies that E2 already has the size of H•(XΣ; C); this forces the
vanishing of ∂2 and higher differentials.

8. Uniform description of the cohomologies

We now relate the Dolbeault and Macdonald cohomologies. In the process,
we give a unified construction for the generating Dolbeault classes in Theorems
B, C and D.

(8.1) Moduli spaces and stacks. In Section 7, we identified the thick flag
variety XΣ and the loop Grassmannian X with the moduli spaces M(Σ, D̂)
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and M(P1, P1 \ {0}) of G-bundles over the respective pairs. Their Dolbeault
groups are described in Theorems C and D. For M(Σ), Hodge decomposition
[T4] implies that H•(Ω•) is the free algebra on the bi-graded vector space
H•,•(Σ)∗ ⊗ GenH•,•(BG); this is Proposition 7.4 with D = ∅.

We now give a Dolbeault interpretation of Theorem B. Consider the stack
M(D̂) of G-bundles on D̂. Such bundles are trivial (locally in any family),
but their automorphisms are locally represented by the group G[D̂] of regular
formal loops. So M(D̂) is the classifying stack BG[D̂]. Cathelineau [C] iden-
tified the Hodge-de Rham sequence for the classifying stack of a complex Lie
group G (defined, say, from the simplicial realisation) with the holomorphic
Bott-Shulman-Stasheff spectral sequence [BSS]

Ep,q
1 = Hq−p(BG;Oan ⊗ SpLie(G)∗) ⇒ Hp+q(BG; C),(8.2)

in which E1 is the group cohomology with SLie(G)∗-valued analytic co-chains
and the abutment is the cohomology with constant coefficients. The result
applies to any group sheaf G over the site of algebraic or analytic spaces: indeed,
(8.2) is the descent spectral sequence for the following fibration of classifying
stacks, where Ĝ denotes the formal group of G at the identity:

BĜ ↪→ BG � B(G/Ĝ).

The base of this fibration has the property that H•(B(G/Ĝ);O) = H•(BG; C),
by de Rham’s theorem in the category of spaces. The first differential Hn(Sp) →
Hn−1(Sp+1) sends a group cocycle χ : Gn+1 → Sp to the sum of transposes of
its derivatives diχ : Gn × Lie(G) → Sp at 1 along the components i = 0, . . . , n,
symmetrised to land in Sp+1.

For simplicity, let D be a single point, so that G[D̂] ∼= G[[z]]. Contractibil-
ity of G[[z]]/G leads to a van Est isomorphism [T3] between the cohomology
H•(BG[[z]]; Spg[[z]]∗) over the algebraic site of BG[[z]] and the Lie algebra
cohomology H•(g[[z]], g; Spg[[z]]∗), computed using continuous duals in the
Koszul complex (this is the restricted cohomology of §2). Theorem B then says
that Ep,q

1 in the Hodge-de Rham sequence for BG[[z]] is the algebra generated
by the continuous duals of C[[z]]dz and C[[z]]dz, in bi-degrees (p, q) = (m, m)
and (m+1, m), respectively. The first Hodge-to-de Rham differential converts
an odd generator in Λ ⊗ S to its even partner: this is induced by s → 1, or
equivalently, n = 0 in (2.1). We showed in Section 2 that this leads to the dual
of de Rham’s operator d∗ : (C[[z]]dz)∗ → C[z]∗ on generators.

(8.3) Sheaf cohomology for a pair. For a coherent sheaf S on Σ, define the
cohomology H•(Σ, D̂;S) relative to D̂ as the hyper-cohomology of the 2-term
complex S → SD̂, starting in degree 0, mapping S to its completion at D.7 If

7This is also the coherent sheaf cohomology with proper supports on the open curve Σ =
Σ \ D; it only depends on the restriction of S to Σ.
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D = ∅, this is the ordinary sheaf cohomology on Σ; else, H0 is the torsion of S
over Σ, and H1 is identified with HomΣ(S,Ω1)∗ by Serre duality. The groups
relevant for us are

H1(Σ, D̂;O) ∼= Ω1[Σ]∗, H1(Σ, D̂; Ω1) ∼= Ω0[Σ]∗,

Serre dual to the opposite-degree differentials on Σ. Similarly, H•(Σ,Σ;S) is
the hyper-cohomology of S → i∗i∗S, where i : Σ ↪→ Σ is the inclusion. Again,
we want S = Ω0,1, when H0 vanishes and Serre duality describes the H1’s as
the continuous duals

H1(Σ,Σ;O) ∼= Ω1[D̂]∗, H1(Σ,Σ; Ω1) ∼= Ω0[D̂]∗,

also known as the O- and Ω1-valued residues on Σ at D. When Σ = P1 \ {0},
these are the restricted duals of C[z]dz and C[z].

(8.4) Dolbeault generators from the Atiyah class. For a principal G-bundle
P over a smooth base B, the tangent bundle to the total space of P is
G-equivariant; it thus descends to B, where it gives an extension adP →
TP/G → TB. This extension defines the Atiyah class in H1(B; adP ⊗ Ω1).
With S standing for D̂, Σ or one of the pairs (Σ,Σ) or (Σ, D̂) and the universal
G-bundle P over S × M(S), we obtain the universal Atiyah class

αS ∈ H1
(
S × M(S); adP ⊗ Ω1

)
.

(Keep in mind that differentials form a complex when M is a stack.) An invari-
ant polynomial Φ of degree d on g defines a class Φ(α) ∈ Hd

(
S × M(S); Ωd

)
.

We are now in a position to describe the Dolbeault cohomology generators in
Theorems B, C and D.

8.5 Theorem. Let S stand for D̂, Σ or one of the pairs (Σ,Σ) or (Σ, D̂).
Then, Hq(M(S); Ωp) is the free skew-commutative algebra on

H•(S; Ω•)∗ ⊗ Gen•,•(BG).

More precisely, as Φ ranges over Gend,d(BG), Serre duality contraction of
Φ(α) with Ha(S; Ωb)∗ gives the Dolbeault generators in Hd−a

(
M(S); Ωd−b

)
.

The first Hodge-de Rham differential ∂1 is induced by de Rham’s differential
on generators, and all higher differentials vanish.

This construction is clearly a Dolbeault refinement of the topological one
in Proposition 7.4. For S = Σ, Hodge decomposition on Σ and M equates
Dolbeault and de Rham cohomologies, so the result is clear. Of course, in that
case ∂1 = 0. For S = (Σ,Σ) or (Σ, D̂) (the flag varieties), the new statement
refines Theorems C and D, and will be proved in the next section. For the
remaining case S = D̂, we must relate the newly constructed generators to
those of Theorem B. To do so, we must say more about α.
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(8.6) The Atiyah class spelled out. Splitting Ω1 = Ω1
S ⊕ Ω1

M(S), the two
components of αS can be interpreted as the Kodaira-Spencer deformation maps
for the principal bundle P, first regarded as a family of bundles over M(S)
parametrised by S, and then as a family of bundles on S parametrised by
M(S). Now, Ω1

M(S) is the dual of Rπ∗adP [1], for the projection π along S to
M(S), and from the very definition of M(S) as the stack of all G-bundles, αS

has a tautological component

Id ∈ RHomM(S) (Rπ∗(adP);Rπ∗(adP)) ∼= H1
(
S × M(S); Ω1

M(S)

)
.(8.7)

The more geometric component lives in H1(S×M(S); Ω1
S⊗adP). Locally on S,

we see its “leading term” in Γ
(
S; Ω1

S ⊗ R1π′
∗adP

)
, with the projection π′ to S:

this represents the local Kodaira-Spencer deformation for P, as a bundle on
M(S).

8.8 Remark. The remaining information, with respect to the Leray se-
quence for π′, would live in H1

(
S; Ω1 ⊗ π′

∗adP
)
; however, the sheaf π′

∗adP is
null in all our examples. On the other hand, our results show that the sheaf
R1π′

∗adP is the tangent sheaf T over S = D̂ or Σ, and one can show that it is
i∗T , when S = (Σ,Σ), and j∗T for the inclusion j : D̂ → Σ, in the remaining
case S = D̂. In this picture, one can show the first component of α is always
the constant section 1 of Ω1

S ⊗ R1π′
∗adP .

Let us spell out αD̂ when D̂ = Spf C[[z]]. The cotangent complex of
D̂ × BG[D̂] splits as Cdz ⊕ g[[z]]∗[−1], the second summand carrying the co-
adjoint action of G[[z]]. This gives

H1
(
D̂ × BG[D̂]; ad ⊗ Ω1

)
= H1 (BG[[z]]; g[[z]]dz) ⊕ HomG[[z]] (g[[z]]; g[[z]]) .

(8.9)

The second, tautological component of α is the identity in (8.7). We claim
that the first component is the group co-cycle γ → −dγ · γ−1. (In fact, both
groups are free C[[z]]-modules of rank one generated by the named classes, but
we do not need this.)

Now, TP/G, over D̂ × BG[[z]], is a G[[z]]-equivariant complex over D̂.
Ignoring for a moment the group action, this complex is g[D̂] e⊕0−−→ (g ⊕ TD̂):
the evaluation map e : g[[z]]× D̂ → g is the differential of the structural G[[z]]-
action on P (and represents the transpose of the tautological component of α).
Now, G[[z]]] acts by Ad on the first term of the complex, while the second term
is a G[[z]]-equivariant extension[

g →
(
TP|D̂

)
/G → TD̂

]
∈ Ext1

D̂×BG[[z]]
(TD̂; g),

and this Ext-group is isomorphic to our first summand in (8.9). To understand
the extension class, observe that a γ ∈ G[[z]] changes a splitting g⊕TD̂ of the
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tangent bundle TP/G by sending a section (ξ, v) to (γξγ−1 − v(γ) · γ−1, v).
The derivative term represents the class of the group co-cycle γ → −dγ · γ−1

in (8.9).

Proof of (8.5) when S = D̂. Applying Φ to the tautological component
of α in (8.9) gives

Φ(Id) ∈ HomG[[z]]

(
Ŝdg[[z]]; C[[z]]

)
,

and contracting with the Fourier mode zn ∈ C[[z]] gives the co-cycle S(−n) of
Theorem B, viewed as an element of

Hd(BG[[z]]; Ωd) =
(
Sdg[[z]]∗

)G[[z]]
.

The first factor of α in (8.9) squares to 0, and so Φ takes no more than one
entry from there. Absorbing one entry from T ∗D̂ ⊗ ad = g[[z]]dz and con-
tracting against zn−1dz lead to the group 1-cocycle G[[z]] → Ŝd−1g[[z]]∗ which
is the contraction of Φ with −dγ · γ−1. Via the van Est isomorphism with
H1(g[[z]], g; . ), this becomes the odd generator E(−n).

9. Proof of Theorems C and D

We now compute the Dolbeault cohomology for thick flag varieties. For
convenience, in this section we write X for XΣ and M for M(Σ), and continue
to assume that D is a single point; the changes needed for the general case are
obvious. A small modification then gives us Theorem C.

(9.1) Setting up the spectral sequence. Uniformisation (§7.1) realises M as
the quotient stack G[[z]] \X. Equivariance under the translation G[[z]]-action
on X makes the bundle Ωp of differential p-forms descend to a bundle on M;
we denote the descended bundle by Ωp

X. The complex of differentials Ωr = Ωr
M

on M is represented by a Koszul-style complex of bundles

Ωr ∼
(
Ωr

X
κ−→ S1g[[z]]∗ ⊗ Ωr−1

X
κ−→ S2g[[z]]∗ ⊗ Ωr−2

X
κ−→ · · ·

)
,(9.2)

cohomologically graded by symmetric degree. To describe the differential,
observe that a choice of a loop γ ∈ LG identifies the tangent space to X
at γG[Σ] with Lg/g[Σ]; thereunder, κ at [γ] = G[[z]]γG[Σ] ∈ M is induced by
the γ-twisted dual to the natural projection g[[z]] → Lg/g[Σ].

The complex (9.2) has finite length, and so it leads to a convergent spectral
sequence with

Ek,l
1 = H l

(
M; Skg[[z]]∗ ⊗ Ωr−k

X

)
⇒ Hk+l (M; Ωr) .(9.3)

There is one such spectral sequence for each r ≥ 0, but the product, which
is compatible with the differentials, mixes them. We have an identification of
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cohomologies

H l(M; Sk ⊗ Ωr−k
X ) = H l

G[[z]]

(
X; Sk ⊗ Ωr−k

)
,

where Hk
G[[z]] is the (algebraic) equivariant cohomology.

(9.4) The Key Factorisation. Our E1 term (9.3) factors as

Ek,l
1 =

⊕
s
Hs

G[[z]]

(
Skg[[z]]∗

)
⊗ H l−s

(
X; Ωr−k

)
.(9.5)

A priori, the right-hand side is the LEs,l−s
2 term in the Leray sequence for the

sheaf Sk⊗Ωr−k and the morphism M → BG[[z]]. However, no differentials are
present, because LE2 is generated from the bottom edge LEs,0

2 by cup-product
with classes which live on the total space: indeed, because G[[z]] acts trivially
on the cohomology and H>0

BG[[z]](O) = 0, we have an isomorphism

H l
(
X; Ωr−k

)
∼= H l

G[[z]]

(
X; Ωr−k

)
.

This also shows that (9.5) is a natural isomorphism, and not just the Gr of
one.

(9.6) Determining the spectral sequence. The factor Hs(BG[[z]]; Skg[[z]]∗)
is isomorphic to the Macdonald cohomology of Theorem B. The abutment
Hs (M; Ωr) = Hr,s(M; C) is also known, by Proposition 7.4. We now construct
an obvious candidate for the spectral sequence, with a map to (9.3), and prove
by induction on r that the obvious candidate is correct. This last part of the
argument is a variation on Zeeman’s comparison theorem [Z].

9.7 Proposition. The sum over all r of the spectral sequences (9.3) is
the commutative differential bi-graded algebra freely generated by copies of the
differential bi-graded vector spaces Ω0[Σ] → Ω1[D̂]∗, in bi-degrees (k, l) = (0, m)
and (m, 1), and Ω1[Σ] → Ω0[D̂]∗ in bi-degrees (k, l) = (0, m) and (m + 1, 0),
respectively, as m ranges over the exponents of g.

The arrows above are dual to the connecting maps

H0(D̂; Ωi) → H1(Σ, D̂; Ωi), i = 1, 0.

Concretely,

Ω1[D̂]∗ = C((z))/C[[z]], Ω0[D̂]∗ = {C((z))/C[[z]]} ⊗ dz,

and the maps are the principal parts at z = 0 on Σ (cf. §8.3). Here is the
location of the generators, with respect to the decomposition (9.5):

space k l r s

Ω0[Σ] 0 m m 0
Ω1[Σ] 0 m m + 1 0
Ω1[D̂]∗ m 1 m 1
Ω0[D̂]∗ m + 1 0 m + 1 0

The spectral sequence differential which originates at Ωi[Σ] has length m + i.
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Proof. The candidate generators are mapped to E1 as explained in Theo-
rem 8.5. We will show at the end of the section that the terms Ωi[Σ] survive
to Em+i−1, and that the differential δm+i maps them into the Ω1−i[D̂]∗ in the
way indicated. Assuming this, observe that the kernels and co-kernels of these
differentials are the Dolbeault groups of Σ, so the fact that they define the gen-
erating classes for Hs (M; Ωr), and therefore survive to E∞, is already known
from the Hodge decomposition of M [T4] and the Atiyah-Bott construction of
its cohomology generators.

Let now ′Ek,l
n , n ≥ 1, be the spectral sequence with multiplicative gen-

erators and differentials as in (9.7). We will show by induction on r that the
map to Ek,l

n we constructed is an isomorphism. For r = 0, this merely says
that H0(X;O) = C and H>0(X;O) = 0, which was shown in [T3]. If the
assumption holds up to r, then the multiplicative decomposition (9.5) shows
that, for r + 1, ′Ek,l

1
∼= Ek,l

1 , except perhaps on the left edge k = 0.
The assumption also implies that the spectral sub-sequence of ′Ek,l

n , k > 0,
obtained by deleting the left edge, converges to the hyper-cohomology of the
sub-complex of Ωr+1

Ωr+1
+ := S1g[[z]]∗ ⊗ Ωr

X
κ−→ S2g[[z]]∗ ⊗ Ωr−1

X
κ−→ · · · .

Our construction gives a map between the long exact sequences of cohomologies
over M,

. . . → Hl
(
M; Ωr+1

+

)
→ Hl

(
M; Ωr+1

)
→ ′E0,l

1 → Hl+1 → . . . ,

obtained from the spectral sub-sequence, and

. . . → Hl
(
M; Ωr+1

+

)
→ Hl

(
M; Ωr+1

)
→ H l

G[[z]]

(
X; Ωr+1

)
→ Hl+1 → . . .

arising from the sub-complex. As explained in (9.5), we can omit the G[[z]]-
subscript in the third cohomology, and the Five Lemma gives the desired iso-
morphism ′E0,l

1
∼= H l

(
X; Ωr+1

)
.

(9.8) The Hodge differentials. Since the construction of generators is com-
patible with de Rham’s operator, the first Hodge-de Rham differentials are
those described in Theorem D.

(9.9) The loop Grassmannian. To prove Theorem C, we repeat the ar-
gument above, but use the presentation M(P1) = G[z−1] \ X of the stack of
G-bundles. The complex (9.2) representing the differentials is now a pro-vector
bundle, completed for the z−1-adic filtration on Skg[z−1]⊗Ωr−k

X . The key fac-
torisation result (9.5) continues to apply (completed in the filtration topology),
this time by Proposition 5.2.

Proof of (9.7), concluded. We now check the good behaviour of the leading
differentials in E• on the Dolbeault generators. The argument is a convoluted
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tautology, but we include it nonetheless for completeness. An invariant Φ ∈
Sm+1g∗, applied to the Atiyah class

αM := αΣ ∈ H1
(
Σ × M; Ω1

Σ
⊗ adP ⊕ (Ω1

X → S1g[[z]]∗) ⊗ adP
)

,

accepts at most one nontautological (first) entry, because dim Σ = 1. For the
same reason, this entry will be detected by contraction with the first set of
generators Ω0[Σ] in Proposition 9.7, but killed by the Ω1[Σ]. So the 0-form
generators contain the tautological component (8.7) of α to degree m, and the
1-forms, to degree m + 1.

Project the tautological component of αM to H1
(
Σ × M; Ω1

X ⊗ adP
)
. Lifted

to X, this is the tautological component of αX, and these components of αM

and αX have the common refinement

Id ∈ RHomM (Rπ∗adP ;Rπ∗adP) ∼= H1
(
(Σ, D̂) × M; Ω1

X ⊗ adP
)

(9.10)

(notation as in §8.6). Note that cup-product of (9.10) with classes in H•(Σ ×
. . . ) lands in H•((Σ, D̂)× . . . ), and such classes can be contracted with (= in-
tegrated against) all functions and forms on Σ. Let S[m+i] denote Sm+ig[[z]]∗,
placed in degree m+ i; this is a sub-complex of Ωm+i in (9.2). We have shown
that contraction of Φ(α) with Ωi[Σ] gives well-defined classes in the truncated
complex Hm(M; Ωm+i/S[m+i]). In particular, these Dolbeault generators sur-
vive to Em+i−1.

To conclude, we must identify the differentials δm+i. These arise from the
failure of

Φ(α) ∈ Hm+1
(
(Σ, D̂) × M; Ω1−i

Σ
⊗ Ωm+i/S[m+i]

)
to lift to Hm+1( . ; Ω1−i

Σ
⊗ Ωm+i), in the distinguished triangle

S[m+i] → Ωm+i → Ωm+i/Sm+i → S[m+i][1].

The obstruction is detected by a connecting homomorphism to H2−i( . ; Ω1−i
Σ

⊗
Sm+i). Contraction with functions and forms on Σ leads to our differentials,
which land in

H1−i
(
M; Sm+ig[[z]]∗

) ∼= H1−i
(
BG[[z]]; Sm+ig[[z]]∗

)
;(9.11)

we have used the key factorisation (9.4) for the isomorphism.
We can identify the connecting map in a different way. The class Φ(α)

does lift to the full differentials Ωm+i, but only over Σ × M. A diagram chase
then shows that our obstruction is the image of the restricted Φ(α) under the
connecting map

H1−i
(
D̂ × M; Ω1−i

Σ
⊗ S[m+i]g[[z]]∗

)
∂−→ H2−i

(
(Σ, D̂) × M; Ω1−i

Σ
⊗ Sm+ig[[z]]∗

)
.
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However, the universal bundle P over Σ × M, when restricted to D̂ × M, is
pulled back from the universal bundle on D̂ × BG[D̂]; hence, so is its Atiyah
class and Φ(α), and we can replace M with BG[D̂] above. Moreover, the ∂’s
are the residue maps appearing in Proposition 9.7. This identifies the δm+i as
asserted.

10. Related Lie algebra results

(10.1) Dolbeault cohomology as Lie algebra cohomology. We now give a Lie
algebra interpretation of the Dolbeault cohomology of the loop Grassmannian
X = LG/G[[z]]. The dual of g((z))/g[[z]] is identified with g[[z]]dz by the
residue pairing. The p-forms on X are then sections of the pro-vector bundle
associated to the adjoint action of G[[z]] on Λ̂pg[[z]]dz. Recall that the latter
is z-adic completion of the exterior power. For modules thus completed, it
is sensible to form the continuous g[[z]]-cohomology, resolved by the Koszul
complex of continuous linear maps

Hom
(
Λ̂•g[[z]]; Λ̂p(g[[z]]dz)

)
;(10.2)

in this case, we get the inverse limit of cohomologies8 of the z-adic trunca-
tions of the coefficients. We emphasise, however, that the complex (10.2) has
infinite-dimensional (z, g)-eigenspaces, which is a serious obstacle to a direct
computation of its cohomology as in Chapter I.

10.3 Proposition. The continuous Lie algebra cohomology

Hq
cts

(
g[[z]], g; Λ̂pg[[z]]dz

)
resolved by the complex (10.2) is naturally isomorphic to Hq(X; Ωp).

Proof. Contractibility of G[[z]]/G gives a natural “van Est” isomorphism [T3]

Hq
cts

(
g[[z]], g; Λ̂pg[[z]]dz

)
= Hq

G[[z]]

(
Λ̂pg[[z]]dz

)
;

by the fact that the Hq (X; Ωp) are the qth derived functors of induction from
G[[z]] to LG, the group and Dolbeault cohomologies are related by Shapiro’s
spectral sequence

Er,s
2 = Hr

LG (Hs (X; Ωp)) ⇒ Hr+s
G[[z]]

(
Λ̂p(g[[z]]dz)

)
.

Alternatively, this is the Leray sequence for the morphism BG[[z]] → BLG,
with fibre X. Either way, Hs(X; Ωp) is a trivial LG-module, so its higher
LG-cohomology vanishes; the spectral sequence collapses and we obtain the
asserted equality.

8Finite-dimensionality of cohomology shows that there are no lim1 terms.
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(10.4) Thick flag varieties. An obvious variation replaces the formal disk
SpfC[[z]] by a smooth affine curve Σ. We consider the Lie algebra cohomology
Hq

(
g[Σ]; Λp Ω1(Σ; g)

)
. The answer carries now a contribution from the non-

trivial topology of the group G[Σ]. As in [T3], the van Est sequence collapses
at E2, leading, by the same argument as above, to

10.5 Proposition. H• (
g[Σ]; Λp Ω1(Σ; g)

) ∼= H•(XΣ; Ωp)⊗H•(G[Σ]; C),
naturally.

The homotopy equivalence of G[Σ] to the corresponding group of contin-
uous maps shows that the topological factor H∗(G[Σ]; C) is isomorphic to

H•(G; C) ⊗ H•(ΩG; C)1−χ(Σ),(10.6)

with ΩG denoting the space of based continuous loops and χ the Euler char-
acteristic. According to [T3], this is also isomorphic to the Lie algebra coho-
mology H•(g[Σ]; C).

(10.7) Strong Macdonald for smooth curves. The method of Section 9
allows us to carry out the long-postponed proof of the higher-genus version of
the strong Macdonald theorem.

Proof of Theorem 1.15. We use the construction of Section 9, but realise
the moduli stack M of G-bundles on Σ as the quotient X/G[Σ], and present
the differentials Ωr

M
by a complex of pro-vector bundles

Ωr−k
X ⊗̂ Ŝkg[Σ]∗.

The factorisation replacing (9.5) now reads

Ek,l
1 =

⊕
s
Hs

G[Σ]

(
Ŝkg[Σ]∗

)
⊗̂H l−s

(
X; Ωr−k

)
;

the Dolbeault cohomologies of X being known, the desired group cohomologies
are again determined by induction on r, with the difference that it is the right
(r+1)st edge of the sequence that is new, in the inductive step. Collapse of the
van Est sequence leads to the factor H•(g[Σ]; C) when switching from group
to Lie algebra cohomology.

III. Positive level

The loop group LG admits central extensions by the circle; when G is
semi-simple, these are parametrised up to isomorphism by a level in H3

G(G; Z).9

When G is simple and simply connected, H3
G(G; Z) ∼= Z, and positive levels

9There are additional choices for the torus factors, but only one of them is interesting
[PS].
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lead to the interesting class of highest-weight representations of LG, also called
integrable highest-weight modules of g((z)). These have a Borel-Weil realisation
as spaces of sections of vector bundles over the genus-zero thick flag variety
X (see §11.8 below), and carry a semi-simple C×-action intertwining with the
z-scaling. The eigenvalues of its infinitesimal generator, called energies or
z-weights, are bounded above.

In Section 11 we give a positive-level analogue of Theorem B, which
includes in the coefficients of Macdonald cohomology a highest-weight LG-
representation H. This entails the vanishing of higher cohomology. As a result,
the analogue of Macdonald’s constant term—the (z, s)-weighted Lie algebra
Euler characteristic in (1.5)—refines the z-dimension of the G-invariant part
of H, revealing an affine analogue of R. Brylinski’s filtration [B], originally
defined on weight spaces of G-representations (Remark 11.1).

Central extensions of LG lead to algebraic line bundles over the loop
Grassmannians X and X. The sections of the level h line bundle O(h) over X
span the highest-weight vacuum representation H0. In Section 12, we deter-
mine the level 1 Dolbeault cohomologies Hq(X; Ωp(1)), for simply laced G. A
combinatorial application is given in Section 12.7.

11. Brylinski filtration on loop group representations

Let H be a highest-weight representation of LG; it is the direct sum of its
z-weight spaces H(n). We assume that the level is positive on each simple or
central factor of g; the only level-zero representation is trivial, and has been
discussed already.

Theorem E. Hk(g[[z]], g;H ⊗ Spg[[z]]∗) vanishes for positive k.

With respect to Chapter I, this is the restricted cohomology Hk
res(g[z], g;

H ⊗ Spg[z]∗res).

Proof. For abelian g, H is a sum of Fock representations, and so is injective
for (g[z], g). Assume now that g is simple and H has level h > 0. In the
notation of Section 3, with the operator ∂̄ on H ⊗ Λ ⊗ S modified to include
the g[z]-action on H, Theorem 2.4.7 from [T1] becomes

� = � + TΛ
S + k · (1 +

h

2c
) = � + D + k · h/2c,

where the second identity follows as in Proposition 3.17. This is strictly positive
if k > 0.

11.1 Remark. Theorem E has finite-dimensional analogues for G-modules
V and the Borel and Cartan sub-algebras b, h ⊂ g: the higher cohomologies
H>0(b, h;V ⊗ Sb∗) and H>0(b, h;V ⊗ Sn∗) vanish (n = [b, b]). By the Peter-
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Weyl decomposition of the polynomial functions on G, this is equivalent to the
vanishing of higher cohomology of O over G ×B b and T ∗G/B = G ×B n, and
follows from the Grauert-Riemenschneider theorem (cf. the proof of Lemma
4.12).

(11.2) Shift in the grading. For reasons that will be clear below, we now
replace g[[z]] in the symmetric algebra by the differentials g[[z]]dz. This does
not alter the g[[z]]-module structure, but shifts z-weights by the symmetric de-
gree. To match the usual conventions, we set q = z−1 and consider the q-Euler
characteristic in the restricted Koszul complex (3.4), capturing the symmetric
degree by means of a dummy variable t. After our shift, the isomorphism in
Theorem B leads to the following identity, where CT denotes the G-constant
term, after we expand the product into a formal (q, t)-series with coefficients
in the representation ring of G:

CT

[⊗
n>0

1 − qn · g
1 − tqn · g

]
=

�∏
k=1

∏
n>mk

1 − tmkqn

1 − tmk+1qn
.(11.3)

(11.4) The constant term at positive level. The q-dimension dimq H :=∑
n q−n dimH(n), convergent for |q| < 1, captures the z−1-weights. Using the

Koszul resolution of cohomology, Theorem E equates the q-dimensions of the
invariants with a G-constant term,

CT

[⊗
n>0

1 − qng

1 − tqng
⊗ H

]
=

∑
p≥0

tp dimq {H ⊗ Sp(g[[z]]dz)∗}g[z] .(11.5)

When G is simple and H is irreducible, with highest energy zero and highest
weight λ, the Kac character formula [K] converts the q-representation H ⊗∏

n>0(1 − qng) of G into the sum∑
μ∈λ+(h+c)P

±q
c(μ)−c(λ)

h+c Vμ,(11.6)

where c(μ) = (μ+ρ)2/2, c is the dual Coxeter number of g, P ⊂ h∗ the integer
lattice and ±Vμ is the signed G-module induced from the weight μ, the sign
depending, as usual, on the Weyl chamber of μ + ρ. So the left side in (11.5)
is also ∑

μ∈λ+(h+c)P

±q
c(μ)−c(λ)

h+c CT
[

Vμ⊗
n>0(1 − tqng)

]
.(11.7)

The analogy with Macdonald’s constant term becomes compelling, if we use
the Kac denominator identity to convert the left side in (11.3) into the sum
(11.7) for λ = h = 0.
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(11.8) Brylinski filtration. Recall the Borel-Weil construction of H. The
thick loop Grassmannian X = G((z))/G[z−1] carries the level h line bundle
O(h) and the vector bundle Vλ, the latter defined from the action of G[z−1]
on Vλ by evaluation at z = ∞. Then, H is the space of algebraic sections of
Vλ(h) := Vλ ⊗O(h) over X.

Restricted to the big cell U ⊂ X, the orbit of the base-point under G[[z]],
Vλ(h) is trivialised by the action of the subgroup exp(zg[[z]]). Now, sending
γ ∈ G[[z]]/G to dγ ·γ−1 identifies U with g[[z]]dz, and the resulting affine space
structure on U is preserved by the left translation action of G[[z]]. Sections
of Vλ(h), having been identified with Vλ-valued polynomials, are increasingly
filtered by degree, and this gives an increasing, G[[z]]-stable filtration of H.

11.9 Theorem. We have a natural isomorphism

Grp HG � {H ⊗ Sp(g[[z]]dz)∗}g[z] .

Proof. With the co-adjoint action of G[[z]], S(g[[z]]dz)∗ is the associated
graded space of C[U], the space of polynomials on the open cell U � g[[z]]dz,
filtered by degree. In the Borel-Weil realisation, H⊗C[U] is a subspace of the
V -valued functions on U × U, filtered by the degree on the second factor. It
follows that the subspace of invariants under the diagonal translation action
of g[z] gets identified, by restriction to the first U, with the G-invariants in H,
endowed with the Brylinski filtration described above. Cohomology vanishing
gives an isomorphism

Grp {H ⊗ C[U]}g[z] = {H ⊗ Sp(g[[z]]dz)∗}g[z] ,

with the first space isomorphic to GrpHG, leading to our theorem.

11.10 Remark. Applied to a G-representation V and the cohomology van-
ishing in Remark 11.1, the same argument defines Brylinski’s filtration on the
zero-weight space V h ∼= (V ⊗ Sn∗)b.

(11.11) The basic representation. When G is simply laced, we can give
a product expansion for the generating function of the Brylinski filtration on
the G-invariants in the basic representation H0, the highest-weight module of
level 1 and highest weight 0.

11.12 Theorem. For simply laced G, the vacuum vector ω ∈ H0 gives
an isomorphism

(∗) ω⊗ : {Sp(g[[z]]dz)∗}g[z] ∼−→ {H0 ⊗ Sp(g[[z]]dz)∗}g[z] .

Consequently, with q = z−1,∑
p≥0

tp dimq Grp HG
0 =

�∏
k=1

∏
n>mk

(1 − tmk+1qn)−1.
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Proof. After summing over p, we see that the q-dimension of the left side
in (*) is

∏�
k=1

∏
n>mk

(1− qn)−1 (Theorem B). According to [S, Prop. 6.8] this
is also the q-dimension of HG

0 . However, the map (*) is an inclusion; hence,
by Theorem 11.9, it is an isomorphism, and then it is so in each p-degree
separately.

12. Line bundle twists

Let G be simple and simply connected and call O(h) the level h line
bundle on X or XΣ. The loop group acts projectively on O(h), and hence
on its Dolbeault cohomologies Hq(X; Ωp(h)). These turn out to be duals
of integrable highest-weight modules at level h, and direct products of their
z-weight spaces. (This follows as in Proposition 5.2, except that the coho-
mologies of GrnΩp(h) are now finite sums of duals of irreducible highest-weight
modules; this suffices for the Mittag-Leffler conditions, as their z-graded com-
ponents are finite-dimensional.) For thick flag varieties, we obtain instead sums
of highest-weight modules [T3, Remark 8.10].

The Dolbeault groups of O(h) also assemble to a bi-graded module over
the Dolbeault algebra H•(Ω•). For simply laced G at level 1, our knowledge of
the basic invariants (Theorem 11.12) allows us to describe the entire structure:
H• (Ω•(1)) is the free module generated from H0 (X;O(1)) under the action
of the odd Dolbeault generators. We prove the theorem for X = LG/G[z−1];
the thin X can be handled as in Section 9.9. For convenience, we use the
coordinate q = z−1 on P1 \ {0}; note that X = XP1\{0}.

Theorem F. For simply laced G, H• (X,Ω•(1)) is freely generated from
H0 = H0 (X;O(1)) by the cup-product action of the odd generators C[q]dq ⊂
Hm(X,Ωm+1), m = m1, . . . , m�. The multiplication action of the even gener-
ators of H•(Ω•) is nil.

Proof. The centre of G acts trivially on Hq(Ωp). For simply laced groups
at level 1, this only allows the basic representation H0 to appear. The argument
now parallels the level zero case. From the cohomology vanishing Theorem E,
the Ek,l

1 term replacing (9.5) in the sequence converging to Hk+l
(
M(P1); Ωr(1)

)
is now

H0
G[[z]]

(
H l

(
X; Ωr−k(1)

)
⊗ Skg[[z]]∗

)
∼= H l

(
X; Ωr−k(1)

)G[[z]]
⊗ H0

G[[z]]

(
Skg[[z]]∗

)
,

where we have used the isomorphism of Theorem 11.12. According to
[T4, Th. 7.1], the Dolbeault cohomology H• (

M(P1); Ω•(1)
)

is isomorphic to
H•,•(BG; C), under restriction to the semi-stable sub-stack BG of M(P1). Us-
ing the module structure over H•(Ω•), the argument of Section 9 shows that
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our new sequence is freely generated by H0 over the second family of level 0
generators in Proposition 9.7.

12.1 Remark. This result has an obvious analogue, with parallel proof, for
the thick flag varieties XΣ, when Σ has genus 0. Extension to a higher genus
would require us to equate H• (

M(Σ); Ω•(1)
)

with the free module spanned
by H0

(
M(Σ);O(1)

)
on half the generators of Hp,q

(
M(Σ)

)
. While we believe

that to be true, additional arguments seem to be needed.

(12.2) Affine Hall-Littlewood functions. For a G-representation V with
associated vector bundle V on X, the series of characters for the G-translation
and the z-scaling actions

Ph,V (q, t) :=
∑

r,s
(−1)s(−t)rchHs(X,Ωr(h) ⊗ V) ∈ RG[[q, t]](12.3)

are affine analogues of the Hall-Littlewood symmetric functions.10 Decompos-
ing the H•(X; Ω•(h)) into the irreducible characters ch(H) at level h allows us
to write

Ph,V (q, t) =
∑

H
〈Ph,V |H〉(q, t) · ch(H),

with co-factors 〈Ph,V |H〉(q, t) ∈ Z[[q, t]]. Thus, for simply laced G at level 1,
Theorem F gives for the trivial representation V = C

〈Ph,C|H0〉(q, t) =
�∏

k=1

∏
n>0

(1 − tmk+1qn).(12.4)

Little seems to be known about the cohomology of Ωp(h) ⊗ V in general, but
the 〈Ph,V |H〉(q, t) are closely related to the Brylinski filtration of Section 11,
as we now illustrate in a simple example.

(12.5) Hall-Littlewood co-factors and Brylinski filtration. For any simply
connected G, the spectral sequence of Section 9.1 becomes, at level h > 0

Ek,l
1 =

∑
H

〈
H l

(
X; Ωr−k(h)

)
|H

〉
·
{
H ⊗ Skg[[z]]∗

}G[[z]]
⇒ Hk+l(BG; Ωr),

because H• (MP1 ; Ωr(h)) = H•(BG; Ωr). We now form the (q, t)-characteristic
by multiplying the left side by (−1)k+l(−t)r and summing over k, l, r. Theorem
11.9 (with the substitution t → tq−1, to undo the shift introduced in §11.2)
gives the near-orthogonality relation∑

H
〈Ph,C|H〉(q, t) ·

∑
p
(tq−1)p dimq Grp HG =

∏�

k=1
(1 − tmk+1)−1;(12.6)

10The true affine Hall-Littlewood functions involve the full flag variety LG/ exp(B) in lieu
of the loop Grassmannian, but there is a close relation between the two.
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the right-hand side is
∑

r,s(−1)s(−t)rhs(BG; Ωr) =
∑

r trh2r(BG). Implica-
tions of (12.6) will be explored in future work; instead, we conclude with a
combinatorial application.

(12.7) Lattice hyper-geometric sums. There is a Kac formula for P1,C,
established as in Section 6.2 (but now with the increasing filtration on Ωp, as
we work on the thick Grassmannian X):

∑
w∈Waff

w

⎡⎣ ∏
n>0; α

1 − tqneα

1 − qneα
·
∏
α>0

(1 − eα)−1

⎤⎦ ·
∏
n>0

(
1 − tqn

1 − qn

)�

.(12.8)

At level 1, a lattice element γ ∈ Waff sends qneλ to qn+γ2/2+〈λ|γ〉eλ+γ , in which
the basic inner product is used to convert γ to a weight. The manipulation in
Section 6.4 converts (12.8) into∑

γ

qγ2/2eγ ·
∏

n>0; α

1 − tqn+〈α|γ〉eα

1 − qn+〈α|γ〉eα
·
∏
n>0

(
1 − tqn

1 − qn

)�

.(12.9)

For simply laced G, another expression is provided by (12.4) and any of the
character formulae for H0; thus, the basic bosonic realisation gives

P1,C =
�∏

k=1

∏
n>0

1 − tmk+1qn

1 − qn
·
∑

γ

qγ2/2eγ(12.10)

where we sum over the co-root lattice (which is also the root lattice). Equating
the last two expressions gives the identity

∑
γ

qγ2/2eγ ·
∏

n>0; α

1 − tqn+〈α|γ〉eα

1 − qn+〈α|γ〉eα
=

�∏
k=1

∏
n>0

1 − tmk+1qn

1 − tqn
·
∑

γ

qγ2/2eγ .

(12.11)

With G = SL2, replacing q by
√

q leads to∑
m∈Z

qm2/2u2m ·
∏
n>0

(1 − tqn/2+mu2)(1 − tqn/2−mu−2)
(1 − qn/2+mu2)(1 − qn/2−mu−2)

=
∏
n>0

1 − t2qn/2

1 − tqn/2
·
∑
m∈Z

qm2/2u2m,

which, using the notation (a)∞ =
∏

n≥0(1 − aqn), (a)n = (a)∞/(aqn)∞,
(a1, . . . , ak)n =

∏
i(ai)n, becomes the hyper-geometric summation formula∑

m∈Z

qm2/2u2m · (
√

qu2)m(
√

qu−2)−m(qu2)m(qu−2)−m

(
√

qtu2)m(
√

qtu−2)−m(qtu2)m(qtu−2)−m

=
(
√

qu2,
√

qu−2, qu2, qu−2,
√

qt2, qt2)∞
(
√

qtu2,
√

qtu−2, qtu2, qtu−2,
√

qt, qt)∞
·
∑
m∈Z

qm2/2u2m;
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most factors in the numerator on the left cancel out, and the series can then
be summed by specialising Bailey’s 4ψ4 summation formula [GaR, V].

Appendix

A. Proof of Lemma 3.13

It is clear that both sides in (3.13) annihilate the constant line in Λ ⊗ S,
and it is also easy to see that they agree on the symmetric part 1 ⊗ S, where
D, K, ad and ad∗ all vanish. So we must only check equality on the linear ψ

terms, and on the quadratic ψ ∧ ψ and σψ terms.

(A.1) The linear ψ terms. Fix b ∈ A, n > 0. We compute:

∂̄ψb(−n) =
1
2

∑
a∈A

0<m<n

ψa(−m) ∧ ψ[a,b](m − n),

∂̄∗∂̄ψb(−n) =
1
4

∑
a∈A

0<m<n

n

m(n − m)
ψ[a,[a,b]](−n)

− 1
4

∑
a∈A

0<m<n

n

m(n − m)
ψ[[a,b],a](−n)

=
1
2

∑
a∈A

0<m<n

n

m(n − m)
ψ[a,[a,b]](−n) =

1
2

∑
0<m<n

n

m(n − m)
ψb(−n)

=
1
2

∑
0<m<n

(
1
m

+
1

n − m

)
· ψb(−n) =

∑
0<m<n

1/m · ψb(−n).

Further, ∂̄∗ψb(−n) = 0, so that �ψb(−n) is as just computed. Next,

�ψb(−n) =
∑
a∈A

0<m<n

1
m

ada(−m)ada(−m)∗ψb(−n)

=
∑
a∈A

0<m<n

1
m

· n − m

n
· ψ[a,[a,b]](−n)

=
∑

0<m<n

(
1
m

− 1
n

)
· ψb(−n)

=
∑

0<m<n

1
m

· ψb(−n) − ψb(−n) + ψb(−n)/n

Dψb(−n) =
∑
a∈A

0<m<n

ψ[a,[a,b]](−n)/n = ψb(−n),
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Kψb(−n) =
1
n

∑
a∈A

ad[a,b](0)ψa(−n) = − 1
n

∑
a∈A

ψ[a,[a,b]](−n) = −ψb(−n)/n,

and the last three terms sum up to �ψb(−n), as claimed.

(A.2) The quadratic ψ ∧ ψ terms. Fix b, c ∈ A and n, p > 0. For
each second-order differential operator P involved, we focus on the cross-term
P

(
ψb(−n) ∧ ψc(−p)

)
− Pψb(−n) ∧ ψc(−p) − ψb(−n) ∧ Pψc(−p); equality of

cross-terms and the identity (3.13) on the linear factors imply the identity for
quadratic terms.

A.3 Lemma. The cross-term in �
(
ψb(−n) ∧ ψc(−p)

)
is the following three-

term sum:

∑
a∈A

0<m<n

(
1
m

− 1
n

)
· ψ[a,b](m − n) ∧ ψ[a,c](−m − p)

+
∑
a∈A

0<m<p

(
1
m

− 1
p

)
· ψ[a,b](−m − n) ∧ ψ[a,c](m − p)

−
∑
a∈A

(
1
n

+
1
p

)
· ψ[a,b](−n) ∧ ψ[a,c](−p).

Proof. We rewrite the sum by adding and subtracting terms:

∑
a∈A

0<m<n

(
1
m

+
1
p

)
· ψ[a,b](m − n) ∧ ψ[a,c](−m − p)

+
∑
a∈A

0<m<p

(
1
m

+
1
n

)
· ψ[a,b](−m − n) ∧ ψ[a,c](m − p)(A.4)

−
∑
a∈A

0<m<n+p

(
1
n

+
1
p

)
· ψ[a,b](−m) ∧ ψ[a,c](m − n − p).

We now track, in turn, the source of each of the three terms in (A.4). We have

(A.5) ∂̄
(
ψb(−n) ∧ ψc(−p)

)
=

1
2

∑
a∈A

0<m<n

ψa(−m) ∧ ψ[a,b](m − n) ∧ ψc(−p)

+
1
2

∑
a∈A

0<m<p

ψa(−m) ∧ ψb(−n) ∧ ψ[a,c](m − p),
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and applying ∂̄∗ to the first sum gives the following, after collecting the terms
where ψc(−p) survives intact into the first summand:

∂̄∗∂̄ψb(−n) ∧ ψc(−p) +
1
4

∑
a∈A

0<m<n

1
m

ψ[a,b](m − n) ∧ ada(m)∗ψc(−p)

− 1
4

∑
a∈A

0<m<n

1
n − m

ψa(−m) ∧ ad[a,b](n − m)∗ψc(−p)(A.6)

+
1
4

∑
a∈A

0<m<n

1
p
adc(p)∗

(
ψa(−m) ∧ ψ[a,b](m − n)

)
.

The first term is �ψb(−n) ∧ ψc(−p). The two middle-line terms agree, after
substituting m ↔ (n − m), and sum to

1
2

∑
a∈A

0<m<n

p + m

mp
ψ[a,b](m − n) ∧ ψ[a,c](−m − p).(A.7)

Amusingly, the third line takes the same value (A.7); so the sum in (A.6) equals

�ψb(−n) ∧ ψc(−p) +
∑
a∈A

0<m<n

p + m

mp
ψ[a,b](−m − p) ∧ ψ[a,c](m − n),(A.8)

and so the cross-term in (A.8) accounts for the first term in (A.4). Substituting
b ↔ c, n ↔ p shows that the ∂̄∗-image of the second term in (A.5) is

ψb(−n) ∧ �ψc(−p) +
∑
a∈A

0<m<n

n + m

mn
ψ[a,b](−m − n) ∧ ψ[a,c](m − p),(A.9)

whose cross-term is the second term in (A.4).
Finally, ∂̄∗ (

ψb(−n) ∧ ψc(−p)
)

= n+p
np · ψ[b,c](−p− n), whence by applying

∂̄ we get

∂̄∂̄∗
(
ψb(−n) ∧ ψc(−p)

)
=

1
2

n + p

np

∑
a∈A

0<m<n+p

ψa(−m) ∧ ψ[a,[b,c]](m − p − n)

=
n + p

2np

∑
a∈A

0<m<n+p

(
ψa(−m) ∧ ψ[[a,b],c](m − p − n)

+ ψa(−m) ∧ ψ[b,[a,c]](m − p − n)

)

=−n + p

np

∑
a∈A

0<m<n+p

ψ[a,b](−m) ∧ ψ[a,c](m − p − n),

which is the third term in (A.4). The proposition is proved.
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Now D
(
ψb(−n) ∧ ψc(−p)

)
= Dψb(−n) ∧ ψc(−p) + ψb(−n) ∧ Dψc(−p),

with no cross-term, while

(A.10)

K
(
ψb(−n) ∧ ψc(−p)

)
= Kψb(−n) ∧ ψc(−p) + ψb(−n) ∧ Kψc(−p)

− 1
n

ψ[a,b](−n) ∧ ψ[a,c](−p) − 1
p
ψ[a,b](−n) ∧ ψ[a,c](−p),

(A.11)

�
(
ψb(−n) ∧ ψc(−p)

)
= ψb(−n) ∧ ψc(−p) + ψb(−n) ∧ ψc(−p)

+
∑
a∈A

0<m<n

1
m

n − m

n
ψ[a,b](m − n) ∧ ψ[a,c](−m − p)

+
∑
a∈A

0<m<p

1
m

p − m

p
ψ[a,b](−m − n) ∧ ψ[a,c](m − p),

and the cross-terms in (A.10) and (A.11) add up to the expression in (A.3).

(A.12) The σψ terms. As before, fix b, c ∈ A and n, p > 0. Then,

∂̄
(
σb(−n)ψc(−p)

)
=

∑
a∈A

0<m≤n

σ[a,b](m − n) · ψa(−m) ∧ ψc(−p)

+
1
2

∑
a∈A

0<m<p

σb(−n)ψa(−m) ∧ ψ[a,c](m − p),

and applying ∂̄∗ yields the following sum:

�σb(−n) · ψc(−p) − 1
p

∑
a∈A

0<m≤n

σ[a,c](m − p − n)ψ[a,b](−m)

+
1
2

∑
a∈A

0<m<p

1
m

σ[a,b](−m − n)ψ[a,c](m − p)

− 1
2

∑
a∈A

0<m<p

1
m − p

σ[[a,c],b](m − p − n)ψa(−m)

+
1
2

∑
a∈A

0<m≤n

m + p

mp
σ[a,b](m − n)ψ[a,c](−m − p)

+
1
2

∑
a∈A

0<m≤n

m + p

mp
σ[a,b](m − n)ψ[a,c](−m − p)

+ σb(−n)�ψc(−n).
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The first two lines come from the R∗-terms in ∂̄∗, the last two lines from
the ad∗-terms. The two terms in each of the middle rows are equal, so the
cross-term can be rewritten as follows:

−1
p

∑
a∈A

0<m≤n

σ[a,c](m − p − n) ·ψ[a,b](−m) +
∑
a∈A

0<m<p

1
m

σ[a,b](−m − n) · ψ[a,c](m − p)

+
∑
a∈A

0<m≤n

(
1
m

+
1
p

)
σ[a,b](m − n) · ψ[a,c](−m − p).(A.13)

Now, ∂̄∗ (
σb(−n) · ψc(−p)

)
= σ[c,b](−n − p)/p, whence

(A.14) ∂̄∂̄∗
(
σb(−n) · ψc(−p)

)
=

1
p

∑
a∈A

0<m≤n+p

σ[a,[c,b]](m − n − p) · ψa(−m)

=
1
p

∑
a∈A

0<m<n+p

σ[a,c](m−n−p)·ψ[a,b](−m)−1
p

∑
a∈A

0<m<n+p

σ[a,b](m−n−p)·ψ[a,c](−m).

Summing (A.13) and (A.14) gives
1
p

∑
a∈A

0<m≤p

σ[a,c](m − p) · ψ[a,b](−m − n)(A.15)

+
∑
a∈A

0<m<p

(
1
m

− 1
p

)
σ[a,b](−m − n) · ψ[a,c](m − p)

+
∑
a∈A

0<m<n

1
m

σ[a,b](m − n) · ψ[a,c](−m − p)

−1
p

∑
a∈A

σ[a,b](−n) · ψ[a,c](−p);

here, the first term is the sum of the first terms in (A.13) and (A.14), the
second and third incorporate the second and third terms in (A.13) and the
0 < m < p, resp. the p < m < p + n portions of the second term in (A.14),
and the final term is the m = p contribution of the same.

Moving on to the right-hand side of (3.13), the cross-term in

�
(
σb(−n)ψc(−p)

)
is

(A.16)
∑
a∈A

0<m<n

1
m

σ[a,b](m − n) · ψ[a,c](−m − p)

+
∑
a∈A

0<m<p

p − m

mp
σ[a,b](−m − n) · ψ[a,c](m − p),
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the two terms coming from the ad · R∗ and R · ad∗ cross-terms, respectively.
Further,

D
(
σb(−n) · ψc(−p)

)
=σb(−n) · Dψc(−p)(A.17)

+
1
p

∑
a∈A

0<m≤p

σ[a,c](m − p) · ψ[a,b](−m − n),

K
(
σb(−n) · ψc(−p)

)
=σb(−n) · Kψc(−p)(A.18)

−1
p

∑
a∈A

σ[a,b](−n) · ψ[a,c](−p).

It is now clear that the cross-terms in (A.16)–(A.18) sum to (A.15).
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France 109 (1981), 41–81.

[F1] B. I. Feigin, On the cohomology of the Lie algebra of vector fields and of the current
algebra, Sel. Math. Sov. 7 (1988), 49–62.

[F2] ———, Differential operators on the moduli space of G-bundles over curves and Lie
algebra cohomology, Special Functions (Okayama, 1990), ICM-90, Satell. Conf. Proc.,
Springer-Verlag, New York (1991), 90–103.

[GL] H. Garland and J. Lepowsky, Lie algebra homology and the Macdonald-Kac formulas,
Invent. Math. 34 (1976), 37–76.

[GR] H. Garland and M. S. Raghunathan, A Bruhat decomposition for the loop space of a
compact group: a new approach to results of Bott, Proc. Nat. Acad. Sci. U.S.A. 72
(1975), 4716–4717.

[GaR] G. Gasper and M. Rahman, Basic Hypergeometric Series, Encycl. of Math. and its
Applications 35, Cambridge Univ. Press, Cambridge, U.K.,1990.



220 SUSANNA FISHEL, IAN GROJNOWSKI, AND CONSTANTIN TELEMAN

[Gr] I. Grojnowski, The Hodge theorem on infinite dimensional manifolds, preprint.

[H1] P. Hanlon, Cyclic homology and the Macdonald conjectures, Invent. Math. 86 (1986),
131–159.

[H2] ———, Some conjectures and results concerning the homology of nilpotent Lie alge-
bras, Adv. Math. 84 (1990), 91–134.

[K] V. Kac, Infinite-dimensional Lie algebras, Cambridge Univ. Press, Cambridge, U.K.,
1995.

[Ko] J.-L. Koszul, Homologie et cohomologie des algèbres de Lie, Bull. Soc. Math. France
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