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An 8-dimensional nonformal,
simply connected, symplectic manifold

By Marisa Fernández and Vicente Muñoz

Abstract

We answer in the affirmative the question posed by Babenko and Taimanov
[3] on the existence of nonformal, simply connected, compact symplectic man-
ifolds of dimension 8.

1. Introduction

Simply connected compact manifolds of dimension less than or equal to 6
are formal [18], [11], and there are simply connected, compact manifolds of di-
mension greater than or equal to 7 which are nonformal [20], [10], [9], [6], [12].
If we are treating the symplectic case, the story is not so straightforward. Lup-
ton and Oprea [15] conjectured that any simply connected, compact symplectic
manifold is formal. Babenko and Taimanov [2], [3] disproved this conjecture
giving examples of nonformal, simply connected, compact symplectic manifolds
of any dimension bigger than or equal to 10, by using the symplectic blow-up
[16]. They raise the question of the existence of nonformal, simply connected,
compact, symplectic manifolds of dimension 8. The techniques of construction
of symplectic manifolds used so far [1], [3], [6], [7], [11], [14], [21], [22] have
not proved fruitful when addressing this problem. In this note, we answer the
question in the affirmative by proving the following.

Theorem 1.1. There is a simply connected, compact, symplectic manifold
of dimension 8 which is nonformal.

To construct such a manifold, we introduce a new technique to produce
symplectic manifolds, which we hope can be useful for obtaining examples
with interesting properties. We consider a nonformal, compact, symplectic
8-dimensional manifold with a symplectic nonfree action of a finite group such
that the quotient space is a nonformal orbifold which is simply connected.
Then we resolve symplectically the singularities to produce a smooth symplectic
8-manifold satisfying the required properties. The origin of the idea stems
from our study of Guan’s examples [13] of compact, holomorphic, symplectic
manifolds which are not Kähler.
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2. A simply-connected symplectic 8-manifold

Consider the complex Heisenberg group HC, that is, the complex, nilpo-
tent Lie group of complex matrices of the form⎛

⎝1 u2 u3

0 1 u1

0 0 1

⎞
⎠ ,

and let G = HC × C, where C is the additive group of complex numbers. We
denote by u4 the coordinate function corresponding to this extra factor. In
terms of the natural (complex) coordinate functions (u1, u2, u3, u4) on G, we
have that the complex 1-forms μ = du1, ν = du2, θ = du3−u2 du1 and η = du4

are left invariant, and

dμ = dν = dη = 0, dθ = μ ∧ ν.

Let Λ ⊂ C be the lattice generated by 1 and ζ = e2πi/3, and consider the
discrete subgroup Γ ⊂ G formed by the matrices in which u1, u2, u3, u4 ∈ Λ.
We define the compact (parallelizable) nilmanifold

M = Γ\G.

We can describe M as a principal torus bundle

T 2 = C/Λ ↪→ M → T 6 = (C/Λ)3,

by the projection (u1, u2, u3, u4) �→ (u1, u2, u4).
Now introduce the following action of the finite group Z3

ρ : G→G

(u1, u2, u3, u4) �→ (ζ u1, ζ u2, ζ
2 u3, ζ u4).

This action satisfies ρ(p ·q) = ρ(p) ·ρ(q), for p, q ∈ G, where the dot denotes the
natural group structure of G. The map ρ is a particular case of a homothetic
transformation (by ζ in this case) which is well defined for all nilpotent simply
connected Lie groups with graded Lie algebra. Moreover ρ(Γ) = Γ; therefore ρ

induces an action on the quotient M = Γ\G. The action on the forms is given
by

ρ∗μ = ζ μ, ρ∗ν = ζ ν, ρ∗θ = ζ2 θ, ρ∗η = ζ η.

The complex 2-form

ω = i μ ∧ μ̄ + ν ∧ θ + ν̄ ∧ θ̄ + i η ∧ η̄

is actually a real form which is clearly closed and which satisfies ω4 �= 0. Thus
ω is a symplectic form on M . Moreover, ω is Z3-invariant. Hence the space

M̂ = M/Z3

is a symplectic orbifold, with the symplectic form ω̂ induced by ω. Our next
step is to find a smooth symplectic manifold M̃ that desingularises M̂ .
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Proposition 2.1. There exists a smooth, compact, symplectic manifold
(M̃, ω̃) which is isomorphic to (M̂, ω̂) outside the singular points.

Proof. Let p ∈ M be a fixed point of the Z3-action. Translating by a group
element g ∈ G taking p to the origin, we may suppose that p = (0, 0, 0, 0) in
our coordinates. At p, the symplectic form is

ω0 = i du1 ∧ dū1 + du2 ∧ du3 + dū2 ∧ dū3 + i du4 ∧ dū4.

Take now Z3-equivariant Darboux coordinates around p,

Φ: (B, ω) −→ (BC4(0, ε), ω0),

for some ε > 0. This means that Φ∗ω0 = ω and Φ ◦ ρ = dρp ◦ Φ, where
we interpret (BC4(0, ε), ω0) ⊂ (TpM, ω0) ∼= (C4, ω0) in the natural way. (The
proof of the existence of usual Darboux coordinates in [17, pp. 91–93] carrries
over to this case, only we must be careful that all the objects constructed are
Z3-equivariant.) We denote the new coordinates given by Φ as (u1, u2, u3, u4)
again (although they are not the same coordinates as before).

Now introduce the new set of coordinates:

(w1, w2, w3, w4) = (u1,
1√
2
(u2 + ū3),

i√
2
(u3 − ū2), u4).

Then the symplectic form ω can be expressed as

ω = i (dw1 ∧ dw̄1 + dw2 ∧ dw̄2 + dw3 ∧ dw̄3 + dw4 ∧ dw̄4).

Moreover, with respect to these coordinates, the Z3-action ρ is given as

ρ(w1, w2, w3, w4) = (ζ w1, ζ w2, ζ
2 w3, ζ w4).

With this Kähler model for a neighbourhood B of p, we may resolve the
singularity of B/Z3 with a nonsingular Kähler model. Basically, blow up B

at p to get B̃. This replaces the point with a complex projective space P
3 in

which Z3 acts as

[w1, w2, w3, w4] �→ [ζ w1, ζ w2, ζ
2 w3, ζ w4] = [w1, w2, ζ w3, w4].

Therefore there are two components of the fix-point locus of the Z3-action on
B̃, namely the point q = [0, 0, 1, 0] and the complex projective plane H =

{[w1, w2, 0, w4]} ⊂ F = P
3. Next blow up B̃ at q and at H to get ˜̃

B. The point
q is substituted by a projective space H1 = P

3. The normal bundle of H ⊂ B̃ is
the sum of the normal bundle of H ⊂ F , which is OP2(1), and the restriction of
the normal bundle of F ⊂ B̃ to H, which is OP3(−1)|P2 = OP2(−1). Therefore
the second blow-up replaces the plane H by the P

1-bundle over P
2 defined as

H2 = P(OP2(−1) ⊕OP2(1)). The strict transform of F ⊂ B̃ under the second
blow-up is the blow up F̃ of F = P

3 at q, which is a P
1-bundle over P

2, actually
F̃ = P(OP2 ⊕OP2(1)). See Figure 1 below.
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Figure 1: Desingularisation process

The fix-point locus of the Z3-action on ˜̃
B are exactly the two disjoint

divisors H1 and H2. Therefore the quotient ˜̃
B/Z

3 is a smooth Kähler manifold
[4, p. 82]. This provides a symplectic resolution of the singularity B/Z3. To
glue this Kähler model to the symplectic form in the complement of the singular
point we use Lemma 2.2 below. We do this at every fixed point to get a smooth
symplectic resolution of M̂ . QED

Lemma 2.2. Let (B, ω0) be the standard Kähler ball in C
n, n > 1, and let

Π be a finite group acting linearly (by complex isometries) on B whose only
fixed point is the origin. Let φ : (B̃, ω1) → (B/Π, ω0) be a Kähler resolution of
the singularity of the quotient. Then there is a symplectic form Ω on B̃, which
coincides with ω0 near the boundary, with a positive multiple of ω1 near the
exceptional divisor E = φ−1(0). Moreover Ω is tamed by the complex structure.

Proof. Since φ : (B̃, ω1) → (B/Π, ω0) is holomorphic, ω0 and ω1 are
Kähler forms in B̃−E = B−{0} with respect to the same complex structure J .
Therefore (1 − t)ω0 + tω1 is a Kähler form on B̃, for any number 0 < t < 1.
(Note that ω0|E = 0, where we denote again by ω0 the pull-back to B̃.)

Fix δ > 0 small and let A = {z ∈ B | δ < |z| < 2δ} ⊂ B. Since A is
simply connected, we may write ω1 − ω0 = dα, with α ∈ Ω1(A), which we can
furthermore suppose Π-invariant.

Let ρ : [0,∞) → [0, 1] be a smooth function whose value is 1 for r ≤ 1.1δ

and 0 for r ≥ 1.9δ. Define

Ω = ω0 + ε d(ρ(|z|)α).

This equals ω0 for |z| ≥ 1.9δ, and ω0 + ε(ω1 − ω0) = (1 − ε)ω0 + ε ω1 for
|z| ≤ 1.1δ. For 1.1δ ≤ |z| ≤ 1.9δ, let C > 0 be a bound of d(ρα)(u, Ju), for
any u unitary tangent vector (with respect to the Kähler form ω0). Choose
0 < ε < min{1, C−1}. Then Ω(u, Ju) > 0 for any nonzero u. QED
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Proposition 2.3. The manifold M̃ is simply connected.

Proof. Fix the base points: let p0 ∈ M = Γ\G be the image of (0, 0, 0, 0)
∈ G and let p̂0 ∈ M̂ be the image of p0 under the projection M → M̂ . There
is an epimorphism of fundamental groups

Γ = π1(M) � π1(M̂),

since the Z3-action has a fixed point [5, Cor. 6.3]. Now the nilmanifold M is a
principal 2-torus bundle over the 6-torus T 6, and so we have an exact sequence

Z
2 ↪→ Γ → Z

6.

Let p̄0 = π(p0), where π : M → T 6 denotes the projection of the torus bundle.
Clearly, Z3 acts on π−1(p̄0) ∼= T 2 = C/Λ with three fixed points, and the
quotient space T 2/Z3 is a 2-sphere S2. So the restriction to Z

2 = π1(T 2) ⊂
π1(M) = Γ of the map Γ � π1(M̂) factors through π1(T 2/Z3) = {1}; hence it

is trivial. Thus the map Γ � π1(M̂) factors through the quotient Z
6 � π1(M̂).

But M contains three Z3-invariant 2-tori, T1, T2 and T3 (which are the images

of {(u1, 0, 0, 0)}, {(0, u2, 0, 0)} and {(0, 0, 0, u4)}, respectively) such that π1(M̂)
is generated by the images of π1(T1), π1(T2) and π1(T3). Again, each quotient

Ti/Z3 is a 2-sphere; hence π1(M̂) is generated by π1(Ti/Z3) = {1}, which
proves that π1(M̂) = {1}.

Finally, the resolution M̃ → M̂ consists of substituting, for each singular

point p, a neighbourhood B/Z3 of it by a nonsingular model ˜̃
B/Z3. The

fiber over the origin of ˜̃
B/Z3 → B/Z3 is simply connected: it consists of

the union of the three divisors H1 = P
3, H2 = P(OP2(−1) ⊕ OP2(1)) and

F̃ /Z3 = P(OP2 ⊕ OP2(3)); all of them are simply connected spaces, and their
intersection pattern forms no cycles (see Figure 1). Therefore, a simple Seifert-
Van Kampen argument proves that M̃ is simply connected

QED

Lemma 2.4. The odd degree Betti numbers of M̃ are b1(M̃) = b3(M̃) =
b5(M̃) = b7(M̃) = 0.

Proof. As M̃ is simply connected, b1(M̃) = 0. Next, using Nomizu’s
theorem [19] to compute the cohomology of the nilmanifold M , we easily find
that H3(M) = W ⊕ W , where

W = 〈[μ ∧ μ̄ ∧ η], [ν ∧ ν̄ ∧ η], [μ ∧ ν̄ ∧ η], [μ̄ ∧ ν ∧ η], [μ ∧ η ∧ η̄], [ν ∧ η ∧ η̄],

[μ ∧ ν ∧ θ], [μ ∧ ν̄ ∧ θ̄], [μ̄ ∧ ν ∧ θ̄], [μ ∧ μ̄ ∧ θ̄], [ν ∧ ν̄ ∧ θ̄], [μ ∧ η ∧ θ],

[ν ∧ η ∧ θ], [μ̄ ∧ η ∧ θ̄], [ν̄ ∧ η ∧ θ̄]〉
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and W is its complex conjugate. (Here H∗(X) denotes cohomology with com-
plex coefficients.) Clearly ρ acts as multiplication by ζ on W and as multipli-
cation by ζ2 = ζ̄ on W . Therefore H3(M̂) = H3(M)Z3 = 0.

The desingularisation process of Proposition 2.1 consists of removing con-
tractible neighborhoods of the form Bi/Z3, Bi

∼= BC4(0, ε), around each fixed

point pi, and inserting a nonsingular Kähler model ˜̃
Bi/Z3 which retracts to

the “exceptional divisor” Ei = φ−1(0), φ : ˜̃
Bi/Z3 → Bi/Z3. We glue along the

region A/Z3 which retracts into S7/Z3, a rational homology 7-sphere. An easy
Mayer-Vietoris argument then shows that Hj(M̃) = Hj(M̂) ⊕ (

⊕
i H

j(Ei))
for 0 < j < 7. All the Ei are diffeomorphic to the 6-dimensional com-
plex manifold depicted in Figure 1, which consists of the union of H1 = P

3,
H2 = P(OP2(−1)⊕OP2(1)) (a P

1-bundle over P
2) and F̃ /Z3 = P(OP2 ⊕OP2(3))

(another P
1-bundle over P

2), intersecting in copies of the complex projective
plane. So H3(Ei) = 0 and hence H3(M̃) = 0.

The statement b5(M̃) = b7(M̃) = 0 follows from Poincaré duality. QED

3. Nonformality of the constructed manifold

Formality for a simply connected manifold M means that its rational
homotopy type is determined by its cohomology algebra. Let us recall its def-
inition (see [8], [22] for more details). Let X be a simply connected smooth
manifold and consider its algebra of differential forms (Ω∗(X), d). Let
ψ : (

∧
V, d) → (Ω∗(X), d) be a minimal model for this algebra [8]. Then

X is formal if there is a quasi-isomorphism ψ′ : (
∧

V, d) → (H∗(X), d = 0), i.e.
a morphism of differential algebras, inducing the identity on cohomology.

Lemma 3.1.Let X be a simply connected smooth manifold with H3(X)=0,
and let a, x1, x2, x3 ∈ H2(X) be cohomology classes satisfying that a ∪ xi = 0,
i = 1, 2, 3. Choose forms α, βi ∈ Ω2(X) and ξi ∈ Ω3(X), with a = [α], xi = [βi]
and α ∧ βi = dξi, i = 1, 2, 3. If the cohomology class

[ξ1 ∧ ξ2 ∧ β3 + ξ2 ∧ ξ3 ∧ β1 + ξ3 ∧ ξ1 ∧ β2] ∈ H8(X)(1)

is nonzero, then X is nonformal.

Proof. First, notice that

d(ξ1 ∧ ξ2 ∧ β3 + ξ2 ∧ ξ3 ∧ β1 + ξ3 ∧ ξ1 ∧ β2)

= α ∧ β1 ∧ ξ2 ∧ β3 − ξ1 ∧ α ∧ β2 ∧ β3

+α ∧ β2 ∧ ξ3 ∧ β1 − ξ2 ∧ α ∧ β3 ∧ β1

+α ∧ β3 ∧ ξ1 ∧ β2 − ξ3 ∧ α ∧ β1 ∧ β2 = 0 ,

so that (1) is a well-defined cohomology class.
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Second, let us see that the cohomology class (1) does not depend on the
particular forms α, βi ∈ Ω2(X) and ξi ∈ Ω3(X) chosen. If we write a = [α+df ],
with f ∈ Ω1(X), then (α + df) ∧ βi = d(ξi + f ∧ βi) and

(ξ1 + f ∧ β1) ∧ (ξ2 + f ∧ β2) ∧ β3

+(ξ2 + f ∧ β2) ∧ (ξ3 + f ∧ β3) ∧ β1 + (ξ3 + f ∧ β3) ∧ (ξ1 + f ∧ β1) ∧ β2

= ξ1 ∧ ξ2 ∧ β3 + ξ2 ∧ ξ3 ∧ β1 + ξ3 ∧ ξ1 ∧ β2,

so the cohomology class (1) does not change by changing the representative
of a. If we change the representatives of xi, say for instance x1 = [β1 + df ],
f ∈ Ω1(X), then α ∧ (β1 + df) = d(ξ1 + α ∧ f) and

(ξ1 + α ∧ f) ∧ ξ2 ∧ β3 + ξ2 ∧ ξ3 ∧ (β1 + df) + ξ3 ∧ (ξ1 + α ∧ f) ∧ β2

= ξ1 ∧ ξ2 ∧ β3 + ξ2 ∧ ξ3 ∧ β1 + ξ3 ∧ ξ1 ∧ β2 + d(f ∧ ξ2 ∧ ξ3),

so the cohomology class (1) does not change again. Finally, if we change the
form ξ1 to ξ1 + g, g ∈ Ω3(X) closed, then

(ξ1 + g) ∧ ξ2 ∧ β3 + ξ2 ∧ ξ3 ∧ β1 + ξ3 ∧ (ξ1 + g) ∧ β2

= ξ1 ∧ ξ2 ∧ β3 + ξ2 ∧ ξ3 ∧ β1 + ξ3 ∧ ξ1 ∧ β2 + g ∧ (ξ2 ∧ β3 − ξ3 ∧ β2),

and ξ2 ∧ β3 − ξ3 ∧ β2 ∈ Ω3(X) is closed, hence exact since H3(X) = 0. Also in
this case the cohomology class (1) does not change.

To see that X is nonformal, consider the minimal model ψ : (
∧

V, d) →
(Ω∗(X), d) for X. Then there are closed elements â, x̂i ∈ (

∧
V )2 whose images

are 2-forms α, βi representing a, xi. Since [â · x̂i] = 0, there are elements
ξ̂i ∈ (

∧
V )3 such that dξ̂i = â · x̂i. Let ξi = ψ(ξ̂i) ∈ Ω3(X). Now, dξi = α ∧ βi,

i = 1, 2, 3.
If X is formal, then there exists a quasi-isomorphism ψ′ : (

∧
V, d) →

(H∗(X), 0). Note that ψ′(ξ̂i) = 0 since H3(X) = 0. Then

[ξ1∧ξ2∧β3+ξ2∧ξ3∧β1+ξ3∧ξ1∧β2] = ψ′(ξ̂1∧ξ̂2∧x̂3+ξ̂2∧ξ̂3∧x̂1+ξ̂3∧ξ̂1∧x̂2) = 0,

contradicting our assumption. This proves that X is nonformal. QED

Theorem 3.2. The manifold M̃ is nonformal.

Proof. We start by considering the nilmanifold M . Consider the closed
forms:

α = μ ∧ μ̄, β1 = ν ∧ ν̄, β2 = ν ∧ η̄, β3 = ν̄ ∧ η.

Then

α ∧ β1 = d(−θ ∧ μ̄ ∧ ν̄), α ∧ β2 = d(−θ ∧ μ̄ ∧ η̄), α ∧ β3 = d(θ̄ ∧ μ ∧ η).

All the forms α, β1, β2, β3, ξ1 = −θ∧μ̄∧ν̄, ξ2 = −θ∧μ̄∧η̄ and ξ3 = θ̄∧μ∧η are
Z3-invariant. Hence they descend to the quotient M̂ = M/Z3. Let q : M → M̂
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denote the projection, and define α̂ = q∗α, β̂i = q∗βi, ξ̂i = q∗ξi, i = 1, 2, 3.
Now take a Z3-equivariant map ϕ : M → M which is the identity outside some
small balls around the fixed points, and contracts some smaller balls into the
fixed points. This induces a map ϕ̂ : M̂ → M̂ such that ϕ̂ ◦ q = q ◦ ϕ. The
forms α̃ = ϕ̂∗α̂, β̃i = ϕ̂∗β̂i, ξ̃i = ϕ̂∗ξ̂i, i = 1, 2, 3, are zero in a neighbourhood
of the fixed points; therefore they define forms on M̃ , by extending them by
zero along the exceptional divisors. Note that α̃, β̃i ∈ Ω2(M̃) are closed forms
and ξ̃i ∈ Ω3(M̃) satisfies dξ̃i = α̃ ∧ β̃i, i = 1, 2, 3.

By Lemma 2.4, H3(M̃) = 0, so we may apply Lemma 3.1 to the cohomol-
ogy classes a = [α], bi = [βi] ∈ H2(M̃), i = 1, 2, 3. The cohomology class

[ξ̃1 ∧ ξ̃2 ∧ β̃3 + ξ̃2 ∧ ξ̃3 ∧ β̃1 + ξ̃3 ∧ ξ̃1 ∧ β̃2]

= [ϕ̂∗q∗(ξ1 ∧ ξ2 ∧ β3 + ξ2 ∧ ξ3 ∧ β1 + ξ3 ∧ ξ1 ∧ β2)]

= ϕ̂∗q∗(2[θ ∧ μ ∧ ν ∧ η ∧ θ̄ ∧ μ̄ ∧ ν̄ ∧ η̄]) �= 0,

since its integral is∫
M̃

ϕ̂∗q∗(2[θ ∧ μ ∧ ν ∧ η ∧ θ̄ ∧ μ̄ ∧ ν̄ ∧ η̄])

=
∫

M̂
ϕ̂∗q∗(2[θ ∧ μ ∧ ν ∧ η ∧ θ̄ ∧ μ̄ ∧ ν̄ ∧ η̄])

= 3
∫

M
ϕ∗(2[θ ∧ μ ∧ ν ∧ η ∧ θ̄ ∧ μ̄ ∧ ν̄ ∧ η̄])

= 6
∫

M
[θ ∧ μ ∧ ν ∧ η ∧ θ̄ ∧ μ̄ ∧ ν̄ ∧ η̄] �= 0 .

By Lemma 3.1, M̃ is nonformal. QED

Remark 3.3. The symplectic manifold (M̃, ω̃) is not hard-Lefschetz. The
Z3-invariant form ν∧ ν̄ on M is not exact, but ω2∧ν∧ ν̄ = 2d(θ∧ μ̄∧ η̄∧η∧ ν̄).
This form descends to the quotient M̂ and can be extended to M̃ via the
process done at the end of the proof of the previous theorem. Therefore the
map [ω]2 : H2(M̃) → H6(M̃) is not injective.

Cavalcanti [7] gave the first examples of simply connected compact sym-
plectic manifolds of dimension ≥ 10 which are hard Lefschetz and nonformal.
Yet examples of nonformal simply connected compact symplectic 8-manifolds
satisfying the hard Lefschetz property have not been constructed.

Acknowledgments. We are very grateful to the referee for useful comments
that helped to simplify the exposition in Section 3. We also thank Dominic
Joyce for suggesting that we look at [13] and Gil Cavalcanti, Ignasi Mundet
and John Oprea for conversations and helpful suggestions. This work has been
partially supported through grants MCyT (Spain) MTM2004-07090-C03-01,
MTM2005-08757-C04-02 and Project UPV 00127.310-E-15909/2004.



A NONFORMAL, SIMPLY CONNECTED, SYMPLECTIC MANIFOLD 1053
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