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Dimension and rank
for mapping class groups
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Dedicated to the memory of Candida Silveira.

Abstract

We study the large scale geometry of the mapping class group, MCG(S).
Our main result is that for any asymptotic cone of MCG(S), the maximal
dimension of locally compact subsets coincides with the maximal rank of free
abelian subgroups of MCG(S). An application is a proof of Brock-Farb’s Rank
Conjecture which asserts that MCG(S) has quasi-flats of dimension N if and
only if it has a rank N free abelian subgroup. (Hamenstadt has also given a
proof of this conjecture, using different methods.) We also compute the max-
imum dimension of quasi-flats in Teichmuller space with the Weil-Petersson
metric.

Introduction

The coarse geometric structure of a finitely generated group can be studied
by passage to its asymptotic cone, which is a space obtained by a limiting
process from sequences of rescalings of the group. This has played an important
role in the quasi-isometric rigidity results of [DS], [KaL] [KlL], and others. In
this paper we study the asymptotic cone Mω(S) of the mapping class group
of a surface of finite type. Our main result is

Dimension Theorem. The maximal topological dimension of a locally
compact subset of the asymptotic cone of a mapping class group is equal to the
maximal rank of an abelian subgroup.

Note that [BLM] showed that the maximal rank of an abelian subgroup
of a mapping class group of a surface with negative Euler characteristic is
3g − 3 + p where g is the genus and p the number of boundary components.
This is also the number of components of a pants decomposition and hence the
largest rank of a pure Dehn twist subgroup.

*First author supported by NSF grants DMS-0091675 and DMS-0604524. Second author
supported by NSF grant DMS-0504019.
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As an application we obtain a proof of the “geometric rank conjecture”
for mapping class groups, formulated by Brock and Farb [BF], which states:

Rank Theorem. The geometric rank of the mapping class group of a
surface of finite type is equal to the maximal rank of an abelian subgroup.

Hamenstädt had previously announced a proof of the rank conjecture for
mapping class groups, which has now appeared in [Ham]. Her proof uses the
geometry of train tracks and establishes a homological version of the dimension
theorem. Our methods are quite different from hers, and we hope that they
will be of independent interest.

The geometric rank of a group G is defined as the largest n for which there
exists a quasi-isometric embedding Zn → G (not necessarily a homomorphism),
also known as an n-dimensional quasi-flat. It was proven in [FLM] that, in the
mapping class group, maximal rank abelian subgroups are quasi-isometrically
embedded—thereby giving a lower bound on the geometric rank. This was
known when the Rank Conjecture was formulated; thus the conjecture was
that the known lower bound for the geometric rank is sharp. The affirmation
of this conjecture follows immediately from the dimension theorem and the
observation that a quasi-flat, after passage to the asymptotic cone, becomes a
bi-Lipschitz-embedded copy of Rn.

We note that in general the maximum rank of (torsion-free) abelian sub-
groups of a given group does not yield either an upper or a lower bound on
the geometric rank of that group. For instance, nonsolvable Baumslag-Solitar
groups have geometric rank one [Bur], but contain rank two abelian subgroups.
To obtain groups with geometric rank one, but no subgroup isomorphic to Z,
one may take any finitely generated infinite torsion group. The n-fold product
of such a group with itself has n-dimensional quasi-flats, but no copies of Zn.

Similar in spirit to the above results, and making use of Brock’s combina-
torial model for the Weil-Petersson metric [Bro], we also prove:

Dimension Theorem for Teichmüller space. Every locally compact
subset of an asymptotic cone of Teichmüller space with the Weil-Petersson
metric has topological dimension at most �3g+p−2

2 �.

The dimension theorem implies the following, which settles another con-
jecture of Brock-Farb.

Rank Theorem for Teichmüller space. The geometric rank of the
Weil-Petersson metric on the Teichmüller space of a surface of finite type is
equal to �3g+p−2

2 �.

This conjecture was made by Brock-Farb after proving this result in
the case �3g+p−2

2 � ≤ 1, by showing that in such cases Teichmüller space is
δ-hyperbolic [BF]. (Alternate proofs of this result were obtained in [Be] and
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[Ara].) We also note that the lower bound on the geometric rank of Teichmüller
space is obtained in [BF].

Outline of the proof. For basic notation and background see Section 1.
We will define a family P of subsets of Mω(S) with the following properties:
Each P ∈ P comes equipped with a bi-Lipschitz homeomorphism to a product
F ×A, where

(1) F is an R-tree;
(2) A is the asymptotic cone of the mapping class group of a (possibly dis-

connected) proper subsurface of S.

There will also be a Lipschitz map πP : Mω(S) → F such that:

(1) The restriction of πP to P is projection to the first factor.
(2) πP is locally constant in the complement of P .

These properties immediately imply that the subsets {t} × A in P = F × A
separate Mω(S) globally.

The family P will also have the property that it separates points, that is:
for every x �= y in Mω(S) there exists P ∈ P such that πP (x) �= πP (y).

Using induction, we will be able to show that locally compact subsets of A
have dimension at most r(S)− 1, where r(S) is the expected rank for Mω(S).
The separation properties above together with a short lemma in dimension
theory then imply that locally compact subsets of Mω(S) have dimension at
most r(S).

Section 1 will detail some background material on asymptotic cones and
on the constructions used in Masur-Minsky [MM1, MM2] to study the coarse
structure of the mapping class group. Section 2 introduces product regions
in the group and in its asymptotic cone which correspond to cosets of curve
stabilizers.

Section 3 introduces the R-trees F , which were initially studied by
Behrstock in [Be]. The regions P ∈ P will be constructed as subsets of the
product regions of Section 2, in which one factor is restricted to a subset which
is one of the R-trees. The main technical result of the paper is Theorem 3.5,
which constructs the projection maps πP and establishes their locally constant
properties. An almost immediate consequence is Theorem 3.6, which gives the
family of separating sets whose dimension will be inductively controlled.

Section 4 applies Theorem 3.6 to prove the Dimension Theorem.
Section 5 applies the same techniques to prove a similar dimension bound

for the asymptotic cone of a space known as the pants graph and to deduce a
corresponding geometric rank statement there as well. These can be translated
into results for Teichmüller space with its Weil-Petersson metric, by applying
Brock’s quasi-isometry [Bro] between the Weil-Petersson metric and the pants
graph.
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1. Background

1.1. Surfaces. Let S = Sg,p be a orientable compact connected surface of
genus g and p boundary components. The mapping class group, MCG(S), is
defined to be Homeo+(S)/Homeo0(S), the orientation-preserving homeomor-
phisms up to isotopy. This group is finitely generated [Deh], [Bir] and for any
finite generating set one considers the word metric in the usual way [Gro2],
whence yielding a metric space which is unique up to quasi-isometry.

Throughout the remainder, we tacitly exclude the case of the closed torus
S1,0. Nonetheless, the Dimension Theorem does hold in this case since
MCG(S1,0) is virtually free so that its asymptotic cones are all one dimen-
sional and the largest rank of its free abelian subgroups is one.

Let r(S) denote the largest rank of an abelian subgroup of MCG(S)
when S has negative Euler characteristic. In [BLM], it was computed that
r(S) = 3g − 3 + p and it is easily seen that this rank is realized by any sub-
group generated by Dehn twists on a maximal set of disjoint essential simple
closed curves. Moreover, such subgroups are known to be quasi-isometrically
embedded by results in [Mos], when S has punctures, and by [FLM] in the
general case.

For an annulus let r = 1. For a disconnected subsurface W ⊂ S, with each
component homotopically essential and not homotopic into the boundary, and
no two annulus components homotopic to each other, let r(W ) be the sum of
r(Wi) over the components of W . We note that r is automatically additive
over disjoint unions, and is monotonic with respect to inclusion.

1.2. Quasi-isometries. If (X1, d1) and (X2, d2) are metric spaces, a map
φ : X1 → X2 is called a (K, C)-quasi-isometric embedding if for each y, z ∈ X1

we have:

d2(φ(y), φ(z)) ≈K,C d1(y, z).(1.1)

Here the expression a ≈K,C b means a/K − C ≤ b ≤ Ka + C. We sometimes
suppress K, C, writing just a ≈ b when this will not cause confusion.

We call φ a quasi-isometry if, additionally, there exists a constant D ≥ 0
so that each q ∈ X2 satisfies d2(q, φ(X1)) ≤ D, i.e., φ is almost onto. The
property of being quasi-isometric is an equivalence relation on metric spaces.

1.3. Subsurface projections and complexes of curves. On any surface S,
one may consider the complex of curves of S, denoted C(S). The complex of
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curves is a finite dimensional flag complex whose vertices correspond to non-
trivial homotopy classes of nonperipheral, simple, closed curves and with edges
between any pair of such curves which can be realized disjointly on S. In the
cases where r(S) ≤ 1 the definition must be modified slightly. When S is a
one-holed torus or 4-holed sphere, any pair of curves intersect, so edges are
placed between any pair of curves which realize the minimal possible intersec-
tion on S (1 for the torus, 2 for the sphere). With this modified definition,
these curve complexes are the Farey graph. When S is the 3-holed sphere its
curve complex is empty since S supports no simple closed curves. Finally, the
case when S is an annulus will be important when S is a subsurface of a larger
surface S′. We define C(S) by considering the annular cover S̃′ of S′ in which
S lifts homeomorphically. Now S̃′ has a natural compactification to a closed
annulus, and we let vertices be paths connecting the boundary components
of this annulus, up to homotopy rel endpoints. Edges are pairs of paths with
disjoint interiors. With this definition, one obtains a complex quasi-isometric
to Z. (See [MM1] for further details.)

The following basic result on the curve complex was proved by Masur-
Minsky [MM1]. (See also Bowditch [Bow] for an alternate proof.)

Theorem 1.1. For any surface S, the complex of curves is an infinite
diameter δ-hyperbolic space (as long as it is nonempty).

Given a subsurface Y ⊂ S, one can define a subsurface projection which
is a map πC(Y ) : C(S) → 2C(Y ). Suppose first that Y is not an annulus. Given
any curve γ ∈ C(S) intersecting Y essentially, we define πC(Y )(γ) to be the
collection of vertices in C(Y ) obtained by surgering the essential arcs of γ ∩ Y

along ∂Y to obtain simple closed curves in Y . It is easy to show that πC(Y )(γ)
is nonempty and has uniformly bounded diameter. If Y is an annulus and γ

intersects it transversely essentially, we may lift γ to an arc crossing the annulus
S̃′ and let this be πC(Y )(γ). If γ is a core curve of Y or fails to intersect it, we
let πC(Y )(γ) = ∅ (this holds for general Y too).

When measuring distance in the image subsurface, we usually write
dC(Y )(μ, ν) as shorthand for dC(Y )(πC(Y )(μ), πC(Y )(ν)).

Markings. The curve complex can be used to produce a geometric model
for the mapping class group as done in [MM2]. This model is a graph called
the marking complex, M(S), and is defined as follows.

We define vertices μ ∈ M(S) to be pairs (base(μ), transversals) for which:

• The set of base curves of μ, denoted base(μ), is a maximal simplex in
C(S).

• The transversals of μ consist of one curve for each component of base(μ),
intersecting it transversely.
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Further, the markings are required to satisfy the following two properties.
First, for each γ ∈ base(μ), we require the transversal curve to γ, denoted t,
to be disjoint from the rest of the base(μ). Second, given γ and its transversal
t, we require that γ ∪ t fill a nonannular surface W satisfying r(W ) = 1 and
for which dC(W )(γ, t) = 1.

The edges of M(S) are of two types:

(1) Twist : Replace a transversal curve by another obtained by performing a
Dehn twist along the associated base curve.

(2) Flip: Swap the roles of a base curve and its associated transversal curve.
(After doing this move, the additional disjointness requirement on the
transversals may not be satisfied. As shown in [MM2], one can surger
the new transversal to obtain one that does satisfy the disjointness re-
quirement. The additional condition that the new and old transversals
intersect minimally restricts the surgeries to a finite number, and we ob-
tain a finite set of possible flip moves for each marking. Each of these
moves gives rise to an edge in the marking graph, and the naturality of
the construction makes it invariant by the mapping class group.)

It is not hard to verify that M(S) is a locally finite graph on which
the mapping class group acts cocompactly and properly discontinuously. As
observed by Masur-Minsky [MM2], this yields:

Lemma 1.2. M(S) is quasi-isometric to the mapping class group of S.

The same definitions apply to essential subsurfaces of S. For an annulus
W , we let M(W ) just be C(W ).

Note that the above definition of marking makes no requirement that the
surface S be connected. In the case of a disconnected surface W = �n

i=1Wi, it
is easy to see that M(W ) =

∏n
i=1 M(Wi).

Projections and distance. We now recall several ways in which subsurface
projections arise in the study of mapping class groups.

First, note that for any μ ∈ M(S) and any Y ⊆ S the above projec-
tion maps extend to πC(Y ) : M(S) → 2C(Y ). This map is simply the union
over γ ∈ base(μ) of the usual projections πC(Y )(γ), unless Y is an annulus
about an element of base(μ). When Y is an annulus about γ ∈ base(μ),
then we let πC(Y )(μ) be the projection of γ’s transversal curve in μ. As in
the case of curve complex projections, we write dC(Y )(μ, ν) as shorthand for
dC(Y )(πC(Y )(μ), πC(Y )(ν)).

Remark 1.3. An easy, but useful, fact is that if a pair of markings μ, ν ∈
M(S) share a base curve γ and γ ∩ Y �= ∅, then there is a uniform bound on
the diameter of πC(Y )(μ) ∪ πC(Y )(ν).
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We say a pair of subsurfaces overlap if they intersect, and neither is nested
in the other. The following is proven in [Be]:

Theorem 1.4. Let Y and Z be a pair of subsurfaces of S which overlap.
There exists a constant M1 depending only on the topological type of S, such
that for any μ ∈ M(S):

min
{
dC(Y )(∂Z, μ), dC(Z)(∂Y, μ)

}
≤ M1.

Another application of the projection maps is the following distance for-
mula of Masur-Minsky [MM2]:

Theorem 1.5. If μ, ν ∈ M(S), then there exists a constant K(S), de-
pending only on the topological type of S, such that for each K > K(S) there
exists a ≥ 1 and b ≥ 0 for which:

dM(S)(μ, ν) ≈a,b

∑
Y ⊆S

{{
dC(Y )(πC(Y )(μ), πC(Y )(ν))

}}
K

.

Here we define the expression {{N}}K to be N if N > K and 0 otherwise
— hence K functions as a “threshold” below which contributions are ignored.

Hierarchy paths. In fact, the distance formula of Theorem 1.5 is a conse-
quence of a construction in [MM2] of a class of quasi-geodesics in M(S) which
we call hierarchy paths, and which have the following properties.

Any two points μ, ν ∈ M(S) are connected by at least one hierarchy
path γ. Each hierarchy path is a quasi-geodesic, with constants depending
only on the topological type of S. The path γ “shadows” a C(S)-geodesic β

joining base(μ) to base(ν), in the following sense: There is a monotonic map
v : γ → β, such that v(γn) is a vertex in base(γn) for every γn in γ.

(Note: the term “hierarchy” refers to a long combinatorial construction
which yields these paths, and whose details we will not need to consider here.)

Furthermore the following criterion constrains the makeup of these paths.
It asserts that subsurfaces of S which “separate” μ from ν in a significant way
must play a role in the hierarchy paths from μ to ν:

Lemma 1.6. There exists a constant M2 = M2(S) such that, if W is an
essential subsurface of S and dC(W )(μ, ν) > M2, then for any hierarchy path
γ connecting μ to ν, there exists a marking γn in γ with [∂W ] ⊂ base(γn).
Furthermore there exists a vertex v in the geodesic β shadowed by γ such that
W ⊂ S \ v.

This follows directly from Lemma 6.2 of [MM2].

Marking projections. We have already defined two types of subsurface
projections; we end by mentioning one more which we shall use frequently.
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Given a subsurface Y ⊂ S, we define a projection

πM(Y ) : M(S) → M(Y )

using the following procedure: If Y is an annulus M(Y ) = C(Y ), we let
πM(Y ) = πC(Y ). For nonannular Y : given a marking μ we intersect its base
curves with Y and choose a curve α ∈ πY (μ). We repeat the construction
with the subsurface Y \ α, continuing until we have found a maximal simplex
in C(Y ). This will be the base of πM(Y )(μ). The transversal curves of the
marking are obtained by projecting μ to each annular complex of a base curve,
and then choosing a transversal curve which minimizes distance in the annular
complex to this projection. (In case a base curve of μ already lies in Y , this
curve will be part of the base of the image, and its transversal curve in μ will
be used to determine the transversal for the image.)

This definition involved arbitrary choices, but it is shown in [Be] that the
set of all possible choices form a uniformly bounded diameter subset of M(Y ).
Moreover, it is shown there that:

Lemma 1.7. πM(Y ) is coarsely Lipschitz with uniform constants.

Similarly to the case of curve complex projections, we write dM(Y )(μ, ν)
as shorthand for dM(Y )(πM(Y )(μ), πM(Y )(ν)).

1.4. Asymptotic cones. The asymptotic cone of a metric space is roughly
defined to be the limiting view of that space as seen from an arbitrarily large
distance. This can be made precise using ultrafilters:

By a (nonprincipal) ultrafilter we mean a finitely additive probability
measure ω defined on the power set of the natural numbers and taking values
only 0 or 1, and for which every finite set has zero measure. The existence
of nonprincipal ultrafilters depends in a fundamental way on the Axiom of
Choice.

Given a sequence of points (xn) in a topological space X, we say x ∈ X

is its ultralimit, or x = limω xn, if for every neighborhood U of x the set
{n : xn ∈ U} has ω-measure equal to 1. We note that ultralimits are unique
when they exist, and that when X is compact every sequence has an ultralimit.

The ultralimit of a sequence of based metric spaces (Xn, xn,distn) is de-
fined as follows: Using the notation y = (yn ∈ Xn) ∈ Πn∈NXn to denote a
sequence, define dist(y,z) = limω(yn, zn), where the ultralimit is taken in the
compact set [0,∞]. We then let

lim
ω

(Xn, xn,distn) ≡ {y : dist(y,x) < ∞}/ ∼,

where we define y ∼ y′ if dist(y,y′) = 0. Clearly dist makes this quotient into
a metric space.
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Given a sequence of positive constants sn → ∞ and a sequence (xn) of
basepoints in a fixed metric space (X, dist), we may consider the rescaled space
(X, xn,dist/sn). The ultralimit of this sequence is called the asymptotic cone
of (X, dist) relative to the ultrafilter ω, scaling constants sn, and basepoint
x = (xn):

Coneω(X, (xn), (sn)) = lim
ω

(X, xn,
dist
sn

).

(For further details see [dDW], [Gro1].)

For the remainder of the paper, let us fix a nonprincipal ultrafilter ω, a
sequence of scaling constants sn → ∞, and a basepoint μ0 for M(S). We write
Mω = Mω(S) to denote an asymptotic cone of M(S) with respect to these
choices. Note that since M is quasi-isometric to a word metric on MCG, the
space Mω is homogeneous and thus the asymptotic cone is independent of the
choice of basepoint. Further, since on a given group any two finitely generated
word metrics are quasi-isometric, fixing an ultrafilter and scaling constants we
have that different finitely generated word metrics on MCG have bi-Lipschitz
homeomorphic asymptotic cones. Also, we note that in general the asymptotic
cone of a geodesic space is a geodesic space. Thus, Mω is a geodesic space,
and in particular is locally path connected.

Any essential connected subsurface W inherits a basepoint πM(W )(μ0),
canonical up to bounded error by Lemma 1.7, and we can use this to define
its asymptotic cone Mω(W ). For a disconnected subsurface W = �k

i=1Wi we
have M(W ) = Πk

i=1M(Wi) and we may similarly construct Mω(W ) which
can be identified with Πk

i=1Mω(Wi) (this follows from the general fact that
the process of taking asymptotic cones commutes with finite products). Note
that for an annulus A we’ve defined M(A) = C(A) which is quasi-isometric to
Z, so that Mω(A) is R.

It will be crucial to generalize this to sequences of subsurfaces in S. Let us
note first the general fact that any sequence in a finite set A is ω-a.e. constant.
That is, given (an ∈ A) there is a unique a ∈ A such that ω({n : an = a}) = 1.
Hence for example if W = (Wn) is a sequence of essential subsurfaces of S then
the topological type of Wn is ω-a.e. constant and we call this the topological
type of W . Similarly the topological type of the pair (S, Wn) is ω-a.e. constant.
We can moreover interpret expressions like U ⊂ W for sequences U and W

of subsurfaces to mean Un ⊂ Wn for ω-a.e. n, and so on. We say that two
sequences (αn), (α′

n) are equivalent mod ω if αn = α′
n for ω-a.e. n, and note

that topological type, containment, etc. are invariant under this equivalence
relation. Throughout, we adopt the convention of using boldface to denote
sequences. We will always consider such sequences mod ω, unless they are
sequences of markings μ ∈ Mω, in which case they are considered modulo the
weaker equivalence ∼ from the definition of asymptotic cones.
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If W = (Wn) is a sequence of subsurfaces, we let Mω(W ) denote the ultra-
limit of M(Wn) with metrics rescaled by 1

sn
and with basepoints πM(Wn)(μ0).

Note that Mω(W ) can be identified with Mω(W ), where W is a surface home-
omorphic to Wn for ω-a.e. n.

2. Product regions

In this section we will describe the geometry of the set of markings con-
taining a prescribed set of base curves. Equivalently, in the mapping class
group such a set corresponds to the coset of the stabilizer of a simplex in
the complex of curves. Not surprisingly, these regions coarsely decompose as
products.

Let Δ be a simplex in the complex of curves, i.e., a multicurve in S. We
may partition S into subsurfaces isotopic to complementary components of Δ,
and annuli whose cores are elements of Δ. After throwing away components
homeomorphic to S0,3 we obtain what we call the “partition” of Δ, and denote
it by σ(Δ).

Let Q(Δ) ⊂ M(S) denote the set of markings whose bases contain Δ.
There is a natural (coarse) identification

Q(Δ) ≈
∏

U∈σ(Δ)

M(U)(2.1)

where if U is an annulus we take M(U) to mean the annulus complex of U . This
identification is obtained simply by restriction (or equivalently by subsurface
projection) for each nonannulus component, and by associating transversals
with points in annulus complexes for the annular components.

Theorem 1.5 yields the following basic lemmas. When A is a subsurface
and B is a collection of curves, we write A � B �= ∅ to mean that B cannot be
deformed away from A.

Lemma 2.1. The identification (2.1) is a quasi-isometry with uniform
constants.

Lemma 2.2. If μ ∈ M(S) then

d(μ,Q(Δ)) ≈
∑

W�Δ �=∅

{{
dC(W )(μ,Δ)

}}
K

.

Proof of Lemma 2.1. If μ, ν ∈ Q(Δ), the distance formula in Theorem 1.5
gives

d(μ, ν) ≈
∑
W

{{
dC(W )(μ, ν)

}}
K

where the constants in ≈ depend on the threshold K. Now if W � Δ �= ∅, then
Remark 1.3 implies that πW (μ) and πW (ν) are each a bounded distance from
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πW (Δ), and hence the W term in the sum is bounded by twice this. Raising K

above this constant means that all such terms vanish and the sum is only over
surfaces W disjoint from Δ, or annuli whose cores are components of Δ. But
this is estimated by the distance in

∏
U∈σ(Δ) M(U), when we use Theorem 1.5

in each U separately.

Proof of Lemma 2.2. Let μ ∈ M(S). For any ν ∈ Q(Δ), we note that, if
W � Δ �= ∅, then

|dC(W )(μ, ν) − dC(W )(μ,Δ)| ≤ c

for some constant c, by Remark 1.3. If K0 is the minimal threshold that can
be used in the distance formula of Theorem 1.5, let K = K0 +2c. We then see
that for any W contributing to the sum∑

W�Δ �=∅

{{
dC(W )(μ,Δ)

}}
K

we must have
dC(W )(μ, ν) ≥ dC(W )(μ,Δ) − c > K0

and, since our choice of K yields 1
2dC(W )(μ,Δ) > c, we furthermore have

dC(W )(μ, ν) ≥ 1
2dC(W )(μ,Δ).

It follows then that∑
W

{{
dC(W )(μ, ν)

}}
K0

≥
∑

W�Δ �=∅

{{
dC(W )(μ, ν)

}}
K0

≥ 1
2

∑
W�Δ �=∅

{{
dC(W )(μ,Δ)

}}
K

.

This gives one direction of the desired inequality.
To obtain the other direction, we fix μ ∈ M(S) and let ν ∈ Q(Δ) be

the marking whose restriction to each U ∈ σ(Δ) is just πM(U)(μ). With this
choice,

dC(W )(μ, ν) ≤ c

for a uniform constant c whenever W � Δ = ∅, since the intersections of μ and
ν with W are essentially the same. Setting our threshold K ≥ K0 + 2c again
we see that these terms all vanish, and∑

W

{{
dC(W )(μ, ν)

}}
K

=
∑

W�Δ �=∅

{{
dC(W )(μ, ν)

}}
K

≤ 2
∑

W�Δ �=∅

{{
dC(W )(μ,Δ)

}}
K0

where the last inequality is obtained using the same threshold trick as above
(we can assume it is the same value of c).
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Product regions in the asymptotic cone. Consider a sequence Δ = {Δn}
such that limω

1
sn

d(μ0,Q(Δn)) < ∞. We can take the ultralimit of Q(Δn),
with metrics rescaled by 1/sn, obtaining a subset of Mω(S) which we denote
Qω(Δ). Lemma 2.1 and the fact that ultralimits commute with finite products
implies that there is a bi-Lipschitz identification

Qω(Δ) ∼=
∏

U∈σ(Δ)

Mω(U).(2.2)

Here σ(Δ) is defined as follows: As in Section 1.4, the topological type of
σ(Δn) is ω-a.e. constant, and so there is a set J ⊂ N with ω(J) = 1, a partition
σ′ = {U1, . . . , Uk} of S, and a sequence of homeomorphisms fn : S → S taking
σ′ to σ(Δn) for each n ∈ J . We then let σ(Δ) = {U1, . . . ,Uk} where U i =
(fn(U i)) for n ∈ J (it doesn’t matter, mod ω, how we define it for n /∈ J).
Any nonuniqueness of fn, up to isotopy, corresponds to a symmetry of σ′, and
hence to a permutation of the indices of elements of σ(Δ).

Moreover, Lemma 2.2 implies that distance to Qω(Δ) can be estimated,
up to bounded ratio, by:

ρ(μ,Δ) ≡ lim
ω

1
sn

∑
W�Δn �=∅

{{
dC(W )(μn,Δn)

}}
K

.(2.3)

3. Separating product regions and locally constant maps

In this section we will define the family of product regions equipped with
locally constant maps (denoted as P in the outline in the introduction). Each
region will be determined by a sequence W = (Wn) of connected subsurfaces of
S, and a choice x = (xn) of basepoint in Mω(W ). Theorem 3.5, which defines
the projection map associated to each region and establishes its properties, is
the main result of this section.

3.1. Sublinear growth sets. In Behrstock [Be], a family of subsets of Mω(S)
is introduced, and defined as follows: for x ∈ Mω(S), let

F (x) =

{
y : lim

ω

1
sn

sup
U�S

dM(U)(xn, yn) = 0

}
.

That is, the distance between xn and yn, projected to the marking graph of any
proper subsurface, is vanishingly small compared to their distance in M(S).
We note that, because the subsurface projections are uniformly Lipschitz, this
condition is well-defined, i.e., does not depend on the choice of yn represent-
ing y.

Behrstock proved that F (x) is an R-tree, and more strongly that for any
two points in F (x) there is a unique embedded arc in Mω(S) connecting them.
We can generalize this construction slightly as follows:
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First, for a sequence U = (Un) of connected subsurfaces and x,y ∈
Mω(S) we have

dMω(U)(x,y) = lim
ω

1
sn

dM(Un)(xn, yn).

Now if W = (Wn) is a sequence of connected subsurfaces (considered mod ω)
and x ∈ Mω(W ), we define FW ,x ⊂ Mω(W ) to be:

FW ,x = {y ∈ Mω(W ) : dMω(U)(x,y) = 0 for all U � W }.
If Wn ≡ S, this is equivalent to the definition of F (x) above. Note also that if
W = collar(α) then FW,x is just the asymptotic cone of the annulus complex
of W , which is a copy of R.

Let us restate and discuss Behrstock’s theorem from [Be]:

Theorem 3.1. Let W = (Wn) be a sequence of connected subsurfaces
of S, and x ∈ Mω(W ). Any two points y,z ∈ FW ,x are connected by a
unique embedded path in Mω(W ), and this path lies in FW ,x.

In particular, it follows that FW,x is an R-tree. Here is a brief outline of
the proof: The annular case is trivial because FW ,x = Mω(W ) ∼= R. Hence,
we assume Wn are not annuli for ω-a.e. n. In each Wn, connect yn to zn with
a hierarchy path γn (see §1.3). Since γn are uniform quasi-geodesics, after
rescaling, their ultralimit gives a path γ in Mω(W ). Using the tools of [MM2]
together with the assumption that y,z ∈ FW,x, one can show that γ lies in
FW,x.

Let βn be a C(Wn)-geodesic shadowed by γn. One can see that the length
|βn| →ω ∞ as follows: Suppose instead that |βn| < L for ω-a.e. n. Choose the
threshold in the distance formula large enough so that the nonzero terms in∑

V ⊂Wn

{{
dC(V )(yn, zn)

}}
K

are proper subsurfaces in Wn which play the role in γn determined by Lemma
1.6 — that is, each one is disjoint from some v ∈ βn. But since βn has at most
L vertices, there must be one, vn, which is disjoint from enough surfaces to
contribute at least 1/L times the sum. But this means, by the distance formula
within Yn = S \ vn, that dMω(Y )(y,z) > 0, which contradicts the assumption
that y,z ∈ FW ,x.

Consider the map pn : M(Wn) → βn which takes a marking μ to a vertex
v ∈ βn of minimal C(Wn)-distance to the base of μ. We promote pn to a
map qn : M(Wn) → γn by letting qn(μ) be a marking of γn which shadows
v = pn(μ).

The ultralimit of qn yields a map q : Mω(W ) → γ ⊂ FW ,x. Furthermore
one can show using hyperbolicity of C(Wn) (Masur-Minsky [MM1]) and proper-
ties of the subsurface projection maps that qn has coarse contraction properties
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that, in the limit, imply that q is locally constant in the complement of γ. It
then easily follows that y and z cannot be connected in the complement of
any point of γ, and hence any path between them must contain γ, and any
embedded path must equal γ.

3.2. Definition of PW ,x. Given W and x as above, our separating product
regions, denoted PW ,x, will be subsets of Qω(∂W ) defined as follows:

In the product structure (2.2) for Qω(∂W ), W is a member of σ(∂W ),
and hence Mω(W ) appears as a factor. We let PW ,x be the subset of Qω(∂W )
consisting of points whose coordinate in the Mω(W ) factor lies in FW ,x.

Since the identification of Qω(∂W ) with the product structure is made
using the subsurface projections, we have this characterization:

Lemma 3.2. PW ,x is the set of points y ∈ Mω(S) such that :

(1) πMωW (y) ∈ FW ,x, and

(2) ρ(y, ∂W ) = 0.

Here ρ(y, ∂W ) is an estimate for the distance of y from Qω(∂W ), as
defined in (2.3). Also, the ultralimit of the rescaled marking projection maps
M(S) → M(Wn) is denoted by:

πMωW : Mω(S) → Mω(W ).

Define W c
n to be the union of the components of σ(∂Wn) not equal to

Wn (so W c
n includes annuli around ∂Wn, unless Wn itself is an annulus). Let

W c = (W c
n). Then Mω(W c) is the asymptotic cone of (M(W c

n)), and can be
identified with the product of the remaining factors in Qω(∂W ):

Mω(W c) ≡
∏

U∈σ(∂W )
U �=W

Mω(U).

We can summarize this in the following:

Lemma 3.3. There exists a bi-Lipschitz identification of PW ,x with

FW ,x ×Mω(W c).

3.3. Projection maps. The following projection theorem is a small im-
provement on Theorem 3.1 from Behrstock [Be].

Theorem 3.4. Given x ∈ Mω(W ), there is a continuous map

℘ = ℘W ,x : Mω(W ) → FW ,x

with these properties:
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(1) ℘ is the identity on FW ,x.

(2) ℘ is locally constant in Mω(W ) \ FW ,x.

Note that in the proof of Theorem 3.1 a projection to individual paths
was shown to have locally constant properties. In this theorem we construct a
projection from Mω(W ) onto FW,x.

Proof. For any y ∈ Mω(W ) let α be a path connecting y to any point
in FW ,x. Let α1 be the first point in α that is in FW ,x. We claim that α1

depends only on y. For otherwise let β be another path with β1 �= α1. Then
segments of α and β form a path connecting two points of FW ,x outside of
FW ,x — this contradicts Theorem 3.1.

We can then define ℘(y) ≡ α1. This is locally constant at y /∈ FW ,x

because for a sufficiently small neighborhood U of y, every z ∈ U can be
connected to FW ,x by a path going first through y (since Mω(W ) is locally
path-connected).

Continuity of ℘ at points of FW ,x follows immediately from the definition
of ℘ and the fact that Mω(W ) is a locally path connected geodesic space.

We can now construct our global projection map for FW ,x:

Theorem 3.5. Given x ∈ Mω(W ), there is a continuous map

Φ = ΦW ,x : Mω(S) → FW ,x

with these properties:

(1) Φ restricted to PW ,x is projection to the first factor in the product struc-
ture PW ,x

∼= FW ,x ×Mω(W c).

(2) Φ is locally constant in the complement of PW ,x.

Proof. We define the map simply by

ΦW ,x = ℘W ,x ◦ πMωW .

Property (1) follows from the definition, and from the way that the identifi-
cation of PW ,x with the product in Lemma 3.3 is constructed via subsurface
projections.

We divide the proof of property (2) into two cases:

Case 1. πMωW (y) /∈ FW ,x. In this case the desired fact follows immedi-
ately from the locally constant property of ℘ shown in Theorem 3.4, and the
continuity of πMωW .

Case 2. πMωW (y) ∈ FW ,x. Since y /∈ PW ,x and πMωW (y) ∈ FW ,x,
Lemma 3.2 implies that ρ(y, ∂W ) > 0.
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Let z ∈ Mω(S), with Φ(z) �= Φ(y). We will derive a lower bound for
d(y,z), and this will prove the theorem.

Let z′ = πMωW (z) and y′ = πMωW (y). Since Case 1 has already been
handled, we may assume y′ ∈ FW ,x, so that y′ = ℘(y′) = Φ(y). As in
Theorem 3.4, any path from z′ to y′ must pass through ℘(z′) first. Note that
℘(z′) = Φ(z) �= y′. Now let γn be hierarchy paths in M(Wn) connecting z′n to
y′n. Since γn are quasigeodesics, their ultralimit after rescaling gives rise to a
path in Mω(W ) connecting z′ to y′ and hence there must exist δn ∈ γn such
that (δn) represents ℘(z′). As remarked in the outline of the proof of Theorem
3.1, dC(Wn)(δn, y′n) →ω ∞ since ℘(z′) and y′ are distinct points in FW ,x. Now
since γn monotonically shadows a C(Wn) geodesic from z′n to y′n, we conclude
that

dC(Wn)(y
′
n, z′n) →ω ∞.

Since πC(Wn) ◦ πM(Wn) and πC(Wn) differ by a bounded constant (immediate
from the definitions), we conclude that

dC(Wn)(yn, zn) →ω ∞.

Now by the definition of ρ(y, ∂W ), we know that
1
sn

∑
U�∂Wn �=∅

{{
dC(U)(yn, ∂Wn)

}}
K

→ω c > 0.(3.1)

Let U be a subsurface participating in this sum for some n, so that dC(U)(yn, ∂Wn)
> K. We want to show that

dC(U)(yn, zn) ≥ dC(U)(yn, ∂Wn) − K ′(3.2)

for some K ′.
We assume that K is larger than the constant M1 from Theorem 1.4, and

recall that this theorem states that

min{dC(V )(μ, ∂V ′), dC(V ′)(μ, ∂V )} ≤ M1(3.3)

for any marking μ and subsurfaces V, V ′ with ∂V � ∂V ′ �= ∅.
Since U meets ∂Wn, we have either ∂U � Wn �= ∅, in which case the

subsurfaces Wn and U overlap, or Wn � U .
Suppose first that ∂U � Wn �= ∅. Now we have dC(U)(yn, ∂Wn) > K > M1,

since Wn and U overlap and (3.3) implies

dC(Wn)(yn, ∂U) ≤ M1.

Now by the triangle inequality

dC(Wn)(∂U, zn) ≥ dC(Wn)(yn, zn) − M1 − D

(where D is a bound for diamC(Wn)(μ) of any marking, as given by Remark 1.3).
Since dC(Wn)(yn, zn) →ω ∞, we may assume that this gives

dC(Wn)(∂U, zn) > M1.
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Now again by (3.3) we have

dC(U)(∂Wn, zn) ≤ M1

and again by the triangle inequality

dC(U)(yn, zn) ≥ dC(U)(yn, ∂Wn) − M1 − D

which establishes (3.2) when ∂U � Wn �= ∅.
Next, let us establish (3.2) when Wn � U . Since dC(Wn)(yn, zn) →ω ∞, we

may assume that this distance is larger than the constant M2 in Lemma 1.6.
Let γn be a hierarchy path in M(U) connecting πMU (yn) to πMU (zn), and
let βn be the C(U)-geodesic from πC(U)(yn) to πC(U)(zn) that γn shadows.
Lemma 1.6 implies that ∂Wn appears in the base of at least one marking
in γn, and hence [∂Wn] is C(U)-distance at most one from a vertex of βn. This
means that the length of βn is at least dC(U)(∂Wn, yn) − 2, in particular:

dC(U)(zn, yn) ≥ dC(U)(yn, ∂Wn) − 2.

Thus, we have established (3.2) with K ′ = max{M1 + D, 2}.
Now applying this to all the terms in the sum of (3.1), we would like to

obtain a lower bound (for ω-a.e. n)

1
sn

∑
U�∂Wn �=∅

{{
dC(U)(yn, zn)

}}
K

> c′ > 0.(3.4)

To do this we apply the same threshold trick we used in the proof of Lemma
2.2. Since Theorem 1.5 applies to any sufficiently large threshold, we may
choose K ′′ = 2K ′ + K to replace the threshold K in the sum in (3.1), and
obtain

1
sn

∑
U�∂Wn �=∅

{{
dC(U)(yn, ∂Wn)

}}
K′′ →ω c′ > 0.(3.5)

Now, for a given, n if U contributes to this sum then by (3.2), we have
dC(U)(yn, zn) ≥ K ′′ − K ′ > K, and moreover

dC(U)(yn, zn) ≥ dC(U)(yn, ∂Wn) − K ′ ≥ 1
2dC(U)(yn, ∂Wn).

This implies that∑
U�∂Wn �=∅

{{
dC(U)(yn, zn)

}}
K

≥ 1
2

∑
U�∂Wn �=∅

{{
dC(U)(yn, ∂Wn)

}}
K′′ .

In other words, again by the distance formula, this gives us a lower bound of
the form

dMω(S)(y,z) > c′′ > 0.

The conclusion is that if d(y,z) < c′′ then Φ(y) = Φ(z), which is what we
wanted.
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3.4. Separators. In [Be], it was shown that mapping class groups have
global cut-points in their asymptotic cones; cf. Theorem 3.1. Since mapping
class groups are not δ-hyperbolic, except in a few low complexity cases, it
clearly cannot hold that arbitrary pairs of points in the asymptotic cone are
separated by a point. Instead we identify here a larger class of subsets which
do separate points:

Theorem 3.6. There is a family L of closed subsets of Mω(S) such that
any two points in Mω(S) are separated by some L ∈ L. Moreover each L ∈
L is isometric to Mω(Z), where Z is some proper essential (not necessarily
connected) subsurface of S, with r(Z) < r(S).

We will see as part of an inductive argument in the next section that
these separators L all have (locally compact) dimension at most r(S)− 1; this
bound is sharp since Mω contains r(S)-dimensional bi-Lipschitz flats which,
of course, can not be separated by any subset of dimension less than r(S)− 1.

Proof. Fix x �= y ∈ Mω(S). We claim that there exists a subsurface
sequence W = (Wn) such that:

(1) dMω(W )(x,y) > 0, and

(2) For any Y = (Yn) with Y � W , dMω(Y )(x,y) = 0.

Indeed, W = (S) satisfies the first condition. If it fails the second, we may
choose W ′ � W with dMω(W ′)(x,y) > 0, and continue. This terminates since
the complexity of the subsurface sequence decreases.

Let x′ = πMωW (x) and y′ = πMωW (y). The choice of W implies that
x′ �= y′ and that y′ ∈ FW ,x′ . (Note that the second condition implies FW ,x′ =
FW ,y′ .) Let z be a point in FW ,x′ in the interior of the path from x′ to y′.
Since FW ,x′ is an R-tree (by Theorem 3.1), z separates x′ from y′ in FW ,x′ .

Let L be the subset of PW ,x′ identified with {z}×Mω(W c) by Lemma 3.3.
Certainly L separates PW ,x′ . We claim L also separates Mω(S), with x and
y on different sides. This follows immediately from Theorem 3.5:

Recall the map Φ = ΦW ,x′ : Mω(S) → FW ,x′ , and, also, that x′ =
Φ(x) and y′ = Φ(y). Divide FW ,x′ \ {z} into two disjoint open sets Ex
and Ey containing x′ and y′, respectively. Φ−1(Ex) and Φ−1(Ey) are open
sets containing x and y respectively. The remainder Φ−1({z}) consists of
L union an open set V , by the locally constant property. Hence we have
divided Mω(S) \L into three disjoint open sets two of which contain x and y

respectively. This proves L separates x and y.
The construction exhibits L as an asymptotic cone Mω(W c), from which

it follows that L is closed (cf. [dDW]). Since the topological type of W c is
ω-a.e. constant, this is isometric to Mω(W c) for some fixed surface W c.
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4. The dimension theorem

In this section we will apply the separation Theorem 3.6 to prove the main
theorem on dimension in Mω(S). We begin with some terminology:

Historically, topologists have studied three different versions of dimension:
small inductive dimension, ind, large inductive dimension, Ind, and covering
dimension, dim (the covering dimension is also called the topological dimen-
sion). Dimension theory grew out of the development of these various defi-
nitions and studies the interplay and applications of the various versions of
dimension [Eng2]. For a topological space X, let înd(X) denote the supremum
of ind(X ′) over all locally compact subsets X ′ ⊂ X, and similarly define Înd
and d̂im. Restating our main theorem, we have:

Theorem 4.1. înd(Mω(S)) = Înd(Mω(S)) = d̂im(Mω(S)) = r(S).

The Rank Conjecture follows immediately as a corollary, since Rn is locally
compact and ind(Rn) = n.

4.1. Separation and dimension. We will work with inductive dimension,
which we define below. Equivalence of the different dimensions in our setting
is provided by

Lemma 4.2. For a metric space X, d̂im(X) = înd(X) = Înd(X).

Proof. This is essentially an appeal to the literature. First note the
following standard topological facts:

(1) every metric space is paracompact;

(2) a locally compact space is paracompact if and only if it is strongly para-
compact [Eng1, p. 329].

Engelking shows [Eng2, p. 220] that if Y is a strongly paracompact metrizable
space, then ind(Y ) = Ind(Y ) = dim(Y ). Thus, if X ′ ⊂ X is a locally compact
subset, then ind(X ′) = Ind(X ′) = dim(X ′). Taking the supremum over locally
compact subsets finishes the proof.

To prove Theorem 4.1 we provide a lemma reducing this result to The-
orem 3.6. First we recall the definition of the small inductive dimension:
ind(∅) = −1 and for any X, ind(X) = n if n is the smallest number such that
for all x ∈ X and neighborhood V of x, there exists a neighborhood x ∈ U ⊂ V

such that ind(∂U) ≤ n−1. Here ∂U is the topological frontier of U in Y . (See
[Eng2] for further details.)

Lemma 4.3. If X is a metric space for which every pair of points can
be separated by a closed subset L ⊂ X with înd(L) ≤ D − 1, then înd(X) =
Înd(X) = d̂im(X) ≤ D.
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Proof. By Lemma 4.2, we may henceforth restrict our attention to the
small inductive dimension.

Let X ′ be a locally compact subset of X. Fixing x ∈ X ′, consider any ε-
ball B about x in the induced metric on X ′, where ε is assumed to be sufficiently
small so that local compactness of X ′ implies ∂B is compact. For any y ∈ ∂B,
let L be a closed separator of x and y, with înd(L) ≤ D − 1, as provided by
hypothesis. Since X ′ is locally compact, L′ = X ′ ∩ L has ind(L′) ≤ D − 1.
The separation property means that X ′ \ L′ is the union of a pair of disjoint
open subsets of X ′, Wy and Vy, such that x ∈ Wy and y ∈ Vy. Since ∂B

is compact, we may extract a finite subcover of the covering {Vy} of ∂B,
which we relabel V1, . . . , Vn, with corresponding separators L1, . . . , Ln and
complementary W1, . . . , Wn. Then ∪L′

i separates x from ∂B. More precisely,
let W = ∩Wi and V = ∪Vi. (In case ∂B = ∅, let W = X ′ and V = ∅.) These
are disjoint open sets with x ∈ W, ∂B ⊂ V, and ∂W ⊂ ∪L′

i.
Now let U = W∩B. This is an open set, contained in B, whose boundary

is contained in ∪L′
i (since it cannot meet ∂B which lies in V). Since ind is

preserved by finite unions and monotonic with respect to inclusion, we have
ind(∂U) ≤ D − 1, which is what we wanted to prove.

4.2. Proof of the dimension theorem. We can now complete the proof of
Theorem 4.1, by induction on r(S).

Note that the lower bound înd(Mω(S)) ≥ r(S) is immediate since max-
imal abelian subgroups give quasi-isometrically embedded r(S)-flats [FLM].
We now prove the upper bound.

When r(S) = 1, S is S1,1, S0,4 or S0,2. The asymptotic cones for the
first two are the asymptotic cone for SL(2, Z) which is known to be an R-tree.
In the third case we really have in mind the annulus complex of an essential
annulus, for which the asymptotic cone is just R. Since înd = 1 is well known
for R-trees, the theorem holds in this case.

Theorem 3.6 provides for each x, y ∈ Mω(S) a separator, L, which is
homeomorphic to Mω(W c), where W is an essential subsurface of S. Since
r is additive over disjoint unions and r(W ) ≥ 1, we have r(W c) ≤ r(S) − 1.
Thus by induction înd(L) ≤ r(S)− 1. (We can apply the inductive hypothesis
to each component of W c, and use subadditivity of ind over finite products,
see [Eng2], and additivity of r over disjoint unions.)

Thus we have satisfied the hypotheses of Lemma 4.3 for Mω(S), and
Theorem 4.1 follows.

5. Teichmüller space

In this section we deduce analogues of the results in the earlier sections for
Teichmüller space with the Weil-Petersson metric. As shown in Brock [Bro],
there is a combinatorial model for the Weil-Petersson metric on Teichmüller
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space provided by the pants graph. The combinatorial analysis as carried out
above for the mapping class group can be done similarly in the pants graph,
(cf. [MM2, §8]). Using Brock’s result, we deduce the results below about
Teichmüller space, while working only with the pants graph.

The rank statement we obtain below is also obtained, for S2,0, by Brock-
Masur [BM], as a consequence of an analysis of the special properties of quasi-
geodesics in the pants graph for the genus 2 case.

Recall that the Teichmüller space of a topological surface is the deforma-
tion space of finite area hyperbolic structures which can be realized on that
surface. Teichmüller space has many natural metrics, here we consider the
Weil-Petersson metric which is a Kähler metric with negative sectional curva-
ture.

Definition 5.1. The pants graph of S is a simplicial complex, P(S), with
the following simplices:

(1) Vertices: one vertex for each pants decomposition of S, i.e., a top di-
mensional simplex in C(S).

(2) Edges: connect two pants decompositions by an edge if they agree on all
but one curve, and those curves differ by an edge in the curve complex of
the complexity one subsurface (complementary to the rest of the curves)
in which they lie.

The following result of Brock [Bro] allows us to work with the pants graph
in our study of Teichmüller space.

Theorem 5.2. P(S) is quasi-isometric to the Teichmüller space of S with
the Weil-Petersson metric.

An important remark recorded in [MM2] is that the pants graph is ex-
actly what remains of the marking complex when annuli (and hence transverse
curves) are ignored. Hence, one obtains the following version of Theorem 1.5:

Theorem 5.3. If μ, ν ∈ P(S), then there exists a constant K(S), depend-
ing only on the topological type of S, such that for each K > K(S) there exists
a ≥ 1 and b ≥ 0 for which:

dP(S)(μ, ν) ≈a,b

∑
nonannularY⊆S

{{
dC(Y )(πY (μ), πY (ν))

}}
K

.

We note that in [Be], analogues of both Theorems 1.4 and 3.1 are proved
to hold for the pants graph of any surface of finite type. Further, by the
above heuristic argument about ignoring annuli, one obtains product regions
as produced for the mapping class group in Section 2. Again these product
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regions are quasi-isometrically embedded with uniform constants; in the pants
graph the identification is:

QP(S)(Δ) ∼=
∏

nonannularU∈σ(Δ)

P(U).(5.1)

This identification leads to the main difference between the case of the pants
graph and the mapping class group; namely, one obtains different counts of
how many distinct factors occur on the right-hand side of the above equation.
In the mapping class group, this number is 3g + p − 3, whereas in the case of
the pants graph, the count is easily verified to be �3g+p−2

2 �.
As in the case of the mapping class group, one obtains:

Lemma 5.4. If μ ∈ P(S) then

d(μ, QP(S)(Δ)) ≈
∑

W�Δ �=∅
W nonannular

{{
dC(W )(μ,Δ)

}}
K

.

The remainder of the argument is completed as for the mapping class
group, except for the count on the dimension of the separators. In the pants
graph one obtains:

Lemma 5.5. For any two points x, y ∈ Pω there exists a closed set L ⊂ Pω

which separates x from y, and such that înd(L) ≤ �3g+p−2
2 � − 1.

Thus, we have shown:

Dimension theorem for Teichmüller space. Every locally compact
subset of an asymptotic cone of Teichmüller space with the Weil-Petersson
metric has topological dimension at most �3g+p−2

2 �.
The Rank Theorem for Teichmüller space now follows just as for the map-

ping class group.
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[DS] C. Druţu and M. Sapir, Tree-graded spaces and asymptotic cones of groups, Topology
44 (2005), 959–1058, with an appendix by Denis Osin and Mark Sapir.

[Eng1] R. Engelking, General Topology, Sigma Series in Pure Math. 6, second edition,
Heldermann Verlag, Berlin, 1989, translated from the Polish by the author.

[Eng2] ———, Theory of Dimensions Finite and Infinite, Sigma Series in Pure Math. 10,
Heldermann Verlag, Lemgo, 1995.

[FLM] B. Farb, A. Lubotzky, and Y. Minsky, Rank-1 phenomena for mapping class groups,
Duke Math. J. 106 (2001), 581–597.

[Gro1] M. Gromov, Groups of polynomial growth and expanding maps, IHES Sci. Publ.
Math. 53 (1981), 53–73.

[Gro2] ———, Infinite groups as geometric objects, in Proc. of the International Congress
of Mathematicians, Warsaw, 385–392, Amer. Math. Soc., Providence, RI, 1983.
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