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Boundary regularity for the Monge-Ampere
and affine maximal surface equations

By NEIL S. TRUDINGER and XU-JiA WANG*

Abstract

In this paper, we prove global second derivative estimates for solutions
of the Dirichlet problem for the Monge-Ampere equation when the inhomoge-
neous term is only assumed to be Holder continuous. As a consequence of our
approach, we also establish the existence and uniqueness of globally smooth
solutions to the second boundary value problem for the affine maximal surface
equation and affine mean curvature equation.

1. Introduction

In a landmark paper [4], Caffarelli established interior W2® and C%¢
estimates for solutions of the Monge-Ampere equation

(1.1) detD?u = f

in a domain 2 in Euclidean n-space, R", under minimal hypotheses on the
function f. His approach in [3] and [4] pioneered the use of affine invariance
in obtaining estimates, which hitherto depended on uniform ellipticity, [2] and
[19], or stronger hypotheses on the function f, [9], [13], [18]. If the function
f is only assumed positive and Hélder continuous in 2, that is f € C*(Q) for
some a € (0,1), then one has interior estimates for convex solutions of (1.1)
in C2%(Q) in terms of their strict convexity. When f is sufficiently smooth,
such estimates go back to Calabi and Pogorelov [9] and [18]. The estimates
are not genuine interior estimates as assumptions on Dirichlet boundary data
are needed to control the strict convexity of solutions [4] and [18].

Our first main theorem in this paper provides the corresponding global
estimate for solutions of the Dirichlet problem,

(1.2) u=¢ on Of.
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THEOREM 1.1. Let Q) be a uniformly convexr domain in R™, with boundary
0N e C3 peC3Q) and f € C*(Q), for some o € (0,1), satisfying inf f > 0.
Then any convex solution u of the Dirichlet problem (1.1), (1.2) satisfies the
a priori estimate

(1.3) ”chza(ﬁ) < 07

where C' is a constant depending on n,«, inf f, Hcha(ﬁ)} o and ¢.

The notion of solution in Theorem 1.1, as in [4], may be interpreted in
the generalized sense of Aleksandrov [18], with u = ¢ on 02 meaning that
u € C%(Q). However by uniqueness, it is enough to assume at the outset that
u is smooth. In [22], it is shown that the solution to the Dirichlet problem, for
constant f > 0, may not be C? smooth or even in W?2P(Q) for large enough
p, if either the boundary 9 or the boundary trace ¢ is only C*!. But the
solution is C2 smooth up to the boundary (for sufficiently smooth f > 0) if
both 92 and ¢ are O3 [22]. Consequently the conditions on 952, ¢ and f in
Theorem 1.1 are optimal.

As an application of our method, we also derive global second derivative
estimates for the second boundary value problem of the affine maximal surface
equation and, more generally, its inhomogeneous form which is the equation of
prescribed affine mean curvature. We may write this equation in the form

(1.4) Liul :=UDjjw=f in Q,

where [U%] is the cofactor matrix of the Hessian matrix D?u of the convex
function v and

(1.5) w = [det D%y~ (FD/(n+2),

The second boundary value problem for (1.4) (as introduced in [21]), is the
Dirichlet problem for the system (1.4), (1.5), that is to prescribe

(1.6) u =, w=1 on OIS
We will prove

THEOREM 1.2. Let Q be a uniformly convex domain in R™, with 00 €
C3 o e C3HQ), ¥ € C3(Q), infqp > 0 and f < 0,€ L>®(Q). Then there
is a unique uniformly convex solution u € WHP(Q) (for all 1 < p < o) to the
boundary value problem (1.4)—(1.6). If furthermore f € C*(Q), ¢ € C+*(Q),
P € CHY(Q), and 9Q € CH* for some a € (0, 1), then the solution u € C**(Q).

The condition f < 0, corresponding to nonnegative prescribed affine mean
curvature [1] and [17], is only used to bound the solution u. It can be relaxed
to f <9 for some § > 0, but it cannot be removed completely.
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The affine mean curvature equation (1.4) is the Euler equation of the
functional

(1.7) Jlu] = A(u) - /Q fu,
where

(1.8) A(u) = /Q [det D?u] /("2

is the affine surface area functional. The natural or variational boundary value
problem for (1.4), (1.7) is to prescribe u and Vu on 02 and is treated in [21].
Regularity at the boundary is a major open problem in this case.

Note that the operator L in (1.4) possesses much stronger invariance prop-
erties than its Monge-Ampere counterpart (1.1) in that L is invariant under
unimodular affine transformations in R"*! (of the dependent and independent
variables).

Although the statement of Theorem 1.1 is reasonably succinct, its proof
is technically very complicated. For interior estimates one may assume by
affine transformation that a section of a convex solution is of good shape; that
is, it lies between two concentric balls whose radii ratio is controlled. This
is not possible for sections centered on the boundary and most of our proof
is directed towards showing that such sections are of good shape. After that
we may apply a similar perturbation argument to the interior case [4]. To
show sections at the boundary are of good shape we employ a different type
of perturbation which proceeds through approximation and extension of the
trace of the inhomogeneous term f. The technical realization of this approach
constitutes the core of our proof. Theorem 1.1 may also be seen as a companion
result to the global regularity result of Caffarelli [6] for the natural boundary
value problem for the Monge-Ampére equation, that is the prescription of the
image of the gradient of the solution, but again the perturbation arguments
are substantially different.

The organization of the paper is as follows. In the next section, we in-
troduce our perturbation of the inhomogeneous term f and prove some pre-
liminary second derivative estimates for the approximating problems. We also
show that the shape of a section of a solution at the boundary can be controlled
by its mixed tangential-normal second derivatives. In Section 3, we establish
a partial control on the shape of sections, which yields C™® estimates at the
boundary for any a € (0,1) (Theorem 3.1). In order to proceed further, we
need a modulus of continuity estimate for second derivatives for smooth data
and here it is convenient to employ a lemma from [8], which we formulate in
Section 4. In Section 5, we conclude our proof that sections at the boundary
are of good shape, thereby reducing the proof of Theorem 1.1 to analogous
perturbation considerations to the interior case [4], which we supply in Sec-
tion 6 (Theorem 6.1). Finally in Section 7, we consider the application of our
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preceding arguments to the affine maximal surface and affine mean curvature
equations, (1.4). In these cases, the global second derivative estimates follow

from a variant of the condition f € C*(Q2) at the boundary, namely

(1.9) |f(@) = f(y)| < Clz —yl,

for all z € Q,y € 0Q. This is satisfied by the function w in (1.5). The
uniqueness part of Theorem 1.2 is proved directly (by an argument based on
concavity), and the existence part follows from our estimates and a degree
argument. The solvability of (1.4)—(1.6) without boundary regularity was al-
ready proved in [21] where it was used to prove interior regularity for the first
boundary value problem for (1.4).

2. Preliminary estimates

Let Q be a uniformly convex domain in R™ with C® boundary, and ¢ be
a C? smooth function on Q. For small positive constant ¢ > 0, we denote
O = {z € Q| dist(x,09) > t} and D; = Q — Q. For any point z € Q, we
will use £ to denote a unit tangential vector of 9€)s and ~ to denote the unit
outward normal of s at z, where § = dist(x, Q).

Let u be a solution of (1.1), (1.2). By constructing proper sub-barriers we
have the gradient estimate

(2.1) sup |Du(x)| < C.
HASY)

We also have the second order tangential derivative estimates
(2.2) C™' <ug(r) <O

for any =z € 9Q. The upper bound in (2.2) follows directly from (2.1) and the
boundary condition (1.2). For the lower bound, one requires that ¢ be C3
smooth, and 99 be C? and uniformly convex [22]. For (2.1) and (2.2) we only
need f to be a bounded positive function.

In the following we will assume that f is positive and f € C%(Q) for some
a € (0,1). Let f; be the mollification of f on 02, namely f. = n, x f, where
1 is a mollifier on 9. If ¢ > 0 is small, then for any point z € Dy, there is a
unique point & € 9N such that dist(z,0Q) = | — Z| and v = (2 — z)/|z — =|.
Let

. f(ﬂj‘) n Qgt,
(2.3) fi(z) = {fT(aA}) _Cr i D,

where
T=1%, ¢e9=1/4n.
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We define f; properly in the remaining part {; — Q9 such that, with a proper
choice of the constant C'= C; > 0, f; < f in Q and f; is Holder continuous in
Q with Holder exponent o = ega,

\fi— fIl<Cr*=CtY in Q,
1 fell o @y < Cllfl ey
for some C' > 0 independent of t. From (2.3), f; is smooth in Dy,

(2.4) IDfy| <Ot |D*f] <COr*7%, and |0,f] =0 in Dy
Let u; be the solution of the Dirichlet problem,
(2.5) detD?u = f; in Q,

u=¢ on Of.

First we establish some a priori estimates for u; in D;. Note that by the local
strict convexity [3] and the a priori estimates for the Monge-Ampere equation
[18], ut is smooth in D;.

For any given boundary point, we may suppose it is the origin such that
Q C {x, > 0}, and locally 99 is given by

(2.6) zn = p(z)

for some C® smooth, uniformly convex function p satisfying p(0) =0, Dp(0) =0,

where 2/ = (x1,-+ ,2,-1). By subtracting a linear function we may also
suppose that
(2.7) ut(0) =0,  Dug(0) =0.
We make the linear transformation 7" : x — y such that
Yn = xn/tv
v=u/t.

Then v satisfies the equation
(2.9) detD*v = tf, in T(Q).

Let G = T(2) N{yn < 1}. In G we have 0 < v < C since v is bounded on
0G N {yn < 1}. Observe that the boundary of G in {y, < 1} is smooth and
uniformly convex. Hence

lvy| < C in@Gﬂ{yn<g}.

From (2.2) we have

Cilgv&SC onaGﬂ{yn<g}.
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The mixed derivative estimate

lvye] < C on 8Gﬂ{yn< %},

where vey, = D &iYjUy,y,, is found for example in [8] and [13]. For the mixed
derivative estimate we need f; € C%!, with

|Df| < Cro 42 < ¢

From (2.2) and equation (2.9) we have also

Vyy < C onﬁGﬂ{yn<%}.

Next we derive an interior estimate for v.

LEMMA 2.1. Let v be as above. Then

(2.10) |D?v| < C(1+ M) inGﬂ{yn < %}

where M = supg, <7/} |Dv|?, C > 0 is independent of M.

Proof. First we show v;; < C fori=1,--- ,n—1. Let
w(y) = p'y (%ﬁ) v,

where v = vy,, Vi1 = Vy,y,, and p(y) = 2 — 3y, is a cut-off function, n(t) =
(1-— %)*1/8. If w attains its maximum at a boundary point, by the above
boundary estimates we have w < C. If w attains its maximum at an interior
point yg, by the linear transformation

gi:yia i:27"'1n7
v1i(yo)
v11(Yo0)

which leaves w unchanged, one may suppose D?v(yp) is diagonal. Then at
we have

Y1 =y —

7y

(2.11) 0= (logw); = 42 4 T 4 L,
ponun
(2.12) 0> (logw)y = 4 <@ _ &2) N <77_ _ 77_2) N (Umi - U%u)
. - 1 p p2 ,,7 "72 Ull v%1 .
Inserting (2.11) into (2.12) in the form £ = ~1 (% + %) fori =2,---,n
and 21t = —(4% + %) for i = 1, we obtain

(213) 0> (logw)y

2 2 2
i ( Mii n; 1nPI | Vit 3 i V114
L IS [ I SPTLALL) A 1
! <77 772> ! PQ—H} vin 242 v

Y

where (v%) is the inverse matrix of (v;;).
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It is easy to verify that

2
i { Mii n; C C
— — 32 ) > — -
! (77 172>_le1 M’

where C > 0 is independent of M. Differentiating the equation
log detD?v = log(tf;)

twice with respect to y1, and observing that |91 f;] < Cr* 1t/2 < C and
|03 fi] < CT972t < C after the transformation (2.8), we see the last two terms
in (2.13) satisfy

n 2

i V1l 3 ii U114 1
vt ——— o » vt > ——(log fy)n = —C.
V11 2 ; v} ”11( )

We obtain

p41)11 < C(l + M)

Hence v; < Cfori=1,--- ,n—1in GN{y, < %}

Next we show that v,, < C. Let w(y) = p'n (%U%) Upn With the same
p and n as above. If w attains its maximum at a boundary point, we have
Unn < C by the boundary estimates. Suppose w attains its maximum at an
interior point yo. As above we introduce a linear transformation

gi:yiv izl)"'vn_la

_ Vin(Yo)

Yn =Yn —
Unn(yO)

7y
which leaves w unchanged. Then

w(y) = (2 — i)' <lvi> Unn

2
and D?v(yp) is diagonal. By the estimates for vy, i = 1,--- ,n—1, the constants
«; are uniformly bounded. Therefore the above argument applies. O

Scaling back to the coordinates x, we therefore obtain

(2.14a) agut(x) <C in Dy,
(2.14b) 0:0ui(x)| < C/VE in Dy,
(2.14c) Ru(x) <CJt in Dy,

where C' is independent of ¢, £ is any unit tangential vector to 025 and -~ is
the unit normal to 0Qs (6 = dist(z,012)), and O¢0yu = Y &yjUe,a, -

The proof of Lemma 2.1 is essentially due to Pogorelov [18]. Here we used
a different auxiliary function, from which we obtain a linear dependence of
sup | D?v| on M, which will be used in the next section. The linear dependence
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can also be derived from Pogorelov’s estimate by proper coordinate changes.
Taking p = —u in the auxiliary function w, we have the following estimate.

COROLLARY 2.1. Let u be a convex solution of detD?*u = f in .
Suppose infqu = —1, and either u =0 or |D*u| < Co(1 + M) on 9Q. Then

1
(2.15) |Du|(z) < C(1+ M), Vaoc{u< —5h
where M = supg, < |Du|?, and C is independent of M.

Next we derive some estimates on the level sets of the solution u to (1.1),
(1.2). Denote

Shu(y)={z € Q[ u(x) < u(y) + Du(y)(z - y) + h},

Shu(y)={z € Q| u(z) = u(y) + Du(y)(z — y) + h}.
We will write Sp,,, = Sh.(y) and S,g’u = S}(Q’u(y) if no confusion arises. The set
Sgu(y) is the section of u at center y and height h [4].

LEMMA 2.2.  There exist positive constants Co > C1 independent of h
such that

(2.16) C1h"? < |Sp ,(y)| < Coh™?
for any y € 98, where || denotes the Lebesque measure of a set K.

Proof. 1t is known that for any bounded convex set X C R, there is a
unique ellipsoid F containing I which achieves the minimum volume among
all ellipsoids containing K [3]. E is called the minimum ellipsoid of K. It
satisfies %(E —x9) C K — 29 C E — x9, where zg is the center of E.

Suppose the origin is a boundary point of 2, Q C {z,, > 0}, and locally 99
is given by (2.6). By subtracting a linear function we also suppose u satisfies
(2.7). Let E be the minimum ellipsoid of S?L,u(()). Let v be the solution to
detD?u = infq f;in S ,, v ="hon dS) . If |E| > Ch™/? for some large C' > 1,
we have infv < 0. By7the comparisorf principle, we obtain infu < infv < 0,
which is a contradiction to (2.7). Hence the second inequality of (2.16) holds.

Next we prove the first inequality. Denote

(2.17) ap=sup{|z'| | z € Sp.(0)},
(2.18) by, =sup{xy, | € Spu(0)}.
If the first inequality is not true, |52’u| = o(h"/?) for a sequence h — 0.

By (2.2), we have S,Ow O {z € 09 | |z| < ChY/?} for some C' > 0. Hence
b, = o(h'/?). By (2.2) we also have u(z) > Cylz|? for = € 0Q. Hence if
ap, < Ch/? for some C > 0, the function

1/2
v = 60(|x'\2 + (hb—xn)2> + exy,
h
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for some small §p > 0, is a sub-solution to the equation detD?u = f in S?L’u
satisfying v < won 8Sjy ,, where € > 0 can be arbitrarily small. It follows by the
comparison principle that vr(0) < up(0) = 0, which contradicts v, (0) =€ > 0.

Hence, ah/hl/2 — o0 as h — 0. Let g = (20,1,0,---,0,20,) (after a
rotation of the coordinates z’) be the center of F, where F is the minimum
ellipsoid of S’gu. Make the linear transformation

y1 =21 — (0,1/T0n)Tn, Yi=x; =2, ,n
such that the center of E is moved to the z,-axis. Let E'= {31 (z;/a;)? < 1}
be the projection of F on {x,, = 0}. Since the origin 0 € S,?u and the center
of E is located on the z,-axis, one easily verifies that a;---a, < C]S,(l)’u| =
o(h™?), where a, = xo,n. Note that xo1 < ap, and zg,, < b, < 2nx0,. By the

uniform convexity of 02,

T b
20 s oh > Cay > B2,
Zo,1 ap

Hence after the above transformation, the boundary part 92 N 52 o, 1s still

uniformly convex. Also, as above, the function v = § E?zl(%/zyl)Q + ey, is a
sub-solution, and we reach a contradiction. O

Next we show that the shape of the level set S}, ,, can be controlled by the
mixed derivatives ug¢y on 0f2.

LEMMA 2.3. Let u be the solution of (1.1), (1.2). Suppose as above that
08 is given by (2.6) and u satisfies (2.7). If

(2.19) |0gyu(z)] < K on 00
for some K > 1, then

(2.20) ap < CKh'Y2,
(2.21) b, > Ch'? /K

for some C > 0 independent of u, K and h.

Proof. We need only to prove (2.20) and (2.21) for small A > 0. Suppose
the supremum ay, is attained at zj, = (ap,0,---,0,¢p) € Spu(0). Let £ =
Shu N{xe = -+ = 2y,—1 = 0}. Then ¢ C Q and it has an endpoint & =
(21,0,--+,0,2,) € 02 with £; > 0 such that u(z) = h. If ap, = 21, by (2.2) we
have &; < Ch'/2, and by the upper bound in (2.16), b, > Ch'/2. Hence (2.20)
and (2.21) hold.

When ap, > &1, let & = (£1,0,---,0,&,) be the unit tangential vector of
00 at Z in the xjxz,-plane, and ¢ = ((1,0,---,0,¢,) be the unit tangential
vector of the curve £ at . Then all &1,£,,(, and (, > 0. Let 6; denote the
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angle between £ and ( at Z, and 6 the angle between £ and the zi-axis. By
(2.2) and (2.19),

|0yu(2)] < CK|#, |Ocu(2)] > C|2].
Hence
C C
. — < - —.
(222 Ccprant

But since all £1,&,, (1, and ¢, > 0, we have 6 + 02 < 5. Note that by (2.2)
and (2.16), a, > Ch'/? and b, < Ch'/2. We obtain

(2.23) ap < &1 + bp/tg (01 + 0) < CKRY?, by > aptg (61 + 62) > ChY?/K.

Lemma 2.3 is proved. O
Lemma 2.3 shows that the shape of the sections Sg’u (y) at boundary points

y can be controlled by the mixed second order derivatives of u. If S,%u has a

good shape for small h > 0, namely if the inscribed radius r is comparable to
the circumscribed radius R,

(2.24) R < Cor

for some constant C( under control, the perturbation argument [4] applies and
one infers that | D?u(0)| is bounded. See Section 6. It follows that u € C%(£2)
by [2], [19]. Estimation of the mixed second order derivatives on the boundary
will be the key issue in the rest of the paper.

3. Mixed derivative estimates at the boundary

For ¢t > 0 small let u; be a solution of (2.5) and assume (2.6) (2.7) hold. As
in Section 2 we use £ and 7 to denote tangential (parallel to J€2) and normal
(vertical to 0€2) vectors.

LEMMA 3.1. Suppose

(3.1) |0c0yue| < K on 09

for some 1 < K < Ct=1/2. Then

(3.2a) OPuy < C in Dy {x, <t/8}, i=1,---,n—1,
(3.2b) |0;0nu| < CK in Dy N {x, < t/8},

(3.2¢) O*uy < CK?  in DyN{x, <t/8},

where C' > 0 is a constant independent of K and t.

Proof. By (2.14c), estimate (3.2a) is equivalent to (2.14a). The estimate
(3.2b) follows from (3.2a) and (3.2¢) by the convexity of u;. By (2.2), (3.1), and
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equation (2.5), we obtain (3.2c) on the boundary 02. By (2.15), the interior
part of (3.2c) will follow if we have an appropriate gradient estimate for u; in
the set Sg,ut(O).

Let A > 0 be the largest constant such that Sgut (0) C Dyp and uy satisfies
(2.14) in {u; < h}. By the Lipschitz continuity of u, we have h < Ct. Let
v(y) = w(x)/h, where y = z/v/h. Then v satisfies the equation

(3.3) detD?*v = f, in Q= {z/Vh|zeQ}.
By (2.16),

(3.4) Cy < v < 1} < Co.

We claim

(3.5) o) < CK ¥V ye {v < %}

If (3.5) holds, by Corollary 2.1 (with the auxiliary function w(y) = (3 — v)*
. U(%U%)Urm in the proof of Lemma 2.1), we obtain

2 2 .
d,v<CK* in {v<1/4}.
In the above estimate we have used
a;n log fi(y) = h 02 log fi(z) < C  in {x, <t}

by our definition of f; in (2.3). Changing back to the z-coordinates we obtain
(3.2¢).

By convexity it suffices to prove (3.5) for y € 9{v < %} Let ap = h™1/2qy,,
where ay, is as defined in (2.17). If @), < C, by (2.16), the set {v < 1} has a
good shape. By (2.1) and (2.2), the gradient estimate in {v < 3} is obvious.

If @, > 1 (a, < CK by (2.20)), we divide 9{v < 1} into two parts. Let
d1{v < 1} denote the set y € {v = 3} N Q such that the outer normal line of
{v < 3} at y intersects {v =1} = {y € Q | v(y) =1}, and dx{v < 3} denote
the rest of 9{v < 1}, which consists of the boundary part {v < 3} N 89 and
the points y € {v = 2} at which the outer normal line of {v < 1} intersects a
boundary point in {v < 1} N Q.

Observe that for any y e {v <1} N8, (3.5) holds by (3.1) since Dv(0)=0.
By convexity we obtain (3.5) on the part dx{v < £}.

To verify (3.5) on 01{v < 3}, it suffices to show that

(3.6) dist ({v =1}, {v < %}) > %

By the convexity of v we then have [Dv| < CK on d1{v < £}. From the last
paragraph, dist({v =1} N0, {v < 3}) > C/K.
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We will construct appropriate sub-barriers to prove (3.6). Our sub-barrier
will be a function defined on a cylinder U = E X (—ap,a,) C R" (after a
rotation of axes), where E = Y7~ ' 22 /a? < 1 is an ellipsoid in R" ',

First we derive a gradient estimate for such a sub-barrier. Suppose ai - - - a,
= 1. Let w be the convex solution to detD?w = 1 in U with w = 0 on OU.
By making the linear transformation y; = y;/a; for i = 1,--- ,n such that
U={y] <1} x (-1,1), where ¥ = (y1, - ,Un—1), we have the estimate
C1 < —infyw < Oy for two constants Cy > 'y > 0 depending only on n.
By constructing proper sub-barriers [4], we see that w is Holder continuous
in y. Hence for any Cy > 0, by the convexity of w, the gradient estimate
C1 < |Dyw| < Cy on {w < —Cy}, for different Co > C1 > 0 depends only on
n and Cpy. Changing back to the variable y, we obtain

(3.7) Clagl < |Dy,w| < Cgagl

at any point y € {w = —Cj} such that y’ € %E Ifa:=a;---a, # 1, then by
a dilation one sees that (3.7) holds with a,, replaced by ay/a.

In order to use (3.7) to verify (3.5) on the part 8;{v < 3}, we first show
that
(3.8) inf  sup v-(y—2z2)>C/K,

lv[=1 y,z€{v<1}

namely the in-radius of the convex set {v < 1} is greater than C'//K, where v-y
denotes the inner product in R™. To prove (3.8) we first observe that by (2.2),

B,,(0)ndQ c {v <1} NdQ C B,,(0) NN

for some 71,72 > 0 independent of t. Let y = (0,---,0,¥,) be a point on the
positive z,-axis such that v(y) = 1. To prove (3.8), it suffices to show that

(3.9) yn 2 C/K.

Let y = (@,0,---,0,¢) € 0% be an arbitrary point such that v(y) = 1. Then
similarly to (2.22), the angle at 7 of the triangle with vertices 7,y and the
origin is larger than C'/K. Hence y, > Cr;/K > C/K. Hence (3.9) holds.

With (3.9), we can now prove (3.6). For any given point § € {v = 1}nQ,
let P denote the tangent plane of {v = 1} at §. Choose a new coordinate system
z such that g is the origin, P = {2z, = 0} and the inner normal of {v < 1} is
the positive z,-axis. Let S’ denote the projection {v < 1} on P. By (3.4) and
(3.8) we have the volume estimate

(3.10) 1S'| < CK.

Let E C P be the minimum ellipsoid of S’ with center zg, and Ey C P be
the translation of E such that its center is located at the origin z = 0 (the
point §). Then we have S’ C E C 4nFEy. The latter inclusion is true when E
is a ball and it is also invariant under linear transformations.
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Let U = BEp x (0,2/K) and Uy, = BEy x (0,1/K). Let w be the
solution of detD?w = supq, f; in U such that w = 1 on U. We may choose
the constant § > 8n such that 2F C BEp and infy w < —1 (note that since
|U| = 26" Y Eo|/K, B can be very large if |Ey| < K). Then by convexity we
see that w <0 <wvon {z, =1/K}N{v < 1}.

To verify that w < v on QN {v < 1}, we observe that either the distance
from the plane P = {z, = 0} to the set {v < 1} N &Q is larger than C/K, or
the angle 6, between the plane P and the plane {y, = 0} satisfies (2.22). In
the former case, by (3.7) (with a,, = 1/K) we have w < v on 8N Uy if B is
chosen large, independent of K. In the latter case, noting that the boundary
part 902N {v < 1} is very flat and that |0¢v| < C, where £ is tangential to oQ,
by (3.7), we also have w < v on 0N Uy /z. Therefore in both cases, w < v on
the boundary of the set {v < 1} N Uy s.

By the comparison principle, it follows that w < v in {v < 1} NU;5. By
the gradient estimate (3.7) for w, it follows that the distance from {v < 1} to
{v =1} is greater than C'/K. This completes the proof. O

LEMMA 3.2. Suppose |D?*u;| < K? in Dy/g. Then
(3.11) |D?uy| < CK? in Doy

where C > 0 is a constant independent of K and t.

Proof. Fix a point xg € Dot — Dysg. For any small h > 0, there exists a
linear function x,,11 = a-x+b such that a-zo+b = u(xg)+h and zg is the center
of the minimum ellipsoid E of the section Sy, := {z € Q | u(x) < a-z + b} [5],
where a and b depend on h. Let h be the largest constant such that S’h,e cc
for any € > 0.

Make a linear transformation y = Tx such that T'(F) is a unit ball. Let
v =|T|*™(u—a-x—b). Then v satisfies the equation detD?v = f,(T~1(y))
in T(gh) and v = 0 on the boundary 8T(S’h). We have C; < —infv < Cs for
two constants Co > (7 > 0 depending only on n, the upper and lower bounds
of f;. Let us assume simply that infv = —1.

Since f; is Holder continuous with exponent o/ = gga, both before and
after the transformation, by the Schauder-type estimate [4], we have u €
C2%(T(S,)). That is for any § > 0, there exist Cy > C; > 0 depending
on n,d, o € (0,1), the upper and lower bounds of f;, and HftHca’(ﬁ): but
independent of h, such that

(3.12) CiI < {Dju(y)} < Col

for any y € {v < —d}, where I is the unit matrix. Note that (3.12) implies
that the largest eigenvalue of {Dzv} is controlled by the smallest one.

Let § = 1/64. Since infv = —1, by convexity, v(yo) < —3, where yp =
T'(xo). Since dist(wg,082) < 2t, by convexity, there exists a point z* € Dy /g
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such that v(y*) < —1/64, where y* = T'(z*). From (3.12) we have
|Dv(yo)| < C|Djv(y")].
Changing back to the z-variables, we obtain (3.11). O
The next lemma is simple but is important for our proof.
LEMMA 3.3. Suppose
(3.13) |D%u;| < Cot’~! in Dy,
where B € [0,1] is a constant. Then in Dy o,
(3.14) lug — ul(z) < CtPH dist(z, 09),
where o' = epa, C' is independent of t.

Proof. By our construction we have f; < f in 2. Hence u; > u in €. Let

(3.15)

L — 418t d, 4 P12 if d, < 2t,
— APt +l if d, > 2t,

where d, = dist(z, 0Q2). For any point x € Dy, choose the coordinates properly
such that D?z is diagonal with 211 < --- < 2,,. Then

detD?(uy + C'z) > detD?u; + C'(detﬁQut)znn,

where D%y = (uw):‘j_:l1 From (3.15) we have z,, > Ct’t*~1 By (3.13),

det52ut > Ct!=8. Hence
detD?(u; + C'2) > fi + C't* > f

if C' is chosen large. By the comparison principle, we obtain (3.14). O

In Lemma 3.2 we assume that f € C%(Q) for some a € (0,1). This
condition is not satisfied in the proof of Theorem 1.2. For that proof, the trace
of f on 0f) is smooth and we use f itself, rather than the mollification f;, in
(2.3). We will need the following alternative of Lemma 3.3 in this case.

LEMMA 3.3'. Suppose [ satisfies

(3.16) [f@) = fWI<Clz—y| V z€Q,ye i
Then
(3.17) lu — w|(x) < O dist(z, Q)

for some constant C > 0 independent of t.
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Proof. Let

— 4t t/ng, 4 /g2 if d, < 2t
(3.18) :{ T ’

—42+1/n if d, > 2t.

Now,
detD?z > Ct" in Doy

for some C' > 0. Under assumption (3.16), we have |f; — f| < Ct. Hence
detD%(u; + Cz) > detD%u; + C(det D?uy) "1/ (det D?2)V/™ > f in Q.
Similarly, det D?(u + Cz) > detD?u; in Q. It follows that
| = ug|(2) < Clz(z)].
Hence (3.17) holds. O

Let 6 = o/16n if f € C%, or § = 1/16n if f satisfies (3.16), and ¢’ = ¢'*7,
Let up be the corresponding solution of (2.5). By our construction of f;, we
may assume that fi > f; so that upy < uy. Obviously Lemma 3.3 holds with u
replaced by wuy.

LEMMA 3.4. Suppose u; satisfies (3.1). Then

(3.19) |0¢0yuy| < CK - on 012,

where C' is independent of K and t.
Proof. Suppose the origin is a boundary point and (2.6), (2.7) hold. For
any (2/,s) € Q, where s =t//8,
(3.20)  Oui(a’, ) =Oyur (2, p(2')) + OnOiun(a’, 51)(s — p(2')), i< m,
Oip(a’, 5)=0ip(a’, p(a')) + OnOip(a’, 52) (s — p(a')),

for some s1, 59 € (p(2’),s). Since Duy(0) = 0, by (3.1) we have |[0yu (2, p(2'))| <
CK]|z'|. Hence
|Onue (2’ p(2'))] < CKla|.

Since O¢(uy — @) =0,

10:(ue — )|(2', p(a)) < Cla’] |0n(ue — ¢)| < CKla'|* < CKs.
By (3.2b) and (3.20),
(3.21) 0 (ur — ) (2',8)| < CKs.

Let 8 € [0,1] such that K = ¢t(®=1/2 (by (2.14c) we may assume § < 1).
Then by (3.1) and Lemmas 3.1 and 3.2, |D?u;| < Ct°~! in Dy Hence by

Lemma 3.3,
< Ot%*s on QN {x, = s}.

|Ut — Uy
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By (3.2a),
O*uy <C and Oup <C on QN {z, = s}
Hence
105 (ug — up)| < C sup |ug —up|V?2 < CP¥' )2 on QN {x, = s}

{ra=s}
Recalling that s = t//8 = t(119) /8 we obtain

(3.22) 185 (uy — up)| < O (B+a’=1-0)/2
<CtPY12s = CKs on QnN{z, = s}.

From (3.21) and (3.22),
(3.23) |0i(p —up)| < CKs on {x,=s}.

Next we estimate O,up on {x, = s}, first considering the point (0,s). By
convexity and (3.14),

1
0,1 (0,) < Lue(0,25) — e (0,)]
< %[ut(() 25) — us(0, 5)] + Cs*+"
< Bpui(0,25) + CsPTe

By Lemma 3.1, 92u; < CK?2. Hence 9,u(0,2s) < 0,us(0) + CK?s = CK?s.
Note that Ks'/2 < Kt(1+0)/2 < 9/2 Now,
Oy (0,5) < CK%s + CsPHe
<Ct'2KsY? + 0P < OKs'/2,
For any point = (2/, s) € , note that |0, u (2, p(2’))| < CK|2'|, where |2/| <

C's'/2 by the uniform convexity of 2. Hence, similarly, we have |9, us (2, 5)| <
CKs'/2. 1t follows that

(3.24) |Opup (2)| < CKsY? on {z, = s}.
Denote T; = 0; + 3, Pwiz; (0)(20p — 2n0;) and let

2(x) = +T;(up — @) + B(|2/* + s '22) — CK .

n

By differentiating equation (1.1) with respect to T;, one has, by [§],

(3.25) Lz = £[T;(log fr) — L(Tip)] + 2B ( Z ul + slu§”> ,
i<n—1
where £ = ut,ﬁ 0; is the linearized operator of the equation logdetD?uy =
log fy , and {u;!} is the inverse of the Hessian matrix {D?uy }.
Let G = QN {x, < s}. First we verify z < 0 on 0G. By subtracting a
smooth function we may assume that Dp(0) = 0. By the boundary condition
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we have |T;(uy — )| < C|z|? on 90N AG. Hence for any given B > 0, we may
choose C large such that z < 0 on dG N IN. On the part 9G N {z,, = s}, by
(3.23) and (3.24),

|Ti(up — @)|(x) < CKs+ |2| |0pup| < CKs.

Hence, z < 0 on 0G.
Next we verify that £z > 0 in G, computing

(3.26) IDlog fi| < O/ < cr™le™),

where 7/ = *° (g9 = 1/4n) as in (2.3). Observe that

Zu? + s 2™ > sV [det D2y |7V > s,

i<n
Hence we may choose the constant B large, independent of K,t,t, such that
Lz > 0in G. Now by the maximum principle we see that z attains its maximum

at the origin. It follows that z, < 0; namely, |0;0,uy (0)| < CK. O
Now we choose a fixed small constant ¢y > 0, and for £k =1,2,---, let
2 tp =t = (O g D
(3.27) SRS o 16n’

and let up = wuy, be the solution of (2.5) with ¢ = t;. Then we have the
estimates

(3.28a) Pup, < C in Dy, /s,
(3.28b) |0c0yuy| < CF /&g in Dy, s,
(3.28¢) O2uy, < CF [t in Dy, 5.

where the constant C' is independent of k and ty. Note that
(3.29) C* = O(|logt,|™)

for some m > 0 depending only on C. Hence for sufficiently large k, (3.13)
holds with 8 < 1 sufficiently close to 1. Hence in both Lemmas 3.3 and 3.4,
we have

(3.30) lu — w|(x) < CE2dist(z, 0Q)

if ¢ > 0 is sufficiently small. In particular (3.30) holds for uw; = w; and
u = uy,,,. From (3.28) and (3.29) we also have an improvement of (2.20) and
(2.21), namely for any small § > 0,

(3.31) ap < Ch1=9/2,

(3.32) b, > ChI19)/2

provided h is sufficiently small, where C is independent of h.
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With estimate (3.30), we may introduce the notion of affine invariant
neighborhood (with respect to the origin). Let I';, (i = 1,2), be two convex
hypersurfaces which can be represented as radial graphs. That is I'; = p;(x)
for x € S™, the unit sphere (or a subset of S™). We say I'y is in the affine
invariant d-neighborhood of I'1, denoted by I's C As(I'y), if

(3.33) (1—=0)p2 < pr < (1+0)po.

IfI'y € As(I'1), then T(T") C As(T'(092)) for any affine transformation 7" which
leaves the origin invariant, namely T'(z) = T - = for some matrix 7.

Estimate (3.30) gives a control of the shape of the level set Sy ,, (0) for
sufficiently large k. When h = ¢2 41> by convexity and (3.30),

up — ul(x) < CHTY 2 dist x,08),
k
|Dug|(xz) > h/|z| for x € Shu,(0),

where we assume that u(0) = 0, Dug(0) = 0. It follows that

(3.34) Shu(0) C As(Shw,(0))
with
1+a/ /2
t de /21—
(3.35) bkt =1 /27120
étzl/2—1_20tk+1 _ tz’/2—9 < tz’/4

up to a constant C. Note that |z| does not appear in (3.35), and (3.34) also
holds with u replaced by wugy1.

As a consequence we have an estimate for the shape of the level set Sp, ,,(v)
for any y € 0Q2. By subtracting a linear function (which depends on k), we
assume ug(0) = 0 and Dug(0) = 0. By the second inequality of (2.16) we have
Shyu (0) C Dy, jo for h = Cot:. For simplicity we assume that Co = 1. We
define ayp, 1, and by j as in (2.17) and (2.18) with u = uy. Let

l_)h,k’ = Sup{t | (07 to 707t) € Sh,uk (O)}

By Lemma 2.3 and convexity,

_ /2 to
b > —bpp > =orh/2.
k2 B hk Z ok
Note that h'/2 = ¢}, = t,lj_r(i =...= t(OHG)k. Consequently for any given § > 0,

b > CHUIFO2
provided k is sufficiently large, where C' = C(4, 0, tp). Let

Eh = sup{t | (07 T ,O,t) € Sh,u(o)}
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By (3.30), by, > ChU1+9)/2, Hence
(3.36) u(0, ) < Cz2/(1+9)

for z, = h(1¥9)/2 (b = ¢2). As k > 1 can be chosen arbitrarily, the above
estimate holds for all x,, > 0 small. By convexity and the boundary estimates
(2.2), we then obtain

(3.37) w(z) < Cla|?1+9)

for € Q near the origin. Therefore we have the following C1% estimate at
the boundary.

THEOREM 3.1.  Let u be a solution of (1.1), (1.2). Suppose 052, ¢ and
f satisfy the conditions in Theorem 1.1. Then for any & € (0,1), we have the
estimate

(3.38) lu(z) — u(zg) — Du(xo)(x — x0)| < Cla — o+
for any x € Q and xg € 082, where C' depends on &.

Obviously Theorem 3.1 also holds for u; with any ¢ > 0, and the constant
C' in (3.38) is independent of ¢. In the next section we use a different form of
(3.38). That is,

LEMMA 3.5. Let u satisfy (3.38). Then
(3.39) | Du(yo) — Duly)| < Clyo — y|*

for any yo € 0Q where y € Q).

Proof. Assume u(0) = 0, Du(0) = 0, and y is on the z,-axis. By convexity
we have d,u(y) < [u(y+tv) —u(y)] for any unit vector v such that y+tv € Q,
where ¢ = 1|y|. By (3.38), u(y + tv), u(y) < Ct'T¢. Hence d,u(y) < Ct*. It
follows that |Du(y) — Du(0)| < Cly|®. Similarly, |0,u(yo) — Gnu(0)| < Clyo|®
for yg € 0N near the origin. From the boundary condition, we then infer that
|Du(yo) — Du(0)| < Clyo|®. Hence (3.39) holds. O

4. Continuity estimates for second derivatives

Our passage to C? estimates at the boundary uses a modulus of continuity
estimate for second derivatives proved by Caffarelli, Nirenberg, and Spruck in
their treatment of the Dirichlet problem for the Monge-Ampere equation [8],
[13].

Let us be the solution of (2.5). As before we always suppose the origin
is a boundary point and near the origin 02 is given by (2.6), and u; satisfies
(2.7).
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LEMMA 4.1. Suppose u; satisfies (3.1). Then,
CK™

4.1 — N
(4.1) |00y us (x) — OO0y (0)] < Toz o] —log 1]

where m = 50, z € 09, |z| < t/2.

Proof. Although Lemma 4.1 is proved in [8], [13], we provide an outline
here in order to display the polynomial dependence on the eigenvalue bounds
of the coefficients.

Let v = u4/t?, y = x/t. Then v is defined on the set {p(y') < yn < 1},
where p(y') = 1p(ty’). By (2.2), uge > C > 0. By the upper bound in (2.16),
ug(0,z,) > Cx2. Hence we have

(4.2) v>C on {y,=1}
for some positive constant C. By (3.1) and Lemma 3.1,
(4.3) CT'K?<D*<CK? in G=B;0)n{y.>ny)}
where the constant C is independent of K.
Let T' = 0; + (0ip)On. Then T(v —1p) = T?(v — 1) = 0 on dG N By 5(0),
where ¥(y) = ¢(ty)/t?> and ¢ is the boundary value in (1.2). By subtracting

a smooth function we may suppose that Dp(0) = 0. Computation as in §4 in
[8] shows that

(4.4) LT (v — ) = —CK®,

where £ = v¥ 0;0;. Note that the Holder continuity of f; suffices for (4.4), as
in the proof of Lemma 2.1. By (4.3), the least eigenvalue A and the largest
eigenvalue A of D?v satisfy C71K 2 < A\ < A < CK?. Hence

z=aly'|> — by + cyn

is an upper barrier of T%(v — ) (in a neighborhood of the origin) if we choose
a=C1K? b= CyK", ¢=C3K"'" such that C3 > Cy > C; > 0. It follows
that

(4.5) viin(0) < CK1.
Let h = CK|y|? — v,. Then
(4.6) |Ch| < CK'? in G.

Making the transformation 2z’ = v/, 2z, = y, — p(y’) to straighten the boundary
0f) near the origin, we may suppose G = Bl+/2 = By/3N{yn > 0}. By (4.5), h

is convex on By /5(0) N {z, = 0} if C is chosen large. Hence by the following
Lemma 4.2, we obtain
CK™
(4.7) |0c0,v(y) — 0e0,0v(0)| < ————
o o [log ]

with m = 50. Scaling back, we obtain (4.1).
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The following Lemma 4.2 is equivalent to Lemma 5.1 in [8].

LEMMA 4.2. Let h € C*(B],,)NnC%B;., uT) satisfy

1/2 1/2
(4.8) Lh=a"0;0;h < f
in BT/Q, where T = BBf/z N{z, = 0}. Let A and A be the least and the largest

eigenvalues of the matriz {a”}. Suppose hir is convex. Then for x,y € T near
the origin,
C A f+A
= Togre—ax U
|log |z —y]|

(4.9)  |9ih(z) — 3;h(y) ) sup(|h| + |DR]), i< n.

The main feature of Lemma 4.2 used in this paper is the polynomial de-
pendence of the modulus of the logarithm continuity of 9;h on the eigenvalues
of the matrix {a;;}. Alternatively we could have used the boundary Holder
estimate of Krylov [16], which would imply (4.1) with some modulus of conti-
nuity.

5. Mixed derivative estimates at the boundary, continued

To prove the C?® estimates at the boundary, we need a refinement of
Lemma 3.4. Let t; be as in (3.27) and ug be the solution of (2.5) with ¢ = t;.

LEMMA 5.1.  For any given small o > 0, there exists K > 1 sufficiently
large such that if

(5.1) |0c0yuk| < K on 09,
then
(5.2) |0¢0yup1| < (1 +0)K  on 09,

where £ is any unit tangential vector on 0S), and 7y is the unit outward normal

to 01).
The constant ¢ > 0 will be chosen small enough so that
1
(5.3) (1+100)" <1+ 59,

where m = 50 as in (4.1) and 6 = «/16n as defined before Lemma 3.4. We
also assume K is sufficiently large and t; sufficiently small such that

(5.4) Ko?>1,

(5.5) K, <o?

Note that (5.5) is satisfied when k is large; see (3.29). Therefore we can also
choose t¢ sufficiently small such that (5.5) holds for all k.
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Proof of Lemma 5.1. The proof is also a refinement of that of Lemma 3.4.
As before we suppose the origin is a boundary point, and near the origin 02
is given by (2.6), and wuy satisfies (2.7). Then by (3.30),

(5.6) D] (0) = Ot 7%) = oltia).
By subtracting a smooth function we assume that ¢(0) = 0, Dp(0) = 0.

Let £ = ukHB 0j be the linearized operator of the equation log detD?up
= log fi,,,- Let G = Dy, /s N{xy < s}, where s = tk/4 Let

T=T;,=0; —i—mex )(xj0n — 2,05),
j<n

1
2(x) =£Ti(ups1 — @) + (!x 2+ 57 '22) — (14 80)Kx,.

If £z > 0in G and z < 0 on 0G, then by the maximum principle, z attains its
maximum at the origin. Hence z, < 0 and so |0;0,ui+1(0)] < (1 + 100)K if
o K is large enough to control |D?p|. Hence Lemma 5.1 holds. In the following
we verify that £z > 0 in G and z < 0 on 0G.

The verification of £z > 0 in G is similar to that in the proof of Lemma
3.4. We have

(5.7)  Lz=x[T(log fo,,) — L(T)] + ( 3w+ S_luzil)‘
i<n—1
Similar to (3.26),

0 —1
(T(0g fi,..) = L(T)| <O,
Zu?—i—l + s hupt > ns~ Y det D?uy ) 7Y™ > CsTU,
<n
where €9 = 1/4n. Hence Lz > 0 as s = t,ifl is very small.
To verify z < 0 on 0G, we divide the boundary G into three parts; that
is, 01G = 0G N 0N, 0oG = IG N {xy, = s}, and BG = 0G N O (t = ti41/8).
First we consider the boundary part 01 G. For any boundary point z € 952
near the origin, let £ = &7 be the projection of the vector T' = 9;+p;; (0)(x;0,, —
2,0;) on the tangent plane of 9 at . We have

(5.8) (T —¢)|(z) < Ol
Hence for = € 99 near the origin, we have, by (3.39) and (5.6), noting that
Oe(up1 — ) =0,
(5.9) T (wps1 — ) ()| < Clal?|0y (1 — 9)(@)]
< Cla*(|2]* + [0y (w1 — #)(0)])
<Cla)*(|@]* + trs),

where t;1 = s*. Hence z < 0 on 9;G.
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Next we consider the part d,G. For any given point z = (2, s) € 012G, let
&= (2/,p(z’)) € 0. As above let € be the projection of T'(Z) on 99Q. Then

O (k1 — ) (x) = Og(uns1 — ©)(2) + Ong(urt1 — @) (@', 8) (s — p(a'))
for some s’ € (p(2’),s). By Lemma 3.4,
\8n85uk+1\ < \c%agukﬂl + |852uk+1\ < CK.
Note that 9¢(ur+1 — ¢)(2) = 0 and |s — p(2’)| < (1+ Cl2'|*)tg+1 = 2s*. Hence
by (5.8),
(5.10) |7 (urs1 — ©)(@)] < [0 (ur+1 — ) (@)| + |T = &] |0y (41 — ©) ()|
<Cs'K + Olz|*T,

where we have used that |T'(z) — &| < |T(x) — T(2)| 4+ |T(z) — &| and
T(@) = T(@)| = | 3 pig(0)(wn — #0)05] < Ctyyr = s
J

Hence z < 0 on 0-G.

Finally we consider the part 93G. We introduce a mapping n = 7 from
00 to 0y for t = tr11/8. For any boundary point y € 0f, by the strict
convexity of ug, the infimum

inf{ug () — ug(y) — Dug(y)(z —y) | =€ 0%}
is attained at a (unique) point z € 9€;. We define n(y) = z. In other words,
z is the unique point in 0% N Sy, 4, (y) with h > 0 the largest constant such
that 5’2 w“ (y) C Dy. The mapping 7 is continuous and one-to-one by the strict
convexilcy and smoothness of 9€);. The purpose of introducing the mapping n
is to give a more accurate estimate for |T'(ur — ¢)|(p) for p € 9.

First we consider the point p = (p1,--- ,pn) € 9§ such that n~1(p) is the
origin. Suppose as before that locally near the origin, 02 is given by (2.6) and
ur(0) = 0, Dug(0) = 0. Then h = infyq, ur. By a rotation of the coordinates
z’, we suppose that {9;;u(0) fj_:ll is diagonal. We want to prove that

1440 .
(5.11) Ipi| < afuk(O)Kt Vi=1,--,n—1,
(5.12) P <t+o(t).

By (2.2), 0?u(0) has positive upper and lower bounds for 1 <i<mn-—1.
By (3.39), the tangential second derivatives of uj are Holder continuous. In-
deed, by the boundary condition u; = ¢ on 02, we have
(5.13) Ozctir, + PecOryur = 02c0 + pecOyp,
where £ and ( are unit tangential vectors, and v is the unit outer normal. By
(3.39), Oyuy, is Holder continuous. Hence

(5.14) |0Zcur(x) — O,u(0)] < 0

for any z € 92 near the origin and any unit tangential vectors £ and (.
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We will prove (5.11) for ¢ = 1. By restricting to the 2-plane determined by
the x1-axis and xz,-axis, without loss of generality we may assume that n = 2.
Denote

ap =sup{|z1| | € Shu,(0)},
by, =sup{xy, | © € Sp4,(0)},
where h = infyq, ux. Then it suffices to prove
14+ 40
ap < 5~
OFuk(0)
(5.12") b <t + o(t).

(5.11') Kt,

Note that we have now = = (21, zy,), and the domains Dy, ; denote the re-
striction on the 2-plane.

Assume the supremum ay, is achieved at x, = (ap, cp). In the two dimen-
sional case, the level set £ := S}, ,, is a curve in Q, which has an endpoint
T = (&1, 2y) € 0 with &1 > 0.

If a,, < Ch'? for some C > 0 under control, by (2.16) we have b, >
C1h'/2. In this case we have t > Cyh!/2. Hence (5.11") holds for sufficiently
large K.

If aj, > Chl/? (let us choose C' = 0=2), let &,(, 61,02 be as in the proof of
Lemma 2.3. Then 6; + 02 < 7/2. By (5.1) and (5.14),

(5.15) (@) < (1+ 0)K 2],
(5.16) ()] > (1 = 0)32ur(0) 2]

—0 82uk
Hence tg#, > %.

of . We obtain

Note that tg(61402) < ¢, /(ap—21) by the convexity

1420
7 uk(0)

Recall that h'/?2 < o2a, by assumption, and &1 < Chl/? by (2.2). Hence we
obtain

~

ap < 1+ Ch-

1+ 30
ap < ———
d3uy(0)

Suppose 9§ is locally given by
(5.18) o = po().

Then p; is smooth and uniformly convex. It is easy to see that p;(0) =t and
|Dp:|(0) = o(t). Hence we have

(5.19) cn < t+Crai + o(t)ay,.

By (3.31), a5 < ChU=9/2 By (3.36), h < Ct*/(+9) where § > 0 can be
arbitrarily small as long as ¢ is sufficiently small. Hence we have ¢, <t + o(t).
Therefore (5.11) holds.

(5.17) Ch.
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To prove (5.12), assume that the supremum by, is attained at &, = (dp, by).
Then by, < pi(dy). Hence
(5.20) b <t + Crdi + o(t)d, <t + oft).

Recall that dj, < aj, < Ch(1=9/2 and by our definition of h, b, > t. Hence
(5.12) holds.
Now we prove

(5.21) T (ur, — ¢)|(p) < (1+60)Kpp

at p =n(0). Let £ be the projection of T'(p) on the tangent plane of 9€; at p.
We have

(5.22) IT(p)| <1+ C(pn + Ip*),
(5.23) (T = &)(p)| < Clpn + Ip*).
Hence

(5.24) [T (we — ) ()| < 19¢(wr — @) (0)| + Clpn + [pI*)|D(ur, — 0)(p)]-
By (3.39),
|D(ur, = ¢)(p)| < Clp|*.
Hence the second term in (5.24) is small. By (5.13), we have 8%90(0) = 83]-%(0)

)

for i,j = 1,--- ,n — 1 (recall that we assume Dy(0) = 0 at the beginning).
Hence near the origin we have, by the Taylor expansion and (5.11),
(5.25) |0ip(p)| < (1 + 0)p; :05ux (0)]

< (1+50)Kpy.
By our definition of the mapping 7, Ocup = 0 at p. (This is the purpose of
introducing the mapping 7.) Hence
(5.26) |0 (ur — ¢)(p)| < (14 60) Kpn.

By (5.24) we therefore obtain (5.21).
Next we prove (5.21) for any given p € 93G. Let y = n~!(p), where 7 is
the mapping introduced above. Then by (5.14) we have, similarly to (5.11),
1+ 50
N
pi —yil < un(0)

Choose a new coordinate system such that y is the origin and the positive

(5.27) Kt.

Tn-axis is the inner normal at y. Subtract a linear function from both uj; and
¢ (which does not change the value of T'(uy — ¢)) such that Dug(y) = 0. As
above let £ be the projection of T'(p) on the tangent plane of 9€; at p. By
(3.39), |Dugl, |Dy| < 02 in G. Hence

[ Tur(p)| < [Ogur(p)| + [T (p) — & [Dug(p)| < Cpn,
I To(p)| <|9ee(@)| + Cpp.
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By (5.13) and noting that |[Dy| < 2, we have, similar to (5.14),
]8?&0(:5) — 8§2Cuk(0)| < o2

Hence as (5.25),
|0e(p)| < (14 60)Kpn.

Hence (5.21) holds at any point p € 35G.
With (5.21) we are now in position to prove z < 0 on d3G. By (3.30),

[uk+1 — ugl(x) < Ct,lfa/ﬂt, x € 0.
Hence by (3.28a),
10¢ (g1 — ) (@) < CET P2 <o B, x e 09y,
where £ is any unit tangential vector to 0);. Hence
T (ks —we)(@)] < O (i1 — ug)| + C(t + [2f2) Dk — )]
<oty "t + Cuy.
In view of (5.21), it follows that

(5.28) T (ug+1 — @) ()] < (1 +To)Kxy, = € 0.
From (5.28) and noting that o K > 1, we obtain z < 0 on d3G. This completes
the proof. O

By Lemma 5.1, we improve (3.28) to

(5.29a) Ofup < C in Dy, /s,
(5.29b) |0c0yu] < C(L+0)*  in Dy, s,
(5.29¢) QPup < C(L+0)*  in Dy, s,

where C depends only on n, 9%, f,ty, and .
Now we apply the estimate (4.1) to the section S,g’uk (0), where

2(1+6
h=1t;, :tk;( * ), 0 = a/l6n.
For any x € 90N S,?’uk, we have by (2.2),

lz| < ChY? < Ctysr.

By (4.1),
[C(+ o)k
_ < .
By our definition, t; = tif? = ... = t(()l%)k. We obtain, by the choice of o
in (5.3),
~(1+06/2)k
(5.30) |0 Oyup () — g0y ur(0)| < CW’

where C depends only on n, 0%, f, ¢ and %y, and is independent of k.
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Proof of Theorem 1.1. We will first prove

(5.31) sup | D%u(z)| < C.
z€eQ

Suppose the origin is a boundary point such that Q C {z,, > 0}. We will prove
D?u is bounded at the origin. By making a linear transformation of the form

(5.32) Yn =T,

Yi =Tj — QTp, t=1,---,n—1
we may suppose 0;0,u(0) = 0, where, by (5.29b),
la;] < C(1+ o)k < Clloghl.

Hence the boundary part {x € 9 | ug(z) < h} is smooth and uniformly
convex after the transformation (5.32). By (5.30) there is a sufficiently large
ko such that when k& > kg,

(5.33) 0edyur(e)| < C
for z € 0Q with |x| < tg41. Thus, from (2.20) and (2.21),

(5.34) anr=sup{|z’| | z € Shu, (0)} < Ch'/?,
by =sup{x, | & € Sy, (0)} > h/2/C

for some C > 0 depending only on n, f, ¢ and 012, but independent of k. That
is, the section S,?’uk has a good shape, as defined in (2.24).

By (3.34), S}?,,u also has a good shape for h < tiﬂ. Now the perturbation
argument [4, §6], implies that

(5.35) Chlz)? < u(z) < Colz?,

where we assume u(0) = 0, Du(0) = 0. Furthermore, |D?u(z)| < C, for
x € Q near the origin. Making the inverse transformation of (5.32), we obtain
(5.31) for x near the origin. The interior second order derivative estimate was
established in [4]. Hence (5.31) holds.

Estimate (5.31) implies the Monge-Ampere equation is uniformly elliptic,
and so the C%% estimate follows [2], [19]. O

Remark. Estimate (5.30) actually implies a continuity estimate for the
mixed second derivatives of u on the boundary. By the C1* estimate (Lemma
3.5) and the equation itself, we can then infer a continuity estimate for D?u
on the boundary. However, unless the inhomogeneous term f is smoother,
we shall need to use the perturbation argument of the next section to derive
continuity estimates for D?u near the boundary.
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6. The perturbation argument

In this section we provide the perturbation argument [4] which enables us
to proceed from a level set of good shape to second derivative estimates.

THEOREM 6.1. Let u be a convex solution to (1.1), (1.2). Suppose there
is an hg > 0 such that for any boundary point y € 0S2, S,?mu(y) has a good

shape. Then under the assumptions of Theorem 1.1, u is C*>® smooth up to
the boundary.

Proof. Let the origin be a boundary point such that Q@ C {z, > 0}. By
subtracting a linear function we suppose

(6.1) u(0) =0, Du(0)=0.
By a rescaling u — u/hg,  — x/+/hg, we may suppose hg = 1 and
(6.2) |f(z) = f(O)] < elz|*

for some e > 0 sufficiently small. For simplicity we suppose f(0) = 1. By (2.2)
we have

(6.3) C7' <uge <C on 99

for any unit tangential vector £. First we need two lemmas.

LEMMA 6.1. Letu;, i = 1,2, be two convex solutions of detD?*u = 1 such
that uy = ug on Q. Suppose ||u;||cz.« < Cp in S?vul(O). Then if

(6.4) ug —ug| <6 in SV,
for some sufficiently small § > 0,
(6.5) |D?(u; —ug)| < C§ in S?/Zul‘

Proof. We have

1
d
(6.6)  detD?uy — detD?*u; = / Edet[D?ul + t(D*uy — D?*uy)]dt
0
:aij(a;)(?iaj(uz — ul) = 0,
where L = a;j(x)0;0; is a linear, uniformly elliptic operator with Holder con-
tinuous coefficients. By the Schauder estimates for linear elliptic equations, we
obtain (6.5). O

LEMMA 6.2. Letu be as above such that SIOM has a good shape. Then for
h € (0,1/4],

(6.7) Sha C Ns(h'/?E)
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with
(6.8) § < C(RUIFN/2 4 p=1/2g),
where & is any constant in (0,1), Ns denotes the d-neighborhood, E is an
ellipsoid of good shape.
Proof. Let v be the solution of
detD*v = f(0)=1 in S7,
such that v = u on 957 . Since u = ¢ € C* on IQ and N € C?, from [22] we

have v € 0276‘(53/4 w) V &€ (0,1). By the Taylor expansion,

1 .
U(JU) = U(O) + 1}1(0)332 + §vl~j(0)xix]~ + O(‘:L“|2+a),
we have, on S}, ,,(0),
(6.9) C~'hl?2 < |Du| < ChY2.

Hence
Snw(0) < Ns(h'/?E)

with & < Ch(1t8)/2 where E is the ellipsoid {z € R" | 203 (0)z2; = 1}.
By (6.2) it is easy to verify that |u — v| < Ce, and by (6.3) we have
|Dv(0)| < Ce. Hence by (6.9),

(6.10) Sh—ch-12e(0) < 57 ,(0) <SP cp1/20,4(0)

provided £ < h'/2. Hence
Sh,u C NChfl/Ze(Sh,'U) C NCh(1+‘3‘)/2+Ch*1/26(h1/2E)' O

Proof of Theorem 6.1 continued. Let ug, k =0,1,---, be the solution of
detD?u, =1 in SE_kM,
up=u on 85’2,,%.
Since S?,u has a good shape, by the regularity of the Monge-Ampere equation,
||u0\|cz,a(sg/4yu) < C. Denote
wp = sup{|f(z) = 1| | = € 83 .},

where f(0) = 1 by assumption. By the comparison principle, |u — uy| < Cuwy.

0

Hence if the constant € in (6.2) is sufficiently small, S has a good shape.

1/4,u
It follows HUIHC2=@(S§/16 )y < C. Note that |u; —ug| < Cwp. By Lemma 6.1 we
obtain
(6.11) |D?ug(z) — D*uy(x)| < Cwy for = € ngzyul.

It follows that 2259, «, has a good shape, where Q2 = {z € R" | tx € Q}.
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Let R, = sup{|z| | = € S{.,}, namely Bg,(0) is the smallest ball
containing SY , . By (6.11) there is a constant 3 > 0 such that

(6.12) R < (1 — ,B)R()

For k = 1,2,---, applying the same argument to g := 4*u;(27%z) and
Gy = 4%up,1(27%2), we obtain

(6.13) |D?uy, () — D*upqq (2)| < Cwy, for z € Sg_k_27uk+1.
From (6.2) and by induction we have

R <(1—B)Ry_1 < C(1 - B)F,
wr <Ce(1 — ﬁ)o‘k.

Hence we obtain from (6.13),

k
(6.14) |D2ug(z) — D*upsr(z)| < C Y wi for z€ 8y,
=0

where the right-hand side < Ce. Hence Sﬁ(l)*’“,u = Sz(l)*k,uk
From (6.14) we see that {D?u;,1(0)} is convergent. Hence u is twice differ-
entiable at 0, and D?u(0) = limy_ o D?uy(0). Moreover, (D?u) is positive
definite, so that the Monge-Ampere equation (1.1) is uniformly elliptic. The
Holder continuity of D?u follows from [2], [19].

The Hélder continuity of D?u also follows from (6.14) immediately. In-
deed, let & be a point in 2 near the origin. Choose ko such that & € Sy-ro-1,,(0).

For k > kg, let 1y be the solution of

has a good shape.

detD%iy, = fi,  in S§-u (%),

g =u  ondSy (%),

where fj, = inf{f(z) | z € Sg,km(i:)}. Then, similarly,
k
(6.15) | D2, (&) — D1 (8)] < C Y @,
Z':kio

where w, < sup{|f(z) — f(2)|] | = € 52_k7u(:%)}. Since f is Holder continuous,
Z;’iko w; < Cdf§ and Zfiko w; < Cdf, where dy is the diameter of the set
Sy-ro-14(0). From (6.14), (6.15), and the interior smoothness of uy,, and by
choosing appropriate kg, we obtain the Holder continuity at the origin,

(6.16) |D?u(#) — D*u(0)] < C|z]~

for some o € (0,«). From (6.16) we obtain the global Holder continuity for
D?u. Indeed, let z,y € Q and be close to Q. If |z — y| > do(dist(x, OQ) +
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dist(y, 02)) for some constant oy > 0, let &, € 9 be the boundary points
closest to z,y. Then by (6.16) (denote A(z,y) = |D?u(x) — D*u(y)| for short),

Ale,y) < Az, &) + A@,9) + A@G,y) < Cle =y
Otherwise the estimate for A(z,y) is equivalent to the interior one [4]. O

Remark 6.1. For the estimate (6.16), if & is also a boundary point, the
proof uses only the Holder continuity of f in the sets S,?’u(a:) for x € 0). Hence
if f satisfies (3.16), D?u is Holder continuous on dS2. We do not require that
f be Holder in €.

Remark 6.2. We have actually proved that D?u is continuous if f is Dini

continuous, that is if
1
w(t
/ th < 00,
o T

where w(t) = sup{|f(x) — f(y)| | |* —y| < t}, so that the right-hand side of
(6.14) is convergent.

Remark 6.3. For the interior C*® estimate, the condition that S,?mu has
a good shape is automatically satisfied if u is a strictly convex solution, since
the convex set S,?O’u can be normalized by a linear transformation. However
for the C?® estimate at the boundary, we can only do a linear transformation
of the form (5.32) with relatively small «;, and must prove (5.34) for u so that
the level set has a good shape. Other linear transformations may worsen the
boundary condition.

7. Application to the affine mean curvature equation

In this section we prove Theorem 1.2. First we prove the uniqueness of
solutions.

LEMMA 7.1. There is at most one uniformly convex solution u € C*(2)N
C?(2) of the second boundary value problem (1.4)—(1.6).

Proof. Suppose both u; and ugy are solutions. We have, by the concavity
of the affine area functional A,

A(ur) — A(uz) :/

<detD2u1)1/("+2) _ (detDQU2)1/(”+2)>
QO

< s /QU)ZU;]DU(Ul — up)

= -1i- 5 [/BQ viDj(uy — ug)wsaUY + /Q(ul —ug) f(2)].
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where we have used the divergence-free relation ), 0;U 4 =0V j. Similarly
we have

Alw) = ) < g | [ iyt )t = [ = )]

Note that w; = we on 0. Hence
0< / w1y Dj (w1 — ug)(Uy) = UY) = — / w1y Dj (w1 — ug) (U = UZ).
o0 o0

For any given boundary point, suppose e, = (0,---,0,1) is the inner normal
there. Then v = —e,,, and the right-hand side of the above inequality is equal
to

- / wn Doy — un) (U™ — U™,
o0

where U™ = det(uz,s, ) :‘]_:11 Since u1 = ug on 02,

. 8u1 8UQ
um —-uim >0 if — < —=.
1 2 2 ! o0z, < o0z,

Hence we obtain
0< / i Dy (1 — ug)(U" — U3™) < 0,
o0

which implies Du; = Dus on 0f2. Hence u; = us by the concavity of the affine
area functional. This completes the proof. O

In the following we always assume that u € C*(Q) is a uniformly convex
solution of (1.4)—(1.6) and the conditions of Theorem 1.2 hold. By Aleksan-
drov’s maximum principle [13], u € W*P(Q) (p > n) suffices for the estimates
below. Note that u € VVfécl () N C?(Q) suffices for Lemma 7.1. The following
lemma is taken from [21]

LEMMA 7.2. There ezists a constant C >0 such that any solution u of (1.4)
satisfies
(7.1) Cl<w<C in 9,
(7.2) lw(z) —w(xo)| <Clx —xo| YV x€Qz9€ N,
where C' depends only on n, diam(2), supq | f|, and supq |u|.
Proof. Let z = logw — u. If z attains its minimum at a boundary point,

by the boundary condition (1.6) we have w > C'in €. Let us suppose z attains
its minimum at an interior point zy € 2. At this point we have
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as a matrix. Hence

Oguijzij S @—n
where d = detD?u, 6 = 1/(n + 2). We obtain d(zo) < C. Since z(z) > z(w0),
we obtain

(7.3) w(z) > w(xg)exp(u(x) — u(xg)).

The first inequality in (7.1) follows.

Next let z = logw + A|z|?. If 2 attains its maximum at a boundary point,
by (1.6) we have w < C and so (7.1) holds. If z attains its maximum at an
interior point x(y, we have, at z,

0=z = — + 2Ax;,
Wi4 wl-z
0>zi=— —— +2A
w w

Suppose (D?u) is diagonal at x¢. Then

(7.4) 0> uz; = % — 4A%2%0" 4 240" >

f

if A is small. Observe that
df Z Wi > C (Z uu) 2/(

We obtain Y u% < C, and hence (7.1) is proved.
Let v be a smooth, uniformly convex function in 2 such that v = ¥ on
90 and D?v > K. Then

n+2)

Uvy > K> U% > CK[detD?*]" /" > CK.

Hence if K is large enough, v is a lower barrier of w (where (1.4) is a second
order elliptic equation of w). We thus obtain

(7.5) w(z) —w(xg) > —Clx —xg| V z €,z € 0.
Similarly one can construct an upper barrier for w. Hence (7.2) holds. O

In (7.3) the lower bound for w depends on the uniform estimate for u
which we obtain in turn need to find the lower bound for w, namely the upper
bound for detD?u. To avoid the mutual dependence we assume f < 0, so
that w attains its minimum on the boundary by the maximum principle. This
condition can be relaxed to f < e for some € > 0 small but cannot be removed
completely, as is easily seen by solving equation (1.4) in the one-dimensional
case.
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LEMMA 7.3. Let u € C*(Q) be a solution of the boundary value problem
(1.4)-(1.6). Then we have the estimate

(7.6) sup |D*u| < C,
Q

where C' depends only on n,0Q, || f|l L, H‘P”(}x(ﬁ)’ ||1/1||C4(§), and inf ).
Proof. Consider the Monge-Ampere equation

(7.7) detD?y = w~(+2/+D) iy Q)

By Lemma 7.2, the right-hand side of (7.7) is positive and satisfies condition
(3.16). Hence by the argument in the preceding sections, D?u is bounded and
Hélder continuous on the boundary; see Remark 6.1. For any 6 > 0, by (7.1)
the solution of the linearized Monge-Ampere equation

(78) Uijwij = f in Q

is Holder continuous [7]; namely, detD?u € C%(§s) for some a € (0,1). Hence
u € C%%(Qy) [4]. So we are left to consider a point & € 2 near the boundary.
Choosing an appropriate coordinate system, we assume that Z is on the positive

xn-axis, the origin is a boundary point, and Q C {z, > 0}. Suppose u(0) =0,
1
16n°

and we conclude as before the quadratic growth estimate (5.35). Let h be the
largest constant such that Sgu(i) C Q. By (5.35), the section Sgu(:ﬁ) has a

good shape. Hence the argurflent in [7] applies, and we also conclude that w

Du(0) = 0. Then the arguments of the preceding sections apply, with 6 =

is bounded and Holder continuous near #. Hence (7.6) holds. O
LEMMA 7.4. If f € L>®(Q), then for any p > 1,
(7.9) ullwae ) < C,

where C depends only on n,p, 0, || fllL=, [[¢llci@, [¥lci@): and infe. If
f€C¥R), p € CH(Q), Y € C**(Q), and I € CH* for some a € (0,1),
then

(7.10) ue Q) <C
where C' depends, in addition, on .

Proof. Regard the fourth order equation (1.4) as a system of two second
order partial differential equations (7.7) (7.8). By estimate (7.6), both (7.7)
and (7.8) are uniformly elliptic. It follows that w is Hélder continuous up to
the boundary and so u € C%%(Q) [2], [19]. Hence (7.8) is a linear, uniformly
elliptic equation with Holder coefficients and w € W2P(Q) for any p < oo.
From (7.7) we also conclude the global C*® a priori estimate for u. O
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Proof of Theorem 1.2. We have proved the uniqueness and established
the a priori estimate for solutions of (1.4)-(1.6). To prove the existence of
solutions we use the degree theory as follows.

For any positive w € C%(Q), let u = u,, € C?*(Q) be the solution of

(7.11) det D%y = o~ (+2/(+1) iy u=¢ on Of.
Next let wy, t € [0,1], be the solution of
(7.12) Udwij=tf(x) in Q  w=tp+(1—-1t) on 0N

We have thus defined a compact mapping T; : w € C%Y(Q) — w;, € C*1(Q).
By the a priori estimate (7.9), the degree deg(T}, Bg, 0) is well defined, where
Bp, is the set of all positive functions satisfying ||ul] cor < B. When ¢ =0,
from (7.12) we have, obviously, w = 1. Namely, Ty has a unique fixed point
w = 1. Hence the degree deg(7;, Br,0) = 1 for all ¢ € [0,1]. This completes
the proof. O

Remark. Theorem 1.2 extends to more general equations (1.4) where
_ 1
w = [detD%u)?1, 0<60<—.
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