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Localization of modules for a semisimple
Lie algebra in prime characteristic

By Roman Bezrukavnikov, Ivan Mirković, and Dmitriy Rumynin*

Abstract

We show that, on the level of derived categories, representations of the Lie
algebra of a semisimple algebraic group over a field of finite characteristic with
a given (generalized) regular central character are the same as coherent sheaves
on the formal neighborhood of the corresponding (generalized) Springer fiber.

The first step is to observe that the derived functor of global sections
provides an equivalence between the derived category of D-modules (with no
divided powers) on the flag variety and the appropriate derived category of
modules over the corresponding Lie algebra. Thus the “derived” version of
the Beilinson-Bernstein localization theorem holds in sufficiently large positive
characteristic. Next, one finds that for any smooth variety this algebra of
differential operators is an Azumaya algebra on the cotangent bundle. In the
case of the flag variety it splits on Springer fibers, and this allows us to pass
from D-modules to coherent sheaves. The argument also generalizes to twisted
D-modules. As an application we prove Lusztig’s conjecture on the number of
irreducible modules with a fixed central character. We also give a formula for
behavior of dimension of a module under translation functors and reprove the
Kac-Weisfeiler conjecture.

The sequel to this paper [BMR2] treats singular infinitesimal characters.

To Boris Weisfeiler, missing since 1985

Contents

Introduction

1. Central reductions of the envelope DX of the tangent sheaf
1.1. Frobenius twist
1.2. The ring of “crystalline” differential operators DX

1.3. The difference ι of pth power maps on vector fields
1.4. Central reductions

*R.B. was partially supported by NSF grant DMS-0071967 and the Clay Institute, D.R.
by EPSRC and I.M. by NSF grants.



946 ROMAN BEZRUKAVNIKOV, IVAN MIRKOVIĆ, AND DMITRIY RUMYNIN
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Introduction

g-modules and D-modules. We are interested in representations of a Lie
algebra g of a (simply connected) semisimple algebraic group G over a field
k of positive characteristic. In order to relate g-modules and D-modules on
the flag variety B we use the sheaf DB of crystalline differential operators (i.e.
differential operators without divided powers).

The basic observation is a version of the famous Localization Theorem
[BB], [BrKa] in positive characteristic. The center of the enveloping alge-
bra U(g) contains the “Harish-Chandra part” ZHC

def= U(g)G which is fa-
miliar from characteristic zero. U(g)-modules where ZHC acts by the same
character as on the trivial g-module k are modules over the central reduc-
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tion U0 def= U(g)⊗ZHCk. Abelian categories of U0-modules and of DB-modules
are quite different. However, their bounded derived categories are canoni-
cally equivalent if the characteristic p of the base field k is sufficiently large,
say, p > h for the Coxeter number h. More generally, one can identify the
bounded derived category of U -modules with a given regular (generalized)
Harish-Chandra central character with the bounded derived category of the
appropriately twisted D-modules on B (Theorem 3.2).

D-modules and coherent sheaves. The sheaf DX of crystalline differential
operators on a smooth variety X over k has a nontrivial center, canonically
identified with the sheaf of functions on the Frobenius twist T ∗X(1) of the
cotangent bundle (Lemma 1.3.2). Moreover DX is an Azumaya algebra over
T ∗X(1) (Theorem 2.2.3). More generally, the sheaves of twisted differential
operators are Azumaya algebras on twisted cotangent bundles (see 2.3).

When one thinks of the algebra U(g) as the right translation invariant
sections of DG, one recovers the well-known fact that the center of U(g) also
has the “Frobenius part” ZFr

∼= O(g∗(1)), the functions on the Frobenius twist
of the dual of the Lie algebra.

For χ ∈ g∗ let Bχ ⊂ B be a connected component of the variety of all Borel
subalgebras b ⊂ g such that χ|[b,b] = 0; for nilpotent χ this is the corresponding
Springer fiber. Thus Bχ is naturally a subvariety of a twisted cotangent bundle
of B. Now, imposing the (infinitesimal) character χ ∈ g∗(1) on U -modules
corresponds to considering D-modules (set-theoretically) supported on Bχ

(1).
Our second main observation is that the Azumaya algebra of twisted dif-

ferential operators splits on the formal neighborhood of Bχ in the twisted
cotangent bundle. So, the category of twisted D-modules supported on Bχ

(1)

is equivalent to the category of coherent sheaves supported on Bχ
(1) (Theo-

rem 5.1.1). Together with the localization, this provides an algebro-geometric
description of representation theory – the derived categories are equivalent
for U -modules with a generalized Z-character and for coherent sheaves on the
formal neighborhood of Bχ

(1) for the corresponding χ.

Representations. One representation theoretic consequence of the passage
to algebraic geometry is the count of irreducible Uχ-modules with a given
regular Harish-Chandra central character (Theorem 5.4.3). This was known
previously when χ is regular nilpotent in a Levi factor ([FP]), and the general
case was conjectured by Lusztig ([Lu1], [Lu]). In particular, we find a canonical
isomorphism of Grothendieck groups of U0

χ-modules and of coherent sheaves on
the Springer fiber Bχ. Moreover, the rank of this K-group is the same as the
dimension of cohomology of the corresponding Springer fiber in characteristic
zero (Theorem 7.1.1); hence it is well understood. One of the purposes of this
paper is to provide an approach to Lusztig’s elaborate conjectural description
of representation theory of g.
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0.0.1. Sections 1 and 2 deal with algebras of differential operators DX .
Equivalence Db(modfg(U0))

∼=−→ Db(modc(DB)) and its generalizations are
proved in Section 3. In Section 4 we specialize the equivalence to objects with
the χ-action of the Frobenius center ZFr. In Section 5 we relate D-modules
with the χ-action of ZFr to O-modules on the Springer fiber Bχ. This leads
to a dimension formula for g-modules in terms of the corresponding coherent
sheaves in Section 6, here we also spell out compatibility of our functors with
translation functors. Finally, in Section 7 we calculate the rank of the K-group
of the Springer fiber, and thus of the corresponding category of g-modules.

0.0.2. The origin of this study was a suggestion of James Humphreys that
the representation theory of U0

χ should be related to geometry of the Springer
fiber Bχ. This was later supported by the work of Lusztig [Lu] and Jantzen
[Ja1], and by [MR].

0.0.3. We would like to thank Vladimir Drinfeld, Michael Finkelberg,
James Humphreys, Jens Jantzen, Masaharu Kaneda, Dmitry Kaledin,
Victor Ostrik, Cornelius Pillen, Simon Riche and Vadim Vologodsky for various
information over the years; special thanks go to Andrea Maffei for pointing out
a mistake in example 5.3.3(2) in the previous draft of the paper. A part of the
work was accomplished while R.B. and I.M. visited the Institute for Advanced
Study (Princeton), and the Mathematical Research Institute (Berkeley); in
addition to excellent working conditions these opportunities for collaboration
were essential. R.B. is also grateful to the Independent Moscow University
where part of this work was done.

0.0.4. Notation. We consider schemes over an algebraically closed field k of
characteristic p > 0. For an affine S-scheme X

q→ S, we denote q∗OX by OX/S ,
or simply by OX . For a subscheme Y of X the formal neighborhood FNX(Y)
is an ind-scheme (a formal scheme), the notation for the categories of modules
on X supported on Y is introduced in 3.1.7, 3.1.8 and 4.1.1. The Frobenius
neighborhood FrNX(Y) is introduced in 1.1.2. The inverse image of sheaves is
denoted f−1 and for O-modules f∗ (both direct images are denoted f∗). We
denote by TX and T ∗

X the sheaves of sections of the (co)tangent bundles TX

and T ∗X.

1. Central reductions of the envelope DX of the tangent sheaf

We will describe the center of differential operators (without divided pow-
ers) as functions on the Frobenius twist of the cotangent bundle. Most of the
material in this section is standard.
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1.1. Frobenius twist.

1.1.1. Frobenius twist of a k-scheme. Let X be a scheme over an
algebraically closed field k of characteristic p > 0. The Frobenius map of
schemes X→X is defined as the identity on topological spaces, but the pull-
back of functions is the pth power: Fr∗X(f) = fp for f ∈ OX(1) = OX . The
Frobenius twist X(1) of X is the k-scheme that coincides with X as a scheme
(i.e. X(1) = X as a topological space and OX(1) = OX as a sheaf of rings), but
with a different k-structure: a ·

(1)
f

def= a1/p · f, a ∈ k, f ∈ OX(1) . This makes

the Frobenius map into a map of k-schemes X
FrX−→ X(1). We will use the twists

to keep track of using Frobenius maps. Since FrX is a bijection on k-points,
we will often identify k-points of X and X(1). Also, since FrX is affine, we may
identify sheaves on X with their (FrX)∗-images. For instance, if X is reduced
the pth power map OX(1)→(FrX)∗OX is injective, and we think of OX(1) as a
subsheaf Op

X
def= {fp, f ∈ OX} of OX .

1.1.2. Frobenius neighborhoods. The Frobenius neighborhood of a sub-
scheme Y of X is the subscheme (FrX)−1Y (1) ⊆ X; we denote it FrNX(Y ) or
simply XY . It contains Y and OXY

= OX ⊗
O

X(1)

OY (1) = OX ⊗
Op

X

Op
X/Ip

Y =

OX/Ip
Y · OX for the ideal of definition IY ⊆ OX of Y .

1.1.3. Vector spaces. For a k-vector space V the k-scheme V (1) has a
natural structure of a vector space over k; the k-linear structure is again given
by a ·

(1)
v

def= a1/pv, a ∈ k, v ∈ V . We say that a map β : V →W between

k-vector spaces is p-linear if it is additive and β(a · v) = ap · β(v); this is the
same as a linear map V (1)→W . The canonical isomorphism of vector spaces
(V ∗)(1)

∼=−→(V (1))∗ is given by α→αp for αp(v) def= α(v)p (here, V ∗(1) = V ∗ as a
set and (V (1))∗ consists of all p-linear β : V →k). For a smooth X, canonical
k-isomorphisms T ∗(X(1)) = (T ∗X)(1) and (T (X))(1)

∼=−→ T (X(1)) are obtained
from definitions.

1.2. The ring of “crystalline” differential operators DX . Assume that X

is a smooth variety. Below we will occasionally compute in local coordinates:
since X is smooth, any point a has a Zariski neighborhood U with étale coor-
dinates x1, . . . , xn; i.e., (xi) define an étale map from U to An sending a to 0.
Then the dxi form a frame of T ∗X at a; the dual frame ∂1, . . . , ∂n of TX is
characterized by ∂i(xj) = δij .

Let DX = UOX
(TX) denote the enveloping algebra of the tangent Lie al-

gebroid TX ; we call DX the sheaf of crystalline differential operators. Thus
DX is generated by the algebra of functions OX and the OX -module of vec-
tor fields TX , subject to the module and commutator relations f ·∂ = f∂,
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∂·f − f ·∂ = ∂(f), ∂ ∈ TX , f ∈ OX , and the Lie algebroid relations ∂′·∂′′ −
∂′′·∂′ = [∂′, ∂′′], ∂′, ∂′′ ∈ TX . In terms of a local frame ∂i of vector fields we
have DX = ⊕

I
OX ·∂I . One readily checks that DX coincides with the ob-

ject defined (in a more general situation) in [BO, §4], and called there “PD
differential operators”.

By the definition of an enveloping algebra, a sheaf of DX modules is just
an OX module equipped with a flat connection. In particular, the standard
flat connection on the structure sheaf OX extends to a DX -action. This action
is not faithful: it provides a map from DX to the “true” differential operators
DX⊆ Endk(OX) which contain divided powers of vector fields; the image of
this map is an OX -module of finite rank pdim X ; see [BO] or 2.2.5 below.

For f ∈ OX the pth power fp is killed by the action of TX , hence for any
closed subscheme Y ⊆ X we get an action of DX on the structure sheaf OXY

of the Frobenius neighborhood.
Being defined as an enveloping algebra of a Lie algebroid, the sheaf of

rings DX carries a natural “Poincaré-Birkhoff-Witt” filtration DX = ∪DX,≤n,
where DX,n+1 = DX,≤n + TX · DX,≤n, DX,≤0 = OX . In the following Lemma
parts (a,b) are proved similarly to the familiar statements in characteristic
zero, while (c) can be proved by a straightforward use of local coordinates.

1.2.1. Lemma. a) There is a canonical isomorphism of the sheaves of
algebras: gr(DX) ∼= OT ∗X .

b) OT ∗X carries a Poisson algebra structure, given by {f1, f2} = [f̃1, f̃2]
mod DX,≤n1+n2−2, f̃i ∈ DX,≤ni

, fi = f̃i mod DX,≤ni−1 ∈ OT ∗X , i = 1, 2.
This Poisson structure coincides with the one arising from the standard

symplectic form on T ∗X.

c) The action of DX on OX induces an injective morphism DX,≤p−1 ↪→
End(OX).

We will use the familiar terminology, referring to the image of d ∈ DX,≤i

in DX,≤i/DX,≤i−1 ⊂ OT ∗X as its symbol.

1.3. The difference ι of pth power maps on vector fields. For any vector
field ∂ ∈ TX , ∂p ∈ DX acts on functions as another vector field which one
denotes ∂[p] ∈ TX . For ∂ ∈ TX set ι(∂) def= ∂p − ∂[p] ∈ DX . The map ι lands in
the kernel of the action on OX ; it is injective, since it is injective on symbols.

1.3.1. Lemma. a) The map ι : TX
(1)→DX is OX(1)-linear, i.e., ι(∂) +

ι(∂′) = ι(∂ + ∂′) and ι(f∂) = fp·ι(∂), ∂, ∂′ ∈ TX(1) , f ∈ OX(1).

b) The image of ι is contained in the center of DX .
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Proof.1 For each of the two identities in (a), both sides act by zero on
OX . Also, they lie in DX,≤p, and clearly coincide modulo DX,≤p−1. Thus the
identities follow from Lemma 1.2.1(c).

b) amounts to: [f, ι(∂)] = 0, [∂′, ι(∂)] = 0, for f ∈ OX , ∂, ∂′ ∈ TX . In both
cases the left-hand sides lie in DX,≤p−1: this is obvious in the first case, and
in the second one it follows from the fact that the pth power of an element in
a Poisson algebra in characteristic p lies in the Poisson center. The identities
follow, since the left-hand sides kill OX .

Since ι is p-linear, we consider it as a linear map ι : TX
(1)→DX .

1.3.2. Lemma. The map ι : TX
(1)→ DX extends to an isomorphism of

ZX
def= OT ∗X(1)/X(1) and the center Z(DX). In particular, Z(DX) contains

OX(1) .

Proof. For f ∈ OX we have fp ∈ Z(DX), because the identity ad(a)p =
ad(ap) holds in an associative ring in characteristic p, which shows that [fp, ∂]
= 0 for ∂ ∈ TX . This, together with Lemma 1.3.1, yields a homomorphism
ZX → Z(DX). This homomorphism is injective, because the induced map on
symbols is the Frobenius map ϕ 
→ ϕp, Z = OT ∗X(1) → OT ∗X . To prove that it
is surjective it suffices to show that the Poisson center of the sheaf of Poisson
algebras OT ∗X is spanned by the pth powers. Since the Poisson structure arises
from a nondegenerate two-form, a function ϕ ∈ OT ∗X lies in the Poisson center
if and only if dϕ = 0. It is a standard fact that a function ϕ on a smooth variety
over a perfect field of characteristic p satisfies dϕ = 0 if and only if ϕ = ηp for
some η.

Example. If X = An, so that DX = k〈xi, ∂i〉 is the Weyl algebra, then
Z(DX) = k[xp

i , ∂
p
i ].

1.3.3. The Frobenius center of enveloping algebras. Let G be an algebraic
group over k, g its Lie algebra. Then g is the algebra of left invariant vector
fields on G, and the pth power map on vector fields induces the structure
of a restricted Lie algebra on g. Considering left invariant sections of the
sheaves in Lemma 1.3.2 we get an embedding O(g∗(1))

ιg

↪→ Z(U(g)); we have
ιg(x) = xp − x[p] for x ∈ g. Its image is denoted ZFr (the “Frobenius part” of
the center).

From the construction of ZFr we see that if G acts on a smooth variety
X then g→ Γ(X, TX) extends to U(g)→ Γ(X,DX) and the constant sheaf
(ZFr)X = O(g∗(1))X is mapped into the center ZX = OT ∗X(1) . The last map
comes from the moment map T ∗X→ g∗.

1Another proof of the lemma follows directly from Hochschild’s identity (see [Ho, Lemma
1]).
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Ug is a vector bundle of rank pdim(g) over g∗(1). Any χ ∈ g∗ defines a
point χ of g∗(1) and a central reduction Uχ(g) def= U(g)⊗ZFrkχ.

1.4. Central reductions. For any closed subscheme Y ⊆ T ∗X one can
restrict DX to Y(1) ⊆ T ∗X(1); we denote the restriction

DX,Y
def= DX ⊗

O
T∗X(1)/X(1)

OY(1)/X(1) .

1.4.1. Restriction to the Frobenius neighborhood of a subscheme of X.
A closed subscheme Y ↪→X gives a subscheme T ∗X|Y ⊆T ∗X, and the corre-
sponding central reduction

DX ⊗
O

T∗X(1)

O(T ∗X|Y )(1) = DX ⊗
O

X(1)

OY (1) = DX ⊗
OX

OXY
,

is just the restriction of DX to the Frobenius neighborhood of Y . Alternatively,
this is the enveloping algebra of the restriction TX |XY of the Lie algebroid TX .
Locally, it is of the form ⊕

I
OXY

∂I . As a quotient of DX it is obtained by

imposing fp = 0 for f ∈ IY . One can say that the reason we can restrict Lie
algebroid TX to the Frobenius neighborhood XY is that for vector fields (hence
also for DX), the subscheme XY behaves as an open subvariety of X.

Any section ω of T ∗X over Y ⊆ X gives ω(Y )⊆ T ∗X|Y , and a further
reduction DX,ω(Y ). The restriction to ω(Y )⊆ T ∗X|Y imposes ι(∂) = 〈ω, ∂〉p,
i.e., ∂p = ∂[p] + 〈ω, ∂〉p, ∂ ∈ TX . So, locally, DX,ω(Y ) = ⊕

I∈{0,1,...,p−1}n

OXY
∂I

and ∂p
i = ∂

[p]
i + 〈ω, ∂i〉p = 〈ω, ∂i〉p.

1.4.2. The “small” differential operators DX,0. When Y is the zero section
of T ∗X (i.e., X = Y and ω = 0), we get the algebra DX,0 by imposing in DX

the relation ι∂ = 0, i.e., ∂p = ∂[p], ∂ ∈ TX (in local coordinates ∂i
p = 0). The

action of DX on OX factors through DX,0 since ∂p and ∂[p] act the same on
OX . Actually, DX,0 is the image of the canonical map DX→DX from 1.2 (see
2.2.5).

2. The Azumaya property of DX

2.1. Commutative subalgebra AX⊆DX . We will denote the centralizer
of OX in DX by AX

def= ZDX
(OX), and the pull-back of T ∗X(1) to X by

T ∗,1X
def= X×X(1)T ∗X(1).

2.1.1. Lemma. AX = OX ·ZX = OT ∗,1X/X .

Proof. The problem is local so assume that X has coordinates xi. Then
DX = ⊕ OX∂I and ZX = ⊕ OX(1)∂pI (recall that ι(∂i) = ∂i

p). So, OX ·ZX =
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⊕ OX∂pI
∼=←− OX⊗O

X(1)ZX , and this is the algebra OX⊗O
X(1)OT ∗X(1) of

functions on T ∗,1X. Clearly, ZDX
(OX) contains OX ·ZX , and the converse

ZDX
(OX)⊆ ⊕ OX∂pI was already observed in the proof of Lemma 1.3.2.

2.1.2. Remark. In view of the lemma, any DX -module E carries an action
of OT ∗,1X ; such an action is the same as a section ω of Fr∗(Ω1

X) ⊗ EndOX
(E).

As noted above E can be thought of as an OX module with a flat connection;
the section ω is known as the p-curvature of this connection. The section ω is
parallel for the induced flat connection on Fr∗(Ω1

X) ⊗ EndOX
(E).

2.2. Point modules δζ . A cotangent vector ζ = (b, ω) ∈ T ∗X(1) (i.e., b ∈
X(1) and ω ∈ T ∗

a X(1)) defines a central reduction DX,ζ = DX⊗ZX
Oζ(1) . Given

a lifting a ∈ T ∗X of b under the Frobenius map (such a lifting exists since k is
perfect and it is always unique), we get a DX -module δξ def= DX⊗AX

Oξ, where
we have set ξ = (a, ω) ∈ T ∗,(1)X. It is a central reduction of the DX -module
δa

def= DX⊗OX
Oa of distributions at a, namely δξ = δa⊗ZX

Oζ . In local coor-
dinates at a, 1.4.1 says that DX,ζ has a k-basis xJ∂I , I, J ∈ {0, 1, . . . , p − 1}n

with xp
i = 0 and ∂p

i = 〈ω, ∂i〉p.

2.2.1. Lemma. Central reductions of DX to points of T ∗X(1) are matrix
algebras. More precisely, in the above notations,

Γ(X,DX,ζ)
∼=−→ Endk(Γ(X, δξ)).

Proof. Let x1, . . . , xn be local coordinates at a. Near a,

DX = ⊕I∈{0,...,p−1}n ∂I ·AX ;

hence δξ ∼= ⊕I∈{0,...,p−1}n k∂I . Since xi(a) = 0,

xk·∂I = Ik·∂I−ek and ∂k·∂I =
{

∂I+ek if Ik + 1 < p,
ω(∂i)p·∂I−(p−1)ek if Ik = p − 1.

}
.

Irreducibility of δξ is now standard and xi’s act on polynomials in ∂i’s by
derivations; so for 0 �= P =

∑
I∈{0,...,p−1}n cI∂

I ∈ δξ and a maximal K with
cK �= 0, xK ·P is a nonzero scalar. Now multiply with ∂I ’s to get all of δξ.
Thus δξ is an irreducible DX,ζ-module. Since dimDX,ζ = p2 dim(X) = (dim δξ)2

we are done.

Since the lifting ξ ∈ T ∗,(1)X of a point ζ ∈ T ∗X(1) exists and is unique,
we will occasionally talk about point modules associated to a point in T ∗X(1),
and denote it by δζ , ζ ∈ T ∗X(1).

2.2.2. Proposition (Splitting of DX on T ∗,1X). Consider DX as an
AX-module (DX)AX

via the right multiplication. Left multiplication by DX
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and right multiplication by AX give an isomorphism

DX ⊗
ZX

AX
∼=−→ EndAX

((DX)AX
).

Proof. Both sides are vector bundles over T ∗,1X = Spec(AX); the
AX -module (DX)AX

has a local frame ∂I , I ∈ {0, . . . , p − 1}dim X ; while
xJ∂I , J, I ∈ {0, . . . , p − 1}dim X is a local frame for both the ZX -module
DX and the AX -module DX⊗ZX

AX . So, it suffices to check that the map
is an isomorphism on fibers. However, this is the claim of Lemma 2.2.1,
since the restriction of the map to a k-point ζ of T ∗,1X is the action of
(DX⊗ZX

AX)⊗AX
Oζ = DX⊗ZX

Oζ = DX,ζ on (DX)AX
⊗AX

Oζ = δζ .

2.2.3. Theorem. DX is an Azumaya algebra over T ∗X(1) (nontrivial if
dim(X) > 0).

Proof. One of the characterizations of Azumaya algebras is that they
are coherent as O-modules and become matrix algebras on a flat cover [MI].
The map T ∗,1X→T ∗X(1) is faithfully flat; i.e., it is a flat cover, since the
Frobenius map X→X(1) is flat for smooth X (it is surjective and on the formal
neighborhood of a point given by k[[xp

i ]]↪→k[[xi]]). If dim(X) > 0, then DX

is nontrivial, i.e. it is not isomorphic to an algebra of the form End(V ) for
a vector bundle V , because locally in the Zariski topology of X, DX has no
zero-divisors, since gr(DX) = OT ∗X ; while the algebra of endomorphisms of a
vector bundle of rank higher than one on an affine algebraic variety has zero
divisors.

2.2.4. Remarks.(1) A related Azumaya algebra was considered in [Hur].

(2) One can give a different, somewhat shorter proof of Theorem 2.2.3
based on the fact that a function on a smooth k-variety has zero differential
if and only if it is a pth power, which implies that any Poisson ideal in OT ∗X

is induced from OT ∗X(1) . This proof applies to a more general situation of the
so called Frobenius constant quantizations of symplectic varieties in positive
characteristic, see [BeKa, Prop. 3.8].

(3) The statement of the theorem can be compared to the well-known fact
that the algebra of differential operators in characteristic zero is simple: in
characteristic p it becomes simple after a central reduction. Another analogy
is with the classical Stone – von Neumann Theorem, which asserts that L2(Rn)
is the only irreducible unitary representation of the Weyl algebra: Theorem
2.2.3 implies, in particular, that the standard quantization of functions on the
Frobenius neighborhood of zero in A2n

k has unique irreducible representation
realized in the space of functions on the Frobenius neighborhood of zero in An

k .
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(4) The class of the Azumaya algebra in the Brauer group can be described
as follows. In [MI, II.4.14] one finds the following exact sequence of sheaves
in étale topology available for any smooth variety M over a perfect field of
characteristic p:

0 → O∗
M

Fr−→O∗
M

dlog−→Ω1
M,cl

C−1−→Ω1
M → 0,

where Fr : f 
→ fp, C is the Cartier operator and Ω1
M,cl is the sheaf of closed

1-forms. This exact sequences produces a map H0(Ω1
M ) → H2(O∗

M ). One can
check that applying the map to the canonical 1-form on M = T ∗X one gets
the class of the Azumaya algebra DX .

2.2.5. Splitting on the zero section. By a well known observation2 the
small differential operators, i.e., the restriction DX,0 of DX to X(1)⊆ T ∗X(1),
form a sheaf of matrix algebras. In the notation above, this is the observation
that the action map (FrX)∗DX,0

∼=−→ EndO
X(1) ((FrX)∗OX) is an isomorphism by

2.2.1. Thus Azumaya algebra DX splits on X(1), and (FrX)∗OX is a splitting
bundle. The corresponding equivalence between CohX(1) and DX,0 modules
sends F ∈ CohX(1) to the sheaf Fr∗XF equipped with a standard flat connection
(the one for which pull-back of a section of F is parallel).

2.2.6. Remark. Let Z ⊂ T ∗X(1) be a closed subscheme, such that the
Azumaya algebra DX splits on Z (see Section 5 below for more examples of
this situation); thus we have a splitting vector bundle EZ on Z such that
DX |Z

∼=−→ End(EZ). It is easy to see then that EZ is a locally free, rank one
module over AX |Z , thus it can be thought of as a line bundle on the preimage
Z ′ of Z in T ∗(1)X under the map Fr × id : X ×X(1) T ∗X(1) → T ∗X(1). In the
particular case when Z maps isomorphically to its image Z̄ in X the scheme
Z ′ is identified with the Frobenius neighborhood of Z̄ in X. The action of DX

equips the resulting line bundle on FrN(Z̄) with a flat connection. The above
splitting on the zero-section corresponds to the trivial line bundle OX with the
standard flat connection.

2.3. Torsors. A torsor X̃
π→ X for a torus T defines a Lie algebroid

T̃X
def= π∗(TX̃)T with the enveloping algebra D̃X

def= π∗(DX̃)T . Let t be the Lie
algebra of T . Locally, any trivialization of the torsor splits the exact sequence
0→t ⊗ OX→ T̃X→TX→ 0 and gives D̃X

∼= D⊗ U t. So the map of the constant
sheaf U(t)X into D̃X , given by the T -action, is a central embedding and D̃X is
a deformation of DX

∼= D̃X ⊗S(t) k0 over t∗. The center OT ∗X̃(1) of DX̃ gives
a central subalgebra (π∗OT ∗X̃(1))T = OT̃ ∗X(1) of D̃X . We combine the two
into a map from functions on T̃ ∗X(1)×t∗(1)t∗ to Z(D̃X) (the map t∗ → t∗(1) is
the Artin-Schreier map AS; the corresponding map on the rings of functions

2The second author thanks Paul Smith from whom he has learned this observation.
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S(t(1)) → S(t) is given by ι(h) = hp − h[p], h ∈ t(1)). Local trivializations
again show that this is an isomorphism and that D̃X is an Azumaya algebra
on T̃ ∗X(1)×t∗(1)t∗, which splits on X×X(1)(T̃ ∗X(1)×t∗(1)t∗).

In particular, for any λ ∈ t∗, specialization Dλ
X

def= D̃X⊗S(t)kλ is an
Azumaya algebra on the twisted cotangent bundle

T ∗
AS(λ)X

(1) def= T̃ ∗X(1)×t∗(1)AS(λ),

which splits on T
∗,(1)
AS(λ)X

def= X×X(1)T ∗
AS(λ)X

(1). For instance, if λ = d(χ) is the
differential of a character χ of T then AS(λ) = 0; thus T ∗

AS(λ)X = T ∗X. In
this case Dλ

X is identified with the sheaf OχDX
∼= Oχ⊗DX⊗Oχ

−1 of differential
operators on sections of the line bundle Oχ on X, associated to X̃ and χ.

By a straightforward generalization of 2.1, 2.2, ÃX
def= OX×

X(1) T̃ ∗X(1)×
t∗(1) t∗

embeds into D̃X . As in 2.2, for a point ζ = (a, ω;λ) of X×X(1) T̃ ∗X(1)×t∗(1) t∗ we
define the point module δζ = D̃X ⊗ÃX

Oζ . If ζ(1) = (ω, λ) is the corresponding

point of T̃ ∗X(1) ×t∗(1) t∗ then we have D̃X ⊗Z(D̃X) Oζ(1)

∼=−→Endk(δζ).

We finish the section with a technical lemma to be used in Section 5.

2.3.1. Lemma. Let ν = d(η) be an integral character. Define a morphism
τν from T̃ ∗X(1) ×t∗(1) t∗ to itself by τν(x, λ) = (x, λ + ν). Then the Azumaya
algebras D̃X and τ∗

ν (D̃X) are canonically equivalent.

Proof. Recall that to establish an equivalence between two Azumaya al-
gebras A, A′ on a scheme Y (i.e. an equivalence between their categories of
modules) one needs to provide a locally projective module M over A⊗OY

(A′)op

such that A ∼=−→ End(A′)op(M), A′ ∼=−→ EndA(M). The sheaf π∗(DX̃)T,η of sec-
tions of π∗(DX̃) which transform by the character η under the action of T

carries the structure of such a module.

3. Localization of g-modules to D-modules on the flag variety

This crucial section extends the basic result of [BB], [BrKa] to positive
characteristic.

3.1. The setting. We define relevant triangulated categories of g-modules
and D-modules and functors between them.

3.1.1. Semisimple group G. Let G be a semisimple simply-connected
algebraic group over k. Let B = T ·N be a Borel subgroup with the unipotent
radical N and a Cartan subgroup T . Let H be the (abstract) Cartan group of
G so that B gives isomorphism ιb = (T

∼=−→B/N ∼= H). Let g, b, t, n, h be the
corresponding Lie algebras. The weight lattice Λ = X∗(H) contains the set



LOCALIZATION IN CHARACTERISTIC P 957

of roots Δ and of positive roots Δ+. Roots in Δ+ are identified with T -roots
in g/b via the above “b-identification” ιb. Also, Λ contains the root lattice Q

generated by Δ, the dominant cone Λ+ ⊆ Λ and the semi-group Q+ generated
by Δ+. Let I ⊆ Δ+ be the set of simple roots. For a root α ∈ Δ let α 
→α̌ ∈ Δ̌
be the corresponding coroot.

Similarly, ιb identifies NG(T )/T with the Weyl group W ⊆ Aut(H). Let
Waff

def= W � Q ⊆ W ′
aff

def= W � Λ be the affine Weyl group and the extended
affine Weyl group. We have the standard action of W on Λ, w : λ 
→ w(λ) =
w·λ, and the ρ-shift gives the dot-action w : λ 
→ w•λ = w•ρλ

def= w(λ + ρ)− ρ

which is centered at −ρ, where ρ is the half sum of positive roots. Both actions
extend to W ′

aff so that μ ∈ Λ acts by the pμ-translation. We will indicate the
dot-action by writing (W, •), this is really the action of the ρ-conjugate ρW of
the subgroup W ⊆ W ′

aff.
Any weight ν ∈ Λ defines a line bundle OB,ν = Oν on the flag variety

B ∼= G/B, and a standard G-module Vν
def= H0(B,Oν+) with extremal weight ν.

Here ν+ denotes the dominant W -conjugate of ν (notice that a dominant
weight corresponds to a semi-ample line bundle in our normalization). We
will also write Oν instead of π∗(Oν) for a scheme X equipped with a map
π : X → B (e.g. a subscheme of g̃∗).

We let N ⊂ g∗ denote the nilpotent cone, i.e. the zero set of invariant
polynomials of positive degree.

3.1.2. Restrictions on the characteristic p. Let h be the maximum of
Coxeter numbers of simple components of G. If G is simple then h = 〈ρ, α̌0〉+1
where α̌0 is the highest coroot. We mostly work under the assumption p > h,
though some intermediate statements are proved under weaker assumptions; a
straightforward extension of the main Theorem 3.2 with weaker assumptions
on p is recorded in the sequel paper [BMR2]. The main result is obtained for a
regular Harish-Chandra central character, and the most interesting case is that
of an integral Harish-Chandra central character; integral regular characters
exist only for p ≥ h, hence our choice of restrictions3 on p.

Recall that a prime is called good if it does not coincide with a coefficient
of a simple root in the highest root [SS, §4], and p is very good if it is good
and G does not contain a factor isomorphic to SL(mp) [Sl, 3.13]. We will need
a crude observation that p > h ⇒ very good ⇒ good.

For p very good g carries a nondegenerate invariant bilinear form; also g

is simple provided that G is simple [Ja, 6.4]. We will occasionally identify g

and g∗ as G-modules. This will identify the nilpotent cones N in g and g∗.

3The case p = h is excluded because for G = SL(p), p = h is not very good and g �∼= g
∗ as

G-modules.
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3.1.3. The sheaf D̃. Our main object is the sheaf D = DB on the flag
variety. Along with D we will consider its deformation D̃ defined by the
H-torsor B̃ def= G/N

π→ B as in subsection 2.3. Here G×H acts on B̃ = G/N by
(g, h)·aN

def= gahN , and this action differentiates to a map g⊕h → T̃B which
extends to U(g)⊗U(h) → D̃B. Then D̃ = π∗(DB̃)H is a deformation over h∗ of
D ∼= D̃ ⊗S(h) k0.

The corresponding deformation of T ∗B will be denoted g̃∗ = T̃ ∗B =
{(b, x) | b ∈ B, x|rad(b) = 0}; we have projections pr1 : g̃∗ → g∗, pr1(b, x) = x

and pr2 : g̃∗ → h∗ sending (b, x) to x|b ∈ (b/rad(b))∗ = h∗; they yield a map
pr = pr1 × pr2 : g̃∗ → g∗ ×h∗//W h∗. According to subsection 2.3 the sheaf
D̃ is an Azumaya algebra on g̃∗(1) ×h∗(1) h∗ where h∗ maps to h∗(1) by the
Artin-Schreier map.

We denote for any B-module Y by Y 0 the sheaf of sections of the associ-
ated G-equivariant vector bundle on B. For instance, vector bundle TB = [g/b]0

is generated by the space g of global sections, so that g and OB generate D
as an OB-algebra; one finds that D is a quotient of the smash product U0 =
OB#U(g) (the semi-direct tensor product), by the two-sided ideal b0·U(g)0.
So D = [U(g)/bU(g)]0, and the fiber (with respect to the left O-action) at
b ∈ B is Ob⊗OD ∼= U(g)/bU(g). Similarly, D̃ = [U(g)/nU(g)]0.

3.1.4. Baby Verma and point modules. Here we show that D̃ can be
thought of as the sheaf of endomorphisms of the “universal baby Verma mod-
ule”.

Recall the construction of the baby Verma module over U(g). To define
it one fixes a Borel b = n ⊕ t ⊂ g, and elements χ ∈ g∗(1), λ ∈ t∗, such that
χ|n(1) = 0, χ|t(1) = AS(λ) (see 2.3 for notation). For such a triple ζ = (b, χ;λ)
one sets Mζ = Uχ(g) ⊗U(b) kλ, where Uχ(g) is as in 1.3.3, and kλ is the one

dimensional b-module given by the map b → t
λ→k.

On the other hand, a triple ζ = (b, χ;λ) as above defines a point of
g̃∗(1)×h∗(1)h∗ (here we use the isomorphism t ∼= h defined by b); thus we have
the corresponding point module δζ over D̃ (see 2.3). Pulling back this module
under the homomorphism U(g) → Γ(D̃) we get a U(g)-module (also denoted
by δζ).

Proposition. δζ ∼= Mb,χ;λ+2ρ.

Proof. Let n− ⊂ g be a maximal unipotent subalgebra opposite to b, and
set Uχ(n−) = Uχ|n− (n−). It suffices to check that there exists a vector v ∈ δζ

such that (1) the subspace kv is b-invariant, and kv ∼= kλ+2ρ; and (2) δζ is
a free Uχ(n−)-module with generator v. These two statements follow from
the next lemma, which is checked by a straightforward computation in local
coordinates.
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Lemma. Let a be a Lie algebra acting4 on a smooth variety X and let
X̃ → X be an a-equivariant torsor for a torus T . Let ζ = (x, χ;λ) be a point
of X×X(1) T̃ ∗X(1)×t∗(1) t∗, and δζ be the corresponding point module. Let v ∈ δζ

be the canonical generator, v = 1 ⊗ 1.

a) If x is fixed by a then a acts on v by λx − ωx, where: (1) the character
λx : a → k is the pairing of λ ∈ t∗ with the action of a on the fiber X̃x, and (2)
the character ωx : a → k is the action of a on the fiber at x of the canonical
bundle ωX .5

b) If, on the other hand, the action is simply transitive at x (i.e. it induces
an isomorphism a

∼=−→ TxX), then the map u 
→ u(v) gives an isomorphism
Uχx

(a)
∼=−→ δζ ; here χx ∈ a∗(1) is the pull-back of χ ∈ T̃ ∗

xX under the action
map.

3.1.5. The “Harish-Chandra center” of U(g). Now let U = Ug be
the enveloping algebra of g. The subalgebra of G-invariants ZHC

def= (Ug)G is
clearly central in Ug.

Lemma. Let the characteristic p be arbitrary ; the group G is simply-
connected, as above.

(a) The map U(h) → Γ(B, D̃) defined by the H-action on B̃ gives an
isomorphism U(h)

∼=−→ Γ(B, D̃)G.

(b) The map UG → Γ(B, D̃)G ∼= S(h) gives an isomorphism UG iHC−→
S(h)(W,•)(the “Harish-Chandra map”). For good p this isomorphism is strictly
compatible with filtrations, where the filtration on ZHC is induced by the canon-
ical filtration on U , while the one on the target is induced by the filtration on
S(h) by degree.

(c) The map U(g)⊗S(h) → Γ(B, D̃) factors through Ũ
def= U⊗ZHCS(h).

Proof. We borrow the arguments from [Mi]. In (a),

Γ(B, D̃)G = Γ(B, [U/nU ]0)G ∼= [U/nU ]B⊇U(b)/nU(b) ∼= U(h),

and the inclusion is an equality, as one sees by calculating invariants for a
Cartan subgroup T ⊆ B.

For (b), the map U → Γ(B, D̃) restricts to a map UG iHC−→ Γ(B, D̃)G ∼=
U(h), which fits into UG ⊆ U � U/nU ⊇ U(b)/nU(b) ∼= U(h). So, UG ⊆
nU + U(b) and iHC is the composition UG ⊆ nU + U(b) � [nU + U(b)]/nU ∼=
U(h). On the other hand a choice of a Cartan subalgebra t⊆b defines an

4An action of a Lie algebra a on a variety X is an action of a on OX by derivations.
Equivalently, it is a Lie algebra homomorphism from a to the algebra of vector fields on X.

5For a section Ω of ωX near x and ξ ∈ a, Lieξ(Ω)|x = ωx(ξ) · Ω|x.
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opposite Borel subalgebra b with b ∩ b = t and b = n � t. Let us use the
B-identification ιb : h∗ ∼= t∗ from 3.1.1 to carry over the dot-action of W to t∗

(now the shift is by ιb(ρ) = ρn, the half sum of T -roots in n ). According to
[Ja, 9.3], an argument of [KW] shows that for any simply-connected semisimple
group, regardless of p, the projection U = (nU +Un)⊕U(t) → U(t) restricts to
the Harish-Chandra isomorphism ZHC

ιn,n−→ S(t)W,•. Therefore, iHC = ιb◦ιn,n is

an isomorphism ZHC
∼=−→ S(h)W,•.

Strict compatibility with filtrations follows from the fact that the homo-
morphism U → Γ(D̃) is strictly compatible with filtrations. The latter follows
from injectivity of the induced map on the associated graded algebras: S(g) =
gr(U) → Γ(Og̃∗) ∼= gr(Γ(D̃)). Here the last isomorphism holds for good p,
because of vanishing of higher cohomology H>0(B, gr(D̃)) = H>0(g̃∗,O). This
cohomology vanishing for good p follows from [KLT], cf. the proof of Proposi-
tion 3.4.1 below. Injectivity of the map O(g∗) → Γ(Og̃∗) follows from the fact
that the morphism g̃∗ → g∗ is dominant. This latter fact is a consequence of
[Ja, 6.6], which claims that every element in g∗ annihilates the radical of some
Borel subalgebra by a result of [KW].

Finally, (c) means that the two maps from ZHC to Γ(B, D̃), via U and Sh,
are the same – but this is the definition of the second map.

3.1.6. The center of U(g) [Ve], [KW], [MR1]. For a very good p the
center Z of U is a combination of the Harish-Chandra part (3.1.5) and the
Frobenius part (1.3.3):

Z
∼=←− ZFr⊗ZFr∩ZHCZHC

∼= O(g∗(1)×h∗(1)//W h∗//(W, •)).

Here, // denotes the invariant theory quotient, the map g∗(1) → h∗(1)//W is
the adjoint quotient, while the map h∗//(W, •) → h∗(1)//W comes from the
Artin-Schreier map h∗

AS−→ h∗(1) defined in 2.3.

3.1.7. Derived categories of sheaves supported on a subscheme. Let A
be a coherent sheaf on a Noetherian scheme X equipped with an associative
OX-algebra structure. We denote by modc(A) the abelian category of coherent
A-modules. We also use notations Coh(X) if A = OX and modfg(A) if X is a
point.

We denote by modc
Y(A) the full subcategory of coherent A-modules sup-

ported set-theoretically in Y, i.e., killed by some power of the ideal sheaf IY.
The following statement is standard.

Lemma. a) The tautological functor identifies the bounded derived category
Db(modc

Y(A)) with a full subcategory in Db(modc(A)).
b) For F ∈ Db(modc(A)) the following conditions are equivalent :

i) F ∈ Db(modc
Y(A));



LOCALIZATION IN CHARACTERISTIC P 961

ii) F is killed by a power of the ideal sheaf IY, i.e. the tautological arrow
In

Y
⊗O F → F is zero for some n;

iii) the cohomology sheaves of F lie in modc
Y(A).

Proof. In (a) we can replace modc with modqc (since A is coherent,
D(modc(A)) is a full subcategory of D(modqc(A)), and the same proof works
for D(modc

Y(A)) and D(modqc
Y

(A))). Now it suffices to show that each sheaf in
modqc

Y
(A) embeds into an object of modqc

Y
(A) which is injective in modqc(A)

([Ha, Prop. I.4.8]). This follows from the corresponding statement for quasi-
coherent sheaves of O modules (see e.g. [Ha, Th. I.7.18 and its proof]), since
we can get a quasicoherent injective sheaf of A-modules from an injective qua-
sicoherent sheaf of O-modules by coinduction.

b) Implications (i)⇒(ii)⇒(iii) are clear by definitions, and (iii)⇒(i) is clear
from (a).

3.1.8. Categories of modules with a generalized Harish-Chandra character.
Let us apply 3.1.7 to D̃ and U (or Ũ), considered as coherent sheaves over the
spectra T̃ ∗B(1) and g∗(1) of central subalgebras. The interesting categories
are modc(Dλ) ⊆ modc

λ(D̃) ⊆ modc(D̃). Here, modc
λ(D̃) def= modc

T ∗
AS(λ)B(1)(D̃)

consists of those objects in modc(D̃) which are killed by a power of the maximal
ideal λ in Uh.

For λ ∈ h∗, denote by Uλ the specialization of U at the image of λ in
h∗//W = Spec(ZHC), i.e., the specialization of Ũ at λ ∈ h∗. There are anal-
ogous abelian categories modfg(Uλ) ⊆ modfg

λ (U) ⊆ modfg(U), where the cat-

egory modfg
λ (U) def= modc

g∗(1)
λ

(U) for g∗(1)
λ

def= g∗(1)×h∗//W (1)AS(λ), consists of
U -modules killed by a power of the maximal ideal in ZHC. The corresponding
triangulated categories are Db(modfg(Uλ)) → Db(modfg

λ (U)) ⊆ Db(modfg(U)).

3.1.9. The global section functors on D-modules. Let Γ = ΓO be
the functor of global sections on the category modqc(O) of quasicoherent
sheaves on B and let RΓ = RΓO be the derived functor on D(modqc(O)).

Recall from 3.1.5 that the action of G×H on B̃ gives a map Ũ → Γ(D̃); this

gives a functor modqc(D̃)
ΓD̃−→ mod(Ũ), which can be derived to Db(modqc(D̃))

RΓD̃−→ D(mod(Ũ)) because the category of modules has direct limits. This
derived functor commutes with the forgetful functors; i.e. ForgŨ

k ◦RΓD̃ =

RΓ◦ForgD̃O where ForgD̃O : modqc(D̃) → modqc(O), ForgŨ
k : mod(Ũ) → Vectk

are the forgetful functors. This is true since the category modqc(D̃) has enough
objects acyclic for the functor of global sections RΓ (derived in quasicoherent

O-modules). Namely, if Ui
ji→ B, i ∈ I, is an affine open cover then for any

object F in modqc(D̃) one has F ↪→ ⊕i∈I (ji)∗(ji)∗(F). Since Γ has finite
homological dimension, RΓD̃ actually lands in the bounded derived category.
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Lemma. The (derived) functor of global sections preserves coherence;
i.e., it sends the full subcategory Db(modc(D̃)) ⊂ Db(modqc(D̃)) into the full
subcategory Db(modfg(Ũ)) ⊂ Db(mod(Ũ)).

Proof. First notice that since Ũ is noetherian, Db(modfg(Ũ)) is indeed
identified with Db

fg(mod(Ũ)), the full subcategory in Db(mod(Ũ)) consisting
of complexes with finitely generated cohomology.

The map Ũ → ΓD̃ is compatible with natural filtrations and it pro-
duces a proper map μ from Spec(Gr(D̃)) = G×B n⊥ to the affine variety
Spec(Gr(Ũ)) ∼= g∗×h∗//W h∗ (here, gr(ZHC) ∼= O(h∗)W by Lemma 3.1.5(b)).
Any coherent D̃-module M has a coherent filtration, i.e., a lift to a filtered
D̃-module M• such that gr(M•) is coherent for Gr(D̃). Now, each Riμ∗(gr(M•))
is a coherent sheaf on Spec(Gr(Ũ)), i.e, H∗(B, gr(M•)) is a finitely gener-
ated module over Gr(Ũ). The filtration on M leads to a spectral sequence
H∗(B, gr(M)) ⇒ gr(H∗(B, M)), so gr(H∗(B, M)) is a subquotient of
H∗(B, gr(M)), and therefore it is also finitely generated. Observe that the
induced filtration on H∗(B, M) makes it into a filtered module for H∗(B,D)
with its induced filtration. Since Ũ → H0(B,D) is a map of filtered rings,
H∗(B, M) is also a filtered module for Ũ . Now, since gr(H∗(B, M)) is a finitely
generated module for gr(Ũ), we find that H∗(B, M) is finitely generated for Ũ .
This shows that RΓD̃ maps Db(modc(D̃)) to Db

fg(mod(Ũ)) ∼= Db(modfg(Ũ)).

From 3.1.5, the canonical map Ũ → Dλ factors for any λ ∈ h∗ to Uλ → Dλ.
So, as above, we get functors

modc
λ(D̃) ΓD̃,λ−−−→ modfg

λ (Ũ), modc(Dλ) ΓDλ−−−→ modfg(Uλ).

The derived functors

Db(modc
λ(D̃)) RΓD̃,λ−−−−→ Db(modfg

λ (U)), Db(modc(Dλ)) RΓDλ−−−→ Db(modfg(Uλ))

are defined and compatible with the forgetful functors.

3.2. Theorem (The main result). Suppose6 that p > h. For any
regular λ ∈ h∗ the global section functors provide equivalences of triangulated
categories:

RΓDλ : Db(modc(Dλ))
∼=−→ Db(modfg(Uλ));(1)

RΓD̃,λ : Db(modc
λ(D̃))

∼=−→ Db(modfg
λ (U)).(2)

6The restriction on p is discussed in 3.1.2 above.
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Remark 1. In the characteristic zero case Beilinson-Bernstein ([BB]; see
also [Mi]), proved that for a dominant λ the functor of global sections provides
an equivalence between the abelian categories modc(Dλ) → modfg(Uλ). The
analogue for crystalline differential operators in characteristic p is evidently
false: for any line bundle L on B the line bundle L⊗p carries a natural struc-
ture of a D-module (2.2.5); however RiΓ(L⊗p) may certainly be nonzero for
i > 0. Heuristically, the analogue of characteristic zero results about domi-
nant weights is not available in characteristic p, because a weight cannot be
dominant (positive) modulo p.

However, for a generic λ ∈ h∗ it is very easy to see that global sections
give an equivalence of abelian categories modc(Dλ) → modfg(Uλ). If ι(λ) is
regular, the twisted cotangent bundle T ∗

ι(λ)B is affine, so that Dλ-modules are
equivalent to modules for Γ(B,Dλ), and Γ(B,Dλ) = Uλ is proved in 3.4.1.

Remark 2. Quasicoherent and “unbounded” versions of the equivalence,
say D?(modqc(Dλ)) RΓDλ−−−→ D?(mod(Uλ)), ? = +, − or b, follow formally from
the coherent versions since RΓDλ and its adjoint (see 3.3) commute with ho-
motopy direct limits. For completions to formal neighborhoods see 5.4.

3.2.1. The strategy of the proof of Theorem 3.2. We concentrate on the
second statement, the first one follows (or can be proved in a similar way).
First we observe that the functor of global sections

RΓD̃,λ : Db(modc
λ(D̃))→ Db(modfg

λ (U))

has left adjoint – the localization functor Lλ̂ . A straightforward modification
of a known characteristic-zero argument shows that the composition of the two
adjoint functors in one order is isomorphic to the identity. The theorem then
follows from a certain abstract property of the category Db(modc

λ(D̃)) which
we call the (relative) Calabi-Yau property (because the derived category of
coherent sheaves on a Calabi-Yau manifold provides a typical example of such
a category). This property of Db(modc

λ(D̃)) will be derived from the triviality
of the canonical class of g̃∗.

Remark 3. One can give another proof of Theorem 3.2 with a stronger
restriction on characteristic p, which is closer to the original proof by Beilin-
son and Bernstein [BB] of the characteristic zero statement. (A similar proof
appears in an earlier preprint version of this paper.) Namely, for fixed weights
λ, μ and large p one can use the Casimir element in ZHC to show that the
sheaf Oμ ⊗ M is a direct summand in the sheaf of g modules Vμ ⊗ M for a
Dλ-module M (where λ is assumed to be integral and regular). Choosing p,
such that this statement holds for a finite set of weights μ, such that Oμ gen-
erates Db(Coh(B)), we deduce from Proposition 3.4.1 that the functor RΓ is
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fully faithful. Since the adjoint functor L is easily seen to be fully faithful as
well (see Corollary 3.4.2), we get the result.

3.3. Localization functors.

3.3.1. Localization for categories with generalized Harish-Chandra char-
acter. We start with the localization functor Loc from (finitely generated)
U -modules to D̃ modules, Loc(M) = D̃ ⊗U M . Since U has finite homolog-
ical dimension it has a left derived functor Db(modfg(U)) L→ Db(modc(D̃)).
Fix λ ∈ h∗, for any M ∈ Db(modfg

λ (U)) we have a canonical decomposition
L(M) =

⊕
μ∈W•λ

Lλ→μ(M) with Lλ→μ(M) ∈ Db(modc
μ(D̃)). Localization with

the generalized character λ is the functor Lλ̂ def= Lλ→λ : Db(modfg
λ (U)) →

Db(modc
λ(D̃)).

3.3.2. Lemma.The functor L is left adjoint to RΓ, and Lλ̂ is left adjoint
to RΓD̃,λ.

Proof. It is easy to check that the functors between abelian categories
Γ : modqc(D̃) → mod(U), Loc : mod(U) → modqc(D̃) form an adjoint pair.
Since modqc(D̃) (respectively, mod(U)) has enough injective (respectively, pro-
jective) objects, and the functors Γ, Loc have bounded homological dimension
it follows that their derived functors form an adjoint pair. Lemma 3.1.9 asserts
that RΓ sends Db(modc(D̃)) into Db(modfg(U)); and it is immediate to check
that L sends Db(modfg(U)) to Db(modc(D̃)). This yields the first statement.
The second one follows from the first one.

3.3.3. Localization for categories with a fixed Harish-Chandra character.
We now turn to the categories appearing in equivalence (1) of Theorem 3.2.
The functor Loc from the previous subsection restricts to a functor Locλ :
modfg(Uλ) → modc(Dλ), Locλ(M) =Dλ⊗UλM . It has a left derived functor

Lλ : D−(modfg(Uλ) → D−(modc(Dλ)), Lλ(M) = Dλ
L
⊗UλM . Notice that the

algebra Uλ may a priori have infinite homological dimension7, so Lλ need not
preserve the bounded derived categories. The next lemma shows that it does
for regular λ.

3.3.4. Lemma. a) Lλ is left adjoint to the functor

D−(modc(Dλ)) RΓDλ−−−→ D−(modfg(Uλ)).

b) For regular λ the localizations at λ and the generalized character λ are
compatible, i.e., for the obvious functors D−(modfg(Uλ)) i→ D−(modfg

λ (U)) and

7For regular λ the finiteness of homological dimension will eventually follow from the
equivalence 3.2.
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D−(modc(Dλ)) ι→ D−(modc
λ(D̃)), there is a canonical isomorphism

ι ◦ Lλ ∼= Lλ̂ ◦ i,

and this isomorphism is compatible with the adjunction arrows in the obvious
sense.

Proof. a) is standard. To check (b) observe that if λ is regular for the
dot-action of W , then the projection h∗ → h∗/(W, •) is étale at λ; thus we have

O(h∗)λ̂
L
⊗O(h∗/(W,•))kλ = k, where O(h∗)λ̂ is the completion of O(h∗) at the max-

imal ideal of λ. It follows that D̃λ̂
L
⊗UUλ = Dλ, where D̃λ̂ = D̃⊗O(h∗)O(h∗)λ̂. It

is easy to see from the definition that Lλ̂(M) ∼= Dλ̂
L
⊗UM canonically, thus we

obtain the desired isomorphism of functors. Compatibility of this isomorphism
with adjunction follows from the definitions.

3.3.5. Corollary. The functor Lλ sends the bounded derived category
Db(modc(Dλ)) to Db(modfg(Uλ)) provided λ is regular.

3.4. Cohomology of D̃. The computation in this section will be used to
check that RΓD̃,λ ◦ Lλ̂ ∼= id for regular λ.

3.4.1. Proposition. Assume that p is very good. Then we have
Ũ

∼=−→RΓ(D̃) and also Uλ
∼=−→RΓ(Dλ) for λ ∈ h∗.

Proof. The sheaves of algebras Dλ, D̃ carry filtrations by the order of a
differential operator; the associated graded sheaves are, respectively, OÑ and
Og̃∗ . Cohomology vanishing for D, D̃ follows from cohomology vanishing of the
associated graded sheaves. For OT ∗B this is Theorem 2 of [KLT], which only
requires p to be good for g. The case of g̃∗ is a formal consequence. To see
this consider a two-step B-invariant filtration on (g/n)∗ with associated graded
h∗ ⊕ (g/b)∗. It induces a filtration on g̃∗ considered as a vector bundle on B.
The associated graded of the corresponding filtration on Og̃∗ (considered as a
sheaf on B) is S(h)⊗OÑ . Cohomology vanishing of the last sheaf follows from
the one for OÑ , and implies one for Og̃∗ .

Furthermore, higher cohomology vanishing for the associated graded
sheaves OÑ = gr(Dλ), Og̃∗ = gr(D̃) implies that the natural maps gr(Γ(Dλ)) →
Γ(OÑ ), gr(Γ(D̃)) → Γ(g̃∗) are isomorphisms.

We will show that the maps Uλ → Γ(Dλ), Ũ → Γ(D̃) are isomorphisms
by showing that the induced maps on the associated graded algebras are. Here
the filtration on Uλ is induced by the canonical filtration on U , and the one
on D̃ is induced by the canonical filtration on U and the degree filtration on
S(h).

The associated graded rings of Uλ, Ũ are quotients of, respectively, S(g)
and S(g) ⊗ S(h). Moreover, in view of Lemma 3.1.5(b), they are quotients of,
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respectively, S(g) ⊗S(g)G k and S(g) ⊗S(g)G S(h). It remains to show that the
maps S(g) ⊗S(g)G k → Γ(OÑ ), S(g) ⊗S(g)G S(h) → Γ(Og̃∗) are isomorphisms.
Here the maps are readily seen to be induced by the canonical morphisms
Ñ → g∗ and g̃∗ → g∗ ×h∗/W h∗.

Since p is very good, we have a G-equivariant isomorphism g ∼= g∗; see
3.1.2. Thus it suffices to show that the global functions on the nilpotent variety
N ⊂ g map isomorphically to the ring of global functions on Ñ ∼= n ×B G.
Moreover, the étale slice theorem of [BaRi] shows that for very good p there
exists a G-equivariant isomorphism between N and the subscheme U ⊂ G

defined by the G-invariant polynomials on G vanishing at the unit element;
cf. [BaRi, 9.3]. Thus the task is reduced to showing that the ring of regular
functions on U maps isomorphically to the ring of global functions on N ×B G.
This follows once we know that U is reduced and normal and the Springer map
N ×B G → U is birational. These facts can be found in [St] for all p: U is
reduced and normal by 3.8, Theorem 7, it is irreducible by 3.8, Theorem 1,
while the Springer map is a resolution of singularities by 3.9, Theorem 1.

Finally, surjectivity of the map S(g)⊗S(h)W S(h) → Γ(O(g̃∗)) follows from
surjectivity established in the previous paragraph by the graded Nakayama
lemma; notice that higher cohomology vanishing for Og̃∗ implies that Γ(OÑ ) =
Γ(Og̃∗) ⊗S(h) k. Injectivity of this map is clear from the fact that S(h) is free
over S(h)W for very good p [De]; cf. also [Ja, 9.6]. Hence S(g) ⊗S(h)W S(h) is
free over S(g), while the map g̃∗ → g∗ ×h∗/W h∗ is an isomorphism over the
open set of regular semisimple elements in g∗ for any p.

3.4.2. Corollary. a) The composition RΓD̃ ◦ L : Db(modfg(U)) →
Db(modfg(Ũ)) is isomorphic to the functor M 
→ M ⊗ZHC S(h).

b) For a regular weight λ the adjunction map id → RΓD̃,λ ◦ Lλ̂ is an

isomorphism on Db(modfg
λ (U)).

c) For any λ, the adjunction map is an isomorphism id → RΓDλ◦Lλ on
D−(modfg(Uλ)).

Proof. For any U -module M the action of U on ΓD̃(L(M)) extends to
the action of Γ(D̃) = Ũ . So the adjunction map M → ΓD̃(L(M)) extends to
S(h) ⊗ZHC M = Ũ⊗UM → ΓD̃ ◦ L(M). Proposition 3.4.1 implies that if M is
a free module then this map is an isomorphism, while higher derived functors
RiΓD̃(L(M)), i > 0, vanish. This yields statement (a) and (c) is proved in the
same way by the second claim in Proposition 3.4.1.

To deduce (b) observe that for regular λ and M ∈ Db(modfg
λ (U)), we

have canonically M ⊗ZHC S(h) ∼= ⊕W M . The adjunction morphism viewed
as M → ⊕W M , equals

∑
W idM (when M is the restriction of U to the nth

infinitesimal neighborhood of λ this follows by restricting Ũ
∼=−→ RΓ(D̃)). Now

the claim follows since RΓD̃,λ(Lλ̂(M)) is one of the summands.
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3.5. Calabi-Yau categories. We recall some generalities about Serre
functors in triangulated categories; we refer to the original paper8 [BK] for
details.

Let O be a finite type commutative algebra over the field k, D an O-
linear triangulated category. A structure of an O-triangulated category on D

is a functor RHomD/O : Dop × D → Db(modfg(O)), together with a functorial
isomorphism HomD(X, Y ) ∼= H0(RHomD/O(X, Y )).

For any quasi-projective variety Y , the triangulated category Db(Coh(Y ))
is equipped with a canonical anti-auto-equivalence, namely the Grothendieck-
Serre duality DY = RHomO(−, KY ) for the dualizing complex KY =
(Y → pt)!k.

By an O-Serre functor on D we will mean an auto-equivalence S : D

→ D together with a natural (functorial) isomorphism RHomD/O(X, Y ) ∼=
DO(RHomD/O(Y, SX)) for all X, Y ∈ D. If a Serre functor exists, it is unique
up to a unique isomorphism. An O-triangulated category will be called Calabi-
Yau if for some n ∈ Z the shift functor X 
→ X[n] admits a structure of an
O-Serre functor.

For example, if X is a smooth variety over k equipped with a projec-
tive morphism π : X → Spec(O) then D = Db(CohX) is O-triangulated by
RHomD/O(F ,G) def= Rπ∗RHom(F ,G). The functor F 
→ F ⊗ ωX [dimX] is
naturally a Serre functor with respect to O; this is true because Grothendieck-
Serre duality commutes with proper direct images, and the dualizing complex
for a smooth X is KX

∼=−→ωX [dim(X)], so that

DO(Rπ∗RHom(F ,G))∼=Rπ∗(DXRHom(F ,G))

∼=Rπ∗RHom(G,F ⊗ ωX [dimX]).

We will need the following generalization of this fact. Its proof is straightfor-
ward and left to the reader.9

3.5.1. Lemma. Let A be an Azumaya algebra on a smooth variety X over
k, equipped with a projective morphism π : X → Spec(O). Then Db(modc(A))
is naturally O-triangulated and the functor F 
→ F ⊗ωX [dimX] is naturally a
Serre functor with respect to O. In particular, if X is a Calabi-Yau manifold
(i.e., ωX

∼= OX) then the O-triangulated category Db(modc(A)) is Calabi-Yau.

Application of the above notions to our situation is based on the following
lemma. A similar argument was used e.g. in [BKR, Th. 2.3].

8We slightly generalize the definition of [BK]; cf. [BeKa].
9Details of the proof can also be found in the sequel paper [BMR2].
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3.5.2. Lemma. Let D be a Calabi-Yau O-triangulated category for some
commutative finitely generated algebra O. Then a sufficient condition for a
triangulated functor L : C → D to be an equivalence is given by

i) L has a right adjoint functor R and the adjunction morphism id → R◦L

is an isomorphism, and

ii) D is indecomposable, i.e. D cannot be written as D = D1⊕D2 for nonzero
triangulated categories D1, D2; and C �= 0.

Proof. Consider any full subcategory C ⊆ D invariant under the shift func-
tor. The right orthogonal is the full subcategory C⊥ = {y ∈ D; HomD(c, y) =
0 ∀c ∈ C}. If S an O-Serre functor for D then S−1 : C⊥ → ⊥C (the left
orthogonal of C), since for y ∈ C⊥ and c ∈ C one has HnRHomD/O(c, y) =
HomD(c, y[n]) = HomD(c[−n], y) = 0, n ∈ Z, hence RHomD/O(c, y) = 0,
and then DORHomD/O(S−1y, c) = RHomD/O(c, y) = 0. In particular, if D is
Calabi-Yau relative to O, then ⊥C = C⊥.

Now, condition (i) implies that L is a full embedding, so we will regard it
as the inclusion of a full subcategory C into D. Moreover, for d ∈ D, any cone
y of the map LR(d) → d is in C⊥. Therefore, y ∈ ⊥C, and then d ∼= LR(d)⊕y.
This yields a decomposition D = C ⊕ C⊥. Thus, condition (ii) implies that
C⊥ = 0 and L is an equivalence.

Another useful simple fact is:

3.5.3. Lemma (cf. [BKR, Lemma 4.2]). Let X be a connected scheme
quasiprojective over a field k, and let A be an Azumaya algebra on X. Then the
category Db(modc(A)) is indecomposable. Moreover, if Y ⊂ X is a connected
closed subset then Db(modc

Y (X,A)) is indecomposable.

Proof. Assume that Db(modc(A)) = D1 ⊕ D2 is a decomposition invari-
ant under the shift functor. Let P be an indecomposable summand of the
free A-module. Let L be a very ample line bundle on X such that 0 �=
H0(L ⊗ HomA(P, P )) = HomA(P, P⊗L). For any n ∈ Z the A-module
P ⊗ L⊗n is indecomposable, hence belongs either to D1 or to D2. More-
over, all these modules belong to the same summand, because HomA(P ⊗L⊗n,

P ⊗ L⊗m) �= 0 for n ≤ m. If F is an object of the other summand, then we
have Ext•A(P ⊗ L⊗n,F) = 0 for all n. However, since A is Azumaya algebra,
P �= 0 is a locally projective A-module and X is connected, F �= 0 would imply
RHomA(P,F) �= 0 (this claim reduces to the case when A is a matrix algebra
and then to A = OX). So F = 0 (otherwise H∗(X, RHomA(P,F)⊗L⊗−n)
could not be zero for all n), and this proves the first statement. The second
claim follows: for any closed subscheme Y ′ ⊂ X whose topological space equals
Y , the image of Db(modc(Y ′,A|Y ′)) under the push-forward functor lies in one
summand of any decomposition Db(modc

Y (X,A)) = D1 ⊕ D2.
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3.6. Proof of Theorem 3.2. The canonical line bundle on g̃∗ is trivial;
hence the same is true for g̃∗(1)×h∗(1)h∗, the spectrum of the center of D̃ (see
3.1.6). Thus Lemma 3.5.1 shows that Db(modc(D̃)) is Calabi-Yau with respect
to O(g∗).

It follows from the definitions that a full triangulated subcategory in a
Calabi-Yau category with respect to some algebra O is again a Calabi-Yau
category with respect to O. Therefore, (2) follows from Corollary 3.4.2(b) and
Lemmas 3.5.2, 3.5.3.

To deduce (1) from (2) we use Lemma 3.3.4(b). It says that the functors
i, ι send the adjunction arrows into adjunction arrows; since i, ι kill no objects,
and the adjunction arrows in Db(modc

λ(D̃)), Db(modfg
λ (U)) are isomorphisms,

we conclude that the adjunction arrows in Db(modc(Dλ)), Db(modfg(Uλ)) are
isomorphisms, which implies (1).

4. Localization with a generalized Frobenius character

4.1. Localization on (generalized) Springer fibers. The map U → D̃
restricts to a map of central algebras O(g∗(1)) → Og̃∗(1) . So, the commutative
part of the localization mechanism is the resolution g̃∗(1) → g∗(1). Therefore,
the specialization of the algebra U to χ ∈ g∗(1) will correspond to the restriction
of D̃ to the corresponding Springer fiber.

From here on we keep in mind that the Weyl group always acts by the
dot action and we write X//W instead of X//(W, •) for the invariant theory
quotients.

4.1.1. Categories with a generalized character χ of the Frobenius center.
Recall that the center Z = O(g∗(1)×h∗(1)//W h∗//W ) of U is generated by
subalgebras ZFr = O(g∗(1)) and ZHC = O(h∗//W ) which the map U(g)→ ΓD̃
sends to the central subalgebras O(T̃ ∗B(1)) and Sh of D̃ (3.1.6).

For λ ∈ h∗, χ ∈ g∗, the notation Uλ, Uχ, Uλ
χ denotes the specializations

of U to the characters λ, χ, (λ, χ) of ZHC,ZFr,Z. Similarly, the sheaf of alge-
bras D̃ has specializations Dλ def= D̃λ, D̃χ,Dλ

χ. As in 3.1.7, we denote the full
subcategories with a generalized character ζ ∈ {λ, χ, (λ, χ)} of ZHC,ZFr or Z,
by modc

ζ(−)⊆modc(−), and one has Db(modc
ζ(−))⊆Db(modc(−)). For later

use we notice that modfg
χ (U) can be viewed as the category modfl(Uλ

χ̂ ) of finite
length modules for the completion Uλ

χ̂ of Uλ at χ.
According to 3.1.6 the specialization Zλ of the center Z of U is the space of

functions on g∗(1)
λ

def= (g∗(1)×h∗(1)//W h∗//W )×h∗//W λ = g∗(1)×h∗(1)//W AS(λ).

For instance, any integral λ is killed by the Artin-Schreier map, so g∗(1)
λ = N (1)

and Uλ is an O(N (1))-algebra.

4.1.2. (Generalized) Springer fibers. Fix (χ, ν) ∈ g∗(1) ×h∗(1)//W h∗, and
define Bχ,Bχ,ν ⊂ g̃∗ by Bχ = pr−1

1 (χ), Bχ,ν = pr−1(χ, ν) (notation of 3.1.3);
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we equip Bχ, Bχ,ν with the reduced10 subscheme structure. When χ is nilpotent
(so that ν = 0 and Bχ,ν = Bχ) it is called a Springer fiber; otherwise we call it
a generalized Springer fiber.

One can show that Bχ,ν is connected; in fact it is a Springer fiber for the
centralizer of χss where χ = χss +χnil is the Jordan decomposition. Thus Bχ,ν

is a connected component of Bχ. Via the projection g̃∗
π→ B the (generalized)

Springer fiber can be identified with a subscheme π(Bχ,ν) of B, and Bχ,ν is a
section of g̃∗ over π(Bχ,ν).

4.1.3. Lemma. If λ ∈ h∗ is regular and (χ,AS(λ)) ∈ g∗(1) ×h∗(1)//W h∗(1),
the equivalences in Theorem 3.2 restrict to

Db(modc
χ(Dλ)) ∼= Db(modfg

χ (Uλ)), Db(modc
λ,χ(D̃)) ∼= Db(modfg

λ,χ(U)).

Proof. O(g∗(1)) acts on the categories modc(D̃), modfg(U), etc., and on
their derived categories. The equivalences in Theorem 3.2 are equivariant
under O(g∗(1)) and therefore they restrict to the full subcategories of objects
on which the p-center acts by the generalized character χ (cf. Lemma 3.1.7).

4.1.4. Corollary. If λ is regular and (χ,AS(λ)) ∈ g∗(1) ×h∗(1)//W h∗(1),
the localization gives a canonical isomorphism K(Uλ

χ ) ∼= K(Dλ
χ).

Proof. By Lemma 4.1.3, the localization gives an isomorphism

K(Db(modfg
χ (Uλ)))

∼=−→ K(Db(modc
χ(Dλ))).

This simplifies to the desired isomorphism since

K(Uλ
χ ) def= K(modfg(Uλ

χ ))
∼=−→ K(modfg

χ (Uλ)) ∼= K(Db(modfg
χ (Uλ))),

the first isomorphism is the fact that the subcategory modfg(Uλ
χ ) generates

modfg
χ (Uλ) under extensions, and the second is the equality of K-groups of a

triangulated category (with a bounded t-structure), and of its heart. Similarly,

K(Dλ
χ) def= K(modc(Dλ

χ))
∼=−→ K(modc

χ(Dλ)) = K(Db(modc
χ(Dλ))).

5. Splitting of the Azumaya algebra of crystalline differential
operators on (generalized) Springer fibers

5.1. D-modules and coherent sheaves. Since D̃ is an Azumaya algebra
over T̃ ∗B(1)×h∗(1)h∗, for λ ∈ h∗, we will view Dλ as an Azumaya algebra over
T ∗

ν B(1) where ν = AS(λ) (see 2.3). The aim of this section is the following:

10“Reduced” will only be used in lemma 7.1.5c. It is irrelevant in §4 and §5 since we only
use formal neighborhoods of the fiber.
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5.1.1. Theorem. a) For any λ ∈ h∗, Azumaya algebra D̃ splits on the
formal neighborhood in T̃ ∗B(1)×h∗(1)h∗ of Bχ

(1) ×h∗(1) λ ∼= Bχ,ν
(1), i.e., there is

a vector bundle Mλ
χ on this formal neighborhood, such that the restriction of

D̃ to the neighborhood is isomorphic to EndO(Mλ
χ).

b) The functor F 
→ Mλ
χ ⊗O F provides equivalences

CohBχ,ν
(1)(T̃ ∗B(1)×h∗(1)h∗)

∼=−→modc
χ,λ(D̃),

CohBχ,ν
(1)(T ∗

ν B(1))
∼=−→modc

χ(Dλ).

Proof. (b) follows from (a). Lemma 2.3.1 shows that to check statement
(a) for particular (χ, λ) it suffices to check it for (χ, λ+ dη) for some character
η : H → Gm.

Let us say that λ ∈ h∗ is unramified if for any coroot α we have either
〈α, λ + ρ〉 = 0, or 〈α, λ〉 �∈ Fp. We claim that for any λ ∈ h∗ one can find
a character η : H → Gm such that λ + dη is unramified. For this it suffices
to show the existence of μ ∈ h∗(Fp), such that 〈α, λ + ρ〉 = 〈α, μ〉 for any
coroot α, such that 〈α, λ〉 ∈ Fp. These conditions constitute a system of linear
equations over Fp, which have a solution over the bigger field k. By standard
linear algebra they also have a solution over Fp.

Thus it suffices to check (a) when λ is unramified. The next proposition
shows that for unramified λ the restriction of D̃ to the formal neighborhood
of Bχ

(1) ×h∗(1) λ is isomorphic to the pull-back of an Azumaya algebra on the
formal neighborhood χ̂(1) = FNg∗(χ)(1) of χ in g∗(1). The latter splits by [MI,
IV.1.7] (vanishing of the Brauer group of a complete local ring with a separably
closed residue field).

5.2. Unramified Harish-Chandra characters. Let h∗unr ⊂ h∗ be the
open set of all unramified weights. Let Zunr be the algebra of functions on
g∗(1) ×h∗(1)//W h∗unr ⊆ Spec(Z) (see 3.1.6).

5.2.1. Proposition. a) U ⊗Z Zunr is an Azumaya algebra over Zunr.

b) The action map U ⊗Z O(g̃∗(1) ×h∗(1) h∗) → D̃ induces an isomorphism

U ⊗Z O(g̃∗(1) ×h∗(1) h∗unr)
∼=−→ D̃|g̃∗(1)×

h∗(1)h∗
unr

.

Proof. (a) is proved in [BG, Cor. 3.11]; moreover, it is shown in loc. cit.
that for z ∈ Zunr and a baby Verma module M with central character z we
have an isomorphism U(g) ⊗Z kz

∼=−→ Endk(M). This implies (b) in view of
Proposition 3.1.4.

5.2.2. Remarks. 1) Consider the restriction of M0
χ to the reduced sub-

scheme Bχ
(1). In view of Remark 2.2.6 it defines (and is defined by) a line

bundle with a flat connection on the Frobenius neighborhood of Bχ in B. The
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requirement that the sheaf on T ∗X(1) arising from the bundle with connec-
tion lives on Bχ

(1) is equivalent to the equality between the p-curvature of the
connection and the section of Ω1

B|Bχ
defined by χ (cf. Remark 2.1.2).11

For some particular cases, such a line bundle with a flat connection was
constructed in [MR]. Notice that already in the case G = SL(3), and χ sub-
regular this line bundle is nontrivial for any choice of the splitting bundle Mλ

χ

(see, however, equality (5) in the proof of Lemma 6.2.5 below).

2) The choice of a character η ∈ Λ such that λ+dη is unramified, provides
a particular splitting line bundle Mλ

χ = Mλ
χ(η) in Theorem 5.1.1(a): apply

the equivalence of Lemma 2.3.1 to the trivial (equivalently, lifted from ν̂(1))
splitting vector bundle on the formal neighborhood of Bχ

(1) ×h∗(1) (λ + dη). It
is easy to see then that Mλ

χ(η + pζ) = Mλ
χ(η) ⊗O−ζ .

3) One can show that the Azumaya algebra U⊗ZZunr splits on some closed
subvarieties of Spec(Zunr); e.g. the Verma module Mb(−ρ) def= indUg

Ub
k−ρ is

easily seen to be a splitting module on n × {−ρ}.

5.3. g-modules and coherent sheaves. By putting together known equiva-
lences (Theorem 4.1.3 and Theorem 5.1.1(b)), we get

5.3.1. Theorem. If λ ∈ h∗ is regular and (χ, λ) ∈ g∗(1) ×h∗(1)//W h∗ with
(χ, W • λ) ∈ Spec(Z), then there are equivalences (set ν = AS(λ))

Db(modfg
χ (Uλ))∼= Db(modc

χ(Dλ)) ∼= Db(CohBχ,ν
(1)(T ∗

ν B(1))) ;

Db(modfg
(λ,χ)(U))∼= Db(modc

(λ,χ)(D̃)) ∼= Db(CohBχ,ν
(1)(T̃ ∗B(1)×h∗(1)h∗)) .

5.3.2. Remark. The equivalences depend on the choice of the splitting
bundle Mλ

χ in Theorem 5.1.1(a), thus on the choice of η ∈ Λ such that λ + dη

is unramified (see Remark 5.2.2(2)). Replacing η by η + pζ we get another
equivalence, which is the composition of the first one with twist by Oζ .

5.3.3. Examples. Let us list some objects in modfg
χ (Uλ) whose image in

the derived category of coherent sheaves can be computed explicitly. We leave
the proofs as an exercise to the reader.

0) A baby Verma module Mb,χ;λ+2ρ corresponds to a skyscraper sheaf, see
section 3.1.4.

Notice that our conventions about weights are chosen to make ample line
bundles correspond to positive weights, which leads to a non-standard enumer-

11As is pointed out in Remark 2.1.2 the p-curvature of a DX -module E is a parallel section
of Fr∗(Ω1) ⊗ End(E). If E is a line bundle we get a parallel section of Fr∗(Ω1), i.e. a section
of Ω1; for a line bundle with a flat connection on Fr NX(Y ) its p-curvature is a section of
Ω1

X |Y .
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ation of baby Verma modules. In parallel notations in characteristic zero an
irreducible Verma module has a dominant highest weight.

1) Let G be simple and simply-laced, and χ a subregular nilpotent.
Recall that the irreducible components of the (reduced) Springer fiber are

indexed by the simple roots of G, each component is a projective line.
Consider the equivalence of the previous theorem corresponding to the

choice λ = −2ρ, η = ρ in the notations of the last remark. The images of
irreducible objects of modχ(U−2ρ) = modχ(U0) are as follows: OP1

α
(−1)[1];

and Oπ−1(χ). Here P1
α runs over the set of irreducible components of Bχ

(1),
π : T ∗B(1) → N (1) is the projection, and π−1 stands for the scheme-theoretic
preimage. Notice that the same objects appear in the geometric theory of
McKay correspondence, [KV].

2) G = SL(3), χ = 0. See the appendix for a description of this example.

5.4. Equivalences on formal neighborhoods. We will extend Theorem
5.3.1 to the formal neighborhood of χ.12 For λ, χ, ν as in 5.3.1, denote by χ̂

and B̂χ,ν the formal neighborhoods of χ in pr1(T ∗
ν B) and Bχ,ν in T ∗

ν B.

5.4.1. Theorem. There are canonical equivalences Db
fg(U

λ
χ̂ ) ∼= Db

c(Dλ
χ̂) ∼=

Db
c(OB̂χ,ν

(1)) .

Proof. Our main reference for sheaves on a formal scheme X is [TL].
We consider the full subcategory Db

c(OX) of the derived category D(OX) of
the abelian category of all OX-modules by requiring that cohomology sheaves
are coherent (and almost all vanish). Denote by Uλ

χ̂ ,Dλ
χ̂ the restrictions of

the coherent O-algebras Uλ,Dλ to χ̂, B̂χ,ν . Now, (coherent) Dλ
χ̂-modules are

(coherent) OB̂χ,ν
-modules with extra structure, and this allows us to lift the

direct image functor Rμ∗ : Db
c(OB̂χ,ν

(1)) → Db
c(Oχ̂) to Rμ∗ : Db

c(Dλ
χ̂) →

Db
c(U

λ
χ̂ ) (as in 3.1.9). The proof that this is an equivalence follows the proof

of Theorem 3.2. First, Rμ∗(Dλ
χ̂) ∼= Uλ

χ̂ follows from 3.4.1 by the formal base
change for proper maps ([EGA, Th. 4.1.5]). Then, for the Calabi-Yau trick
(3.5) one uses the Grothendieck duality for formal schemes ([TL, Th. 8.4,
Prop. 2.5.11.c and 2.4.2.2]). The second equivalence follows from Theorem
5.1.1 above.

5.4.2. In the remainder of the section, for simplicity, λ is integral regular
and χ ∈ N .

5.4.3. Corollary. For p > h there is a natural isomorphism of
Grothendieck groups K(Uλ

χ ) ∼= K(Bχ
(1)). In particular, the number of irre-

12The same argument gives extension to the formal neighborhood of λ.
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ducible Uλ
χ -modules is the rank of K(Bχ). (This rank is calculated below in

Theorem 7.1.1.)

Proof. It is well known that for a closed embedding ι : X ↪→ Y of
Noetherian schemes we have an isomorphism K(X)

∼=−→ K(CohX(Y)) induced
by the functor ι∗. In particular,

K(Bχ
(1)) ∼= K(CohBχ

(1)(T ∗B(1))) ∼= K(CohBχ
(1)(T̃ ∗B(1)×h∗(1)h∗)).

5.4.4. Remarks. (a) In the case when χ is regular nilpotent in a Levi factor
the corollary is a fundamental observation of Friedlander and Parshall ([FP]).
The general case was conjectured by Lusztig ([Lu1], [Lu]).

(b) Theorem 5.1.1 provides a natural isomorphism of K-groups. However,
if one is only interested in the number of irreducible modules (i.e., the size of
the K-group), one does not need the splitting. Indeed, one can show that for
any Noetherian scheme X, and an Azumaya algebra A over X of rank d2, the
forgetful functor from the category of A-modules to the category of coherent
sheaves induces an isomorphism K(A−mod)⊗Z Z[1d ]

∼=−→ K(Coh(X))⊗Z Z[1d ].

5.5. Equivariance. Let H be a group. An H-category13 is a category C
with functors [g] : C→C, g ∈ H, such that [eH ] is isomorphic to the identity
functor, and [gh] to [g] ◦ [h] for all g, h ∈ H. If C is abelian or triangulated
H-category we ask that the functors [g] preserve the additional structure, and
then K(C) is an H-module. An H-functor is a functor F : C→C′ between
H-categories such that [g] ◦ F ∼= F ◦ [g] for g ∈ H. If it induces a map of
K-groups K(F) : K(C)→K(C′), then this is a homomorphism of H-modules.

The actions of the group G(k) on U and B make all categories in Theorem
3.2 into G(k)-categories, while the categories appearing in Theorem 5.1.1(b)
(for ν = 0) are Gχ(k) categories. The action of Gχ(k) on these K-groups
factors through Aχ = π0(Gχ).

5.5.1. Proposition. The isomorphism K(Uλ
χ ) ∼= K(Bχ

(1)) in Corollary
5.4.3 is an isomorphism of Aχ-modules.

Proof. The functors RΓDλ and RΓD̃,λ are clearly G(k)-functors. Thus
it suffices to check that the Morita equivalences in Theorem 5.1.1 are Gχ(k)-
functors.

We will use a general observation that if a group H acts on a split Azumaya
algebra A with a center Z and a splitting module E is H-invariant (in the sense
that gE ∼= E for any g ∈ H), then the Morita equivalence defined by E is an

13The term “a weak H-category” would be more appropriate here, since we do not fix
isomorphisms between [gh] and [g] ◦ [h]; we use the shorter expression, since the more rigid
structure does not appear in this paper.
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H-functor. Indeed, for g ∈ H a choice of an A-isomorphism ψg : gE
∼=−→ E

gives for each A-module M a Z-isomorphism

g(E ⊗A M) Id−→ gE ⊗A (gM) ψg⊗Id−−−−→ E ⊗A (gM).

Thus we have to check that the splitting bundle Mλ
χ of Theorem 5.1.1 is Gχ(k)

invariant. The equivalence between the Azumaya algebras Dλ and Dλ+dη from
Lemma 2.3.1 is clearly G(k), and hence Gχ(k) equivariant. Then our Azumaya
algebra is Gχ(k) equivariantly identified with the pull-back of an Azumaya
algebra on χ̂(1) (see the proof of Theorem 5.1.1), and Mλ

χ is the pull-back of
a splitting bundle from χ̂(1); thus it is enough to see that the latter is Gχ(k)
invariant. This is obvious, since any two vector bundles (and also any two
modules over a given Azumaya algebra) on χ̂(1) of a given rank are isomorphic.

5.5.2. Remarks. (1) Proposition 5.5.1 can be used to sort out how many
simple modules in a regular block are twists of each other, a question raised
by Jantzen ([Ja3]). For instance, if G is of type G2 and p > 6, we find that
three out of five simple modules in a regular block are twists of each other.

(2) We expect that Proposition 5.5.1 can be strengthened: the splitting
bundle Mλ

χ can be shown to carry a natural Gχ(k) equivariant structure; thus
the equivalences of Theorem 5.1.1(b) can be enhanced to equivalences of strong
Gχ(k) categories (the isomorphisms [gh] ∼= [g]◦ [h] are fixed and satisfy natural
compatibilities). We neither prove nor use this fact here.

6. Translation functors and dimension of Uχ-modules

In this section we spell out compatibility between the localization functor
and translation functors, and use our results to derive some rough information
about the dimension of Uχ-modules for χ ∈ N . We consider only integral ele-
ments of h∗ and we view them as differentials of elements of Λ. Similar methods
can be applied to computation of the characters of the maximal torus in the
centralizer of χ acting on an irreducible Uχ-module. We keep the assumption
p > h.

6.1. Translation functors. For λ ∈ Λ, Dλ def=
Oλ

D is canonically iso-
morphic to Ddλ for the differential dλ and we also denote Uλ def= Udλ etc. We
denote by M → [M ]λ the projection of the category of finitely generated g-
modules with a locally finite action of ZHC to its direct summand modfg

λ (U) def=
modfg

dλ(U). For λ, μ ∈ Λ the translation functor Tμ
λ : modfg

λ (U) → modfg
μ (U) is

defined by Tμ
λ (M) def= [Vμ−λ⊗M ]μ where Vμ−λ is the standard G-module with

an extremal weight μ − λ as defined in 3.1.1.
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Notice that the translation functor is well-defined. First, Vμ−λ⊗M is
finitely generated by [Ko, Prop. 3.3]. To show that the action of ZHC on
Vμ−λ⊗M is locally finite we can assume that M is annihilated by a maximal
ideal Iη of ZHC. By [MR1, Th. 1], for a very good p there is a ring homomor-
phism Υ : ZZ → ZHC = ZZ ⊗Z k where ZZ is the center of U(gZ). By [Ko,
Th. 5.1], for each x ∈ im(Υ), on Vμ−λ⊗M∏

ν

(x − η(x) − ν(x)) = 0,(3)

where ν runs over the weights of Vμ−λ. Thus ZHC is spanned by elements
satisfying equation (3). It follows that the action of ZHC on Vμ−λ⊗M is locally
finite.

We review some standard ideas. For λ, μ, η ∈ Λ we denote by Wη the

weights of Vη and Wμ
λ

def= (λ + Wμ−λ) ∩ W ′
aff•μ. Since we assume p > h,

Wμ
λ = (λ + Wμ−λ) ∩ Waff•μ.

6.1.1. For M ∈ Db(modc
λ(D̃)), the sheaf of g-modules Vη⊗M =

(Vη⊗O)⊗OM is an extension of terms Vη(ν)⊗(Oν⊗OM) where ν runs over
the set of weights Wη and Vη(ν) is the corresponding weight space. Since
Oν⊗OM ∈ Db(modc

λ(D̃)) we get the local finiteness of the ZHC-action on the
sheaf Vη⊗M. Therefore, translation functors commute with taking the coho-
mology of D-modules:

Tμ
λ (RΓD̃,λM) = [Vμ−λ⊗RΓD̃,λM]μ

= [RΓD̃(Vμ−λ⊗M)]μ ∼= RΓD̃,μ([Vμ−λ⊗M)]μ).

Moreover, [Vμ−λ⊗OM]μ is a successive extension of terms Vμ−λ(ν)⊗(Oν⊗OM)
for weights ν ∈ Wμ

λ − λ ⊆ Wλ−μ. There are two simple special cases:

6.1.2. Lemma. Let λ, μ lie in the same closed alcove A.

(a) (“Down”.) If μ is in the closure of the facet of λ then

Tμ
λ (RΓD̃,λM) ∼= RΓD̃,μ(Oμ−λ⊗OM).

(b) (“Up”.) Let λ lie on the single wall H of A and μ be regular. If
sH(μ) < μ for the reflection sH in the H-wall, then

RΓD̃,sH(μ)(Oλ−μ⊗OM) → Tμ
λ (RΓD̃,λM) → RΓD̃,μ(Oμ−λ⊗OM).

Proof. This follows from 6.1.1 and the following combinatorial observation
from [Ja0, Lemmas 7.7 and 7.8]: if λ, μ ∈ Λ lie in the same alcove then

Wμ
λ = (λ + Wμ−λ) ∩ Waff•μ = (Waff)λ•μ ⊆ λ + W ·(μ − λ).

Indeed, the assumption in (a) implies that (Waff)μ ⊆ (Waff)λ, hence Wμ
λ = {μ},

while in (b) we assume (Waff)λ = {1, sH}; hence Wμ
λ = {μ, sH(μ)}, and sH(μ)

appears earlier in the filtration since sH(μ) < μ.
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6.2. Dimension. We set R =
∏
α
〈ρ, α̌〉 where α runs over the set of positive

roots of G.

6.2.1. Theorem. Fix χ ∈ N and a regular weight λ ∈ Λ. For any
module M ∈ modfg

(λ,χ)(U) there exists a polynomial dM ∈ 1
RZ[Λ∗] of degree less

or equal to dim(Bχ), such that for any μ ∈ Λ in the closure of the alcove of λ,

dim(Tμ
λ (M)) = dM (μ).

Moreover, dM (μ) = pdimBd0
M (μ+ρ

p ) for another polynomial d0
M ∈ 1

RZ[Λ∗], such
that d0

M (μ) ∈ Z for μ ∈ Λ.

6.2.2. Remarks. (0) The theorem is suggested by the experimental data
kindly provided by J. Humphreys and V. Ostrik.

(1) The proof of the theorem gives an explicit description of dM in terms
of the corresponding coherent sheaf FM on Bχ

(1).

(2) For μ and λ as above, any module N ∈ modfg
(μ,χ)(U) is of the form

Tμ
λ M for some M ∈ modfg

(λ,χ)(U).14 Indeed, according to Lemma 6.1.2.a and
Proposition 3.4.2.c, Tμ

λ RΓ(Oλ−μ⊗LμN) = N . Since Tμ
λ is exact we can choose

M as the zero cohomology of RΓ(Oλ−μ⊗LμN).

6.2.3. Corollary. The dimension of any N ∈ modfg
χ (U) is divisible by

pcodimBBχ.

Proof. To apply the theorem observe that dim(N) < ∞, so we may assume
that ZHC acts by a generalized eigencharacter. Since χ ∈ N eigencharacter is
necessarily integral, it lifts to some μ ∈ Λ. We choose a regular λ so that μ is
in the closure of the λ-facet, and M ∈ modfg

(λ,χ)(U) as in the remark 6.2.2(2).

Then Theorem 6.2.1 says that dim(N) = pdimB · d0
M (μ+ρ

p ). For δ = deg(d0
M ) =

deg(dM ) ≤ dim(Bχ), the rational number dim(N)/pdim(B)−δ = pδ·d0
M (μ+ρ

p ) is
an integer since the denominator divides both R and a power of p, but R is
prime to p for p > h (for any root α, 〈ρ, α̌〉 < h).

6.2.4. Remark. The statement of the corollary was conjectured by Kac and
Weisfeiler [KW], and proved by Premet [Pr] under less restrictive assumptions
on p. We still found it worthwhile to point out how this famous fact is related
to our methods.

Our basic observation is

6.2.5. Lemma. Let Mλ
χ be the splitting vector bundle for the restric-

tion of the Azumaya algebra Dλ to Bχ
(1), that was constructed in the proof of

14Also, exactness of T μ
λ implies that if N is irreducible we can choose M to be irreducible.
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Theorem 5.1.1. We have an equality in K0(Bχ
(1)):

[Mλ
χ] = [(FrB)∗Opρ+λ|Bχ

(1) ].(4)

Proof. Since Dλ contains the algebra of functions on B×B(1)T ∗B(1), any
Dλ-module F can be viewed as a quasicoherent sheaf F ′ on B×B(1) T ∗B(1). If F
is a splitting bundle of the restriction Dλ

∣∣
Z(1) for a closed subscheme Z ⊂ T ∗B,

then F ′ is a line bundle on B ×B(1) Z(1). It remains to show that the equality

[(Mλ
χ)′] = [Opρ+λ|Fr N(Bχ)](5)

holds in K(FrN(Bχ)). The construction in the proof of Theorem 5.1.1 shows
that (Mλ

χ)′ = Oλ ⊗ (M0
χ)′, thus it suffices to check (5) for one λ. We will do

it for λ = −ρ by constructing a line bundle L on FrN(Bχ)× A1 such that the
restriction of L at 1 ∈ A1 is (M−ρ

χ )′, and at 0 it is O(p−1)ρ|Fr N(Bχ); existence of
such a line bundle implies the desired statement by rational invariance of K0.

Let ñ ⊂ T ∗B be the preimage of n ⊂ N under the Springer map. Remark
5.2.2(3) together with Proposition 5.2.1(b) show that there exists a splitting
bundle M̃ for D−ρ

∣∣
ñ(1) whose restriction to Bχ

(1) is M; we thus get a line bundle
M̃′ on B ×B(1) ñ(1). Its restriction to the zero section B ⊂ B ×B(1) T ∗B(1)

is a line bundle on B whose direct image under Frobenius is isomorphic to
Opdim B

B . It is easy to see that the only such line bundle is O(p−1)ρ. Thus we
can let L be the pull-back of M̃′ under the map FrN(Bχ)×A1 → B×B(1) ñ(1),
(x, t) 
→ (x, (Fr(x), tχ)).

We also recall the standard numerics of line bundles on the flag variety.

6.2.6. Lemma. For any F ∈ Db(Coh(B)) there exists a polynomial dF ∈
1
RZ[Λ∗] such that for λ ∈ Λ the Euler characteristic of RΓ(F ⊗ Oλ) equals
d(λ). Moreover, we have

deg(dF )≤dim supp(F);(6)

dFr∗(F)(μ) = pdimBdF (
μ + (1 − p)ρ

p
).(7)

Proof. The existence of dF is well-known, for line bundles it is given by
the Weyl dimension formula, and the general case follows since the classes of
line bundles generate K(B). The degree estimate follows from Grothendieck-
Riemann-Roch once we recall that chi(F) = 0 for i < codim supp(F) because
the restriction map H2i(B) → H2i(B − supp(F)) is an isomorphism for such i.
To prove the polynomial identity (7) it suffices to check it for μ = pν−ρ, ν ∈ Λ.
Then it follows from the well-known isomorphism Fr∗(O−ρ) ∼= O ⊕ pdim(B)

−ρ which
implies that

Fr∗(Fr∗(F) ⊗Opν−ρ) ∼= Fr∗(Fr∗(F ⊗Oν) ⊗O−ρ) ∼= F ⊗Oν ⊗ Fr∗(O−ρ)

is isomorphic to the sum of pdimB copies of F ⊗Oν−ρ.
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6.2.7. Proof of Theorem 6.2.1. Let FM ∈ Db(CohBχ,ν
(1)(T̃ ∗B(1)×h∗(1)h∗))

be the image of M under the equivalence of Theorem 5.3.1, i.e., LλM ∼=
Mλ⊗FM ; and let [FM ] ∈ K(CohBχ,ν

(1)(T̃ ∗B(1)×h∗(1)h∗)) = K(Bχ
(1)) be its

class. According to Lemma 6.1.2(a)

Tμ
λ (M) = RΓ(Oμ−λ⊗LλM) = RΓ(Oμ−λ⊗Mλ⊗FM ) = RΓ(Mμ⊗FM ).

Let
∫

stand for Euler characteristic of RΓ, so that

dim(Tμ
λ (M)) =

∫
Bχ

(1)

[Mμ]·[FM ],

where the multiplication sign stands for the action of K0 on K. Now, by
Lemma 6.2.5 we may rewrite this as (denoting by f∗, f∗ the standard functo-

riality of Grothendieck groups and Bχ
(1) i

↪→B(1)),∫
Bχ

(1)

i∗[(FrB)∗Opρ+μ] · [FM ] =
∫
B(1)

[(FrB)∗Opρ+μ] · i∗[FM ]

=
∫
B

Opρ+μ · Fr∗B(i∗[FM ]).

So, Lemma 6.2.6 shows that

dim(Tμ
λ M) = dFr∗B(i∗FM )(pρ + μ) = pdimB·dFM

(
μ + ρ

p
).

Taking into account (6), (7) we see that the polynomial d0
M = di∗FM

satisfies
the conditions of the theorem.

7. K-theory of Springer fibers

In this section we prove Theorem 7.1.1.

7.1. Bala-Carter classification of nilpotent orbits [Sp]. Let GZ (with
the Lie algebra gZ) be the split reductive group scheme over Z that gives G

by extension of scalars: (GZ)k = G. Fix a split Cartan subgroup TZ ⊆ GZ

and a Bala-Carter datum, i.e., a pair (L, λ) where L is Levi factor of GZ that
contains TZ, and λ is a cocharacter of TZ ∩ L′ (for the derived subgroup L′

of L), such that the λ-weight spaces (l′)0 and (l′)2 (in the Lie algebra l′ of
L′), have the same rank. To such data one associates for any closed field
k of good characteristic a nilpotent orbit in gk which we will denote αk. It
is characterized by the fact that αk is dense in (l′k)

2. This gives a bijection
between W -orbits of Bala-Carter data and nilpotent orbits in gk. In particular
the classification of nilpotent orbits over a closed field is uniform for all good
characteristics (including zero). This is used in the formulation of:
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7.1.1. Theorem. For p > h the Grothendieck group of Coh(Bχ) has
no torsion and its rank coincides with the dimension of the cohomology of the
corresponding Springer fiber over a field of characteristic zero.

7.1.2. The absence of torsion is clear from Corollary 5.4.3. The rank
will be found from known favorable properties of K-theory and cohomology
of Springer fibers using the Riemann-Roch Theorem. We start with recalling
some standard basic facts about the K-groups.

7.1.3. Specialization in K-theory. Let X be a Noetherian scheme, flat over
a discrete valuation ring O. Let η = Spec(kη), s = Spec(ks) be respectively

the generic and the special point of Spec(O) and denote Xs
is→ X

iη← Xη. The

specialization map sp : K(Xη) → K(Xs) is defined by sp(a) def= (is)∗(ã) for
a ∈ K(Xs) and any extension ã ∈ K(X) of a (i.e. (iη)∗ã = a). To see that this
makes sense we use the excision sequence

K(Xs)
(is)∗−→K(X)

(iη)∗−→K(Xη) → 0

and observe that (is)∗(is)∗ = 0 on K(Xs) since the flatness of X gives exact
triangle F [1] → (is)∗(is)∗(F) → F for F ∈ Db(CohXs

).

7.1.4. A lift to the formal neighborhood of p. Assume now that O is the
ring of integers in a finite extension K = kη of Qp, with an embedding of the
residue field ks into k.

Let GO be the group scheme (GZ)O over O (extension of scalars), so that
(GO)k = G, and similarly for the Lie algebras. By a result of Spaltenstein [Sp],
one can choose xO ∈ gO so that (1) its images in gK and in gks

lie in nilpotent
orbits αK and αks

, (2) the O-submodule [xO, gO]⊆ gO has a complementary
submodule ZO, (3) for the Bala-Carter cocharacter Gm,Z

λ→ GZ (see 7.1), xO
has weight 2 and the sum of all positive weight spaces g

>0

O lies in [xO, gO]. We
denote by BO

χ the Springer fiber at xO (i.e., the O-version of Bχ from 4.1.2),
and so it is defined as the reduced part of the inverse of xO under the moment
map.

7.1.5. Lemma. (a) ZO can be chosen Gm-invariant and with weights ≤ 0.

(b) Now SO = xO + ZO is a slice to the orbit α in the sense that :

(i) the conjugation GO×OSO → gO is smooth,

(ii) the Gm-action on g by c•y def= c−2 · λ(c)y, contracts SO to xO.
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(c) The Springer fiber X = BO
χ of xO is flat15 over O and the Slodowy

scheme S̃O (defined as the preimage of SO under the Springer map), is smooth
over O.

Proof. (a) is elementary: if M ⊆ A ⊆ B and M has a complement C in
B then it has a complement A ∩ C in A. Now [xO, gO] is Gm-invariant and
each weight space [xO, gO]n has a complement in [xO, gO], hence in gO, and
then also a complement Zn

O in gn
O. So, ZO = ⊕n Zn

O is a Gm-invariant comple-
ment. Claim (bii) is clear. The smoothness in (bi) is valid on a neighborhood
of GO×OxO by (2) (the image of the differential at a point in GO×OSO is
[xO, gO] + ZO). Then the general case follows from the contraction in (bii).

In (c), the smoothness of S̃O follows from (bi) by a formal base change
argument ([Sl, §5.3]). Finally, to see that BO

χ is flat we use the cocharacter λ

to define a parabolic subgroup PO ⊆ GO such that its Lie algebra is g
≥0

O . Let
BxO be the scheme theoretic Springer fiber at xO, i.e., the scheme theoretic
inverse of xO under the moment map. Following Proposition 3.2 in [DLP] we
will see that the intersection of BxO with each PO orbit in the flag variety BO
is smooth over O.

Each w ∈ W defines a Borel subalgebra wbO of gO. We view it also as an
O-point pw

O of the flag variety BO over O, and use it to generate a PO-orbit
Ow ⊆ BO. Consider the maps

Ow
ψw←− PO

φ−→ g
≥2
O ,

where φ is given by PO ∼= PO×OxO → g
≥2
O , (g, y)
→ g−1

y, and ψw by PO ∼=
PO×Opw

O → g
≥2
O , (g, p)
→ gp. Here, ψw is smooth as the quotient map of a

group scheme by a smooth group subscheme, and φ is smooth since property
(3) implies that g

≥2

O ⊆ [xO, gO]≥2 = [xO, g
≥0

O ] = [xO, pO]. Now, BxO ∩ Ow

is smooth over O since the scheme theoretic inverses ψw
−1(BxO ∩ Ow) and

φ−1(g≥2
O ∩ wbO) coincide.

Now we see that any p-torsion function f on an open affine piece U of
BxO has to be nilpotent (so the functions on the reduced scheme BO

χ have no
p-torsion and BO

χ is flat over O). The restriction of f to each stratum is zero
(strata are smooth, in particular flat). However any closed point of U lies in
the restriction Us to the special point, hence in one of the strata. Since f

vanishes at closed points of U it is nilpotent.

7.1.6. We will use the rational K-groups K(X)Q
def= K(X)⊗ZQ where X is

a Springer fiber BA
χ over A which could be C,O, η, s, k etc. The main claim in

this section is

15Though one expects that the scheme theoretic fiber is also flat, this version is good
enough for the specialization machinery.
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7.1.7. Proposition. Assume that ⊕i H2i
et(BK

χ , Ql(−i)) is a trivial
Gal(K/K) module.16

(a) The specialization sp : K(Bη
χ)Q

∼=−→ K(Bs
χ)Q identifies the K-groups

over generic and special points.

(b) The base change map identifies the K-groups over the special point
and over k. Also, for any embedding K ↪→ C the corresponding base change
map identifies K-groups over the generic point and over C:

K(Bη
χ)Q

∼=−→K(BC
χ )Q,(8)

K(Bs
χ)Q

∼=−→K(Bk
χ)Q.(9)

7.1.8. Proposition 7.1.7 implies Theorem 7.1.1. In the chain of isomor-
phisms

K(Bk
χ)Q

∼=←−K(Bs
χ)Q

∼=←−
sp

K(Bη
χ)Q

∼=−→ K(BC
χ )Q

∼=
τ
A•(BC

χ )Q
∼= H∗(BC

χ , Q),

the first three are provided by the proposition. It is shown in [DLP] that the
Chow group A•(BC

χ ) is a free abelian group of finite rank equal to dim H∗(BC
χ , Q).

Finally, by [Fu], Corollary 18.3.2, the “modified Chern character” τBC
χ

provides
the fourth isomorphism.

7.2. Base change from K to C. The remainder is devoted to the proof of
Proposition 7.1.7. We need two standard auxiliary lemmas on Galois action.

7.2.1. Lemma. Let L/K be a field extension. Let X be a scheme of finite
type over K. Then the base change map bc = bcL

K : K(X)Q → K(XL)Q is
injective. If L/K is a composition of a purely transcendental and a normal
algebraic extension (e.g. if L is algebraically closed) then the image of bc is
the space of invariants K(XL)Gal(L/K)

Q .

Proof. If L/K is a finite normal extension, then the direct image (re-
striction of scalars) functor induces a map res : K(XL) → K(X), such that
res ◦ bc = deg(L/K) · id , and bc ◦ res(x) = n · ∑γ∈Gal(L/K) γ(x), where n is
the inseparability degree of the extension L/K. This implies our claim in this
case; injectivity of bc for any finite extension follows.

If L = K(α) where α is transcendental over K, then K(X)
∼=−→ K(XL);

this follows from the excision sequence

⊕t∈A1K(X×t) → K(X × A1) → K(XK(α)) → 0

(where t runs over the closed points in A1
K), since the first map is zero and

K(X × A1) ∼= K(X).

16A finite extension K/Qp satisfying this assumption exists by Lemma 7.2.2.
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If L is finitely generated over K, so that there exists a purely transcen-
dental subextension K ⊂ K ′ ⊂ L with |L/K| < ∞, then injectivity follows by
comparing the previous two special cases; if L/K ′ is normal we also get the
description of the image of bc.

Finally, the general case follows from the case of a finitely generated ex-
tension by passing to the limit.

7.2.2. Lemma. For all i the Galois group Gal(K/K) acts on the l-adic
cohomology H2i

et(BK
χ , Ql(−i)) through a finite quotient.

Proof. The cycle map cQl
: Ai(BK

χ )
Ql

→ H2i
et(BK

χ , Ql(−i))∗, defined by
〈cQl

([Z]), h〉 =
∫

h|Z for an i-dimensional cycle Z (here
∫

: H2i
et(Z, Ql(−i)) →

Ql is the canonical map), is compatible with the Gal(K̄/K) action. It is an
isomorphism since K̄ ∼= C and the results of [DLP] show that the cycle map
c : Ai(BC

χ ) → H2i(BC
χ , Z) is an isomorphism.

In order to factor the action of Gal(K̄/K) on A∗(BK
χ ) through Gal(K′/K)

we choose a finite set of cycles Zi whose classes form a basis in A∗(BC
χ )Q, and

then a finite subextension K′ ⊂ K̄ such that all Zi are defined over K′.

7.2.3. Proof of (8). Lemma 7.2.1 says that K(BK
χ )Q = K(BK

χ ) Gal(K̄/K)
Q so

it suffices to see that the Galois action on K(BK
χ )Q is trivial. However, 7.1.8 and

the proof of 7.2.2 provide Gal(K̄/K)-equivariant isomorphisms K(BK
χ )Q

∼=−→
τ

A•(BK
χ )Q

∼=−→
cQl

H•
et(BK̄

χ , Ql(−i))∗.

7.3. The specialization map in 7.1.7(a) is injective. For this we will use
the pairing of K-groups of the Springer fiber and of the Slodowy variety. Let X

be a proper variety over a field k, and i : X ↪→ Y be a closed embedding, where
Y is smooth over k. We have a bilinear pairing Eul = Eulk : K(Y) × K(X)
→ Z, where Eul([F ], [G]) is the Euler characteristic of Ext•(F , i∗G).

Let us now return to the situation of 7.1.3, and assume that X is proper
over O, and that i : X ↪→ Y is a closed embedding, where Y is smooth over
O. For a ∈ K(Y η), b ∈ K(Xη) we have

Euls(sp(a), sp(b)) = Eulη(a, b)

since (Li∗s)RHom(F ,G) ∼= RHom(Li∗sF ,Li∗sG) for

F ∈ Db(Coh(Y )), G ∈ Db(Coh(Y )).

In particular, if the pairing Eulη is nondegenerate in the second variable, spe-
cialization sp : K(Xη) → K(Xs) is injective.

Since the Slodowy scheme S̃O is smooth (in particular flat) over O (Lemma
7.1.5), we can apply these considerations to X = BO

χ , and Y = S̃O. It is
proved in [Lu, II, Th. 2.5], that the pairing (EulC)Q : K(Y C)Q × K(XC)Q
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→ Q is nondegenerate. Since K(Xη)Q
∼=−→ K(XC)Q is proved in 7.3 and

the same argument shows that K(Y η)Q
∼=−→ K(Y C)Q, the pairing Eulη is also

nondegenerate and then sp is injective.

Remark 2. The proof of Lemma 7.4.1 below can be adapted to give a
proof that Eulk is nondegenerate if k has large positive characteristic. One can
then deduce that the same holds for k = C. This would give an alternative
proof of the result from [Lu, II] mentioned above.

7.4. Upper bound on the K-group. Here we use another Euler pairing to
prove that

dimQ K(Bk
χ)Q ≤ dimQ H•(BC

χ , Q).(10)

Besides K(X) = K(Coh(X)) one can consider K0(X), the Grothendieck group
of vector bundles (equivalently, of complexes of finite homological dimension)
on X. When X is proper over a field we have another Euler pairing EulX :
K0(X) × K(X) → Z by EulX([F ], [G]) = [RHom(F ,G)].

7.4.1. Lemma. The Euler pairing EulX for X = Bk
χ is nondegenerate in

the second factor ; i.e., it yields an injective map K(X) ↪→ Hom(K0(X), Z).

Proof. Let Bχ
ι

↪→B̂χ be the formal neighborhood of Bχ in T ∗B. For
any vector bundle V on B̂χ and G ∈ Db(Bχ), one has RHom•(V, ι∗G) ∼=
RHom•(ι∗V,G). So it suffices to show that the Euler pairing Eul : K(B̂χ) ×
K(Bχ) → Z, Eul([V ], [G]) = [RHom•(V, ι∗G)], is a perfect pairing.

Let us interpret this pairing using localization. The first of the isomor-
phisms (see 4.1.1 for notation)

K(Bχ) ∼= K(modfl(U0
χ̂)) and K(Coh(B̂χ)) ∼= K(modfg(U0

χ̂)),

comes from Theorem 5.3.1 (notice that modfl(U0
χ̂) = modχ(U0); see 4.1.1), and

the second one from Theorem 5.4.1 (notice that K0(B̂χ)
∼=−→ K(B̂χ) because

T ∗B is smooth). The above Euler pairing now becomes the Euler pairing

K(modfg(U0
χ̂)) × K(modfl(U0

χ̂)) → Z.

However, the completion U0
χ̂ of U0 at χ is a complete multi-local algebra of finite

homological dimension: this follows from finiteness of homological dimension
of U0, which is clear from Theorem 3.2. Thus the latter pairing is perfect,
because the classes of irreducible and of indecomposable projective modules
provide dual bases in K(modfl(U0

χ̂)) and K(modfg(U0
χ̂)) respectively.

7.4.2. Lemma. If X is a projective variety over a field, such that the
pairing EulX is nondegenerate in the second factor K(X), then the following
composition of the modified Chern character τ and the l-adic cycle map cQl

, is
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injective:
K(X)Ql

τ→ A•(X)Ql

cQl−→
⊕

i

(H2i
et(X, Ql(−i)))∗.

Proof. The pairing EulX factors through the modified Chern character
by the Riemann-Roch-Grothendieck Theorem [Fu, 18.3], and then through the
cycle map by [Fu, Prop. 19.1.2, and the text after Lemma 19.1.2] (this reference
uses the cycle map for complex varieties and ordinary Borel-Moore homology;
however the proofs adjust to the l-adic cycle map).

7.4.3. Lemma. dimQ̄l
H∗

et(Bk
χ, Q̄l) = dimQ H∗(BC

χ , Q).

Proof.17 Since the decomposition of the Springer sheaf into irreducible
perverse sheaves is independent of p, the calculation of the cohomology of
Springer fibers (i.e., the stalks of the Springer sheaf), reduces to the calculation
of stalks of intersection cohomology sheaves of irreducible local systems on
nilpotent orbits. However, Lusztig proved that the latter one is independent
of p for good p ([Lu2, §24, in particular Th. 24.8 and Subsection 24.10]).

7.4.4. Proof of the upper bound (10) . Lemmas 7.4.1 and 7.4.2 give the
embedding K(Bk

χ)Ql

cQl
◦τ−−−→

⊕
i

H2i
et(Bk

χ, Ql(−i))∗. Together with Lemma 7.4.3

this gives dimQ K(Bk
χ)Q ≤ dimQl

H∗
et(Bk

χ, Ql(−i)) = dimQH∗(BC
χ , Q).

7.4.5. End of the proof of Proposition 7.1.7. We compare the K-groups
via

K(BC
χ )Q

∼= K(BK
χ )Q

bcKK←−−−
∼=

K(Bη
χ)Q

sp
↪→K(Bs

χ)Q

bck
ks

↪→ K(Bk
χ)Q.

The first two isomorphisms are a particular case of (8) proved in 7.2.3; special-
ization is injective by 7.3, and the base change bck

ks
is injective by Lemma 7.2.1.

Actually, all maps have to be isomorphisms since (10) says that dimQ K(Bk
χ)Q

is bounded above by dimQ H•(BC
χ , Q) = dimQ K(BC

χ )Q.
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Appendix: Computations for sl(3)

By Roman Bezrukavnikov and Simon Riche

For g = sl(3) we compute coherent sheaves corresponding to
irreducible representations in modfg

0 (U0) and their projective covers under the

equivalence DbCohB(1)(Ñ (1)) Υ→Db(modfg
0 (U0)). We normalize the equivalences

by setting η = (p− 1)ρ (notations of Remark 5.3.2); notice that for χ = 0 this
choice gives the splitting on the zero section B0 from 2.2.5, so that for every
F ∈ Coh(B(1)) we have Υ(i∗F) = RΓ(B,Fr∗BF).

1. Notations

We keep the notations of the article, with G = SL(3, k), and denote α1, α2

the simple roots of G and ω1, ω2 the fundamental weights. Let sj be the

reflection sαj
∈ W . We denote by B i→Ñ p→B the inclusion of the zero section

and the natural projection. There are two natural maps πj : B → P2 mapping
a flag 0 ⊂ V1 ⊂ V2 ⊂ k3 to Vj , j = 1, 2. For n ∈ Z we have isomorphisms:
π∗

i OP2(n) ∼= OB(nωi), i = 1, 2, and Fr∗BOB(1)(λ) ∼= OB(pλ) for λ ∈ Λ. We will
study irreducible G-modules L(λ) of highest weight λ for reduced dominant
weights λ in W ′

aff • 0. Recall the exact sequence

(∗) 0 → Ω1
P2 → OP2(−1)⊕3 → OP2 → 0.

For simplicity, in what follows we will omit the Frobenius twist (1) (except
in the proof of theorem 2.1, where we have to be more careful); it should appear
on (almost) every variety we consider.

2. Irreducible modules

Theorem 2.1. The irreducible U0
0̂
-modules and the corresponding coher-

ent sheaves are:

L(0) = k i∗OB L((p − 2)ω1 + ω2) i∗π∗
1(Ω

1
P2(1))[1]

L((p − 3)ω2) i∗OB(−ω1)[2] L(ω1 + (p − 2)ω2) i∗π∗
2(Ω

1
P2(1))[1]

L((p − 3)ω1) i∗OB(−ω2)[2] L((p − 2)ρ) L

where L is the cone of the only (up to a constant) nonzero morphism i∗OB →
i∗OB(−ρ)[3].

Proof. We have Υ(i∗OB(1)) = RΓ(B,OB) = k. Also, Υ(i∗OB(1)(−ωj)) =
RΓ(OP2(−p)), which gives the claim for L((p − 3)ωj), j = 1, 2.
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Similarly Υ(i∗π∗
1(Ω

1
(P2)(1)(1))[1]) = RΓ(B,Fr∗Bπ∗

1(Ω
1
(P2)(1)(1)))[1]. Using the

exact sequence (∗) we obtain a distinguished triangle

RΓ(B,OB)⊕3 → RΓ(B,OB(pω1)) → Υ(i∗π∗
1(Ω

1
(P2)(1)(1))[1]).

Here the first arrow is the inclusion of G-modules L(ω1)(1) ↪→ H0(pω1). Hence
Υ(i∗π∗

1(Ω
1
(P2)(1)(1))[1]) ∼= L((p − 2)ω1 + ω2). The claim for L(ω1 + (p − 2)ω2)

follows by applying the outer automorphism of sl(3).
Finally, the last irreducible module L((p − 2)ρ) is a quotient of the Weyl

module [H0((p − 2)ρ)]∗, moreover, we have a short exact sequence 0 → k →
[H0((p−2)ρ)]∗ → L((p−2)ρ) → 0. Applying Υ−1, we get distinguished triangle
i∗OB(1) → i∗OB(1)(−ρ)[3] → L, where we used that

Υ(i∗OB(1)(−ρ)) = RΓ(B,OB(−pρ)) = [H0((p − 2)ρ)]∗[−3]

by Serre duality. Since Hom(k, [H0((p−2)ρ)]∗) is one dimensional, we see that
the first arrow in this triangle is the unique (up to a constant) map between
the two objects.

Remark. We have just shown, using equivalence Υ, that

Ext3Ñ (i∗OB, i∗OB(−ρ))

is one dimensional. One can compute this Ext group more directly: using the
Koszul resolution of OB over S(TB) one can identify it with

H3(−ρ) ⊕ H2(Ω1
B(−ρ)) ⊕ H1(Ω2

B(−ρ)) ⊕ H0(Ω3
B(−ρ)).

One can show that H3(−ρ), H0(Ω3
B(−ρ)) and H1(Ω2

B(−ρ)) vanish, while
H2(Ω1

B(−ρ)) ∼= k: by Serre duality the last claim is equivalent to H1(TB(−ρ))
∼= k, which is checked below.

3. Projective covers

Theorem 3.1. The coherent sheaves corresponding to the projective cov-
ers of the irreducible modules are:

i∗OB P i∗π∗
1(Ω

1
P2(1))[1] OÑ (ω1)

i∗OB(−ω1)[2] p∗((π∗
2Ω

1
P2)(ω1 + 2ω2)) i∗π∗

2(Ω
1
P2(1))[1] OÑ (ω2)

i∗OB(−ω2)[2] p∗((π∗
1Ω

1
P2)(2ω1 + ω2)) L OÑ (ρ)

where P is the nontrivial extension of OÑ (ρ) by OÑ given by a non-zero ele-
ment in the one dimensional space H1(TB(−ρ)) ⊂ H1(OÑ (−ρ)).

Remark. In fact, the sheaves corresponding to the projective covers are
vector bundles on the formal completion of Ñ at B. The objects displayed in
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the above table are vector bundles on Ñ . The former are obtained from the
latter by pull-back to the formal completion.

Proof. We only have to check that for each Pi in the list and each ir-
reducible Lj , we have Ext∗Ñ (Pi,Lj) = kδij . Let us begin with OÑ (ρ). We
have Ext∗Ñ (OÑ (ρ), i∗OB) ∼= Ext∗B(OB(ρ),OB) ∼= H∗(B,OB(−ρ)) = 0 by ad-
junction. Similarly for i∗OB(−ωj)[2] (j = 1, 2). The sequence (∗) gives
Ext∗Ñ (OÑ (ρ), i∗π∗

j (Ω
1
P2(1))[1]) = Ext∗B(OB(ρ), π∗

j (Ω
1
P2(1))[1]) = 0 (j = 1, 2).

Using the distinguished triangle from the definition of L we get Ext∗Ñ (OÑ (ρ),L)
= k. The cases of OÑ (ωj) (j = 1, 2) are similar.

Now let us consider p∗((π∗
1Ω

1
P2)(2ω1 + ω2)). The exact sequence (∗) and

Borel-Weil-Bott Theorem [Ja] give the result for the first 5 irreducible mod-
ules. For L, we have Ext∗B((π∗

1Ω
1
P2)(2ω1 + ω2),OB) = 0, and in computing

Ext∗B((π∗
1Ω

1
P2)(2ω1+ω2),OB(−ρ)[3]), two non-zero modules appear in degree 0:

[H3(−2ρ)]⊕3 and H0(ω1). The map between these two modules is an isomor-
phism as in the proof of Theorem 2.1, hence Ext∗Ñ (p∗((π∗

1Ω
1
P2)(2ω1 + ω2)),L)

= 0.
We claim that H1(TB(−ρ)) ∼= k, this follows by the Borel-Weil-Bott Theo-

rem from the exact sequence 0 → OB(α1) → TB → π∗
2(TP2) → 0, and vanishing

of RΓ(π∗
2(TP2)(−ρ)) (see, e.g., [D]). Thus we have the line H1(TB(−ρ)) ⊂

H1(S(TB)(−ρ)) = Ext1Ñ (OÑ (ρ),OÑ ), which defines a triangle OÑ → P →
OÑ (ρ). Standard calculations give the result for P and the first three irre-
ducible modules. The triangle defining P gives Ext∗Ñ (P, i∗π∗

1(Ω
1
P2(1))[1]) =

H∗(π∗
1(Ω

1
P2(1)))[1]. Using (∗), we have an exact sequence 0 → H0(π∗

1(Ω
1
P2(1)))

→ k3 → H0(ω1) → H1(π∗
1(Ω

1
P2(1))) → 0 with invertible middle arrow (the

other cohomology modules vanish).
Finally, let us show that Ext∗Ñ (P,L) = 0. We have RHomÑ (P, i∗OB) ∼=

RΓ(OB) ∼= k, RHomÑ (P, i∗OB(−ρ)[3]) ∼= RΓ(OB(−2ρ)[3]) ∼= k, thus we only
need to check that for nonzero morphisms b : i∗OB → i∗OB(−ρ)[3], φ : P →
i∗OB we have b ◦ φ �= 0. It is clear from Remark after Theorem 2.1 that
b = i∗(β) ◦ δ, where δ : i∗OB → i∗TB[1] is the class of the extension 0 →
i∗TB → OÑ /J 2

B → i∗OB → 0, and β : TB[1] → OB(−ρ)[3] is a non-zero
morphism; here JB is the ideal sheaf on the zero section in Ñ .

We claim that δ ◦ φ = i∗(γ) ◦ ψ, where ψ : P � i∗OB(ρ) and γ : OB(ρ) →
TB[1] are nonzero morphisms. This follows from the definition of P, which
implies that P has a quotient, which is an extension of i∗OB ⊕ i∗OB(ρ) by
i∗TB, such that the corresponding class in Ext1(i∗OB, i∗(TB)) equals δ, while
the corresponding class in Ext1(i∗OB(ρ), i∗(TB)) is non-trivial and is an image
under i∗ of an extension of coherent sheaves on B.

It remains to show that the composition i∗β ◦ i∗γ ◦ ψ is nonzero. The
composition β ◦ γ ∈ Ext3(OB(ρ),OB(−ρ)) = H3(B,O(−2ρ)) = k is nonzero,
because it coincides with the Serre duality pairing of nonzero elements β, γ in
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the two dual one-dimensional spaces H1(TB(−ρ)), H2(Ω1
B(−ρ)). Consequently,

the composition i∗(β ◦ γ) ◦ ψ is also nonzero, since under the isomorphism
Hom(P, i∗OB(−ρ)[3]) ∼= Hom(i∗P,OB(−ρ)[3]) ∼= Hom(OB⊕OB(ρ),OB(−ρ)[3])
it corresponds to the composition of β ◦ γ and projection to the second sum-
mand.
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