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On the zeros of cosine polynomials:
solution to a problem of Littlewood

By P. Borwein, T. Erdélyi, R. Ferguson, and R. Lockhart*

Abstract

Littlewood in his 1968 monograph “Some Problems in Real and Complex
Analysis” [12, Problem 22] poses the following research problem, which appears
to be still open:

Problem. “If the nj are integral and all different , what is the lower bound
on the number of real zeros of

∑N
j=1 cos(njθ)? Possibly N − 1, or not much

less.”

No progress seems to have been made on this in the last half century. We
show that this is false.

Theorem. There exists a cosine polynomial
∑N

j=1 cos(njθ) with the nj

integral and all different so that the number of its real zeros in the period
[−π, π) is O

(
N5/6 log N

)
.

1. Littlewood’s 22nd problem

Problem. “If the nj are integral and all different, what is the lower bound
on the number of real zeros of

∑N
j=1 cos(njθ)? Possibly N − 1, or not much

less.”

Here “real zeros” means “zeros in [−π, π)”. Note that if T is a real
trigonometric cosine polynomial of degree n, then it is of the form T (t) =
exp(−int)P (exp(it)), t ∈ R, where P is a reciprocal algebraic polynomial of
degree 2n, and if T has only real zeros, then P has all its zeros on the unit
circle. So in terms of reciprocal algebraic polynomials one is looking for a recip-
rocal algebraic polynomial with coefficients in {0, 1}, with 2N terms, and with
N −1 or fewer zeros on the unit circle. Even achieving N −1 is fairly hard. An
exhaustive search up to degree 2nN ≤ 32 yields only 10 examples achieving
N − 1 and only one example with fewer. This first example disproving the
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“possibly N − 1” part of the conjecture is

14∑
j=0, j /∈{9,10,11,14}

(zj + z28−j)

which has 8 roots of modulus 1 and corresponds to a cosine sum of 11 terms
with 8 roots in [−π, π). It is hard to see how one might generate infinitely many
such examples or indeed why Littlewood made his conjecture. The following
is a reciprocal polynomial with 32 terms and exactly 14 zeros of modulus 1:

19∑
j=0, j /∈{10,11,17,19}

(zj + z38−j) .

So it corresponds to a cosine sum of 16 terms with 14 zeros in [−π, π). In
other words the sharp version of Littlewood’s conjecture is false again, though
barely. The following is a reciprocal polynomial with 280 terms and 52 zeros
of modulus 1:

152∑
j=0, j /∈{124,125,126,127,128,134,141,143,145,147,148,151,152}

(zj + z304−j) .

So it corresponds to a cosine sum of 140 terms with 52 zeros in [−π, π). Once
again the sharp version of Littlewood’s conjecture is false, though this time
by a margin. It was found by a version of the greedy algorithm (and some
guessing). There is no reason to believe it is a minimal example.

The interesting feature of this example is how close it is to the Dirichlet
kernel (1+z+z2+ · · ·+z304). This is not accidental and suggests the approach
that leads to our main result.

Littlewood explored many problems concerning polynomials with various
restrictions on the coefficients. See [9], [10], and [11], and in particular Little-
wood’s delightful monograph [12]. Related problems and results may be found
in [2] and [4], for example. One of these is Littlewood’s well-known conjecture
of around 1948 asking for the minimum L1 norm of polynomials of the form

p(z) :=
n∑

j=0

ajz
kj ,

where the coefficients aj are complex numbers of modulus at least 1 and the
exponents kj are distinct nonnegative integers. It states that such polynomials
have L1 norms on the unit circle that grow at least like c log n. This was
proved by S. Konyagin [7] and independently by McGehee, Pigno, and Smith
[13] in 1981. A short proof is available in [5]. It is believed that the minimum,
for polynomials of degree n with complex coefficients of modulus at least 1, is
attained by 1 + z + z2 + · · · + zn, but this is open.
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2. Auxiliary functions

The key is to construct n term cosine sums that are large most of the
time. This is the content of this section.

Lemma 1. There is an absolute constant c1 such that for all n and non-
negative Lebesgue measurable functions α on [−π, π) there are coefficients
a0, a1, . . . , an with each aj ∈ {0, 1} such that

meas{t ∈ [−π, π) : |Pn(t)| ≤ α(t)} ≤ c1n
−1/2

∫ π

−π
α(u)du,

where

Pn(t) =
n∑

j=0

aj cos(jt).

Proof. We will prove the stronger result that there is an absolute constant
c1 such that for all non-negative Lebesgue measurable α and all n

λ(α) :=2−(n+1)
∑

a0,a1,... ,an∈{0,1}
meas{t ∈ [−π, π) : |Pn(t)| ≤ α(t)}

≤c1n
−1/2

∫ π

−π
α(u)du.

If X0, X1, . . . , Xn are independent Bernoulli random variables with

P (Xj = 0) = P (Xj = 1) =
1
2
, j = 0, 1, . . . , n,

then the indicated average is an expected value. Let

Rn(t) =
n∑

j=0

Xj cos(jt)

and note that
λ(α) =

∫ π

−π
P (|Rn(t)| ≤ α(t)) dt.

Define

Dn(t) :=
n∑

j=0

cos(jt) =
1
2

+
sin((n + 1

2)t)
2 sin(t/2)

.

Note that for 0 < |t| < π, we have

|Dn(t)| ≤ π/|t|.
The expected value of Rn(t) is μn(t) := Dn(t)/2; its variance is

σ2
n(t) :=

1
4

n∑
j=0

cos2(jt) =
1
8
(n + 1 + Dn(2t)).



1112 P. BORWEIN, T. ERDÉLYI, R. FERGUSON, AND R. LOCKHÁRT

We now apply a uniform normal approximation to get the desired result. Define
the cumulative normal distribution function by

Φ(x) :=
∫ x

−∞

e−u2/2

√
2π

du.

Define

�2 :=
1

n + 1

n∑
j=0

Var(Xj cos(jt))

=
1

4(n + 1)

n∑
j=0

cos2(jt) =
1
8

(
1 +

Dn(2t)
n + 1

)
,

�3 :=
1

n + 1

n∑
j=0

E

(∣∣∣∣(Xj −
1
2

)
cos(jt)

∣∣∣∣3
)

.

We suppress the dependence of each of these on n and t. The Berry-Esseen
bound in Bhattacharya and Ranga Rao [1, Theorem 12.4, page 104] is that∣∣∣∣P (Rn(t) ≤ c) − Φ

(
c − μn(t)

σn(t)

)∣∣∣∣ ≤ 11�3

4
√

n �
3/2
2

.

It is elementary that �3 ≤ 1/8. Moreover there is an absolute constant c2 > 0
such that �2 > c2 for all t ∈ R and all n = 1, 2, . . . . Finally the function Φ has
derivative bounded by (2π)−1/2 so that

|Φ(x) − Φ(y)| ≤ (2π)−1/2|x − y| , x, y ∈ R.

It follows that there is an absolute constant c1 such that

P (−α(u) ≤ Rn(u) ≤ α(u)) ≤ c1n
−1/2α(u).

3. The main theorem

Theorem 1. There exist a sequence of integers Nm, m = 1, 2, · · · with
Nm/m converging to 1 and cosine polynomials

∑Nm

j=1 cos(njθ) with the nj in-
tegral and all different so that the number of its real zeros in [−π, π) is

O
(
N5/6

m log Nm

)
= O

(
m5/6 log m

)
.

To prove the theorem we need the following consequence of the Erdős-
Turán Theorem [15, p. 278]; see also [6].

Lemma 2. Let

Sm(t) =
m∑

j=0

aj cos(jt) , aj ∈ {0, 1} ,
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be not identically zero. Denote the number of zeros of Sm in an interval I ⊂
[−π, π) by N (I). Then

N (I) ≤ c3m|I| + c3

√
m log m ,

where c3 is an absolute constant and |I| denotes the length of I.

We now prove the theorem.

Proof. Fix any positive integers n and κ. Let χν denote the characteristic
function of the interval Jν = [π2−ν , 2π2−ν). Define the function ακ on [−π, π)
by

ακ(t) = π
κ∑

ν=1

2νχν(t).

By Lemma 1 there is a trigonometric polynomial Pn,κ of the form

Pn,κ(t) =
n∑

j=0

aj cos(jt), aj ∈ {0, 1},

with

meas{t ∈ [−π, π) : |Pn,κ(t)| ≤ ακ(t)} ≤ c1n
−1/2

∫ π

−π
ακ(u)du

= c1πκn−1/2 .

We construct our desired cosine polynomials in the form

Sm(t) := Dm(t) − Pn,κ(t),

where

Dm(t) :=
m∑

j=0

cos(jt) =
1
2

+
sin((m + 1

2)t)
2 sin(t/2)

,

and n and κ are chosen depending on m by taking n to be the integer part of
m1/3 and 2κ−1 ≤ m1/6 < 2κ. The resulting polynomial Sm has Nm non-zero
coefficients, where

m − n ≤ Nm ≤ m + 1.

The number of zeros of Sm in (−π, π) is twice the number in (0, π). Write

{t ∈ (0, π) : |Pn,κ(t)| ≤ ακ(t), 2κt ≥ π} =
κ⋃

ν=1

kν⋃
j=1

Ij,ν ,

where the intervals Ij,ν are disjoint and Ij,ν ⊂ Jν . The number kν is at most
1 plus the number of zeros in Jν of the trigonometric polynomial P ′

n,κ. This
polynomial has degree no more than n so that

∑κ
ν=1 kν ≤ 2n + κ. Let

I0 := {t ∈ (0, π) : |Dm(t)| ≥ π2κ} .
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Note that I0 ⊂ (0, 2−κπ]. Since |Dm(t)| ≤ π/|t| for 0 < t < π, Lemma 1
implies that all zeros of Sm in the interval (0, π) actually lie in

I0

⋃ ⎧⎨⎩
κ⋃

ν=1

kν⋃
j=1

Ij,ν

⎫⎬⎭ .

By Lemma 2 we have

N (Ij,ν) ≤ c3m|Ij,ν | + c3

√
m log m , j = 1, 2, . . . , kν , ν = 0, 1, . . . , κ ,

and
N (I0) ≤ c3m|I0| + c3

√
m log m ≤ c4m2−κ + c4

√
m log m

with an absolute constant c4. So

N ([−π, π))≤ 1 + 2N (I0) + 2
κ∑

ν=1

kν∑
j=0

N (Ij,ν)

≤ c5

(
mκn−1/2 +

√
m log m (n + κ) + m2−κ

)
.

The choices of n and κ given above complete the proof.

4. Average number of real zeros

Why did Littlewood make this conjecture? He might have observed that
the average number of zeros a trigonometric polynomial of the form

0 �= T (t) =
n∑

j=1

aj cos(jt) , aj ∈ {0, 1} ,

has in [−π, π) is at least cn. This is what we elaborate in this section. Associ-
ated with a polynomial P of degree exactly n with real coefficients we introduce
P ∗(z) := znP (1/z).

Theorem 2. Let

S(t) :=
n∑

j=1

aj cos(jt) and S̃(t) :=
n∑

j=1

an+1−j cos(jt) ,

where each of the coefficients aj is real and a1an �= 0. Let w1 be the number of
zeros of S in [−π, π), and let w2 be the number of zeros of S̃ in [−π, π). Then
w1 + w2 ≥ 2n.

Proof. Let P (z) =
∑n

j=1 ajz
j . Without loss of generality we may assume

that P does not have zeros on the unit circle; the general case follows by a
simple limiting argument with the help of Rouché’s Theorem. Note that if P
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has exactly k zeros in the open unit disk then zP ∗(z) has exactly n − k zeros
in the open unit disk. Also,

2S(t) = Re(P (eit)) and 2S̃(t) = Re(eitP ∗(eit)) .

Hence the theorem follows from the Argument Principle. Note that if a con-
tinuous curve goes around the origin k times then it crosses the imaginary axis
at least 2k times.

Theorem 2 has some interesting consequences. As an example we can
state and easily see the following.

Theorem 3. The average number of zeros of trigonometric polynomials
in the class { n∑

j=1

aj cos(jt), aj ∈ {−1, 1}
}

in [−π, π) is at least n. The average number of zeros of trigonometric polyno-
mials in the class {

0 �=
n∑

j=1

aj cos(jt), aj ∈ {0, 1}
}

in [−π, π) is at least n/4.

Proof. Most of the cosine sums in both classes naturally break into pairs
with a large combined total number of real zeros in [−π, π).

5. Conclusion

Let 0 ≤ n1 < n2 < · · · < nN be integers. A cosine polynomial of the form
TN (θ) =

∑N
j=1 cos(njθ) (other than TN ≡ 1) must have at least one real zero in

[−π, π). This is obvious if n1 �= 0, since then the integral of the sum on [−π, π)
is 0. The above statement is less obvious if n1 = 0, but for sufficiently large N

it follows from Littlewood’s Conjecture simply. Here we mean the Littlewood’s
Conjecture proved by S. Konyagin [7] and independently by McGehee, Pigno,
and Smith [13] in 1981. See also [5] for a book proof. It is not difficult to
prove the statement in general even in the case n1 = 0. One way is to use the
identity, valid if n1 = 0 and N > 1,

nN∑
j=1

TN ((2j − 1)π/nN ) = 0 .

See [8], for example. Another way is to use Theorem 2 of [14]. So there is
certainly no shortage of possible approaches to prove the starting observation
of our conclusion even in the case n1 = 0. It seems likely that the number of
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zeros of the above sums in [−π, π) must tend to infinity with N . This does
not appear to be easy. The case when the sequence 0 ≤ n1 < n2 < · · · is fixed
was handled in [3].
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[15] G. V. Milovanović, D. S. Mitrinović, and Th. M. Rassias, Topics in Polynomials: Ex-
tremal Problems, Inequalities, Zeros, World Scientific Publ. Co., River Edge, NJ, 1994.

(Received November 26, 2006)


