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Manifolds with positive
curvature operators are space forms

By Christoph Böhm and Burkhard Wilking*

The Ricci flow was introduced by Hamilton in 1982 [H1] in order to prove
that a compact three-manifold admitting a Riemannian metric of positive Ricci
curvature is a spherical space form. In dimension four Hamilton showed that
compact four-manifolds with positive curvature operators are spherical space
forms as well [H2]. More generally, the same conclusion holds for compact
four-manifolds with 2-positive curvature operators [Che]. Recall that a curva-
ture operator is called 2-positive, if the sum of its two smallest eigenvalues is
positive. In arbitrary dimensions Huisken [Hu] described an explicit open cone
in the space of curvature operators such that the normalized Ricci flow evolves
metrics whose curvature operators are contained in that cone into metrics of
constant positive sectional curvature.

Hamilton conjectured that in all dimensions compact Riemannian mani-
folds with positive curvature operators must be space forms. In this paper we
confirm this conjecture. More generally, we show the following

Theorem 1. On a compact manifold the normalized Ricci flow evolves a
Riemannian metric with 2-positive curvature operator to a limit metric with
constant sectional curvature.

The theorem is known in dimensions below five [H3], [H1], [Che]. Our
proof works in dimensions above two: we only use Hamilton’s maximum prin-
ciple and Klingenberg’s injectivity radius estimate for quarter pinched mani-
folds. Since in dimensions above two a quarter pinched orbifold is covered by
a manifold (see Proposition 5.2), our proof carries over to orbifolds.

This is no longer true in dimension two. In the manifold case it is known
that the normalized Ricci flow converges to a metric of constant curvature for
any initial metric [H3], [Cho]. However, there exist two-dimensional orbifolds
with positive sectional curvature which are not covered by a manifold. On
such orbifolds the Ricci flow converges to a nontrivial Ricci soliton [CW].

*The first author was supported by the Deutsche Forschungsgemeinschaft.
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Let us mention that a 2-positive curvature operator has positive isotropic
curvature. Micallef and Moore [MM] showed that a simply connected compact
manifold with positive isotropic curvature is a homotopy sphere. However,
their techniques do not allow us to get restrictions for the fundamental groups
or the differentiable structure of the underlying manifold.

We turn to the proof of Theorem 1. The (unnormalized) Ricci flow is the
geometric evolution equation

∂g

∂t
= −2 Ric(g)

for a curve gt of Riemannian metrics on a compact manifold Mn. Using moving
frames, this leads to the following evolution equation for the curvature operator
Rt of gt (cf. [H2]):

∂R
∂t

= ΔR + 2(R2 + R#) .

Here Rt : Λ2TpM → Λ2TpM and identifying Λ2TpM with so(TpM) we have

R# = ad ◦ (R ∧ R) ◦ ad∗ ,

where ad: Λ2(so(TpM)) → so(TpM) is the adjoint representation. Notice that
in our setting the curvature operator of the round sphere of radius one is the
identity.

We denote by S2
B(so(n)) the vectorspace of curvature operators, that is

the vectorspace of selfadjoint endomorphisms of so(n) satisfying the Bianchi
identity. Hamilton’s maximum principle asserts that a closed convex O(n)-
invariant subset C of S2

B(so(n)) which is invariant under the ordinary differ-
ential equation

dR
dt

= R2 + R#(1)

defines a Ricci flow invariant curvature condition; that is, the Ricci flow evolves
metrics on compact manifolds whose curvature operators at each point are
contained in C into metrics with the same property.

In dimensions above four there are relatively few applications of the maxi-
mum principle, since in these dimensions the ordinary differential equation (1)
is not well understood. By analyzing how the differential equation changes
under linear equivariant transformations, we provide a general method for
constructing new invariant curvature conditions from known ones.

Any equivariant linear transformation of the space of curvature operators
respects the decomposition

S2
B(so(n)) = 〈I〉 ⊕ 〈Ric0〉 ⊕ 〈W〉

into pairwise inequivalent irreducible O(n)-invariant subspaces. Here 〈I〉 de-
notes multiples of the identity, 〈W〉 the space of Weyl curvature operators and
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〈Ric0〉 are the curvature operators of traceless Ricci type. Given a curvature
operator R we let RI and RRic0 denote the projections onto 〈I〉 and 〈Ric0〉,
respectively. Furthermore let Ric : R

n → R
n denote the Ricci tensor of R and

Ric0 the traceless part of Ric.

Theorem 2. For a, b ∈ R consider the equivariant linear map

la,b : S2
B(so(n)) → S2

B(so(n)) ; R 	→ R + 2(n − 1)aRI + (n − 2)bRRic0

and let

Da,b := l−1
a,b

(
(la,b R)2 + (la,b R)#

)
− R2 − R# .

Then

Da,b =
(
(n − 2)b2 − 2(a − b)

)
Ric0 ∧Ric0 +2aRic∧Ric + 2b2 Ric2

0 ∧ id

+
tr(Ric2

0)
n + 2n(n − 1)a

(
nb2(1 − 2b) − 2(a − b)(1 − 2b + nb2)

)
I .

The key fact about the difference Da,b of the pulled back differential equa-
tion and the differential equation itself is that it does not depend on the Weyl
curvature.

Let us now explain why Theorem 2 allows us to construct new curvature
conditions which are invariant under the ordinary differential equation (1): We
consider the image of a known invariant curvature condition C under the linear
map la,b for suitable constants a, b. This new curvature condition is invariant
under the ordinary differential equation, if l−1

a,b

(
(la,b R)2 + (la,b R)#

)
lies in the

tangent cone TRC of the known invariant set C. By assumption R2 + R# lies
in that tangent cone, and hence it suffices to show Da,b ∈ TRC. Since this
difference does not depend on the Weyl curvature, it can be solely computed
from the Ricci tensor.

Using this technique we construct a continuous family of invariant cones
joining the invariant cone of 2-positive curvature operators and the invariant
cone of positive multiples of the identity operator. Then a standard ODE-
argument shows that from any such family a generalized pinching set can be
constructed – a concept which is slightly more general than Hamilton’s concept
of pinching sets in [H2]. In Theorem 5.1 we show that Hamilton’s convergence
result carries over to our situation, completing the proof of Theorem 1.

We expect that Theorem 2 and its Kähler analogue should give rise to
further applications. This will be the subject of a forthcoming paper.

1. Algebraic preliminaries

For a Euclidean vector space V we let Λ2V denote the exterior product
of V . We endow Λ2V with its natural scalar product; if e1, . . . , en is an or-
thonormal basis of V then e1∧e2, ..., en−1∧en is an orthonormal basis of Λ2V .
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Notice that two linear endomorphisms A, B of V induce a linear map

A ∧ B : Λ2V → Λ2V ; v ∧ w 	→ 1
2

(
A(v) ∧ B(w) + B(v) ∧ A(w)

)
.

We will identify Λ2
R

n with the Lie algebra so(n) by mapping the unit vector
ei∧ej onto the linear map L(ei∧ej) of rank two which is a rotation with angle
π/2 in the plane spanned by ei and ej . Notice that under this identification
the scalar product on so(n) corresponds to 〈A, B〉 = −1/2 tr(AB).

For n ≥ 4 there is a natural decomposition of

S2(so(n)) = 〈I〉 ⊕ 〈Ric0〉 ⊕ 〈W〉 ⊕ Λ4(Rn)

into O(n)-invariant, irreducible and pairwise inequivalent subspaces. An en-
domorphism R ∈ S2(so(n)) satisfies the first Bianchi identity if and only if R
is an element in S2

B(so(n)) = 〈I〉 ⊕ 〈Ric0〉 ⊕ 〈W〉 . Given a curvature opera-
tor R ∈ S2

B(so(n)) we let RI , RRic0 and RW, denote the projections onto 〈I〉,
〈Ric0〉 and 〈W〉, respectively. Moreover, let

Ric : R
n → R

n

denote the Ricci tensor of R, Ric0 the traceless Ricci tensor and

λ̄ := tr(Ric)/n and σ := ‖Ric0 ‖2/n .(2)

Then

RI =
λ̄

n − 1
id∧ id and RRic0 =

2
n − 2

Ric0 ∧ id .(3)

Hamilton observed in [H2] that next to the map (R,S) 	→ 1
2(R S + S R) there

is a second natural O(n)-equivariant bilinear map

#: S2(so(n)) × S2(so(n)) → S2(so(n)) ; (R,S) 	→ R# S

given by

〈(R# S)(h), h〉=
1
2

N∑
α,β=1

〈[R(bα),S(bβ)], h〉 · 〈[bα, bβ], h〉(4)

for h ∈ so(n) and an orthonormal basis b1, ..., bN of so(n). The factor 1/2
stems from that fact that we are using the scalar product −1/2 tr(AB) instead
of − tr(AB) as in [H2]. We would like to mention that R# S = S #R can be
described invariantly

R#S = ad ◦ (R ∧ S) ◦ ad∗ ,

where ad: Λ2so(n) → so(n), u ∧ v 	→ [u, v] denotes the adjoint representation
and ad∗ is its dual. Following Hamilton we set

R# = R#R .



MANIFOLDS WITH POSITIVE CURVATURE OPERATORS 1083

We will also consider the trilinear form

tri(R1,R2,R3) = tr
(
(R1R2 + R2R1 + 2R1#R2) · R3

)
.(5)

The authors learned from Huisken that tri is symmetric in all three compo-
nents. In fact by (4) it is straightforward to check that

tr(2(R1#R2) · R3) =
N∑

α,β,γ=1

〈[R1(bα),R2(bβ)],R3(bγ)〉 · 〈[bα, bβ], bγ〉 .

Since the right-hand side is clearly symmetric in all three components this
gives the desired result. Huisken also observed that the ordinary differential
equation (1) is the gradient flow of the function

P (R) =
1
3

tr(R3 + RR#) =
1
6

tri(R,R,R) .

Finally we recall that if e1, . . . , en denotes an orthonormal basis of eigen-
vectors of Ric, then

Ric(R2 + R#)ij =
∑

k

Rickk Rkijk(6)

where Rkijk = 〈R(ei ∧ ek), ej ∧ ek〉; see [H1], [H2].

2. A new algebraic identity for curvature operators

The main aim of this section is to prove Theorem 2. A computation using
(3) shows that the linear map la,b : S2

B(so(n)) → S2
B(so(n)) given in Theorem 2

satisfies

la,b(R) = R + 2b Ric∧ id +2(n − 1)(a − b)RI .

The bilinear map # induces a linear O(n)-equivariant map given by R 	→ R#I.
The normalization of our parameters is related to the eigenvalues of this map.

Lemma 2.1. Let R ∈ S2
B(so(n)). Then

R + R#I = (n − 1)RI +
n − 2

2
RRic0 = Ric∧ id .

Proof. One can write

R + R#I = 1
4

(
(R + I)2 + (R + I)# − (R − I)2 − (R − I)#

)
.(7)

The result on the eigenvalues of the map corresponding to the subspaces 〈Ric0〉
and 〈I〉 now follows from equation (6) by a straightforward computation. For
n = 4 one verifies directly that 〈W〉 is in the kernel of the map R 	→ R + R#I.
Since there is a natural embedding of the Weyl curvature operators in S2

B(so(4))
to the Weyl curvature operators in S2

B(so(n)) this implies the same result for
n ≥ 5.
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We say that a curvature operator R is of Ricci type, if R = RI + RRic0 .

Lemma 2.2. Let R ∈ S2
B(so(n)) be a curvature operator of Ricci type, and

let λ̄ and σ be as in (2). Then

R2 + R# =
1

n − 2
Ric0 ∧Ric0 +

2λ̄

(n − 1)
Ric0 ∧ id− 2

(n − 2)2
(Ric2

0)0 ∧ id

+
λ̄2

n − 1
I +

σ

n − 2
I .

Moreover
(
R2 + R#

)
W

=
1

n − 2
(
Ric0 ∧Ric0

)
W

,

Ric(R2 + R#) =− 2
n − 2

(Ric2
0)0 +

n − 2
n − 1

λ̄ Ric0 +λ̄2 id +σ id .

Proof. By equation (3)

R = RI + RRic0 =
λ̄

(n − 1)
I +

2
(n − 2)

Ric0 ∧ id .

Using the abbreviation R0 = RRic0 we have

R2 + R# = R2
0 + R#

0 +
2λ̄

(n − 1)
(R0 + R0#I) +

λ̄2

(n − 1)2
(I + I#) .

Since the last two summands are known by Lemma 2.1, we may assume that
R = RRic0 . Let λ1, . . . , λn denote the eigenvalues of Ric0 corresponding to an
orthonormal basis e1, . . . , en of R

n. The curvature operator R is diagonal with
respect to e1∧e2, ..., en−1∧en and we denote by Rij = λi+λj

n−2 the corresponding
eigenvalues for 1 ≤ i < j ≤ n. Inspection of (4) shows that also R2 + R# is
diagonal with respect to this basis. We have

(R2 + R#)ij = R2
ij +

∑
k �=i,j

RikRjk

=
(λi + λj)2

(n − 2)2
+

1
(n − 2)2

∑
k �=i,j

(λi + λk)(λj + λk)

=
λiλj

(n − 2)
+

nσ − λ2
i − λ2

j

(n − 2)2

as claimed.
The second identity follows immediately from the first. To show the last

identity notice that the Ricci tensor of Ric0 ∧Ric0 is given by −Ric2
0. A com-

putation shows the claim.
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Proof of Theorem 2. We first verify that D = Da,b does not depend on
the Weyl curvature of R. We view D as quadratic form in R. Then

B(R,S) := 1
4

(
D(R + S) − D(R − S)

)

is the corresponding bilinear form.
Let S = W ∈ 〈W〉. We have to show B(R,W) = 0 for all R ∈ S2

B(so(n)).
We start by considering R ∈ 〈W〉. Then la,b(R±W) = R±W. It follows from
formula (6) for the Ricci curvature of R2 + R# that (R ± W)2 + (R ± W)#

has vanishing Ricci tensor. Hence (R ± W)2 + (R ± W)# is a Weyl curvature
operator and accordingly fixed by l−1

a,b.
Next we consider the case that R = I is the identity. Using the polarization

formula (7) for W we see that B(I,W) is a multiple of W + W #I, which is
zero by Lemma 2.1.

It remains to consider the case of R ∈ 〈Ric0〉. Using the symmetry of the
trilinear form tri defined in (5) we see for each W2 ∈ 〈W〉 that

tri(W,R,W2) = tri(W,W2,R) = 0

as W W2 + W2 W +2 W # W2 lies in 〈W〉 and R ∈ 〈Ric0〉. Combining this
with tri(W,R, I) = 0 gives that W R + R W +2 W #R ∈ 〈Ric0〉. Using once
more that l := la,b is the identity on 〈W〉 we see that

l(W) l(R) + l(R) l(W) + 2 l(W)# l(R) = l(W R + R W +2 W #R) .

This clearly proves B(R,W) = 0.
Thus, for computing D we may assume that RW = 0. So let R = RI +

RRic0 . We next verify that both sides of the equation have the same projection
to the space 〈W〉 of Weyl curvature operators. Recall that l−1

a,b induces the
identity on 〈W〉 and that Ric0(la,b(R)) = (1 + (n − 2)b) Ric0. Then using the
second identity in Lemma 2.2 we see that

DW =
1

n − 2
((1 + (n − 2)b)2 − 1)

(
Ric0 ∧Ric0

)
W

=
(
(n − 2)b2 + 2b

)(
Ric0 ∧Ric0

)
W

.

It is straightforward to check that the right-hand side in the asserted identity
for D has the same projection to 〈W〉.

It remains to check that both sides of the equation have the same Ricci
tensor. Because of Ric(la,b(R)) = (1 + (n − 2)b) Ric0 +(1 + 2(n − 1)a)λ̄ id, the
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third identity in Lemma 2.2 implies

Ric(D) =−2b(Ric2
0)0 + 2(n − 2)aλ̄ Ric0 +2(n − 1)aλ̄2 id(8)

+
2(n − 2)b + (n − 2)2b2 − 2(n − 1)a

1 + 2(n − 1)a
σ id

=−2b Ric2
0 +2(n − 2)aλ̄ Ric0 +2(n − 1)aλ̄2 id

+
2(n − 1)b + (n − 2)2b2 − 2(n − 1)a(1 − 2b)

1 + 2(n − 1)a
σ id .

A straightforward computation shows that the same holds for the Ricci tensor
of the right-hand side in the asserted identity for D. This completes the proof.

Corollary 2.3. We keep the notation of Theorem 2, and let σ, λ̄ be
as in (2). Suppose that e1, . . . , en is an orthonormal basis of eigenvectors
corresponding to the eigenvalues λ1, . . . , λn of Ric0. Then ei ∧ ej (i < j) is an
eigenvector of Da,b corresponding to the eigenvalue

dij =
(
(n − 2)b2 − 2(a − b)

)
λiλj + 2a(λ̄ + λi)(λ̄ + λj) + b2(λ2

i + λ2
j )

+
σ

1 + 2(n − 1)a
(
nb2(1 − 2b) − 2(a − b)(1 − 2b + nb2)

)
.

Furthermore, ei is an eigenvector of the Ricci tensor of Da,b with respect to the
eigenvalue

ri =−2bλ2
i + 2aλ̄(n − 2)λi + 2a(n − 1)λ̄2

+
σ

1 + 2(n − 1)a
(
n2b2 − 2(n − 1)(a − b)(1 − 2b)

)
.

Notice that λi + λ̄ are the eigenvalues of the Ricci tensor Ric. The first
formula follows immediately from Theorem 2, the second from (8).

3. New invariant sets

We call a continuous family C(s)s∈[0,1) ⊂ S2
B(so(n)) of closed convex O(n)-

invariant cones of full dimension a pinching family, if

(1) each R ∈ C(s) \ {0} has positive scalar curvature,

(2) R2 + R# is contained in the interior of the tangent cone of C(s) at R for
all R ∈ C(s) \ {0} and all s ∈ (0, 1),

(3) C(s) converges in the pointed Hausdorff topology to the one-dimensional
cone R

+I as s → 1.
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Example. A straightforward computation shows that

C(s) =
{

R ∈ S2(so(3))
∣∣ Ric ≥ s · tr(Ric)

3 id
}

, s ∈ [0, 1)

defines a pinching family, with C(0) being the cone of 3-dimensional curvature
operators with nonnegative Ricci curvature.

The main aim of this section is to prove the following analogue of this
result in higher dimensions.

Theorem 3.1. There is a pinching family C(s)s∈[0,1) of closed convex
cones such that C(0) is the cone of 2-nonnegative curvature operators.

As before a curvature operator is called 2-nonnegative if the sum of its
smallest two eigenvalues is nonnegative. It is known that the cone of 2-
nonnegative curvature operators is invariant under the ordinary differential
equation (1) (see [H4]). The pinching family that we construct for this cone is
defined piecewise by three subfamilies. Each cone in the first subfamily is the
image of the cone of 2-nonnegative curvature operators under a linear map. In
fact we have the following general result.

Proposition 3.2. Let C ⊂ S2
B(so(n)) be a closed convex O(n)-invariant

subset which is invariant under the ordinary differential equation (1). Suppose
that C \ {0} is contained in the half space of curvature operators with positive
scalar curvature, that each R ∈ C has nonnegative Ricci curvature and that C

contains all nonnegative curvature operators of rank 1. Then for n ≥ 3 and

b ∈
(
0,

√
2n(n−2)+4−2

n(n−2)

]
and 2a = 2b + (n − 2)b2

the set la,b(C) is invariant under the vector field corresponding to (1) as well.
In fact, it is transverse to the boundary of the set at all boundary points R �= 0.

Using the Bianchi identity it is straightforward to check that a nonnegative
curvature operator of rank 1 corresponds up to a positive factor and a change
of basis in R

n to the curvature operator of S
2 × R

n−2. The condition that
C contains all these operators is equivalent to saying that C contains the
cone of geometrically nonnegative curvature operators. A curvature operator
is geometrically nonnegative if it can be written as the sum of nonnegative
curvature operators of rank 1. In dimensions above 4 this cone is strictly
smaller than the cone of nonnegative curvature operators. Although we will
not need it, we remark that the cone of geometrically nonnegative curvature
operators is invariant under (1) as well.

Proof. We have to prove that for each R ∈ C \{0} the curvature operator

Xa,b = l−1
a,b(la,b(R)2 + la,b(R)#)(9)
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lies in the interior of the tangent cone TRC of C at the point R. Notice
that by assumption we have R2 + R# ∈ TRC. Thus it suffices to show that
Da,b = Xa,b − R2 − R# lies in the interior of TRC. Since C contains all
nonnegative curvature operators of rank 1, we can establish this by showing
that Da,b is positive for b > 0. Looking at the formula for the eigenvalues of
Da,b in Corollary 2.3 this amounts to showing that

0≤ b2
(
n(1 − 2b) − (n − 2)(1 − 2b + nb2)

)

holds in the given range. This is a straightforward computation.

Let us remark that the intersection of two closed convex O(n)-invariant
cones, which are invariant under the ordinary differential equation (1), have
the same properties as the given cones.

Corollary 3.3. In order to prove Theorem 3.1, it suffices to establish
the existence of a pinching family C(s)s∈[0,1) with C(0) being the cone of non-
negative curvature operators.

Proof. Suppose n ≥ 4. Notice that the cone C of 2-nonnegative cur-
vature operators satisfies the assumptions of Proposition 3.2. We plan to
show that the family of closed invariant cones from Proposition 3.2 can be
extended to a pinching family. By the above remark it suffices to show that
la(b),b(C) is contained in the cone of nonnegative curvature operators where b

is the maximal allowed value from Proposition 3.2. In fact then we can ex-
tend the family from Proposition 3.2 to a pinching family by defining it on
the second part of the interval as a reparametrization of the pinching family
(C(s) ∩ C ′)s∈[0,1) where C ′ := la(b),b(C).

Let R ∈ C \{0}. Recall that by (7) we have la,b(R) = R+2b Ric∧ id +hRI

for h := 2(n−1)(a−b). The smallest eigenvalue of R is by a standard estimate
larger than or equal to − 2 tr(R)

n(n−1)−4 . Moreover, since the sum of the two smallest
eigenvalues of R is nonnegative the smallest eigenvalue of Ric is bounded from
below by (n−3) times the absolute value of the smallest eigenvalue of R. Thus
in order to show that la,b(R) ≥ 0 it is sufficient to prove h ≥ (1− 2b) n(n−1)

n(n−1)−4 .
This is equivalent to

(n − 2)b2 ≥ (1 − 2b)
n

n(n − 1) − 4
.

By the definition of b we have (n− 2)b2 = 2
n(1− 2b). This shows the claim for

n ≥ 4. For n = 3, Theorem 3.1 is well known.

It remains to construct a pinching family for the cone of nonnegative cur-
vature operators. This pinching family will be defined up to parameterization
piecewise by two subfamilies in the next two lemmas.
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Lemma 3.4. For b ∈ [0, 1/2] put

a =
(n − 2)b2 + 2b

2 + 2(n − 2)b2
and p =

(n − 2)b2

1 + (n − 2)b2
.

Then the set

la,b

({
R ∈ S2

B(so(n))
∣∣ R ≥ 0,Ric ≥ p(b) tr(Ric)

n

})

is invariant under the vector field corresponding to (1). In fact, for b ∈ (0, 1/2]
it is transverse to the boundary of the set at all boundary points R �= 0.

Proof. Put

C(p) :=
{
R ∈ S2

B(so(n))
∣∣ R ≥ 0,Ric ≥ p(b) tr(Ric)

n

}
.

It suffices to check that for R ∈ C(p) \ {0} the pulled back vector field Xa,b

defined in (9) is in the interior of the tangent cone of C(p) at R.
In the first step we verify that Xa,b is positive definite for b ∈ (0, 1/2].

Since R2 + R# is positive semi-definite, we can establish Xa,b > 0 by showing
Da,b > 0. Since by assumption R ∈ C(p) we have the following estimate for
the eigenvalues of Ric0:

λi ≥ −(1 − p)λ̄ .

Next, observe that

2(a − b) =
1 − 2b

1 + (n − 2)b2
(n − 2)b2 .

We use the notation of Theorem 2 and Corollary 2.3. Rewriting dij gives

dij = 2a
1−p((1 − p)λ̄ + λi)((1 − p)λ̄ + λj) + 2apλ̄2 + b2(λ2

i + λ2
j )(10)

+
n(1 + (n − 2)b2) − (n − 2)(1 − 2b + nb2)

(1 + 2(n − 1)a)(1 + (n − 2)b2)
σb2(1 − 2b)

>
2 + 2(n − 2)b

(1 + 2(n − 1)a)(1 + (n − 2)b2)
σb2(1 − 2b)

≥ 0 .

In the second step we must show that the above Ricci pinching is preserved by
the ordinary differential equation (1). Let Ric(Xa,b) denote the Ricci tensor of
Xa,b. Assume that λi = −(1 − p)λ̄. We have to show that

Ric(Xa,b)ii > p
scal(Xa,b)

n
= p

((
1 + 2(n − 1)a

)
λ̄2 +

(1 + (n − 2)b)2

1 + 2(n − 1)a
σ
)

holds for b ∈ (0, 1/2]. We first observe that by (6)

Ric(R2 + R#)ii =
∑
k �=i

Rickk Rkiik ≥
∑
k �=i

pλ̄Rkiik = p2λ̄2 .
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Using formula (10) for dij and λi = −(1 − p)λ̄ we see that

Ric(Xa,b)ii ≥ p2λ̄2 +
∑
j �=i

dij

= p2λ̄2 + 2(n − 1)apλ̄2 + (n − 2)b2(1 − p)2λ̄2 + nb2σ

+
(n − 1)σb2(1 − 2b)

(1 + 2(n − 1)a)(1 + (n − 2)b2)
(
2 + 2(n − 2)b

)
.

By our choice for b and p it is straightforward to check that

p2 + (n − 2)b2(1 − p)2 = p .

This shows that in the asserted inequality the λ̄2-terms cancel each other.
Since σ > 0 it remains to verify

nb2 +
(n − 1)b2(1 − 2b)

(1 + 2(n − 1)a)(1 + (n − 2)b2)
(
2 + 2(n − 2)b

)
> p

(1 + (n − 2)b)2

1 + 2(n − 1)a
.

The identity

(1 + 2(n − 1)a) =
1 + 2(n − 1)b + n(n − 2)b2

1 + (n − 2)b2

shows that this is equivalent to

0 < n(1 + 2(n − 1)b + n(n − 2)b2) − (n − 2)(1 + (n − 2)b)2

+(n − 1)(1 − 2b)
(
2 + 2(n − 2)b

)

= 2n + 2n(n − 2)b .

This shows the claim.

We remark that the above sets remain in fact invariant for all b > 0. For
b → +∞ they converge to an invariant set of Einstein curvature operators.

We will now finish the proof of Theorem 3.1 by showing that the cone
from Lemma 3.4 for b = 1/2 can be joined by a continuous family of invariant
cones with arbitrarily small cones around the identity.

Lemma 3.5. Assume b = 1/2 and put for s ≥ 0

a =
1 + s

2
and p = 1 − 4

n + 2 + 4s
.

Then the set

la,b

({
R ∈ S2

B(so(n)) | R ≥ 0,Ric ≥ p(s) tr(Ric)
n }

)

is invariant under the vector field corresponding to (1). In fact, it is transverse
to the boundary of the set at all boundary points R �= 0.

Notice that lims→∞ 1
a la,b(R) = 2(n−1)RI . Consequently the cones of the

lemma converge to R
+I for s → ∞.
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Proof. Notice that the formulas in Corollary 2.3 simplify:

dij =
(

1
4(n − 2) − s

)
λiλj + (s + 1)(λ̄ + λi)(λ̄ + λj) + 1

4(λ2
i + λ2

j )

− σns

4n + 4(n − 1)s

and

ri =−λ2
i + (s + 1)λ̄(n − 2)λi + (s + 1)(n − 1)λ̄2 +

σn2

4n + 4(n − 1)s
.

We first verify that Xa,b does preserve the Ricci pinching. We may suppose
that λi = −(1 − p)λ̄. We have to show

0≤ p2λ̄2 − (1 − p)2λ̄2 − (s + 1)λ̄2(n − 2)(1 − p) + (s + 1)(n − 1)λ̄2

+
σn2

4n + 4(n − 1)s
− p

(
(n + (n − 1)s)λ̄2 +

n2

4n + 4(n − 1)s
σ
)

.

Because of σ ≥ 0 we can neglect the terms with σ. Dividing by λ̄2 gives

p2 − (1 − p)2 + (s + 1) + (s + 1)p(n − 2) − p(n + (n − 1)s) = s(1 − p) ,

which is clearly positive. Notice that this calculation is independent of p. As
before we can complete the proof by showing that Da,b is positive definite.
Using

σ ≤ (n − 1)(1 − p)2λ̄2 =
16(n − 1)λ̄2

(n + 2 + 4s)2

we see that

dij =
n + 2

4
(λi +

4λ̄

n + 2
)(λj +

4λ̄

n + 2
) + sλ̄(λi + λj +

8λ̄

n + 2 + 4s
)

+
1
4
(λ2

i + λ2
j ) +

n − 2
n + 2

λ̄2 + s
n − 6 + 4s

n + 2 + 4s
λ̄2 − σns

4n + 4(n − 1)s

≥
(n − 2

n + 2
+ s

n − 6 + 4s

n + 2 + 4s
− 16(n − 1)ns

(4n + 4(n − 1)s)(n + 2 + 4s)2
)
λ̄2

>
(
1 + s(n − 6) + 4s2 − s

) λ̄2

n + 2 + 4s
≥ 0

where we used n ≥ 3 in the last two inequalities.

4. Constructing a generalized pinching set from a family of
invariant cones

We show how to construct from a family of invariant cones a generalized
pinching set, similar to Hamilton’s concept in [H2]. Let us recall that we
denoted by S2

B(so(n)) the space of curvature operators.
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Theorem 4.1. Let C(s)s∈[0,1) ⊂ S2
B(so(n)) be a continuous family of

closed convex SO(n)-invariant cones of full dimension, such that C(s) \ {0} is
contained in the half space of curvature operators with positive scalar curvature.
Suppose that for R ∈ C(s) \ {0} the vector field X(R) = R2 + R# is contained
in the interior of the tangent cone of C(s) at R for all s ∈ (0, 1). Then for
ε, h0 > 0 there exists a closed convex SO(n)-invariant subset F ⊂ S2

B(so(n))
with the following properties:

(1) F is invariant under the vector field X.

(2) C(ε) ∩
{
R | tr(R) ≤ h0

}
⊂ F .

(3) F \ C(s) is relatively compact for all s ∈ [ε, 1).

We remark that F is O(n)-invariant if the cones are. We also note that
the analogue of the theorem holds in the vector space of Kähler curvature
operators. The proof of the theorem is based on the following lemma.

Lemma 4.2. Let C = C(s) for some s ∈ (0, 1). Then there exists a closed
convex SO(n)-invariant set H = H(s) such that

(1) H is invariant under the vector field X.

(2)
{
R ∈ C \ {0} | tr(R) ≤ 1

}
is contained in the interior of H.

(3)
{
R ∈ H | tr R ≥ l

}
is contained in the interior of C for some large l.

Proof of Lemma 4.2. Since the vector field X is transverse to the boundary
of C it is clear that for some δ0 > 0 and all δ ∈ [0, δ0] the cone Cδ over the
convex set {

R ∈ C | tr(R) = 1, d(R, ∂C) ≥ δ
}

is invariant under X. We also may assume that for all δ ∈ [−δ0, 0] the cone Cδ

over the convex set
{
R | tr(R) = 1, d(R, C) ≤ −δ

}

is invariant under X. Notice that the size of the cones Cδ is decreasing in δ.
After possibly decreasing δ0, we may assume that there is some constant η

such that for each R ∈ Cδ the vector field X has distance at least η‖R‖2 to the
boundary of the tangent cone of Cδ at R for all δ ∈ [−δ0, δ0]. We note that X

is locally Lipschitz continuous with a Lipschitz constant that growths linearly
in ‖R‖. Combining both facts we see that there is some constant c > 0 such
that the truncated shifted cone

TCδ :=
{
R | R + cI ∈ Cδ, tr(R) ≥ 1

}
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is invariant under the flow of X for all δ ∈ [−δ0, δ0]. For a suitable small δ > 0
the interior of TCδ contains the set

C−δ ∩
{
R | tr R = 1

}
.

Therefore the union of TCδ ∩ C−δ and C−δ ∩
{
R | tr R ≤ 1

}
defines a convex

set H. Clearly H is invariant under the vector field X. By construction the
interior of H contains C ∩

{
R | tr R ≤ 1,R �= 0

}
. Furthermore the cone at

infinity of H is given by Cδ. Thus for some large l the interior of C contains{
R ∈ H | tr R ≥ l

}
.

Proof of Theorem 4.1. Let F denote the minimal closed convex SO(n)-
invariant subset which is invariant under the flow of X and which contains the
set

C(ε) ∩
{
R | tr(R) ≤ h0

}
.

Notice that F is the intersection of all subsets which satisfy the above proper-
ties. In particular F is well defined and F ⊂ C(ε). We have to prove that for
all s ∈ [ε, 1) the set F \ C(s) is bounded.

Suppose on the contrary that F \ C(s) is not bounded for some s. Let
s0 ≥ ε denote the infimum among all s with this property. By the choice of
s0 it follows that limλ→∞ 1

λF ⊂ C(s0). We consider the set H = H(s0) from
Lemma 4.2. Notice that the interior of T0H = limλ→∞ λH contains C(s0)\{0}.
Thus we can find large numbers λ, r ≥ h0 such that F ∩

{
R | tr(R) = r

}
is

contained in the interior of λH.
We now define F ′ as the union of F∩

{
R | tr(R) ≤ r

}
and F∩

{
R | tr R ≥ r

}
∩ λH. By construction F ′ is convex, invariant under the vector field X and
contains the set C(ε) ∩

{
R | tr(R) ≤ h0

}
. By the definition of F this implies

F ′ ⊂ F . By the definition of F ′ we have F ⊂ F ′ and equality does not occur
— a contradiction.

Remark 4.3. It not hard to show that for any pinching family the gen-
eralized pinching set F constructed in the proof of Theorem 4.1 is actually a
pinching set in the sense of Hamilton: That is there exist constants δ, C > 0
such that ‖R − RI‖ ≤ C · ‖R‖1−δ for all R ∈ F .

5. Proof of the main result

Using Theorem 3.1, Theorem 1 is an immediate consequence of the fol-
lowing

Theorem 5.1. Let C(s)s∈[0,1) ⊂ S2
B(so(n)) be a pinching family of closed

convex cones, n ≥ 3. Suppose that (M, g) is a compact Riemannian manifold
such that the curvature operator of M at each point is contained in the interior
of C(0). Then the normalized Ricci flow evolves g to a constant curvature limit
metric.
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Proof. Let Rp denote the curvature operator of (M, g) at a point p ∈ M .
For all p ∈ M we have

Rp ∈ {R | scal ≤ h0} ∩ C(ε)

for a sufficiently small ε > 0 and a sufficiently large h0, since the family of cones
is continuous and M is compact. For this pair ε, h0 we consider an invariant
set F as in Theorem 4.1.

By the maximum principle the Ricci flow evolves g to metrics gt whose
curvature operators at each point are contained in F . We also know that
the solution of the Ricci flow exists as long as the curvature does not tend to
infinity. Furthermore it follows from the maximum principle that the Ricci flow
exists only on a finite time interval t ∈ [0, t0). Subsequently we only consider
times t ∈ [t0/2, t0) such that twice of the maximum of the scalar curvature
at time t bounds the scalar curvature at all previous times. We will establish
among other things that the scalar curvature is nearly constant for such a time
t close to t0 . Since the minimum of the scalar curvature increases, it follows
a postiori that the additional assumption holds for all t close to t0. By Shi
[Sh] it follows from the maximum principle applied to the evolution equation
for the i-th derivative of the curvature operator that

max ‖∇iRt‖2 ≤ Ci max ‖Rt‖i+2

where we used the fact that by our choice of t the maximum of the norm of
the curvature operator at time t controls the norm of the curvature operator
at all previous times.

We now rescale each metric gt to a metric g̃t such that the maximal sec-
tional curvature is equal to 1. From the above estimates we get a priori bounds
for all derivatives of the curvature tensor of the metric g̃t for t ∈ [t0/2, t0).

Next, we pick a point pt ∈ (M, g̃t) such that the sectional curvature attains
its maximum in the ball Bπ(pt) of radius π around pt. We pull the metric via
the exponential map back to the ball of radius π in Tpt

M . By choosing a
linear isometry R

n → Tpt
M we identify this ball with the ball Bπ(0) ⊂ R

n

and denote by ḡt the induced metric on Bπ(0). From the above estimates on
the derivatives of the curvature tensor it is clear that for any sequence (tk) in
[0, t0) converging to t0 there is a subsequence of (ḡtk

) converging in the C∞

topology to a limit metric.
Now, let λj denote the scaling factors of these metrics ḡtj

which by as-
sumption tend to infinity. At each point of M the curvature operator of the
limit metric is contained in the set

⋂
1
λ2

j
F = R

+I .

Thus the limit metric on Bπ(0) has pointwise constant sectional curvature.
Since n ≥ 3, it has constant curvature one by Schur’s theorem.
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Since the sequence was arbitrary, the minimal sectional curvature con-
verges on a ball of radius π around pt in (M, g̃t) to 1 as well as t tends to t0.
Notice that this argument works for all pt ∈ Bπ(qt), where qt denotes a point
where the sectional curvature attains its maximum 1. Therefore the minimal
sectional curvature converges on the ball of radius 2π around qt to 1 as well.
By the theorem of Bonnet Myers diam(M, g̃t) ≤ 3π/2 for large t < t0 and
consequently, also the minimum of the sectional curvature of (M, g̃t) tends to
1 for t → t0.

In the case of manifolds one is done since by Klingenberg’s injectivity
radius estimate [CE] collapse can not occur. Alternatively, one can use the
fact that (M, gt) satisfies the assumption of Huisken’s theorem [Hu] for suitable
large t. In the case of orbifolds one has to use additionally Proposition 5.2 from
below.

Let us remark that collapse in the above situation can also be ruled out
by applying Perelman’s local injectivity radius estimate for the Ricci flow [Pe].

Proposition 5.2. Let (X, g) be a compact orbifold with sectional curva-
ture K. If n ≥ 3 and g is strictly quarter pinched, that is 1/4 < K ≤ 1, then
X is the quotient of a Riemannian manifold by a finite isometric group action.

Proof. By replacing X by a cover if necessary we may assume that X is
not a nontrivial quotient of an orbifold by a finite group action. We then have
to show that X is a manifold. Recall that the frame bundle FX of the orbifold
X, endowed with the connection metric of g, is a Riemannian manifold. We
consider an SO(n) orbit SO(n)v in FX. Clearly the normal exponential map of
the orbit SO(n)v has a focal radius ≥ π. Similarly to Klingenberg’s injectivity
radius estimate we show below that the normal exponential map of the orbit
SO(n)v has injectivity radius ≥ π. Since the orbit was arbitrary, this rules out
exceptional orbits and hence X is then a manifold.

From the assumption that X is not a nontrivial quotient it follows that
the natural map π1(SO(n)) → π1(FX) is surjective. This implies that the
space ΩSO(n)vFX of all curves starting and ending in SO(n)v is connected.
The critical levels of the energy functional in ΩSO(n)vFX are in one-to-one
correspondence to the geodesic loops in the orbifold.

Suppose on the contrary that the injectivity radius of the normal expo-
nential map of SO(n)v is equal to r < π. It is then easy to see that there is
a horizontal geodesic c of length 2r in ΩSO(n)vFX. Analogously to Klingen-
berg’s long homotopy lemma one can show that every path cs in ΩSO(n)vFX

that connects c = c0 with a constant curve c1 satisfies L(cs) ≥ 2π for some s.
In other words the space of paths of energy < 2π2 is not connected.

On the other hand it is straightforward to check that the critical points of
the energy function with energy ≥ 2π2 have indices at least n−1 ≥ 2. But then
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by a standard degenerate Morse theory argument the loop space ΩSO(n)vFX

itself is not connected — a contradiction.

6. Final remarks

1. The main difference between dimension two and the higher dimen-
sional case is that in dimension two Schur’s theorem fails. Notice also that in
dimension two Proposition 5.2 does not remain valid either. In fact given any
positive δ < 1, there exists a δ pinched two-dimensional orbifold X which is
not the quotient of a manifold: Consider two discs of constant curvature 1 with
totally geodesic boundary. Divide out the cyclic group of order (p + 1) from
the first disc and the cyclic group of order p from the second. After scaling the
first disc by the factor p+1

p the two orbifolds can be glued along their common
boundary. By smoothing this example for some large p one obtains the claimed
result.

2. In the higher-dimensional case one may ask to what extent the cur-
vature assumptions in Theorem 1 can be relaxed. To this end let us mention
that in dimension four and above the space of 3-positive curvature operators
is not invariant under the ordinary differential equation (1).

3. Using the results of this paper Ni and Wu [NW] showed that on a com-
pact manifold the Ricci flow evolves a Riemannian metric with 2-nonnegative
curvature operator to metrics with 2-positive curvature operators unless M

is locally symmetric or the universal cover of M is isometric to a product.
They also show that a complete manifold with positive scalar curvature and
bounded curvature operator R satisfying R ≥ ε scal ·I for any fixed ε > 0 must
be compact.

4. We turn now to the Kähler analogue of Theorem 1: On a compact
Kähler manifold the Kähler-Ricci flow converges to the symmetric metric of
the complex projective space CP

n if the initial Kähler metric has positive
bisectional curvature. This result follows from Chen’s and Tian’s work [CT]
on Ricci flow on Kähler-Einstein manifolds and the solution to the Frankel
conjecture by Mori [Mo] and Siu and Yau [SY].

We would like to mention that the above result cannot be proved just car-
rying over the methods of this paper to the Kähler case. Notice first that an
analogue of Theorem 2 holds for Kähler curvature operators. However, unlike
the curvature operator of the round sphere in the real case the curvature oper-
ator of the symmetric metric on CP

n it not a local attractor for the ordinary
differential equation (1) restricted to the space of Kähler curvature operators.
To be more precise there exists a maximal solution R(s), s ∈ [0, s0), of (1)
such that the initial Kähler curvature operator R(0) can be chosen arbitrar-
ily close to the curvature operator of the symmetric metric on CP

n but the
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rescaled limit lims→s0

R(s)
‖R(s)‖ is the curvature operator of a symmetric metric

on S
2 × C

n−1.
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