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Ramification theory
for varieties over a perfect field

By Kazuvya KATO and TAKESHI SAITO

Abstract

For an f-adic sheaf on a variety of arbitrary dimension over a perfect
field, we define the Swan class measuring the wild ramification as a 0-cycle
class supported on the ramification locus. We prove a Lefschetz trace formula
for open varieties and a generalization of the Grothendieck-Ogg-Shararevich
formula using the Swan class.

Let F be a perfect field and U be a separated and smooth scheme of finite
type purely of dimension d over F. In this paper, we study ramification of a
finite étale scheme V over U along the boundary, by introducing a map (0.1)
below.

We put CHo(V \ V) = lim CHo(Y \ V) where Y runs compactifications of
V and the transition maps are proper push-forwards (Definition 3.1.1). The
degree maps CHo(Y \ V) — Z induce a map deg : CHo(V \ V) — Z. The fiber
product V X V is smooth purely of dimension d and the diagonal Ay : V —
V xyV is an open and closed immersion. Thus the complement V xy V'\ Ay is
also smooth purely of dimension d and the Chow group CHy(V xyV\ Ay ) is the
free abelian group generated by the classes of connected components of V' xy V'
not contained in Ay. If U is connected and if V' — U is a Galois covering, the
scheme V' xy; V' is the disjoint union of the graphs I', for 0 € G = Gal(V/U)
and the group CHy(V xy V' \ Ay) is identified with the free abelian group
generated by G — {1}.

The intersection of a connected component of V xy V' \ Ay with Ay
is empty. However, we define the intersection product with the logarithmic
diagonal

(0.1) ( ,AV)IOg : CHd(V xgV \ Av) —_— CHo(V\ V) Xz Q

using log product and alteration (Theorem 3.2.3). The aim of this paper is to
show that the map (0.1) gives generalizations to an arbitrary dimension of the
classical invariants of wild ramification of f : V' — U. The image of the map
is in fact supported on the wild ramification locus (Proposition 3.3.5.2). If we
have a strong form of resolution of singularities, we do not need ®zQ to define
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the map (0.1). We prove a Lefschetz trace formula for open varieties

2d
(0:2) SO ()T < HI(Vi, Q) = deg (T, Ap)®

q=0
in Proposition 3.2.4. If V — U is a Galois covering of smooth curves, the
log Lefschetz class (I'y, Aj)%8 for o € Gal(V/U) \ {1} is an equivalent of the
classical Swan character (Lemma 3.4.7).

For a smooth ¢-adic sheaf F on U where /£ is a prime number different from

the characteristic of F, we define the Swan class Sw(F) € CHo(U \ U) ®z Q
(Definition 4.2.8) also using the map (0.1). From the trace formula (0.2), we
deduce a formula

(0.3) Xe(Up, F) =rank F - x.(Up, Q¢) — deg Sw(F)

for the Euler characteristic x.(Up, F) = ngzo(—l)q dim H¢(Up, F) in Theo-
rem 4.2.9. If U is a smooth curve, we have Sw(F) = ZmGU\U Sw, (F)[z] by
Lemma 4.3.6. Thus the formula (0.3) is nothing other than the Grothendieck-
Ogg-Shafarevich formula [14], [26]. As a generalization of the Hasse-Arf the-
orem (Lemma 4.3.6), we state Conjecture 4.3.7 asserting that we do not need
®7zQ in the definition of the Swan class. We prove a part of Conjecture 4.3.7
in dimension 2 (Corollary 5.1.7.1).

The profound insight that the wild ramification gives rise to invariants as
0-cycle classes supported on the ramification locus is due to S. Bloch [4] and is
developed by one of the authors in [17], [18]. Since a covering ramifies along a
divisor in general, it is naturally expected that the invariants defined as 0-cycle
classes should be computable in terms of the ramification at the generic points
of irreducible components of the ramification divisor. For the log Lefschetz
class (T'y, Aj7)'°8, we give such a formula (3.31) in Lemma 3.4.11. For the
Swan class of a sheaf of rank 1, we state Conjecture 5.1.1 in this direction
and prove it assuming dimU < 2 in Theorem 5.1.5. We expect that the log
filtration by ramification groups defined in [3] should enable us to compute the
Swan classes of sheaves of arbitrary rank.!

In a subsequent paper, we plan to study ramification of schemes over a
discrete valuation ring and prove an analogue of Grothendieck-Ogg-Shafarevich
formula for the Swan conductor of cohomology (cf. [1], [2]). In p-adic setting,
the relation between the Swan conductor and the irregularities are studied in
[6], [7], [23] and [33]. The relation between the Swan classes defined in this
paper and the characteristic varieties of D-modules defined in [5] should be
investigated.?

! Added in Proof. See T. Saito, Wild ramification and the characteristic cycle of an £-adic
sheaf (preprint arXiv:0705.2799).

2Added in Proof. See T. Abe, Comparison between Swan conductors and characteristic
cycles (preprint).
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In Section 1, we recall a log product construction in [20]. In Section 2, we
prove a Lefschetz trace formula Theorem 2.3.4 for algebraic correspondences
on open varieties, under a certain assumption. In Section 3, we define and
study the map (0.1) and prove the trace formula (0.2) in Proposition 3.2.4. In
Section 4, we define the Swan class of an ¢-adic sheaf and prove the formula
(0.3) in Theorem 4.2.9. In Section 5, we compare the Swan class in rank 1 case
with an invariant defined in [18]. We also compare the formula (0.3) with a
formula of Laumon in dimension 2.
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Notation. In this paper, we fix a base field F'. A scheme means a
separated scheme of finite type over F' unless otherwise stated explicitly. For
schemes X and Y over F', the fiber product over F' will be denoted by X x Y.

The letter ¢ denotes a prime number invertible in F'.
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1. Log products

In Section 1.1, we introduce log products and establish elementary prop-
erties. In Section 1.2, we define and study admissible automorphisms.

1.1. Log blow-up and log product. We introduce log blow-ups and log
products with respect to families of Cartier divisors.

Definition 1.1.1. Let F be a field and let X and Y be separated schemes
of finite type over F. Let D = (D;);er be a finite family of Cartier divisors of
X and € = (E;);es be a finite family of Cartier divisors of Y indexed by the
same finite set [I.

Fori e I,let (X xY), — X xY be the blow-up at D; x E; C X xY
and let (X xY)> C (X xY); be the complement of the proper transforms of
DixYandXin.

1. We define the log blow-up
(1.1) p: (X xY) —— X xY,
more precisely denoted by ((X,D) x (Y,€&))’, to be the fiber product

H (X xY),—XxY
i€l x«y
of (X xY), (te)over X xY.
2. Similarly, we define the log product
(1.2) (X xY)~¥C (X xY),
or more precisely denoted by ((X,D) x (Y,€))™, to be the fiber product
[Licixoy (X XY)7 = X xY of (X xY)7 (i € 1) over X x Y.

3. IfX =Y and D =&, we call (X x X)"~ the log self product of X with
respect to D. By the universality of blow-up, the diagonal map A : X — X x X
induces an immersion

X = (X xX)~

called the log diagonal map.

Locally on X and Y, the log blow-up, log self-product and the log diagonal
maps are described as follows.

LEMMA 1.1.2. Let the notation be as in Definition 1.1.1. Assume that
X = Spec A and Y = Spec B are affine and that the Cartier divisors D; are
defined by t; € A and E; are defined by s; € B respectively.
1. The log product (X x YY) is the union of
A®F B[UZ (Z € Il),Vj (j € IQ)]
(ti ®1-— Ui(l & 81‘) (Z S Il), 1® S — V}(t]’ ® 1) (j S Ig))
for decompositions I = 11 11 I5.

(1.3) Spec



RAMIFICATION THEORY FOR VARIETIES OVER A PERFECT FIELD 37

2. The log product (X x Y)™ is given by
(1.4) Spec A®p BlUF' (ieD]/(ti®1-U(1®s;) (i € 1))

3. Assume further that A= B, D; = E; and t; = s; for each i € I. Then
in the notation (1.4), the log diagonal map A : X — (X x X)~ is defined by
the map

(1.5) AQpAlUF GieD))/ti®l -Ui(1et) (iel) — A
sendinga®1 and 1®a toa € A and U; to 1 foriel.

Proof. For each ¢ € I, the Cartier divisors D; X Y and X x E; are locally
defined by a regular sequence. Thus we obtain 1. The rest is clear from this
and the definition. O

For the sake of readers familiar with log schemes, we recall an intrinsic
definition using log structures given in [20]. The Cartier divisors Dq,... , Dy,
define a log structure Mx on X. In the notation in Lemma 1.1.2, the log
structure Mx is defined by the chart N”* — A sending the standard basis to
t1,... ,tm. The local chart N — A induces a map N — I'(X, Mx /O%) of
monoids. Similarly, the Cartier divisors F, ... , E,, defines a log structure on
Y and amap N — T'(Y, My /Oyg). Then, the log product (X xY)™ represents
the functor attaching to an fs-log scheme T over F the set of pairs (f,g) of
morphisms of log schemes f : T — X and g : T — Y over F such that the
diagram

N — I'(X, Mx/0%)

| |

I(Y, My /O5) —— T(T,Mr/OY)

is commutative. The log diagonal A : X — (X x X)~ corresponds to the pair
(id, id).

The log product satisfies the following functoriality. Let X, X’.Y and
Y’ be schemes over F' and D = (Dj)icr, D' = (D))icr, € = (Ej)jes, and
&' = (Ej})jes be families of Cartier divisors of X, X', Y and of Y respectively.
Let f: X — Y and g : X’ — Y’ be morphisms over F and let e;; > 0, (¢, ) €
I x J be integers satisfying f*Ej = > ,cre;jD; and f*E; = >, re;;D; for
j € J. Then, the maps f and g induces a map (f x ¢g)~ : (X x X')™ —
Y xY)™. IfY =Y and € = &', we define (X xy X')™, or more precisely
(X, D) x(v,e) (X', D)™, to be the fiber product (X x X')~ x(yxy)~ Y with
the log diagonal Y — (Y x Y)™.

LEMMA 1.1.3. Let F be a field and n > 1 be an integer. Let Y be a
separated scheme over F. Let L be an invertible Oy -module and p : L& — Oy
be an injection of Oy -modules. We define an Oy -algebra A = @?;01 L with
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the multiplication defined by p : L% — Oy and put X = SpecA. Let E be
the Cartier divisor of Y defined by Tp = Im(L®" — Oy') and D be the Cartier
divisor of X defined by LOx. Let (X xy X)™ be the log self product defined
with respect to D and E.

We define an action of the group scheme p, = SpecF[t]/(t"—1) on X over
Y by the multiplication by t on L. We consider the action of pu, on (X xy X )~
by the action on the first factor X.

Then, by the second projection (X xy X)~ — X, the scheme (X xy X)~
is a pp-torsor on X. Further the log diagonal map X — (X xy X)~ induces
an isomorphism i, X X — (X xy X)™~.

Proof. Since the question is local on Y, it is reduced to the case where
Y = A! = Spec F[T] and u send a basis S of £L®" to T. Then we have
X = A! = Spec F[S] and the map X — Y is given by T~ S™. Then,
by Lemma 1.1.2.2, we have (Y x Y)~ = Spec F[T,T',U*]/(T" — UT) =
Spec F[T,U*], (X x X)~ = Spec FI[S, 8", V*!]/(S' —VS) = Spec F[S,VF!],
and the map (X x X)~ — (Y x Y)™~ is given by 7'+ S™ and U +— V™. Since
the log diagonal Y — (Y x Y)™ is defined by U = 1, we have (X xy X)~ =
Spec F[S,V*!]/(V™ —1). Thus the assertion is proved. O

Let F' be a field and X be a smooth scheme purely of dimension d
over F. In this paper, we say a divisor D of X has simple normal cross-
ings if the irreducible components D; (i € I) are smooth over F' and, for
each subset J C I, the intersection [, ; D; is smooth purely of dimension
d — |J| over F. In other words, Zariski locally on X, there is an étale map to
A‘}, = Spec F[T1, ... ,Ty4] such that D is the pull-back of the divisor defined by
Ty --- T, for some 0 < r <d. If D; is an irreducible component, D; is smooth
and (J;;(D; N Dj) is a divisor of D; with simple normal crossings.

Let X be a smooth scheme over a field F' and D be a divisor of X with
simple normal crossings. Let D; (i € I) be the irreducible components of D.
We consider the log blow-up p: (X x X)' — X x X with respect to the family
D, (i € I) of irreducible components of D, defined in Definition 1.1.1. Let
DWW (X x X) and D@’ c (X x X) be the proper transforms of DY) =
D x X and of D® = X x D respectively. Let E; = (X x X)' X xxx (D; x D)
be the exceptional divisors and E = |J, E; C (X x X )" be the union.

The log blow-up p: (X x X)" — X x X is used in [10] and in [25] in the
study of cohomology of open varieties. For an irreducible component D; of D,
the log blow-up (D; x D;)’ — D; x D; is defined with respect to the family
D; N Dj, j # i of Cartier divisors.

LEMMA 1.1.4. Let X be a smooth scheme over F, D be a divisor of
X with simple normal crossings and U = X \ D be the complement. Let
p: (X x X) — X x X be the log blow-up with respect to the family of irre-
ducible components of D.
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1. The scheme (X x X)'" is smooth over F. The complement (X x X)"\
(UxU)=DW UD® UE is a divisor with simple normal crossings. The log
product (X x X)~ is equal to the complement

(X x X)'\ (DW'u D@,

2. Let D; be an irreducible component of D. The projection E; — D; X D;
induces a map E; — (D; x D;) and further a map Ef = E; N (X x X)~ —
(D; x D;)~. We have a canonical isomorphism

(1.6) E; —— P(Np,xp,/xxx) XD,xD, (Di x D;)’

to the pull-back of the P'-bundle P(Np,xp,/xxx) = Proj(S*Np,«p,/xxx)
associated to the conormal sheaf Np, xp,/xxx-

We identify E; with P(Np,xp,/xxx)XD,xD,(DixD;)" by the isomorphism
(1.6). Then the open subscheme EY C E; is the complement of the two disjoint
sections (D; x D;)~ — P(Np,xp,/xxx) XD;xD, (Di x D;)~ defined by the
surjections Np,«p,/xxx — Np,xp,/D,xx and Np,xp,/xxx — Np,xD,/xxD,-

Proof. 1. Tt follows immediately from the definition and the description
in Lemma 1.1.2.

2. Clear from the definition. O

COROLLARY 1.1.5. Let the notation be as in Lemma 1.1.4. Let D; be an
irreducible component of D and let D; — (D; x D;)™ be the log diagonal map.
Then the isomorphism (1.6) induces an isomorphism

(3

(1.7) E?p, = E? X(p,xp,)~» Di —— G, p,-

The section D; — EZDi induced by the log diagonal X — (X x X))~ is identified
with the unit section D; — Gy, p,.

Proof. The restrictions of the conormal sheaf Np, . p, /xxx to the diag-
onal D; C D; x D; is the direct sum of the restrictions Np, «p,/p,x x|p, and

Np,xp,/xxD,|D,- Further the restrictions Np, « p,/p,xx|p, and Np, « p,/xx p,|D,
are canonically isomorphic to Np,,x. Hence we have a canonical isomorphism
P(Np,xp,/xxx) XD,xD, Di — Pl and the assertion follows from Lemma

1.1.4.2. O

PrROPOSITION 1.1.6. Let X be a separated smooth scheme purely of di-
mension d over F' and U = X \ D be the complement of a divisor D = J,c; D;
with simple normal crossings. Let'Y be a separated scheme over F' and V =
Y \ B be the complement of a Cartier divisor B. We consider a Cartesian



40 KAZUYA KATO AND TAKESHI SAITO

diagram

(1.8) fl lf‘

We put f*B = YicreiDi.

1. Let (X x X)~ be the log product with respect to the family (D;)icr of
irreducible components and (Y x Y')™ be the log product with respect to B. Let
(X xy X)™ = (X x X)™ X(yxy)~ Y be the inverse image of the diagonal. We
keep the notation in Corollary 1.1.5. Let D; be an irreducible component of D.
We identify EY . = E7 X(p,xp,)~ Di with G, p, by the isomorphism (1.7).

Then the intersection E7p N (X xy X)™ is a closed subscheme of the
subscheme e, p, C Gy, p, of ej-th roots of 1.

2. The closure U xy U in the log product (X x X)' satisfies the equality
(1.9) UxyUNnDW =Ux, UND?
of the underlying sets.

Proof. 1. The assertion is local on D; C (D; x D;)~. Hence, we may
assume that X = Spec A is affine and that the divisor Dy, is defined by ¢ € A
for £ € I. We may also assume that the Cartier divisor B of Y is defined by
a function s. Then, we have f*s = v ][], ., t;* for a unit v € A*. We identify
(X x X)~ = Spec A®p A[U/;IEl (keD]/tr®1—-Ur(l®ty) (ke€l))asin
(1.5). Then on the closed subscheme (X xy X)~ C (X x X)~, we have an
equation

1R 1
— Us =1.
1®wv k

kel

On the log diagonal D; C (D; x D;)™~, we have v ® 1 = 1 ® v and U = 1 for
ke I\ {i}. Since the coordinate of the G,,-bundle E; p, is given by Uj;, the
assertion follows.

2. Tt suffices to show the equality TND™ = TND® for any integral closed
subscheme I' C U xy U. We regard T as a closed subscheme of (X x X)’ with
an integral scheme structure and let p;,ps : I' — X denote the compositions
with the projections. We consider the Cartier divisors pjD; and p3D; of T'. We
also consider the Cartier divisors (D; x X)'NT and (X x D;) NT.

By the Cartesian diagram (1.8), we have ¢; > 0in X xy B =), ;e;D;
for all . Since I' C U xy U, the closure I' is a closed subscheme of the
pull-back (X x X)" xyxy Y of the diagonal. Hence, we have an equality
S epiD; = >, eipyD; of Cartier divisors of I'. Thus, we have an equality
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Siei(Dix X)) NT =3, e/(X x D;)’ NT. Since e; > 0 for all 4, we obtain

rnDW = JDix X)) nT = J(X x D)) NnT=TnD?". O

)

We consider tamely ramified coverings.

Definition 1.1.7. 1. Let K be a complete discrete valuation field. We say
a finite separable extension L of K is tamely ramified if the ramification index
er/k is invertible in the residue field and if the extension of the residue field
is separable.

2. Let

V Y

be a Cartesian diagram of locally noetherian normal schemes. We assume that
Y is regular, V is the complement of a divisor with simple normal crossings
and that U is a dense open subscheme of X. We also assume that the map
f:U — V is finite étale and f: X — Y is quasi-finite.

We say f: X — Y is tamely ramified if, for each point & € X \ U such
that Ox ¢ is a discrete valuation ring, the extension of the complete discrete
valuation fields Frac(Ox ¢) over Frac(OAK J(¢)) is tamely ramified.

LEMMA 1.1.8. Let
U . X

V — Y

be a Cartesian diagram of separated normal schemes of finite type over F'. We
assume that X and 'Y are smooth over F, U C X and V CY are the com-
plements of divisors with simple normal crossings and V' is a dense open sub-
scheme of Y'. We also assume that g : V' — V is finite étale and §:Y' —Y
is quasi-finite and tamely ramified.

Then, in (X x X )™, the intersection of the closure U xy U \ U xy+ U with
the log diagonal X C (X x X)™ is empty.

Proof. The assertion is étale local on X and on Y. We put f =
goh and f = goh. Let T be a geometric point of X and § = f(Z) be
its image. We take étale maps Y — A% = Spec F[Ty,... ,Ty] and X — A% =
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Spec F[S, ... ,S,] such that V =Y x a4 Spec F[T1,... , Ty[(T} - ~-T,)"'] and
U = X xanSpec F[S1,...,5,][(S1---Sg)7!]. Since the assertion is étale local
on Y, we may assume that there exist an integer e > 1 invertible in F' and
a surjection Y =Y x4 Spec F[T1,... ,Td][Tll/e,... ,Trl/e] — Y’ over Y by
Abhyankar’s lemma. Further we may assume that there exists a surjection
Xe = X xap Spec F[S1, ..., S][817, ... ,S] = X xy: Y, over X.

We put Vo =V xy Y, and U, = U X x X¢. Then, (X, x X))~ — (X x X)~
is finite, X, — X is surjective and the inverse image of U xy U\ U xy/ U is a
subset of U, Xy U, \ U, xy. U.. Hence, it is reduced to the case where X — Y’
is X, — Y, and further to the case X, = Y. Since (Y. xy Y¢)~ — Y, is finite
étale as in Lemma 1.1.3, the assertion is proved. O

1.2. Admissible automorphisms. Let X be a smooth scheme over F', D be
a divisor of X with simple normal crossings and U = X \ D be the complement.
We study an automorphism of X stabilizing U.

Definition 1.2.1. Let X be a smooth scheme over F', D be a divisor of
X with simple normal crossings and U = X \ D be the complement. Let
Dy, ..., Dy be the irreducible components of D.

Let o be an automorphism of X over F' satisfying o(U) = U. We say o
is admissible if, for each i = 1,... ,m, we have either o(D;) = D; or o(D;) N
D; = 0.

We define the blow-up Xy — X associated to the subdivision by baricen-
ters and show that the induced action on Xy, is admissible.

Definition 1.2.2. Let X be a smooth scheme purely of dimension d over F,
D be a divisor of X with simple normal crossings and let D1,...,D,, be the
irreducible components of D. For a subset I C {1,...,m}, we put D; =
Micr Di- We put X = Xq and, for 0 < i < d, we define X;;1 — X; to be the
blow-up at the proper transforms of D; for |I| = d — i inductively. We call
X5 = X7 — X the blow-up associated to the subdivision by baricenters.

LEMMA 1.2.3. Let X be a smooth scheme over F', D be a divisor of X
with simple normal crossings and let Dy, ... , Dy, be the irreducible components
of D. Let U = X \ D be the complement and let p : Xy, — X be the blow-up
associated to the subdivision by baricenters.

1. The scheme Xy is smooth over F and the complement D' = Xx, \ U
18 a divisor with simple normal crossings. For an irreducible component D} of
D', we put I = {i|D’; C p~Y(D;),1 <i<m} and k = |I|. Then there exists an
irreducible component Z of Dy satisfying the following condition. Let Z' C Xy,
be the proper transform of Z in Xy and Ez C X1 be the inverse image of Z'.
Then D;- is the proper transform of E 5.
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2. For an automorphism o of X over F satisfying o(U) = U, the induced
action of o on Xy, is admissible.

Proof. 1. It suffices to study étale locally on X. Hence, it suffices to
consider the case where X = A¢ = Spec F[T},...,Ty] and D is defined by
Ti--- T, = 0. Then Xy is obtained by patching Spec A, where

To) Tom)
Ap=F |Tp), 222 2 1Ty
Ty T
for bijections ¢ : {1,... ,m} — {1,...,m}. The assertion follows easily from

this.

2. Let Dj,...,D), be the irreducible components of D' and ¥ =
{I c {1,...,m}} be the power set of {1,...,m}. We define a map © :
{1,...,m'} — X by putting ¥ (j) = {i|D} C p~Y(D;),1 <i<m}. Then by 1,
for irreducible components D’ # D’, such that D’ N D}, # (), we have either
Y(j) S ¥(') or ¥(j) 2 ¥(j'). The map ¢ : {1,...,m'} — X is compatible
with the natural actions of 0. Therefore, if o(D}) = D, 0 7 D, we have

[(a(i)| = o) = [¢(j)] and o(D}) N D} = 0. O
We define the log fixed part for an admissible automorphism.

LEMMA 1.2.4. Let X be a separated and smooth scheme of finite type over
F, D be a divisor of X with simple normal crossings and U = X \ D be the
complement. Let o be an admissible automorphism of X over F satisfying
o(U) = U. Then, the closed immersion (1,0) : U — U x U is extended to a
closed immersion

(1.10) Lo : X\ Uso(pyen, Di —— (X x X)~.

Proof. By the assumption that o is admissible, the closed immersion
(1I,0) : X — X x X induces a closed immersion X — (X x X)'. Let I/, denote
X regarded as a closed subscheme of (X x X)" by this immersion. Then, it
induces an isomorphism X \ U;.,(p,)2p, Di — I'c N (X x X)~. O

Definition 1.2.5. Let X be a separated and smooth scheme of finite type
over F', D be a divisor of X with simple normal crossings and U = X \ D be
the complement. Let o be an admissible automorphism of X over F' satisfying
o(U) = U and let T, C (X x X)~ denote the image of the closed immersion
Tp: X\ Uio(piy2p, Di = (X x X)~. We call the closed subscheme

(1.11) Xy =Ax NTy = X X(xxx)~ Lo
of X the log o-fixed part.

LEMMA 1.2.6. Let X be a separated and smooth scheme of finite type
over F', D be a divisor of X with simple normal crossings and U = X \ D be
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the complement. Let o be an admissible automorphism of X over F satisfying
oU)="U.

1. The closed subscheme X{Zg C X is a closed subscheme of the o-fixed
part X=X XXxX /T, X.

2. Let k € Z be an integer and assume o

have an inclusion

is also admissible. Then, we
.
Xf{,g C ng
of closed subschemes.

3. Assume U° = () and o is of finite order invertible in F. Then, we have
Xigg = 0.
Proof. 1. Clear from the commutative diagram

L, ~
X \ Ui:U(Di)yéDi Dj —— (X X X)

| l

X 09 e X

2. Since X{, = ng; and Xligg
and Jy» be the ideals of Ox defining the closed subschemes Xiog and ng;
respectively. By 1, it is sufficient to show the inclusion J,» , C J, . of the ideals
of Ox , for each x € X7. Let x be a point of X?. The ideal J, ; is generated by
o(a)—aand o(b)/b—1for a € Ox and b € Ox ;N jsOf;, where j : U — X is
the open immersion. Similarly, J,« , is generated by o*(a) —a and o*(b)/b—1
for a € Ox, and b € Ox 5 N j*Oﬁx. Since o is admissible, we have o(b)/b €
Ox , forb € Ox ;Nj.O; . We have oF(a)—a = Zf;ol(a(ai(a))—ai(a)) € Jox
and o*(b)/b—1 = Zf:ol(a(ai(b))/ai(b) — 1)(a%(b)/b) € Jyyz for a € Ox, and

beOxy ﬂj*Oax. Hence, we have Jy» 5 C Jo .

= X, we may assume k > 1. Let J,

3. By 1, it is sufficient to show J, , = Ox , for each closed point x € X7.
Let x be a closed point in X? and e be the order of o. Since the question
is étale local, we may assume F' contains a primitive e-th root of unity. We
take a regular system ty,...,t; of parameters of Ox , such that ¢;---¢, de-
fines D at xz. By replacing ¢;’s if necessary, we may assume there is a unique
e-th root ¢; of unity such that o(t;) = (;t; mod m?2 for each t;. Replacing t; by
> re1 Ci_kak(ti)/e, we may assume o(t;) = (;t;. Then, the ideal J,, is gener-
ated by (; —1 for 1 <i <rand ((;—1)¢; for r < i < d. Since (; — 1 is invertible
unless (; = 1, we have either J, , = Ox 4 or Jo, = ((G—1)t;, (r <i <d)). By
the assumption that U? = (), we have J,, = Ox, and the assertion follows. O

COROLLARY 1.2.7. Let the notation be as in Lemma 1.2.6. Assume o is
of finite order e and o is admissible for each j € 7.
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1. If j is prime to e, we have

o _ vyol
Xlog — “*log-*

2. If U° = 0 and if e is not a power of characteristic of F, then we have

Xg, = 0.

Proof. Clear from Lemma 1.2.6.2 and 3. O

2. A Lefschetz trace formula for open varieties

In preliminary subsections 2.1 and 2.2, we recall some facts on the cycle
class map and a lemma of Faltings on the cohomology of the log self product
respectively. In Section 2.3, we prove a Lefschetz trace formula, Theorem 2.3.4,
for open varieties.

In this section, we keep the notation that F' denotes a field and ¢ denotes
a prime number invertible in F'.

2.1. Complements on cycle maps. We recall some facts on cycle maps. Let
X be a smooth scheme over F and i : Y — X be a closed immersion of codi-
mension d. Then, the cycle class [Y] € H2%(X,Z¢(d)) and the corresponding
map Zy — Ri'Zy(d)[2d] are defined in [13].

LEMMA 2.1.1. Let X be a smooth scheme over F and j : U — X be an
open immersion. Let i :' Y — U be a closed immersion and assume that the
composition i’ = joi:Y — X is also a closed immersion. Assume that Y is
of codimension d in X. Then, for an integer q € Z, the composition

HUX,Z) —“— HIY,Z) —=— HIPUU, Z4(d))

is the cup-product with the image of the cycle class [Y] € HZ(X,Z(d)) by the
map HY (X, Zy(d)) = HY (X, j1Ze(d)) — H* (X, 1 Z(d)).

Proof.  The cycle class [Y] € HZ(X,Z¢(d)) defines a map Z, —
Ri"Zy(d)[2d]. The push-forward map i, : HL(Y,Z) — HIT*U,7:(d)) is
the composition of the map HZ(Y,Z¢) — HL** (X, j1Z¢(d)) induced by Z; —
Ri"Z(d)[2d] with the canonical map HL (X, jiZ(d)) — HI* (U, Ze(d)) in
the notation of [13, 1.2.5, 2.3.1]. Hence the assertion follows. O

LEMMA 2.1.2. Let X and Y be smooth schemes purely of dimensions n
and m over F and f : X — Y be a morphism over F. Let Z be a closed
subscheme of Y of codimension d and put W = Z xy X. Then, the image of
the cycle class [Z] € HZX(Y, Ze(d)) by the pull-back map f*: HE(Y, Ze(d)) —
H2(X,Z(d)) is equal to the cycle class [f'(Z)] of the image f'(Z) of the Gysin
map f': CH,,_q(Z) — CH,,_q(W).
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Proof. In the case f: X — Y is smooth, the assertion is in [13, Th. 2.3.8 (ii)].
By decomposing f : X — Y as the composition of the graph map X — X xY
with the projection X x Y — Y, we may assume f : X — Y is a closed
immersion. We prove this case using the deformation to normal cone.

Let (Y x AYY — Y x A! be the blow-up at X x {0} and let Y’ be the
complement of the proper transform of Y x {0} in (Y x Al)". Let Z’ be the
proper transform of Z x A! in Y’. The fiber Y’ x: {0} at 0 is naturally
identified with the normal bundle N = Ny/y of X in Y and Z’ x o1 {0} is also
identified with the normal cone C' = CywZ of W = X xy Z in Z [12, Ch. 5.1].
Let f': X x A! — Y’ denote the immersion and g : X — N be the 0-section.
We consider the commutative diagram

HE(Y, Zo(d)) ——  HEN'Z(d)  —"— HEF(N,Z(d))

f*l f/*l lg*
1" 0

Hi (X, Z(d)) ——— Hih pr (X x AN Zg(d)) —— HFHX, Zo(d)).
The lower horizontal arrows are the same and are isomorphisms. In the upper
line, the images of the cycle class [Z'] in the middle are the cycle classes [Z]
and [C] respectively by [13, Th. 2.3.8 (ii)], since Z' is flat over Al ([12, B.6.7]).
Since f'(Z) is defined as ¢'(C) [12, Ch. 6.1 (1)], it is reduced to showing the
equality g*([C]) = [¢'(C)].

We put Ny = N xx W. Since C C Ny, the pull-back g* : HZ(N, Z,(d))
— H2(X,Z(d)) is the composition

HE (N, Zo(d)) — H3, (N, Ze(d) & HE (X, Zo(d).
Thus it is reduced to showing that the diagram

CHya(Nw) —— HE, (N, Zo(d))

| 5

CH,,_q(W) — HZ(X, Z(d))

is commutative. Let p : N — X be the projection. Then the maps ¢' and g*
are the inverse of the pull-back map p*. Hence it is reduced to the case where
f = p is smooth. O

2.2. Cohomology of the log self products. We recall a lemma of Faltings on
the cohomology of the log self products. To state it, we introduce a notation.
Let Y be a smooth scheme over F' and D1, Dy be relatively prime divisors of
Y such that the sum D; U Do has simple normal crossings. Let
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Y\ (D1UDy) —2 v\ Dy

.| |

Y\D, 2.
be open immersions. Let £ be a prime number invertible in F'. Then, the base
change map

(2.1) JuRkeZy ——— RjasknZy

is an isomorphism. We will identify j11Rke.Zy = Rjosk11Zy¢ by the isomorphism
(2.1). We define

Hq(Y7 D1!7D2*7Z€> - Hq(Y7 DQ*,D“,Z[)

to be HI(Y, juRkasZ¢) = HY(Y, Rjosk11Z¢). If Dy or Dy is empty, we write sim-
ply HY(Y, Dy, 0«,Z¢) = HI(Y, D1y, Zy) or HI(Y, Das, 0, Zy) = HI(Y, Doy, Zy)
respectively. With this convention, we have HY(Y, Dyy,Zy) = HX(Y — D1,7Zy),
if Y is proper, and HU(Y, Dy, Z¢) = HU(Y — D3, Zy).

Let X be a smooth scheme of finite type over a field F', D be a divisor
of X with simple normal crossings and U = X \ D be the complement. We
consider a commutative diagram

(2.2)
(X x X)'\ D® i (X x X)~
2 g
(X x X) e It (Xxxyuﬂyk j
p X xU b m UxU
X x X d Uxx

All the arrows except the log blow-up p : (X x X) — X x X are open
immersions. The four faces consisting of open immersions are Cartesian. Let
¢ be a prime number invertible in F'. The canonical maps ﬁZg — Ly — Rj*Zg
induce maps

(jre2)1RE2«Zy
23) = j1 Ry 1 Ze ——  j1 REY, Zy
' = Rjy KyZe ——  Rjb Ky RjZe

= R(jje1)wknZy.
The equalities refer to the identification by (2.1).
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LEMMA 2.2.1 (Faltings). Let X be a smooth scheme over F', D be a di-
visor of X with simple normal crossings and p : (X x X)' — X x X be the
blow-up (1.1). The maps (2.3) induce isomorphisms

JuRk2.Zy
(2.4) :Rp*(ji€2)!Rk2*Z( — Rp*jile/Q*Zg —_— Rp*R(jéel)*kng
= Rjock1Zy

and the composition is the isomorphism (2.1).

For the sake of completeness, we recall the proof in [10].

Proof. Since j1 = po jjioes, jo = pojhoer and p is proper, we have
jlle‘Q*Zg == Rp*(ji(iQ)]RkQ*Zg and Rp*R(jéel)*k:ng == Rjg*king. It is clear
that the composition is the isomorphism (2.1). Thus, it is sufficient to show
that the first arrow

(2.5) Rp.(jie2)\ RkoZy —— Rp.jy RES, Zy

is an isomorphism. Since the question is étale local on X x X, it is reduced
to the case where X = Spec F[T1,...,Ty] and D is defined by T3 --- T, = 0.
Further by the Kiinneth formula, it is reduced to the case where X = Al =
Spec F[T] and D is defined by T' = 0. In this case, by the proper base
change theorem, the assertion follows from H q(A%, J1Zy¢) = 0 for q € Z where
j: A\ {0} — Al is the open immersion. O

COROLLARY 2.2.2 (Faltings). Let the notation be as in Lemma 2.2.1. If
X is proper over F, the maps
HY(Xp x Xp, DY), DY) 2,(d)) = HI((X x X)p, (DYV'UE) 7y, DY), Z,(d))

- HCI((X X X)/F7 Dg!)/7 Dgila Zf(d))

— HY((X x X), DY) (D' U B)p,. Z(d))

are isomorphisms for q € Z.
Proof. Clear from Lemma 2.2.1. O

2.3. A Lefschetz trace formula for open varieties. Let F be a field, X be a
proper scheme over F' and U be a dense open subscheme of X. Let ' C U x U
be a closed subscheme. Let pi,p2 : I' — U denote the compositions of the
closed immersion ¢ : I' — U x U with the projections pri,pro : U x U — U.

LEMMA 2.3.1. Let X be a proper scheme over F. Let D be a closed
subscheme and U = X \ D C X be the complement. Let I' C U x U be a closed
subscheme and T be the closure of T' in X x X. We put DY) = D x X and
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D® = X x D. Then, the second projection ps : I' — U is proper if and only if
we have the inclusion

(2.6) rnp® crnp®
of the underlying sets.

Proof. The projection ps : I' — U is proper if and only if T N (X x U) =
I'N (U x U) = T. Taking the complement, it is equivalent to I N D3 =
I'n (DM uUD®). It is further equivalent to ' N DM c TN DA, O
In the following, we assume that U is smooth purely of dimension d, that
I" is purely of dimension d and that ps : I' — U is proper. For a prime number
¢ invertible in F, we define an endomorphism I'* of H¢(Ug, Z¢) to be p1. o p}
and consider the alternating sum

2d
Te(I* : HY (Up, Ze)) = Y (=1)*Te(I* : HY(Up, Z))-
q=0

Since py is assumed proper, the pull-back p} : HZ(Up,Z;) — HZ(Tp,7Zy)
is defined. We briefly recall the definition of the push-forward map pi. :
H{(T7,72¢) — HI(Up,Zy). Let f: U — Spec F and g : ' — Spec F denote
the structural maps. Then the trace map Rg1Z¢(d)[2d] — Z, induces the cycle
class map Z(d)[2d] — Rg'Z,. Since U is smooth of dimension d, the cycle class
map for U induces an isomorphism Rp}Z,(d)[2d] — Rp|Rf'Z¢ — Rg'Zy. Thus,
we obtain a canonical map Z;, — RpllZg and hence Rp.Zy, — Zy by adjunc-
tion. The map Rp11Z; — Z; induces the push-forward map py. : H¢ (L, Zg) —
HY(Up,Zy).

We give another description of the map I'* = py, o p5 using the cycle class
of I'. We put H,q*(UF X Up,Zy(d)) = H(Xp x Ug, (5 x id)1Z¢(d)). By the
assumption that 7])2 : ' — U is proper, I' is closed in X x U and hence the
canonical maps

HX(X x U, (j x id)1Zy(d)) — HE(X x U, Zy(d)) — HE(U x U, Zy(d))

are isomorphisms. Thus the cycle class [T'] € HZ(U x U, Z(d)) defines a class
T € H*(Xp x Up, (j x id)iZ(d)) = HX(Up x Up, Zy(d)). By the Kiinneth
formula and Poincaré duality, we have canonical isomorphisms

D, H(Up, Qo) © H*9(Up, Qu(d))  —— HX(Up x Up, Qu(d))

l

@, H(Up, Q) ® Hom(H{(Ug, Qr), Q) —— 22, End HE(Ug, Q).

LEMMA 2.3.2. Let I' C U x U be a closed subscheme of dimension d.
Assume that py : T' — U is proper. Then, by the canonical isomorphism
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H,%f(Up x Up, Qu(d)) — sz:() End HY(Uz,Qp), the image of the cycle class
[[] is T*.

Proof. Tt is sufficient to show the equality

prapye = pri. (LU pria)

in H!(Up, Q) for an arbitrary integer ¢ € Z and o € Hd(Up, Q). Let i : ' —
U x U be the immersion and i’ : I' — U x U — X x U be the composition.
Since p1.pia = pri(i«i*pria), it is reduced to showing the equality

"B =[up

in H(Up x Up,Qp) for B € HI(Xp x Up, Q). By Lemma 2.1.1, the class
15x1"* 3 is the product with the class of I'. Thus the assertion follows. O

LEMMA 2.3.3. Let U and V be connected separated smooth schemes of
finite type purely of dimension d over F. Let g : U — V be a proper and
generically finite morphism of constant degree [U : V] over F. Then, for a
cohomology class T' € Hff(VF x Vi, Q) = Hzio End H(Vi,Qy), we have

1

(2.7) TI‘(F* : H;(VFWQZ)) = [U : V]

Tr(((g x 9)"T)" - H: (Ug, Qu))-

Proof. Since ¢g* : H}(Vz, Qi) — H}(Up,Qy) is injective and g, o g* is
the multiplication by [U : V], it is sufficient to show that ((g x ¢)*T")* is the
composition g* o I'* o g,. In other words, it suffices to show the equality

prix(((g x 9)" T Uprya) = g*(pri.(I' Upryg.a))
for ¢ € Z and o € H} (U, Qp). In the commutative diagram

UxU P, U

1xg | E

gx1

UxV — VxV ——V

pr2
pra l lpﬁ

AN Vv,
« lives on U in the northeast and I'" lives on V x V. Thus, by the projection
formula, we compute
prix((g x )" T Uprza) = pri((1 x g)*(g x 1)*T' U pria)
=pri+((g X 1)'T U (1 X g)uprya) = pri.((g x 1)*(I' U prag.a))
=g pri-(I' Uprag.a). O
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We prove a Lefschetz trace formula for open varieties.

THEOREM 2.3.4. Let X be a proper and smooth scheme purely of dimen-
sion d over a field F' and U be the complement of a divisor D with simple
normal crossings. Let ' C U x U be a closed subscheme purely of dimension d.
Let DU DV ¢ (X x X)' denote the proper transforms of DM, D) respec-
tively and let T’ be the closure of T'in (X x X)'. We assume that we have an
inclusion

(2.8) I'nDW cT' nD®

of the underlying sets.
Then, the map po : I' — U 1is proper and we have an equality

(2.9) Te(I* : He (U, Q) = deg (T', A ) (xxx)-

The right-hand side is the intersection product in (X x X)' of the closure T
with the image A’y of the log diagonal closed immersion A’ : X — (X x X)'.

Proof. First, we show the map py : I' — U is proper. By the assumption
28) T'NDW cT'ND@ wehave T N(DW UE) c T N (D@ UE). Hence
we have (2.6) TN DM c TN D® and the assertion follows by Lemma 2.3.1.

Since the restriction of j1) Rk2.Z¢(d) on the diagonal X C X x X is 51Z,(d),
the pull-back map

A" HYY(Up x Up, Zy(d)) — HZNUp, Z(d))
= H*Y(Xp x Xp, juRk2.Z(d)) = H*(Xp, 51 Z(d))

by the diagonal is defined. Then, by Lemma 2.3.2 and by the standard argu-
ment (cf. [13, Prop. 3.3]) in the proof of Lefschetz trace formula, we have

(2.10) Te(T* & B (Up, Q1)) = Tr(A%([T])).
In the notation introduced in the beginning of §2.2, we have

HY (U x Up, Za(d)) = H* (X7 x Xp, DY, D, Z,(d))

and
H2 (Up, Zo(d)) = H**(Xp, Dy, Zg).

The canonical map (X x X) — X x X induces an isomorphism H?(Xp x

Xz, DY), D®) 7,(d)) — HU((X x X), (DY U E) gy, D', Z(d)). Thus the
composition
HX(Up x Up, Zy(d)) = HY(Xp x Xp, D}y, D), 2,(d))
(211)  — HY(X x X), (DY UE) gy, DY, Zy(d))
— HY((X x X)p, DY), DE, 2,(d))

is an isomorphism by Corollary 2.2.2.
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We put I' = T'\T'nD®’. By the assumption (2.8), we have I’'N D1’ = .
Thus the cycle class [IV] € H?4((X x X)) DS,)/,D@) ¢(d)) is defined. We
show that the arrow (2.11) sends [I'] to [F] By Corollary 2.2.2, the map

H2(X x X)5, DY, DP' 7,(d)) — H*((X x X, DY, (EUD) 1, Zy(d))

is an isomorphism. By this isomorphism, both [I”] and the image of [I'] are
sent to [I']. Hence the arrow (2.11) sends [I'] to [IV].

Since Ay N D@’ = §, the map A : HI((X x X, DY, Z,(d)) —
HY(Xp, Zg(d)) is defined. We consider the commutative dlagram
[Mle HE(Up x Up, Z(d)) —— H2(Up,Z(d))
1 (2.11) l
(M€ (X x XY, Dp)'\ D) Zu(d)) == HY(Xp, Zy(d)

212) | H

e H((X x XY, DY Zy(d))  —=— H*(Xp,Z(d))
1 |
Tle  HX((X x X)p Z(d)) 25 BY(Xp, Z4(d)).

As we have shown above, the arrow (2.11) sends [I'] to [I”]. Since the middle
and the lower left vertical arrows send [I”] and [T'] to [I] respectively, we have

(2.13) Te(A"([I])) = Tr(A™ ().
Since
Tr(A™([T'])) = deg (T, Aly) (xwx
the assertion follows from the equalities (2.10) and (2.13). O

Remark 2.3.5. In Theorem 2.3.4, we can not replace the assumption (2.8)
I'n DY c T'n D by a weaker assumption (2.6) T N DY c T n D@
as the following example shows. Let X = P!, U = A', and n > 1 be an
integer. Let f : U — U be the n-th power map and I' C U x U be the
transpose I' = {(z,y) € U x Ulz = y"} of the graph of f. Then, we have
Te(T* : HX(Up, Z¢)) = Tr(fe : H2(Ug, Zy)) = 1 while (T, A) (xxx) =N

One can deduce a part of a conjecture of Deligne from Theorem 2.3.4
as follows. The conjecture of Deligne itself is proved assuming resolution of
singularities by Pink in [25] and proved unconditionally by Fujiwara in [11]
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using rigid geometry. In the proof below, we will not use rigid geometry or
assume resolution of singularities.?

We introduce some notation assuming F' is a finite field. For a scheme over
F', let Fr denote the Frobenius endomorphism over F'. Let U be a separated
smooth scheme of finite type of pure dimension d over F. Let I' C U x
U be a closed subscheme of dimension d and assume the composition ps :
I' — U with the projection is proper. For an integer n > 0 and a prime
number ¢ different from the characteristic of F', we consider the alternating
sum Tr(Frp'T™* : HX(Up,Qp)). Let ip : I' — U x U be the composition of the
immersion ¢ : I' — U x U with the endomorphism 1 x Fr™ of U x U. Let
I",, denote the scheme I' regarded as a scheme over U x U by i,. If the fiber
product I';, Xyxy Ay is proper over F', the degree of the intersection product
(Fn, AU)UXU S CHo(Fn XUxU AU) is defined.

PROPOSITION 2.3.6 (cf. [11], [25]). Let U be a separated smooth scheme
of finite type of pure dimension d over a field F' and { be a prime number
different from the characteristic of F'. Let I' C U x U be a closed subscheme
of dimension d. Assume the composition ps : I' — U with the projection is
proper. Then, we have the following.

1. The alternating sum Tr(T™* : HX(Up, Qp)) is in Z[%] and is independent
of £ invertible in F.

2. Assume F is a finite field. Then, there exists an integer ng > 0
satisfying the following property.

For an integer n > ng, the fiber product I', Xxyxy Ay is proper over F
and we have

(2.14) Tr(Frp'l™ : H (Up, Q) = deg(T'n, Av)uxu-

Proof. 1. It is reduced to 2 by a standard argument using specialization.

2. By the main result of de Jong [9] and Lemma 2.3.3, we may assume
that there exists a proper smooth scheme X containing U as the complement
of a divisor with simple normal crossings. We will derive the proposition from
Theorem 2.3.4 using the following lemma.

LEMMA 2.3.7. Let X be a proper smooth scheme over a finite field F' of
order ¢ and D C X be a divisor with simple normal crossings. Let U = X \ D
be the complement and let I' C U x U be an integral closed subscheme. Assume
p2 : I'— U 1is proper.

3Added in Proof. An unconditional proof without using rigid geometry is given in Y.
Varshavsky, Lefschetz-Verdier trace formula and a generalization of a theorem of Fujiwara,
Geom. Funct. Anal. 17 (2007), 271-319.
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Then, there exists an integer ng > 0 such that, for all n > ng, the closure
in(Tpn) C (X x X)' of the image in,(I'y,) C U x U satisfies the inclusion

(2.15) in(Tn) \ in(Ty) € D@

Proof. Let T C (X x X)' be the closure of I'. By the main result of
de Jong [9], there exist a proper smooth integral scheme Z of dimension d, a
proper map Z — I over F such that the inverse image W = Z xp I is the
complement of a divisor B with simple normal crossings. Let Z' — Z be the
blow-up associated to the subdivision by baricenters and B’ = Z’\ W be the
complement.

Let 71,79 : Z' — X be the compositions with the projections. Let Dj
(i € I) be the irreducible components of D and Bj (j € J ) be the irreducible

components of B’. We put 71 D; = deJ EJ)B and 75 deJ EJ)B’ for

i € I. By the assumption ps : I' — U is proper, the comp051t10n ro : W —-U
is proper and hence the support of 75D = Z]EJ(Z e2 ))B’ equals B’. In

el 7,]
other words, for every j € J, there exists an index ¢ € I such that el(j) > 0.

Let Jo C J be the subset {j € J|B] is the proper transform of an ir-
reducible component of B}. Then, if B; N B}, # (0 and if j € Jo, we have

5]) < e(J). Hence, if e( ) =0 and e( ) > 0 for every B}, such that BN B}, # 0,

then we have j € Jy.
We show that, for every z € B’, there exists an index ¢ € I such that
egz) > 0 for all B;- 3 z. We prove this by contradiction. Assume there exists

z € B’ such that, for every i € I, there exists a component B;- 5 z such that

eg) = 0. First, we show that there exists an element jo € Jy such that z € B}D.

Let B’~ be a component containing z. Then, as we have seen above, there exists

(2)

an index ¢ € I such that e; i > 0. By the hypothesis, we also have an index

jo € J such that z € B’ and e( ) — 0. Since z € B’ ﬂB’, we have jy € Jo.
We show e( ) = 0 for every i € I to get a contradiction. For ¢ € I, by the

hypothesis, there exists B} 3 z such that e( ) = 0. Since z € B N B #0, we

have 0 = e(J) > e(]) > 0. Thus we get a contradiction.

We take ng > 0 such that ¢"° > maxjes jes e( )
there exists an index ¢ € I such that ¢"° egj) Z(j)
have a strict inequality

Then, for every z € B’,
for all B} > z. Namely, we

(216) qnoszi > fTDz

of germs of Cartier divisors at z.

We show the inclusion (2.15) for n > ng. We consider the product iy, :
W — (X x X) x Z' of the composition W — T with i, : I, - U x U C
(X x X)" and the inclusion W — Z'. Let Z, be the closure of the image of
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the immersion 7, : W — (X x X)' x Z' with the reduced scheme structure.
Let 7, : Zp — (X x X) and f,, : Z,, — Z’ be the projections. Further, let
TinsTon : Zn — X be the compositions of 7, with the projections. Then, since
W C Z, is dense, the diagram

fn
Z, — 7
fl,nXFZnJ/ J/fleg
IxFr®
XxX e&—— XxX
is commutative. Thus, we have equalities 7} ,D; = frrD; and 75, D; =

q" frr5D; of Cartier divisors on Z,, for each ¢ € I.
Since W — T is proper and surjective, we have i, (I'y) \in (I'n) =70 (2, \W).
For every point z € Z, \ W, there exists an index i € I satisfying a strict
inequality
F;nDi =q" o3 Di > frri Dy =71, D;
of germs of Cartier divisors at z by (2.16). Namely, we have z € 7, }(X x D;)’.
Thus, we have 7,,(Z, \ W) € D®' = J,_;(X x D;)" and the assertion follows.
O

We complete the proof of Proposition 2.3.6. Take a proper scheme I',, over
F containing T' as a dense open subscheme and a map i, : [, — (X x X)’
extending the map i, : ', — U x U. The intersection of the log diagonal
Ay C (X x X)" with D is empty. Hence by the inclusion (2.15) in Lemma
2.3.7, the intersection i, (T'y) N A’y with the log diagonal equals i, (I'y) N Ag.
Hence the fiber product I',, xyxy Ay =Ty X (xxx) A is proper over F' and
we have (Fn, Al){)(XXX)’ = (Fn, AU)UXU'

Also by the inclusion (2.15) in Lemma 2.3.7, the assumption (2.8) of
Theorem 2.3.4 is satisfied for the support of the cycle i,4(T,). Thus, by
Theorem 2.3.4, we have Tr(Frj'T™ : H}(Up, Q) = deg(Tpn, Ay)(xxxy =
deg(Pn,AU)UxU. O

3. Intersection product with the log diagonal and a trace formula

We introduce the target group CHg(V \ V) of the map (0.1) in Section 3.1.
We define the map (0.1) and prove the trace formula (0.2) in Section 3.2. We
establish elementary properties of the map (0.1) in Section 3.3. We define
and compute the wild different of a covering and the log Lefschetz class of an
automorphism using the map (0.1) in Section 3.4.

In this section, F' denotes a perfect field and f : V — U is a finite étale
morphism of separated and smooth schemes of finite type purely of dimension
d over F.

3.1. Chow group of 0-cycles on the boundary. In this subsection, we
introduce the target group CHo(V \ V) of the map (0.1).
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Definition 3.1.1. Let V be a separated smooth scheme of finite type over
a field F.

1. Let Cy be the following category. An object of Cy is a proper scheme
Y over F containing V as a dense open subscheme. A morphism Y/ — Y in
Cy is a morphism Y’ — Y over F inducing the identity on V.

Let Ci* be the full subcategory of Cy consisting of smooth objects. Let
C‘s,m’o be the full subcategory of Cy consisting of smooth objects Y such that
V' is the complement of a divisor with simple normal crossings.

2. We put
(3.1) CHo(V\V) = lim ¢, CHo (Y \ V).
The transitions maps are proper push-forwards. Let
(3.2) deg: CHy(V\V) —— Z
be the limit of the degree maps CHo(Y \ V) — Z.

Recall that we assume F is perfect. The resolution of singularities means
that the full subcategory Ci/" is cofinal in Cy. A strong form of the resolution
of singularities means that C‘S/m’O is cofinal in Cy. Thus, it is known that C‘S/m’o
is cofinal in Cy if dimension V is at most 2. More precisely, if dimension is
at most 2, we have a strong form of equivariant resolution of singularities as
follows.

LEMMA 3.1.2. Let V be a separated smooth scheme of finite type of di-
mension < 2 over a perfect field F' and G be a finite group of automorphisms
of V over F.

Then the full subcategory ofC‘S/m’O consisting of Y with an admissible action
of G extending that on V is cofinal in Cy .

Proof. Let Yy be an object of Cy. Let Y7 be the closure of the image
of the map V' — [[ eV C [l eq Yo sending v to (0(v))seq. Let Yo be the
minimal resolution of the normalization of Y;. By blowing-up Ys successively
at the closed points where the complement Y5\ V' does not have simple normal
crossing, we obtain Y3 in C‘S,m’o with an action of G. The action of G on the
blow-up Y of Y3 associated to the subdivision by baricenters is admissible by
Lemma 1.2.3.2. O

Let Y be a separated scheme of finite type over F containing V as a dense
open subscheme. Then there exists a unique map CHo(V \ V) — CHp(Y \ V)
satisfying the following property. Let Y’ be an object of Cy containing Y as a
dense open subscheme. Then it is the same as the composition of the projection
CHo(V \ V) — CHp(Y’ \ V) and the restriction CHo(Y'\ V) — CHo(Y \ V).
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Let f:V — U be a finite flat morphism of smooth schemes over F. The
push-forward maps induces a map f, : CHo(V \ V) — CHo(U \ U). The flat
pull-back map f* : CHo(U \ U) — CHg(V \ V) is defined as follows.

LEmMA 3.1.3. Let f : V — U be a finite flat morphism of smooth schemes
over F'. Then, the following holds.

1.  Let X be an object of Cy and Y be an object of Cyy. Then there
exist a morphism X' — X in Cy, a morphism ' Y' —'Y in Cy and a finite flat
morphism f':Y' — X' over F extending f : V — U.

If f: V = U is a Galois covering of group G, there exists f' : Y' — X'
as above such that the action of G is extended to an action on Y.

2. Let g: X' — X be a morphism in Cy and h : Y' — Y be a morphism
i Cy. Let

(3.3) 7| |7
X - X

be a commutative diagram of morphisms over F where the vertical arrows are
finite flat morphisms extending f :V — U. Then, the diagram

CHo(Y'\ V) —“— CHo(Y'\ V)

i [7

CHo(X'\U) —£— CHy(X \ U)

1s commutative.

Proof. 1. By replacing Y by the closure of the graph I'y C V x U C
Y x X, we may assume that there exists a proper map f : ¥ — X extending
f:V — U. Then, we obtain a finite flat morphism f’ : Y’ — X’ by applying
Théoreme (5.2.2) of [27].

Assume V' — U is a Galois covering. Then, by replacing Y by the closure
of the image V' — [,V C [[,c¢ Y sending v to (0(v))scq, we may assume
the action of G on V is extended to an action on Y. It suffices to apply the
construction in the paragraph above.

2. Since the assertion is clear if the diagram (3.3) is Cartesian, we may
assume X' = X. Let x € X \ U be a closed point and let A be the completion
Ox,m. For y € f~1(z), we put B, = Oy,y. For 3 € f'~(x), we put le/’ =
O:y/7y/. Then, we have f*([z]) = >_, 5 1(,) rankaBy/[k(y) : li(&?)_] - [y] and
F(a)) = XepsyrankaBl /I6(y) : k()] - [y/). For cach y € f1(x), we
have rank 4 B, = Zy'ehfl(y) rankAB;,. Thus the assertion follows. O
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By Lemma 3.1.3, the flat pull-back maps f* : CHo(X \ U) — CHp(Y \ V)
induce f*: CHo(U \ U) — CHy(V \ V).

COROLLARY 3.1.4. Let f : V — U be a finite flat morphism of smooth
schemes of constant degree N .

1. Then, the composition f. o f* : CHo(U \ U) — CHo(U \ U) is the
multiplication by N.

2. Assume further that V. — U is a Galois covering of Galois group G.
Then, the composition f*o f, : CHo(V\V) — CHo(V\V) is equal to >, . 0.

The pull-back map f* induces an isomorphism f* : CHo(U \ U) @z Q —
(CHo(V \ V) @7 Q)¢ to the G-fized part. The inverse is given by ﬁf*.

Proof. Clear from Lemma 3.1.3. O

If we admit resolution of singularities, the projective limit CHo(V \ V) is
computed by a smooth object in Cy as we see in Corollary 3.1.6 below.

LEMMA 3.1.5. Let V be a separated smooth scheme of finite type over F.
LetY and Y’ be separated smooth schemes over F containing V' as dense open
subschemes and g : Y' — Y be a morphism over F inducing the identity on V.

Then, the Gysin map g' : CHo(Y \ V) — CHo(Y'\ V) is a surjection.
Further if g : Y' — Y s proper, the map g' : CHo(Y \ V) — CHo(Y'\ V) is an
isomorphism and is the inverse of g, : CHo(Y'\ V) — CHp(Y \ V).

Proof. Let K4 denote the Zariski sheaf of Quillen’s K-theory. Then, by the
Gersten resolution, the Chow group CHy(Y \ V') is identified with the cohomol-
ogy Hfﬁ\v (Y, KCq) with support and the Gysin map g': CHy(Y'\V) — CHo(Y'\V)
is identified with the pull-back map ¢g* : H{‘f\V(Y, Ka) — Hg,,\v(Y’, Kaq). Thus,
we have a commutative diagram of exact sequences

HYY(V,K;) —— CHo(Y \ V) —— CHo(Y) —— CHo(V)

H Js s H

H¥Y(V,Kj) —— CHp(Y'\ V) —— CHp(Y') —— CHy(V).

Since CHy(Y”) is generated by the O-cycles on the dense open V C Y’, the
map ¢' : CHy(Y) — CHg(Y") is surjective. Thus a diagram chasing shows the
surjectivity of g' : CHo(Y \ V) — CHo(Y"\ V).

If ¢ is proper, we have g, o ¢' = id by the projection formula. Hence ¢' is
an isomorphism and is the inverse of g,. O

COROLLARY 3.1.6. Let V' be a separated smooth scheme of finite type
over F'. Assume the full subcategory Ci* consisting of smooth objects is cofinal
in Cy.
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1. Then, the projection CHo(V\V)— CHo (Y \V) is an isomorphism for an
object Y of Ci*. Their inverses induce an isomorphism lim csm.ore CHo(Y'\V') —
CHy(V \ V) where the transition maps are Gysin maps.

2. Let f:V — U be a finite flat morphism of smooth schemes. Assume
the full subcategory Cii* is also cofinal in Cy .

Then, the pull-back map f* : CHo(U \ U) — CHo(V \ V) is the same as
the map lim gemore CHo (X \ U) — lim gomeore CHo (Y \ V') induced by the Gysin

maps.

Proof. 1. Clear from Lemma 3.1.5.

2. Let X and Y be objects of C;/* and of Cj7" respectively and let f:Y—=X
be a morphism over F' extending f : V — U. It is sufficient to show that
f'([z]) = f*([z]) for an arbitrary closed point z € X \ U. Let X’ — X be
the blow-up at  and Y’ be an object of Cj/* dominating ¥ x x X’. Replacing
Y — X by Y’ — X', we may assume that the map f : Y — X is finite flat on a
neighborhood of z. Then, we have f'([z]) = [f~(z)]. By applying Théoréme

(5.2.2) of [27], we also get f*([z]) = [f~!(z)]. O

3.2. Definition of the intersection product with the log diagonal. First, we
recall the existence of alteration.

LEMMA 3.2.1. Let f: V — U be a finite étale morphism of separated and
smooth schemes of finite type purely of dimension d over a perfect field F'. Let
Y be a separated scheme of finite type over F containing V as a dense open
subscheme.

Then, there exists a commutative diagram

(3.4) W=z

|

V—C>Y h

|

U

satisfying the following conditions:
(3.4.1) U is the complement of a Cartier divisor B of X.

(3.4.2) Z is smooth purely of dimension d over F' and W is the comple-
ment of a divisor D of Z with simple normal crossings.

(3.4.3) The two quadrangles are Cartesian.

(3.44) g: Z =Y is proper. The map g : W — V is a generically finite
surjection of constant degree [W : V.
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Proof. By [24], there exists a proper scheme X over F' containing U as a
dense open subscheme. By replacing X by its blow-up at a closed subscheme
whose support is the complement of U, the condition (3.4.1) is satisfied. By
replacing Y by the closure of the graph of f : V' — U in Y x X, we may assume
there is a commutative diagram

Vv S v

(3.5) fl lf

U —S. X
Since V' is proper over U and is dense in U x x Y, the diagram (3.5) is Cartesian.

Now, it is sufficient to apply the main result of de Jong [9] to V C Y to find
W C Z. O

Next, we study the intersection product with the log diagonal on the level
of alteration. We consider a Cartesian diagram

w -z

(3.6) hl |

U —S- X
of separated schemes of finite type over F' satisfying the conditions:
(3.4.1) U is the complement of a Cartier divisor B of X.

(3.4.2) Z is smooth purely of dimension d over F' and W is the complement
of a divisor D of Z with simple normal crossings.

Let Dy,..., Dy, be the irreducible components of D and let (Z x Z)~
be the log product with respect to the divisors Di,...,D,,. The scheme
(Z x Z)~ is smooth over F' and contains W x W as the complement of a
divisor with simple normal crossings by Lemma 1.1.4. The log diagonal map
Ay 1 Z — (Z x Z)~ is a regular closed immersion of codimension d. Let
(Z xx Z)~ = (Z x Z)~ X(xxx)~ X be the relative log product defined with
respect to the Cartier divisor B and the family Dq,...,D,, C Z of Cartier
divisors.

Let T be an open neighbourhood of Ay in W xy W. Then the clo-
sure W xg W\T in (Z x Z)~ satisfies W xy W\T N Ay C Z\ W since
WxgWANTNW xW =W xyg W\T. Thus the intersection product in
(Z x Z)~ defines a map

(3.7) (s Az)(zxz)y~ : CHg(W xy W\T) —— CHo(Z \ W).

PROPOSITION 3.2.2. Let Z be a smooth scheme purely of dimension d
over F and W C Z be the complement of a divisor D with simple normal
crossings. Let W — U be a morphisms of schemes of finite type over F and
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T C W xy W be an open neighborhood of the diagonal Ayy. Assume there
exists a Cartesian diagram (3.6) satisfying the conditions (3.4.1) and (3.4.2).

1. Let W xy W\T be the closure in (Z x Z)~. Then, there exists a
unique map

(3.8) ( ,Az)log : CHd(W XU w \ T) —_— CH()(Z \ W)

making the diagram

CHy(W xg W\ T)

L l (7AZ)(Z><Z)N
restriction
CHd(W XU w \ T) ( By CHO(Z \ W)
A
commutative.
2. Further, let

Wl L) Z/
d s
w —S. Zz

be a Cartesian diagram of schemes over F. We assume that Z' is smooth
over F and that W' is the complement of a divisor of Z' with simple normal
crossings. Then, we have a commutative diagram

CHy(W xp W\ T) LA CHy (2 \ W)

(3.9) (kxk)’l lk

CHy (W' xg W\ (k x k)~1(T)) 22025 cHy(z\ w)

where the left vertical arrow is the Gysin map for k x k: W' x W' — W x W.

Proof. 1. Take a Cartesian diagram (3.6) satisfying the conditions (3.4.1)
and (3.4.2). Then (Z xx Z)~ is a closed subscheme of (Z x Z)~ containing
W xy W as an open subscheme. Hence, W xgy W \ T'is closed in (Z x x Z)~\T
and W xy W\ T is open in (Z xx Z)~ \ T. Thus, it suffices to show that
the map (,Az)(zxz)~ : CHa((Z xx Z)~\T) — CHo(Z \ W) factors through
the restriction map CHy((Z xx Z)~\T) — CHg(W xy W\ T). The kernel of
the surjection CHy((Z xx Z)~ \T) — CHy(W xy W\ T) is generated by the
image of CHy((Z xx Z)~ \ W xy W).

We use the notation in Lemma 1.1.4 replacing X — Y by Z — X. Then,
the complement (Z x Z)~ \ (W x W) is the union of divisors E. Hence the
complement

(Zxx Z)"\N(W xg W) =(Zxx Z)"N((Zx 2)"\ (W xW))
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is the union of (Z xx Z)~ N EY. Thus the kernel of the restriction map
CH4y((Z xx Z)~\T) — CHyg(W xy W\ T) is generated by the images of
CHd((Z X x Z)N N E;))

The pull-back of the Cartier divisor EY C (Z x Z)~ by the log diagonal
map Az — (Z x Z)~ is the Cartier divisor Ap, C Az. Hence we have
(C,Az)(zxz)~ = (C,Ap,) e for a cycle C in E7. Thus, it is sufficient to show
that the map

(310) ( 7AD1)EL° : CHd((Z X x Z)N ﬂEf) R — CHo(D,L)

is the O-map.

The log diagonal map D; — (D; x D;)™ is a regular immersion of codi-
mension d — 1. The restriction E;);Di of the G,,-bundle EY — (D; x D;)™ to
the log diagonal D; C (D; x D;)"~ has a canonical isomorphism E; p, = Gm.p,
(1.7). The immersion Ap, = Az N EY — E? gives the unit section D; —
E?p, — G, p,. Hence the map (3.10) is the composition of the maps

( 7D’i)(Di><Di)~
————

CHy((Z xx Z)~ N EY) CH1((Z xx Z)NﬂEzDi)

(3.11) (Dss,

R CHy(D;).
By Proposition 1.1.6.1, the intersection (Z xx Z)~ N E7p, is a closed
subscheme of pie, p, C Efp = Gy p,. Hence the second map in (3.11) is the
composition

Z)“’m,,Di

CHl((Z X x Z)N N EZDq) — CHl(,uei,Di) — CHI(Gm,Di) CHo(Dl)

Since the composition of the last two maps is the 0-map, the map (, AZ)(Z><Z)~ :
CHy((Z xx Z)~\T) — CHo(Z \ W) induces a map CHg(W xy W\ T) —
CHo(Z \ W). Thus the assertion follows.

2. We consider the commutative diagram
(Z!'x 2"~ —— (2! xx 2"~ —+ 7'
(IEXE)NJ (Exkrl lk
(ZxZ)~ —— (Zxx Z)~ —— Z

where the right horizontal arrows are the log diagonal maps. Then, we have a
commutative diagram

(Az)zxz)~
_—

CHA((Z xx: Z)*\ T) CHy(Z \ W)

(zm;)wl l’“
CHA((Z »x0 Z')\ (k x k) ~1(T)) 22220, oy (20 W)

and the assertion follows. O
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THEOREM 3.2.3. Let f : V — U be a finite étale morphism of separated
and smooth schemes of finite type purely of dimension d over a perfect field F.

1. There exists a unique map
(0.1) (,Ap)°8: CHy(V xp V\ Ay) —— CHo(V\V)®zQ
that makes the diagram

(3.12)
)'es

CHa(V o V\ Av) 2275 OH (V7 \ V) @7 @ —> CHo(Y \ V) 7 Q

(gxg)’l .

log [(W:V]
CHy(W xg WA W xy W) “22% a2\ w)

commutative for an arbitrary commutative diagram (3.4) satisfying the condi-
tion

(3.4.0) Y contains V as a dense open subscheme.
and the conditions (3.4.1)-(3.4.4).

2. Assume the full subcategory Cf/m’o 1s cofinal in Cy. Then, there exists a
unique map

(3.13) (,Ap)P2 : CHy(V xp V\ Ay) —— CHo(V \ V)

satisfying the following property.

LetY be an arbitrary smooth separated scheme of finite type containing V
as the complement of a divisor with simple normal crossings and let ( , Ay )8 :
CH4(V xuy V\ Ay) — CHo(Y \ V) be the map (3.8) for Z =Y. Then the
diagram

(Ap)z*

(3.14) CHy(V xy V\ Ay) CH()(V\ V)

( 7AY)10g l/
CHo(Y' \ V)
is commutative if there exists a Cartesian diagram

V —— Y

7| |7

of separated scheme of finite type where X contains U as the complement of a
Cartier divisor.

Proof. 1. We consider an arbitrary commutative diagram (3.4) satisfying
the conditions (3.4.0)—(3.4.4). By the assumption that V' — U is étale, the
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fiber product T'= W xy W is an open neighborhood of Ay in W xy W and
the map (,Az)1° : CHg(W xy W\ W xy W) — CHo(Z \ W) is defined by
Proposition 3.2.2.1.

For an object Y of Cy, there exists a commutative diagram (3.4) satisfying
the conditions (3.4.1)-(3.4.4) by Lemma 3.2.1. The composition CH;(V x¢r
V\Ay) — CHo(Y \ V) ®z Q via the lower line in (3.12) is independent
of the choice of diagram (3.4) by Proposition 3.2.2.2. We define the map
(,Ap)°8 : CHy(V xy V \ Ay) — CHo(V \ V) ®z Q as the limit. Then it is
clear that the map ( , A)!°® satisfies the condition.

2. By the assumption and Corollary 3.1.6.1, the group CHy(V \ V) is
identified with the inductive limit lim camo0.00 CHo(Y\ V) with respect to the
Gysin maps. Hence it follows from Proposition 3.2.2. O

1t ;™0 is cofinal in Cy, the map (, Ay)'°8 is induced by ( ,Av);g :

We prove the trace formula (0.2) in Proposition 3.2.4. Let V' — U be a
finite étale morphism of separated smooth schemes of dimension d over F'. Let
¢ be a prime number invertible in F' and F be an algebraic closure of F. For
an open and closed subscheme I" of V' x ¢ V' \ Ay, we define an endomorphism

™ of H(V#,Qy) to be pix o ps. We put

2d

Te(I* : Hy (Vp, Qo) = ) (—1)"T(I" = HE (Ve Q).

q=0

PROPOSITION 3.2.4. Let f : V — U be a finite étale morphism of sepa-
rated and smooth schemes of finite type purely of dimension d over a perfect
field F'. Let ¢ be a prime number invertible in F.

Then, for an open and closed subscheme T' of V- xy V' \ Ay, we have

(3.15) Te(I* : Hi(Vp, Qo)) = deg(T, Ay)%.

Proof. Take a diagram (3.4) with X,Y and Z proper over F' satisfying
the conditions (3.4.0)-(3.4.4). By Lemma 2.3.3, we have

Te(l* - He (Vp, Q) = Tr(((g x 9)"T)" : H (W, Q).

1
W:v]
By Lemma 2.1.2, we have (g x ¢)*[[] = [(g x ¢)'(I')]. Take an element I =
Zi nl[Cl] € Zd(W xy W \ W Xy W) representing [(g X g)!(r)] € CHd(W XU
W\ W xy W). By Proposition 1.1.6.2, the closures C; C (Z x Z)' satisfy the
condition (2.8). Hence by Theorem 2.3.4, we have

Tr(((g x 9)'T)" + HX(Wg, Q) =deg (32,m[Cil, Az)(zx 2y
=deg ((9x 9)'T. Az
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By the definition of (T, Av)log, we have

1
deg (', Ay)'%8 = v e ((g % g)'T, Az)'e.

Thus the equality (3.15) is proved. O

3.3. Properties of the intersection product with the log diagonal. We keep
the notation that f : U — V denotes a finite étale morphism of separated
smooth schemes of finite type purely of dimension d over a perfect field F'.

The maps (,Aq)%8 : CHy(V xp V \ Ay) — CHo(V \ V) ®z Q satisfies
the following functoriality.

LEMMA 3.3.1. Let U be a separated smooth scheme of finite type purely
of dimension d over a perfect field F'.

1. Let V. — U’ be a morphism of finite and étale schemes over U. Then
the map ( ,Ay)1°8 : CHy(V x¢ V' \ Ay) — CHo(V \ V) ®z Q is equal to the
restriction of ( ,Av)log :CHy(V xp V\ Ay) — CHo(V \ V) @z Q.

2. Let g : V. — V' be a morphism of finite and étale schemes over U.
Then, the diagram

7A_/10g 77
CHy (V' xu VI \ Ayr) —277 CHy (7 \ V) @2, Q

(3.16) (gxg)*l lg*

1
Av)oe

CHy(V xpy VA Ay) 297 CHy(V\ V) @z Q

18 commutative.

Proof. 1. Clear from the definition and Proposition 3.2.2.2.

2. We may assume U, V and V' are connected. Then by Corollary 3.1.4.1,
the right vertical arrow ¢* in (3.16) is injective. Hence, we may replace V' by its
Galois closure over U and may assume V — U is a Galois covering. Let G be
the Galois group and H C G be the subgroup corresponding to V'. Then, the
images of the both compositions are in the H-fixed part of CHo(V \ V) ®7 Q.
Hence, by Corollary 3.1.4.2; it suffices to show the diagram

—)los

VA7 —
CHy(V' xp V'\ Ay) Sl CHo(V'\ V') ®z Q

(ox0)* | [

CHy(V xp VA Ay) 225 CHy(V\ V) @7 Q

is commutative. This is clear from the definition and Proposition 3.2.2.2. O

If the subcategory C{Q’/m’o is cofinal in Cy, we can remove ®7zQ in 1. Further

if Cf/rfl’o is cofinal in Cy+, we can remove ®7Q in 2. We will omit to state remarks
on integrality of this type in the sequel.
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LEMMA 3.3.2. Let V. — U’ — U be finite étale morphisms of separated
and smooth schemes of finite type purely of dimension d over a perfect field F.
Letn > 1 be an integer invertible in F' and assume g : U' — U is a Z/nZ-torsor
over U.

Then, the restriction

CHd(V xy V \ V X V) C CHd(V xyV \ Av) CAv)™

1s the 0-map.

CHo(V\ V) ®z Q

Proof. By enlarging F', we may assume F' contains a primitive n-th root
of 1. Let x : Z/nZ — F* be a character of order n. Then the y-part Ly of
g9«Oyp- is an invertible Oy-module. The multiplication defines an isomorphism
ny E%n — Oy of Oy-modules. The Ogy-algebra ¢.Opy is isomorphic to
@?:_01 E%i with the multiplication defined by uy. We take a proper scheme X
over F' containing U as a dense open subscheme. Replacing X by a blow-up,
we may assume Ly is extended to an invertible Ox-module £ and the map
wo E%n — Oy is extended to an injection p : £L®" — Ox. We define a
finite flat scheme g : X’ — X over X by the Ox-algebra EB?:_DI L% with the
multiplication defined by p. By Lemma 1.1.3, the diagonal X' — (X' x x X')™
is an open immersion.

We take a proper scheme Y containing V' as a dense open subscheme such
that the map V' — U’ is extended to Y — X’ and an alteration Z — Y as in
Lemma 3.2.1. Then, the inverse image of V xy V\V xy V in (Z x Z)~ is
contained in the inverse image of (X’ x x X’)~\ X’. Thus the assertion follows
from the definition of the map (0.1). O

For a separated scheme Y of finite type over F' containing V' as a dense
open subscheme, let

(3.17) ( ,Ay)bg : CHd(V XU |4 \ Av) E— CHo(Y \ V) Xz @
denote the composition of the maps in the upper line of the diagram (3.12).

The map ( ,Ay)"8 : CHy(V xy V' \ Ay) — CHo(Y \ V) ®z Q is characterized
by the commutativity of the diagram

CHy(V xp VA 27 cHyv \ V) @, Q

(3.18) (gxg)’l Tﬁﬁ*
CH(W xp WA W xy W) 2255 GHy 2\ W)
for an arbitrary commutative diagram (3.4) satisfying the conditions (3.4.1)-
(3.4.4). If Y is smooth and V is the complement of a divisor with simple
normal crossings, the map ( , Ay)°8 is given by the map (3.8) for Z =Y.
We give sufficient conditions for the vanishing of the map ( , Ay )98 :
CHd(V XU Vv \ Av) — CHo(Y \ V) X7z Q
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LEMMA 3.3.3. Let

(3.5) fl l E
U—S> X

be a Cartesian diagram of separated schemes of finite type over a perfect field F'.
We assume U C X and V C Y are dense open subschemes, U is smooth purely
of dimension d over F and f:V — U 1is finite and étale.

Let ' C V xy V be an open and closed subscheme. If the intersection
T'N Ay of the closure T CY xx Y of I and the diagonal Y C Y xx Y is
empty, we have (I, Ay)'°8 = 0 in CHo(Y \ V) ®z Q.

Proof. By replacing X by a blow-up, we may assume U C X is the
complement of a Cartier divisor. We take a Cartesian diagram

WS- Zz

s

vV S Y
satisfying the conditions (3.4.2) and (3.4.4). We consider the natural map
Gxg: (ZxxZ)~ = YxxY induced by g : Z — Y. The closure of (gx g)~*(T)
is in (g x g)~!(T) and does not meet the log diagonal Ay C (g x g)~*(Ay) by

the assumption. Hence we have ((g x ¢)'(T"), Az)(zxz)~ = 0 and the assertion

follows. O

COROLLARY 3.3.4. Let the notation be as in Lemma 3.3.3.

1. If f:Y — X is étale, the map ( ,Ay)8 : CHy(V xy V \ Ay) —
CHo(Y \ V) ®z Q is the 0-map.

2. Let & be an automorphism of Y over X and o be the restriction on V.
Let T, CVxygV and Ty CY xXx Y be the graphs. If Y7 =T, N Ay is empty,
we have (I'y, Ay)1°8 =0 in CHo(Y \ V) @z Q.

Proof. Clear from Lemma 3.3.3. O

We show that the image of the map (,Ay)"s : CHy(V xy V \ Ay) —
CHo(Y \ V) ®z Q is supported on the wild ramification locus.

PROPOSITION 3.3.5. Let

(3.5) fl lf
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be a Cartesian diagram of separated schemes of finite type over a perfect field F.
We assume X is smooth purely of dimension d over F, U is the complement of
a divisor B with simple normal crossings, V C Y 1is a dense open subscheme,
and f:V — U is finite and étale.

1. Let V. C V' CY be an open normal subscheme. If V' is tamely ramified
over X, then the map ( ,Ay)'8 : CHy(V xy V \ Ay) — CHo(Y \ V) ®z Q is
decomposed as the composition

CH4(V xu V \ Ay) — CHo(Y \ V') ©z Q — CHo(Y \ V) @z Q.

2. Suppose there exists a commutative diagram

Vv . v

Lo

U/ c X/

gl Lt?
U - x

of separated normal schemes of finite type over F, g : U' — U is finite étale
and g : X' — X is tamely ramified. Then, the restriction

CHd(V XU V\V Xy V) C CHd(V XU V\Av) (7A—Y)log>

is the 0-map.

CHo(Y \V)®zQ

Proof. Tt follows from the characterization of the map (3.17) and Lemma
1.1.8. O

3.4. Wild differents and log Lefschetz classes.

Definition 3.4.1. Let f : V — U be a finite étale morphism of separated
and smooth schemes of finite type purely of dimension d over a perfect field F'.

1. We call the 0-cycle class

(3.19) D%, = (V xu V\ Ay, Ap)'*® € CHy(V \ V) @2 Q

the wild different of V over U.

2. Let o be an automorphism of V' over U that is not the identity on
any component of V. Let I'; C V Xy V be the graph of ¢. Then, we call the
0-cycle class

(3.20) (T, Ay)'°8 € CHo(V\ V) ®72 Q

the log Lefschetz class of o.

0 is cofinal in Cy, the wild different D' and the

If the subcategory C}" v/U

log Lefschetz class (I'y, Aj7)'°8 are defined in CHo(V \ V).
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LEMMA 3.4.2. For a morphism g : V. — V' of finite and étale schemes
over U, we have

(3.21) D% — D

*
viv =Py T9 Dy?

v/ /U

Proof. We have V xpyp V\Ay = (Vxy V\Ay) (g xg) " (V' xg V/\ Ay).
Hence, the equalities follow from Lemma 3.3.1.2. O

PRrROPOSITION 3.4.3. Let f : V. — U be a finite and étale morphism of
connected separated and smooth schemes of finite type purely of dimension d
over a perfect field F' and let o be an automorphism of V over U.

If the order of o is not a power of the characteristic p of F', we have

(T, Ap)°% = 0.

Proof. Let n be the prime-to-p part of the order e of . By Lemma 3.3.1.1,
we may replace U by the quotient V/(o). Then it suffices to apply Lemma
332toV=U =V/(c") = U =V/{0o). O

We expect the following holds.

CONJECTURE 3.4.4. Let f : V. — U be a finite and étale morphism of
connected separated and smooth schemes of finite type purely of dimension d
over a perfect field F' and let o be a nontrivial automorphism of V over U.

If 7 is an integer prime to the order of o, we have

(T, Ap)'°8 = (Dys, Ay) 8.
We will prove Conjecture 3.4.4 assuming dim < 2 in Lemma 3.4.13.

LEMMA 3.4.5. Let the notation be as in Definition 3.4.1 and let £ be a
prime number invertible in a perfect field F.

1. If f : V = U s of constant degree [V : U], we have
(3.22) deg D%, = [V : Ulxe(Up, Qo) — Xe(Vir, Q)

2. Let o be an automorphism of V' over U that is not the identity on any
component of V. Then, we have

(3.23) deg (Ty, Ay)'%% = Tr(c* : H} (Vip, Qy)).
Proof. 1. By Proposition 3.2.4, we have

deg D5, = Te(V xu V)™ + HE (Vp, Qo)) — Te(A} « HE (Ve Q1))

By Lemma 2.3.3, we have Tr((V xy V)*: HX(Vi,Qp)) = [V : U] - xe(Ug, Qy).
Hence the assertion follows.

2. It suffices to apply Proposition 3.2.4 to the graph I, . O
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COROLLARY 3.4.6 ([15, Lemma 2.5]). Let U be a separated scheme of
finite type over a field F' and V- — U be an étale Z/nZ-torsor. Let o be the
automorphism defined by the generator 1 € Z/nZ and assume n is not a power
of p. Then, we have

Te(o™ : H: (Ve Q) = 0

Proof. We may assume F' is perfect. If the assertion holds for the base
changes to a closed subscheme Z C U and to the complement U \ Z, it holds
for U. Hence, by induction on dimension, it is reduced to the case where U is
smooth. Then it follows from Lemma 3.4.5.2 and Proposition 3.4.3. O

In the rest of this subsection, we give some computations of wild differents
and log Lefschetz classes.

In the classical case where U is a smooth curve over F', Definition 3.4.1
gives the classical invariants of wild ramifications as follows. Let A be a com-
plete discrete valuation ring and B be the integral closure of A in a finite
separable extension L of the fraction field K. Let er,x be the ramification

index of L over K. Then the wild different D ];)% 4 € N is defined by

1 1
D;% = lengthpQp 4 — (er/x — 1).
For a nontrivial automorphism o of L over K, we put

jB(o) =lengthgy B/ <ﬂ —L;be B\{O})

LEMMA 3.4.7. Let U be a smooth connected curve over a perfect field F
and f :' V. — U be a finite étale morphism over F. Let X be the proper
smooth curve containing U as a dense open subscheme and f :' Y — X be
the normalization in V. We put B = X\ U and D = Y \'V and identify

CHy(V\ V) =B,ep Z-
1. We have

. lo,
DV/gU [Coker( f* QX/F(log B) — QY/F log D)) ZD DOiy/Ox o vl
ye

2. Let o be a nontrivial automorphism of V' over U. Then, we have
o, Ap)z2 = > o, (o).
yeD,o(y)=y
Proof. Follows from Proposition 3.4.10 and Lemma 3.4.11 below. O
We compute the wild different assuming a strong form of resolution. Be-

fore doing it, we recall some general facts on intersection theory and localized
Chern classes.
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Let X be a scheme of finite type over F' and Z C X be a closed sub-
scheme. Let & and F be locally free Ox-modules of rank d and f : £ — F
be an Ox-linear map. We assume that f : £€ — F is an isomorphism on
X \ Z. We consider the complex K = [€ — F] of Ox-modules by putting
F on degree 0. Then, the localized Chern class cj (K) — 1 is defined as an
element of CH*(Z — X) in [12, Ch. 18.1]. We define an element ¢(F — £)% =
(Cz‘(}-— 6))2{)Z>0 of CH*(Z — X) by

(3.24) o(F—=E)F =c(€)N(cx(K)—1).

In other words, we put ¢;(F — )5 = Z?l:irol(d’i_l) ¢;j(€) Neimj3 (K) for i > 0.

The image of ¢(F — £)% in CH*(X) is the difference ¢(F) — ¢(£) of Chern
classes.

LEMMA 3.4.8. Let X be a scheme of finite type over F' and Z C X be
a closed subscheme. Let € and F be locally free Ox-modules of rank d and
f & — F be an Ox-linear map such that f : € — F is an isomorphism on

X\ Z. Then,
1. We have ¢;(F — &)X =0 fori > d.

2. Let
0 —— & & g 0
S A B
0 —— F F F 0

be a commutative diagram of exact sequences of locally free Ox-modules. We
assume that the maps f' and f" are isomorphism on X\ Z. We assume &' and
F' are of rank d' and E" and F" are of rank d" for some integers d' +d" = d.
Then, we have

(3.25) o(F = E)F =c(F = &Ny NelF") 4+ c(F' =M% ne&).

Proof. 1. The localized Chern classes ¢;5 (F) and ¢;3 (€) are defined for
i > d in [4, §1]. Further they are equal to 0 since F and & are locally free of
rank d. Hence, by the distinguished triangle - & — F — K —, we have an
equality 0 = ¢;5 (F) = Z?:o ¢;(€) Nei—jx (K) as in Proposition 1.1 (iii) loc.
cit. Since the right-hand side is ¢;(F — £)3, the assertion follows.

2. We put K' = [£" — F'] and K" = [ — F"] as above. Then, by the
assumption, we have ¢;3 (K) = Z;;B ¢; (K" Neimjy (K') + g (K") for i > 0
(cf. [12, Example 18.1.3, Proposition 18.1 (b)] and [4, Proposition 1.1 (iii)]).
In other words, we have ¢X(K) — 1 = (¢ (K') — 1) N e(K") + (cx (K") = 1).
Multiplying ¢(€) = ¢(&') N ¢(E") and substituting ¢(E”) N e(K") = e(F"), we
obtain ¢(€) N (cx(K) = 1) = ¢(&) N (cx (K') = 1) Ne(F") + (&) Ne(E”) N
(e (K") — 1) and the assertion follows. O
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LEMMA 3.4.9. Let
W —— Y

ol b

Vv —— X
be a commutative diagram of separated schemes of finite type over F. We
assume that'Y is purely of dimension n and the horizontal arrows V. — X and
W —Y are regular closed immersions of codimension d. Let Ny, x and Ny /y
be the conormal sheaves.

Let U be a dense open subscheme of Y. We assume that W NU is dense
in W and that the closed immersion W NU — V xx U s an open immersion.
Weput Z=W\(WnNU) and Z' = (V xx Y)\ (W NU). Then, we have the
following.

1. The canonical map g* Ny x — Ny y is an isomorphism on W NU =
W\ Z and c(g*Ny)x — Nwy)y € CH(Z — W) is defined.

2. The canonical map Z,_q¢(W) & CH,_4(Z") — CH,,_4(V xx Y) is
an isomorphism. The projection CH,,_q(V xx Y) — Z,_4(W) is given by
the restriction map CH,_4(V xxY) — CH,_.qW NU) = Z,_ ¢q(WNU) =~
Zn—a(W).

3. There exists a unique element [f'V —W] € CH,,_4(Z') satisfying [W]+
[f'V = W] = [f'V] in CH,_q(V xx Y). Further, we have an equality

(3.26) W[V =Wy = (=1)" " ca(Nwyy — g"Nvyx)z 0 [W]
m CHn_Qd(Z).

Proof. 1. By the assumption that the closed immersion WNU — V xx U
is an open immersion, the canonical map g*Ny,x — Ny/y is an isomorphism
on WNU =W\ Z. Hence c(¢*Ny,x — Nyy)y € CH*(Z — W) is defined.

2. By the assumption, the canonical maps Z, (W) & Z,_4(Z') —
Zn—a(V xxY) and Z,,_q(W) — CH,,_q(WW) are isomorphisms. Thus the as-
sertion follows.

3. By the assumption, the restriction of [f'V] to the open subscheme
WnNU CV xxYis [WnNU]. Hence, by 2, there exists a unique element
[f'V — W] € CH,_q(Z') satisfying [W] + [f'V — W] = [f'V].

Let p: Y — Y be the blow-up at V xx Y C Y and at W C Y. Let
D=V xxY and D' = W xy Y’ be the exceptional divisors. We compute
(W,[f'V—-W]y usingp:Y — Y. Leth:D — Vand b : D' — W
be the canonical maps and let N; = Ker(h*Ny,x — Np,y,) and N =
Ker(h*Nyy — Np//y+) be the excess conormal sheaves. The Op-module
N; and the Op-module Nj are locally free of rank d — 1. By the excess in-
tersection formula, we have f'V = p.(V,Y")x = (—=1)% pycq_1(N1) N [D] and
W = pu(W,Y")y = (1) p,ca 1 (N]) 1 [D].
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Let i : D' — D be the immersion. Since [f'V — W] € CH,,_4(Z') is
characterized by the property that [f'V —W]+[W] = [f'V] in CH,_4(V xxY),

we obtain
PV = W=(=1)"p. (car (V) N (ID] = [D') + caa (V] = i*N)Z,, 1 [D'])
in CH,,_q(Z). Further by the excess intersection formula, we have
(327) (W,[F'V = W]y = pu(car(N)) 0 [D]

0 (car(N) N ([D] = (D)) + car (N} =i N1)Z,, 0 (D) )
in CH,,_24(%).

Since

’

[D']-([D] = [D]) = ([D] ~ [D']) - [D'] = e1x(Npryy — i*Npyyi) 7, 0 [D'],
the right-hand side of (3.27) is equal to

’

P+ ((Cd—l(Nl) Ner(Npyyr —i*Npjy)z,,
+ca (N =" NDZ M er(Npjy)) Neat(N]) 0 [D’]).

By the commutative diagram of exact sequences

0 —— *Ny —— i*h*Nyjx —— *Npjyr —— 0

| | I

0 —— N{ — h/*Nw/y — ND’/Y’ — 0,

and by Lemma 3.4.8.2, it is further equal to

pulca(h™* Ny jy — ih* Ny x) 5., N ea—1(N]) N [D'))
= ca(Nwy — 9*Nyyx)y N pa(ca1(N7) N [D']).
Since (—1)%1p.(cq_1(N]) N [D']) = [W], the assertion follows. O

Let f: V — U be a finite étale morphism of smooth separated schemes of
finite type over F' and Y be a separated smooth scheme of finite type contain-
ing V' as the complement of a divisor with simple normal crossings. We put
D%y = (V xu V\ Ay, Ay)7® € CHo(Y \ V). Tts image in CHo (Y \ V) @2 Q

log
v/U*

is the same as the image of D
ProposiTiON 3.4.10. Let
V Y

(3.5) fl lf

U -~ Xx
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be a Cartesian diagram of separated schemes of finite type over F'. We assume
X and Y smooth purely of dimension d over F;, U C X and V C Y are the
complements of divisors B and D with simple normal crossings respectively
and f:V — U is finite and étale.

Then, the canonical map f*Qk/F(log B) — Q%,/F(log D) is an isomor-
phism on'V =Y \ D and we have

3.28 DEE  — (C1yd-le, (QL, (log D) — £OL - (log B)) NIV
(3.28) vivy = (=1)7 ca (Qy,p(log D) — f*Qx /p(log )D [Y].

Proof. We consider the commutative diagram

Y —— (Y xY)™

fl l(fo)”

X — (X xX)~.
As in [20, Cor. 4.2.8], the conormal sheaves Nx/(xxx)~ and Ny/yxy)~ are
naturally identified with Q7 sp(log B) and Q5 /p(log D) respectively. Hence, it
is sufficient to apply Lemma 3.4.9 to the diagram by taking V xV C (Y xY)™
as the open subscheme U C Y in Lemma 3.4.9. O

We compute the log Lefschetz class assuming an equivariant resolution.
For a closed immersion Z — Y, let s(Z/Y) € @, CH;(Y) be the Segre
class. For a locally free Oy-module &, let c(£)* = ¢(&*) = Y ,(—1)'ci(€) €
@, CH (Y — Y) be the bivariant Chern class [12] Chapter 17.3 of the dual
E* =Hom(E,Oy), loc. cit. Remark 3.2.3 (a).

LEMMA 3.4.11. Let Y be a separated and smooth scheme of finite type
purely of dimension d over a perfect field F and V. C Y be the complement
of a divisor D with simple normal crossings. Let o be an automorphism of Y

over F'. We assume that o induces an automorphism of V', o is admissible and
that V° = (. Then, we have

(3.29) (To, Ay)z® = {e(Q}/p(log D)™ N 5(¥ige/Y) aimo
n CHO(Ylgg). In particular, if Yi3, is a Cartier divisor Dy of Y, we have
(3.30) (T, Ay)z® ={e(Q}p(log D))" N (1 + Do) " N Do}aimo

= (=1)""{e(Qyp(log D)) N (1 = Do) ™" N Dy }dimo-

Proof. Clear from the definition of the intersection product [12, Prop. 6.1
(a)] and Ny iy xy)~ = Q%,/F(log D). O

COROLLARY 3.4.12. Let f : V. — U be a finite and étale morphism of
connected separated and smooth scheme of finite type purely of dimension d
over a perfect field F' and let o be an automorphism of V' over U of order e.
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Let' Y be a smooth separated scheme of finite type over F' containing V as the
complement of a divisor D with simple normal crossings. If o is extended to
an automorphism of Y over F, the following holds.

1. If j is an integer prime to e, we have (I‘C,,Ay)lzog = (ng,Ay);g in
CHo(Y \ V).

2. If e is not a power of p, we have (FU,Ay)lZOg =0in CHo(Y \ V).

Proof. Let g : Y’ — Y be the blow-up associated to the subdivision by
baricenters. Since g« : CHo(Y' \ V) — CHp(Y \ V) is an isomorphism, by
replacing Y by Y’/, we may assume that the action of ¢/ on Y is admissible
for each j € Z by Lemma 1.2.3.2. Then it follows from Lemma 3.4.11 and
Corollary 1.2.7. O

LEMMA 3.4.13. Conjecture 3.4.4 is true if dimU < 2.
Proof. Tt follows from Lemma 3.1.2 and Corollary 3.4.12. O
We consider the case of isolated fixed point.

LEMMA 3.4.14. Let Y be a separated and smooth scheme of finite type
purely of dimension d over F', y be a closed point of Y and o be an automor-
phism of Y over a perfect field F'. Assume that the underlying set of the fixed
part Y7 is {y}.

Let f:Y' —Y be the blow-up at y and D be the exceptional divisor. Let
g: (Y xY") — (Y xY') be the blow-up at D x D. Then the automorphism
o' of Y induced by o is admissible. Let T7, C (Y’ x Y') denote the proper
transform of the graph Ty C Y' x Y of 0 and Ay, C (Y x Y') be the log
diagonal. Then, we have

(3.31) Fo(Th, Ayr) (yrxyry = [Oye] = [y]

in CHo(y) = Z where [Oy-] = length Oy~ - [y].

Proof. We have [Oy-] = (I'y, Ay)yxy. By the projection formula, we
have

(Co, Ay)yxy = fo(g'(f X £)'Tor Ayo)yreyy -

Thus it is sufficient to show the equality

(6'(f x £) To =Tk, Ay yrxyry = [¥/]

in CHy(D) for a (y)-rational point y' € D.
We compute ¢'(f x f)'T',. Since the irreducible components of

(f x f) Y Ty) =Ty xyxy (Y xY")
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are I';» and D x D, we have

(f % £)[To] = [Tor] + {e(Qy/p)*s(D x D/Y X Y)}dima
= o] + {1+ D)1 + D)1 DW . D@y 4.

Here D = D x Y and D® = Y x D. The irreducible components of
g (Ty) = Ty xyrxy: (Y x Y') are I, and the inverse image Ep of the
diagonal D C D x D. Hence we have

G (fx )] = [+ [Ep]+{(1+g* D) (1+¢g* D) 1g*DW . g* D@ 4 4.
Thus we obtain

(¢'(f % [)'To = Thr, Ay iyrxyry = (Ep, Ay))yrsyry + {(1 4+ D) "2D*}imo-
By
(Ep, Ay')(y'xyry = (Ep,Ap)e = (Ap, Ap)pxp = d[y'],
{(1+D)2D*}aimo = (—1)(d = 1)D? = —(d - V)[y/],

the assertion follows. O

4. Swan class and Euler characteristic of a sheaf

We keep the following notation in this section. Let U be a connected,
separated and smooth scheme of finite type purely of dimension d over a perfect
field F'. Let ¢ be a prime number different from the characteristic p of F.

We consider a smooth Fy-sheaf F on U and a finite étale Galois covering
f 'V — U trivializing 7. We define and study the Swan character class in
Section 4.1. Using it, we define the Swan classes Swy i (F) € CHo(V\V)®zQ
and Sw(F) € CHo(U \ U) ®z Q in Section 4.2. We also prove the formula (0.3)
in Section 4.2. In Section 4.3, we state an integrality conjecture (Conjecture
4.3.7) that is a generalization of the Hasse-Arf theorem (Lemma 4.3.6).

4.1. Swan character class. We define the Swan character class for a
ramified Galois covering using the map (0.1) (, A)'8 : CHg(V xp V\ Ay) —
CHo(V\ V) ®z Q.

Definition 4.1.1. Let f : V — U be a finite and étale Galois covering
of Galois group G of connected separated and smooth schemes of finite type
purely of dimension d over a perfect field F. For o € G, we define the Swan

character class sy ;;(0) € CHo(V \ V) ®z Q by

Dlog

ifo=1
4.1 s o) = v/u '
1) V(o) {—(FU, AP ifo £ 1.
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If ;™0 is cofinal in Cy, the Swan character class syyu(o) is defined in
CHo(V \ V).

We show basic properties of Swan character classes.

LEMMA 4.1.2. Let the notation be as in Definition 4.1.1.

1. We have
(4.2) > svulo) =0.

ceG

2. If the order of o is mot a power of the characteristic of F, we have
syu(o) = 0.

3. Let H C G be a subgroup and g : V — U’ be the corresponding
intermediate covering. Then, for o € H, we have

sy (o) ifo #1
(4.3) syu(o) = v s Hlog L
SV/U’(l) +g DU’/U ZfO' = 1

4. Let N C G be a normal subgroup, and g : V — V' be the corresponding
intermediate covering. Then, we have

(4.4) g sy (o) = Z syu(0)
6€eG,—0o

for o € G/N.

Proof. 1. Clear from the definition and V xgy V' \ Ay = ]_[U;,él r,.
2. Clear from Proposition 3.4.3.

3. For ¢ # 1, it is clear from Lemma 3.3.1.1. For ¢ = 1, it is nothing
but (3.21).

4. For o # 1, the equality (4.4) is clear from Lemma 3.3.1.2. For o = 1,
it follows from the case o # 1 and the equality (4.2). O

Remark 4.1.3. If Conjecture 3.4.4 is true, we have sy (o) = sV/U(oj)
for an integer j prime to the order e of o € G.

We have the following trace formula.

LEMMA 4.1.4. Let the notation be as in Definition 4.1.1. Then, we have

V2 Ulxe(Ug, Q1) — xe(VE, Qp) ifo=1
—Tr(o" : H (Vp, Qu)) if o # 1.

Proof. Clear from the definition and Lemma 3.4.5. O

(4.5) deg sy (o) = {

COROLLARY 4.1.5. If j s prime to the order of o € G,

deg syu(o) = deg sy uy(o?).



78 KAZUYA KATO AND TAKESHI SAITO

Proof. Tt suffices to consider the case o # 1. Since j is prime to the order
of o, Tr(o7* : HX(Vp, Qp)) is a conjugate of Tr(c* : H}(Vi, Q) over Q. Hence,
by the equality deg sy /(o) = =Tr(o* : H} (Vz, Qp)), the degree deg sy y(o7)
is a conjugate of deg sy y(0) over Q. Since deg sy (o) € Q, the assertion
follows. O

If Y is a separated scheme of finite type containing U as a dense open
subscheme, let sy /y (o) € CHo(Y \ V) ®z Q denote the image of sy y (o).
Let f: V — U be a finite étale Galois covering of separated smooth schemes
of finite type over F. Let G be the Galois group. Let X be a normal scheme
containing U as a dense open subscheme and Y be the normalization of X in
V. For a geometric point g of Y\ V, let I C G be the inertia group at y. For
a geometric point Z of X \ U, let Iz C G be the inertia group I at a geometric
point y of Y \ V lifting Z, that is defined modulo conjugate.

LEMMA 4.1.6. Let f:V — U be a finite étale Galois covering of Galois
group G of connected, separated smooth schemes of finite type purely of dimen-
ston d over a perfect field F'. Let X be a separated normal scheme of finite
type containing U as a dense open subscheme and let' Y be the normalization
of X inV.

Let o € G be a nontrivial element and p be the characteristic of F. Assume
that o is not in any conjugate of any p-Sylow group of the inertia subgroup
I; C G for any geometric point T of X \ U.

Then, we have sy yy (o) = 0.

Proof. If the order of ¢ is not a power of p, it follows from Lemma 4.1.2.2.
Thus, it suffices to show sy (o) = 0 assuming o is not in any conjugate of
the Iz C G for any geometric point Z of X \U. The assumption means that the
o-fixed part Y7 is empty. Hence, the assertion follows from Corollary 3.3.4.2.

O

For an isolated fixed point, the following is a special case of a conjecture
of Serre.

CONJECTURE 4.1.7 (Serre [28, (1) p. 418]). LetY be a separated smooth
scheme over a perfect field F purely of dimension d and y be a closed point
of Y. Let G be a finite group of automorphisms of Y over F such that, for
o # 1, the underlying set of the fixed part Y7 is {y}. Then, the function
ag : G — Z defined by

(16) ac(o) = {—length Oy, ifo#1

= rec\f13 @G(T) ifo=1

is a character of the group G.
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Serre conjectures more precisely that the character ag is rational over
Qg for all ¢ # p in loc. cit. (2). Conjecture 4.1.7 is proved in [19] assuming
dimY = 2. In Corollary 5.1.7.3, we give a new proof by deducing it from a
generalization, Conjecture 4.3.7.1, assuming dim Y = 2.

We compare ag(o) with the Swan character class sy /yy (o).

LEMMA 4.1.8. Let Y and G be as in Conjecture 4.1.7. We assume the
quotient f 1Y — X =Y/G exists. Let x = f(y) be the image of y. Then, the
map f:V =Y \{y} = U = X\ {x} is finite étale and V is a Galois covering
of Galois group G. Further, for o € G, we have

ao (o) = sywy (o) —1 if o #1
¢ SV/U,Y(O-)+|G|_1 ZfO'Zl

in CHo(y) = Z.

Proof. We keep the notation in the proof of Lemma 3.4.14. Then the
natural map X’ = Y'/G — X is an isomorphism on the complement U =
X \ {z} and U is the complement of a Cartier divisor of X’. Hence the map
(,Ay)8 : CHy(V xpy V \ Ay) — CHp(y) = Z is induced by the intersection
product (, Ay+)y/xy+y and the assertion is clear from Lemma 3.4.14. O

4.2. Swan class and Fuler characteristic of a sheaf. We define the Swan
class of an Fy-sheaf F as a 0-cycle class on the boundary of a covering trivial-
izing F. For a finite group G and a prime number p, let G,y C G be the set of
elements of order a power of p. If p = 0, we put G, = (). For a representation
M of G and o € G, let M7 denote the fixed part {m € M|o(m) = m}.

Definition 4.2.1. Let U be a smooth connected scheme of dimension d
over a perfect field F of characteristic p and F be a smooth Fy-sheaf on U.
Let f:V — U be a finite étale Galois covering of Galois group G trivializing
F. Let M be the Fy-representation of G corresponding to F.

Then, we define the Swan class Swy;(F) € CHo(V \ V) ®z Q by

dimp, M"p/M“
p—1 ) 'SV/U(U)-

@n  SwyuF =Y (dimm M —

0€G ()

Recall that we have sy/(0) = 0 if the order of ¢ is not a power of p
by Lemma 4.1.2.2. Thus we take the sum over o € G(,). If p = 0, we have
SWV/U (f) =0.

We define a variant of the Swan class expected to be the same as that
defined above. For an Fj-automorphism o of an Fy-vector space M of dimen-
sion m, the Brauer trace TrP (o : M) € Z[(s] C Qy is defined as follows.
Let aq,...,q;, be the eigenvalues of o counted with multiplicities and let
ai,...,0m € Z[(x] C Q¢ be the roots of unity of order prime to ¢ lifting
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a1, ..., . Then, we define TrP7 (o : M) = "7 | &;. If o is an automorphism
of order p® of M, one can easily verify the equality

(4.8) ’(Z/peZ)X| i (dimﬂr[ Mo — dim]h MUP/MO') _ Z

T8 (o - M).
-1
P )

1€(Z/peZ)>

Definition 4.2.2. Let the notation be as in Definition 4.2.1. Then, we
define the naive Swan class SW’V/U(}") € CHo(V \ V) ®z Q({p=) by

(4.9) Swip(F) = D syulo) @ TP (o M).
UGG(p)
LEMMA 4.2.3. Let the notation be as in Definition 4.2.1.
1. We have

(4.10) deg Swyy(F) = deg Swy, 1 (F).
2. If Conjecture 3.4.4 holds, we have

Proof. 1. Tt follows from the equality (4.8) for an element o € G of order
p°¢ and Corollary 4.1.5.
2. It follows from the equality (4.8) for an element o € G of order p¢. O

LEMMA 4.2.4. Let f : 'V — U be a finite and étale Galois covering of
connected separated and smooth schemes of finite type purely of dimension d
over a perfect field F' of Galois group G. Let £ be a prime number different
form p = char F'.

1. Let 0 - F' — F — F"” — 0 be a short exact sequence of smooth
Fy-sheaves on U trivialized on V. Then, we have

(412) SWV/U(f) = SWV/U(f/) + SWV/U(.FH).

2. Let N C G be a normal subgroup and g : V — V' be the corresponding
intermediate covering. Let F be a smooth Fy-sheaf on U trivialized on V.
Then, we have

Proof. 1. Clear from the definition.

2. It is clear from Lemma 4.1.2.4. O

COROLLARY 4.2.5. Let U be a separated smooth scheme of finite type
over F. Let F be a smooth Fy-sheaf on U. Let f : V — U be a finite étale
Galois covering of Galois group G trivializing F.
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1. Then,
1 _
@f*SWV/U(]:) € CHo(U\U) ®zQ

is independent of the choice of V.

2. We have 1

SWV/U(]:) = @f*f*SWV/U(}_)'

Proof. 1. Clear from Lemma 4.2.4.2 and Corollary 3.1.4.2.

2. The Swan class Swy;(F) is invariant by the Galois group G. Hence
it follows from Corollary 3.1.4.2. O

Thus, we define the Swan class Sw(F) in CHy(U \ U) ®z Q as follows.

Definition 4.2.6. Let U be a separated smooth scheme of finite type over F.
Let F be a smooth Fj-sheaf on U.
We define the Swan class Sw(F) € CHy(U \ U) ®7 Q by
1
that is independent of a finite étale Galois covering V' — U trivializing F by
Corollary 4.2.5.
Similarly, we define the naive Swan class by
1

(4.15) Sw'(F) = @f*sw’v/U(f )

We also define the Swan class for a smooth Q-sheaf.

LEMMA 4.2.7. Let £ be a prime number invertible in F. Assume U is
connected. Let F be a smooth Qg-sheaf on U. Then the class Sw(Fo ®z, Fy) €
CHo(U \ U) ®z Q is indepenent of the choice of a smooth Zy-sheaf Fo on U
satisfying F = Fo @7, Q.

Proof. Clear from Lemma 4.2.4.1. O

Definition 4.2.8. Let £ be a prime number invertible in F. Assume U is
connected. For a smooth Qg-sheaf F on U, we define the Swan class Sw(F) €
CHo(U \ U) ®z Q to be the class Swy,y(Fo @, F/) in Lemma 4.2.7 that is
independent of Fy.

We prove the formula (0.3) for the Euler characteristic. For a smooth
Qg-sheaf F on U, we put
2d
Xe(Up, F) =Y _(~1)?dimg, HI(Vip, F).
q=0
We define x.(Ug, F) similarly for a smooth Fy-sheaf F on U.
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THEOREM 4.2.9. Let U be a connected separated smooth scheme of di-
mension d of finite type over F. Let £ be a prime number invertible in F. Let
F be a smooth Fy-sheaf or a smooth Q¢-sheaf on U. Then, we have

(0.3) Xe(Up, F) = rank F - xc(Up, Q) — deg Sw(F).

Proof. Tt is sufficient to show the case where F is a smooth F,-sheaf
on U. Let the notation be as in Definition 4.2.1. Let G/ be the subset of G
consisting of elements of order prime to ¢. By Lemma 2.3 [15], we have

1

1G]

By Corollary 3.4.6, we may replace Greg in the summation by G ,). Thus by
Lemma 4.1.4, we have

Xe(Up, F) = > Te(o*: Hy (Vp, Q) - TP (00 M),

UEGZ—reg

Xe(Up, F) = rank F - x.(Up, Qp) — deg Sw'(F)

where Sw’(F) is the naive Swan class. By Lemma 4.2.3.1, we have deg Sw(F) =
deg Sw'(F) and the assertion follows. O

4.3. Properties of Swan classes. We keep the notation that U denotes a
connected smooth scheme purely of dimension d over a perfect field F' and ¢ is
a prime number different from the characteristic of F.

We define the wild discriminant and show the induction formula for Swan
classes.

Definition 4.3.1. Let f: V — U be a finite étale morphism of connected,
separated and smooth scheme of finite type purely of dimension d over F.
Then we define the wild discriminant di?/gU € CHo(U\U) ®zQ of V over U by

1 1
(4.16) d&% = f*D‘;j/gU.
LEMMA 4.3.2. LetV — U’ — U be finite étale morphism of separated and
smooth schemes of finite type purely of dimension d over F. Assume V — U’
is of constant degree [V : U'] and let h : U' — U denote the map. Then, we
have

lo lo lo
(4.17) dpfy = [V Ul d5y + hadyfy,.
Proof. Clear from Lemma 3.4.2. O

ProproSITION 4.3.3. Let f:V — U be a finite and étale Galois covering
of connected separated schemes of of dimension d of finite type over F. Let G be
the Galois group and let h : U’ — U be the intermediate covering corresponding
to a subgroup H C G.
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Let F be a smooth Fy-sheaf on U'. Assume that the pull-back g*F by the
map g : V — U’ is constant. Then, if T C G is a complete set of representatives
of G/H, we have

* ]
(4.18) Swy iy (heF) = ZT (Swy,p: (F) +rank F - g D(?g/U)
T€T
In particular, we have
1
Swyyu(haFe) = > 79" D%y
TeT

Proof. As in Definition 4.2.1, let p be the characteristic of ' and G,y C G
be the subset consisting of elements of order a power of p. Let M be the
[Fy-representation of H corresponding to F. For ¢ € G, we have

dim M(TUT_l)ﬂH

dim(Indj; M)” = Z (ror=1) : (ror=1) N H|
T€T

Thus, we have
dimg, (Ind$ M)?" /(Ind$, M )7

dimp, (Ind% M)° — T
= Z (dimFg MTO’7'71 o dlsz M /M >
p—1
TeT,roT~1€H )
Hence, the Swan class
SWV/U(h*f)
dimg, (Ind$ M)?” /(Ind§, M7
= 3 ((dims, (maggany - WA AIAGMTY o)
p—1
o€G(y)
is equal to

. —1 —1
. dimg, M7 MTOT

Z Z (dimm M™T O — p— ) -syu(o)

0€G ) TET, ToT—€H p)

> 2 (dimm ae L MU/F/MU,) sy (t7o'T)

U,EH(:D) ’TGT p_ 1
. . , dimp, M°" /M’
=) 7 ( > (dlszMU - lp_l )'SV/U(U/)>-
TeT O"EH(;,)

By Lemma 4.1.2.3, the content of the big paranthese is equal to

. dimp, M°" /M’
> <dimm M7 — lmmp — 1/ ) csyyur(07) + dim M - g* D%,
o’'€H

=Swyy(F) +rank F - g*D%?,g/U.

Thus the assertion follows. O
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COROLLARY 4.3.4. Let h : U' — U be a finite and étale morphism of
connected separated schemes of dimension d finite type over F. Let F be a
smooth Fy-sheaf on U’.

Then, we have

(4.19) Sw(haF) = huSw(F) + rank F - di,.

In particular, we have

Sw(h.Fp) = %,

Proof. Clear from Proposition 4.3.3. O

We study the integrality of Swan classes. For a finite group G, let Cp(G)
denote the set of cyclic subgroups C C G of order a power of p. For a cyclic
subgroup C € Cp(G), we put CP = (o) € Cp(G) for a generator o of C
and C* = {generator of C'}. Further, for an Fj-representation M of G, we
put MY = {m € M|o(m) = m for all ¢ € C}. It is clear that the product

(dimg, MO — dime MOT/ME
£

=1 ) -|C*| is an integer.

Definition 4.3.5. Let U be a smooth connected scheme of dimension d
over a perfect field F and F be a smooth Fy-sheaf on U. Let f : V — U be
a finite étale Galois covering of Galois group G trivializing F. Let M be the
[Fo-representation of G corresponding to F. We assume that C‘S,m’O is cofinal in
Cy and that Conjectures 3.4.4 holds for o € G.

Then, we define the integral Swan class Swy,;;(F)z € CHo(V \ V) by

(4.20)

SWV/U(f)Z = Z (dimm MC —
CeC,(G)

dimg, M©" /M€
p—1

) |C*] - sy (oo),

where o¢ denotes an arbitrary generator of C' € Cp(G).

The assumptions that C‘S,m’o is cofinal in Cy and that Conjectures 3.4.4
holds for o € G are satisfied if dim U < 2.
We recall the classical theorem of Hasse-Arf for curves.

LEMMA 4.3.6. Let U be a smooth connected curve over a perfect field F
and F be a smooth Fy-sheaf on U trivialized by a finite étale Galois covering
f:V = U of Galois group G. Let X be the proper smooth curve containing
U as a dense open subscheme and f:Y — X be the normalization in V. We
identify CHo(X \ U) = CHo(U \ U) and CHo(Y \ V) = CHp(V \ V).

Then, the integral Swan class Swyy(F)z € CHo(Y \ V) = @ey\v Z - [y]
is in the image of the injection f*: CHo(X \U) — CHo(Y \ V).

Proof. Since Conjecture 3.4.4 holds in dimension 1, the Swan class
Swy 7 (F) is equal to the naive Swan class SW/V/U(]:) by Lemma 4.2.3.2. For
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y €Y \V,let I, C G be the inertia group at y. Let M be the corresponding
[Fy-representation of G. Then, by Lemma 3.4.7 and [29], the Swan conductor

Swy(F) = |I—1y| Z Sv/va(U)TI‘BT(O' : M)

o€l

is in N. For z € X \ U, Swy(F) is independent of the inverse image y of z. We
put Swy(F) = Swy(F) for € X \ U and Sw(F) = 3_ cx\y SWa(F) - [2] €
CHo(X \ U). Then, we have

Swi i (F) = > ILISwy(F) -l =F* D SwalF)-[a] = FSw(F)

yeY\V zeX\U

and the assertion is proved. O
We expect that Lemma 4.3.6 holds in higher dimension.

CONJECTURE 4.3.7. Let U be a smooth connected scheme of dimension d
over a perfect field F and F be a smooth Fy-sheaf on U.

1. The Swan class Sw(F) € CHo(U\U)®zQ is in the image of CHo(U\U).
2. Let f:V —= U be a finite étale Galois covering trivializing F. Assume
that Cf/m’o 1s cofinal in Cy and that Conjecture 3.4.4 holds as in Definition 4.3.5.
Then, the integral Swan class Swy i (F)z € CHo(V \ V) is in the image

Conjecture 4.3.7.1 is equivalent to the assertion that the Swan class
Swyp(F) € CHo(V \ V) ®z Q is in the image of

f*:CHo(U\U) = CHo(V\V)®zQ

for a finite étale Galois covering f : V — U trivializing F, by Corollary 4.2.5.2.

By Lemma 4.3.6, Conjecture 4.3.7 is true if dimU = 1. We prove Con-
jecture 4.3.7.1 assuming dim U < 2 in Corollary 5.1.7.1. Conjecture 4.3.7.1 is
reduced to the rank 1 case by the induction formula as follows.

LEMMA 4.3.8. Let f:V — U be a finite étale Galois covering of Galois
group G. We assume that CSUH,I’O is cofinal in Cyr for every intermediate covering
V — U — U. We also assume that Sw G € CHo(U"\ U’) @z Q is in the image
of CHo(U'\U") for every smooth Fy-sheaf of rank 1 on an intermediate covering
U’ trivialized on V.

Then, for every smooth Fy-sheaf F on U trivialized on V', the Swan class
Sw F € CHo(U \ U) ®z Q is in the image of CHo(U \ U).

Proof. By Brauer’s theorem [29], we may assume F = h,G where h :
U’ — U is an intermediate covering and G is a smooth [F-sheaf of rank 1 on

U’. Since C[S]I?’O is assumed cofinal in Cy-, the wild different Dg),g/U is defined
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in CHo(T" \ U) by Proposition 3.4.10. Hence, the wild discriminant d;7%,,
in the image of CHo(U \ U). Thus it follows from the assumption that Sw G

is in the image of CHo(U’ \ U’) and the induction formula Corollary 4.3.4. O

18

If X is a separated scheme of finite type containing U as a dense open
subscheme, let Swx(F) € CHo(X \ U) ®z Q denote the image of Sw(F).
Similarly, if Y is a separated scheme of finite type containing V as a dense
open subscheme, let Swy 7y (F) € CHo(Y \ V) ®z Q denote the image of

SWV/U(f)
LEMMA 4.3.9. Conjecture 4.3.7.1 implies Conjecture 4.1.7.

Proof. Let the notation be as in Conjecture 4.1.7. Since |G|ag is a char-
acter of G by [28, Prop. 7], it is sufficient to show that the Artin conductor

(4.21) a (M) = |—é| S a6(0)Te(o = M)
oelG

defined in Q is in Z for every Qy-representation M of G. We may assume Y is
affine and the quotient X = Y/G exists. Let x € X be the image of y and F
be the smooth sheaf on U = X \ {z} corresponding to the representation M.
Then, by Corollary 4.1.8 and Corollary 3.4.12.2, we have ag(M) = Swx(F) +
dim M — dim M€ in CHy(z) ®z Q = Q. Thus the assertion is proved. O

We give a refinement of Théoréme 2.1 of [15].

LEMMA 4.3.10. Let the notation be as in Lemma 4.1.6. Let p be the char-
acteristic of a perfect field F. Let Fi and Fa be smooth Fy-sheaves on U cor-
responding to Fy-representations My and My of G. Assume that X is normal
and that, for each geometric point T of X \ U, the restrictions of My and M,
to a p-Sylow subgroup of the inertia subgroup Iz are isomorphic to each other.

Then, we have

Swy vy (F1) = Swyyuy (F2)
Proof. Clear from Lemma 4.1.6 and Definition 4.2.1. O

If the base field is finite, we expect to have the following refinement of
Theorem 4.2.9.

CONJECTURE 4.3.11. Let U be a connected separated smooth scheme of
dimension d of finite type over a finite field F. Let X be a proper normal
scheme over F' containing U as a dense open subscheme. Let Frp € Gal(F/F)
be the geometric Frobenius and let px : CHo(X) — 71(X)? be the reciprocity
map sending x| to the geometric Frobenius Fr,, for closed points x € X.
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Let £ be a prime number invertible in F. Let F be a smooth F;-sheaf or
a smooth Qq-sheaf on U. We assume Conjecture 4.3.7.1 holds and Swx (F) €
CHo(X \ U) is defined.

Let G be a smooth Fy-sheaf or Qq-sheaf on X and let det G : my (X)*P — IF’EX
or m (X)b — QEX be the character corresponding to the smooth sheaf det G of
rank 1. We put det(=Frp : H(Ug, F)) = Hgdzo det(=Frp : HI(Up, F))V".

Then, we have

det(—Frp : H:(Up, F ® G))
= det(—Frp : H*(Up, F))™% 9 . det G(px (Swx (F))).

If dimU = 1, Conjecture 4.3.11 is a consequence of the product formula
for the constant term of the functional equation of L-functions [8], [22].

5. Computations of Swan classes

We compare the Swan classes Sw(F) of sheaves of rank 1 with an invariant
defined in [18] in Section 5.1. Using the computation, we prove the integral-
ity conjecture Conjecture 4.3.7.1 assuming dimU < 2. We also compare the
formula (0.3) with Laumon’s formula in [21].

We keep the notation that U denotes a connected smooth scheme purely
of dimension d over a perfect field F' and ¢ is a prime number different from
the characteristic p of F.

5.1. Rank 1 case. Let X be a smooth separated scheme of finite type
purely of dimension d over F' and U C X be the complement of a divisor D
with simple normal crossings. Let ¢ be a prime number invertible in F. We
identify p,(F) = Z/pZ.

Let F be a smooth Fy-sheaf of rank 1 on U. We briefly recall the definition
of the O-cycle class ¢z in [18]. Let Dy,..., D,, be the irreducible components
of D. Let x € HY(U, FKX) be the element corresponding to F. In loc. cit.,
the Swan divisor D, = Y, sw;(x)D; > 0 is defined. Also the refined Swan
character map

rsw;(x) : O(—Dy)

D; — Qﬁ(/F(log D)|p,
is defined for each irreducible component D; such that sw;(x) > 0.

We put £ =3, (x>0 Di € D. If f:Y — X is the normalization in the
cyclic étale covering f : V' — U corresponding to x, the closed subscheme E C
X is the wild ramification locus of the covering Y — X. The sheaf F is said to
be clean with respect to X if the map rsw;(x) : O(—=Dy)|p, — Q}(/F(log D)|p,
is a locally splitting injection for each component D; of E. If F is clean with
respect to X, the O-cycle class cx = ¢, € CHo(F) is defined by
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(5.1) cr = ¢ ={c(Qx p(log D)* N (1+ Dy) ™" N Dy }aimo
=(=D)") swi(x)ca—1(Coker(rswi(x))) N [Di].
i=1

If one wants to specify X, we write cr x for cr.

CONJECTURE 5.1.1. Let X be a separated scheme of finite type over a
perfect field F and U C X be a dense open subscheme of X. Assume U is
connected and smooth purely of dimension d over F. Let { be a prime number
invertible in F and F be a smooth Fy-sheaf of rank 1 on U.

1. Let

Vv S+ v

(3.5) fl lf

U —~- X
be a Cartesian diagram of smooth separated schemes of finite type over F'. We
assume U C X andV CY are the complement of divisors with simple normal
crossings, f 'V — U is a connected finite étale Galois covering of Galois group
G and F is constant on V. If F is clean with respect to X, we have

(5.2) Swy vy (F) = fferx
m CHo(E X x Y) ®7 Q.

2. There exists a Cartesian diagram

U —S=-x'

b
U—S- X
satisfying the following conditions: the map f : X' — X is proper, X' is

smooth over F, U is the complement of a divisor with simple normal crossings
in X" and F is clean with respect to X'.

Conjecture 5.1.1.2 is proved if dimU < 2 in [18, Th. 4.1]. We prove
Conjecture 5.1.1.1 assuming dim U < 2 later in Theorem 5.1.5.

LEMMA 5.1.2. Conjecture 5.1.1 implies Conjecture 4.3.7.1.

Proof. Note that Conjecture 5.1.1.2 is stronger than the strong resolution
of singularities. Hence the assertion follows from Lemma 4.3.8. O

We prove Conjecture 5.1.1.1 in some cases. We say F is s-clean with
respect to X if it is clean and further if the composition

resDi
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is either an isomorphism or the 0-map for each component D; of F, depending
on D;. We recall results in [32].

LEMMA 5.1.3 ([32, Lemmas 1 and 2]). Let p > 0 be the characteristic of
F and e > 1 be an integer. Let X be a separated and smooth scheme of finite
type over F, U be the complement of a divisor with simple normal crossings.
Let f :' V. — U be a finite étale connected cyclic covering of degree p° and
let f1 : Uy — U be the intermediate covering of degree p. Let F and G be the
smooth Fy-sheaves of rank 1 corresponding to characters x,0 : Gal(V/U) — F/
of degree p® and p respectively. We assume that the sheaf G is s-clean with
respect to X. Let E C X be the union of irreducible components of X \ U
where F has wild ramification.

Then, there exists a Cartesian diagram

U —— v

il |7
U . X

of smooth separated scheme of finite type satisfying the following condition:

[5.1.3] The map f1 : Y1 — X is proper and Uy C Y1 is the complement of a
divisor with simple normal crossings. If o is a generator of Gal(Uy/U),
the action of o on Uj is extended to an admissible action on Yy over X
and we have

(5:3) P su,u(o) = —ficg

in CHo(Y1 xx E). Further if F is clean with respect to X and if Fy = f{F
is clean with respect to Y1, we have

(5.4) fier = cr + D%y

PROPOSITION 5.1.4. Let the notation be as in Conjecture 5.1.1.1. Let
xX:G— IF‘ZX be the character corresponding to F. Let n be the order of x and
e = ordyn be the p-adic valuation. For 0 < i < e, let U; be the intermediate
étale covering corresponding to the subgroup G; C G of index p'.

We assume that the diagram (3.5) is inserted in a Cartesian diagram

(5.5) v 1y, Uipn — Ui=—=U; == Up=U
| ol A |
% h X, Ge . Gin Yin fita X, gi Y, fo o G Yo=X

satisfying the following conditions (5.5.1)—(5.5.3):
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(5.5.1) For 0 < i < e, X; and Y; are separated and smooth over F
and contain U; as the complement of divisors with simple normal crossings.
The pull-back F; = Fly, is clean with respect to X; and to Y; and we have
g (crvi) = cr X,

(5.5.2) For 0 < i < e, the smooth Fy-sheaf G; on U; corresponding to
a nontrivial character Gal(Uj41/U;) — IF‘ZX s s-clean with respect to X; and
fir1: Yie1 — X; satisfies the condition [5.1.3] in Lemma 5.1.3.

(5.5.3) The actions of G on Uy,... ,U. and on V are extended to admis-
stble actions on X1q,...,X. and on'Y.
Then, we have

(5.2) Swy vy (Flz = fferx
in CHo(E x x Y).

Proof. First, we reduce it to the case where n = p®. We decompose
G = Gal(V/U) = Gal(U./U) x Gal(U'/U) to the p-part Gal(U./U) and the
non-p-part Gal(U’/U). Let x’ be the restriction to the p-part Gal(U./U) and
let 7' be the corresponding sheaf on U. By the definition in [18], we have
cr = cp. By Lemma 4.1.2.2, we have Swy,yy(F)z = Swy uy(F')z. By
Lemma 4.2.4.2, we have Swy /iy (F')z = h*Swy, jy x.(F')z. Thus the assertion
is reduced to the case where n is a power of p.

We assume n = p® and prove the assertion by induction on e. We prove
the case n = p. By the condition (5.5.3) and Corollary 3.4.12.1, we have
Swy vy (F)z = —p-syyu(o) for a generator o of Gal(V/U). Hence the assertion
follows from the equality (5.3) in Lemma 5.1.3 and the assumption gjcry, =
cr,x, (5.5.1) in the case n = p.

We assume e > 2. By the induction hypothesis, we may assume
Swy o, v (F1)z = g'cr, where g : Y — Y7 denotes the composition. By the
equality (5.4) in Lemma 5.1.3 and the assumption gjcry, = c¢r x, (5.5.1), we
have f*cr = g*cr, +§*Dag/U in CHo(Y \ V). By the condition (5.5.3), Corol-
lary 3.4.12.1 and Lemma 4.1.2.3, we have Swy vy (F)z = Swy,y, y(F1)z +
g*D}?lg/U. Thus the assertion is proved. O

THEOREM 5.1.5. Conjecture 5.1.1.1 is true if dim U < 2. More precisely,
we have

(5.2) Swyvy (Flz = frerx
m CH()(E XX Y)

Proof. Without loss of generality, we may assume X and Y are proper
over F', since the strong resolution is known in dimension < 2. If dimU = 1, we
obtain a diagram (5.5) satisfying the conditions (5.5.1)—(5.5.3) in Proposition
5.1.4 by taking the normalizations X; = Y; of X in U; and the assertion follows.
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To prove the case dim U = 2, first we recall some results from [18].

LEMMA 5.1.6. Let X and X' be smooth surfaces of finite type over F
containing U as the complement of divisors with simple normal crossings and
g : X' — X be a morphism over F inducing the identity on U. Let F be a
smooth Fy-sheaf of rank 1 on U clean with respect to X .

1. The sheaf F is also clean with respect to X' and we have g*cr x =
C]:7X/.

2. Assume F corresponds to a character of order p. Then F is s-clean
with respect to the complement of at most finitely many closed points of X \U.
If g : X' — X s the blow-up at the points where F is not s-clean, then F is
s-clean with respect to X'.

Proof. 1. Tt is sufficient to consider the case where g : X’ — X is the
blow-up at a closed point of the complement of U. Then, F is clean with
respect to X’ by [18] Remark 4.13. Further, we have ¢z x = g«cr x' by [18,
Th. 5.2]. Hence by Lemma 3.1.5, we have g*cr x = cr x.

2. The first assertion is clear from the definition of s-cleanness. We show
the second assertion. We may assume F is s-clean with respect to X \ {z}
where x € X \ U is a closed point. Then, the characterization given in [18]
(3.6) shows that F is defined by an Artin-Schreier equation TP — T = s/t"
where (s,t) is a local coordinate at x and n is prime to p = char F', on an étale
neighborhood of z. (In [18, p. 773], h = gf in line 7 should read h = g~ 'f
and mi<j<,m; in line 12 should read [[,.,, m.) Then the assertion is easily
checked. o O

We go back to the proof of Theorem 5.1.5 in the case dimU = 2. By
Lemma 3.1.5, we may replace Y by a successive blow-up Y’ — Y at closed
points in the complement of V. By Lemma 5.1.6, we may also replace X
by a successive blow-up X’ — X at closed points in the complement of U.
By Proposition 5.1.4, it is sufficient to construct a diagram (5.5) satisfying
the conditions (5.5.1)—(5.5.3) after possibly replacing X and Y by successive
blow-ups at closed points in the complements.

For 0 < i < e, there exist a proper smooth surface X/ containing U; as
the complement of a divisor with simple normal crossing such that F; and G;
are clean with respect to X/ and that the map U; — U is extended to a map
X! — X for 0 <i<e, by [18, Th. 4.1]. By Lemma 3.1.2, there exist a proper
smooth surface Y’ containing V' as the complement of a divisor with simple
normal crossing such that the maps V' — U; are extended to maps Y/ — X/
and that the action of G on V is extended to an admissible action on Y’ over X.

We define a diagram (5.5) satisfying the conditions (5.5.1)-(5.5.3) in Propo-
sition 5.1.4 inductively after possibly replacing X and Y by a successive blow-
up. Applying Lemma 3.1.2 to the quotient Y'/G, we obtain a proper smooth
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surface Yy containing Uy as the complement of a divisor with simple normal
crossing with a map Yy — Y’/G extending the identity of U. Since the identity
of U = Uy is extended to a map Y'/G — X|, the identity of Uy is extended to
a map Yp — X|). By replacing X by Yp, we put X = Yj.

We define Y; 11 and X; inductively by assuming that Y; is already defined
and that the identity of U; is extended to a map Y; — X/. Applying Lemma
3.1.2 to Y;, we obtain a proper smooth scheme Y; that contains U; as the
complement of a divisor with simple normal crossings and that the action of
G on Uj; is extended to an admissible action on YZ/ over X. Since Y;’ dominates
X!, the sheaves F; and G; are clean with respect to Y/, by Lemma 5.1.6.1. Let
X; — Y/ be the blowing-up at the closed points where G; are not s-clean and
gi : X; — Y; be the composition. Then the sheaf G; is s-clean with respect to
X; by Lemma 5.1.6.2. Further F; is clean with respect to X; and the condition
gicr.y, = cr, x, is satisfied by Lemma 5.1.6.1. Applying Lemma 5.1.3, we
obtain Yi+1 — Xz

By the construction, we see that ¥j;; dominates X/ ;. Repeating this con-
struction inductively, we obtain a diagram (5.5) except the map h : Y — X,.
We define Y” by applying the construction in Lemma 3.1.2 to the normaliza-
tion of X, in V. Then the action of G on V is extended to an admissible action
on Y” over X. Replacing Y by Y” we obtain a diagram (5.5) satisfying the
conditions (5.5.1)-(5.5.3) in Proposition 5.1.4. Thus the assertion is proved. OJ

COROLLARY 5.1.7. 1. Conjecture 4.3.7.1 is true if dim U < 2.
2. ([19]) Conjecture 4.1.7 is true if dimY < 2.

Proof. Clear from Lemmas 5.1.2 and 4.3.9 respectively. O

5.2. Comparison with Laumon’s formula. In [21], Laumon proves a gener-
alization of the Grothendieck-Ogg-Shafarevich formula for surfaces under the
assumption (NF) below on ramification. We compare the formula (0.3) with
Laumon’s formula in [21].

For simplicity, we assume F' is an algebraically closed field. Let X be a
proper normal connected surface over F' and U be a smooth dense open sub-
scheme. Let F be a smooth Fy-sheaf on U. Let By, ..., B, be the irreducible
components of dimension 1 of the complement B = X \ U, let & be the generic
point of B;, and let K; be the field of fractions of the completion of Ox ¢,. We
assume the following condition.

(NF) For each i, the finite Galois extension of K; that trivializes F has
separable residue extension.

By this assumption, the Swan conductor Sw;(F) € N of F for the local field K;
is defined by the classical ramification theory, as in the proof of Lemma 4.3.6.
In [21], a smooth dense open subscheme B C B; for each ¢ and an integer
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Sw(F) € Z for each closed point x € ¥ = B\ " Bf are defined and the
formula

(5.6) Xe(U, F) = rank F - xo(U, Q) — ZSWZ Xe(BF, Q) + Y Swa(F)
ASIM

is proved.

To compare the formula (5.6) with (0.3), we give a slight reformulation.
Let m; : B; — B; be the normalization for each irreducible component of
dimension 1. For each closed point x € ¥, we put

So(F) = —Swa(F) + Z Swi(F) - |y L ().

Then, the formula (5.6) is equivalent to

(5‘7) Xc(Uv f) =rank F - XC(U7 QZ) - (Z Swi(f)X(EiaQZ) + st(f)> .

=1 zeX

We compute the Swan class Sw(F) assuming the condition (NF) and give a
relation with S;(F). By Lemma 3.1.2, there exist a finite étale Galois covering
V' — U that trivializes F and a Cartesian diagram

Vv S Y

(3.5) fl l 7
U—S“- X

such that Y is smooth, ¥ — X is proper, V C Y is the complement of a
divisor with simple normal crossings and that the action of G = Gal(V/U) is
extended to an admissible action on Y. We may further assume that there
exist a proper scheme X’ containing U as the complement of a Cartier divisor
and that f : V — U is extended to a morphism Y — X’. Furthermore, by
the assumption (NF), we may assume the following condition (NF’) is satisfied
where {n;1,...,nik, } denotes the inverse image of & in Y fori=1,... ,m.

(NF’) For each 1, j, the extension x(n;;) is separable over £(&;).

Let o # 1 be an element of the Galois group G = Gal(V/U). For a generic
point 7;; as above, we put m;;(o) = length OYIZg,mj- We define a divisor D,
of Y by D, = >, ;mij(0)D;; where D;; is the closure of {n;;}. The Cartier
divisor D, is a closed subscheme of Ylgg. We define the residual subscheme
R, C Yigg to be the closed subscheme of Y satisfying Iylgg = Ip, IR, where I
denotes the ideal sheaf of Oy defining a closed subscheme Z C Y. Then, by
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the residual intersection formula [12, Th. 9.2], we have

(Co, Ay)p® = — syu(o)

= {c(Qyp(log D))" N (14 Dy) ™" N Dy }aimo + Ry
= =Y mij(0)(c1r(Qp(log D)) + Dy) N Dij + Ry
1,J

where R, = {C(Q%,/F(log D) ® Oy (—Dy))* Ns(Ry/Y ) }daimo is a 0-cycle class
supported on the inverse image of finitely many closed points of B.

To compute the first term in the right-hand side, we define a complex K;;
of Op,,-modules by

(5.8) Kij= [SO%(ngi/F) E— Q%f/p(lOgD)’DU —2— Oy (-Dy,)

Dyl
The sheaf Q%/ /P
natural one and the map « is defined by da — o(a)—a and dlogb — o(b)/b—1.
By the assumption (NF’), the cohomology sheaves H?(IC;;) are 0 except for
q = 0,1 and are supported on finitely many closed points for ¢ = 0,1. Thus

(log D)|p,, is put on degree 0, the map ¢;; : D;; — B is the

we have
(¢1(Qyp(log D)) + D) N Dyj = wi‘jq(Q%i/F) + [H*(Kij)]

where [H*(K;;)] = [HY(Kij)] — [HY(Kij)]. Let Zo(B) denote the free abelian
group generated by the classes of the closed points in B. We define a 0-cycle
Se € Zy(B) by

Se = f*(z mij (o) [H*(Kij)] — Rs)

and put m;(o) = >_;m;j(0)[k(ni;) : £(&)]. Then, we obtain

Fesvyp(o) = mi(U)gi*(Cl(ngi/F) N[Bi]) + So
=1

where g; : B; — X is the natural map. We define a 0-cycle Sr € Zy(B) ® Q
by

1 i M°" /M°
= > (dimp, M7~ dime, M7 /M7 _ i) - s,
|Gl p—1
o€Gm\{1}
By Swi(F) = — i1 Sgec, 1) mil0) (dimg, M — dimg, (M /M) /(p = 1) —
dim M) and Lemma 4.1.2.1, we have
dimg, M®" /M
p—1

Sw(}"):% > (dimg, M7 -
G pedmy

=1

— dimp, M) - fusyu(o)
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Since x(B;, Q) = —deg(cl(Q%/F) N [Bi]), the formula (0.3) together with the
following proposition will imply the formula (5.7).

PRrROPOSITION 5.2.1. Under the notation above, we have an equality

(5.9) Sr=>_ S:(F)lx]

TEN
in Zo(B).

In [19, Th. (6.7)], the invariant Sw,(F) is shown to be equal to another
invariant that is defined in [31] using intersection classes without introducing
log products. A similar computation gives a proof of Proposition 5.2.1 but we
leave the detail to the reader.
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