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Ramification theory
for varieties over a perfect field

By Kazuya Kato and Takeshi Saito

Abstract

For an �-adic sheaf on a variety of arbitrary dimension over a perfect
field, we define the Swan class measuring the wild ramification as a 0-cycle
class supported on the ramification locus. We prove a Lefschetz trace formula
for open varieties and a generalization of the Grothendieck-Ogg-Shararevich
formula using the Swan class.

Let F be a perfect field and U be a separated and smooth scheme of finite
type purely of dimension d over F . In this paper, we study ramification of a
finite étale scheme V over U along the boundary, by introducing a map (0.1)
below.

We put CH0(V \ V ) = lim←−CH0(Y \ V ) where Y runs compactifications of
V and the transition maps are proper push-forwards (Definition 3.1.1). The
degree maps CH0(Y \ V ) → Z induce a map deg : CH0(V \ V ) → Z. The fiber
product V ×U V is smooth purely of dimension d and the diagonal ΔV : V →
V ×U V is an open and closed immersion. Thus the complement V ×U V \ΔV is
also smooth purely of dimension d and the Chow group CHd(V ×UV \ΔV ) is the
free abelian group generated by the classes of connected components of V ×U V

not contained in ΔV . If U is connected and if V → U is a Galois covering, the
scheme V ×U V is the disjoint union of the graphs Γσ for σ ∈ G = Gal(V/U)
and the group CHd(V ×U V \ ΔV ) is identified with the free abelian group
generated by G − {1}.

The intersection of a connected component of V ×U V \ ΔV with ΔV

is empty. However, we define the intersection product with the logarithmic
diagonal

( ,ΔV )log : CHd(V ×U V \ ΔV ) −−−→ CH0(V \ V ) ⊗Z Q(0.1)

using log product and alteration (Theorem 3.2.3). The aim of this paper is to
show that the map (0.1) gives generalizations to an arbitrary dimension of the
classical invariants of wild ramification of f : V → U . The image of the map
is in fact supported on the wild ramification locus (Proposition 3.3.5.2). If we
have a strong form of resolution of singularities, we do not need ⊗ZQ to define
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the map (0.1). We prove a Lefschetz trace formula for open varieties
2d∑

q=0

(−1)qTr(Γ∗ : Hq
c (VF̄ , Q�)) = deg (Γ,ΔV )log(0.2)

in Proposition 3.2.4. If V → U is a Galois covering of smooth curves, the
log Lefschetz class (Γσ,ΔV )log for σ ∈ Gal(V/U) \ {1} is an equivalent of the
classical Swan character (Lemma 3.4.7).

For a smooth �-adic sheaf F on U where � is a prime number different from
the characteristic of F , we define the Swan class Sw(F) ∈ CH0(U \ U) ⊗Z Q
(Definition 4.2.8) also using the map (0.1). From the trace formula (0.2), we
deduce a formula

χc(UF̄ ,F) = rank F · χc(UF̄ , Q�) − deg Sw(F)(0.3)

for the Euler characteristic χc(UF̄ ,F) =
∑2d

q=0(−1)q dimHq
c (UF̄ ,F) in Theo-

rem 4.2.9. If U is a smooth curve, we have Sw(F) =
∑

x∈U\U Swx(F)[x] by
Lemma 4.3.6. Thus the formula (0.3) is nothing other than the Grothendieck-
Ogg-Shafarevich formula [14], [26]. As a generalization of the Hasse-Arf the-
orem (Lemma 4.3.6), we state Conjecture 4.3.7 asserting that we do not need
⊗ZQ in the definition of the Swan class. We prove a part of Conjecture 4.3.7
in dimension 2 (Corollary 5.1.7.1).

The profound insight that the wild ramification gives rise to invariants as
0-cycle classes supported on the ramification locus is due to S. Bloch [4] and is
developed by one of the authors in [17], [18]. Since a covering ramifies along a
divisor in general, it is naturally expected that the invariants defined as 0-cycle
classes should be computable in terms of the ramification at the generic points
of irreducible components of the ramification divisor. For the log Lefschetz
class (Γσ,ΔV )log, we give such a formula (3.31) in Lemma 3.4.11. For the
Swan class of a sheaf of rank 1, we state Conjecture 5.1.1 in this direction
and prove it assuming dimU ≤ 2 in Theorem 5.1.5. We expect that the log
filtration by ramification groups defined in [3] should enable us to compute the
Swan classes of sheaves of arbitrary rank.1

In a subsequent paper, we plan to study ramification of schemes over a
discrete valuation ring and prove an analogue of Grothendieck-Ogg-Shafarevich
formula for the Swan conductor of cohomology (cf. [1], [2]). In p-adic setting,
the relation between the Swan conductor and the irregularities are studied in
[6], [7], [23] and [33]. The relation between the Swan classes defined in this
paper and the characteristic varieties of D-modules defined in [5] should be
investigated.2

1Added in Proof. See T. Saito, Wild ramification and the characteristic cycle of an �-adic
sheaf (preprint arXiv:0705.2799).

2Added in Proof. See T. Abe, Comparison between Swan conductors and characteristic
cycles (preprint).
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In Section 1, we recall a log product construction in [20]. In Section 2, we
prove a Lefschetz trace formula Theorem 2.3.4 for algebraic correspondences
on open varieties, under a certain assumption. In Section 3, we define and
study the map (0.1) and prove the trace formula (0.2) in Proposition 3.2.4. In
Section 4, we define the Swan class of an �-adic sheaf and prove the formula
(0.3) in Theorem 4.2.9. In Section 5, we compare the Swan class in rank 1 case
with an invariant defined in [18]. We also compare the formula (0.3) with a
formula of Laumon in dimension 2.
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Notation. In this paper, we fix a base field F . A scheme means a
separated scheme of finite type over F unless otherwise stated explicitly. For
schemes X and Y over F , the fiber product over F will be denoted by X × Y .

The letter � denotes a prime number invertible in F .
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1. Log products

In Section 1.1, we introduce log products and establish elementary prop-
erties. In Section 1.2, we define and study admissible automorphisms.

1.1. Log blow-up and log product. We introduce log blow-ups and log
products with respect to families of Cartier divisors.

Definition 1.1.1. Let F be a field and let X and Y be separated schemes
of finite type over F . Let D = (Di)i∈I be a finite family of Cartier divisors of
X and E = (Ei)i∈I be a finite family of Cartier divisors of Y indexed by the
same finite set I.

For i ∈ I, let (X × Y )′i → X × Y be the blow-up at Di × Ei ⊂ X × Y

and let (X × Y )∼i ⊂ (X × Y )′i be the complement of the proper transforms of
Di × Y and X × Ei.

1. We define the log blow-up

p : (X × Y )′ −−−→ X × Y,(1.1)

more precisely denoted by ((X,D) × (Y, E))′, to be the fiber product∏
i∈IX×Y

(X × Y )′i → X × Y

of (X × Y )′i (i ∈ I) over X × Y .
2. Similarly, we define the log product

(X × Y )∼ ⊂ (X × Y )′,(1.2)

or more precisely denoted by ((X,D) × (Y, E))∼, to be the fiber product∏
i∈IX×Y

(X × Y )∼i → X × Y of (X × Y )∼i (i ∈ I) over X × Y .
3. If X = Y and D = E , we call (X ×X)∼ the log self product of X with

respect to D. By the universality of blow-up, the diagonal map Δ : X → X×X

induces an immersion
X → (X × X)∼

called the log diagonal map.

Locally on X and Y , the log blow-up, log self-product and the log diagonal
maps are described as follows.

Lemma 1.1.2. Let the notation be as in Definition 1.1.1. Assume that
X = Spec A and Y = Spec B are affine and that the Cartier divisors Di are
defined by ti ∈ A and Ei are defined by si ∈ B respectively.

1. The log product (X × Y )′ is the union of

Spec
A ⊗F B[Ui (i ∈ I1), Vj (j ∈ I2)]

(ti ⊗ 1 − Ui(1 ⊗ si) (i ∈ I1), 1 ⊗ sj − Vj(tj ⊗ 1) (j ∈ I2))
(1.3)

for decompositions I = I1 � I2.
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2. The log product (X × Y )∼ is given by

Spec A ⊗F B[U±1
i (i ∈ I)]/(ti ⊗ 1 − Ui(1 ⊗ si) (i ∈ I))(1.4)

3. Assume further that A = B, Di = Ei and ti = si for each i ∈ I. Then
in the notation (1.4), the log diagonal map Δ : X → (X × X)∼ is defined by
the map

A ⊗F A[U±1
i (i ∈ I)]/(ti ⊗ 1 − Ui(1 ⊗ ti) (i ∈ I)) → A(1.5)

sending a ⊗ 1 and 1 ⊗ a to a ∈ A and Ui to 1 for i ∈ I.

Proof. For each i ∈ I, the Cartier divisors Di × Y and X ×Ei are locally
defined by a regular sequence. Thus we obtain 1. The rest is clear from this
and the definition.

For the sake of readers familiar with log schemes, we recall an intrinsic
definition using log structures given in [20]. The Cartier divisors D1, . . . , Dm

define a log structure MX on X. In the notation in Lemma 1.1.2, the log
structure MX is defined by the chart Nm → A sending the standard basis to
t1, . . . , tm. The local chart Nm → A induces a map Nm → Γ(X, MX/O×

X) of
monoids. Similarly, the Cartier divisors E1, . . . , Em defines a log structure on
Y and a map Nm → Γ(Y, MY /O×

Y ). Then, the log product (X×Y )∼ represents
the functor attaching to an fs-log scheme T over F the set of pairs (f, g) of
morphisms of log schemes f : T → X and g : T → Y over F such that the
diagram

Nm −−−→ Γ(X, MX/O×
X)⏐⏐� ⏐⏐�

Γ(Y, MY /O×
Y ) −−−→ Γ(T, MT /O×

T )

is commutative. The log diagonal Δ : X → (X ×X)∼ corresponds to the pair
(id, id).

The log product satisfies the following functoriality. Let X, X ′, Y and
Y ′ be schemes over F and D = (Di)i∈I , D′ = (D′

i)i∈I , E = (Ej)j∈J , and
E ′ = (E′

j)j∈J be families of Cartier divisors of X, X ′, Y and of Y ′ respectively.
Let f : X → Y and g : X ′ → Y ′ be morphisms over F and let eij ≥ 0, (i, j) ∈
I × J be integers satisfying f∗Ej =

∑
i∈I eijDi and f∗E′

j =
∑

i∈I eijD
′
i for

j ∈ J . Then, the maps f and g induces a map (f × g)∼ : (X × X ′)∼ →
(Y × Y ′)∼. If Y = Y ′ and E = E ′, we define (X ×Y X ′)∼, or more precisely
((X,D) ×(Y,E) (X ′,D′))∼, to be the fiber product (X × X ′)∼ ×(Y ×Y )∼ Y with
the log diagonal Y → (Y × Y )∼.

Lemma 1.1.3. Let F be a field and n ≥ 1 be an integer. Let Y be a
separated scheme over F . Let L be an invertible OY -module and μ : L⊗n → OY

be an injection of OY -modules. We define an OY -algebra A =
⊕n−1

i=0 L⊗i with
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the multiplication defined by μ : L⊗n → OY and put X = SpecA. Let E be
the Cartier divisor of Y defined by IE = Im(L⊗n → OY ) and D be the Cartier
divisor of X defined by LOX . Let (X ×Y X)∼ be the log self product defined
with respect to D and E.

We define an action of the group scheme μn = SpecF [t]/(tn−1) on X over
Y by the multiplication by t on L. We consider the action of μn on (X×Y X)∼

by the action on the first factor X.
Then, by the second projection (X ×Y X)∼ → X, the scheme (X ×Y X)∼

is a μn-torsor on X. Further the log diagonal map X → (X ×Y X)∼ induces
an isomorphism μn × X → (X ×Y X)∼.

Proof. Since the question is local on Y , it is reduced to the case where
Y = A1 = Spec F [T ] and μ send a basis Sn of L⊗n to T . Then we have
X = A1 = Spec F [S] and the map X → Y is given by T 
→ Sn. Then,
by Lemma 1.1.2.2, we have (Y × Y )∼ = Spec F [T, T ′, U±1]/(T ′ − UT ) =
Spec F [T, U±1], (X ×X)∼ = Spec F [S, S′, V ±1]/(S′ − V S) = Spec F [S, V ±1],
and the map (X × X)∼ → (Y × Y )∼ is given by T 
→ Sn and U 
→ V n. Since
the log diagonal Y → (Y × Y )∼ is defined by U = 1, we have (X ×Y X)∼ =
Spec F [S, V ±1]/(V n − 1). Thus the assertion is proved.

Let F be a field and X be a smooth scheme purely of dimension d

over F . In this paper, we say a divisor D of X has simple normal cross-
ings if the irreducible components Di (i ∈ I) are smooth over F and, for
each subset J ⊂ I, the intersection

⋂
i∈J Di is smooth purely of dimension

d − |J | over F . In other words, Zariski locally on X, there is an étale map to
Ad

F = Spec F [T1, . . . , Td] such that D is the pull-back of the divisor defined by
T1 · · ·Tr for some 0 ≤ r ≤ d. If Di is an irreducible component, Di is smooth
and

⋃
j �=i(Di ∩ Dj) is a divisor of Di with simple normal crossings.

Let X be a smooth scheme over a field F and D be a divisor of X with
simple normal crossings. Let Di (i ∈ I) be the irreducible components of D.
We consider the log blow-up p : (X ×X)′ → X ×X with respect to the family
Di (i ∈ I) of irreducible components of D, defined in Definition 1.1.1. Let
D(1)′ ⊂ (X × X)′ and D(2)′ ⊂ (X × X)′ be the proper transforms of D(1) =
D ×X and of D(2) = X ×D respectively. Let Ei = (X ×X)′ ×X×X (Di ×Di)
be the exceptional divisors and E =

⋃
i Ei ⊂ (X × X)′ be the union.

The log blow-up p : (X × X)′ → X × X is used in [10] and in [25] in the
study of cohomology of open varieties. For an irreducible component Di of D,
the log blow-up (Di × Di)′ → Di × Di is defined with respect to the family
Di ∩ Dj , j �= i of Cartier divisors.

Lemma 1.1.4. Let X be a smooth scheme over F , D be a divisor of
X with simple normal crossings and U = X \ D be the complement. Let
p : (X × X)′ → X × X be the log blow-up with respect to the family of irre-
ducible components of D.
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1. The scheme (X × X)′ is smooth over F . The complement (X × X)′ \
(U ×U) = D(1)′ ∪D(2)′ ∪E is a divisor with simple normal crossings. The log
product (X × X)∼ is equal to the complement

(X × X)′ \ (D(1)′ ∪ D(2)′).

2. Let Di be an irreducible component of D. The projection Ei → Di×Di

induces a map Ei → (Di × Di)′ and further a map E◦
i = Ei ∩ (X × X)∼ →

(Di × Di)∼. We have a canonical isomorphism

Ei −−−→ P(NDi×Di/X×X) ×Di×Di
(Di × Di)′(1.6)

to the pull-back of the P1-bundle P(NDi×Di/X×X) = Proj(S•NDi×Di/X×X)
associated to the conormal sheaf NDi×Di/X×X .

We identify Ei with P(NDi×Di/X×X)×Di×Di
(Di×Di)′ by the isomorphism

(1.6). Then the open subscheme E◦
i ⊂ Ei is the complement of the two disjoint

sections (Di × Di)∼ → P(NDi×Di/X×X) ×Di×Di
(Di × Di)∼ defined by the

surjections NDi×Di/X×X → NDi×Di/Di×X and NDi×Di/X×X → NDi×Di/X×Di
.

Proof. 1. It follows immediately from the definition and the description
in Lemma 1.1.2.

2. Clear from the definition.

Corollary 1.1.5. Let the notation be as in Lemma 1.1.4. Let Di be an
irreducible component of D and let Di → (Di ×Di)∼ be the log diagonal map.
Then the isomorphism (1.6) induces an isomorphism

E◦
i,Di

= E◦
i ×(Di×Di)∼ Di −−−→ Gm,Di

.(1.7)

The section Di → E◦
i,Di

induced by the log diagonal X → (X×X)∼ is identified
with the unit section Di → Gm,Di

.

Proof. The restrictions of the conormal sheaf NDi×Di/X×X to the diag-
onal Di ⊂ Di × Di is the direct sum of the restrictions NDi×Di/Di×X |Di

and
NDi×Di/X×Di

|Di
. Further the restrictions NDi×Di/Di×X |Di

and NDi×Di/X×Di
|Di

are canonically isomorphic to NDi/X . Hence we have a canonical isomorphism
P(NDi×Di/X×X) ×Di×Di

Di → P1
Di

and the assertion follows from Lemma
1.1.4.2.

Proposition 1.1.6. Let X be a separated smooth scheme purely of di-
mension d over F and U = X \D be the complement of a divisor D =

⋃
i∈I Di

with simple normal crossings. Let Y be a separated scheme over F and V =
Y \ B be the complement of a Cartier divisor B. We consider a Cartesian
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diagram

U
⊂−−−→ X

f

⏐⏐� ⏐⏐�f̄

V
⊂−−−→ Y.

(1.8)

We put f̄∗B =
∑

i∈I eiDi.

1. Let (X × X)∼ be the log product with respect to the family (Di)i∈I of
irreducible components and (Y ×Y )∼ be the log product with respect to B. Let
(X ×Y X)∼ = (X ×X)∼ ×(Y ×Y )∼ Y be the inverse image of the diagonal. We
keep the notation in Corollary 1.1.5. Let Di be an irreducible component of D.
We identify E◦

i,Di
= E◦

i ×(Di×Di)∼ Di with Gm,Di
by the isomorphism (1.7).

Then the intersection E◦
i,Di

∩ (X ×Y X)∼ is a closed subscheme of the
subscheme μei,Di

⊂ Gm,Di
of ei-th roots of 1.

2. The closure U ×V U in the log product (X × X)′ satisfies the equality

U ×V U ∩ D(1)′ = U ×V U ∩ D(2)′(1.9)

of the underlying sets.

Proof. 1. The assertion is local on Di ⊂ (Di × Di)∼. Hence, we may
assume that X = Spec A is affine and that the divisor Dk is defined by tk ∈ A

for k ∈ I. We may also assume that the Cartier divisor B of Y is defined by
a function s. Then, we have f∗s = v

∏
k∈I tek

k for a unit v ∈ A×. We identify
(X × X)∼ = Spec A ⊗F A[U±1

k (k ∈ I)]/(tk ⊗ 1 − Uk(1 ⊗ tk) (k ∈ I)) as in
(1.5). Then on the closed subscheme (X ×Y X)∼ ⊂ (X × X)∼, we have an
equation

v ⊗ 1
1 ⊗ v

∏
k∈I

U ek

k = 1.

On the log diagonal Di ⊂ (Di × Di)∼, we have v ⊗ 1 = 1 ⊗ v and Uk = 1 for
k ∈ I \ {i}. Since the coordinate of the Gm-bundle Ei,Di

is given by Ui, the
assertion follows.

2. It suffices to show the equality Γ∩D(1)′ = Γ∩D(2)′ for any integral closed
subscheme Γ ⊂ U ×V U . We regard Γ as a closed subscheme of (X ×X)′ with
an integral scheme structure and let p1, p2 : Γ → X denote the compositions
with the projections. We consider the Cartier divisors p∗1Di and p∗2Di of Γ. We
also consider the Cartier divisors (Di × X)′ ∩ Γ and (X × Di)′ ∩ Γ.

By the Cartesian diagram (1.8), we have ei > 0 in X ×Y B =
∑

i∈I eiDi

for all i. Since Γ ⊂ U ×V U , the closure Γ is a closed subscheme of the
pull-back (X × X)′ ×Y ×Y Y of the diagonal. Hence, we have an equality∑

i eip
∗
1Di =

∑
i eip

∗
2Di of Cartier divisors of Γ. Thus, we have an equality
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∑
i ei(Di × X)′ ∩ Γ =

∑
i ei(X × Di)′ ∩ Γ. Since ei > 0 for all i, we obtain

Γ ∩ D(1)′ =
⋃
i

(Di × X)′ ∩ Γ =
⋃
i

(X × Di)′ ∩ Γ = Γ ∩ D(2)′.

We consider tamely ramified coverings.

Definition 1.1.7. 1. Let K be a complete discrete valuation field. We say
a finite separable extension L of K is tamely ramified if the ramification index
eL/K is invertible in the residue field and if the extension of the residue field
is separable.

2. Let
U

⊂−−−→ X

f

⏐⏐� ⏐⏐�f̄

V
⊂−−−→ Y

be a Cartesian diagram of locally noetherian normal schemes. We assume that
Y is regular, V is the complement of a divisor with simple normal crossings
and that U is a dense open subscheme of X. We also assume that the map
f : U → V is finite étale and f̄ : X → Y is quasi-finite.

We say f̄ : X → Y is tamely ramified if, for each point ξ ∈ X \ U such
that OX,ξ is a discrete valuation ring, the extension of the complete discrete
valuation fields Frac(ÔX,ξ) over Frac(ÔY,f̄(ξ)) is tamely ramified.

Lemma 1.1.8. Let
U

⊂−−−→ X

h

⏐⏐� ⏐⏐�h̄

V ′ ⊂−−−→ Y ′

g

⏐⏐� ⏐⏐�ḡ

V
⊂−−−→ Y

be a Cartesian diagram of separated normal schemes of finite type over F . We
assume that X and Y are smooth over F , U ⊂ X and V ⊂ Y are the com-
plements of divisors with simple normal crossings and V ′ is a dense open sub-
scheme of Y ′. We also assume that g : V ′ → V is finite étale and ḡ : Y ′ → Y

is quasi-finite and tamely ramified.
Then, in (X×X)∼, the intersection of the closure U ×V U \ U ×V ′ U with

the log diagonal X ⊂ (X × X)∼ is empty.

Proof. The assertion is étale local on X and on Y . We put f =
g ◦ h and f̄ = ḡ ◦ h̄. Let x̄ be a geometric point of X and ȳ = f̄(x̄) be
its image. We take étale maps Y → Ad

F = Spec F [T1, . . . , Td] and X → An
F =
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Spec F [S1, . . . , Sn] such that V = Y ×Ad
F

Spec F [T1, . . . , Td][(T1 · · ·Tr)−1] and
U = X ×An

F
Spec F [S1, . . . , Sn][(S1 · · ·Sq)−1]. Since the assertion is étale local

on Y , we may assume that there exist an integer e ≥ 1 invertible in F and
a surjection Ye = Y ×Ad

F
Spec F [T1, . . . , Td][T

1/e
1 , . . . , T

1/e
r ] → Y ′ over Y by

Abhyankar’s lemma. Further we may assume that there exists a surjection
Xe = X ×An

F
Spec F [S1, . . . , Sn][S1/e

1 , . . . , S
1/e
r ] → X ×Y ′ Ye over X.

We put Ve = V ×Y Ye and Ue = U ×X Xe. Then, (Xe×Xe)∼ → (X×X)∼

is finite, Xe → X is surjective and the inverse image of U ×V U \U ×V ′ U is a
subset of Ue ×V Ue \Ue ×Ve

Ue. Hence, it is reduced to the case where X → Y ′

is Xe → Ye and further to the case Xe = Ye. Since (Ye ×Y Ye)∼ → Ye is finite
étale as in Lemma 1.1.3, the assertion is proved.

1.2. Admissible automorphisms. Let X be a smooth scheme over F , D be
a divisor of X with simple normal crossings and U = X \D be the complement.
We study an automorphism of X stabilizing U .

Definition 1.2.1. Let X be a smooth scheme over F , D be a divisor of
X with simple normal crossings and U = X \ D be the complement. Let
D1, . . . , Dm be the irreducible components of D.

Let σ be an automorphism of X over F satisfying σ(U) = U . We say σ

is admissible if, for each i = 1, . . . , m, we have either σ(Di) = Di or σ(Di) ∩
Di = ∅.

We define the blow-up XΣ → X associated to the subdivision by baricen-
ters and show that the induced action on XΣ is admissible.

Definition 1.2.2. Let X be a smooth scheme purely of dimension d over F ,
D be a divisor of X with simple normal crossings and let D1, . . . , Dm be the
irreducible components of D. For a subset I ⊂ {1, . . . , m}, we put DI =⋂

i∈I Di. We put X = X0 and, for 0 ≤ i < d, we define Xi+1 → Xi to be the
blow-up at the proper transforms of DI for |I| = d − i inductively. We call
XΣ = Xd → X the blow-up associated to the subdivision by baricenters.

Lemma 1.2.3. Let X be a smooth scheme over F , D be a divisor of X

with simple normal crossings and let D1, . . . , Dm be the irreducible components
of D. Let U = X \ D be the complement and let p : XΣ → X be the blow-up
associated to the subdivision by baricenters.

1. The scheme XΣ is smooth over F and the complement D′ = XΣ \ U

is a divisor with simple normal crossings. For an irreducible component D′
j of

D′, we put I = {i|D′
j ⊂ p−1(Di), 1 ≤ i ≤ m} and k = |I|. Then there exists an

irreducible component Z of DI satisfying the following condition. Let Z ′ ⊂ Xk

be the proper transform of Z in Xk and EZ ⊂ Xk+1 be the inverse image of Z ′.
Then D′

j is the proper transform of EZ .
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2. For an automorphism σ of X over F satisfying σ(U) = U , the induced
action of σ on XΣ is admissible.

Proof. 1. It suffices to study étale locally on X. Hence, it suffices to
consider the case where X = Ad = Spec F [T1, . . . , Td] and D is defined by
T1 · · ·Tm = 0. Then XΣ is obtained by patching Spec Aϕ where

Aϕ = F

[
Tϕ(1),

Tϕ(2)

Tϕ(1)
, . . . ,

Tϕ(m)

Tϕ(m−1)
, Tm+1, . . . , Td

]

for bijections ϕ : {1, . . . , m} → {1, . . . , m}. The assertion follows easily from
this.

2. Let D′
1, . . . , D′

m′ be the irreducible components of D′ and Σ =
{I ⊂ {1, . . . , m}} be the power set of {1, . . . , m}. We define a map ψ :
{1, . . . , m′} → Σ by putting ψ(j) = {i|D′

j ⊂ p−1(Di), 1 ≤ i ≤ m}. Then by 1,
for irreducible components D′

j �= D′
j′ such that D′

j ∩ D′
j′ �= ∅, we have either

ψ(j) � ψ(j′) or ψ(j) � ψ(j′). The map ψ : {1, . . . , m′} → Σ is compatible
with the natural actions of σ. Therefore, if σ(D′

j) = D′
σ(j) �= D′

j , we have
|ψ(σ(j))| = |σ(ψ(j))| = |ψ(j)| and σ(D′

j) ∩ D′
j = ∅.

We define the log fixed part for an admissible automorphism.

Lemma 1.2.4. Let X be a separated and smooth scheme of finite type over
F , D be a divisor of X with simple normal crossings and U = X \ D be the
complement. Let σ be an admissible automorphism of X over F satisfying
σ(U) = U . Then, the closed immersion (1, σ) : U → U × U is extended to a
closed immersion

Γ̃σ : X \ ⋃
i:σ(Di) �=Di

Di −−−→ (X × X)∼.(1.10)

Proof. By the assumption that σ is admissible, the closed immersion
(1, σ) : X → X ×X induces a closed immersion X → (X ×X)′. Let Γ′

σ denote
X regarded as a closed subscheme of (X × X)′ by this immersion. Then, it
induces an isomorphism X \ ⋃

i:σ(Di) �=Di
Di → Γ′

σ ∩ (X × X)∼.

Definition 1.2.5. Let X be a separated and smooth scheme of finite type
over F , D be a divisor of X with simple normal crossings and U = X \ D be
the complement. Let σ be an admissible automorphism of X over F satisfying
σ(U) = U and let Γ̃σ ⊂ (X × X)∼ denote the image of the closed immersion
Γ̃σ : X \ ⋃

i:σ(Di) �=Di
Di → (X × X)∼. We call the closed subscheme

Xσ
log = ΔX ∩ Γ̃σ = X ×(X×X)∼ Γ̃σ(1.11)

of X the log σ-fixed part.

Lemma 1.2.6. Let X be a separated and smooth scheme of finite type
over F , D be a divisor of X with simple normal crossings and U = X \ D be
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the complement. Let σ be an admissible automorphism of X over F satisfying
σ(U) = U .

1. The closed subscheme Xσ
log ⊂ X is a closed subscheme of the σ-fixed

part Xσ = X ×X×X↙Γσ
X.

2. Let k ∈ Z be an integer and assume σk is also admissible. Then, we
have an inclusion

Xσ
log ⊂ Xσk

log

of closed subschemes.

3. Assume Uσ = ∅ and σ is of finite order invertible in F . Then, we have

Xσ
log = ∅.

Proof. 1. Clear from the commutative diagram

X \ ⋃
i:σ(Di) �=Di

Di
Γσ−−−→ (X × X)∼

∩
⏐⏐� ⏐⏐�
X

(1,σ)−−−→ X × X.

2. Since Xσ
log = Xσ−1

log and X id
log = X, we may assume k ≥ 1. Let Jσ

and Jσk be the ideals of OX defining the closed subschemes Xσ
log and Xσk

log

respectively. By 1, it is sufficient to show the inclusion Jσk,x ⊂ Jσ,x of the ideals
of OX,x for each x ∈ Xσ. Let x be a point of Xσ. The ideal Jσ,x is generated by
σ(a)−a and σ(b)/b−1 for a ∈ OX,x and b ∈ OX,x∩ j∗O

×
U,x where j : U → X is

the open immersion. Similarly, Jσk,x is generated by σk(a)−a and σk(b)/b− 1
for a ∈ OX,x and b ∈ OX,x ∩ j∗O

×
U,x. Since σ is admissible, we have σ(b)/b ∈

O×
X,x for b ∈ OX,x∩j∗O

×
U,x. We have σk(a)−a =

∑k−1
i=0 (σ(σi(a))−σi(a)) ∈ Jσ,x

and σk(b)/b − 1 =
∑k−1

i=0 (σ(σi(b))/σi(b) − 1)(σi(b)/b) ∈ Jσ,x for a ∈ OX,x and
b ∈ OX,x ∩ j∗O

×
U,x. Hence, we have Jσk,x ⊂ Jσ,x.

3. By 1, it is sufficient to show Jσ,x = OX,x for each closed point x ∈ Xσ.
Let x be a closed point in Xσ and e be the order of σ. Since the question
is étale local, we may assume F contains a primitive e-th root of unity. We
take a regular system t1, . . . , td of parameters of OX,x such that t1 · · · tr de-
fines D at x. By replacing ti’s if necessary, we may assume there is a unique
e-th root ζi of unity such that σ(ti) ≡ ζiti mod m2

x for each ti. Replacing ti by∑e
k=1 ζ−k

i σk(ti)/e, we may assume σ(ti) = ζiti. Then, the ideal Jσ,x is gener-
ated by ζi−1 for 1 ≤ i ≤ r and (ζi−1)ti for r < i ≤ d. Since ζi−1 is invertible
unless ζi = 1, we have either Jσ,x = OX,x or Jσ,x = ((ζi − 1)ti, (r < i ≤ d)). By
the assumption that Uσ = ∅, we have Jσ,x = OX,x and the assertion follows.

Corollary 1.2.7. Let the notation be as in Lemma 1.2.6. Assume σ is
of finite order e and σj is admissible for each j ∈ Z.
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1. If j is prime to e, we have

Xσ
log = Xσj

log.

2. If Uσ = ∅ and if e is not a power of characteristic of F , then we have

Xσ
log = ∅.

Proof. Clear from Lemma 1.2.6.2 and 3.

2. A Lefschetz trace formula for open varieties

In preliminary subsections 2.1 and 2.2, we recall some facts on the cycle
class map and a lemma of Faltings on the cohomology of the log self product
respectively. In Section 2.3, we prove a Lefschetz trace formula, Theorem 2.3.4,
for open varieties.

In this section, we keep the notation that F denotes a field and � denotes
a prime number invertible in F .

2.1. Complements on cycle maps. We recall some facts on cycle maps. Let
X be a smooth scheme over F and i : Y → X be a closed immersion of codi-
mension d. Then, the cycle class [Y ] ∈ H2d

Y (X, Z�(d)) and the corresponding
map Z� → Ri!Z�(d)[2d] are defined in [13].

Lemma 2.1.1. Let X be a smooth scheme over F and j : U → X be an
open immersion. Let i : Y → U be a closed immersion and assume that the
composition i′ = j ◦ i : Y → X is also a closed immersion. Assume that Y is
of codimension d in X. Then, for an integer q ∈ Z, the composition

Hq
c (X, Z�)

i′∗−−−→ Hq
c (Y, Z�)

i∗−−−→ Hq+2d
c (U, Z�(d))

is the cup-product with the image of the cycle class [Y ] ∈ H2d
Y (X, Z�(d)) by the

map H2d
Y (X, Z�(d)) = H2d

Y (X, j!Z�(d)) → H2d(X, j!Z�(d)).

Proof. The cycle class [Y ] ∈ H2d
Y (X, Z�(d)) defines a map Z� →

Ri′!Z�(d)[2d]. The push-forward map i∗ : Hq
c (Y, Z�) → Hq+2d

c (U, Z�(d)) is
the composition of the map Hq

c (Y, Z�) → Hq+2d
Y ! (X, j!Z�(d)) induced by Z� →

Ri′!Z�(d)[2d] with the canonical map Hq+2d
Y ! (X, j!Z�(d)) → Hq+2d

c (U, Z�(d)) in
the notation of [13, 1.2.5, 2.3.1]. Hence the assertion follows.

Lemma 2.1.2. Let X and Y be smooth schemes purely of dimensions n

and m over F and f : X → Y be a morphism over F . Let Z be a closed
subscheme of Y of codimension d and put W = Z ×Y X. Then, the image of
the cycle class [Z] ∈ H2d

Z (Y, Z�(d)) by the pull-back map f∗ : H2d
Z (Y, Z�(d)) →

H2d
W (X, Z�(d)) is equal to the cycle class [f !(Z)] of the image f !(Z) of the Gysin

map f ! : CHm−d(Z) → CHn−d(W ).
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Proof. In the case f : X → Y is smooth, the assertion is in [13, Th. 2.3.8 (ii)].
By decomposing f : X → Y as the composition of the graph map X → X ×Y

with the projection X × Y → Y , we may assume f : X → Y is a closed
immersion. We prove this case using the deformation to normal cone.

Let (Y × A1)′ → Y × A1 be the blow-up at X × {0} and let Y ′ be the
complement of the proper transform of Y × {0} in (Y × A1)′. Let Z ′ be the
proper transform of Z × A1 in Y ′. The fiber Y ′ ×A1 {0} at 0 is naturally
identified with the normal bundle N = NX/Y of X in Y and Z ′×A1 {0} is also
identified with the normal cone C = CW Z of W = X ×Y Z in Z [12, Ch. 5.1].
Let f ′ : X × A1 → Y ′ denote the immersion and g : X → N be the 0-section.
We consider the commutative diagram

H2d
Z (Y, Z�(d)) 1∗

←−−− H2d
Z′ (Y ′, Z�(d)) 0∗

−−−→ H2d
C (N, Z�(d))

f∗
⏐⏐� f ′∗

⏐⏐� ⏐⏐�g∗

H2d
W (X, Z�(d)) 1∗

←−−− H2d
W×A1(X × A1, Z�(d)) 0∗

−−−→ H2d
W (X, Z�(d)).

The lower horizontal arrows are the same and are isomorphisms. In the upper
line, the images of the cycle class [Z ′] in the middle are the cycle classes [Z]
and [C] respectively by [13, Th. 2.3.8 (ii)], since Z ′ is flat over A1 ([12, B.6.7]).
Since f !(Z) is defined as g!(C) [12, Ch. 6.1 (1)], it is reduced to showing the
equality g∗([C]) = [g!(C)].

We put NW = N ×X W . Since C ⊂ NW , the pull-back g∗ : H2d
C (N, Z�(d))

→ H2d
W (X, Z�(d)) is the composition

H2d
C (N, Z�(d)) → H2d

NW
(N, Z�(d))

g∗

→ H2d
W (X, Z�(d)).

Thus it is reduced to showing that the diagram

CHm−d(NW ) cl−−−→ H2d
NW

(N, Z�(d))

g!

⏐⏐� ⏐⏐�g∗

CHn−d(W ) −−−→
cl

H2d
W (X, Z�(d))

is commutative. Let p : N → X be the projection. Then the maps g! and g∗

are the inverse of the pull-back map p∗. Hence it is reduced to the case where
f = p is smooth.

2.2. Cohomology of the log self products. We recall a lemma of Faltings on
the cohomology of the log self products. To state it, we introduce a notation.
Let Y be a smooth scheme over F and D1, D2 be relatively prime divisors of
Y such that the sum D1 ∪ D2 has simple normal crossings. Let
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Y \ (D1 ∪ D2)
k2−−−→ Y \ D1

k1

⏐⏐� j1

⏐⏐�
Y \ D2

j2−−−→ Y

be open immersions. Let � be a prime number invertible in F . Then, the base
change map

j1!Rk2∗Z� −−−→ Rj2∗k1!Z�(2.1)

is an isomorphism. We will identify j1!Rk2∗Z� = Rj2∗k1!Z� by the isomorphism
(2.1). We define

Hq(Y, D1!, D2∗, Z�) = Hq(Y, D2∗, D1!, Z�)

to be Hq(Y, j1!Rk2∗Z�) = Hq(Y, Rj2∗k1!Z�). If D1 or D2 is empty, we write sim-
ply Hq(Y, D1!, ∅∗, Z�) = Hq(Y, D1!, Z�) or Hq(Y, D2∗, ∅!, Z�) = Hq(Y, D2∗, Z�)
respectively. With this convention, we have Hq(Y, D1!, Z�) = Hq

c (Y − D1, Z�),
if Y is proper, and Hq(Y, D2∗, Z�) = Hq(Y − D2, Z�).

Let X be a smooth scheme of finite type over a field F , D be a divisor
of X with simple normal crossings and U = X \ D be the complement. We
consider a commutative diagram

(X × X)′ \ D(2)′

j′
2

��������������
(X × X)∼

k′
2���������������

k′
1��

(X × X)′

p

��

(X × X)′ \ D(1)′
j′
1��

X × U
j2

���������������

e1

��

U × U

k2���������������

k1��

j̃

��

X × X U × X.
j1��

e2

��

(2.2)

All the arrows except the log blow-up p : (X × X)′ → X × X are open
immersions. The four faces consisting of open immersions are Cartesian. Let
� be a prime number invertible in F . The canonical maps j̃!Z� → Z� → Rj̃∗Z�

induce maps

(j′1e2)!Rk2∗Z�

= j′1!Rk′
2∗j̃!Z� −−−→ j′1!Rk′

2∗Z�

= Rj′2∗k
′
1!Z� −−−→ Rj′2∗k

′
1!Rj̃∗Z�

= R(j′2e1)∗k1!Z�.

(2.3)

The equalities refer to the identification by (2.1).
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Lemma 2.2.1 (Faltings). Let X be a smooth scheme over F , D be a di-
visor of X with simple normal crossings and p : (X × X)′ → X × X be the
blow-up (1.1). The maps (2.3) induce isomorphisms

j1!Rk2∗Z�

= Rp∗(j′1e2)!Rk2∗Z� −−−→ Rp∗j′1!Rk′
2∗Z� −−−→ Rp∗R(j′2e1)∗k1!Z�

= Rj2∗k1!Z�

(2.4)

and the composition is the isomorphism (2.1).

For the sake of completeness, we recall the proof in [10].

Proof. Since j1 = p ◦ j′1 ◦ e2, j2 = p ◦ j′2 ◦ e1 and p is proper, we have
j1!Rk2∗Z� = Rp∗(j′1e2)!Rk2∗Z� and Rp∗R(j′2e1)∗k1!Z� = Rj2∗k1!Z�. It is clear
that the composition is the isomorphism (2.1). Thus, it is sufficient to show
that the first arrow

Rp∗(j′1e2)!Rk2∗Z� −−−→ Rp∗j′1!Rk′
2∗Z�(2.5)

is an isomorphism. Since the question is étale local on X × X, it is reduced
to the case where X = Spec F [T1, . . . , Td] and D is defined by T1 · · ·Tr = 0.
Further by the Künneth formula, it is reduced to the case where X = A1 =
Spec F [T ] and D is defined by T = 0. In this case, by the proper base
change theorem, the assertion follows from Hq(A1

F̄
, j!Z�) = 0 for q ∈ Z where

j : A1 \ {0} → A1 is the open immersion.

Corollary 2.2.2 (Faltings). Let the notation be as in Lemma 2.2.1. If
X is proper over F , the maps

Hq(XF̄ × XF̄ , D
(1)

F̄ !
, D

(2)

F̄∗, Z�(d))=Hq((X × X)′F̄ , (D(1)′∪E)F̄ !, D
(2)′
F̄∗ , Z�(d))

−→Hq((X × X)′F̄ , D
(1)′
F̄ !

, D
(2)′
F̄∗ , Z�(d))

−→Hq((X × X)′F̄ , D
(1)′
F̄ !

, (D(2)′ ∪ E)F̄∗, Z�(d))

are isomorphisms for q ∈ Z.

Proof. Clear from Lemma 2.2.1.

2.3. A Lefschetz trace formula for open varieties. Let F be a field, X be a
proper scheme over F and U be a dense open subscheme of X. Let Γ ⊂ U ×U

be a closed subscheme. Let p1, p2 : Γ → U denote the compositions of the
closed immersion i : Γ → U × U with the projections pr1, pr2 : U × U → U .

Lemma 2.3.1. Let X be a proper scheme over F . Let D be a closed
subscheme and U = X \D ⊂ X be the complement. Let Γ ⊂ U ×U be a closed
subscheme and Γ be the closure of Γ in X × X. We put D(1) = D × X and
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D(2) = X ×D. Then, the second projection p2 : Γ → U is proper if and only if
we have the inclusion

Γ ∩ D(1) ⊂ Γ ∩ D(2)(2.6)

of the underlying sets.

Proof. The projection p2 : Γ → U is proper if and only if Γ ∩ (X × U) =
Γ ∩ (U × U) = Γ. Taking the complement, it is equivalent to Γ ∩ D(2) =
Γ ∩ (D(1) ∪ D(2)). It is further equivalent to Γ̄ ∩ D(1) ⊂ Γ ∩ D(2).

In the following, we assume that U is smooth purely of dimension d, that
Γ is purely of dimension d and that p2 : Γ → U is proper. For a prime number
� invertible in F , we define an endomorphism Γ∗ of Hq

c (UF̄ , Z�) to be p1∗ ◦ p∗2
and consider the alternating sum

Tr(Γ∗ : H∗
c (UF̄ , Z�)) =

2d∑
q=0

(−1)qTr(Γ∗ : Hq
c (UF̄ , Z�)).

Since p2 is assumed proper, the pull-back p∗2 : Hq
c (UF̄ , Z�) → Hq

c (ΓF̄ , Z�)
is defined. We briefly recall the definition of the push-forward map p1∗ :
Hq

c (ΓF̄ , Z�) → Hq
c (UF̄ , Z�). Let f : U → Spec F and g : Γ → Spec F denote

the structural maps. Then the trace map Rg!Z�(d)[2d] → Z� induces the cycle
class map Z�(d)[2d] → Rg!Z�. Since U is smooth of dimension d, the cycle class
map for U induces an isomorphism Rp!

1Z�(d)[2d] → Rp!
1Rf !Z� → Rg!Z�. Thus,

we obtain a canonical map Z� → Rp!
1Z� and hence Rp1!Z� → Z� by adjunc-

tion. The map Rp1!Z� → Z� induces the push-forward map p1∗ : Hq
c (ΓF̄ , Z�) →

Hq
c (UF̄ , Z�).

We give another description of the map Γ∗ = p1∗ ◦ p∗2 using the cycle class
of Γ. We put Hq

!,∗(UF̄ × UF̄ , Z�(d)) = Hq(XF̄ × UF̄ , (j × id)!Z�(d)). By the
assumption that p2 : Γ → U is proper, Γ is closed in X × U and hence the
canonical maps

H2d
Γ (X × U, (j × id)!Z�(d)) → H2d

Γ (X × U, Z�(d)) → H2d
Γ (U × U, Z�(d))

are isomorphisms. Thus the cycle class [Γ] ∈ H2d
Γ (U ×U, Z�(d)) defines a class

[Γ] ∈ H2d(XF̄ × UF̄ , (j × id)!Z�(d)) = H2d
!,∗(UF̄ × UF̄ , Z�(d)). By the Künneth

formula and Poincaré duality, we have canonical isomorphisms⊕
q Hq

c (UF̄ , Q�) ⊗ H2d−q(UF̄ , Q�(d)) −−−→ H2d
!,∗(UF̄ × UF̄ , Q�(d))⏐⏐�⊕

q Hq
c (UF̄ , Q�) ⊗ Hom(Hq

c (UF̄ , Q�), Q�) −−−→ ∏2d
q=0 End Hq

c (UF̄ , Q�).

Lemma 2.3.2. Let Γ ⊂ U × U be a closed subscheme of dimension d.
Assume that p2 : Γ → U is proper. Then, by the canonical isomorphism
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H2d
!,∗(UF̄ × UF̄ , Q�(d)) → ∏2d

q=0 End Hq
c (UF̄ , Q�), the image of the cycle class

[Γ] is Γ∗.

Proof. It is sufficient to show the equality

p1∗p
∗
2α = pr1∗([Γ] ∪ pr∗2α)

in Hq
c (UF̄ , Q�) for an arbitrary integer q ∈ Z and α ∈ Hq

c (UF̄ , Q�). Let i : Γ →
U × U be the immersion and i′ : Γ → U × U → X × U be the composition.
Since p1∗p∗2α = pr1∗(i∗i′∗pr∗2α), it is reduced to showing the equality

i∗i
′∗β = [Γ] ∪ β

in Hq
c (UF̄ × UF̄ , Q�) for β ∈ Hq

c (XF̄ × UF̄ , Q�). By Lemma 2.1.1, the class
i∗i′∗β is the product with the class of Γ. Thus the assertion follows.

Lemma 2.3.3. Let U and V be connected separated smooth schemes of
finite type purely of dimension d over F . Let g : U → V be a proper and
generically finite morphism of constant degree [U : V ] over F . Then, for a
cohomology class Γ ∈ H2d

!,∗(VF̄ × VF̄ , Q�) =
∏2d

q=0 End Hq
c (VF̄ , Q�), we have

Tr(Γ∗ : H∗
c (VF̄ , Q�)) =

1
[U : V ]

Tr(((g × g)∗Γ)∗ : H∗
c (UF̄ , Q�)).(2.7)

Proof. Since g∗ : H∗
c (VF̄ , Q�) → H∗

c (UF̄ , Q�) is injective and g∗ ◦ g∗ is
the multiplication by [U : V ], it is sufficient to show that ((g × g)∗Γ)∗ is the
composition g∗ ◦ Γ∗ ◦ g∗. In other words, it suffices to show the equality

pr1∗(((g × g)∗Γ ∪ pr∗2α) = g∗(pr1∗(Γ ∪ pr∗2g∗α))

for q ∈ Z and α ∈ Hq
c (UF̄ , Q�). In the commutative diagram

U × U
pr2−−−→ U

1×g

⏐⏐� ⏐⏐�g

U × V
g×1−−−→ V × V −−−→

pr2
V

pr1

⏐⏐� ⏐⏐�pr1

U
g−−−→ V,

α lives on U in the northeast and Γ lives on V × V . Thus, by the projection
formula, we compute

pr1∗((g × g)∗Γ ∪ pr∗2α) = pr1∗((1 × g)∗(g × 1)∗Γ ∪ pr∗2α)

= pr1∗((g × 1)∗Γ ∪ (1 × g)∗pr∗2α) = pr1∗((g × 1)∗(Γ ∪ pr∗2g∗α))

= g∗pr1∗(Γ ∪ pr∗2g∗α).
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We prove a Lefschetz trace formula for open varieties.

Theorem 2.3.4. Let X be a proper and smooth scheme purely of dimen-
sion d over a field F and U be the complement of a divisor D with simple
normal crossings. Let Γ ⊂ U ×U be a closed subscheme purely of dimension d.
Let D(1)′, D(2)′ ⊂ (X × X)′ denote the proper transforms of D(1), D(2) respec-
tively and let Γ′ be the closure of Γ in (X × X)′. We assume that we have an
inclusion

Γ′ ∩ D(1)′ ⊂ Γ′ ∩ D(2)′(2.8)

of the underlying sets.
Then, the map p2 : Γ → U is proper and we have an equality

Tr(Γ∗ : H∗
c (UF̄ , Q�)) = deg (Γ′

,Δ′
X)(X×X)′ .(2.9)

The right-hand side is the intersection product in (X × X)′ of the closure Γ′

with the image Δ′
X of the log diagonal closed immersion Δ′ : X → (X × X)′.

Proof. First, we show the map p2 : Γ → U is proper. By the assumption
(2.8) Γ′ ∩D(1)′ ⊂ Γ′ ∩D(2)′, we have Γ′ ∩ (D(1)′ ∪E) ⊂ Γ′ ∩ (D(2)′ ∪E). Hence
we have (2.6) Γ ∩ D(1) ⊂ Γ ∩ D(2) and the assertion follows by Lemma 2.3.1.

Since the restriction of j1!Rk2∗Z�(d) on the diagonal X ⊂ X×X is j!Z�(d),
the pull-back map

Δ∗ : H2d
!,∗(UF̄ × UF̄ , Z�(d)) −→ H2d

c (UF̄ , Z�(d))

= H2d(XF̄ × XF̄ , j1!Rk2∗Z�(d)) = H2d(XF̄ , j!Z�(d))

by the diagonal is defined. Then, by Lemma 2.3.2 and by the standard argu-
ment (cf. [13, Prop. 3.3]) in the proof of Lefschetz trace formula, we have

Tr(Γ∗ : H∗
c (UF̄ , Q�)) = Tr(Δ∗([Γ])).(2.10)

In the notation introduced in the beginning of §2.2, we have

H2d
!,∗(UF̄ × UF̄ , Z�(d)) = H2d(XF̄ × XF̄ , D

(1)

F̄ !
, D

(2)

F̄∗, Z�(d))

and
H2d

c (UF̄ , Z�(d)) = H2d(XF̄ , DF̄ !, Z�).

The canonical map (X × X)′ → X × X induces an isomorphism Hq(XF̄ ×
XF̄ , D

(1)

F̄ !
, D

(2)

F̄∗, Z�(d)) → Hq((X × X)′
F̄
, (D(1)′ ∪ E)F̄ !, D

(2)′
F̄∗ , Z�(d)). Thus the

composition

H2d
!,∗(UF̄ × UF̄ , Z�(d)) = Hq(XF̄ × XF̄ , D

(1)

F̄ !
, D

(2)

F̄∗, Z�(d))

−→Hq((X × X)′F̄ , (D(1)′ ∪ E)F̄ !, D
(2)′
F̄∗ , Z�(d))(2.11)

−→Hq((X × X)′F̄ , D
(1)′
F̄ !

, D
(2)′
F̄∗ , Z�(d))

is an isomorphism by Corollary 2.2.2.
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We put Γ′ = Γ′\Γ′∩D(2)′. By the assumption (2.8), we have Γ′∩D(1)′ = ∅.
Thus the cycle class [Γ′] ∈ H2d((X × X)′

F̄
, D

(1)′
F̄ !

, D
(2)′
F̄∗ , Z�(d)) is defined. We

show that the arrow (2.11) sends [Γ] to [Γ′]. By Corollary 2.2.2, the map

H2d((X×X)′F̄ , D
(1)′
F̄ !

, D
(2)′
F̄∗ , Z�(d)) → H2d((X×X)′F̄ , D

(1)′
F̄ !

, (E∪D(2)′)F̄∗, Z�(d))

is an isomorphism. By this isomorphism, both [Γ′] and the image of [Γ] are
sent to [Γ]. Hence the arrow (2.11) sends [Γ] to [Γ′].

Since Δ′
X ∩ D(2)′ = ∅, the map Δ′∗ : Hq((X × X)′

F̄
, D

(2)′
F̄∗ , Z�(d)) →

Hq(XF̄ , Z�(d)) is defined. We consider the commutative diagram

[Γ]∈ H2d
!,∗(UF̄ × UF̄ , Z�(d)) Δ∗

−−−→ H2d
c (UF̄ , Z�(d))

↓ (2.11)

⏐⏐� ⏐⏐�
[Γ′]∈H2d((X × X)′

F̄
, D

(1)′
F̄ !

, D
(2)′
F̄∗ , Z�(d)) Δ′∗

−−−→ H2d(XF̄ , Z�(d))

↓
⏐⏐� ∥∥∥

[Γ′]∈ H2d((X × X)′
F̄
, D

(2)′
F̄∗ , Z�(d)) Δ′∗

−−−→ H2d(XF̄ , Z�(d))

↑
�⏐⏐ ∥∥∥

[Γ′]∈ H2d((X × X)′
F̄
, Z�(d)) Δ′∗

−−−→ H2d(XF̄ , Z�(d)).

(2.12)

As we have shown above, the arrow (2.11) sends [Γ] to [Γ′]. Since the middle
and the lower left vertical arrows send [Γ′] and [Γ′] to [Γ′] respectively, we have

Tr(Δ∗([Γ])) = Tr(Δ′∗([Γ′])).(2.13)

Since

Tr(Δ′∗([Γ′])) = deg (Γ′
,Δ′

X)(X×X)′ ,

the assertion follows from the equalities (2.10) and (2.13).

Remark 2.3.5. In Theorem 2.3.4, we can not replace the assumption (2.8)
Γ′ ∩ D(1)′ ⊂ Γ′ ∩ D(2)′ by a weaker assumption (2.6) Γ ∩ D(1) ⊂ Γ ∩ D(2)

as the following example shows. Let X = P1, U = A1, and n ≥ 1 be an
integer. Let f : U → U be the n-th power map and Γ ⊂ U × U be the
transpose Γ = {(x, y) ∈ U × U |x = yn} of the graph of f . Then, we have
Tr(Γ∗ : H∗

c (UF̄ , Z�)) = Tr(f∗ : H2
c (UF̄ , Z�)) = 1 while (Γ,Δ)(X×X)′ = n.

One can deduce a part of a conjecture of Deligne from Theorem 2.3.4
as follows. The conjecture of Deligne itself is proved assuming resolution of
singularities by Pink in [25] and proved unconditionally by Fujiwara in [11]
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using rigid geometry. In the proof below, we will not use rigid geometry or
assume resolution of singularities.3

We introduce some notation assuming F is a finite field. For a scheme over
F , let Fr denote the Frobenius endomorphism over F . Let U be a separated
smooth scheme of finite type of pure dimension d over F . Let Γ ⊂ U ×
U be a closed subscheme of dimension d and assume the composition p2 :
Γ → U with the projection is proper. For an integer n ≥ 0 and a prime
number � different from the characteristic of F , we consider the alternating
sum Tr(Fr∗nF Γ∗ : H∗

c (UF̄ , Q�)). Let in : Γ → U × U be the composition of the
immersion i : Γ → U × U with the endomorphism 1 × Frn of U × U . Let
Γn denote the scheme Γ regarded as a scheme over U × U by in. If the fiber
product Γn ×U×U ΔU is proper over F , the degree of the intersection product
(Γn,ΔU )U×U ∈ CH0(Γn ×U×U ΔU ) is defined.

Proposition 2.3.6 (cf. [11], [25]). Let U be a separated smooth scheme
of finite type of pure dimension d over a field F and � be a prime number
different from the characteristic of F . Let Γ ⊂ U × U be a closed subscheme
of dimension d. Assume the composition p2 : Γ → U with the projection is
proper. Then, we have the following.

1. The alternating sum Tr(Γ∗ : H∗
c (UF̄ , Q�)) is in Z[1p ] and is independent

of � invertible in F .

2. Assume F is a finite field. Then, there exists an integer n0 ≥ 0
satisfying the following property.

For an integer n ≥ n0, the fiber product Γn ×U×U ΔU is proper over F

and we have

Tr(Fr∗nF Γ∗ : H∗
c (UF̄ , Q�)) = deg(Γn,ΔU )U×U .(2.14)

Proof. 1. It is reduced to 2 by a standard argument using specialization.
2. By the main result of de Jong [9] and Lemma 2.3.3, we may assume

that there exists a proper smooth scheme X containing U as the complement
of a divisor with simple normal crossings. We will derive the proposition from
Theorem 2.3.4 using the following lemma.

Lemma 2.3.7. Let X be a proper smooth scheme over a finite field F of
order q and D ⊂ X be a divisor with simple normal crossings. Let U = X \D

be the complement and let Γ ⊂ U ×U be an integral closed subscheme. Assume
p2 : Γ → U is proper.

3Added in Proof. An unconditional proof without using rigid geometry is given in Y.
Varshavsky, Lefschetz-Verdier trace formula and a generalization of a theorem of Fujiwara,
Geom. Funct. Anal. 17 (2007), 271–319.
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Then, there exists an integer n0 ≥ 0 such that, for all n ≥ n0, the closure
in(Γn) ⊂ (X × X)′ of the image in(Γn) ⊂ U × U satisfies the inclusion

in(Γn) \ in(Γn) ⊂ D(2)′.(2.15)

Proof. Let Γ ⊂ (X × X)′ be the closure of Γ. By the main result of
de Jong [9], there exist a proper smooth integral scheme Z of dimension d, a
proper map Z → Γ over F such that the inverse image W = Z ×Γ Γ is the
complement of a divisor B with simple normal crossings. Let Z ′ → Z be the
blow-up associated to the subdivision by baricenters and B′ = Z ′ \ W be the
complement.

Let r̄1, r̄2 : Z ′ → X be the compositions with the projections. Let Di

(i ∈ I) be the irreducible components of D and B′
j (j ∈ J) be the irreducible

components of B′. We put r̄∗1Di =
∑

j∈J e
(1)
ij B′

j and r̄∗2Di =
∑

j∈J e
(2)
ij B′

j for
i ∈ I. By the assumption p2 : Γ → U is proper, the composition r2 : W → U

is proper and hence the support of r̄∗2D =
∑

j∈J(
∑

i∈I e
(2)
ij )B′

j equals B′. In

other words, for every j ∈ J , there exists an index i ∈ I such that e
(2)
ij > 0.

Let J0 ⊂ J be the subset {j ∈ J |B′
j is the proper transform of an ir-

reducible component of B}. Then, if B′
j ∩ B′

j′ �= ∅ and if j ∈ J0, we have

e
(2)
ij ≤ e

(2)
ij′ . Hence, if e

(2)
ij = 0 and e

(2)
ij′ > 0 for every B′

j′ such that B′
j ∩B′

j′ �= ∅,
then we have j ∈ J0.

We show that, for every z ∈ B′, there exists an index i ∈ I such that
e
(2)
ij > 0 for all B′

j � z. We prove this by contradiction. Assume there exists
z ∈ B′ such that, for every i ∈ I, there exists a component B′

j � z such that

e
(2)
ij = 0. First, we show that there exists an element j0 ∈ J0 such that z ∈ B′

j0
.

Let B′
j be a component containing z. Then, as we have seen above, there exists

an index i ∈ I such that e
(2)
ij > 0. By the hypothesis, we also have an index

j0 ∈ J such that z ∈ B′
j0

and e
(2)
ij0

= 0. Since z ∈ B′
j0
∩ B′

j , we have j0 ∈ J0.

We show e
(2)
ij0

= 0 for every i ∈ I, to get a contradiction. For i ∈ I, by the

hypothesis, there exists B′
j � z such that e

(2)
ij = 0. Since z ∈ B′

j0
∩ B′

j �= ∅, we

have 0 = e
(2)
ij ≥ e

(2)
ij0

≥ 0. Thus we get a contradiction.

We take n0 ≥ 0 such that qn0 > maxi∈I,j∈J e
(1)
ij . Then, for every z ∈ B′,

there exists an index i ∈ I such that qn0e
(2)
ij > e

(1)
ij for all B′

j � z. Namely, we
have a strict inequality

qn0 r̄∗2Di > r̄∗1Di(2.16)

of germs of Cartier divisors at z.
We show the inclusion (2.15) for n ≥ n0. We consider the product īn :

W → (X × X)′ × Z ′ of the composition W → Γ with in : Γn → U × U ⊂
(X × X)′ and the inclusion W → Z ′. Let Zn be the closure of the image of
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the immersion īn : W → (X × X)′ × Z ′ with the reduced scheme structure.
Let r̄n : Zn → (X × X)′ and fn : Zn → Z ′ be the projections. Further, let
r̄1,n, r̄2,n : Zn → X be the compositions of r̄n with the projections. Then, since
W ⊂ Zn is dense, the diagram

Zn
fn−−−→ Z ′

r̄1,n×r̄2,n

⏐⏐� ⏐⏐�r̄1×r̄2

X × X
1×Frn

←−−−− X × X

is commutative. Thus, we have equalities r̄∗1,nDi = f∗
n r̄∗1Di and r̄∗2,nDi =

qnf∗
n r̄∗2Di of Cartier divisors on Zn for each i ∈ I.
Since W →Γ is proper and surjective, we have in(Γn)\in(Γn)= r̄n(Zn\W ).

For every point z ∈ Zn \ W , there exists an index i ∈ I satisfying a strict
inequality

r̄∗2,nDi = qnf∗
n r̄∗2Di > f∗

n r̄∗1Di = r̄∗1,nDi

of germs of Cartier divisors at z by (2.16). Namely, we have z ∈ r̄−1
n (X ×Di)′.

Thus, we have r̄n(Zn \W ) ⊂ D(2)′ =
⋃

i∈I(X ×Di)′ and the assertion follows.

We complete the proof of Proposition 2.3.6. Take a proper scheme Γn over
F containing Γ as a dense open subscheme and a map īn : Γn → (X × X)′

extending the map in : Γn → U × U . The intersection of the log diagonal
Δ′

X ⊂ (X × X)′ with D(2)′ is empty. Hence by the inclusion (2.15) in Lemma
2.3.7, the intersection in(Γn) ∩ Δ′

X with the log diagonal equals in(Γn) ∩ ΔU .
Hence the fiber product Γn ×U×U ΔU = Γn ×(X×X)′ Δ′

X is proper over F and
we have (Γn,Δ′

X)(X×X)′ = (Γn,ΔU )U×U .

Also by the inclusion (2.15) in Lemma 2.3.7, the assumption (2.8) of
Theorem 2.3.4 is satisfied for the support of the cycle īn∗(Γn). Thus, by
Theorem 2.3.4, we have Tr(Fr∗nF Γ∗ : H∗

c (UF̄ , Q�)) = deg(Γn,Δ′
X)(X×X)′ =

deg(Γn,ΔU )U×U .

3. Intersection product with the log diagonal and a trace formula

We introduce the target group CH0(V \V ) of the map (0.1) in Section 3.1.
We define the map (0.1) and prove the trace formula (0.2) in Section 3.2. We
establish elementary properties of the map (0.1) in Section 3.3. We define
and compute the wild different of a covering and the log Lefschetz class of an
automorphism using the map (0.1) in Section 3.4.

In this section, F denotes a perfect field and f : V → U is a finite étale
morphism of separated and smooth schemes of finite type purely of dimension
d over F .

3.1. Chow group of 0-cycles on the boundary. In this subsection, we
introduce the target group CH0(V \ V ) of the map (0.1).
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Definition 3.1.1. Let V be a separated smooth scheme of finite type over
a field F .

1. Let CV be the following category. An object of CV is a proper scheme
Y over F containing V as a dense open subscheme. A morphism Y ′ → Y in
CV is a morphism Y ′ → Y over F inducing the identity on V .

Let Csm
V be the full subcategory of CV consisting of smooth objects. Let

Csm,0
V be the full subcategory of CV consisting of smooth objects Y such that

V is the complement of a divisor with simple normal crossings.

2. We put

CH0(V \ V ) = lim←− CV
CH0(Y \ V ).(3.1)

The transitions maps are proper push-forwards. Let

deg : CH0(V \ V ) −−−→ Z(3.2)

be the limit of the degree maps CH0(Y \ V ) → Z.

Recall that we assume F is perfect. The resolution of singularities means
that the full subcategory Csm

V is cofinal in CV . A strong form of the resolution
of singularities means that Csm,0

V is cofinal in CV . Thus, it is known that Csm,0
V

is cofinal in CV if dimension V is at most 2. More precisely, if dimension is
at most 2, we have a strong form of equivariant resolution of singularities as
follows.

Lemma 3.1.2. Let V be a separated smooth scheme of finite type of di-
mension ≤ 2 over a perfect field F and G be a finite group of automorphisms
of V over F .

Then the full subcategory of Csm,0
V consisting of Y with an admissible action

of G extending that on V is cofinal in CV .

Proof. Let Y0 be an object of CV . Let Y1 be the closure of the image
of the map V → ∏

σ∈G V ⊂ ∏
σ∈G Y0 sending v to (σ(v))σ∈G. Let Y2 be the

minimal resolution of the normalization of Y1. By blowing-up Y2 successively
at the closed points where the complement Y2 \V does not have simple normal
crossing, we obtain Y3 in Csm,0

V with an action of G. The action of G on the
blow-up Y of Y3 associated to the subdivision by baricenters is admissible by
Lemma 1.2.3.2.

Let Y be a separated scheme of finite type over F containing V as a dense
open subscheme. Then there exists a unique map CH0(V \ V ) → CH0(Y \ V )
satisfying the following property. Let Y ′ be an object of CV containing Y as a
dense open subscheme. Then it is the same as the composition of the projection
CH0(V \ V ) → CH0(Y ′ \ V ) and the restriction CH0(Y ′ \ V ) → CH0(Y \ V ).



RAMIFICATION THEORY FOR VARIETIES OVER A PERFECT FIELD 57

Let f : V → U be a finite flat morphism of smooth schemes over F . The
push-forward maps induces a map f∗ : CH0(V \ V ) → CH0(U \ U). The flat
pull-back map f∗ : CH0(U \ U) → CH0(V \ V ) is defined as follows.

Lemma 3.1.3. Let f : V → U be a finite flat morphism of smooth schemes
over F . Then, the following holds.

1. Let X be an object of CU and Y be an object of CV . Then there
exist a morphism X ′ → X in CU , a morphism Y ′ → Y in CV and a finite flat
morphism f̄ ′ : Y ′ → X ′ over F extending f : V → U .

If f : V → U is a Galois covering of group G, there exists f̄ ′ : Y ′ → X ′

as above such that the action of G is extended to an action on Y ′.

2. Let g : X ′ → X be a morphism in CU and h : Y ′ → Y be a morphism
in CV . Let

Y ′ h−−−→ Y

f̄ ′

⏐⏐� ⏐⏐�f̄

X ′ g−−−→ X

(3.3)

be a commutative diagram of morphisms over F where the vertical arrows are
finite flat morphisms extending f : V → U . Then, the diagram

CH0(Y ′ \ V ) h∗−−−→ CH0(Y \ V )

f̄ ′∗

�⏐⏐ �⏐⏐f̄∗

CH0(X ′ \ U)
g∗−−−→ CH0(X \ U)

is commutative.

Proof. 1. By replacing Y by the closure of the graph Γf ⊂ V × U ⊂
Y × X, we may assume that there exists a proper map f̄ : Y → X extending
f : V → U . Then, we obtain a finite flat morphism f̄ ′ : Y ′ → X ′ by applying
Théorème (5.2.2) of [27].

Assume V → U is a Galois covering. Then, by replacing Y by the closure
of the image V → ∏

σ∈G V ⊂ ∏
σ∈G Y sending v to (σ(v))σ∈G, we may assume

the action of G on V is extended to an action on Y . It suffices to apply the
construction in the paragraph above.

2. Since the assertion is clear if the diagram (3.3) is Cartesian, we may
assume X ′ = X. Let x ∈ X \U be a closed point and let A be the completion
ÔX,x. For y ∈ f̄−1(x), we put By = ÔY,y. For y′ ∈ f̄ ′−1(x), we put B′

y′ =
ÔY ′,y′ . Then, we have f̄∗([x]) =

∑
y∈f̄−1(x) rankABy/[κ(y) : κ(x)] · [y] and

f̄ ′∗([x]) =
∑

y′∈f̄ ′−1(x) rankAB′
y′/[κ(y′) : κ(x)] · [y′]. For each y ∈ f̄−1(x), we

have rankABy =
∑

y′∈h−1(y) rankAB′
y′ . Thus the assertion follows.
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By Lemma 3.1.3, the flat pull-back maps f̄∗ : CH0(X \U) → CH0(Y \ V )
induce f∗ : CH0(U \ U) → CH0(V \ V ).

Corollary 3.1.4. Let f : V → U be a finite flat morphism of smooth
schemes of constant degree N .

1. Then, the composition f∗ ◦ f∗ : CH0(U \ U) → CH0(U \ U) is the
multiplication by N .

2. Assume further that V → U is a Galois covering of Galois group G.
Then, the composition f∗◦f∗ : CH0(V \V ) → CH0(V \V ) is equal to

∑
σ∈G σ∗.

The pull-back map f∗ induces an isomorphism f∗ : CH0(U \ U) ⊗Z Q →
(CH0(V \ V ) ⊗Z Q)G to the G-fixed part. The inverse is given by 1

|G|f∗.

Proof. Clear from Lemma 3.1.3.

If we admit resolution of singularities, the projective limit CH0(V \ V ) is
computed by a smooth object in CV as we see in Corollary 3.1.6 below.

Lemma 3.1.5. Let V be a separated smooth scheme of finite type over F .
Let Y and Y ′ be separated smooth schemes over F containing V as dense open
subschemes and g : Y ′ → Y be a morphism over F inducing the identity on V .

Then, the Gysin map g! : CH0(Y \ V ) → CH0(Y ′ \ V ) is a surjection.
Further if g : Y ′ → Y is proper, the map g! : CH0(Y \V ) → CH0(Y ′ \V ) is an
isomorphism and is the inverse of g∗ : CH0(Y ′ \ V ) → CH0(Y \ V ).

Proof. Let Kd denote the Zariski sheaf of Quillen’s K-theory. Then, by the
Gersten resolution, the Chow group CH0(Y \V ) is identified with the cohomol-
ogy Hd

Y \V (Y,Kd) with support and the Gysin map g! :CH0(Y \V )→CH0(Y ′\V )
is identified with the pull-back map g∗ : Hd

Y \V (Y,Kd) → Hd
Y ′\V (Y ′,Kd). Thus,

we have a commutative diagram of exact sequences

Hd−1(V,Kd) −−−→ CH0(Y \ V ) −−−→ CH0(Y ) −−−→ CH0(V )∥∥∥ ⏐⏐�g!

⏐⏐�g!

∥∥∥
Hd−1(V,Kd) −−−→ CH0(Y ′ \ V ) −−−→ CH0(Y ′) −−−→ CH0(V ).

Since CH0(Y ′) is generated by the 0-cycles on the dense open V ⊂ Y ′, the
map g! : CH0(Y ) → CH0(Y ′) is surjective. Thus a diagram chasing shows the
surjectivity of g! : CH0(Y \ V ) → CH0(Y ′ \ V ).

If g is proper, we have g∗ ◦ g! = id by the projection formula. Hence g! is
an isomorphism and is the inverse of g∗.

Corollary 3.1.6. Let V be a separated smooth scheme of finite type
over F . Assume the full subcategory Csm

V consisting of smooth objects is cofinal
in CV .
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1. Then, the projection CH0(V \V )→CH0(Y \V ) is an isomorphism for an
object Y of Csm

V . Their inverses induce an isomorphism lim−→ Csm,opp
V

CH0(Y \V ) →
CH0(V \ V ) where the transition maps are Gysin maps.

2. Let f : V → U be a finite flat morphism of smooth schemes. Assume
the full subcategory Csm

U is also cofinal in CU .
Then, the pull-back map f∗ : CH0(U \ U) → CH0(V \ V ) is the same as

the map lim−→ Csm,opp
U

CH0(X \ U) → lim−→ Csm,opp
V

CH0(Y \ V ) induced by the Gysin
maps.

Proof. 1. Clear from Lemma 3.1.5.

2. Let X and Y be objects of Csm
U and of Csm

V respectively and let f̄ : Y →X

be a morphism over F extending f : V → U . It is sufficient to show that
f̄ !([x]) = f∗([x]) for an arbitrary closed point x ∈ X \ U . Let X ′ → X be
the blow-up at x and Y ′ be an object of Csm

V dominating Y ×X X ′. Replacing
Y → X by Y ′ → X ′, we may assume that the map f̄ : Y → X is finite flat on a
neighborhood of x. Then, we have f̄ !([x]) = [f̄−1(x)]. By applying Théorème
(5.2.2) of [27], we also get f∗([x]) = [f̄−1(x)].

3.2. Definition of the intersection product with the log diagonal. First, we
recall the existence of alteration.

Lemma 3.2.1. Let f : V → U be a finite étale morphism of separated and
smooth schemes of finite type purely of dimension d over a perfect field F . Let
Y be a separated scheme of finite type over F containing V as a dense open
subscheme.

Then, there exists a commutative diagram

W

g

��

⊂ �� Z

ḡ

��
h̄

���
��

��
��

��
��

��
�

V

f
��

⊂ �� Y

U
⊂ �� X

(3.4)

satisfying the following conditions:

(3.4.1) U is the complement of a Cartier divisor B of X.

(3.4.2) Z is smooth purely of dimension d over F and W is the comple-
ment of a divisor D of Z with simple normal crossings.

(3.4.3) The two quadrangles are Cartesian.

(3.4.4) ḡ : Z → Y is proper. The map g : W → V is a generically finite
surjection of constant degree [W : V ].
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Proof. By [24], there exists a proper scheme X over F containing U as a
dense open subscheme. By replacing X by its blow-up at a closed subscheme
whose support is the complement of U , the condition (3.4.1) is satisfied. By
replacing Y by the closure of the graph of f : V → U in Y ×X, we may assume
there is a commutative diagram

V
⊂−−−→ Y

f

⏐⏐� ⏐⏐�f̄

U
⊂−−−→ X.

(3.5)

Since V is proper over U and is dense in U×XY , the diagram (3.5) is Cartesian.
Now, it is sufficient to apply the main result of de Jong [9] to V ⊂ Y to find
W ⊂ Z.

Next, we study the intersection product with the log diagonal on the level
of alteration. We consider a Cartesian diagram

W
⊂−−−→ Z

h

⏐⏐� ⏐⏐�h̄

U
⊂−−−→ X

(3.6)

of separated schemes of finite type over F satisfying the conditions:

(3.4.1) U is the complement of a Cartier divisor B of X.

(3.4.2) Z is smooth purely of dimension d over F and W is the complement
of a divisor D of Z with simple normal crossings.

Let D1, . . . , Dm be the irreducible components of D and let (Z × Z)∼

be the log product with respect to the divisors D1, . . . , Dm. The scheme
(Z × Z)∼ is smooth over F and contains W × W as the complement of a
divisor with simple normal crossings by Lemma 1.1.4. The log diagonal map
ΔZ : Z → (Z × Z)∼ is a regular closed immersion of codimension d. Let
(Z ×X Z)∼ = (Z × Z)∼ ×(X×X)∼ X be the relative log product defined with
respect to the Cartier divisor B and the family D1, . . . , Dm ⊂ Z of Cartier
divisors.

Let T be an open neighbourhood of ΔW in W ×U W . Then the clo-
sure W ×U W \ T in (Z × Z)∼ satisfies W ×U W \ T ∩ ΔZ ⊂ Z \ W since
W ×U W \ T ∩ W × W = W ×U W \ T . Thus the intersection product in
(Z × Z)∼ defines a map

( ,ΔZ)(Z×Z)∼ : CHd(W ×U W \ T ) −−−→ CH0(Z \ W ).(3.7)

Proposition 3.2.2. Let Z be a smooth scheme purely of dimension d

over F and W ⊂ Z be the complement of a divisor D with simple normal
crossings. Let W → U be a morphisms of schemes of finite type over F and
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T ⊂ W ×U W be an open neighborhood of the diagonal ΔW . Assume there
exists a Cartesian diagram (3.6) satisfying the conditions (3.4.1) and (3.4.2).

1. Let W ×U W \ T be the closure in (Z × Z)∼. Then, there exists a
unique map

( ,ΔZ)log : CHd(W ×U W \ T ) −−−→ CH0(Z \ W )(3.8)

making the diagram

CHd(W ×U W \ T )

restriction
��

( ,ΔZ)(Z×Z)∼

�������������������

CHd(W ×U W \ T )
( ,ΔZ)log

�� CH0(Z \ W )

commutative.

2. Further, let
W ′ ⊂−−−→ Z ′

k

⏐⏐� ⏐⏐�k̄

W
⊂−−−→ Z

be a Cartesian diagram of schemes over F . We assume that Z ′ is smooth
over F and that W ′ is the complement of a divisor of Z ′ with simple normal
crossings. Then, we have a commutative diagram

CHd(W ×U W \ T )
( ,ΔZ)log−−−−−→ CH0(Z \ W )

(k×k)!
⏐⏐� ⏐⏐�k̄!

CHd(W ′ ×U W ′ \ (k × k)−1(T ))
( ,ΔZ′ )log−−−−−−→ CH0(Z ′ \ W ′)

(3.9)

where the left vertical arrow is the Gysin map for k × k : W ′ ×W ′ → W ×W .

Proof. 1. Take a Cartesian diagram (3.6) satisfying the conditions (3.4.1)
and (3.4.2). Then (Z ×X Z)∼ is a closed subscheme of (Z × Z)∼ containing
W×U W as an open subscheme. Hence, W ×U W \ T is closed in (Z×X Z)∼\T

and W ×U W \ T is open in (Z ×X Z)∼ \ T . Thus, it suffices to show that
the map ( ,ΔZ)(Z×Z)∼ : CHd((Z ×X Z)∼ \ T ) → CH0(Z \ W ) factors through
the restriction map CHd((Z ×X Z)∼ \T ) → CHd(W ×U W \T ). The kernel of
the surjection CHd((Z ×X Z)∼ \ T ) → CHd(W ×U W \ T ) is generated by the
image of CHd((Z ×X Z)∼ \ W ×U W ).

We use the notation in Lemma 1.1.4 replacing X → Y by Z → X. Then,
the complement (Z × Z)∼ \ (W × W ) is the union of divisors E◦

i . Hence the
complement

(Z ×X Z)∼ \ (W ×U W ) = (Z ×X Z)∼ ∩ ((Z × Z)∼ \ (W × W ))
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is the union of (Z ×X Z)∼ ∩ E◦
i . Thus the kernel of the restriction map

CHd((Z ×X Z)∼ \ T ) → CHd(W ×U W \ T ) is generated by the images of
CHd((Z ×X Z)∼ ∩ E◦

i ).
The pull-back of the Cartier divisor E◦

i ⊂ (Z × Z)∼ by the log diagonal
map ΔZ → (Z × Z)∼ is the Cartier divisor ΔDi

⊂ ΔZ . Hence we have
(C,ΔZ)(Z×Z)∼ = (C,ΔDi

)E◦
i

for a cycle C in E◦
i . Thus, it is sufficient to show

that the map

( ,ΔDi
)E◦

i
: CHd((Z ×X Z)∼ ∩ E◦

i ) −−−→ CH0(Di)(3.10)

is the 0-map.
The log diagonal map Di → (Di × Di)∼ is a regular immersion of codi-

mension d − 1. The restriction E◦
i,Di

of the Gm-bundle E◦
i → (Di × Di)∼ to

the log diagonal Di ⊂ (Di ×Di)∼ has a canonical isomorphism E◦
i,Di

→ Gm,Di

(1.7). The immersion ΔDi
= ΔZ ∩ E◦

i → E◦
i gives the unit section Di →

E◦
i,Di

→ Gm,Di
. Hence the map (3.10) is the composition of the maps

CHd((Z ×X Z)∼ ∩ E◦
i )

( ,Di)(Di×Di)
∼−−−−−−−−−→ CH1((Z ×X Z)∼ ∩ E◦

i,Di
)

( ,Di)E◦
i,Di−−−−−−−→ CH0(Di).

(3.11)

By Proposition 1.1.6.1, the intersection (Z ×X Z)∼ ∩ E◦
i,Di

is a closed
subscheme of μei,Di

⊂ E◦
i,Di

= Gm,Di
. Hence the second map in (3.11) is the

composition

CH1((Z ×X Z)∼ ∩ E◦
i,Di

) → CH1(μei,Di
) → CH1(Gm,Di

)
( ,Di)Gm,Di−−−−−−−→ CH0(Di).

Since the composition of the last two maps is the 0-map, the map ( ,ΔZ)(Z×Z)∼ :
CHd((Z ×X Z)∼ \ T ) → CH0(Z \ W ) induces a map CHd(W ×U W \ T ) →
CH0(Z \ W ). Thus the assertion follows.

2. We consider the commutative diagram

(Z ′ × Z ′)∼ ←−−− (Z ′ ×X′ Z ′)∼ ←−−− Z ′

(k̄×k̄)∼
⏐⏐� (k̄×k̄)∼

⏐⏐� ⏐⏐�k̄

(Z × Z)∼ ←−−− (Z ×X′ Z)∼ ←−−− Z

where the right horizontal arrows are the log diagonal maps. Then, we have a
commutative diagram

CHd((Z ×X′ Z)∼ \ T )
( ,ΔZ)(Z×Z)∼−−−−−−−−→ CH0(Z \ W )

(k̄×k̄)∼!

⏐⏐� ⏐⏐�k̄!

CHd((Z ′ ×X′ Z ′)∼ \ (k × k)−1(T ))
( ,ΔZ′ )(Z′×Z′)∼−−−−−−−−−−→ CH0(Z ′ \ W ′)

and the assertion follows.
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Theorem 3.2.3. Let f : V → U be a finite étale morphism of separated
and smooth schemes of finite type purely of dimension d over a perfect field F .

1. There exists a unique map

(0.1) ( ,ΔV )log : CHd(V ×U V \ ΔV ) −−−→ CH0(V \ V ) ⊗Z Q

that makes the diagram

CHd(V ×U V \ ΔV )
( ,ΔV )log ��

(g×g)!

��

CH0(V \ V ) ⊗Z Q �� CH0(Y \ V ) ⊗Z Q

CHd(W ×U W \ W ×V W )
( ,ΔZ)log �� CH0(Z \ W )

1
[W :V ]

ḡ∗

		���������������

(3.12)

commutative for an arbitrary commutative diagram (3.4) satisfying the condi-
tion

(3.4.0) Y contains V as a dense open subscheme.

and the conditions (3.4.1)–(3.4.4).

2. Assume the full subcategory Csm,0
V is cofinal in CV . Then, there exists a

unique map

( ,ΔV )logZ : CHd(V ×U V \ ΔV ) −−−→ CH0(V \ V )(3.13)

satisfying the following property.
Let Y be an arbitrary smooth separated scheme of finite type containing V

as the complement of a divisor with simple normal crossings and let ( ,ΔY )log :
CHd(V ×U V \ ΔV ) → CH0(Y \ V ) be the map (3.8) for Z = Y . Then the
diagram

CHd(V ×U V \ ΔV )
( ,ΔV )log

Z ��

( ,ΔY )log ������������������� CH0(V \ V )

��
CH0(Y \ V )

(3.14)

is commutative if there exists a Cartesian diagram

V −−−→ Y

f

⏐⏐� ⏐⏐�f̄

U −−−→ X

of separated scheme of finite type where X contains U as the complement of a
Cartier divisor.

Proof. 1. We consider an arbitrary commutative diagram (3.4) satisfying
the conditions (3.4.0)–(3.4.4). By the assumption that V → U is étale, the
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fiber product T = W ×V W is an open neighborhood of ΔW in W ×U W and
the map ( ,ΔZ)log : CHd(W ×U W \ W ×V W ) → CH0(Z \ W ) is defined by
Proposition 3.2.2.1.

For an object Y of CV , there exists a commutative diagram (3.4) satisfying
the conditions (3.4.1)-(3.4.4) by Lemma 3.2.1. The composition CHd(V ×U

V \ ΔV ) → CH0(Y \ V ) ⊗Z Q via the lower line in (3.12) is independent
of the choice of diagram (3.4) by Proposition 3.2.2.2. We define the map
( , ΔV )log : CHd(V ×U V \ ΔV ) → CH0(V \ V ) ⊗Z Q as the limit. Then it is
clear that the map ( ,ΔV )log satisfies the condition.

2. By the assumption and Corollary 3.1.6.1, the group CH0(V \ V ) is
identified with the inductive limit lim−→ Csm,0,opp

V
CH0(Y \ V ) with respect to the

Gysin maps. Hence it follows from Proposition 3.2.2.

If Csm,0
V is cofinal in CV , the map ( ,ΔV )log is induced by ( ,ΔV )logZ .

We prove the trace formula (0.2) in Proposition 3.2.4. Let V → U be a
finite étale morphism of separated smooth schemes of dimension d over F . Let
� be a prime number invertible in F and F̄ be an algebraic closure of F . For
an open and closed subscheme Γ of V ×U V \ΔV , we define an endomorphism
Γ∗ of Hq

c (VF̄ , Q�) to be p1∗ ◦ p∗2. We put

Tr(Γ∗ : H∗
c (VF̄ , Q�)) =

2d∑
q=0

(−1)qTr(Γ∗ : Hq
c (VF̄ , Q�)).

Proposition 3.2.4. Let f : V → U be a finite étale morphism of sepa-
rated and smooth schemes of finite type purely of dimension d over a perfect
field F . Let � be a prime number invertible in F .

Then, for an open and closed subscheme Γ of V ×U V \ ΔV , we have

Tr(Γ∗ : H∗
c (VF̄ , Q�)) = deg(Γ,ΔV )log.(3.15)

Proof. Take a diagram (3.4) with X, Y and Z proper over F satisfying
the conditions (3.4.0)-(3.4.4). By Lemma 2.3.3, we have

Tr(Γ∗ : H∗
c (VF̄ , Q�)) =

1
[W : V ]

Tr(((g × g)∗Γ)∗ : H∗
c (WF̄ , Q�)).

By Lemma 2.1.2, we have (g × g)∗[Γ] = [(g × g)!(Γ)]. Take an element Γ̃ =∑
i ni[Ci] ∈ Zd(W ×U W \ W ×V W ) representing [(g × g)!(Γ)] ∈ CHd(W ×U

W \ W ×V W ). By Proposition 1.1.6.2, the closures Ci ⊂ (Z × Z)′ satisfy the
condition (2.8). Hence by Theorem 2.3.4, we have

Tr(((g × g)∗Γ)∗ : H∗
c (WF̄ , Q�)) = deg (

∑
ini[Ci],ΔZ)(Z×Z)′

= deg ((g × g)!Γ,ΔZ)log.



RAMIFICATION THEORY FOR VARIETIES OVER A PERFECT FIELD 65

By the definition of (Γ,ΔV )log, we have

deg (Γ,ΔV )log =
1

[W : V ]
· deg ((g × g)!Γ,ΔZ)log.

Thus the equality (3.15) is proved.

3.3. Properties of the intersection product with the log diagonal. We keep
the notation that f : U → V denotes a finite étale morphism of separated
smooth schemes of finite type purely of dimension d over a perfect field F .

The maps ( ,ΔV )log : CHd(V ×U V \ ΔV ) → CH0(V \ V ) ⊗Z Q satisfies
the following functoriality.

Lemma 3.3.1. Let U be a separated smooth scheme of finite type purely
of dimension d over a perfect field F .

1. Let V → U ′ be a morphism of finite and étale schemes over U . Then
the map ( ,ΔV )log : CHd(V ×U ′ V \ ΔV ) → CH0(V \ V ) ⊗Z Q is equal to the
restriction of ( ,ΔV )log : CHd(V ×U V \ ΔV ) → CH0(V \ V ) ⊗Z Q.

2. Let g : V → V ′ be a morphism of finite and étale schemes over U .
Then, the diagram

CHd(V ′ ×U V ′ \ ΔV ′)
( ,Δ

V ′ )
log

−−−−−−→ CH0(V ′ \ V ′) ⊗Z Q

(g×g)∗
⏐⏐� ⏐⏐�g∗

CHd(V ×U V \ ΔV )
( ,ΔV )log−−−−−→ CH0(V \ V ) ⊗Z Q

(3.16)

is commutative.

Proof. 1. Clear from the definition and Proposition 3.2.2.2.
2. We may assume U , V and V ′ are connected. Then by Corollary 3.1.4.1,

the right vertical arrow g∗ in (3.16) is injective. Hence, we may replace V by its
Galois closure over U and may assume V → U is a Galois covering. Let G be
the Galois group and H ⊂ G be the subgroup corresponding to V ′. Then, the
images of the both compositions are in the H-fixed part of CH0(V \ V ) ⊗Z Q.
Hence, by Corollary 3.1.4.2, it suffices to show the diagram

CHd(V ′ ×U V ′ \ ΔV ′)
( ,Δ

V ′ )
log

−−−−−−→ CH0(V ′ \ V ′) ⊗Z Q

(g×g)∗
⏐⏐� �⏐⏐ 1

|H|g∗

CHd(V ×U V \ ΔV )
( ,ΔV )log−−−−−→ CH0(V \ V ) ⊗Z Q

is commutative. This is clear from the definition and Proposition 3.2.2.2.

If the subcategory Csm,0
V is cofinal in CV , we can remove ⊗ZQ in 1. Further

if Csm,0
V ′ is cofinal in CV ′ , we can remove ⊗ZQ in 2. We will omit to state remarks

on integrality of this type in the sequel.
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Lemma 3.3.2. Let V → U ′ → U be finite étale morphisms of separated
and smooth schemes of finite type purely of dimension d over a perfect field F .
Let n ≥ 1 be an integer invertible in F and assume g : U ′ → U is a Z/nZ-torsor
over U .

Then, the restriction

CHd(V ×U V \ V ×U ′ V ) ⊂ CHd(V ×U V \ ΔV )
( ,ΔV )log−−−−−→ CH0(V \ V ) ⊗Z Q

is the 0-map.

Proof. By enlarging F , we may assume F contains a primitive n-th root
of 1. Let χ : Z/nZ → F× be a character of order n. Then the χ-part LU of
g∗OU ′ is an invertible OU -module. The multiplication defines an isomorphism
μU : L⊗n

U → OU of OU -modules. The OU -algebra g∗OU ′ is isomorphic to⊕n−1
i=0 L⊗i

U with the multiplication defined by μU . We take a proper scheme X

over F containing U as a dense open subscheme. Replacing X by a blow-up,
we may assume LU is extended to an invertible OX -module L and the map
μU : L⊗n

U → OU is extended to an injection μ : L⊗n → OX . We define a
finite flat scheme ḡ : X ′ → X over X by the OX -algebra

⊕n−1
i=0 L⊗i with the

multiplication defined by μ. By Lemma 1.1.3, the diagonal X ′ → (X ′×X X ′)∼

is an open immersion.
We take a proper scheme Y containing V as a dense open subscheme such

that the map V → U ′ is extended to Y → X ′ and an alteration Z → Y as in
Lemma 3.2.1. Then, the inverse image of V ×U V \ V ×U ′ V in (Z × Z)∼ is
contained in the inverse image of (X ′×X X ′)∼ \X ′. Thus the assertion follows
from the definition of the map (0.1).

For a separated scheme Y of finite type over F containing V as a dense
open subscheme, let

( ,ΔY )log : CHd(V ×U V \ ΔV ) −−−→ CH0(Y \ V ) ⊗Z Q(3.17)

denote the composition of the maps in the upper line of the diagram (3.12).
The map ( ,ΔY )log : CHd(V ×U V \ΔV ) → CH0(Y \ V )⊗Z Q is characterized
by the commutativity of the diagram

CHd(V ×U V \ ΔV )
( ,ΔY )log−−−−−→ CH0(Y \ V ) ⊗Z Q

(g×g)!
⏐⏐� �⏐⏐ 1

[W :V ]
ḡ∗

CHd(W ×U W \ W ×V W )
( ,ΔZ)log−−−−−→ CH0(Z \ W )

(3.18)

for an arbitrary commutative diagram (3.4) satisfying the conditions (3.4.1)-
(3.4.4). If Y is smooth and V is the complement of a divisor with simple
normal crossings, the map ( ,ΔY )log is given by the map (3.8) for Z = Y .

We give sufficient conditions for the vanishing of the map ( ,ΔY )log :
CHd(V ×U V \ ΔV ) → CH0(Y \ V ) ⊗Z Q.
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Lemma 3.3.3. Let

(3.5)

V
⊂−−−→ Y

f

⏐⏐� ⏐⏐�f̄

U
⊂−−−→ X

be a Cartesian diagram of separated schemes of finite type over a perfect field F .
We assume U ⊂ X and V ⊂ Y are dense open subschemes, U is smooth purely
of dimension d over F and f : V → U is finite and étale.

Let Γ ⊂ V ×U V be an open and closed subscheme. If the intersection
Γ ∩ ΔY of the closure Γ ⊂ Y ×X Y of Γ and the diagonal Y ⊂ Y ×X Y is
empty, we have (Γ,ΔY )log = 0 in CH0(Y \ V ) ⊗Z Q.

Proof. By replacing X by a blow-up, we may assume U ⊂ X is the
complement of a Cartier divisor. We take a Cartesian diagram

W
⊂−−−→ Z

g

⏐⏐� ⏐⏐�ḡ

V
⊂−−−→ Y

satisfying the conditions (3.4.2) and (3.4.4). We consider the natural map
ḡ×ḡ : (Z×X Z)∼ → Y ×X Y induced by ḡ : Z → Y . The closure of (g×g)−1(Γ)
is in (ḡ × ḡ)−1(Γ) and does not meet the log diagonal ΔZ ⊂ (ḡ × ḡ)−1(ΔY ) by
the assumption. Hence we have ((g × g)!(Γ),ΔZ)(Z×Z)∼ = 0 and the assertion
follows.

Corollary 3.3.4. Let the notation be as in Lemma 3.3.3.

1. If f̄ : Y → X is étale, the map ( ,ΔY )log : CHd(V ×U V \ ΔV ) →
CH0(Y \ V ) ⊗Z Q is the 0-map.

2. Let σ̄ be an automorphism of Y over X and σ be the restriction on V .
Let Γσ ⊂ V ×U V and Γσ ⊂ Y ×X Y be the graphs. If Y σ = Γσ ∩ΔY is empty,
we have (Γσ,ΔY )log = 0 in CH0(Y \ V ) ⊗Z Q.

Proof. Clear from Lemma 3.3.3.

We show that the image of the map ( ,ΔY )log : CHd(V ×U V \ ΔV ) →
CH0(Y \ V ) ⊗Z Q is supported on the wild ramification locus.

Proposition 3.3.5. Let

(3.5)

V
⊂−−−→ Y

f

⏐⏐� ⏐⏐�f̄

U
⊂−−−→ X
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be a Cartesian diagram of separated schemes of finite type over a perfect field F .
We assume X is smooth purely of dimension d over F , U is the complement of
a divisor B with simple normal crossings, V ⊂ Y is a dense open subscheme,
and f : V → U is finite and étale.

1. Let V ⊂ V ′ ⊂ Y be an open normal subscheme. If V ′ is tamely ramified
over X, then the map ( ,ΔY )log : CHd(V ×U V \ ΔV ) → CH0(Y \ V ) ⊗Z Q is
decomposed as the composition

CHd(V ×U V \ ΔV ) → CH0(Y \ V ′) ⊗Z Q → CH0(Y \ V ) ⊗Z Q.

2. Suppose there exists a commutative diagram

V
⊂−−−→ Y⏐⏐� ⏐⏐�

U ′ ⊂−−−→ X ′

g

⏐⏐� ⏐⏐�ḡ

U
⊂−−−→ X

of separated normal schemes of finite type over F , g : U ′ → U is finite étale
and ḡ : X ′ → X is tamely ramified. Then, the restriction

CHd(V ×U V \ V ×U ′ V ) ⊂ CHd(V ×U V \ ΔV )
( ,ΔY )log−−−−−→ CH0(Y \ V ) ⊗Z Q

is the 0-map.

Proof. It follows from the characterization of the map (3.17) and Lemma
1.1.8.

3.4. Wild differents and log Lefschetz classes.

Definition 3.4.1. Let f : V → U be a finite étale morphism of separated
and smooth schemes of finite type purely of dimension d over a perfect field F .

1. We call the 0-cycle class

Dlog
V/U = (V ×U V \ ΔV ,ΔV )log ∈ CH0(V \ V ) ⊗Z Q(3.19)

the wild different of V over U .

2. Let σ be an automorphism of V over U that is not the identity on
any component of V . Let Γσ ⊂ V ×U V be the graph of σ. Then, we call the
0-cycle class

(Γσ,ΔV )log ∈ CH0(V \ V ) ⊗Z Q(3.20)

the log Lefschetz class of σ.

If the subcategory Csm,0
V is cofinal in CV , the wild different Dlog

V/U and the
log Lefschetz class (Γσ,ΔV )log are defined in CH0(V \ V ).
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Lemma 3.4.2. For a morphism g : V → V ′ of finite and étale schemes
over U , we have

Dlog
V/U = Dlog

V/V ′ + g∗Dlog
V ′/U .(3.21)

Proof. We have V ×U V \ΔV = (V ×V ′ V \ΔV )�(g×g)−1(V ′×U V ′\ΔV ′).
Hence, the equalities follow from Lemma 3.3.1.2.

Proposition 3.4.3. Let f : V → U be a finite and étale morphism of
connected separated and smooth schemes of finite type purely of dimension d

over a perfect field F and let σ be an automorphism of V over U .
If the order of σ is not a power of the characteristic p of F , we have

(Γσ,ΔV )log = 0.

Proof. Let n be the prime-to-p part of the order e of σ. By Lemma 3.3.1.1,
we may replace U by the quotient V/〈σ〉. Then it suffices to apply Lemma
3.3.2 to V → U ′ = V/〈σn〉 → U = V/〈σ〉.

We expect the following holds.

Conjecture 3.4.4. Let f : V → U be a finite and étale morphism of
connected separated and smooth schemes of finite type purely of dimension d

over a perfect field F and let σ be a nontrivial automorphism of V over U .
If j is an integer prime to the order of σ, we have

(Γσ,ΔV )log = (Γσj ,ΔV )log.

We will prove Conjecture 3.4.4 assuming dim ≤ 2 in Lemma 3.4.13.

Lemma 3.4.5. Let the notation be as in Definition 3.4.1 and let � be a
prime number invertible in a perfect field F .

1. If f : V → U is of constant degree [V : U ], we have

deg Dlog
V/U = [V : U ]χc(UF̄ , Q�) − χc(VF̄ , Q�)(3.22)

2. Let σ be an automorphism of V over U that is not the identity on any
component of V . Then, we have

deg (Γσ,ΔV )log = Tr(σ∗ : H∗
c (VF̄ , Q�)).(3.23)

Proof. 1. By Proposition 3.2.4, we have

deg Dlog
V/U = Tr((V ×U V )∗ : H∗

c (VF̄ , Q�)) − Tr(Δ∗
V : H∗

c (VF̄ , Q�)).

By Lemma 2.3.3, we have Tr((V ×U V )∗ : H∗
c (VF̄ , Q�)) = [V : U ] · χc(UF̄ , Q�).

Hence the assertion follows.

2. It suffices to apply Proposition 3.2.4 to the graph Γσ.
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Corollary 3.4.6 ([15, Lemma 2.5]). Let U be a separated scheme of
finite type over a field F and V → U be an étale Z/nZ-torsor. Let σ be the
automorphism defined by the generator 1 ∈ Z/nZ and assume n is not a power
of p. Then, we have

Tr(σ∗ : H∗
c (VF̄ , Q�)) = 0.

Proof. We may assume F is perfect. If the assertion holds for the base
changes to a closed subscheme Z ⊂ U and to the complement U \ Z, it holds
for U . Hence, by induction on dimension, it is reduced to the case where U is
smooth. Then it follows from Lemma 3.4.5.2 and Proposition 3.4.3.

In the rest of this subsection, we give some computations of wild differents
and log Lefschetz classes.

In the classical case where U is a smooth curve over F , Definition 3.4.1
gives the classical invariants of wild ramifications as follows. Let A be a com-
plete discrete valuation ring and B be the integral closure of A in a finite
separable extension L of the fraction field K. Let eL/K be the ramification
index of L over K. Then the wild different Dlog

B/A ∈ N is defined by

Dlog
B/A = lengthBΩ1

B/A − (eL/K − 1).

For a nontrivial automorphism σ of L over K, we put

jB(σ) = lengthBB/

(
σ(b)

b
− 1; b ∈ B \ {0}

)
.

Lemma 3.4.7. Let U be a smooth connected curve over a perfect field F

and f : V → U be a finite étale morphism over F . Let X be the proper
smooth curve containing U as a dense open subscheme and f̄ : Y → X be
the normalization in V . We put B = X \ U and D = Y \ V and identify
CH0(V \ V ) =

⊕
y∈D Z.

1. We have

Dlog
V/U = [Coker(f̄∗Ω1

X/F (log B) → Ω1
Y/F (log D))] =

∑
y∈D

Dlog

ÔY,y/ÔX,f̄(y)
· [y].

2. Let σ be a nontrivial automorphism of V over U . Then, we have

(Γσ,ΔV )logZ =
∑

y∈D,σ(y)=y

jÔY,y
(σ) · [y].

Proof. Follows from Proposition 3.4.10 and Lemma 3.4.11 below.

We compute the wild different assuming a strong form of resolution. Be-
fore doing it, we recall some general facts on intersection theory and localized
Chern classes.
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Let X be a scheme of finite type over F and Z ⊂ X be a closed sub-
scheme. Let E and F be locally free OX -modules of rank d and f : E → F
be an OX -linear map. We assume that f : E → F is an isomorphism on
X \ Z. We consider the complex K = [E → F ] of OX -modules by putting
F on degree 0. Then, the localized Chern class cX

Z (K) − 1 is defined as an
element of CH∗(Z → X) in [12, Ch. 18.1]. We define an element c(F − E)X

Z =
(ci(F − E)X

Z )i>0 of CH∗(Z → X) by

c(F − E)X
Z = c(E) ∩ (cX

Z (K) − 1).(3.24)

In other words, we put ci(F − E)X
Z =

∑min(d,i−1)
j=0 cj(E) ∩ ci−j

X
Z (K) for i > 0.

The image of c(F − E)X
Z in CH∗(X) is the difference c(F) − c(E) of Chern

classes.

Lemma 3.4.8. Let X be a scheme of finite type over F and Z ⊂ X be
a closed subscheme. Let E and F be locally free OX-modules of rank d and
f : E → F be an OX-linear map such that f : E → F is an isomorphism on
X \ Z. Then,

1. We have ci(F − E)X
Z = 0 for i > d.

2. Let
0 −−−→ E ′ −−−→ E −−−→ E ′′ −−−→ 0

f ′
⏐⏐� f

⏐⏐� f ′′
⏐⏐�

0 −−−→ F ′ −−−→ F −−−→ F ′′ −−−→ 0
be a commutative diagram of exact sequences of locally free OX-modules. We
assume that the maps f ′ and f ′′ are isomorphism on X \Z. We assume E ′ and
F ′ are of rank d′ and E ′′ and F ′′ are of rank d′′ for some integers d′ + d′′ = d.
Then, we have

c(F − E)X
Z = c(F ′ − E ′)X

Z ∩ c(F ′′) + c(F ′′ − E ′′)X
Z ∩ c(E ′).(3.25)

Proof. 1. The localized Chern classes ci
X
Z (F) and ci

X
Z (E) are defined for

i > d in [4, §1]. Further they are equal to 0 since F and E are locally free of
rank d. Hence, by the distinguished triangle → E → F → K →, we have an
equality 0 = ci

X
Z (F) =

∑d
j=0 cj(E) ∩ ci−j

X
Z (K) as in Proposition 1.1 (iii) loc.

cit . Since the right-hand side is ci(F − E)X
Z , the assertion follows.

2. We put K′ = [E ′ → F ′] and K′′ = [E ′′ → F ′′] as above. Then, by the
assumption, we have ci

X
Z (K) =

∑i−1
j=0 cj(K′′) ∩ ci−j

X
Z (K′) + ci

X
Z (K′′) for i > 0

(cf. [12, Example 18.1.3, Proposition 18.1 (b)] and [4, Proposition 1.1 (iii)]).
In other words, we have cX

Z (K) − 1 = (cX
Z (K′) − 1) ∩ c(K′′) + (cX

Z (K′′) − 1).
Multiplying c(E) = c(E ′) ∩ c(E ′′) and substituting c(E ′′) ∩ c(K′′) = c(F ′′), we
obtain c(E) ∩ (cX

Z (K) − 1) = c(E ′) ∩ (cX
Z (K′) − 1) ∩ c(F ′′) + c(E ′) ∩ c(E ′′) ∩

(cX
Z (K′′) − 1) and the assertion follows.
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Lemma 3.4.9. Let
W −−−→ Y

g

⏐⏐� ⏐⏐�f

V −−−→ X

be a commutative diagram of separated schemes of finite type over F . We
assume that Y is purely of dimension n and the horizontal arrows V → X and
W → Y are regular closed immersions of codimension d. Let NV/X and NW/Y

be the conormal sheaves.
Let U be a dense open subscheme of Y . We assume that W ∩ U is dense

in W and that the closed immersion W ∩U → V ×X U is an open immersion.
We put Z = W \ (W ∩ U) and Z ′ = (V ×X Y ) \ (W ∩ U). Then, we have the
following.

1. The canonical map g∗NV/X → NW/Y is an isomorphism on W ∩ U =
W \ Z and c(g∗NV/X − NW/Y )W

Z ∈ CH∗(Z → W ) is defined.

2. The canonical map Zn−d(W ) ⊕ CHn−d(Z ′) → CHn−d(V ×X Y ) is
an isomorphism. The projection CHn−d(V ×X Y ) → Zn−d(W ) is given by
the restriction map CHn−d(V ×X Y ) → CHn−d(W ∩ U) = Zn−d(W ∩ U) �
Zn−d(W ).

3. There exists a unique element [f !V −W ] ∈ CHn−d(Z ′) satisfying [W ]+
[f !V − W ] = [f !V ] in CHn−d(V ×X Y ). Further, we have an equality

(W, [f !V − W ])Y = (−1)d−1cd(NW/Y − g∗NV/X)W
Z ∩ [W ](3.26)

in CHn−2d(Z).

Proof. 1. By the assumption that the closed immersion W ∩U → V ×X U

is an open immersion, the canonical map g∗NV/X → NW/Y is an isomorphism
on W ∩ U = W \ Z. Hence c(g∗NV/X − NW/Y )W

Z ∈ CH∗(Z → W ) is defined.

2. By the assumption, the canonical maps Zn−d(W ) ⊕ Zn−d(Z ′) →
Zn−d(V ×X Y ) and Zn−d(W ) → CHn−d(W ) are isomorphisms. Thus the as-
sertion follows.

3. By the assumption, the restriction of [f !V ] to the open subscheme
W ∩ U ⊂ V ×X Y is [W ∩ U ]. Hence, by 2, there exists a unique element
[f !V − W ] ∈ CHn−d(Z ′) satisfying [W ] + [f !V − W ] = [f !V ].

Let p : Y ′ → Y be the blow-up at V ×X Y ⊂ Y and at W ⊂ Y . Let
D = V ×X Y ′ and D′ = W ×Y Y ′ be the exceptional divisors. We compute
(W, [f !V − W ])Y using p : Y ′ → Y . Let h : D → V and h′ : D′ → W

be the canonical maps and let N1 = Ker(h∗NV/X → ND/Y ′) and N ′
1 =

Ker(h′∗NW/Y → ND′/Y ′) be the excess conormal sheaves. The OD-module
N1 and the OD′-module N ′

1 are locally free of rank d − 1. By the excess in-
tersection formula, we have f !V = p∗(V, Y ′)X = (−1)d−1p∗cd−1(N1) ∩ [D] and
W = p∗(W, Y ′)Y = (−1)d−1p∗cd−1(N ′

1) ∩ [D′].
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Let i : D′ → D be the immersion. Since [f !V − W ] ∈ CHn−d(Z ′) is
characterized by the property that [f !V −W ]+[W ] = [f !V ] in CHn−d(V ×X Y ),
we obtain

[f !V − W ]=(−1)d−1p∗
(
cd−1(N1) ∩ ([D] − [D′]) + cd−1(N ′

1 − i∗N1)D′

ZD′ ∩ [D′]
)

in CHn−d(Z). Further by the excess intersection formula, we have

(3.27) (W, [f !V − W ])Y = p∗
(
cd−1(N ′

1) ∩ [D′]

∩
(
cd−1(N1) ∩ ([D] − [D′]) + cd−1(N ′

1 − i∗N1)D′

ZD′ ∩ [D′]
) )

in CHn−2d(Z).
Since

[D′] · ([D] − [D′]) = ([D] − [D′]) · [D′] = c1(ND′/Y ′ − i∗ND/Y ′)D′

ZD′ ∩ [D′],

the right-hand side of (3.27) is equal to

p∗
((

cd−1(N1) ∩ c1(ND′/Y ′ − i∗ND/Y ′)D′

ZD′

+ cd−1(N ′
1 − i∗N1)D′

ZD′ ∩ c1(ND′/Y ′)
)
∩ cd−1(N ′

1) ∩ [D′]
)
.

By the commutative diagram of exact sequences

0 −−−→ i∗N1 −−−→ i∗h∗NV/X −−−→ i∗ND/Y ′ −−−→ 0⏐⏐� ⏐⏐� ⏐⏐�
0 −−−→ N ′

1 −−−→ h′∗NW/Y −−−→ ND′/Y ′ −−−→ 0,

and by Lemma 3.4.8.2, it is further equal to

p∗(cd(h′∗NW/Y − i∗h∗NV/X)D′

ZD′ ∩ cd−1(N ′
1) ∩ [D′])

= cd(NW/Y − g∗NV/X)W
Z ∩ p∗(cd−1(N ′

1) ∩ [D′]).

Since (−1)d−1p∗(cd−1(N ′
1) ∩ [D′]) = [W ], the assertion follows.

Let f : V → U be a finite étale morphism of smooth separated schemes of
finite type over F and Y be a separated smooth scheme of finite type contain-
ing V as the complement of a divisor with simple normal crossings. We put
Dlog

V/U,Y = (V ×U V \ΔV ,ΔY )logZ ∈ CH0(Y \V ). Its image in CH0(Y \V )⊗Z Q

is the same as the image of Dlog
V/U .

Proposition 3.4.10. Let

(3.5)

V
⊂−−−→ Y

f

⏐⏐� ⏐⏐�f̄

U
⊂−−−→ X
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be a Cartesian diagram of separated schemes of finite type over F . We assume
X and Y smooth purely of dimension d over F , U ⊂ X and V ⊂ Y are the
complements of divisors B and D with simple normal crossings respectively
and f : V → U is finite and étale.

Then, the canonical map f∗Ω1
X/F (log B) → Ω1

Y/F (log D) is an isomor-
phism on V = Y \ D and we have

Dlog
V/U,Y = (−1)d−1cd

(
Ω1

Y/F (log D) − f∗Ω1
X/F (log B)

)Y

D
∩ [Y ].(3.28)

Proof. We consider the commutative diagram

Y −−−→ (Y × Y )∼

f

⏐⏐� ⏐⏐�(f×f)∼

X −−−→ (X × X)∼.

As in [20, Cor. 4.2.8], the conormal sheaves NX/(X×X)∼ and NY/(Y ×Y )∼ are
naturally identified with Ω1

X/F (log B) and Ω1
Y/F (log D) respectively. Hence, it

is sufficient to apply Lemma 3.4.9 to the diagram by taking V ×V ⊂ (Y ×Y )∼

as the open subscheme U ⊂ Y in Lemma 3.4.9.

We compute the log Lefschetz class assuming an equivariant resolution.
For a closed immersion Z → Y , let s(Z/Y ) ∈ ⊕

i CHi(Y ) be the Segre
class. For a locally free OY -module E , let c(E)∗ = c(E∗) =

∑
i(−1)ici(E) ∈⊕

i CHi(Y → Y ) be the bivariant Chern class [12] Chapter 17.3 of the dual
E∗ = Hom(E , OY ), loc. cit. Remark 3.2.3 (a).

Lemma 3.4.11. Let Y be a separated and smooth scheme of finite type
purely of dimension d over a perfect field F and V ⊂ Y be the complement
of a divisor D with simple normal crossings. Let σ be an automorphism of Y

over F . We assume that σ induces an automorphism of V , σ is admissible and
that V σ = ∅. Then, we have

(Γσ,ΔY )logZ = {c(Ω1
Y/F (log D))∗ ∩ s(Y σ

log/Y )}dim0(3.29)

in CH0(Y σ
log). In particular, if Y σ

log is a Cartier divisor Dσ of Y , we have

(Γσ,ΔY )logZ = {c(Ω1
Y/F (log D))∗ ∩ (1 + Dσ)−1 ∩ Dσ}dim0(3.30)

= (−1)d−1{c(Ω1
Y/F (log D)) ∩ (1 − Dσ)−1 ∩ Dσ}dim0.

Proof. Clear from the definition of the intersection product [12, Prop. 6.1
(a)] and NY/(Y ×Y )∼ = Ω1

Y/F (log D).

Corollary 3.4.12. Let f : V → U be a finite and étale morphism of
connected separated and smooth scheme of finite type purely of dimension d

over a perfect field F and let σ be an automorphism of V over U of order e.
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Let Y be a smooth separated scheme of finite type over F containing V as the
complement of a divisor D with simple normal crossings. If σ is extended to
an automorphism of Y over F , the following holds.

1. If j is an integer prime to e, we have (Γσ,ΔY )logZ = (Γσj ,ΔY )logZ in
CH0(Y \ V ).

2. If e is not a power of p, we have (Γσ,ΔY )logZ = 0 in CH0(Y \ V ).

Proof. Let g : Y ′ → Y be the blow-up associated to the subdivision by
baricenters. Since g∗ : CH0(Y ′ \ V ) → CH0(Y \ V ) is an isomorphism, by
replacing Y by Y ′, we may assume that the action of σj on Y is admissible
for each j ∈ Z by Lemma 1.2.3.2. Then it follows from Lemma 3.4.11 and
Corollary 1.2.7.

Lemma 3.4.13. Conjecture 3.4.4 is true if dimU ≤ 2.

Proof. It follows from Lemma 3.1.2 and Corollary 3.4.12.

We consider the case of isolated fixed point.

Lemma 3.4.14. Let Y be a separated and smooth scheme of finite type
purely of dimension d over F , y be a closed point of Y and σ be an automor-
phism of Y over a perfect field F . Assume that the underlying set of the fixed
part Y σ is {y}.

Let f : Y ′ → Y be the blow-up at y and D be the exceptional divisor. Let
g : (Y ′ × Y ′)′ → (Y ′ × Y ′) be the blow-up at D × D. Then the automorphism
σ′ of Y ′ induced by σ is admissible. Let Γ′

σ′ ⊂ (Y ′ × Y ′)′ denote the proper
transform of the graph Γσ′ ⊂ Y ′ × Y ′ of σ and ΔY ′ ⊂ (Y ′ × Y ′)′ be the log
diagonal. Then, we have

f∗(Γ′
σ′ ,ΔY ′)(Y ′×Y ′)′ = [OY σ ] − [y](3.31)

in CH0(y) = Z where [OY σ ] = length OY σ · [y].

Proof. We have [OY σ ] = (Γσ,ΔY )Y ×Y . By the projection formula, we
have

(Γσ,ΔY )Y ×Y = f∗(g!(f × f)!Γσ,ΔY ′)(Y ′×Y ′)′ .

Thus it is sufficient to show the equality

(g!(f × f)!Γσ − Γ′
σ′ ,ΔY ′)(Y ′×Y ′)′ = [y′]

in CH0(D) for a κ(y)-rational point y′ ∈ D.
We compute g!(f × f)!Γσ. Since the irreducible components of

(f × f)−1(Γσ) = Γσ ×Y ×Y (Y ′ × Y ′)
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are Γσ′ and D × D, we have

(f × f)![Γσ] = [Γσ′ ] + {c(Ω1
Y/F )∗s(D × D/Y × Y )}dim d

= [Γσ′ ] + {(1 + D(1))−1(1 + D(2))−1D(1) · D(2)}dim d.

Here D(1) = D × Y and D(2) = Y × D. The irreducible components of
g−1(Γσ′) = Γσ′ ×Y ′×Y ′ (Y ′ × Y ′)′ are Γ′

σ′ and the inverse image ED of the
diagonal D ⊂ D × D. Hence we have

g!(f×f)![Γσ] = [Γ′
σ′ ]+[ED]+{(1+g∗D(1))−1(1+g∗D(2))−1g∗D(1) ·g∗D(2)}dim d.

Thus we obtain

(g!(f × f)!Γσ − Γ′
σ′ ,ΔY ′)(Y ′×Y ′)′ = (ED,ΔY ′)(Y ′×Y ′)′ + {(1 + D)−2D2}dim0.

By

(ED,ΔY ′)(Y ′×Y ′)′ = (ED,ΔD)E = (ΔD,ΔD)D×D = d[y′],

{(1 + D)−2D2}dim0 = (−1)d(d − 1)Dd = −(d − 1)[y′],

the assertion follows.

4. Swan class and Euler characteristic of a sheaf

We keep the following notation in this section. Let U be a connected,
separated and smooth scheme of finite type purely of dimension d over a perfect
field F . Let � be a prime number different from the characteristic p of F .

We consider a smooth F̄�-sheaf F on U and a finite étale Galois covering
f : V → U trivializing F . We define and study the Swan character class in
Section 4.1. Using it, we define the Swan classes SwV/U (F) ∈ CH0(V \V )⊗Z Q
and Sw(F) ∈ CH0(U \U)⊗Z Q in Section 4.2. We also prove the formula (0.3)
in Section 4.2. In Section 4.3, we state an integrality conjecture (Conjecture
4.3.7) that is a generalization of the Hasse-Arf theorem (Lemma 4.3.6).

4.1. Swan character class. We define the Swan character class for a
ramified Galois covering using the map (0.1) ( ,ΔV )log : CHd(V ×U V \ΔV ) →
CH0(V \ V ) ⊗Z Q.

Definition 4.1.1. Let f : V → U be a finite and étale Galois covering
of Galois group G of connected separated and smooth schemes of finite type
purely of dimension d over a perfect field F . For σ ∈ G, we define the Swan
character class sV/U (σ) ∈ CH0(V \ V ) ⊗Z Q by

sV/U (σ) =

{
Dlog

V/U if σ = 1

−(Γσ,ΔV )log if σ �= 1.
(4.1)
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If Csm,0
V is cofinal in CV , the Swan character class sV/U (σ) is defined in

CH0(V \ V ).
We show basic properties of Swan character classes.

Lemma 4.1.2. Let the notation be as in Definition 4.1.1.
1. We have ∑

σ∈G

sV/U (σ) = 0.(4.2)

2. If the order of σ is not a power of the characteristic of F , we have
sV/U (σ) = 0.

3. Let H ⊂ G be a subgroup and g : V → U ′ be the corresponding
intermediate covering. Then, for σ ∈ H, we have

sV/U (σ) =

{
sV/U ′(σ) if σ �= 1
sV/U ′(1) + ḡ∗Dlog

U ′/U if σ = 1.
(4.3)

4. Let N ⊂ G be a normal subgroup, and g : V → V ′ be the corresponding
intermediate covering. Then, we have

ḡ∗sV ′/U (σ) =
∑

σ̃∈G, �→σ

sV/U (σ̃)(4.4)

for σ ∈ G/N .

Proof. 1. Clear from the definition and V ×U V \ ΔV =
∐

σ �=1 Γσ.
2. Clear from Proposition 3.4.3.
3. For σ �= 1, it is clear from Lemma 3.3.1.1. For σ = 1, it is nothing

but (3.21).
4. For σ �= 1, the equality (4.4) is clear from Lemma 3.3.1.2. For σ = 1,

it follows from the case σ �= 1 and the equality (4.2).

Remark 4.1.3. If Conjecture 3.4.4 is true, we have sV/U (σ) = sV/U (σj)
for an integer j prime to the order e of σ ∈ G.

We have the following trace formula.

Lemma 4.1.4. Let the notation be as in Definition 4.1.1. Then, we have

deg sV/U (σ) =

{
[V : U ]χc(UF̄ , Q�) − χc(VF̄ , Q�) if σ = 1
−Tr(σ∗ : H∗

c (VF̄ , Q�)) if σ �= 1.
(4.5)

Proof. Clear from the definition and Lemma 3.4.5.

Corollary 4.1.5. If j is prime to the order of σ ∈ G,

deg sV/U (σ) = deg sV/U (σj).
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Proof. It suffices to consider the case σ �= 1. Since j is prime to the order
of σ, Tr(σj∗ : H∗

c (VF̄ , Q�)) is a conjugate of Tr(σ∗ : H∗
c (VF̄ , Q�)) over Q. Hence,

by the equality deg sV/U (σ) = −Tr(σ∗ : H∗
c (VF̄ , Q�)), the degree deg sV/U (σj)

is a conjugate of deg sV/U (σ) over Q. Since deg sV/U (σ) ∈ Q, the assertion
follows.

If Y is a separated scheme of finite type containing U as a dense open
subscheme, let sV/U,Y (σ) ∈ CH0(Y \ V ) ⊗Z Q denote the image of sV/U (σ).
Let f : V → U be a finite étale Galois covering of separated smooth schemes
of finite type over F . Let G be the Galois group. Let X be a normal scheme
containing U as a dense open subscheme and Y be the normalization of X in
V . For a geometric point ȳ of Y \ V , let Iȳ ⊂ G be the inertia group at y. For
a geometric point x̄ of X \U , let Ix̄ ⊂ G be the inertia group Iȳ at a geometric
point ȳ of Y \ V lifting x̄, that is defined modulo conjugate.

Lemma 4.1.6. Let f : V → U be a finite étale Galois covering of Galois
group G of connected, separated smooth schemes of finite type purely of dimen-
sion d over a perfect field F . Let X be a separated normal scheme of finite
type containing U as a dense open subscheme and let Y be the normalization
of X in V .

Let σ ∈ G be a nontrivial element and p be the characteristic of F . Assume
that σ is not in any conjugate of any p-Sylow group of the inertia subgroup
Ix̄ ⊂ G for any geometric point x̄ of X \ U .

Then, we have sV/U,Y (σ) = 0.

Proof. If the order of σ is not a power of p, it follows from Lemma 4.1.2.2.
Thus, it suffices to show sV/U,Y (σ) = 0 assuming σ is not in any conjugate of
the Ix̄ ⊂ G for any geometric point x̄ of X \U . The assumption means that the
σ-fixed part Y σ is empty. Hence, the assertion follows from Corollary 3.3.4.2.

For an isolated fixed point, the following is a special case of a conjecture
of Serre.

Conjecture 4.1.7 (Serre [28, (1) p. 418]). Let Y be a separated smooth
scheme over a perfect field F purely of dimension d and y be a closed point
of Y . Let G be a finite group of automorphisms of Y over F such that, for
σ �= 1, the underlying set of the fixed part Y σ is {y}. Then, the function
aG : G → Z defined by

aG(σ) =

{
−length OY σ,y if σ �= 1
−∑

τ∈G\{1} aG(τ) if σ = 1
(4.6)

is a character of the group G.
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Serre conjectures more precisely that the character aG is rational over
Q� for all � �= p in loc. cit. (2). Conjecture 4.1.7 is proved in [19] assuming
dimY = 2. In Corollary 5.1.7.3, we give a new proof by deducing it from a
generalization, Conjecture 4.3.7.1, assuming dimY = 2.

We compare aG(σ) with the Swan character class sV/U,Y (σ).

Lemma 4.1.8. Let Y and G be as in Conjecture 4.1.7. We assume the
quotient f̄ : Y → X = Y/G exists. Let x = f̄(y) be the image of y. Then, the
map f : V = Y \ {y} → U = X \ {x} is finite étale and V is a Galois covering
of Galois group G. Further, for σ ∈ G, we have

aG(σ) =

{
sV/U,Y (σ) − 1 if σ �= 1
sV/U,Y (σ) + |G| − 1 if σ = 1

in CH0(y) = Z.

Proof. We keep the notation in the proof of Lemma 3.4.14. Then the
natural map X ′ = Y ′/G → X is an isomorphism on the complement U =
X \ {x} and U is the complement of a Cartier divisor of X ′. Hence the map
( ,ΔY )log : CHd(V ×U V \ ΔV ) → CH0(y) = Z is induced by the intersection
product ( ,ΔY ′)(Y ′×Y ′)′ and the assertion is clear from Lemma 3.4.14.

4.2. Swan class and Euler characteristic of a sheaf. We define the Swan
class of an F̄�-sheaf F as a 0-cycle class on the boundary of a covering trivial-
izing F . For a finite group G and a prime number p, let G(p) ⊂ G be the set of
elements of order a power of p. If p = 0, we put G(p) = ∅. For a representation
M of G and σ ∈ G, let Mσ denote the fixed part {m ∈ M |σ(m) = m}.

Definition 4.2.1. Let U be a smooth connected scheme of dimension d

over a perfect field F of characteristic p and F be a smooth F̄�-sheaf on U .
Let f : V → U be a finite étale Galois covering of Galois group G trivializing
F . Let M be the F̄�-representation of G corresponding to F .

Then, we define the Swan class SwV/U (F) ∈ CH0(V \ V ) ⊗Z Q by

SwV/U (F) =
∑

σ∈G(p)

(
dimF�

Mσ − dimF�
Mσp

/Mσ

p − 1

)
· sV/U (σ).(4.7)

Recall that we have sV/U (σ) = 0 if the order of σ is not a power of p

by Lemma 4.1.2.2. Thus we take the sum over σ ∈ G(p). If p = 0, we have
SwV/U (F) = 0.

We define a variant of the Swan class expected to be the same as that
defined above. For an F̄�-automorphism σ of an F̄�-vector space M of dimen-
sion m, the Brauer trace TrBr(σ : M) ∈ Z[ζ∞] ⊂ Q̄� is defined as follows.
Let α1, . . . , αm be the eigenvalues of σ counted with multiplicities and let
α̃1, . . . , α̃m ∈ Z[ζ∞] ⊂ Q̄� be the roots of unity of order prime to � lifting



80 KAZUYA KATO AND TAKESHI SAITO

α1, . . . , αm. Then, we define TrBr(σ : M) =
∑m

i=1 α̃i. If σ is an automorphism
of order pe of M , one can easily verify the equality

|(Z/peZ)×| ·
(

dimF�
Mσ − dimF�

Mσp

/Mσ

p − 1

)
=

∑
i∈(Z/peZ)×

TrBr(σi : M).(4.8)

Definition 4.2.2. Let the notation be as in Definition 4.2.1. Then, we
define the naive Swan class Sw′

V/U (F) ∈ CH0(V \ V ) ⊗Z Q(ζp∞) by

Sw′
V/U (F) =

∑
σ∈G(p)

sV/U (σ) ⊗ TrBr(σ : M).(4.9)

Lemma 4.2.3. Let the notation be as in Definition 4.2.1.

1. We have

deg SwV/U (F) = deg Sw′
V/U (F).(4.10)

2. If Conjecture 3.4.4 holds, we have

SwV/U (F) = Sw′
V/U (F).(4.11)

Proof. 1. It follows from the equality (4.8) for an element σ ∈ G of order
pe and Corollary 4.1.5.

2. It follows from the equality (4.8) for an element σ ∈ G of order pe.

Lemma 4.2.4. Let f : V → U be a finite and étale Galois covering of
connected separated and smooth schemes of finite type purely of dimension d

over a perfect field F of Galois group G. Let � be a prime number different
form p = char F .

1. Let 0 → F ′ → F → F ′′ → 0 be a short exact sequence of smooth
F̄�-sheaves on U trivialized on V . Then, we have

SwV/U (F) = SwV/U (F ′) + SwV/U (F ′′).(4.12)

2. Let N ⊂ G be a normal subgroup and g : V → V ′ be the corresponding
intermediate covering. Let F be a smooth F̄�-sheaf on U trivialized on V ′.
Then, we have

SwV/U (F) = g∗SwV ′/U (F).(4.13)

Proof. 1. Clear from the definition.

2. It is clear from Lemma 4.1.2.4.

Corollary 4.2.5. Let U be a separated smooth scheme of finite type
over F . Let F be a smooth F̄�-sheaf on U . Let f : V → U be a finite étale
Galois covering of Galois group G trivializing F .
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1. Then,
1
|G|f∗SwV/U (F) ∈ CH0(U \ U) ⊗Z Q

is independent of the choice of V .
2. We have

SwV/U (F) =
1
|G|f

∗f∗SwV/U (F).

Proof. 1. Clear from Lemma 4.2.4.2 and Corollary 3.1.4.2.
2. The Swan class SwV/U (F) is invariant by the Galois group G. Hence

it follows from Corollary 3.1.4.2.

Thus, we define the Swan class Sw(F) in CH0(U \ U) ⊗Z Q as follows.

Definition 4.2.6. Let U be a separated smooth scheme of finite type over F .
Let F be a smooth F̄�-sheaf on U .

We define the Swan class Sw(F) ∈ CH0(U \ U) ⊗Z Q by

Sw(F) =
1
|G|f∗SwV/U (F)(4.14)

that is independent of a finite étale Galois covering V → U trivializing F by
Corollary 4.2.5.

Similarly, we define the naive Swan class by

Sw′(F) =
1
|G|f∗Sw′

V/U (F)(4.15)

We also define the Swan class for a smooth Q̄�-sheaf.

Lemma 4.2.7. Let � be a prime number invertible in F . Assume U is
connected. Let F be a smooth Q̄�-sheaf on U . Then the class Sw(F0 ⊗Z̄�

F̄�) ∈
CH0(U \ U) ⊗Z Q is indepenent of the choice of a smooth Z̄�-sheaf F0 on U

satisfying F = F0 ⊗Z̄�
Q̄�.

Proof. Clear from Lemma 4.2.4.1.

Definition 4.2.8. Let � be a prime number invertible in F . Assume U is
connected. For a smooth Q̄�-sheaf F on U , we define the Swan class Sw(F) ∈
CH0(U \ U) ⊗Z Q to be the class SwV/U (F0 ⊗Z̄�

F̄�) in Lemma 4.2.7 that is
independent of F0.

We prove the formula (0.3) for the Euler characteristic. For a smooth
Q̄�-sheaf F on U , we put

χc(UF̄ ,F) =
2d∑

q=0

(−1)q dimQ̄�
Hq

c (VF̄ ,F).

We define χc(UF̄ ,F) similarly for a smooth F̄�-sheaf F on U .
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Theorem 4.2.9. Let U be a connected separated smooth scheme of di-
mension d of finite type over F . Let � be a prime number invertible in F . Let
F be a smooth F̄�-sheaf or a smooth Q̄�-sheaf on U . Then, we have

(0.3) χc(UF̄ ,F) = rank F · χc(UF̄ , Q�) − deg Sw(F).

Proof. It is sufficient to show the case where F is a smooth F̄�-sheaf
on U . Let the notation be as in Definition 4.2.1. Let G�-reg be the subset of G

consisting of elements of order prime to �. By Lemma 2.3 [15], we have

χc(UF̄ ,F) =
1
|G|

∑
σ∈G�-reg

Tr(σ∗ : H∗
c (VF̄ , Q�)) · TrBr(σ : M).

By Corollary 3.4.6, we may replace G�-reg in the summation by G(p). Thus by
Lemma 4.1.4, we have

χc(UF̄ ,F) = rank F · χc(UF̄ , Q�) − deg Sw′(F)

where Sw′(F) is the naive Swan class. By Lemma 4.2.3.1, we have deg Sw(F) =
deg Sw′(F) and the assertion follows.

4.3. Properties of Swan classes. We keep the notation that U denotes a
connected smooth scheme purely of dimension d over a perfect field F and � is
a prime number different from the characteristic of F .

We define the wild discriminant and show the induction formula for Swan
classes.

Definition 4.3.1. Let f : V → U be a finite étale morphism of connected,
separated and smooth scheme of finite type purely of dimension d over F .
Then we define the wild discriminant dlog

V/U ∈ CH0(U \U)⊗Z Q of V over U by

dlog
V/U = f∗D

log
V/U .(4.16)

Lemma 4.3.2. Let V → U ′ → U be finite étale morphism of separated and
smooth schemes of finite type purely of dimension d over F . Assume V → U ′

is of constant degree [V : U ′] and let h : U ′ → U denote the map. Then, we
have

dlog
V/U = [V : U ′] · dlog

U ′/U + h∗d
log
V/U ′ .(4.17)

Proof. Clear from Lemma 3.4.2.

Proposition 4.3.3. Let f : V → U be a finite and étale Galois covering
of connected separated schemes of of dimension d of finite type over F . Let G be
the Galois group and let h : U ′ → U be the intermediate covering corresponding
to a subgroup H ⊂ G.
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Let F be a smooth F̄�-sheaf on U ′. Assume that the pull-back g∗F by the
map g : V → U ′ is constant. Then, if T ⊂ G is a complete set of representatives
of G/H, we have

SwV/U (h∗F) =
∑
τ∈T

τ∗(SwV/U ′(F) + rank F · g∗Dlog
U ′/U ).(4.18)

In particular, we have

SwV/U (h∗F�) =
∑
τ∈T

τ∗g∗Dlog
U ′/U .

Proof. As in Definition 4.2.1, let p be the characteristic of F and G(p) ⊂ G

be the subset consisting of elements of order a power of p. Let M be the
F̄�-representation of H corresponding to F . For σ ∈ G, we have

dim(IndG
HM)σ =

∑
τ∈T

dimM 〈τστ−1〉∩H

[〈τστ−1〉 : 〈τστ−1〉 ∩ H]
.

Thus, we have

dimF�
(IndG

HM)σ − dimF�
(IndG

HM)σp

/(IndG
HM)σ

p − 1

=
∑

τ∈T,τστ−1∈H(p)

(
dimF�

M τστ−1 − dimF�
M τσpτ−1

/M τστ−1

p − 1

)
.

Hence, the Swan class

SwV/U (h∗F)

=
∑

σ∈G(p)

(
dimF�

(IndG
HM)σ − dimF�

(IndG
HM)σp

/(IndG
HM)σ

p − 1

)
· sV/U (σ)

is equal to∑
σ∈G(p)

∑
τ∈T,τστ−1∈H(p)

(
dimF�

M τστ−1 − dimF�
M τσpτ−1

/M τστ−1

p − 1

)
· sV/U (σ)

=
∑

σ′∈H(p)

∑
τ∈T

(
dimF�

Mσ′ − dimF�
Mσ′p

/Mσ′

p − 1

)
· sV/U (τ−1σ′τ)

=
∑
τ∈T

τ∗
( ∑

σ′∈H(p)

(
dimF�

Mσ′ − dimF�
Mσ′p

/Mσ′

p − 1

)
· sV/U (σ′)

)
.

By Lemma 4.1.2.3, the content of the big paranthese is equal to∑
σ′∈H(p)

(
dimF�

Mσ′ − dimF�
Mσ′p

/Mσ′

p − 1

)
· sV/U ′(σ′) + dimM · g∗Dlog

U ′/U

= SwV/U ′(F) + rank F · g∗Dlog
U ′/U .

Thus the assertion follows.
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Corollary 4.3.4. Let h : U ′ → U be a finite and étale morphism of
connected separated schemes of dimension d finite type over F . Let F be a
smooth F̄�-sheaf on U ′.

Then, we have

Sw(h∗F) = h∗Sw(F) + rank F · dlog
U ′/U .(4.19)

In particular, we have
Sw(h∗F�) = dlog

U ′/U .

Proof. Clear from Proposition 4.3.3.

We study the integrality of Swan classes. For a finite group G, let Cp(G)
denote the set of cyclic subgroups C ⊂ G of order a power of p. For a cyclic
subgroup C ∈ Cp(G), we put Cp = 〈σp〉 ∈ Cp(G) for a generator σ of C

and C× = {generator of C}. Further, for an F̄�-representation M of G, we
put MC = {m ∈ M |σ(m) = m for all σ ∈ C}. It is clear that the product

(dimF�
MC − dimF�

MCp
/MC

p−1 ) · |C×| is an integer.

Definition 4.3.5. Let U be a smooth connected scheme of dimension d

over a perfect field F and F be a smooth F̄�-sheaf on U . Let f : V → U be
a finite étale Galois covering of Galois group G trivializing F . Let M be the
F̄�-representation of G corresponding to F . We assume that Csm,0

V is cofinal in
CV and that Conjectures 3.4.4 holds for σ ∈ G.

Then, we define the integral Swan class SwV/U (F)Z ∈ CH0(V \ V ) by

SwV/U (F)Z =
∑

C∈Cp(G)

(
dimF�

MC − dimF�
MCp

/MC

p − 1

)
· |C×| · sV/U (σC),

(4.20)

where σC denotes an arbitrary generator of C ∈ Cp(G).

The assumptions that Csm,0
V is cofinal in CV and that Conjectures 3.4.4

holds for σ ∈ G are satisfied if dimU ≤ 2.
We recall the classical theorem of Hasse-Arf for curves.

Lemma 4.3.6. Let U be a smooth connected curve over a perfect field F

and F be a smooth F̄�-sheaf on U trivialized by a finite étale Galois covering
f : V → U of Galois group G. Let X be the proper smooth curve containing
U as a dense open subscheme and f̄ : Y → X be the normalization in V . We
identify CH0(X \ U) = CH0(U \ U) and CH0(Y \ V ) = CH0(V \ V ).

Then, the integral Swan class SwV/U (F)Z ∈ CH0(Y \V ) =
⊕

y∈Y \V Z · [y]
is in the image of the injection f̄∗ : CH0(X \ U) → CH0(Y \ V ).

Proof. Since Conjecture 3.4.4 holds in dimension 1, the Swan class
SwV/U (F) is equal to the naive Swan class Sw′

V/U (F) by Lemma 4.2.3.2. For
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y ∈ Y \ V , let Iy ⊂ G be the inertia group at y. Let M be the corresponding
F̄�-representation of G. Then, by Lemma 3.4.7 and [29], the Swan conductor

Swy(F) =
1
|Iy|

∑
σ∈Iy

sV/U,y(σ)TrBr(σ : M)

is in N. For x ∈ X \U , Swy(F) is independent of the inverse image y of x. We
put Swx(F) = Swy(F) for x ∈ X \ U and Sw(F) =

∑
x∈X\U Swx(F) · [x] ∈

CH0(X \ U). Then, we have

Sw′
V/U (F) =

∑
y∈Y \V

|Iy|Swy(F) · [y] = f̄∗ ∑
x∈X\U

Swx(F) · [x] = f̄∗Sw(F)

and the assertion is proved.

We expect that Lemma 4.3.6 holds in higher dimension.

Conjecture 4.3.7. Let U be a smooth connected scheme of dimension d

over a perfect field F and F be a smooth F̄�-sheaf on U .

1. The Swan class Sw(F) ∈ CH0(U\U)⊗ZQ is in the image of CH0(U\U).

2. Let f : V → U be a finite étale Galois covering trivializing F . Assume
that Csm,0

V is cofinal in CV and that Conjecture 3.4.4 holds as in Definition 4.3.5.
Then, the integral Swan class SwV/U (F)Z ∈ CH0(V \ V ) is in the image

of f∗ : CH0(U \ U) → CH0(V \ V ).

Conjecture 4.3.7.1 is equivalent to the assertion that the Swan class
SwV/U (F) ∈ CH0(V \ V ) ⊗Z Q is in the image of

f∗ : CH0(U \ U) → CH0(V \ V ) ⊗Z Q

for a finite étale Galois covering f : V → U trivializing F , by Corollary 4.2.5.2.
By Lemma 4.3.6, Conjecture 4.3.7 is true if dimU = 1. We prove Con-

jecture 4.3.7.1 assuming dimU ≤ 2 in Corollary 5.1.7.1. Conjecture 4.3.7.1 is
reduced to the rank 1 case by the induction formula as follows.

Lemma 4.3.8. Let f : V → U be a finite étale Galois covering of Galois
group G. We assume that Csm,0

U ′ is cofinal in CU ′ for every intermediate covering
V → U ′ → U . We also assume that Sw G ∈ CH0(U ′ \U ′)⊗Z Q is in the image
of CH0(U ′\U ′) for every smooth F̄�-sheaf of rank 1 on an intermediate covering
U ′ trivialized on V .

Then, for every smooth F̄�-sheaf F on U trivialized on V , the Swan class
Sw F ∈ CH0(U \ U) ⊗Z Q is in the image of CH0(U \ U).

Proof. By Brauer’s theorem [29], we may assume F = h∗G where h :
U ′ → U is an intermediate covering and G is a smooth F̄�-sheaf of rank 1 on
U ′. Since Csm,0

U ′ is assumed cofinal in CU ′ , the wild different Dlog
U ′/U is defined
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in CH0(U ′ \ U ′) by Proposition 3.4.10. Hence, the wild discriminant dlog
U ′/U is

in the image of CH0(U \ U). Thus it follows from the assumption that Sw G
is in the image of CH0(U ′ \ U ′) and the induction formula Corollary 4.3.4.

If X is a separated scheme of finite type containing U as a dense open
subscheme, let SwX(F) ∈ CH0(X \ U) ⊗Z Q denote the image of Sw(F).
Similarly, if Y is a separated scheme of finite type containing V as a dense
open subscheme, let SwV/U,Y (F) ∈ CH0(Y \ V ) ⊗Z Q denote the image of
SwV/U (F).

Lemma 4.3.9. Conjecture 4.3.7.1 implies Conjecture 4.1.7.

Proof. Let the notation be as in Conjecture 4.1.7. Since |G|aG is a char-
acter of G by [28, Prop. 7], it is sufficient to show that the Artin conductor

aG(M) =
1
|G|

∑
σ∈G

aG(σ)Tr(σ : M)(4.21)

defined in Q is in Z for every Q̄�-representation M of G. We may assume Y is
affine and the quotient X = Y/G exists. Let x ∈ X be the image of y and F
be the smooth sheaf on U = X \ {x} corresponding to the representation M .
Then, by Corollary 4.1.8 and Corollary 3.4.12.2, we have aG(M) = SwX(F) +
dimM − dimMG in CH0(x) ⊗Z Q = Q. Thus the assertion is proved.

We give a refinement of Théorème 2.1 of [15].

Lemma 4.3.10. Let the notation be as in Lemma 4.1.6. Let p be the char-
acteristic of a perfect field F . Let F1 and F2 be smooth F̄�-sheaves on U cor-
responding to F̄�-representations M1 and M2 of G. Assume that X is normal
and that, for each geometric point x̄ of X \ U , the restrictions of M1 and M2

to a p-Sylow subgroup of the inertia subgroup Ix̄ are isomorphic to each other.
Then, we have

SwV/U,Y (F1) = SwV/U,Y (F2)

Proof. Clear from Lemma 4.1.6 and Definition 4.2.1.

If the base field is finite, we expect to have the following refinement of
Theorem 4.2.9.

Conjecture 4.3.11. Let U be a connected separated smooth scheme of
dimension d of finite type over a finite field F . Let X be a proper normal
scheme over F containing U as a dense open subscheme. Let FrF ∈ Gal(F̄ /F )
be the geometric Frobenius and let ρX : CH0(X) → π1(X)ab be the reciprocity
map sending [x] to the geometric Frobenius Frx for closed points x ∈ X.
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Let � be a prime number invertible in F . Let F be a smooth F̄�-sheaf or
a smooth Q̄�-sheaf on U . We assume Conjecture 4.3.7.1 holds and SwX(F) ∈
CH0(X \ U) is defined.

Let G be a smooth F̄�-sheaf or Q̄�-sheaf on X and let detG : π1(X)ab → F̄×
�

or π1(X)ab → Q̄×
� be the character corresponding to the smooth sheaf detG of

rank 1. We put det(−FrF : H∗
c (UF̄ ,F)) =

∏2d
q=0 det(−FrF : Hq

c (UF̄ ,F))(−1)q

.

Then, we have

det(−FrF : H∗
c (UF̄ ,F ⊗ G))

= det(−FrF : H∗
c (UF̄ ,F))rank G · detG(ρX(SwX(F))).

If dimU = 1, Conjecture 4.3.11 is a consequence of the product formula
for the constant term of the functional equation of L-functions [8], [22].

5. Computations of Swan classes

We compare the Swan classes Sw(F) of sheaves of rank 1 with an invariant
defined in [18] in Section 5.1. Using the computation, we prove the integral-
ity conjecture Conjecture 4.3.7.1 assuming dimU ≤ 2. We also compare the
formula (0.3) with Laumon’s formula in [21].

We keep the notation that U denotes a connected smooth scheme purely
of dimension d over a perfect field F and � is a prime number different from
the characteristic p of F .

5.1. Rank 1 case. Let X be a smooth separated scheme of finite type
purely of dimension d over F and U ⊂ X be the complement of a divisor D

with simple normal crossings. Let � be a prime number invertible in F . We
identify μp(F̄�) = Z/pZ.

Let F be a smooth F̄�-sheaf of rank 1 on U . We briefly recall the definition
of the 0-cycle class cF in [18]. Let D1, . . . , Dm be the irreducible components
of D. Let χ ∈ H1(U, F̄×

� ) be the element corresponding to F . In loc. cit.,
the Swan divisor Dχ =

∑m
i=1 swi(χ)Di ≥ 0 is defined. Also the refined Swan

character map

rswi(χ) : O(−Dχ)|Di
→ Ω1

X/F (log D)|Di

is defined for each irreducible component Di such that swi(χ) > 0.
We put E =

∑
i;swi(χ)>0 Di ⊂ D. If f̄ : Y → X is the normalization in the

cyclic étale covering f : V → U corresponding to χ, the closed subscheme E ⊂
X is the wild ramification locus of the covering Y → X. The sheaf F is said to
be clean with respect to X if the map rswi(χ) : O(−Dχ)|Di

→ Ω1
X/F (log D)|Di

is a locally splitting injection for each component Di of E. If F is clean with
respect to X, the 0-cycle class cF = cχ ∈ CH0(E) is defined by
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cF = cχ = {c(Ω1
X/F (log D))∗ ∩ (1 + Dχ)−1 ∩ Dχ}dim0(5.1)

= (−1)d−1
m∑

i=1

swi(χ)cd−1(Coker(rswi(χ))) ∩ [Di].

If one wants to specify X, we write cF ,X for cF .

Conjecture 5.1.1. Let X be a separated scheme of finite type over a
perfect field F and U ⊂ X be a dense open subscheme of X. Assume U is
connected and smooth purely of dimension d over F . Let � be a prime number
invertible in F and F be a smooth F̄�-sheaf of rank 1 on U .

1. Let

(3.5)

V
⊂−−−→ Y

f

⏐⏐� ⏐⏐�f̄

U
⊂−−−→ X

be a Cartesian diagram of smooth separated schemes of finite type over F . We
assume U ⊂ X and V ⊂ Y are the complement of divisors with simple normal
crossings, f : V → U is a connected finite étale Galois covering of Galois group
G and F is constant on V . If F is clean with respect to X, we have

SwV/U,Y (F) = f̄∗cF ,X(5.2)

in CH0(E ×X Y ) ⊗Z Q.
2. There exists a Cartesian diagram

U
⊂−−−→ X ′∥∥∥ ⏐⏐�f̄

U
⊂−−−→ X

satisfying the following conditions: the map f̄ : X ′ → X is proper, X ′ is
smooth over F , U is the complement of a divisor with simple normal crossings
in X ′ and F is clean with respect to X ′.

Conjecture 5.1.1.2 is proved if dimU ≤ 2 in [18, Th. 4.1]. We prove
Conjecture 5.1.1.1 assuming dimU ≤ 2 later in Theorem 5.1.5.

Lemma 5.1.2. Conjecture 5.1.1 implies Conjecture 4.3.7.1.

Proof. Note that Conjecture 5.1.1.2 is stronger than the strong resolution
of singularities. Hence the assertion follows from Lemma 4.3.8.

We prove Conjecture 5.1.1.1 in some cases. We say F is s-clean with
respect to X if it is clean and further if the composition

O(−Dχ)|Di

rswi(χ)−−−−→ Ω1
X/F (log D)|Di

resDi−−−→ ODi
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is either an isomorphism or the 0-map for each component Di of E, depending
on Di. We recall results in [32].

Lemma 5.1.3 ([32, Lemmas 1 and 2]). Let p > 0 be the characteristic of
F and e ≥ 1 be an integer. Let X be a separated and smooth scheme of finite
type over F , U be the complement of a divisor with simple normal crossings.
Let f : V → U be a finite étale connected cyclic covering of degree pe and
let f1 : U1 → U be the intermediate covering of degree p. Let F and G be the
smooth F̄�-sheaves of rank 1 corresponding to characters χ, θ : Gal(V/U) → F̄×

�

of degree pe and p respectively. We assume that the sheaf G is s-clean with
respect to X. Let E ⊂ X be the union of irreducible components of X \ U

where F has wild ramification.
Then, there exists a Cartesian diagram

U1
⊂−−−→ Y1

f1

⏐⏐� ⏐⏐�f̄1

U
⊂−−−→ X

of smooth separated scheme of finite type satisfying the following condition:

[5.1.3] The map f̄1 : Y1 → X is proper and U1 ⊂ Y1 is the complement of a
divisor with simple normal crossings. If σ is a generator of Gal(U1/U),
the action of σ on U1 is extended to an admissible action on Y1 over X

and we have

p · sU1/U (σ) = −f̄∗
1 cG(5.3)

in CH0(Y1×XE). Further if F is clean with respect to X and if F1 = f∗
1F

is clean with respect to Y1, we have

f̄∗
1 cF = cF1 + Dlog

U1/U .(5.4)

Proposition 5.1.4. Let the notation be as in Conjecture 5.1.1.1. Let
χ : G → F̄×

� be the character corresponding to F . Let n be the order of χ and
e = ordpn be the p-adic valuation. For 0 ≤ i ≤ e, let Ui be the intermediate
étale covering corresponding to the subgroup Gi ⊂ G of index pi.

We assume that the diagram (3.5) is inserted in a Cartesian diagram

(5.5) V
h−−→ Ue −−→· · ·−−→ Ui+1 −→ Ui Ui −−→· · · U0 =U

∩
⏐⏐� ∩

⏐⏐� ∩
⏐⏐� ∩

⏐⏐� ∩
⏐⏐� ⏐⏐�

Y
h̄−−→ Xe

ḡe−−→· · · ḡi+1−−→ Yi+1
f̄i+1−−→ Xi

ḡi−−→ Yi
f̄i−−→· · · ḡ0−−→ Y0=X

satisfying the following conditions (5.5.1)–(5.5.3):
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(5.5.1) For 0 ≤ i ≤ e, Xi and Yi are separated and smooth over F

and contain Ui as the complement of divisors with simple normal crossings.
The pull-back Fi = F|Ui

is clean with respect to Xi and to Yi and we have
ḡ∗i (cFi,Yi

) = cFi,Xi
.

(5.5.2) For 0 ≤ i < e, the smooth F̄�-sheaf Gi on Ui corresponding to
a nontrivial character Gal(Ui+1/Ui) → F̄×

� is s-clean with respect to Xi and
f̄i+1 : Yi+1 → Xi satisfies the condition [5.1.3] in Lemma 5.1.3.

(5.5.3) The actions of G on U1, . . . , Ue and on V are extended to admis-
sible actions on X1, . . . , Xe and on Y .

Then, we have

(5.2) SwV/U,Y (F)Z = f̄∗cF ,X

in CH0(E ×X Y ).

Proof. First, we reduce it to the case where n = pe. We decompose
G = Gal(V/U) = Gal(Ue/U) × Gal(U ′/U) to the p-part Gal(Ue/U) and the
non-p-part Gal(U ′/U). Let χ′ be the restriction to the p-part Gal(Ue/U) and
let F ′ be the corresponding sheaf on U . By the definition in [18], we have
cF = cF ′ . By Lemma 4.1.2.2, we have SwV/U,Y (F)Z = SwV/U,Y (F ′)Z. By
Lemma 4.2.4.2, we have SwV/U,Y (F ′)Z = h̄∗SwVe/U,Xe

(F ′)Z. Thus the assertion
is reduced to the case where n is a power of p.

We assume n = pe and prove the assertion by induction on e. We prove
the case n = p. By the condition (5.5.3) and Corollary 3.4.12.1, we have
SwV/U,Y (F)Z = −p·sV/U (σ) for a generator σ of Gal(V/U). Hence the assertion
follows from the equality (5.3) in Lemma 5.1.3 and the assumption ḡ∗0cF ,Y0 =
cF ,X0 (5.5.1) in the case n = p.

We assume e ≥ 2. By the induction hypothesis, we may assume
SwV/U1,Y (F1)Z = ḡ∗cF1 where ḡ : Y → Y1 denotes the composition. By the
equality (5.4) in Lemma 5.1.3 and the assumption ḡ∗0cF ,Y0 = cF ,X0 (5.5.1), we
have f̄∗cF = ḡ∗cF1 + ḡ∗Dlog

U1/U in CH0(Y \V ). By the condition (5.5.3), Corol-
lary 3.4.12.1 and Lemma 4.1.2.3, we have SwV/U,Y (F)Z = SwV/U1,Y (F1)Z +
ḡ∗Dlog

U1/U . Thus the assertion is proved.

Theorem 5.1.5. Conjecture 5.1.1.1 is true if dimU ≤ 2. More precisely,
we have
(5.2) SwV/U,Y (F)Z = f̄∗cF ,X

in CH0(E ×X Y ).

Proof. Without loss of generality, we may assume X and Y are proper
over F , since the strong resolution is known in dimension ≤ 2. If dimU = 1, we
obtain a diagram (5.5) satisfying the conditions (5.5.1)–(5.5.3) in Proposition
5.1.4 by taking the normalizations Xi = Yi of X in Ui and the assertion follows.
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To prove the case dim U = 2, first we recall some results from [18].

Lemma 5.1.6. Let X and X ′ be smooth surfaces of finite type over F

containing U as the complement of divisors with simple normal crossings and
g : X ′ → X be a morphism over F inducing the identity on U . Let F be a
smooth F̄�-sheaf of rank 1 on U clean with respect to X.

1. The sheaf F is also clean with respect to X ′ and we have g∗cF ,X =
cF ,X′.

2. Assume F corresponds to a character of order p. Then F is s-clean
with respect to the complement of at most finitely many closed points of X \U .
If g : X ′ → X is the blow-up at the points where F is not s-clean, then F is
s-clean with respect to X ′.

Proof. 1. It is sufficient to consider the case where g : X ′ → X is the
blow-up at a closed point of the complement of U . Then, F is clean with
respect to X ′ by [18] Remark 4.13. Further, we have cF ,X = g∗cF ,X′ by [18,
Th. 5.2]. Hence by Lemma 3.1.5, we have g∗cF ,X = cF ,X′ .

2. The first assertion is clear from the definition of s-cleanness. We show
the second assertion. We may assume F is s-clean with respect to X \ {x}
where x ∈ X \ U is a closed point. Then, the characterization given in [18]
(3.6) shows that F is defined by an Artin-Schreier equation T p − T = s/tn

where (s, t) is a local coordinate at x and n is prime to p = char F , on an étale
neighborhood of x. (In [18, p. 773], h = gf in line 7 should read h = g−1f

and π1≤i≤rπi in line 12 should read
∏

1≤i≤r πi.) Then the assertion is easily
checked.

We go back to the proof of Theorem 5.1.5 in the case dimU = 2. By
Lemma 3.1.5, we may replace Y by a successive blow-up Y ′ → Y at closed
points in the complement of V . By Lemma 5.1.6, we may also replace X

by a successive blow-up X ′ → X at closed points in the complement of U .
By Proposition 5.1.4, it is sufficient to construct a diagram (5.5) satisfying
the conditions (5.5.1)–(5.5.3) after possibly replacing X and Y by successive
blow-ups at closed points in the complements.

For 0 ≤ i < e, there exist a proper smooth surface X ′
i containing Ui as

the complement of a divisor with simple normal crossing such that Fi and Gi

are clean with respect to X ′
i and that the map Ui → U is extended to a map

X ′
i → X for 0 ≤ i < e, by [18, Th. 4.1]. By Lemma 3.1.2, there exist a proper

smooth surface Y ′ containing V as the complement of a divisor with simple
normal crossing such that the maps V → Ui are extended to maps Y ′ → X ′

i

and that the action of G on V is extended to an admissible action on Y ′ over X.
We define a diagram (5.5) satisfying the conditions (5.5.1)-(5.5.3) in Propo-

sition 5.1.4 inductively after possibly replacing X and Y by a successive blow-
up. Applying Lemma 3.1.2 to the quotient Y ′/G, we obtain a proper smooth
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surface Y0 containing U0 as the complement of a divisor with simple normal
crossing with a map Y0 → Y ′/G extending the identity of U . Since the identity
of U = U0 is extended to a map Y ′/G → X ′

0, the identity of U0 is extended to
a map Y0 → X ′

0. By replacing X by Y0, we put X = Y0.
We define Yi+1 and Xi inductively by assuming that Yi is already defined

and that the identity of Ui is extended to a map Yi → X ′
i. Applying Lemma

3.1.2 to Yi, we obtain a proper smooth scheme Y ′
i that contains Ui as the

complement of a divisor with simple normal crossings and that the action of
G on Ui is extended to an admissible action on Y ′

i over X. Since Y ′
i dominates

X ′
i, the sheaves Fi and Gi are clean with respect to Y ′

i , by Lemma 5.1.6.1. Let
Xi → Y ′

i be the blowing-up at the closed points where Gi are not s-clean and
ḡi : Xi → Yi be the composition. Then the sheaf Gi is s-clean with respect to
Xi by Lemma 5.1.6.2. Further Fi is clean with respect to Xi and the condition
ḡ∗i cFi,Yi

= cFi,Xi
is satisfied by Lemma 5.1.6.1. Applying Lemma 5.1.3, we

obtain Yi+1 → Xi.
By the construction, we see that Yi+1 dominates X ′

i+1. Repeating this con-
struction inductively, we obtain a diagram (5.5) except the map h̄ : Y → Xe.
We define Y ′′ by applying the construction in Lemma 3.1.2 to the normaliza-
tion of Xe in V . Then the action of G on V is extended to an admissible action
on Y ′′ over X. Replacing Y by Y ′′, we obtain a diagram (5.5) satisfying the
conditions (5.5.1)-(5.5.3) in Proposition 5.1.4. Thus the assertion is proved.

Corollary 5.1.7. 1. Conjecture 4.3.7.1 is true if dimU ≤ 2.

2. ([19]) Conjecture 4.1.7 is true if dimY ≤ 2.

Proof. Clear from Lemmas 5.1.2 and 4.3.9 respectively.

5.2. Comparison with Laumon’s formula. In [21], Laumon proves a gener-
alization of the Grothendieck-Ogg-Shafarevich formula for surfaces under the
assumption (NF) below on ramification. We compare the formula (0.3) with
Laumon’s formula in [21].

For simplicity, we assume F is an algebraically closed field. Let X be a
proper normal connected surface over F and U be a smooth dense open sub-
scheme. Let F be a smooth F̄�-sheaf on U . Let B1, . . . , Bm be the irreducible
components of dimension 1 of the complement B = X \U , let ξi be the generic
point of Bi, and let Ki be the field of fractions of the completion of OX,ξi

. We
assume the following condition.

(NF) For each i, the finite Galois extension of Ki that trivializes F has
separable residue extension.

By this assumption, the Swan conductor Swi(F) ∈ N of F for the local field Ki

is defined by the classical ramification theory, as in the proof of Lemma 4.3.6.
In [21], a smooth dense open subscheme B◦

i ⊂ Bi for each i and an integer
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Swx(F) ∈ Z for each closed point x ∈ Σ = B \ ⋃m
i=1 B◦

i are defined and the
formula

χc(U,F) = rank F · χc(U, Q�) −
m∑

i=1

Swi(F) · χc(B◦
i , Q�) +

∑
x∈Σ

Swx(F)(5.6)

is proved.
To compare the formula (5.6) with (0.3), we give a slight reformulation.

Let πi : Bi → Bi be the normalization for each irreducible component of
dimension 1. For each closed point x ∈ Σ, we put

Sx(F) = −Swx(F) +
m∑

i=1

Swi(F) · |π−1
i (x)|.

Then, the formula (5.6) is equivalent to

χc(U,F) = rankF · χc(U, Q�) −
(

m∑
i=1

Swi(F)χ(Bi, Q�) +
∑
x∈Σ

Sx(F)

)
.(5.7)

We compute the Swan class Sw(F) assuming the condition (NF) and give a
relation with Sx(F). By Lemma 3.1.2, there exist a finite étale Galois covering
V → U that trivializes F and a Cartesian diagram

(3.5)

V
⊂−−−→ Y

f

⏐⏐� ⏐⏐�f̄

U
⊂−−−→ X

such that Y is smooth, Y → X is proper, V ⊂ Y is the complement of a
divisor with simple normal crossings and that the action of G = Gal(V/U) is
extended to an admissible action on Y . We may further assume that there
exist a proper scheme X ′ containing U as the complement of a Cartier divisor
and that f : V → U is extended to a morphism Y → X ′. Furthermore, by
the assumption (NF), we may assume the following condition (NF′) is satisfied
where {ηi1, . . . , ηiki

} denotes the inverse image of ξi in Y for i = 1, . . . , m.

(NF′) For each i, j, the extension κ(ηij) is separable over κ(ξi).

Let σ �= 1 be an element of the Galois group G = Gal(V/U). For a generic
point ηij as above, we put mij(σ) = length OY σ

log,ηij
. We define a divisor Dσ

of Y by Dσ =
∑

i,j mij(σ)Dij where Dij is the closure of {ηij}. The Cartier
divisor Dσ is a closed subscheme of Y σ

log. We define the residual subscheme
Rσ ⊂ Y σ

log to be the closed subscheme of Y satisfying IY σ
log

= IDσ
IRσ

where IZ

denotes the ideal sheaf of OY defining a closed subscheme Z ⊂ Y . Then, by
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the residual intersection formula [12, Th. 9.2], we have

(Γσ,ΔY )logZ = − sV/U (σ)

= {c(Ω1
Y/F (log D))∗ ∩ (1 + Dσ)−1 ∩ Dσ}dim 0 + Rσ

= −
∑
i,j

mij(σ)(c1(Ω1
Y/F (log D)) + Dσ) ∩ Dij + Rσ

where Rσ = {c(Ω1
Y/F (log D) ⊗ OY (−Dσ))∗ ∩ s(Rσ/Y )}dim 0 is a 0-cycle class

supported on the inverse image of finitely many closed points of B.
To compute the first term in the right-hand side, we define a complex Kij

of ODij
-modules by

Kij = [ϕ∗
ij(Ω

1
B̄i/F

) −−−→ Ω1
Y/F (log D)|Dij

α−−−→ OY (−Dσ)|Dij
].(5.8)

The sheaf Ω1
Y/F (log D)|Dij

is put on degree 0, the map ϕij : Dij → Bi is the
natural one and the map α is defined by da 
→ σ(a)−a and d log b 
→ σ(b)/b−1.
By the assumption (NF′), the cohomology sheaves Hq(Kij) are 0 except for
q = 0, 1 and are supported on finitely many closed points for q = 0, 1. Thus
we have

(c1(Ω1
Y/F (log D)) + Dσ) ∩ Dij = ϕ∗

ijc1(Ω1
Bi/F

) + [H∗(Kij)]

where [H∗(Kij)] = [H0(Kij)] − [H1(Kij)]. Let Z0(B) denote the free abelian
group generated by the classes of the closed points in B. We define a 0-cycle
Sσ ∈ Z0(B) by

Sσ = f̄∗(
∑
i,j

mij(σ)[H∗(Kij)] − Rσ)

and put mi(σ) =
∑

j mij(σ)[κ(ηij) : κ(ξi)]. Then, we obtain

f̄∗sV/U (σ) =
m∑

i=1

mi(σ)gi∗(c1(Ω1
Bi/F

) ∩ [Bi]) + Sσ

where gi : Bi → X is the natural map. We define a 0-cycle SF ∈ Z0(B) ⊗ Q
by

1
|G|

∑
σ∈G(p)\{1}

(
dimF�

Mσ − dimF�
Mσp

/Mσ

p − 1
− dimM

)
· Sσ.

By Swi(F) = − 1
|G|

∑
σ∈G(p)\{1} mi(σ)(dimF�

Mσ − dimF�
(Mσp

/Mσ)/(p − 1) −
dimM) and Lemma 4.1.2.1, we have

Sw(F) =
1
|G|

∑
σ∈G(p)\{1}

(dimF�
Mσ − dimF�

Mσp

/Mσ

p − 1
− dimF�

M) · f̄∗sV/U (σ)

=−
m∑

i=1

Swi(F)gi∗(c1(Ω1
Bi/F

) ∩ [Bi]) + SF .
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Since χ(Bi, Q�) = −deg(c1(Ω1
Bi/F

)∩ [Bi]), the formula (0.3) together with the
following proposition will imply the formula (5.7).

Proposition 5.2.1. Under the notation above, we have an equality

SF =
∑
x∈Σ

Sx(F)[x](5.9)

in Z0(B).

In [19, Th. (6.7)], the invariant Swx(F) is shown to be equal to another
invariant that is defined in [31] using intersection classes without introducing
log products. A similar computation gives a proof of Proposition 5.2.1 but we
leave the detail to the reader.
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[6] R. Crew, F -isocrystals and p-adic representations, in Algebraic Geometry , (Bowdoin,
1985), 111–138, Proc. Sympos. Pure Math. 46, Part 2, Amer. Math. Soc., Providence,
RI, 1987.

[7] ———, Canonical extensions, irregularities, and the Swan conductor, Math. Ann. 316
(2000), 19–37.
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[28] J-P. Serre, Sur la rationalité des représentations d’Artin, Ann. of Math. 72 (1960),
406–420.
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