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Global well-posedness and scattering

for the energy-critical nonlinear
Schrödinger equation in R3

By J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao*

Abstract

We obtain global well-posedness, scattering, and global L10
t,x spacetime

bounds for energy-class solutions to the quintic defocusing Schrödinger equa-
tion in R1+3, which is energy-critical. In particular, this establishes global
existence of classical solutions. Our work extends the results of Bourgain [4]
and Grillakis [20], which handled the radial case. The method is similar in
spirit to the induction-on-energy strategy of Bourgain [4], but we perform the
induction analysis in both frequency space and physical space simultaneously,
and replace the Morawetz inequality by an interaction variant (first used in
[12], [13]). The principal advantage of the interaction Morawetz estimate is
that it is not localized to the spatial origin and so is better able to handle
nonradial solutions. In particular, this interaction estimate, together with an
almost-conservation argument controlling the movement of L2 mass in fre-
quency space, rules out the possibility of energy concentration.
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1. Introduction

1.1. Critical NLS and main result. We consider the Cauchy problem for
the quintic defocusing Schrödinger equation in R1+3{

iut + Δu = |u|4u
u(0, x) = u0(x),

(1.1)

where u(t, x) is a complex-valued field in spacetime Rt × R3
x. This equation

has as Hamiltonian,

E(u(t)) :=
∫

1
2
|∇u(t, x)|2 +

1
6
|u(t, x)|6 dx.(1.2)

Since the Hamiltonian (1.2) is preserved by the flow (1.1) we shall often refer
to it as the energy and write E(u) for E(u(t)).

Semilinear Schrödinger equations - with and without potentials, and with
various nonlinearities - arise as models for diverse physical phenomena, includ-
ing Bose-Einstein condensates [23], [35] and as a description of the envelope
dynamics of a general dispersive wave in a weakly nonlinear medium (see e.g.
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the survey in [43], Chapter 1). Our interest here in the defocusing quintic
equation (1.1) is motivated mainly, though, by the fact that the problem is
critical with respect to the energy norm. Specifically, we map a solution to
another solution through the scaling u �→ uλ defined by

uλ(t, x) :=
1

λ1/2
u

(
t

λ2
,
x

λ

)
,(1.3)

and this scaling leaves both terms in the energy invariant.
The Cauchy problem for this equation has been intensively studied ([9],

[20], [4], [5],[18], [26]). It is known (see e.g. [10], [9]) that if the initial data u0(x)
has finite energy, then the Cauchy problem is locally well-posed, in the sense
that there exists a local-in-time solution to (1.1) which lies in C0

t Ḣ1
x ∩ L10

t,x,
and is unique in this class; furthermore the map from initial data to solu-
tion is locally Lipschitz continuous in these norms. If the energy is small,
then the solution is known to exist globally in time, and scatters to a solution
u±(t) to the free Schrödinger equation (i∂t + Δ)u± = 0, in the sense that
‖u(t) − u±(t)‖Ḣ1(R3) → 0 as t → ±∞. For (1.1) with large initial data, the
arguments in [10], [9] do not extend to yield global well-posedness, even with
the conservation of the energy (1.2), because the time of existence given by the
local theory depends on the profile of the data as well as on the energy.1 For
large finite energy data which is assumed to be in addition radially symmet-
ric, Bourgain [4] proved global existence and scattering for (1.1) in Ḣ1(R3).
Subsequently Grillakis [20] gave a different argument which recovered part of
[4] — namely, global existence from smooth, radial, finite energy data. For
general large data — in particular, general smooth data — global existence
and scattering were open.

Our main result is the following global well-posedness result for (1.1) in
the energy class.

Theorem 1.1. For any u0 with finite energy, E(u0) < ∞, there exists a
unique2 global solution u ∈ C0

t (Ḣ1
x) ∩ L10

t,x to (1.1) such that∫ ∞

−∞

∫
R3

|u(t, x)|10 dxdt ≤ C(E(u0)).(1.4)

for some constant C(E(u0)) that depends only on the energy.

1This is in constrast with sub-critical equations such as the cubic equation iut + Δu =
|u|2u, for which one can use the local well-posedness theory to yield global well-posedness
and scattering even for large energy data (see [17], and the surveys [7], [8]).

2In fact, uniqueness actually holds in the larger space C0
t (Ḣ1

x) (thus eliminating the con-
straint that u ∈ L10

t,x), as one can show by adapting the arguments of [27], [15], [14]; see
Section 16.
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As is well-known (see e.g. [5], or [13] for the sub-critical analogue), the
L10

t,x bound above also gives scattering, asymptotic completeness, and uniform
regularity:

Corollary 1.2. Let u0 have finite energy. Then there exist finite energy
solutions u±(t, x) to the free Schrödinger equation (i∂t + Δ)u± = 0 such that

‖u±(t) − u(t)‖Ḣ1 → 0 as t → ±∞.

Furthermore, the maps u0 �→ u±(0) are homeomorphisms from Ḣ1(R3) to
Ḣ1(R3). Finally, if u0 ∈ Hs for some s > 1, then u(t) ∈ Hs for all time t,
and one has the uniform bounds

sup
t∈R

‖u(t)‖Hs ≤ C(E(u0), s)‖u0‖Hs .

It is also fairly standard to show that the L10
t,x bound (1.4) implies further

spacetime integrability on u. For instance u obeys all the Strichartz estimates
that a free solution with the same regularity does (see, for example, Lemma
3.12 below).

The results here have analogs in previous work on second order wave equa-
tions on R3+1 with energy-critical (quintic) defocusing nonlinearities. Global-
in-time existence for such equations from smooth data was shown by Grillakis
[21], [22] (for radial data see Struwe [42], for small energy data see Rauch [36]);
global-in-time solutions from finite energy data were shown in Kapitanski [25],
Shatah-Struwe [39]. For an analog of the scattering statement in Corollary 1.2
for the critical wave equation; see Bahouri-Shatah [2], Bahouri-Gérard [1] for
the scattering statement for Klein-Gordon equations see Nakanishi [30] (for
radial data, see Ginibre-Soffer-Velo[16]). The existence results mentioned here
all involve an argument showing that the solution’s energy cannot concentrate.
These energy nonconcentration proofs combine Morawetz inequalities (a priori
estimates for the nonlinear equations which bound some quantity that scales
like energy) with careful analysis that strengthens the Morawetz bound to
control of energy. Besides the presence of infinite propagation speeds, a main
difference between (1.1) and the hyperbolic analogs is that here time scales
like λ2, and as a consequence the quantity bounded by the Morawetz estimate
is supercritical with respect to energy.

Section 4 below provides a fairly complete outline of the proof of Theo-
rem 1.1. In this introduction we only briefly sketch some of the ideas involved:
a suitable modification of the Morawetz inequality for (1.1), along with the
frequency-localized L2 almost-conservation law that we’ll ultimately use to
prohibit energy concentration.
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A typical example of a Morawetz inequality for (1.1) is the following bound
due to Lin and Strauss [33] who cite [34] as motivation,∫

I

∫
R3

|u(t, x)|6
|x| dxdt �

(
sup
t∈I

‖u(t)‖Ḣ1/2

)2

(1.5)

for arbitrary time intervals I. (The estimate (1.5) follows from a computation
showing the quantity, ∫

R3

Im
(

ū∇u · x

|x|

)
dx(1.6)

is monotone in time.) Observe that the right-hand side of (1.5) will not grow
in I if the H1 and L2 norms are bounded, and so this estimate gives a uni-
form bound on the left-hand side where I is any interval on which we know
the solution exists. However, in the energy-critical problem (1.1) there are
two drawbacks with this estimate. The first is that the right-hand side in-
volves the Ḣ1/2 norm, instead of the energy E. This is troublesome since
any Sobolev norm rougher than Ḣ1 is supercritical with respect to the scaling
(1.3). Specifically, the right-hand side of (1.5) increases without bound when
we simply scale given finite energy initial data according to (1.3) with λ large.
The second difficulty is that the left-hand side is localized near the spatial ori-
gin x = 0 and does not convey as much information about the solution u away
from this origin. To get around the first difficulty Bourgain [4] and Grillakis
[20] introduced a localized variant of the above estimate:∫

I

∫
|x|�|I|1/2

|u(t, x)|6
|x| dxdt � E(u)|I|1/2.(1.7)

As an example of the usefulness of (1.7), we observe that this estimate prohibits
the existence of finite energy (stationary) pseudosoliton solutions to (1.1). By
a (stationary) pseudosoliton we mean a solution such that |u(t, x)| ∼ 1 for all
t ∈ R and |x| � 1; this notion includes soliton and breather type solutions.
Indeed, applying (1.7) to such a solution, we would see that the left-hand side
grows by at least |I|, while the right-hand side is O(|I| 12 ), and so a pseudosoli-
ton solution will lead to a contradiction for |I| sufficiently large. A similar
argument allows one to use (1.7) to prevent “sufficiently rapid” concentration
of (potential) energy at the origin; for instance, (1.7) can also be used to rule
out self-similar type blowup,3, where the potential energy density |u|6 concen-
trates in the ball |x| < A|t − t0| as t → t−0 for some fixed A > 0. In [4],
one main use of (1.7) was to show that for each fixed time interval I, there

3This is not the only type of self-similar blowup scenario; another type is when the energy
concentrates in a ball |x| ≤ A|t − t0|1/2 as t → t−0 . This type of blowup is consistent with
the scaling (1.3) and is not directly ruled out by (1.7); however it can instead be ruled out
by spatially local mass conservation estimates. See [4], [20]
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exists at least one time t0 ∈ I for which the potential energy was dispersed at
scale |I|1/2 or greater (i.e. the potential energy could not concentrate on a ball
|x| � |I|1/2 for all times in I).

To summarize, the localized Morawetz estimate (1.7) is very good at pre-
venting u from concentrating near the origin; this is especially useful in the
case of radial solutions u, since the radial symmetry (combined with conser-
vation of energy) enforces decay of u away from the origin, and so resolves
the second difficulty with the Morawetz estimate mentioned earlier. However,
the estimate is less useful when the solution is allowed to concentrate away
from the origin. For instance, if we aim to preclude the existence of a moving
pseudosoliton solution, in which |u(t, x)| ∼ 1 when |x − vt| � 1 for some fixed
velocity v, then the left-hand side of (1.7) only grows like log |I| and so one
does not necessarily obtain a contradiction.4

It is thus of interest to remove the 1/|x| denominator in (1.5), (1.7), so that
these estimates can more easily prevent concentration at arbitrary locations
in spacetime. In [12], [13] this was achieved by translating the origin in the
integrand of (1.6) to an arbitrary point y, and averaging against the L1 mass
density |u(y)|2 dy. In particular, the following interaction Morawetz estimate5∫

I

∫
R3

|u(t, x)|4 dxdt � ‖u(0)‖2
L2

(
sup
t∈I

‖u(t)‖Ḣ1/2

)2

(1.8)

was obtained. (We have since learned that this averaging argument has an
analog in early work presenting and analyzing interaction functionals for one
dimensional hyperbolic systems, e.g. [19], [38].) This L4

t,x estimate already
gives a short proof of scattering in the energy class (and below!) for the
cubic nonlinear Schrödinger equation (see [12], [13]); however, like (1.5), this
estimate is not suitable for the critical problem because the right-hand side is
not controlled by the energy E(u). One could attempt to localize (1.8) as in
(1.7), obtaining for instance a scale-invariant estimate such as∫

I

∫
|x|�|I|1/2

|u(t, x)|4 dxdt � E(u)2|I|3/2,(1.9)

4At first glance it may appear that the global estimate (1.5) is still able to preclude the
existence of such a pseudosoliton, since the right-hand side does not seem to grow much as I
gets larger. This can be done in the cubic problem (see e.g. [17]) but in the critical problem
one can lose control of the Ḣ1/2 norm, by adding some very low frequency components to
the soliton solution u. One might object that one could use L2 conservation to control the
H1/2 norm, however one can rescale the solution to make the L2 norm (and hence the Ḣ1/2

norm) arbitrarily large.
5Strictly speaking, in [12], [13] this estimate was obtained for the cubic defocusing non-

linear Schrödinger equation instead of the quintic, but the argument in fact works for all
nonlinear Schrödinger equations with a pure power defocusing nonlinearity, and even for
a slightly more general class of repulsive nonlinearities satisfying a standard monotonicity
condition. See [13] and Section 10 below for more discussion.



SCATTERING FOR 3D CRITICAL NLS 773

but this estimate, while true (in fact it follows immediately from Sobolev and
Hölder), is useless for such purposes as prohibiting soliton-like behaviour, since
the left-hand side grows like |I| while the right-hand side grows like |I|3/2. Nor
is this estimate useful for preventing any sort of energy concentration.

Our solution to these difficulties proceeds in the context of an induction-
on-energy argument as in [4]: assume for contradiction that Theorem 1.1 is
false, and consider a solution of minimal energy among all those solutions with
L10

x,t norm above some threshhold. We first show, without relying on any of
the above Morawetz-type inequalities, that such a minimal energy blowup so-
lution would have to be localized in both frequency and in space at all times.
Second, we prove that this localized blowup solution satisfies Proposition 4.9,
which localizes (1.8) in frequency rather than in space. Roughly speaking,
the frequency localized Morawetz inequality of Proposition 4.9 states that af-
ter throwing away some small energy, low frequency portions of the blow-up
solution, the remainder obeys good L4

t,x estimates. In principle, this estimate
should follow simply by repeating the proof of (1.8) with u replaced by the high
frequency portion of the solution, and then controlling error terms; however
some of the error terms are rather difficult and the proof of the frequency-
localized Morawetz inequality is quite technical. We emphasize that, unlike
the estimates (1.5), (1.7), (1.8), the frequency-localized Morawetz inequality
(4.19) is not an a priori estimate valid for all solutions of (1.1), but instead
applies only to minimal energy blowup solutions; see Section 4 for further
discussion and precise definitions.

The strategy is then to try to use Sobolev embedding to boost this L4
t,x

control to L10
t,x control which would contradict the existence of the blow-up so-

lution. There is, however, a remaining enemy, which is that the solution may
shift its energy from low frequencies to high, possibly causing the L10

t,x norm to
blow up while the L4

t,x norm stays bounded. To prevent this we look at what
such a frequency evacuation would imply for the location — in frequency space
— of the blow-up solution’s L2 mass. Specifically, we prove a frequency local-
ized L2 mass estimate that gives us information for longer time intervals than
seem to be available from the spatially localized mass conservation laws used
in the previous radial work ([4], [20]). By combining this frequency localized
mass estimate with the L4

t,x bound and plenty of Strichartz estimate analysis,
we can control the movement of energy and mass from one frequency range
to another, and prevent the low-to-high cascade from occurring. The argu-
ment here is motivated by our previous low-regularity work involving almost
conservation laws (e.g. [13]).

The remainder of the paper is organized as follows: Section 2 reviews
some simple, classical conservation laws for Schrödinger equations which will
be used througout, but especially in proving the frequency localized interac-
tion Morawetz estimate. In Section 3 we recall some linear and multilinear
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Strichartz estimates, along with the useful nonlinear perturbation statement
of Lemma 3.10. Section 4 outlines in some detail the argument behind our
main Theorem, leaving the proofs of each step to Sections 5–15 of the pa-
per. Section 16 presents some miscellaneous remarks, including a proof of the
unconditional uniqueness statement alluded to above.

Acknowledgements. We thank the Institute for Mathematics and its
Applications (IMA) for hosting our collaborative meeting in July 2002. We
thank Andrew Hassell, Sergiu Klainerman, and Jalal Shatah for interesting
discussions related to the interaction Morawetz estimate, and Jean Bourgain
for valuable comments on an early draft of this paper, to Monica Visan and the
anonymous referee for their thorough reading of the manuscript and for many
important corrections, and to Changxing Miao and Guixiang Xu for further
corrections. We thank Manoussos Grillakis for explanatory details related to
[20]. Finally, it will be clear to the reader that our work here relies heavily in
places on arguments developed by J. Bourgain in [4].

1.2. Notation. If X, Y are nonnegative quantities, we use X � Y or
X = O(Y ) to denote the estimate X ≤ CY for some C (which may depend on
the critical energy Ecrit (see Section 4) but not on any other parameter such
as η), and X ∼ Y to denote the estimate X � Y � X. We use X � Y to
mean X ≤ cY for some small constant c (which is again allowed to depend on
Ecrit).

We use C 
 1 to denote various large finite constants, and 0 < c � 1 to
denote various small constants.

The Fourier transform on R3 is defined by

f̂(ξ) :=
∫

R3

e−2πix·ξf(x) dx,

giving rise to the fractional differentiation operators |∇|s, 〈∇〉s defined by

|̂∇|sf(ξ) := |ξ|sf̂(ξ); 〈̂∇〉sf(ξ) := 〈ξ〉sf̂(ξ)

where 〈ξ〉 := (1 + |ξ|2)1/2. In particular, we will use ∇ to denote the spatial
gradient ∇x. This in turn defines the Sobolev norms

‖f‖Ḣs(R3) := ‖|∇|sf‖L2(R3); ‖f‖Hs(R3) := ‖〈∇〉sf‖L2(R3).

More generally we define

‖f‖Ẇ s,p(R3) := ‖|∇|sf‖Lp(R3); ‖f‖W s,p(R3) := ‖〈∇〉sf‖Lp(R3)

for s ∈ R and 1 < p < ∞.
We let eitΔ be the free Schrödinger propagator; in terms of the Fourier

transform, this is given by

êitΔf(ξ) = e−4π2it|ξ|2 f̂(ξ)(1.10)
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while in physical space we have

eitΔf(x) =
1

(4πit)3/2

∫
R3

ei|x−y|2/4tf(y) dy(1.11)

for t �= 0, using an appropriate branch cut to define the complex square root. In
particular the propagator preserves all the Sobolev norms Hs(R3) and Ḣs(R3),
and also obeys the dispersive inequality

‖eitΔf‖L∞
x (R3) � |t|−3/2‖f‖L1

x(R3).(1.12)

We also record Duhamel ’s formula

u(t) = ei(t−t0)Δu(t0) − i

∫ t

t0

ei(t−s)Δ(iut + Δu)(s) ds(1.13)

for any Schwartz u and any times t0, t ∈ R, with the convention that
∫ t
t0

= −
∫ t0
t

if t < t0.
We use the notation O(X) to denote an expression which is schemati-

cally of the form X; this means that O(X) is a finite linear combination of
expressions which look like X but with some factors possibly replaced by their
complex conjugates. Thus for instance 3u2v2|v|2+9|u|2|v|4+3u2v2|v|2 qualifies
to be of the form O(u2v4), and similarly we have

|u + v|6 = |u|6 + |v|6 +
5∑

j=1

O(ujv6−j)(1.14)

and

|u + v|4(u + v) = |u|4u + |v|4v +
4∑

j=1

O(ujv5−j).(1.15)

We will sometimes denote partial derivatives using subscripts: ∂xj
u =

∂ju = uj . We will also implicitly use the summation convention when indices
are repeated in expressions below.

We shall need the following Littlewood-Paley projection operators. Let
ϕ(ξ) be a bump function adapted to the ball {ξ ∈ R3 : |ξ| ≤ 2} which equals
1 on the ball {ξ ∈ R3 : |ξ| ≤ 1}. Define a dyadic number to be any number
N ∈ 2Z of the form N = 2j where j ∈ Z is an integer. For each dyadic number
N , we define the Fourier multipliers

P̂≤Nf(ξ) := ϕ(ξ/N)f̂(ξ)

P̂>Nf(ξ) := (1 − ϕ(ξ/N))f̂(ξ)

P̂Nf(ξ) := (ϕ(ξ/N) − ϕ(2ξ/N))f̂(ξ).

We similarly define P<N and P≥N . Note in particular the telescoping identities

P≤Nf =
∑

M≤N

PMf ; P>Nf =
∑

M>N

PMf ; f =
∑
M

PMf
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for all Schwartz f , where M ranges over dyadic numbers. We also define

PM<·≤N := P≤N − P≤M =
∑

M<N ′≤N

PN ′

whenever M ≤ N are dyadic numbers. Similarly define PM≤·≤N , etc.
The symbol u shall always refer to a solution to the nonlinear Schrödinger

equation (1.1). We shall use uN to denote the frequency piece uN := PNu

of u, and similarly define u≥N = P≥Nu, etc. While this may cause some
confusion with the notation uj used to denote derivatives of u, the meaning of
the subscript should be clear from context.

The Littlewood-Paley operators commute with derivative operators (in-
cluding |∇|s and i∂t+Δ), the propagator eitΔ, and conjugation operations, are
self-adjoint, and are bounded on every Lebesgue space Lp and Sobolev space
Ḣs (if 1 ≤ p ≤ ∞, of course). Furthermore, they obey the following easily ver-
ified Sobolev (and Bernstein) estimates for R3 with s ≥ 0 and 1 ≤ p ≤ q ≤ ∞:

‖P≥Nf‖Lp � N−s‖|∇|sP≥Nf‖Lp ,(1.16)

‖P≤N |∇|sf‖Lp � N s‖P≤Nf‖Lp ,(1.17)

‖PN |∇|±sf‖Lp ∼ N±s‖PNf‖Lp ,(1.18)

‖P≤Nf‖Lq � N
3
p
− 3

q ‖P≤Nf‖Lp ,(1.19)

‖PNf‖Lq � N
3
p
− 3

q ‖PNf‖Lp .(1.20)

2. Local conservation laws

In this section we record some standard facts about the (non)conservation
of mass, momentum and energy densities for general nonlinear Schrödinger
equations of the form6

i∂tφ + Δφ = N(2.1)

on the spacetime slab I0×Rd with I0 a compact interval. Our primary interest
is of course the quintic defocusing case (1.1) on I0 × R3 when N = |φ|4φ, but
we will also discuss here the U(1)-gauge invariant Hamiltonian case, when
N = F ′(|φ|2)φ with R-valued F . Later on we will consider various truncated
versions of (1.1) with non-Hamiltonian forcing terms. These local conservation
laws will be used not only to imply the usual global conservation of mass and
energy, but also derive “almost conservation” laws for various localized portions
of mass, energy, and momentum, where the localization is either in physical
space or frequency space. The localized momentum inequalities are closely

6We will use φ to denote general solutions to Schrödinger-type equations, reserving the
symbol u for solutions to the quintic defocusing nonlinear Schrödinger equation (1.1).
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related to virial identities, and will be used later to deduce an interaction
Morawetz inequality which is crucial to our argument.

To avoid technicalities (and to justify all exchanges of derivatives and
integrals), let us work purely with fields φ, N which are smooth, with all
derivatives rapidly decreasing in space; in practice, we can then extend the
formulae obtained here to more general situations by limiting arguments. We
begin by introducing some notation which will be used to describe the mass
and momentum (non)conservation properties of (2.1).

Definition 2.1. Given a (Schwartz) solution φ of (2.1) we define the mass
density

T00(t, x) := |φ(t, x)|2,
the momentum density

T0j(t, x) := Tj0(t, x) := 2Im(φφj),

and the (linear part of the) momentum current

Ljk(t, x) = Lkj(t, x) := −∂j∂k|φ(t, x)|2 + 4Re(φjφk).

Definition 2.2. Given any two (Schwartz) functions f, g : Rd → C, we
define the mass bracket

{f, g}m := Im(fg)(2.2)

and the momentum bracket

{f, g}p := Re(f∇g − g∇f).(2.3)

Thus {f, g}m is a scalar-valued function, while {f, g}p defines a vector field on
Rd. We will denote the jth component of {f, g}p by {f, g}j

p.

With these notions we can now express the mass and momentum (non)-
conservation laws for (2.1), which can be validated with straightforward com-
putations.

Lemma 2.3 (Local conservation of mass and momentum). If φ is a
(Schwartz ) solution to (2.1) then there exist the local mass conservation iden-
tity

∂tT00 + ∂jT0j = 2{N , φ}m(2.4)

and the local momentum conservation identity

∂tT0j + ∂kLkj = 2{N , φ}j
p.(2.5)

Here we adopt the usual7 summation conventions for the indices j, k.

7Repeated Euclidean coordinate indices are summed. As the metric is Euclidean, we will
not systematically match subscripts and superscripts.
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Observe that the mass current coincides with the momentum density in
(2.5), while the momentum current in (2.5) has some “positive definite” ten-
dencies (think of Δ = ∂k∂k as a negative definite operator, whereas the ∂j will
eventually be dealt with by integration by parts, reversing the sign). These two
facts will underpin the interaction Morawetz estimate obtained in Section 10.

We now specialize to the gauge invariant Hamiltonian case, when N =
F ′(|φ|2)φ; note that (1.1) would correspond to the case F (|φ|2) = 1

3 |φ|6. Ob-
serve that

{F ′(|φ|2)φ, φ}m = 0(2.6)

and

{F ′(|φ|2)φ, φ}p = −∇G(|φ|2)(2.7)

where G(z) := zF ′(z) − F (z). In particular, for the quintic case (1.1) we have

{|φ|4φ, φ}p = −2
3
∇|φ|6.(2.8)

Thus, in the gauge invariant case we can re-express (2.5) as

∂tT0j + ∂kTjk = 0(2.9)

where

Tjk := Ljk + 2δjkG(|φ|2)(2.10)

is the (linear and nonlinear) momentum current. Integrating (2.4) and (2.9)
in space we see that the total mass∫

Rd

T00 dx =
∫

Rd

|φ(t, x)|2 dx

and the total momentum∫
Rd

T0j dx = 2
∫

Rd

Im(φ(t, x)∂jφ(t, x)) dx

are both conserved quantities. In this Hamiltonian setting one can also verify
the local energy conservation law

∂t

[
1
2
|∇φ|2 +

1
2
F (|φ|2)

]
+ ∂j

[
Im(φkφkj) − F ′(|φ|2)Im(φφj)

]
= 0(2.11)

which implies conservation of total energy∫
Rd

1
2
|∇φ|2 +

1
2
F (|φ|2) dx.

Note also that (2.10) continues the tendency of the right-hand side of (2.5)
to be “positive definite”; this is a manifestation of the defocusing nature of
the equation. Later in our argument, however, we will be forced to deal with
frequency-localized versions of the nonlinear Schrödinger equations, in which
one does not have perfect conservation of mass and momentum, leading to a
number of unpleasant error terms in our analysis.
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3. Review of Strichartz theory in R1+3

In this section we review some standard (and some slightly less standard)
Strichartz estimates in three dimensions, and their application to the well-
posedness and regularity theory for (1.1). We use Lq

tL
r
x to denote the spacetime

norm

‖u‖Lq
t Lr

x(R×R3) :=

(∫
R

(∫
R3

|u(t, x)|r dx

)q/r

dt

)1/q

,

with the usual modifications when q or r is equal to infinity, or when the
domain R × R3 is replaced by a smaller region of spacetime such as I × R3.
When q = r we abbreviate Lq

tL
q
x as Lq

t,x.

3.1. Linear Strichartz estimates. We say that a pair (q, r) of exponents is
admissible if 2

q + 3
r = 3

2 and 2 ≤ q, r ≤ ∞; examples include (q, r) = (∞, 2),
(10, 30/13), (5, 30/11), (4, 3), (10/3, 10/3), and (2, 6).

Let I × R3 be a spacetime slab. We define8 the L2 Strichartz norm
Ṡ0(I × R3) by

‖u‖Ṡ0(I×R3) := sup
(q,r) admissible

( ∑
N

‖PNu‖2
Lq

t Lr
x(I×R3)

)1/2
(3.1)

and for k = 1, 2 we then define the Ḣk Strichartz norm Ṡk(I × R3) by

‖u‖Ṡk(I×R3) := ‖∇ku‖Ṡ0(I×R3).

We shall work primarily with the Ḣ1 Strichartz norm, but will need the L2 and
Ḣ2 norms to control high frequency and low frequency portions of the solution
u respectively.

We observe the elementary inequality

∥∥∥( ∑
N

|fN |2
)1/2∥∥∥

Lq
t Lr

x(I×R3)
≤

( ∑
N

‖fN‖2
Lq

t Lr
x(I×R3)

)1/2
(3.2)

for all 2 ≤ q, r ≤ ∞ and arbitrary functions fN ; this is easy to verify in
the extreme cases (q, r) = (2, 2), (2,∞), (∞, 2), (∞,∞), and the intermediate
cases then follow by complex interpolation. In particular, (3.2) holds for all
admissible exponents (q, r). From this and the Littlewood-Paley inequality

8The presence of the Littlewood-Paley projections here may seem unusual, but they are
necessary in order to obtain a key L4

t L
∞
x endpoint Strichartz estimate below.
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(see e.g. [40]) we have

‖u‖Lq
t Lr

x(I×R3) �
∥∥∥( ∑

N

|PNu|2
)1/2∥∥∥

Lq
t Lr

x(I×R3)

�
( ∑

N

‖PNu‖2
Lq

t Lr
x(I×R3)

)1/2

� ‖u‖Ṡ0(I×R3)

and hence

‖∇u‖Lq
t Lr

x(I×R3) � ‖u‖Ṡ1(I×R3).(3.3)

Indeed, the Ṡ1 norm controls the following spacetime norms:

Lemma 3.1 ([44]). For any Schwartz function u on I × R3,

‖∇u‖L∞
t L2

x
+ ‖∇u‖L10

t L
30/13
x

+ ‖∇u‖L5
tL

30/11
x

+ ‖∇u‖L4
t L3

x
+ ‖∇u‖L

10/3
t,x

+ ‖∇u‖L2
t L6

x
+ ‖u‖L4

t L∞
x

+ ‖u‖L6
t L18

x
+ ‖u‖L10

t,x
+ ‖u‖L∞

t L6
x

� ‖u‖Ṡ1 .
(3.4)

where all spacetime norms are on I × R3.

Proof. All of these estimates follow from (3.3) and Sobolev embedding
except for the L4

t L
∞
x norm, which is a little more delicate because endpoint

Sobolev embedding does not work at L∞
x . Write

cN := ‖PN∇u‖L2
t L6

x
+ ‖PN∇u‖L∞

t L2
x
;

then by the definition of Ṡ1 we have( ∑
N

c2
N

)1/2
� ‖u‖Ṡ1 .

On the other hand, for any dyadic frequency N we see from Bernstein’s in-
equality (1.20) and (1.18) that

N
1
2 ‖PNu‖L2

t L∞
x

� cN and N− 1
2 ‖PNu‖L∞

t L∞
x

� cN .

Thus, if aN (t) := ‖PNu(t)‖L∞
x

, we have( ∫
I
aN (t)2 dt

)1/2
� N− 1

2 cN(3.5)

and

sup
t∈I

aN (t) � N
1
2 cN .(3.6)

Let us now compute

‖u‖4
L4

t L∞
x

�
∫

I

( ∑
N

aN (t)
)4

dt.
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Expanding this out and using symmetry, we have

‖u‖4
L4

tL∞
x

�
∑

N1≥N2≥N3≥N4

∫
I
aN1(t)aN2(t)aN3(t)aN4(t) dt.

Estimating the two highest frequencies using (3.5) and the lowest two using
(3.6), we can bound this by

�
∑

N1≥N2≥N3≥N4

N
1
2
3 N

1
2
4

N
1
2
1 N

1
2
2

cN1cN2cN3cN4 .

Let c̃N denote the quantity

c̃N :=
∑
N ′

min(N/N ′, N ′/N)1/10cN ′ .

Clearly we can bound the previous expression by

�
∑

N1≥N2≥N3≥N4

N
1
2
3 N

1
2
4

N
1
2
1 N

1
2
2

c̃N1 c̃N2 c̃N3 c̃N4 .

But we have c̃Nj
� (N1/Nj)1/10c̃N1 for j = 2, 3, 4; hence we can bound the

above by

�
∑

N1≥N2≥N3≥N4

N
1
2
3 N

1
2
4

N
1
2
1 N

1
2
2

c̃4
N1

(N1/N2)1/10(N1/N3)1/10(N1/N4)1/10.

Summing in N4, then in N3, then in N2, we see that this is bounded by∑
N1

c̃4
N1

�
( ∑

N

c̃2
N

)2
.

But by Young’s inequality this is bounded by � (
∑
N

c2
N )2 � ‖u‖4

Ṡ1 , and the

claim follows.

We have the following standard Strichartz estimates:

Lemma 3.2. Let I be a compact time interval, and let u : I × R3 → C be
a Schwartz solution to the forced Schrödinger equation

iut + Δu =
M∑

m=1

Fm

for some Schwartz functions F1, . . . , FM . Then

‖u‖Ṡk(I×R3) � ‖u(t0)‖Ḣk(R3) + C
M∑

m=1

‖∇kFm‖
L

q′m
t L

r′m
x (I×R3)

(3.7)

for any integer k ≥ 0, any time t0 ∈ I, and any admissible exponents (q1, r1), . . .
. . . , (qm, rm), where p′ denotes the dual exponent to p; thus 1/p′ + 1/p = 1.
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Proof. We first observe that we may take M = 1, since the claim for
general M then follows from the principle of superposition (exploiting the
linearity of the operator (i∂t + Δ), or equivalently using the Duhamel formula
(1.13)) and the triangle inequality. We may then take k = 0, since the estimate
for higher k follows simply by applying ∇k to both sides of the equation and
noting that this operator commutes with (i∂t + Δ). The Littlewood-Paley
projections PN also commute with (i∂t + Δ), and so

(i∂t + Δ)PNu = PNF1

for each N . From the Strichartz estimates in [32] we obtain

‖PNu‖Lq
t Lr

x(I×R3) � ‖PNu(t0)‖L2(R3) + ‖PNF1‖
L

q′1
t L

r′1
x (I×R3)

for any admissible exponents (q, r), (q1, r1). Finally, we square, sum this in N

and use the dual of (3.2) to obtain the result.

Remark 3.3. In practice we shall take k = 0, 1, 2 and M = 1, 2, and
(qm, rm) to be either (∞, 2) or (2, 6); i.e., we shall measure part of the inho-
mogeneity in L1

t Ḣ
k
x , and the other part in L2

t Ẇ
k,6/5
x .

3.2. Bilinear Strichartz estimate. It turns out that to control the inter-
actions between very high frequency and very low frequency portions of the
Schrödinger solution u, Strichartz estimates are insufficient, and we need the
following bilinear refinement, which we state in arbitrary dimension (though
we need it only in dimension d = 3).

Lemma 3.4. Let d ≥ 2. For any spacetime slab I∗ × Rd, any t0 ∈ I∗, and
for any δ > 0,

‖uv‖L2
t L2

x(I∗×Rd) ≤ C(δ)(‖u(t0)‖Ḣ−1/2+δ + ‖(i∂t + Δ)u‖L1
t Ḣ

−1/2+δ
x

)

× (‖v(t0)‖
Ḣ

d−1
2 −δ + ‖(i∂t + Δ)v‖

L1
t Ḣ

d−1
2 −δ

x

).
(3.8)

This estimate is very useful when u is high frequency and v is low fre-
quency, as it moves plenty of derivatives onto the low frequency term. This
estimate shows in particular that there is little interaction between high and
low frequencies; this heuristic will underlie many of our arguments to come,
especially when we begin to control the movement of mass, momentum, and
energy from high modes to low or vice versa. This estimate is essentially the
refined Strichartz estimate of Bourgain in [3] (see also [5]). We make the trivial
remark that the L2

t,x norm of uv is the same as that of uv, uv, or uv, thus the
above estimate also applies to expressions of the form O(uv).

Proof. We fix δ, and allow our implicit constants to depend on δ. We begin
by addressing the homogeneous case, with u(t) := eitΔζ and v(t) := eitΔψ and
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consider the more general problem of proving

‖uv‖L2
t,x

� ‖ζ‖Ḣα1‖ψ‖Ḣα2 .(3.9)

Scaling invariance of this estimate demands that α1 + α2 = d
2 − 1. Our first

goal is to prove this for α1 = −1
2 + δ and α2 = d−1

2 − δ. The estimate (3.9)
may be recast using duality and renormalization as

∫
g(ξ1 + ξ2, |ξ1|2 + |ξ2|2)|ξ1|−α1 ζ̂(ξ1)|ξ2|−α2ψ̂(ξ2)dξ1dξ2 � ‖g‖L2‖ζ‖L2‖ψ‖L2 .

(3.10)

Since α2 ≥ α1, we may restrict attention to the interactions with |ξ1| ≥ |ξ2|.
Indeed, in the remaining case we can multiply by ( |ξ2|

|ξ1|)
α2−α1 ≥ 1 to return to

the case under consideration. In fact, we may further restrict attention to the
case where |ξ1| > 4|ξ2| since, in the other case, we can move the frequencies
between the two factors and reduce to the case where α1 = α2, which can
be treated by L4

t,x Strichartz estimates9 when d ≥ 2. Next, we decompose
|ξ1| dyadically and |ξ2| in dyadic multiples of the size of |ξ1| by rewriting the
quantity to be controlled as (N, Λ dyadic):∑

N

∑
Λ

∫ ∫
gN (ξ1 + ξ2, |ξ1|2 + |ξ2|2)|ξ1|−α1 ζ̂N (ξ1)|ξ2|−α2ψ̂ΛN (ξ2)dξ1dξ2.

Note that subscripts on g, ζ, ψ have been inserted to evoke the localizations to
|ξ1 + ξ2| ∼ N, |ξ1| ∼ N, |ξ2| ∼ ΛN , respectively. Note that in the situation we
are considering here, namely |ξ1| ≥ 4|ξ2|, we have that |ξ1 + ξ2| ∼ |ξ1| and this
explains why g may be so localized.

By renaming components, we may assume that |ξ1
1 | ∼ |ξ1| and |ξ1

2 | ∼ |ξ2|.
Write ξ2 = (ξ1

2 , ξ2). We now change variables by writing u = ξ1+ξ2, v = |ξ1|2+
|ξ2|2 and dudv = Jdξ1

2dξ1. A calculation then shows that J = |2(ξ1
1±ξ1

2)| ∼ |ξ1|.
Therefore, upon changing variables in the inner two integrals, we encounter∑

N

N−α1
∑
Λ≤1

(ΛN)−α2

∫
Rd−1

∫
R

∫
Rd

gN (u, v)HN,Λ(u, v, ξ2)dudvdξ2

where

HN,Λ(u, v, ξ2) =
ζ̂N (ξ1)ψ̂ΛN (ξ2)

J
.

We apply Cauchy-Schwarz on the u, v integration and change back to the
original variables to obtain

∑
N

N−α1‖gN‖L2

∑
Λ≤1

(ΛN)−α2

∫
Rd−1

[∫
R

∫
Rd−1

|ζ̂N (ξ1)|2 |̂ψΛN (ξ2)|2
J

dξ1dξ1
2

] 1
2

dξ2.

9In one dimension d = 1, Lemma 3.4 fails when u, v have comparable frequencies, but
continues to hold when u, v have separated frequencies; see [11] for further discussion.
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We recall that J ∼ N and use Cauchy-Schwarz in the ξ2 integration, keeping
in mind the localization |ξ2| ∼ ΛN , to get∑

N

N−α1− 1
2 ‖gN‖L2

∑
Λ≤1

(ΛN)−α2+
d−1
2 ‖ζ̂N‖L2‖ψ̂ΛN‖L2 .

Choose α1 = −1
2 + δ and α2 = d−1

2 − δ with δ > 0 to obtain∑
N

‖gN‖L2‖ζ̂N‖L2

∑
Λ≤1

Λδ‖ψ̂ΛN‖L2

which may be summed up to give the claimed homogeneous estimate.
We turn our attention to the inhomogeneous estimate (3.8). For simplicity

we set F := (i∂t + Δ)u and G := (i∂t + Δ)v. Then we use Duhamel’s formula
(1.13) to write

u = ei(t−t0)Δu(t0)−i

∫ t

t0

ei(t−t′)ΔF (t′) dt′, v = ei(t−t0)Δv(t0)−i

∫ t

t0

ei(t−t′)ΔG(t′).

We obtain10

‖uv‖L2 �
∥∥∥ei(t−t0)Δu(t0)ei(t−t0)Δv(t0)

∥∥∥
L2

+
∥∥∥∥ei(t−t0)Δu(t0)

∫ t

t0

ei(t−t′)ΔG(t′) dt′
∥∥∥∥

L2

+
∥∥∥∥ei(t−t0)Δv(t0)

∫ t

t0

ei(t−t′)ΔF (t′)dt′
∥∥∥∥

L2

+
∥∥∥∥∫ t

t0

ei(t−t′)ΔF (t′)dt′
∫ t

t0

ei(t−t′′)ΔG(x, t′′) dt′′
∥∥∥∥

L2

:= I1 + I2 + I3 + I4.

The first term was treated in the first part of the proof. The second and the
third are similar and so we consider only I2. By the Minkowski inequality,

I2 �
∫

R

‖ei(t−t0)Δu(t0)ei(t−t′)ΔG(t′)‖L2 dt′,

and in this case the lemma follows from the homogeneous estimate proved
above. Finally, again by Minkowski’s inequality we have

I4 �
∫

R

∫
R

‖ei(t−t′)ΔF (t′)ei(t−t′′)ΔG(t′′)‖L2
x
dt′dt′′,

and the proof follows by inserting in the integrand the homogeneous estimate
above.

10Alternatively, one can absorb the homogeneous components ei(t−t0)Δu(t0), ei(t−t0)Δv(t0)
into the inhomogeneous term by adding an artificial forcing term of δ(t − t0)u(t0) and
δ(t − t0)v(t0) to F and G respectively, where δ is the Dirac delta.
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Remark 3.5. In the situation where the initial data are dyadically lo-
calized in frequency space, the estimate (3.9) is valid [3] at the endpoint
α1 = −1

2 , α2 = d−1
2 . Bourgain’s argument also establishes the result with α1 =

−1
2 + δ, α2 = d−1

2 + δ, which is not scale invariant. However, the full estimate
fails at the endpoint. This can be seen by calculating the left and right sides
of (3.10) in the situation where ζ̂1 = χR1 with R1 = {ξ : ξ1 = Ne1 + O(N

1
2 )}

(where e1 denotes the first coordinate unit vector), ψ̂2(ξ2) = |ξ2|−
d−1
2 χR2 where

R2 = {ξ2 : 1 � |ξ2| � N
1
2 , ξ2 · e1 = O(1)} and g(u, v) = χR0(u, v) with

R0 = {(u, v) : u = Ne1 + O(N
1
2 ), v = |u|2 + O(N)}. A calculation then shows

that the left side of (3.10) is of size N
d+1
2 log N while the right side is of size

N
d+1
2 (log N)

1
2 . Note that the same counterexample shows that the estimate

‖uv‖L2
t,x

� ‖ζ‖Ḣα
1
‖ψ‖Ḣα

2
,

where u(t) = eitΔζ, v(t) = eitΔψ, also fails at the endpoint.

3.3. Quintilinear Strichartz estimates. We record the following useful
inequality:

Lemma 3.6. For any k = 0, 1, 2 and any slab I × R3, and any smooth
functions v1, . . . , v5 on this slab,

(3.11) ‖∇kO(v1v2v3v4v5)‖L1
t L2

x

�
∑

{a,b,c,d,e}={1,2,3,4,5}
‖va‖Ṡ1‖vb‖Ṡ1‖vc‖L10

x,t
‖vd‖L10

x,t
||ve||Ṡk

where all the spacetime norms are on the slab I × R3. In a similar spirit,

‖∇O(v1v2v3v4v5)‖L2
t L

6/5
x

�
5∏

j=1

‖∇vj‖L10
t L

30/13
x

≤
5∏

j=1

‖vj‖Ṡ1 .(3.12)

Proof. Consider, for example, the k = 1 case of (3.11). Applying the
Leibnitz rule, we encounter various terms to control including

‖O((∇v1)v2v3v4v5)‖L1
t L2

x
� ‖∇v1‖

L
10
3

t,x

‖v2‖L4
tL∞

x
‖v3‖L4

t L∞
x
‖v4‖L10

t,x
‖v5‖L10

t,x
.

The claim follows then by (3.4). The k = 2 case of (3.11) follows similarly by
estimates such as

‖O((∇2v1)v2v3v4v5)‖L1
t L2

x
� ‖∇2v1‖

L
10
3

t,x

‖v2‖L4
t L∞

x
‖v3‖L4

t L∞
x
‖v4‖L10

t,x
‖v5‖L10

t,x

and

‖O((∇v1)(∇v2)v3v4v5)‖L1
tL2

x
� ‖∇v1‖

L
10
3

t,x

‖∇v2‖L4
t L∞

x
‖v3‖L4

t L∞
x
‖v4‖L10

t,x
‖v5‖L10

t,x
.

The k = 0 case is similar (omit all the ∇s).
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Finally, estimate (3.12) similarly follows from the Sobolev embedding
‖u‖L10

t,x
� ‖∇u‖L10

t L
30/13
x

, (3.4) and Hölder’s inequality,

‖O(∇v1v2v3v4v5)‖L2
t L

6/5
x

� ‖∇v1‖L10
t L

30/13
x

‖v2‖L10
t,x
‖v3‖L10

t,x
‖v4‖L10

t,x
‖v5‖L10

t,x
.

We need a variant of the above lemma which also exploits the bilinear
Strichartz inequality in Lemma 3.4 to obtain a gain when some of the factors
are “high frequency” and others are “low frequency”.

Lemma 3.7. Suppose vhi, vlo are functions on I × R3 such that

‖vhi‖Ṡ0 + ‖(i∂t + Δ)vhi‖L1
t L2

x(I×R3) � εK,

‖vhi‖Ṡ1 + ‖∇(i∂t + Δ)vhi‖L1
t L2

x(I×R3) � K,

‖vlo‖Ṡ1 + ‖∇(i∂t + Δ)vlo‖L1
t L2

x(I×R3) � K,

‖vlo‖Ṡ2 + ‖∇2(i∂t + Δ)vlo‖L1
t L2

x(I×R3) � εK

for some constants K > 0 and 0 < ε � 1. Then for any j = 1, 2, 3, 4,

‖∇O(vj
hiv

5−j
lo )‖L2

tL
6/5
x (I×R3) � ε

9
10 K5.

Remark 3.8. The point here is the gain of ε9/10, which cannot be obtained
directly from the type of arguments used to prove Lemma 3.6. As the proof
will reveal, one can replace the exponent 9/10 with any exponent less than
one, though for our purposes all that matters is that the power of ε is positive.
The Ṡ0 bound on vhi effectively restricts vhi to high frequencies (as the low
and medium frequencies will then be very small in Ṡ1 norm); similarly, the Ṡ2

control on vlo effectively restricts vlo to low frequencies. This lemma is thus
an assertion that the components of the nonlinearity in (1.1) arising from in-
teractions between low and high frequencies are rather weak; this phenomenon
underlies the important frequency localization result in Proposition 4.3, but
the motif of controlling the interaction between low and high frequencies un-
derlies many other parts of our argument also, notably in Proposition 4.9 and
Proposition 4.15.

Proof. Throughout this proof all spacetime norms shall be on I ×R3. We
may normalize K := 1. By the Leibnitz rule we have

‖∇O(vj
hiv

5−j
lo )‖L2

tL
6/5
x

� ‖O(vj
hiv

4−j
lo ∇vlo)‖L2

tL
6/5
x

+ ‖O(vj−1
hi v5−j

lo ∇vhi)‖L2
t L

6/5
x

.

Consider the ∇vlo terms first, which are rather easy. By Hölder we have

‖O(vj
hiv

4−j
lo ∇vlo)‖L2

t L
6/5
x

� ‖∇vlo‖L∞
t L6

x
‖vhi‖L∞

t L2
x
‖vlo‖4−j

L6
t L18

x
‖vhi‖j−1

L6
tL18

x
.

Applying (3.4), this is bounded by

� ‖vlo‖Ṡ2‖vhi‖Ṡ0‖vlo‖4−j

Ṡ1
‖vhi‖j−1

Ṡ1
� ε2

which is acceptable.
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Now consider the ∇vhi terms, which are more difficult. First consider the
j = 2, 3, 4 cases. By Hölder we have

‖O(vj−1
hi v5−j

lo ∇vhi)‖L2
t L

6/5
x

� ‖∇vhi‖L2
t L6

x
‖vlo‖L∞

t L∞
x
‖vhi‖1/2

L∞
t L2

x
‖vlo‖4−j

L∞
t L6

x
‖vhi‖j−3/2

L∞
t L6

x
.

Now observe (for instance from (1.20), (1.18) and dyadic decomposition) that

‖vlo‖L∞
t L∞

x
� ‖vlo‖1/2

L∞
t L6

x
‖∇vlo‖1/2

L∞
t L6

x
.

Thus, by (3.4),

‖O(vj−1
hi v5−j

lo ∇vhi)‖L2
t L

6/5
x

� ‖vhi‖j−1/2

Ṡ1
‖vhi‖1/2

Ṡ0
‖vlo‖1/2

Ṡ2
‖vlo‖9/2−j

Ṡ1

which is O(ε9/10), and is acceptable.
Finally consider the j = 1 term. For this term we must use dyadic de-

composition, writing

‖O(v4
lo∇vhi)‖L2

t L
6/5
x

�
∑

N1,N2,N3,N4

‖O((PN1vlo)(PN2vlo)(PN3vlo)(PN4vlo)∇vhi)‖L2
tL

6/5
x

.

By symmetry we may take N1 ≥ N2 ≥ N3 ≥ N4. We then estimate this using
Hölder by∑
N1≥N2≥N3≥N4

‖O(PN1vlo∇vhi)‖L2
t L2

x
‖PN2vlo‖L∞

t L6
x
‖PN3vlo‖L∞

t L6
x
‖PN4vlo‖L∞

t L∞
x

.

The middle two factors can be estimated by ‖vlo‖Ṡ1 = O(1). The last factor
can be estimated using Bernstein (1.18) either as

‖PN4vlo‖L∞
t L∞

x
� N

1/2
4 ‖PN4vlo‖L∞

t L6
x

� N
1/2
4 ‖vlo‖Ṡ1 � N

1/2
4

or as

‖PN4vlo‖L∞
t L∞

x
� N

−1/2
4 ‖∇PN4vlo‖L∞

t L6
x

� N
−1/2
4 ‖vlo‖Ṡ2 � εN

−1/2
4 .

Meanwhile, the first factor can be estimated using (3.8) as

‖O(PN1vlo∇vhi)‖L2
t L2

x
� (‖∇vhi(t0)‖Ḣ−1/2+δ + ‖(i∂t + Δ)∇vhi‖L1

t Ḣ
−1/2+δ
x

)

× (‖PN1vlo(t0)‖Ḣ1−δ + ‖(i∂t + Δ)PN1vlo‖L1
t Ḣ1−δ

x
),

where t0 ∈ I is an arbitrary time and 0 < δ < 1/2 is an arbitrary exponent.
From the hypotheses on vhi and interpolation we see that

‖∇vhi(t0)‖Ḣ−1/2+δ + ‖(i∂t + Δ)∇vhi‖L1
t Ḣ

−1/2+δ
x

� ε1/2−δ

while from the hypotheses on vlo and (1.18),

‖PN1vlo(t0)‖Ḣ1−δ + ‖(i∂t + Δ)PN1vlo‖L1
t Ḣ1−δ

x
) � N−δ

1 .
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Putting this all together, we obtain

‖O(v4
lo∇vhi)‖L2

t L
6/5
x

�
∑

N1≥N2≥N3≥N4

ε1/2−δN−δ
1 min(N1/2

4 , εN
−1/2
4 ).

Performing the N1 sum, then the N2, then the N3, then the N4, we obtain the
desired bound of O(ε9/10), if δ is sufficiently small.

3.4. Local well-posedness and perturbation theory. It is well known (see e.g.
[5]) that the equation (1.1) is locally well-posed11 in Ḣ1(R3), and indeed that
this well-posedness extends to any time interval on which one has a uniform
bound on the L10

t,x norm; this can already be seen from Lemma 3.6 and (3.7)
(see also Lemma 3.12 below). In this section we detail some variants of the
local well-posedness argument which describe how we can perturb finite-energy
solutions (or near-solutions) to (1.1) in the energy norm when we control the
original solution in the L10

t,x norm and the error of near-solutions in a dual
Strichartz space. The arguments we give are similar to those in previous work
such as [5].

We begin with a preliminary result where the near solution, the error of
the near-solution, and the free evolution of the perturbation are all assumed
to be small in spacetime norms, but allowed to be large in energy norm.

Lemma 3.9 (Short-time perturbations). Let I be a compact interval, and
let ũ be a function on I ×R3 which is a near-solution to (1.1) in the sense that

(i∂t + Δ)ũ = |ũ|4ũ + e(3.13)

for some function e. Suppose that we also have the energy bound

‖ũ‖L∞
t Ḣ1

x(I×R3) ≤ E

for some E > 0. Let t0 ∈ I, and let u(t0) be close to ũ(t0) in the sense that

‖u(t0) − ũ(t0)‖Ḣ1
x
≤ E′(3.14)

for some E′ > 0. Assume also that there exist the smallness conditions

‖∇ũ‖L10
t L

30/13
x (I×R3) ≤ ε0,(3.15)

‖∇ei(t−t0)Δ(u(t0) − ũ(t0))‖L10
t L

30/13
x (I×R3) ≤ ε,(3.16)

‖∇e‖L2
t L

6/5
x

≤ ε(3.17)

for some 0 < ε < ε0, where ε0 is some constant ε0 = ε0(E, E′) > 0.

11In particular, we have uniqueness of this Cauchy problem, at least under the assumption
that u lies in L10

t,x ∩C0
t Ḣ1

x, and so whenever we construct a solution u to (1.1) with specified
initial data u(t0), we will refer to it as the solution to (1.1) with these data.
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Then there exists a solution u to (1.1) on I × R3 with the specified initial
data u(t0) at t0, and furthermore

‖u − ũ‖Ṡ1(I×R3) � E′,(3.18)

‖u‖Ṡ1(I×R3) � E′ + E,(3.19)

‖u − ũ‖L10
t,x(I×R3) � ‖∇(u − ũ)‖L10

t L
30/13
x (I×R3) � ε,(3.20)

‖∇(i∂t + Δ)(u − ũ)‖L2
t L

6/5
x (I×R3) � ε.(3.21)

Note that u(t0) − ũ(t0) is allowed to have large energy, albeit at the cost
of forcing ε to be smaller, and worsening the bounds in (3.18). From the
Strichartz estimate (3.7), (3.14) we see that the hypothesis (3.16) is redundant
if one is willing to take E′ = O(ε).

Proof. By the well-posedness theory reviewed above, it suffices to prove
(3.18)–(3.21) as a priori estimates.12 We establish these bounds for t ≥ t0,
since the corresponding bounds for the t ≤ t0 portion of I are proved similarly.

First note that the Strichartz estimate (Lemma 3.2), Lemma 3.6 and (3.17)
give,

‖ũ‖Ṡ1(I×R3) � E + ‖ũ‖L10
t,x(I×R3) · ‖ũ‖4

Ṡ1(I×R3)
+ ε.

By (3.15) and Sobolev embedding we have ‖ũ‖L10
t,x(I×R3) � ε0. A standard

continuity argument in I then gives (if ε0 is sufficiently small depending on E)

‖ũ‖Ṡ1(I×R3) � E.(3.22)

Define v := u − ũ. For each t ∈ I define the quantity

S(t) := ‖∇(i∂t + Δ)v‖L2
tL

6/5
x ([t0,t]×R3).

From using Lemma 3.1, Lemma 3.2, (3.16), we have

‖∇v‖L10
t L

30/13
x ([t0,t]×R3) � ‖∇(v − ei(t−t0)Δv(t0))‖L10

t L
30/13
x ([t0,t]×R3)(3.23)

+ ‖∇ei(t−t0)Δv(t0)‖L10
t L

30/13
x ([t0,t]×R3)

� ‖v − ei(t−t0)Δv(t0)‖Ṡ1([t0,t]×R3) + ε

� S(t) + ε.(3.24)

On the other hand, since v obeys the equation

(i∂t + Δ)v = |ũ + v|4(ũ + v) − |ũ|4ũ − e =
5∑

j=1

O(vj ũ5−j) − e

12That is, we may assume the solution u already exists and is smooth on the entire inter-
val I.
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by (1.15), we easily check using (3.12), (3.15), (3.17), (3.24) that

S(t) � ε +
5∑

j=1

(S(t) + ε)jε5−j
0 .

If ε0 is sufficiently small, a standard continuity argument then yields the bound
S(t) � ε for all t ∈ I. This gives (3.21), and (3.20) follows from (3.24).
Applying Lemma 3.2, (3.14) we then conclude (3.18) (if ε is sufficiently small),
and then from (3.22) and the triangle inequality we conclude (3.19).

We will actually be more interested in iterating the above lemma13 to deal
with the more general situation of near-solutions with finite but arbitrarily
large L10

t,x norms.

Lemma 3.10 (Long-time perturbations). Let I be a compact interval, and
let ũ be a function on I × R3 which obeys the bounds

‖ũ‖L10
t,x(I×R3) ≤ M(3.25)

and

‖ũ‖L∞
t Ḣ1

x(I×R3) ≤ E(3.26)

for some M, E > 0. Suppose also that ũ is a near-solution to (1.1) in the sense
that it solves (3.13) for some e. Let t0 ∈ I, and let u(t0) be close to ũ(t0) in
the sense that

‖u(t0) − ũ(t0)‖Ḣ1
x
≤ E′

for some E′ > 0. Assume also the smallness conditions,

‖∇ei(t−t0)Δ(u(t0) − ũ(t0))‖L10
t L

30/13
x (I×R3) ≤ ε,(3.27)

‖∇e‖L2
t L

6/5
x (I×R3) ≤ ε,

for some 0 < ε < ε1, where ε1 is some constant ε1 = ε1(E, E′, M) > 0. Now
there exists a solution u to (1.1) on I ×R3 with the specified initial data u(t0)
at t0, and furthermore

‖u − ũ‖Ṡ1(I×R3) ≤ C(M, E, E′),

‖u‖Ṡ1(I×R3) ≤ C(M, E, E′),

‖u − ũ‖L10
t,x(I×R3) ≤ ‖∇(u − ũ)‖L10

t L
30/13
x (I×R3) ≤ C(M, E, E′)ε.

Once again, the hypothesis (3.27) is redundant by the Strichartz estimate
if one is willing to take E′ = O(ε); however it will be useful in our applications

13We are grateful to Monica Visan for pointing out an incorrect version of Lemma 3.10 in
a previous version of this paper, and also in simplifying the proof of Lemma 3.9.
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to know that this lemma can tolerate a perturbation which is large in the
energy norm but whose free evolution is small in the L10

t Ẇ
1,30/13
x norm.

This lemma is already useful in the e = 0 case, as it says that one has
local well-posedness in the energy space whenever the L10

t,x norm is bounded;
in fact one has locally Lipschitz dependence on the initial data. For similar
perturbative results see [4], [5].

Proof. As in the previous proof, we may assume that t0 is the lower bound
of the interval I. Let ε0 = ε0(E, 2E′) be as in Lemma 3.9. (We need to replace
E′ by the slightly larger 2E′ as the Ḣ1 norm of u− ũ is going to grow slightly
in time.)

The first step is to establish a Ṡ1 bound on ũ. Using (3.25) we may
subdivide I into C(M, ε0) time intervals such that the L10

t,x norm of ũ is at
most ε0 on each such interval. By using (3.26) and Lemmas 3.2, 3.6 as in the
proof of (3.22) we see that the Ṡ1 norm of ũ is O(E) on each of these intervals.
Summing up over all the intervals we conclude

‖ũ‖Ṡ1(I×R3) ≤ C(M, E, ε0)

and in particular by Lemma 3.1

‖∇ũ‖L10
t L

30/13
x (I×R3) ≤ C(M, E, ε0).

We can then subdivide the interval I into N ≤ C(M, E, ε0) subintervals Ij ≡
[Tj , Tj+1] so that on each Ij we have,

‖∇ũ‖L10
t L

30/13
x (Ij×R3) ≤ ε0.

We can then verify inductively using Lemma 3.9 for each j that if ε1 is suffi-
ciently small depending on ε0, N , E, E′, then

‖u − ũ‖Ṡ1(Ij×R3) ≤ C(j)E′,

‖u‖Ṡ1(Ij×R3) ≤ C(j)(E′ + E),

‖∇(u − ũ)‖L10
t L

30/13
x (Ij×R3) ≤ C(j)ε,

‖∇(i∂t + Δ)(u − ũ)‖L2
t L

6/5
x (Ij×R3) ≤ C(j)ε.

Hence by Strichartz (3.7) and (3.4) we have

‖∇ei(t−Tj+1)Δ(u(Tj+1) − ũ(Tj+1))‖L10
t L

30/13
x (I×R3)

≤ ‖∇ei(t−Tj)Δ(u(Tj) − ũ(Tj))‖L10
t L

30/13
x (I×R3) + C(j)ε

and
‖u(Tj+1) − ũ(Tj+1)‖Ḣ1 ≤ ‖u(Tj) − ũ(Tj)‖Ḣ1 + C(j)ε,

allowing one to continue the induction (if ε1 is sufficiently small depending
on E, N , E′, ε0, then the quantity in (3.14) will not exceed 2E′). The claim
follows.
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Remark 3.11. The value of ε1 given by the above lemma deteriorates ex-
ponentially with M , or more precisely it behaves like exp(−MC) in its de-
pendence14 on M . As this lemma is used quite often in our argument, this
will cause the final bounds in Theorem 1.1 to grow extremely rapidly in E,
although they will still of course be finite for each E.

A related result involves persistence of L2 or Ḣ2 regularity:

Lemma 3.12 (Persistence of regularity). Let k = 0, 1, 2, I be a compact
time interval, and let u be a finite energy solution to (1.1) on I × R3 obeying
the bounds

‖u‖L10
t,x(I×R3) ≤ M.

Then, if t0 ∈ I and u(t0) ∈ Hk,

‖u‖Ṡk(I×R3) ≤ C(M, E(u))‖u(t0)‖Ḣk .(3.28)

In particular, once we control the L10
t,x norm of a finite energy solution, we

in fact control all the Strichartz norms in Ṡ1, and can even control the Ṡ2 norm
if the initial data are in H2(R3). From this and standard iteration arguments,
one can in fact show that a Schwartz solution can be continued in time as long
as the L10

t,x norm does not blow up to infinity.

Proof. By the local well-posedness theory it suffices to prove (3.28) as an
a priori bound.

Applying Lemma 3.10 with ũ := u, e := 0, and E′ := 0 we obtain the
bound

‖u‖Ṡ1(I×R3) � C(M, E).(3.29)

By (3.11) we also have

‖∇kO(u5)‖L1
t L2

x
� ‖u‖L10

x,t
‖u‖Ṡk‖u‖3

Ṡ1 ;(3.30)

the main thing to observe here is the presence of one factor of ‖u‖L10
x,t

on the
right-hand side.

As in the proof of Lemma 3.10, divide the time interval I into N ≈(
1 + M

δ

)10 subintervals Ij := [Tj , Tj + 1] on which

‖u‖L10
x,t(Ij×R3) ≤ δ(3.31)

14With respect to all its parameters, ε1(E, E′, M) ≈ exp(−MC〈E〉C〈E′〉C).
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where δ will be chosen momentarily. We have on each Ij by the Strichartz
estimates (Lemma 3.2) and (3.30),

‖u‖Ṡk(Ij×R3) ≤ C
(
‖u(Tj)‖Ḣk(R3) + ‖∇k(|u|4u)‖L1

t L2
x(Ij×R3)

)
≤ C

(
‖u(Tj)‖Ḣk(R3) + ‖u‖L10

x,t(Ij×R3) · ‖u‖Ṡk(I×R3) · ‖u‖3
Ṡ1(Ij×R3)

)
.

Choosing δ ≤ (2CC(M, E))−3 gives,

‖u‖Ṡk(Ij×R3) ≤ 2C‖u(Tj)‖Ḣk(R3).(3.32)

The bound (3.28) now follows by adding up the bounds (3.32) we have on each
subinterval.

4. Overview of proof of global spacetime bounds

We now outline the proof of Theorem 1.1, breaking it down into a number
of smaller propositions.

4.1. Zeroth stage: Induction on energy. We say that a solution u to (1.1)
is Schwartz on a slab I × R3 if u(t) is a Schwartz function for all t ∈ I; note
that such solutions are then also smooth in time as well as space, thanks to
(1.1).

The first observation is that in order to prove Theorem 1.1, it suffices to
do so for Schwartz solutions. Indeed, once one obtains a uniform L10

t,x(I × R3)
bound for all Schwartz solutions and all compact I, one can then approximate
arbitrary finite energy initial data by Schwartz initial data and use Lemma
3.10 to show that the corresponding sequence of solutions to (1.1) converges in
Ṡ1(I × R3) to a finite energy solution to (1.1). We omit the standard details.

For every energy E ≥ 0 we define the quantity 0 ≤ M(E) ≤ +∞ by

M(E) := sup{‖u‖L10
t,x(I∗×R3)}

where I∗ ⊂ R ranges over all compact time intervals, and u ranges over all
Schwartz solutions to (1.1) on I∗ × R3 with E(u) ≤ E. We shall adopt the
convention that M(E) = 0 for E < 0. By the above discussion, it suffices to
show that M(E) is finite for all E.

In the argument of Bourgain [4] (see also [5]), the finiteness of M(E) in
the spherically symmetric case is obtained by an induction on the energy E;
indeed a bound of the form

M(E) ≤ C(E, η, M(E − η4))

is obtained for some explicit 0 < η = η(E) � 1 which does not collapse to 0
for any finite E, and this easily implies via induction that M(E) is finite for all
E. Our argument will follow a similar induction on energy strategy; however
it will be convenient to run this induction in the contrapositive, assuming for
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contradiction that M(E) can be infinite. We study the minimal energy Ecrit

for which this is true, and then obtaining a contradiction using the “induction
hypothesis” that M(E) is finite for all E < Ecrit. This will be more convenient
for us, especially as we will require more than one small parameter η.

We turn to the details and assume for contradiction that M(E) is not
always finite. From Lemma 3.10 we see that the set {E : M(E) < ∞} is open;
clearly it is also connected and contains 0. By our contradiction hypothesis,
there must therefore exist a critical energy 0 < Ecrit < ∞ such that M(Ecrit) =
+∞, but M(E) < ∞ for all E < Ecrit. One can think of Ecrit as the minimal
energy required to create a blowup solution. For instance, we have

Lemma 4.1 (Induction on energy hypothesis). Let t0 ∈ R, and let v(t0)
be a Schwartz function such that E(v(t0)) ≤ Ecrit − η for some η > 0. Then
there exists a Schwartz global solution v : Rt × R3

x → C to (1.1) with initial
data v(t0) at time t = t0 such that ‖v‖L10

t,x(R×R3) ≤ M(Ecrit − η) = C(η).
Furthermore we have ‖v‖Ṡ1(R×R3) ≤ C(η).

Indeed, this lemma follows immediately from the definition of Ecrit, the
local well-posedness theory in L10

t,x, and Lemma 3.12.
As in the argument in [4], we will need a small parameter 0 < η =

η(Ecrit) � 1 depending on Ecrit. In fact, our argument is somewhat lengthy
and we will actually use seven such parameters

1 
 η0 
 η1 
 η2 
 η3 
 η4 
 η5 
 η6 > 0.

Specifically, we will need a small quantity 0 < η0 = η0(Ecrit) � 1 assumed
to be sufficiently small depending on Ecrit. Then we need a smaller quan-
tity 0 < η1 = η1(η0, Ecrit) � 1 assumed sufficiently small depending on Ecrit,
η0 (in particular, it may be chosen smaller than positive quantities such as
M(Ecrit − η100

0 )−1). We continue in this fashion, choosing each 0 < ηj � 1 to
be sufficiently small depending on all previous quantities η0, . . . , ηj−1 and the
energy Ecrit, all the way down to η6 which is extremely small, much smaller
than any quantity depending on Ecrit, η0, . . . , η5 that will appear in our argu-
ment. We will always assume implicitly that each ηj has been chosen to be
sufficiently small depending on the previous parameters. We will often display
the dependence of constants on a parameter; e.g. C(η) denotes a large constant
depending on η, and c(η) will denote a small constant depending on η. When
η1 
 η2, we will understand c(η1) 
 c(η2) and C(η1) � C(η2).

Since M(Ecrit) is infinite, it is, in particular, larger than 1/η6. By defi-
nition of M , this means that we may find a compact interval I∗ ⊂ R and a
smooth solution u : I∗ × R3 → C to (1.1) with Ecrit/2 ≤ E(u) ≤ Ecrit so that
u is ridiculously large in the sense that

‖u‖L10
t,x(I∗×R3) > 1/η6.(4.1)
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We will show that this leads to a contradiction.15 Although u does not actually
blow up (it is assumed smooth on all of the compact interval I∗), it is still
convenient to think of u as almost16 blowing up in L10

t,x in the sense of (4.1).
We summarize the above discussion with the following:

Definition 4.2. A minimal energy blowup solution of (1.1) is a Schwartz
solution on a time interval I∗ with energy,17

1
2
Ecrit ≤ E(u)(t) =

∫
1
2
|∇u(t, x)|2 +

1
6
|u(t, x)|6 dx ≤ Ecrit(4.2)

with the L10
x,t norm enormous in the sense of (4.1).

We remark that both conditions (4.1), (4.2) are invariant under the scal-
ing (1.3) (though of course the interval I∗ will be dilated by λ2 under this
scaling). Thus applying the scaling (1.3) to a minimal energy blowup solu-
tion produces another minimal energy blowup solution. Some of the proofs of
the sub-propositions below will revolve around a specific frequency N ; using
this scale invariance, we can then normalize that frequency to equal 1 for the
duration of that proof. (Different parts of the argument involve different key
frequencies, but we will not run into problems because we will only normalize
one frequency at a time).

Henceforth we will not mention the Ecrit dependence of our constants
explicitly, as all our constants will depend on Ecrit. We shall need however to
keep careful track of the dependence of our argument on η0, . . . , η6. Broadly
speaking, we will start with the largest η, namely η0, and slowly “retreat” to
increasingly smaller values of η as the argument progresses (such a retreat will
for instance usually be required whenever the induction hypothesis Lemma 4.1
is invoked). However we will only retreat as far as η5, not η6, so that (4.1) will
eventually lead to a contradiction when we show that

‖u‖L10
t,x(I∗×R3) ≤ C(η0, . . . , η5).

Together with our assumption that we are considering a minimal energy
blowup solution u as in Definition 4.2, Sobolev embedding implies the bounds

15Assuming, of course, that the parameters η0, . . . , η6 are each chosen to be sufficiently
small depending on previous parameters. It is important to note however that the ηj cannot
be chosen to be small depending on the interval I∗ or the solution u; our estimates must be
uniform with respect to these parameters.

16For instance, u might genuinely blow up at some time T∗ > 0, but I∗ is of the form
I∗ = [0, T∗ − ε] for some very small 0 < ε 	 1, and thus u remains Schwartz on I∗ × R3.

17We could modify our arguments below to allow the assumption here E(u) = Ecrit. For
example, the arguments in the proof of Proposition 4.3 below also show that the function
M̃(s) := supE(u)=s{‖u‖L10

x,t
} is a nondecreasing function of s. On first reading, the reader

may imagine E(u) = Ecrit in Definition 4.2.
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on kinetic energy

‖u‖L∞
t Ḣ1

x(I∗×R3) ∼ 1(4.3)

and potential energy

‖u‖L∞
t L6

x(I∗×R3) � 1(4.4)

(since our implicit constants are allowed to depend on Ecrit). Note that we do
not presently have any lower bounds on the potential energy, but see below.

Having displayed our preliminary bounds on the kinetic and potential
energy, we briefly discuss the mass

∫
R3 |u(t, x)|2 dx, which is another conserved

quantity. Because of our a priori assumption that u is Schwartz, we know that
this mass is finite. However, we cannot obtain uniform control on this mass
using our bounded energy assumption, because the very low frequencies of u

may simultaneously have very small energy and very large mass. Furthermore
it is dangerous to rely too much on this conserved mass for this energy-critical
problem as the mass is not invariant under the natural scaling (1.3) of the
equation (indeed, it is super-critical with respect to that scaling). On the
other hand, from (4.3) and (1.16) we know that the high frequencies of u have
small mass:

‖P>Mu‖L2(R3) � 1
M

for all M ∈ 2Z.(4.5)

Thus we will still be able to use the concept of mass in our estimates as long
as we restrict our attention to sufficiently high frequencies.

4.2. First stage: Localization control on u. We aim to show that a mini-
mal energy blowup solution as in Definition 4.2 does not exist. Intuitively, it
seems reasonable to expect that a minimal-energy blowup solution should be
“irreducible” in the sense that it cannot be decoupled into two or more compo-
nents of strictly smaller energy that essentially do not interact with each other
(i.e. each component also evolves via (1.1) modulo small errors), since one of
the components must then also blow up, contradicting the minimal-energy hy-
pothesis. In particular, we expect at every time that such a solution should be
localized in both frequency and space.

The first main step in the proof of Theorem 1.1 is to make the above
heuristics rigorous for our solution u. Roughly speaking, we would like to
emphasize that at each time t, the solution u(t) is localized in both space and
frequency to the maximum extent allowable under the uncertainty principle
(i.e. if the frequency is localized to N(t), we would like to localize u(t) spatially
to the scale 1/N(t)).

These sorts of localizations already appear for instance in the argument
of Bourgain [4], [5], where the induction on energy argument is introduced.
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Informally,18 the reason that we can expect such localization is as follows.
Suppose for contradiction that at some time t0 the solution u(t0) can be split
into two parts u(t0) = v(t0)+w(t0) which are widely separated in either space
or frequency, and which each carry a nontrivial amount O(ηC) of energy for
some η5 ≤ η ≤ η0. Then by orthogonality we expect v and w to each have
strictly smaller energy than u, e.g. E(v(t0)), E(w(t0)) ≤ Ecrit − O(ηC). Thus
by Lemma 4.1 we can extend v(t) and w(t) to all of I∗ × R3 by evolving the
nonlinear Schrödinger equation (1.1) for v and w separately, and furthermore
we have the bounds

‖v‖L10
t,x(I∗×R3), ‖w‖L10

t,x(I∗×R3) ≤ M(Ecrit − O(ηC)) ≤ C(η).

Since v and w both solve (1.1) separately, and v and w were assumed to be
widely separated, we thus expect v + w to solve (1.1) approximately. The idea
is then to use the perturbation theory from Section 3.4 to obtain a bound of the
form ‖u‖L10

t,x(I∗×R3) ≤ C(η), which contradicts (4.1) if η6 is sufficiently small.
A model example of this type of strategy occurs in Bourgain’s argument

[5], where substantial effort is invested in locating a “bubble” - a small localized
pocket of energy - which is sufficiently isolated in physical space from the rest
of the solution. One then removes this bubble, the remainder of the solution
evolves, and then one uses perturbation theory, augmented with the additional
information about the isolation of the bubble, to place the bubble back in. We
will use arguments similar to these in the sequel, but first we need instead
to show that a solution of (1.1) which is sufficiently delocalized in frequency
space is globally spacetime bounded. More precisely, we have:

Proposition 4.3 (Frequency delocalization implies spacetime bound).
Let η > 0, and suppose there exists a dyadic frequency Nlo > 0 and a time
t0 ∈ I∗ such that the energy separation conditions hold :

‖P≤Nlo
u(t0)‖Ḣ1(R3) ≥ η(4.6)

and

‖P≥K(η)Nlo
u(t0)‖Ḣ1(R3) ≥ η.(4.7)

If K(η) is sufficiently large depending on η, i.e.

K(η) ≥ C(η)

then,

‖u‖L10
t,x(I∗×R3) ≤ C(η).(4.8)

18The heuristic that minimal energy blowup solutions should be strongly localized in both
space and frequency has been employed in previous literature for a wide variety of nonlinear
equations, including many of elliptic or parabolic type. Our formalizations of this heuristic,
however, rely on the induction on energy methods of Bourgain and perturbation theory, as
opposed to variational or compactness arguments.
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We prove this in Section 5. The basic idea is as outlined in previous
discussion; the main technical tool needed is the multilinear improvements to
Strichartz’ inequality in Section 3.3 to control the interaction between the two
components and thus allow the resconstruction of the original solution u.

Clearly the conclusion of Proposition 4.3 is in conflict with the hypothesis
(4.1), and so we should now expect the solution to be localized in frequency
for every time t. This is indeed the case:

Corollary 4.4 (Frequency localization of energy at each time). A min-
imal energy blowup solution of (1.1) (see Definition 4.2) satisfies: For every
time t ∈ I∗ there exists a dyadic frequency N(t) ∈ 2Z such that for every
η5 ≤ η ≤ η0 we have small energy at frequencies � N(t),

‖P≤c(η)N(t)u(t)‖Ḣ1 ≤ η,(4.9)

small energy at frequencies 
 N(t),

‖P≥C(η)N(t)u(t)‖Ḣ1 ≤ η,(4.10)

with the large energy at frequencies ∼ N(t),

‖Pc(η)N(t)<·<C(η)N(t)u(t)‖Ḣ1 ∼ 1.(4.11)

Here 0 < c(η) � 1 � C(η) < ∞ are quantities depending on η.

Informally, this corollary asserts that at every given time t the solution u

is essentially concentrated at a single frequency N(t). Note however that we do
not presently have any information as to how N(t) evolves in time; obtaining
long-term control on N(t) will be a key objective of later stages of the proof.

Proof. For each time t ∈ I∗, we define N(t) as

N(t) := sup{N ∈ 2Z : ‖P≤Nu(t)‖Ḣ1 ≤ η0}.

Since u(t) is Schwartz, we see that N(t) is strictly larger than zero; from the
lower bound in (4.3) we see that N(t) is finite. By definition of N(t),

‖P≤2N(t)u(t)‖Ḣ1 > η0.

Now let η5 ≤ η ≤ η0. Observe that we now have (4.10) if C(η) is chosen
sufficiently large, because if (4.10) failed then Proposition 4.3 would imply
that ‖u‖L10

t,x(I∗×R3) ≤ C(η), contradicting (4.1) if η6 is sufficiently small. In
particular we have (4.10) for η = η0. Since we also have (4.9) for η = η0 by
construction of N(t), we thus see from (4.3) that we have (4.11) for η = η0,
which of course then implies (again by (4.3)) the same bound for all η5 ≤ η ≤
η0. Finally, we obtain (4.9) for all η5 ≤ η ≤ η0 if c(η) is chosen sufficiently
small, since if (4.9) failed then by combining it with (4.11) and Proposition 4.3
we would once again imply that ‖u‖L10

t,x(I∗×R3) ≤ C(η), contradicting (4.1).
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Having shown that any minimal energy blowup solution u must be local-
ized in frequency at each time, we now turn to showing that such a u is also
localized in physical space. This turns out to be somewhat more involved,
although it still follows the same general strategy. We first borrow a useful
trick from [4]; since u is Schwartz, we may divide the interval I∗ into three
consecutive pieces I∗ := I− ∪ I0 ∪ I+ where each of the three intervals contains
a third of the L10

t,x density:∫
I

∫
R3

|u(t, x)|10 dxdt =
1
3

∫
I∗

∫
R3

|u(t, x)|10 dxdt for I = I−, I0, I+.

In particular from (4.1) we have

‖u‖L10
t,x(I×R3) � 1/η6 for I = I−, I0, I+.(4.12)

Thus to contradict (4.1) it suffices to obtain L10
t,x bounds on just one of the

three intervals I−, I0, I+.
It is in the middle interval I0 that we can obtain physical space localiza-

tion; this will be done in several stages. The first step is to ensure that the
potential energy

∫
R3 |u(t, x)|6 dx is bounded from below.

Proposition 4.5 (Potential energy bounded from below). For any min-
imal energy blowup solution of (1.1) (see Definition 4.2), for all t ∈ I0,

‖u(t)‖L6
x
≥ η1.(4.13)

This is proven in Section 6, and is inspired by a similar argument of
Bourgain [4]. Using (4.13) and some simple Fourier analysis, we can thus
establish the following concentration result:

Proposition 4.6 (Physical space concentration of energy at each time).
Any minimal energy blowup solution of (1.1) satisfies: For every t ∈ I0, there
exists an x(t) ∈ R3 such that∫

|x−x(t)|≤C(η1)/N(t)
|∇u(t, x)|2 dx � c(η1)(4.14)

and ∫
|x−x(t)|≤C(η1)/N(t)

|u(t, x)|p dx � c(η1)N(t)
p

2
−3(4.15)

for all 1 < p < ∞, where the implicit constant can depend on p. In particular,
we have ∫

|x−x(t)|≤C(η1)/N(t)
|u(t, x)|6 dx � c(η1).(4.16)
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This is proven in Section 7. Similar results were obtained in [4], [20] in the
radial case; see also [3]. Informally, the above estimates emphasize that u(t, x)
is roughly of size N(t)1/2 on the average when |x − x(t)| � 1/N(t); observe
that this is consistent with bounded energy (4.3) as well as with Corollary 4.4
and the uncertainty principle.

It turns out that in our argument, it is not enough to know that the
energy concentrates at one location x(t) at each time; we must also show that
the energy is small at all other locations, where |x−x(t)| 
 1/N(t). The main
tool for achieving this is

Proposition 4.7 (Physical space localization of energy at each time).
For any minimal energy blowup solution of (1.1), for every t ∈ I0∫

|x−x(t)|>1/(η2N(t))
|∇u(t, x)|2 dx � η1.(4.17)

This is proven in Section 8. The proof follows a similar strategy to that
used to prove Proposition 4.3; the main difference is that we now consider spa-
tially separated components of u rather than frequency separated components,
and instead of using multilinear Strichartz estimates to establish the decou-
pling of these components, we shall rely instead on approximate finite speed
of propagation and on the pseudoconformal identity.

To summarize, at each time t we have a location x(t), around which the
kinetic and potential energy are large, and away from which the kinetic energy
is small (and one can also show the potential energy is small, although we will
not need this). From this and a little Fourier analysis we obtain an important
conclusion:

Proposition 4.8 (Reverse Sobolev inequality). When u is a minimal
energy blowup solution (and hence (4.2), (4.9)–(4.17) hold), then for every
t0 ∈ I0, any x0 ∈ R3, and any R ≥ 0,∫

B(x0,R)
|∇u(t0, x)|2 dx � η1 + C(η1, η2)

∫
B(x0,C(η1,η2)R)

|u(t0, x)|6 dx.(4.18)

Thus, up to an error of η1, we are able to control the kinetic energy locally
by the potential energy.19 This will be proved in Section 9. This fact will be
crucial in the interaction Morawetz portion of our argument when we have an
error term involving the kinetic energy, and control of a positive term which

19Note that this is a special property of the minimal energy blowup solution, reflecting
the very strong physical space localization properties of such a solution; it is false in general,
even for solutions to the free Schrödinger equation. Of course, Proposition 4.5 is similarly
false in general; for instance, for solutions of the free Schrödinger equation, the L6

x norm goes
to zero as t → ±∞.
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involves the potential energy; the reverse Sobolev inequality is then used to
control the former by the latter.

To summarize, the statements above tell us that any minimal energy
blowup solution (Definition 4.2) to the equation (1.1) must be localized in both
frequency and physical space at every time. We are still far from done: we have
not yet precluded blowup in finite time (which would happen if N(t) → ∞ as
t → T∗ for some finite time T∗), nor have we eliminated soliton or soliton-like
solutions (which would correspond, roughly speaking, to N(t) staying close to
constant for all time t). To achieve this we need spacetime integrability bounds
on u. Our main tool for this is a frequency-localized version of the interaction
Morawetz estimate (1.8), to which we now turn.

4.3. Second stage: Localized Morawetz estimate. In order to localize the
interaction Morawetz inequality, it turns out to be convenient to work at the
“minimum” frequency attained by u.

From (1.18) we observe that

‖Pc(η0)N(t)<·<C(η0)N(t)u(t)‖Ḣ1 ≤ C(η0)N(t)‖u‖L∞
t L2

x
.

Comparing this with (4.11) we obtain the lower bound

N(t) ≥ c(η0)‖u‖−1
L∞

t L2
x

for t ∈ I0. Since u is Schwartz, the right-hand side is nonzero, and thus the
quantity

Nmin := inf
t∈I0

N(t)

is strictly positive.
From (4.9) we see that the low frequency portion of the solution - where

|ξ| ≤ c(η0)Nmin - has small energy; one might then hope to use Strichartz
estimates to obtain some spacetime control on these low frequencies. However,
we do not yet have much control on the high frequencies |ξ| ≥ c(η0)Nmin, apart
from the energy bounds (4.3) and (4.4) of course.

Our initial spacetime bound in the high frequencies is provided by the
following interaction Morawetz estimate.

Proposition 4.9 (Frequency-localized interaction Morawetz estimate).
When u is a minimal energy blowup solution of (1.1) (and hence (4.2), (4.9)–
(4.18) all hold), then for all N∗ < c(η3)Nmin∫

I0

∫
|P≥N∗u(t, x)|4 dxdt � η1N

−3
∗ .(4.19)

Remark 4.10. The factor N−3
∗ on the right-hand side of (4.19) is man-

dated by scale-invariance considerations (cf. (1.3)). The η1 factor on the right
side reflects our smallness assumption on N∗: if we think of N∗ as being very
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small and then scale the solution so that N∗ = 1, we are pushing the energy
to very high frequencies so heuristically it’s not unreasonable to expect the
supercritical L4

x,t norm on the left-hand side to be small.
Regarding the size of N∗: write for the moment c̃(η3) as the constant

appearing in Corollary 4.4 with η = η3. The constant c(η3) appearing in
Proposition 4.9 is chosen so that c(η3) � c̃(η3) ·η3. Hence at all times we know
there is very little energy at frequencies below N∗

η3
, and (ignoring factors of

N∗ which can be scaled to 1) above frequency N∗ there is very little (at most
η3/N∗) L2 mass.

This small η1 factor will be used to close a bootstrap argument in the proof
of the important estimate on the movement of energy to very low frequencies
in Lemma 15.1 below.

If one already had Theorem 1.1, then this proposition would follow (but
with η1 replaced by C(Ecrit)) from Lemma 3.12, since the S1 norm will control
‖∇u‖L4

t L3
x

and hence ‖|∇|3/4u‖L4
t L4

x
by Sobolev embedding. Of course, we

will not prove Proposition 4.9 this way, as it would be circular. Instead, this
proposition is based on the interaction Morawetz inequality developed in [12],
[13] (see also a recent extension in [24]). The key thing about this estimate is
that the right-hand side does not depend on I0; thus for instance it is already
useful in eliminating soliton or pseudosoliton solutions, at least for frequencies
close to Nmin. (Frequencies much larger than Nmin still cause difficulty, and
will be dealt with later in the argument). Proposition 4.9 roughly corresponds
to the localized Morawetz inequality used by Bourgain [4], [5] and Grillakis
[20] in the radial case (see (1.7) above). The main advantage of (4.19) is that
it is not localized to near the spatial origin, in contrast with the standard (1.5)
and localized (1.7) Morawetz inequalities.

Although this proposition is based on the interaction Morawetz inequality
developed in the references given above, there are significant technical difficul-
ties in truncating that inequality to the high frequencies. As a consequence the
proof of this proposition is somewhat involved and is given in Sections 10-14.
Also, we caution the reader that the above proposition is not proved as an a
priori estimate; indeed the proof relies crucially on the assumption that u is a
minimal energy blowup solution in the sense of (4.1), and in particular verifies
the reverse Sobolev inequality (4.18). See Section 10 for further remarks on
the proof.

Combining Proposition 4.9 with Proposition 4.6 gives us the following
integral bound on N(t).

Corollary 4.11. For any minimal energy blowup solution of (1.1),∫
I0

N(t)−1 dt � C(η1, η3)N−3
min.(4.20)
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Proof. Let N∗ := c(η3)Nmin for some sufficiently small c(η3). Then from
Proposition 4.9,∫

I0

∫
R3

|P≥N∗u(t, x)|4 dxdt � η1N
−3
∗ � C(η1, η3)N−3

min.

On the other hand, from Bernstein (1.19) and (4.4), for each t ∈ I0 that∫
|x−x(t)|≤C(η1)/N(t)

|P<N∗u(t, x)|4 dx�N(t)−3‖P<N∗u(t)‖4
L∞

x
�C(η1)N(t)−3N2

∗ .

So by (4.15) and the triangle inequality (since N∗ ≤ c(η3)N(t)),∫
R3

|P≥N∗u(t, x)|4 dx � c(η1)N(t)−1.

Comparing this with the previous estimate, the claim follows.

Remark 4.12. The estimate (4.20) is scale-invariant under the natural
scaling (1.3) (N has the units of length−1, and t has the units of length2).
In the radial case, a somewhat similar estimate was obtained by Bourgain [4]
and implicitly also by Grillakis [20]; in our notation, this bound would be the
assertion that ∫

I
N(t) dt � |I|1/2(4.21)

for all I ⊆ I0; indeed in the radial case (when x(t) = 0) this bound easily follows
from Proposition 4.6 and (1.7). Both estimates are equally good at estimating
the amount of time for which N(t) is comparable to Nmin, but Corollary 4.11
is much weaker than (4.21) when it comes to controlling the times for which
N(t) 
 Nmin. Indeed if we could extend (4.21) to the nonradial case we could
obtain a significantly shorter proof of Theorem 1.1. However we were unable
to prove this bound directly,20 although it can be deduced from Corollary 4.11
and Proposition 4.15 below).

This Corollary allows us to obtain some useful L10
t,x bounds in the case

when N(t) is bounded from above.

Corollary 4.13 (Nonconcentration implies spacetime bound). Let I ⊆
I0, and suppose there exists an Nmax > 0 such that N(t) ≤ Nmax for all t ∈ I.

20Comparing (4.19) with (1.7) one also sees that our control on how often the solution
concentrates is weaker than that in the radial arguments of Bourgain and Grillakis. Heuristi-

cally: (4.19) allows a long train in time of N3 “bubbles” at frequency N � 1, with size ∼ N
1
2 ,

spatial extent N−1, and individual duration ∼ N−2, so the total lifespan of the train is ∼ N .
The estimate (1.7), on the other hand, restricts such bubbles to a set of dimension less than
1
2

in time. Our proof of Theorem 1.1 makes up for this weakness in its next stage, specifically
the relatively strong frequency localized L2 almost conservation estimate of Lemma (4.14).
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Then for any localized minimal energy blowup solution of (1.1),

‖u‖L10
t,x(I×R3) � C(η1, η3, Nmax/Nmin)

and furthermore

‖u‖Ṡ1(I×R3) � C(η1, η3, Nmax/Nmin).

Proof. We may use scale invariance (1.3) to rescale Nmin = 1. From
Corollary 4.11 we obtain the useful bound

|I| � C(η1, η3, Nmax).

Let δ = δ(η0, Nmax) > 0 be a small number to be chosen later. We may
partition I into O(|I|/δ) intervals I1, . . . , IJ of length at most δ. Let Ij be any
of these intervals, and let tj be any time in Ij . Observe from Corollary 4.4 and
the hypothesis N(tj) ≤ Nmax that

‖P≥C(η0)Nmax
u(tj)‖Ḣ1 ≤ η0

(for instance). Now let ũ(t) := ei(t−tj)ΔP<C(η0)Nmax
u(tj) be the free evolution

of the low and medium frequencies of u. The above estimate then becomes

‖u(tj) − ũ(tj)‖Ḣ1 ≤ η0.

On the other hand, from Bernstein (1.19) and (4.3) we have

‖∇ũ(t)‖L
30/13
x

� C(η0, Nmax)‖ũ(tj)‖Ḣ1 � C(η0, Nmax)

for all t ∈ Ij , and hence

‖∇ũ‖L10
t L

30/13
x (Ij×R3) � C(η0, Nmax)δ1/10.

Similarly,

‖∇(|ũ(t)|4ũ(t))‖L
6/5
x

� ‖∇ũ(t)‖L6
x
‖ũ(t)‖4

L6
x

�C(η0, Nmax)‖ũ(tj)‖5
Ḣ1 � C(η0, Nmax)

and hence
‖∇(|ũ(t)|4ũ(t))‖L2

t L
6/5
x (Ij×R3) � C(η0, Nmax)δ1/2.

From these two estimates, the energy bound (4.3), and Lemma 3.9 with e =
−|ũ|4ũ, we see (if δ is chosen sufficiently small) that

‖u‖L10
t,x(Ij×R3) � 1

Summing this over each of the O(|I|/δ) intervals Ij we obtain the desired L10
t,x

bound. The Ṡ1 bound then follows from Lemma 3.12.
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The corollary above gives the desired contradiction to (4.12) when
Nmax/Nmin is bounded; i.e., N(t) stays in a bounded range.

4.4. Third stage: Nonconcentration of energy. Of course, any global
well-posedness argument for (1.1) must eventually exclude a blowup scenario
(self-similar or otherwise) where N(t) goes to infinity in finite time, and indeed
by Corollary 4.13 this is the only remaining possibility for a minimal energy
blowup solution. Corollary 4.4 implies that in such a scenario the energy must
almost entirely evacuate the frequencies near Nmin, and instead concentrate
at frequencies much larger than Nmin. While this scenario is consistent with
conservation of energy, it turns out to not be consistent with the time and
frequency distribution of mass.

More specifically, we know there is a tmin ∈ I0 so that for all t ∈ I0, N(t) ≥
N(tmin) := Nmin > 0. By Corollary 4.4, at time tmin the solution has the bulk
of its energy near the frequency Nmin, and hence the medium frequencies at
that time have mass bounded below by,

‖Pc(η0)Nmin≤·≤C(η0)Nmin
u(tmin)‖L2 � c(η0)N−1

min.(4.22)

The idea is to prove the following approximate mass conservation law for these
high frequencies,21 which states that while some mass might slip to very low
frequencies as the solution moves to high frequencies, it cannot all do so.

Lemma 4.14 (Some mass freezes away from low frequencies). Suppose u

is a minimal energy blowup solution of (1.1), and let [tmin, tevac] ⊂ I0 be such
that N(tmin) = Nmin and N(tevac)/Nmin ≥ C(η5). Then for all t ∈ [tmin, tevac],

‖P≥η100
4 Nmin

u(t)‖L2 � η1N
−1
min.(4.23)

Lemma 4.14 will quickly show that the evacuation scenario - wherein the
solution cleanly concentrates energy to very high frequencies - cannot occur.
Instead the solution always leaves a nontrivial amount of mass and energy
behind at medium frequencies. This “littering” of the solution will serve (via
Corollary 4.4) to keep N(t) from escaping to infinity22 and gives us,

21It is necessary to truncate to the high frequencies in order to exploit mass conserva-
tion because the low frequencies contain an unbounded amount of mass. This strategy of
mollifying the solution in frequency space in order to exploit a conservation law that would
otherwise be unbounded or useless is inspired by the “I-method” for sub-critical dispersive
equations; see e.g. [13].

22It is interesting to note that one must exploit conservation of energy, conservation of
mass, and conservation of momentum (via the Morawetz inequality) in order to prevent
blowup for the equation (1.1); the same phenomenon occurs in the previous arguments [4],
[20] in the radial case, even though the details of those arguments are in many ways quite
different from those here.
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Proposition 4.15 (Energy cannot evacuate from low frequencies). For
any minimal energy blowup solution of (1.1),

N(t) � C(η5)Nmin(4.24)

for all t ∈ I0.

We give the somewhat complicated proof of Lemma 4.14 and Proposition
4.15 in Section 15.

By combining Proposition 4.15 with Corollary 4.13, we encounter a con-
tradiction to (4.12) which completes the proof of Theorem 1.1.

The proofs of the above claims occupy the remainder of this paper. Before
moving to these proofs, we summarize the role of the parameters ηi, i = 0, . . . , 5
which have now all been introduced. The number η1 represents the amount
of potential energy that must be present at every time in a minimal energy
blowup solution (Proposition 4.5); it also represents the extent of concentration
of energy (on the scale of 1/N(t)) that must occur in physical space at every
time in a minimal energy blowup solution (Proposition 4.6). The number η2

is introduced in Proposition 4.7, where 1/η2 represents the extent that there
is localization (on the scale of 1/N(t)) of energy in a minimal energy blowup
solution. The number η3 measures, on the scale of the quantity Nmin, what
we mean by “high frequency” when we say Proposition 4.9 is an interaction
Morawetz estimate localized to high frequencies. The number η4 measures
the frequency (on the scale of Nmin) below which the evolution can’t move a
certain portion (namely, η1) of the L2 mass. Finally, the number η0 enters in
Corollary 4.4 and various other points in the paper where we simply use its
value as a small, universal constant.

5. Frequency delocalized at one time =⇒ spacetime bounded

We now prove Proposition 4.3. Let 0 < ε = ε(η) � 1 be a small number to
be chosen later. If K(η) is sufficiently large depending on ε, then one can find
at least ε−2 disjoint intervals [ε2Nj , Nj/ε2], j = 1, . . . , ε−2, contained inside
[Nlo, K(η)Nlo]. From (4.3) and the pigeonhole principle, there must therefore
exist an Nj so that the interval [ε2Nj , Nj/ε2] is mostly free of energy:

‖Pε2Nj≤·≤Nj/ε2u(t0)‖Ḣ1 � ε.(5.1)

As the statement and conclusion of Proposition 4.3 is invariant under the
scaling (1.3) we may set Nj := 1. Now define

ulo(t0) := P≤εu(t0); uhi(t0) := P≥1/εu(t0).

The functions ulo(t0), uhi(t0) have strictly smaller energy than u:
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Lemma 5.1. If ε is sufficiently small depending on η, then

E(ulo(t0)), E(uhi(t0)) ≤ Ecrit − cηC .

Proof. We prove this for E(ulo(t0)); the claim for E(uhi(t0)) is similar.
Define uhi′(t0) := P>εu(t0), so that u(t0) = ulo(t0) + uhi′(t0), and consider the
quantity

|E(u(t0)) − E(ulo(t0)) − E(uhi′(t0))|.(5.2)

From (1.2) we can bound this by

(5.2) � |〈∇ulo(t0),∇uhi′(t0)〉| + |
∫

|u(t0)|6 − |ulo(t0)|6 − |uhi′(t0)|6 dx|.
(5.3)

The functions ulo and uhi′ almost have disjoint supports, and their inner prod-
uct is very close to zero. Indeed from Parseval and (5.1) we have

|〈∇ulo(t0),∇uhi′(t0)〉| � ε2.

Now we estimate the L6-type terms. From the pointwise estimate∣∣|u(t0)|6 − |ulo(t0)|6 − |uhi′(t0)|6
∣∣ � |ulo||uhi′ |(|ulo| + |uhi′ |)4

(cf. (1.14)) and Hölder’s inequality, we can bound the second term in (5.3) by

� ‖ulo‖∞‖uhi′‖3(‖ulo‖6 + ‖uhi′‖6)4.

From (4.3), (5.1), and Bernstein’s inequality (1.20) we see that

‖ulo‖∞ �
∑
N≤ε

‖PNu‖∞ �
∑
N≤ε

N1/2‖PNu‖Ḣ1

�
∑

N≤ε2

N1/2 +
∑

ε2<N≤ε

N1/2ε � ε

and

‖uhi′‖3 �
∑
N≥ε

‖PNu‖3 �
∑
N≥ε

N−1/2‖PNu‖Ḣ1

�
∑

N≥1/ε

N−1/2 +
∑

ε≤N≤ 1
ε

N−1/2ε � ε1/2.

Thus from (4.4) we can bound the second term in (5.3) by O(ε3/2). Combining
this with the estimate obtained on the first piece of (5.3), we thus see that

|E(u) − E(ulo(t0)) − E(uhi′(t0))| � ε3/2.

On the other hand, by hypothesis on u we have E(u) ≤ Ecrit, while from (4.7)
and (1.2) we have E(uhi′(t0)) � ηC . The claim follows if ε is chosen sufficiently
small.
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From Lemma 5.1 and Lemma 4.1 we know that there exist Schwartz so-
lutions ulo, uhi on the slab I∗ ×R3 with initial data ulo(t0), uhi(t0) at time t0,
and furthermore

‖ulo‖Ṡ1(I∗×R3), ‖uhi‖Ṡ1(I∗×R3) � C(η).(5.4)

Let ũ := ulo + uhi. We now claim that ũ is an approximate solution to (1.1):

Lemma 5.2. We have

iũt + Δũ = |ũ|4ũ − e

where the error e obeys the bounds

‖∇e‖L2
t L

6/5
x (I∗×R3) � C(η)ε1/2.(5.5)

Proof. We begin by establishing further estimates on ulo and uhi, beyond
(5.4). For uhi, we observe from (4.5) that ‖uhi(t0)‖2 � ε; so from Lemma 3.12,

‖uhi‖Ṡ0(I∗×R3) � C(η)ε.(5.6)

Similarly, from (4.3) and (1.17) we have ‖ulo(t0)‖Ḣ2 � Cε, and so from Lemma
3.12 again we have

‖ulo(t0)‖Ṡ2(I∗×R3) � C(η)ε.(5.7)

From Lemma 3.6 we also see that

‖|uhi|4uhi‖L1
t L2

x(I∗×R3) � C(η)ε,

‖∇(|uhi|4uhi)‖L1
t L2

x(I∗×R3) � C(η),

‖∇(|ulo|4ulo)‖L1
t L2

x(I∗×R3) � C(η),

‖∇2(|ulo|4ulo)‖L1
t L2

x(I∗×R3) � C(η)ε.

From Lemma 3.7 we thus have

‖∇O(uj
hiu

5−j
lo )‖L2

t L
6/5
x (I∗×R3) � C(η)ε1/2

for j = 1, 2, 3, 4. Since e =
∑4

j=1 O(uj
hiu

5−j
lo ) by (1.15), the claim follows.

We now pass from estimates on ũ to estimates on u by perturbation theory.
From (5.1) we have the perturbation bound

‖u(t0) − ũ(t0)‖Ḣ1 � ε,

while from (5.4) we have

‖ũ‖L10
t,x(I∗×R3) � C(η).

Thus if ε is small enough depending on η, we may apply Lemma 3.10 and
obtain the desired bound (4.8). The proof of Proposition 4.3 is now complete.
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Remark 5.3. The dependence of constants in Proposition 4.3 given by the
above argument is quite poor. Specifically, the separation K(η) needs to be as
large as

K(η) ≥ C exp(Cη−CM(Ecrit − ηC)C)

(mainly in order for the pigeonhole argument to work) and the bound one
obtains on the L10

t,x norm at the end has a similar size. This implies that the
dependence of the constants C(ηj), c(ηj) in Corollary 4.4 is similarly similarly:

C(ηj) ≥ C exp(Cη−C
j M(Ecrit − ηC

j )C),

c(ηj) ≤ (C(ηj))−1.

This will force us to select each ηj+1 quite small depending on previous ηj ;
indeed in some cases the induction hypothesis is used more than once and
so ηj+1 is even smaller than the above expressions suggest. If one then runs
the induction of energy argument in a direct way (rather than arguing by
contradiction as we do here), this leads to very rapidly growing (but still finite)
bound for M(E) for each E, which can only be expressed in terms of multiply
iterated towers of exponentials (the Ackermann hierarchy). More precisely, if
we use X ↑ Y to denote exponentiation XY ,

X ↑↑ Y := X ↑ (X ↑ . . . ↑ X)

to denote the tower formed by exponentiating Y copies of X,

X ↑↑↑ Y := X ↑↑ (X ↑↑ . . . ↑↑ X)

to denote the double tower formed by tower-exponentiating Y copies of X,
and so forth, then we have computed our final bound for M(E) for large E to
essentially be

M(E) ≤ C ↑↑↑↑↑↑↑↑ (CEC).

This rather Bunyanesque bound is mainly due to the large number of times
we invoke the induction hypothesis Lemma 4.1, and is presumably not best
possible. For instance, the best bound known23 in the radial case is M(E) ≤
C ↑↑ (CEC), where the induction hypothesis is used only once; see [4]. Finally,
in the case of the subcritical cubic nonlinear Schrödinger equation, the bound
for the analogue of M(E) is polynomial, M(E) ≤ CEC ; see [13].

6. Small L6
x norm at one time =⇒ spacetime bounded

We now prove Proposition 4.5. The argument here is similar to the induc-
tion on energy arguments in [4]. The point is that the linear evolution of the

23Note added in proof: a bound of M(E) ≤ C ↑ (CEC) in the radial case was recently
obtained in [45].
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solution must concentrate at some point (t1, x1) in spacetime (otherwise we
could iterate using the small data theory). If the solution does not concentrate
in L6 at time t = t0, then t1 must be far away from t0. The idea is then to
remove the energy concentrating at (t1, x1) and induct on energy.

We turn to the details. Assume for contradiction that (4.13) failed for
some time t0 ∈ I0, so that

‖u(t0)‖L6
x
≤ η1.(6.1)

Fix this t0. By rescaling using (1.3) we may normalize N(t0) = 1. Observe
that if the linear solution ei(t−t0)Δu(t0) had small L10

t,x norm, then the standard
small data well-posedness theory (based on Strichartz estimates and (3.11) or
(3.12)) would already show that the nonlinear solution u had bounded L10

norm. Thus we may assume that

‖ei(t−t0)Δu(t0)‖L10
t,x(R×R3) � 1.

On the other hand, by Corollary 4.4 we have

‖Plou(t0)‖Ḣ1
x

+ ‖Phiu(t0)‖Ḣ1
x

� η0

where we define Plo := P<c(η0) and Phi := P>C(η0); so by Strichartz (Lemma
3.2)

‖ei(t−t0)ΔPlou(t0)‖L10
t,x(R×R3) + ‖ei(t−t0)ΔPhiu(t0)‖L10

t,x(R×R3) � η0.

If we then define Pmed := 1 − Plo − Phi, we must then have

‖ei(t−t0)ΔPmedu(t0)‖L10
t,x(R×R3) ∼ 1.

On the other hand, by (4.3) we know that Pmedu(t0) has bounded energy and
has Fourier support in the region c(η0) � |ξ| � C(η0). Thus by Strichartz (3.7)
we have that

‖ei(t−t0)ΔPmedu(t0)‖L
10/3
t,x (R×R3) � C(η0)

(for instance). From these two estimates and Hölder we see that the L∞
t,x norm

cannot be too small:

‖ei(t−t0)ΔPmedu(t0)‖L∞
t,x(R×R3) � c(η0).

In particular, there exist a time t1 ∈ R and a point x1 such that we have the
concentration

|ei(t1−t0)Δ(Pmedu(t0))(x1)| � c(η0).

By perturbing t1 a little we may assume that t1 �= t0; by time reversal symmetry
we may take t1 < t0.

Let δx1 be the Dirac mass at x1, and let f(t1) := Pmedδx1 . We extend f

to all of R × R3 by the free evolution, thus f(t) := ei(t−t1)Δf(t1). We record
some explicit estimates on f :
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Lemma 6.1. For any t ∈ R and any 1 ≤ p ≤ ∞,

‖f(t)‖Lp
x

� C(η0)(1 + |t − t1|)3/p−3/2.

Proof. We may translate t1 = x1 = 0. From the unitarity of eitΔ and
Bernstein (1.20) we have

‖f(t)‖L∞
x (R3) � C(η0)‖f(t)‖L2

x(R3) = C(η0)‖Pmedδx1‖L2
x(R3) � C(η0)

while from the dispersive inequality (1.12) we have

‖f(t)‖L∞
x (R3) � |t|−3/2‖Pmedδx1‖L1

x(R3) � |t|−3/2.

Combining these estimates we obtain the lemma in the case p = ∞. To obtain
the other cases we need some decay on f(t, x) in the region |x| 
 C(η0)(1+|t|).
For this we use the Fourier representation (1.10) to write

f(t, x) =
∫

R3

e2πi(x·ξ−2πt|ξ|2)ϕmed(ξ) dξ

where ϕmed is the Fourier multiplier corresponding to Pmed. When |x| 
 1+|t|,
then the phase oscillates in ξ with a gradient comparable in magnitude to |x|.
By repeated integration by parts (see e.g. [41]) we thus obtain a bound of the
form |f(t, x)| � |x|−100 in this region. Combining this with the previous L∞

bounds we obtain the result.

In particular, from (6.1) and Hölder we have

|〈u(t0), f(t0)〉| � η1‖f(t0)‖L
6/5
x (R3) � C(η0)η1(1 + |t0 − t1|).

On the other hand, we have

|〈u(t0), f(t0)〉| = |〈ei(t1−t0)ΔPmedu(t0), δx1〉| � c(η0).

Thus the concentration point t1 must be far away from t0 (recall that η1 is
much smaller than η0):

|t1 − t0| � c(η0)η−1
1 .

In particular, the smallness of η1 pushes the concentration time far away from
the time when L6

x is small. Since t0 > t1 by hypothesis, we thus see from
Lemma 6.1 and the frequency localization of f that ∇f has small L10

t L
30/13
x

norm to the future of t0:

‖∇f‖L10
t L

30/13
x ([t0,+∞)×R3) � C(η0)‖f‖L10

t L30/13([t0,+∞)×R3)

� C(η0)‖(1 + |t − t1|)−2/10‖L10
t ([t0,+∞))

� C(η0)|t0 − t1|−1/10

� C(η0)η
1/10
1 .

(6.2)

We now use the induction hypothesis (inspired by a similar argument in [4]).
We split u(t0) := v(t0)+w(t0) where w(t0) := δeiθΔ−1f(t0), and δ = δ(η0) > 0
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is a small number to be chosen shortly, and θ is a phase to be chosen shortly.
We now claim that if δ and θ are chosen correctly, then v(t0) has slightly
smaller energy than u. Indeed, we have by integration by parts and definition
of f that

1
2

∫
R3

|∇v(t0)|2 =
1
2

∫
R3

|∇u(t0) −∇w(t0)|2

=
1
2

∫
R3

|∇u(t0)|2

− δRe
∫

R3

e−iθ∇Δ−1f(t0) · ∇u(t0) + O(δ2‖Δ−1f(t0)‖2
Ḣ1)

≤ Ecrit + δRee−iθ〈u(t0), f(t0)〉 + O(δ2C(η0)).

Since |〈u(t0), f(t0)〉| was already shown to have magnitude at least c(η0), we
see if δ = δ(η0) and θ are chosen correctly that we can ensure that

1
2

∫
R3

|∇v(t0)|2 ≤ Ecrit − c(η0).

Meanwhile, another application of Lemma 6.1 shows that

‖w(t0)‖L6
x

� C(η0)‖f(t0)‖L6
x

� C(η0)〈t0 − t1〉−1 � C(η0)η1.

So by (6.1) and the triangle inequality,∫
R3

|v(t0)|6 � C(η0)η6
1.

Thus if η1 is sufficiently small depending on η0, then

E(v(t0)) ≤ Ecrit − c(η0).

By Lemma 4.1 we may extend v(t0) into a solution of the nonlinear Schrödinger
equation (1.1) on [t0,+∞) such that

‖v‖L10
t,x([t0,+∞)×R3) � M(Ecrit − c(η0)) = C(η0).(6.3)

On the other hand, from (6.2) and the frequency localization we have

‖∇ei(t−t0)Δw(t0)‖L10
t L

30/13
x ([t0,+∞)×R3) � C(η0)η

1/10
1 .

Thus if η1 is sufficiently small depending on η0 then we may use Lemma 3.10
(with ũ := v and e = 0) to conclude that u extends to all of [t0,+∞) with

‖u‖L10
t,x([t0,+∞)×R3) � C(η0, η1).

Since the time interval [t0,+∞) contains I+, this contradicts (4.12). (If we had
t0 < t1 instead, we would obtain a similar contradiction involving I−.) This
concludes the proof of Proposition 4.5.
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7. Spatial concentration of energy at every time

We now prove Proposition 4.6. Fix t. By scaling using (1.3) we may take
N(t) = 1. By Corollary 4.4 this implies that

‖P>C(η1)u(t)‖Ḣ1 + ‖P<c(η1)u(t)‖Ḣ1 � η100
1(7.1)

(for instance). In particular by Sobolev we have

‖P>C(η1)u(t)‖L6
x

+ ‖P<c(η1)u(t)‖L6
x

� η100
1

and hence by (4.13)
‖Pmedu(t)‖L6

x
� η1

where Pmed := Pc(η1)<·<C(η1). On the other hand, from (4.3),

‖Pmedu(t)‖L2
x

� C(η1)

and thus by Hölder’s inequality,

‖Pmedu(t)‖L∞
x

� c(η1).

Thus there exists x(t) ∈ R3 such that

c(η1) � |Pmedu(t, x(t))|.(7.2)

Let Kmed denote the kernel associated to the operator Pmed∇Δ−1, and let
R > 0 be a radius to be chosen later. Then (7.2) can be continued with

c(η1) � |Kmed ∗ ∇u(t, x(t))|

�
∫

|Kmed(x(t) − x)||∇u(t, x)|dx

∼

∫
|x−x(t)|<R)

|Kmed(x(t) − x)||∇u(t, x)|dx

+
∫
|x−x(t)|≥R

|Kmed(x(t) − x)||∇u(t, x)|dx

� C(η1)

(∫
|x−x(t)|<R

|∇u(t, x)|2dx

) 1
2

+ C(η1)

(∫
|x−x(t)|≥R

|∇u(t, x)|
|x − x(t)|100 dx

)
.

Here we used Cauchy-Schwarz and the fact that Kmed is a Schwartz function.
Using the fact that (

∫
|∇u|2dx)1/2 is bounded uniformly, we obtain

c(η1) �
(∫

|x−x(t)|<R
|∇u(t, x)|2dx

) 1
2

+ C(η1)R−10
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(say), which proves (4.14) after setting R := C(η1) sufficiently large. Similarly,
writing K̃med for the kernel associated to Pmed, we have for all 1 < p < ∞,

c(η1) �
∫
|x−x(t)|<R

|K̃med(x(t) − x)||u(t, x)|dx

+
∫
|x−x(t)|≥R

|K̃med(x(t) − x)||u(t, x)|dx

� C(η1)

(∫
|x−x(t)|≤R

|u(t, x)|pdx

) 1
p

+
∫
|x−x(t)|≥R

|u(t, x)|
|x − x(t)|100

dx

� C(η1)

(∫
|x−x(t)|≤R

|u(t, x)|pdx

) 1
p

+

(∫
|x−x(t)|>R

1

|x − x(t)|100× 6
5

dx

) 5
6

‖u(t)‖L6
x

� C(η1)

(∫
|x−x(t)|≤R

|u(t, x)|pdx

) 1
p

+ C(η1)R−10,

where we used (4.4). This proves (4.15) upon rescaling, if the radius R = C(η1)
was chosen sufficiently large.

8. Spatial delocalized at one time =⇒ spacetime bounded

We now prove Proposition 4.7. This is the spatial analogue of the fre-
quency delocalization result in Proposition 4.3. The role of the bilinear
Strichartz estimate in that proposition will be played here by finite speed
of propagation and pseudoconformal identity estimates. We follow the same
basic strategy as in Proposition 4.3 (but now played out in the arena of phys-
ical space rather than frequency space). More specifically, we assume that
there is a large amount of energy away from the concentration point, and then
use approximate finite speed of propagation to decouple the solution into two
nearly noninteracting components of strictly smaller energy, which can then
be handled by the induction hypothesis and perturbation theory.

We turn to the details. We first need a number of large quantities. Specif-
ically, we need a large integer J = J(η1) 
 1 to be chosen later, and then
a large frequency24 N0 = N0(η1, J) 
 1 to be chosen later, and then a large
radius R0 = R0(η1, N0, J) 
 1 to be chosen later.

24More precisely, this is a ratio of two frequencies, but as we will shortly normalize N(0)
= 1, the distinction between a frequency and a frequency ratio becomes irrelevant. Similarly
the radii given below should really be ratios of radii.
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Suppose for contradiction that the proposition is false. Then there must
exist a time t0 ∈ I0 such that∫

|x−x(t0)|>1/(η2N(t0))
|∇u(t0, x)|2 dx � η1.

Here x(t) is the quantity constructed in Proposition 4.6 (see (7.2)). We may
normalize t0 = x(t0) = 0, and rescale so that N(0) = 1; thus∫

|x|>1/η2

|∇u(0, x)|2 dx � η1.(8.1)

On the other hand, if R0 = R0(η1) is chosen large enough then we see from
Proposition 4.6 that ∫

|x|<R0

|∇u(0, x)|2 dx � c(η1)(8.2)

and ∫
|x|<R0

|u(0, x)|6 dx � c(η1).(8.3)

We then define the radii R0 � R1 � . . . � RJ recursively by Rj+1 := 100R100
j .

The region R0 < |x| < RJ can be partitioned into J dyadic shells of the
form Rj < |x| < Rj+1. By (4.3),(4.4) and the pigeonhole principle we may
find 0 ≤ j < J such that∫

Rj<|x|<Rj+1

|∇u(0, x)|2 + |u(0, x)|6 dx � 1
J

.(8.4)

Fixing this j, we now introduce cutoff functions χinner, χouter, where χinner is
adapted to the ball B(0, 2Rj) and equals one on B(0, Rj), whereas χouter is a
bump function adapted to B(0, Rj+1) which equals one on B(0, Rj+1/2). We
then define v(0), w(0) as

v(0, x) := P1/N0≤·≤N0
(χinneru(0)); w(0) := P1/N0≤·≤N0

((1 − χouter)u(0)).

(8.5)

By (8.4) we easily see that

‖P1/N0≤·≤N0
u(0) − v(0) − w(0)‖Ḣ1 � ‖(χouter − χinner)u(0)‖Ḣ1 � 1

J1/2
.

Also, if N0 is chosen sufficiently large depending on J we see from the normal-
ization N(0) = 1 and Corollary 4.4 that

‖u(0) − P1/N0≤·≤N0
u(0)‖Ḣ1 � 1

J1/2

and thus

‖u(0) − v(0) − w(0)‖Ḣ1 � 1
J1/2

.(8.6)

We also know that v, w have slightly smaller energy than u:
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Lemma 8.1. For the the functions v, w defined in (8.5) we have

E(v(0)), E(w(0)) ≤ Ecrit − c(η1).

Proof. The argument here is completely analogous to that in Lemma
5.1, except that now we work in physical space, exploiting the fact that v is
mostly supported in the region |x| < 3Rj and w is mostly supported in the
region |x| > Rj+1/2.

We begin by estimating the quantity

|E(v(0) + w(0)) − E(v(0)) − E(w(0))| .

Expanding out the definition of energy, we can bound this by

�
∫

R3

|∇v(0, x)||∇w(0, x)| + |v(0, x)||w(0, x)|5 + |v(0, x)|5|w(0, x)| dx.

We subdivide R3 into the regions |x| ≤ Rj+1/2 and |x| > Rj+1/2. Since v

and w are bounded in Ḣ1 and hence in L6, we can use Hölder’s inequality to
estimate the previous expression by

� ‖∇v‖L2(|x|>Rj+1/2)+‖v‖L6(|x|>Rj+1/2)+‖∇w‖L2(|x|≤Rj+1/2)+‖w‖L6(|x|≤Rj+1/2).

Consider for instance the quantity ‖∇v‖L2(|x|>Rj+1/2). Let K be the convolu-
tion kernel associated with P1/N0≤·≤N0

; then we have ∇v = (∇(χinneru(0)))∗K.
Since χinner is supported on the region |x| ≤ 2Rj ≤ Rj+1/4, we may restrict
K to the region |x| > Rj+1/4. On this region, K decays rapidly and in fact
has an L1 norm of at most C(N0)/R100

j+1 ≤ C(N0)/R100
0 (for instance). Since

∇(χinneru(0)) is bounded in L2, we thus have

‖∇v‖L2(|x|>Rj+1/2) ≤ C(N0)/R100
0 .

The other three terms above can be estimated similarly. Thus

|E(v(0) + w(0)) − E(v(0)) − E(w(0))| ≤ C(N0)/R100
0 .

On the other hand, from (8.6), the boundedness of u(0), v(0), w(0) in Ḣ1 and
L6, and Hölder’s inequality, we have

|E(u(0)) − E(v(0) + w(0))| � J−1/2.

Thus we have

|E(u(0)) − E(v(0)) − E(w(0))| � J−1/2 + C(N0)/R100
0 .(8.7)

On the other hand, by (8.2) and (8.1) (choosing η2 to be smaller than 1/RJ),
we know that E(v)(0), E(w)(0) � c(η1). Together with (8.7), this yields the
lemma when J = J(η1) and R0 = R0(η1, N0, J) are chosen sufficiently large.
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From the above lemma and Lemma 4.1 we may then extend v and w by
the nonlinear Schrödinger equation (1.1) to all of R × R3, so that

‖v‖L10
t,x

+ ‖w‖L10
t,x

� M(Ecrit − c(η1)) = C(η1).(8.8)

From this, Lemma 3.12 and the frequency localization of v, w we thus obtain
the Strichartz bounds

‖v‖Ṡk + ‖w‖Ṡk � C(η1, N0)(8.9)

for k = 0, 1, 2.
The idea is now to use our perturbation lemma to approximate u by v+w.

To do this we need to ensure that v and w do not interact. This is the objective
of the next two lemmas.

Lemma 8.2. Let v(x, t), w(x, t) be the evolutions according to (1.1) of the
functions defined in (8.5). For times |t| ≤ R10

j , there exists the “finite speed of
propagation” estimate∫

|x|�R50
j

|v(t, x)|2 dx � C(η1, N0)R−20
j(8.10)

and for times |t| ≥ R10
j , the decay estimate∫

|v(t, x)|6 dx � R−10
j .(8.11)

(The powers of Rj are far from sharp.) Meanwhile, the mass density of w

obeys the finite speed of propagation estimate∫
|x|�R50

j

|w(t, x)|2 dx � C(η1, N0)R−20
j(8.12)

for all |t| ≤ R10
j and, similarly, the energy density of w obeys the finite speed

of propagation estimate∫
|x|�R50

j

[
1
2
|∇w(t, x)|2 +

1
6
|w(t, x)|6]dx � R−20

j C(η1, N0),(8.13)

for all |t| < R10
j . Also,∫

|x|�R50
j

[
1
2
|∇v(t, x)|2 +

1
6
|v(t, x)|6]dx � R−20

j C(η1, N0).(8.14)

Thus at short times t = O(R10
j ), v and w are separated in space, whereas

at long times v has decayed (while w is still bounded in Strichartz norms).
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Proof. The estimates (8.10) and (8.11) follow from the pseudoconformal
law following arguments from [5]. Recall the pseudoconformal conservation
law for sufficiently regular and decaying solutions of (1.1):

‖(x + 2it∇)u(t)‖2
L2

x
+

4
3
t2‖u(t)‖6

L6
x

= ‖|x|u0‖2
L2

x
− 16

3

∫ t

0
s‖u(s)‖6

L6
x
ds.(8.15)

Thus, since v solves (1.1),∫
|x|�R50

j

|x|2|v(t, x)|2dx � t2‖∇v(t)‖2
L2

x
+t2‖v(t)‖6

L6
x
+‖|x|v0‖2

L2
x
+

∫ t

0
s‖v(s)‖6

L6
x
ds.

We restrict to times |t| ≤ R10
j and have

R100
j

∫
|x|�R50

j

|v(t, x)|2dx

� R20
j ‖∇v(t)‖2

L∞
|t|≤R10

j

L2
x

+ R20
j ‖v(t)‖6

L∞
|t|≤R10

j

L6
x

+ R2
j‖v0‖L2

x

2

� R20
j

(
‖∇v(t)‖2

L∞
|t|≤R10

j

L2
x

+ ‖v(t)‖6
L∞

|t|≤R10
j

L6
x

)
+ R2

jN
2
0 ‖∇v0‖2

L2
x

� C(N0)R20
j E(u0),

which proves (8.10).
From (8.15), we observe that

‖v(t)‖6
L6

x
�

R2
jN

2
0 E(u0)
t2

,

so that, for times |t| > R10
j , we obtain (8.11).

We control the L2
x-mass of w in the ball |x| < 1000R50

j using a virial
identity. Let ζ denote a nonnegative smooth bump function equaling 1 on
B(0, 1000R50

j ) and supported on B(0, 2000R50
j ). Note that ζ has been chosen

so that the support of ∇ζ does not intersect the support of χinner(0) or the
support of (1 − χouter)(0). From (2.4), (2.6) and integration by parts we have
the identity

∂t

∫
ζ(x)|w(t, x)|2dx = −2

∫
ζj(x)Im(wwj)(t, x)dx.

Thus,

|∂t

∫
ζ(x)|w(t, x)|2dx| � R−50

j ‖∇w(t)‖L2
x
‖w(t)‖L2

x
,

and we have, using the support properties and (4.3),

sup
|t|<R10

j

∫
ζ(x)|w(t, x)|2dx �

∫
ζ(x)|w(0, x)|2dx

+ R−40
j sup

|t|<R10
j

‖∇w(t)‖L2
x
‖w(t)‖L2

x

� R−40
j + R−40

j (E(u0))2N0

(say), which proves (8.12).
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We now control the energy density of w,

e(w)(t, x) :=
1
2
|∇w(t, x)|2 +

1
6
|w(t, x)|6,(8.16)

on the ball |x| < R50
j by a similar argument. From (2.11) and integration by

parts we have

d

dt

∫
ζe(w)dx =

∫
ζj [Im(wkwkj) − δjk|w|4Im(wwk)]dx,

which implies that∫
ζe(w)(T )dx �

∫
ζe(w)(0)dx +

∫ T

0

∫
|∇ζ||∇w||∇∇w|dxdt

+
∫ T

0

∫
|∇ζ||w|5|∇w|dxdt.

We will control the three terms on the right to obtain (8.13). The first term
vanishes due to support properties of ζ and 1 − χouter. The second term is
crudely bounded using (4.3) by

R−50
j R10

j ‖∇2w‖L∞
|t|<R10

j

L2
x
.

By the induction hypothesis we have (8.9) and, in particular,

‖∇2w‖L∞
t L2

x
� C(η1, N0).

The third term is bounded using Hölder by, say

� R−50
j ‖w‖2

L10
t,x
‖w‖3

L6
t,x
‖∇w‖L

10/3
t,x

.

Again, the global L10
t,x bound and Lemma 3.12 gave us (8.9) which, by inter-

polation, controls all the norms appearing here. This proves (8.13).
Replacing ζ by 1−ζ and w by v in the discussion just completed establishes

(8.14).

Corollary 8.3. For v, w as in Lemma 8.2,

‖∇(|v + w|4(v + w) − |v|4v − |w|4w)‖L2
tL

6/5
x (R×R3)

� C(η1, N0)R
−5/6
j � C(η1, N0)R

−5/6
0 .

Proof. By (1.15), the task is to control terms of the form O(vjw4−j∇w)
and O(wjv4−j∇v), for j = 1, 2, 3, 4, in L2

t L
6/5
x . Separate the analysis into

three spacetime regions based on the estimates in Lemma 8.2: (short time,
near origin) |t| < R10

j , |x| < 2000R50
j ; (short time, far from origin) |t| <

R10
j , |x| ≥ 2000R50

j ; (long time) |t| ≥ R10
j . In all but one of these cases, an

application of a variant of (3.12),

‖∇u1u2u3u4u5‖L2
t L

6/5
x

� ‖∇u1‖L∞
t L2

x
‖u2‖L4

tL∞
x
‖u3‖L4

t L∞
x
‖u4‖L∞

t L6
x
‖u5‖L∞

t L6
x
,
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together with (8.9) and the decay properties in Lemma 8.2 establishes the
claimed estimate controlling the interaction of v and w. The term O(w4∇v)
in the long time regime |t| ≥ R10

j presents an exceptional case since we do
not directly encounter the available long time decay estimate (8.11). This
situation is treated separately with the following argument. By Hölder and
interpolation, we have

‖O(w4∇v)‖L2
t L

6/5
x

� ‖∇v‖L∞
t L3

x
‖O(w4)‖L2

t L2
x

� ‖v‖1/2
L∞

t L6
x
‖∇2v‖1/2

L∞
t L2

x
‖O(w4)‖L2

t L2
x

� ‖v‖1/2
L∞

t L6
x
‖v‖1/2

Ṡ2
‖O(w4)‖L2

t L2
x
.

Note the appearance of (8.11) which contributes the decay R
−5/6
j . We complete

the proof by estimating,

‖O(w4)‖L2
tL2

x
� ‖O(w3)‖L2

t L6
x
‖w‖L∞

t L3
x

� ‖w‖3
L6

t L18
x
‖w‖1/2

L∞
t L2

x
‖w‖1/2

L∞
t L6

x
� ‖w‖3

Ṡ1‖w(0)‖1/2
L2

x
E1/4

� C(η1, η2)N
1/2
0 � C(η1, η2, N0).

In light of this corollary, (8.6), (8.8), and the observation that u, v, w

all have bounded energy, we see from Lemma 3.10 (with ũ := v + w and
e := |v + w|4(v + w) − |v|4v − |w|4w) that if J is sufficiently large depending
on η1, and R0 sufficiently large depending on η1, J , N0, then

‖u‖L10
t,x(I∗×R3) � C(η1),

which contradicts (4.1). This proves Proposition 4.7.

9. Reverse Sobolev inequality

We now prove Proposition 4.8. Fix t0, x0, R. We may normalize x(t0) = 0
and N(t0) = 1. Then by Proposition 4.7 we have∫

|x|>1/η2

|∇u(t0, x)|2 dx � η1.(9.1)

Now suppose for contradiction that we have∫
B(x0,R)

|∇u(t0, x)|2 dx 
 η1 + K(η1, η2)
∫

B(x0,K(η1,η2)R)
|u(t0, x)|6 dx(9.2)

for some large K(η1, η2) to be chosen later. From (9.2) and (9.1) we see that
B(x0, R) cannot be completely contained inside the region |x| > 1/η2; thus,

|x0| � R + 1/η2.(9.3)
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Next, we obtain a lower bound on R. Recall from the normalization N(t0) = 1
and Corollary 4.4 that

‖P>C(η1)u(t0)‖Ḣ1 � η1.

On the other hand, from (9.2),∫
B(x0,R)

|∇u(t0, x)|2 dx 
 η1

and from the triangle inequality we see that∫
B(x0,R)

|∇P≤C(η1)u(t0, x)|2 dx 
 η1.

But by Hölder, Bernstein (1.20), and (4.3) we can bound the left-hand side by

� R3‖∇P≤C(η1)u(t0)‖2
L∞

x
� C(η1)R3

and thus we have

R � c(η1).

Combining this with (9.3) we see that the ball B(x0, K(η1, η2)R) will con-
tain B(0, 1/η2) (and hence any ball of the form B(0, C(η1))) if the constant
K(η1, η2) is large enough. In particular, from Proposition 4.6 we have∫

B(x0,K(η1,η2)R)
|u(t0, x)|6 dx � c(η1),

which inserted into (9.2) contradicts the energy bound (4.3) if K(η1, η2) is
chosen sufficiently large. This proves Proposition 4.8.

10. Interaction Morawetz: generalities

We shall shortly begin the proof of Proposition 4.9, which is a variant
of the interaction Morawetz inequality (1.8). As noted above, this inequality
cannot be applied directly to our situation because the right-hand side of (1.8)
can be very large due to low frequency contributions to u. It is then natural
(in light of (4.5)) to try to adapt the interaction Morawetz inequality to only
deal with the high frequencies u≥1, but this turns out to not quite be enough
either. The trouble is that the inhomogeneous Schrödinger equation satisfied
by u≥1 is not Lagrangian - and in particular it no longer enjoys the usual
L2 conservation. Hence when we apply the argument from [13], [12] (which
gave (1.8)) to this u≥1 equation, we get new terms arising from the fact that
the right side of (2.4) is no longer zero. We can find no appropriate bounds
for these new terms. Our solution to this problem is to localize the previous
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interaction Morawetz arguments in space25, yielding a much more complicated
version (Theorem 11.1) of the inequality (1.8).

To summarize: the increased complexity on the right-hand side of (11.6)
below is due to the fact that we have localized the argument in frequency
(because (1.1) is critical) and space (because of the error terms introduced by
the frequency localization). Of course, all of these extra terms will somehow
have to be shown to be bounded, and to this end the second term on the
left side of (11.6) is very important. An analogue of this term - where the
x integration is taken over all of R3 - can also be included on the left side of
(1.8) (see [13], [12]), but we had previously found no use for this term. In what
follows, the second term on the left side of (11.6) will be used to absorb — via
the reverse Sobolev inequality of Proposition 4.8 and an averaging argument
— some of the most troublesome terms involving kinetic energy that appear
on the right side of (11.6).26

The above argument will be carried out in the next section; in this section
we prepare for our work involving the non-Lagrangian equation satisfied by
u≥1 by discussing interaction Morawetz inequalities in more general situations
than the quintic NLS (1.1). In particular, we shall consider general solutions
φ to the equation (2.1), where N is an arbitrary nonlinearity.

10.1. Virial-type identity. We introduce two related quantities which
average the mass and momentum densities (see Definition 2.1) against a weight
function a(x).

Definition 10.1. Let a(x) be a function27 defined on the spacetime slab
I0 × R3. We define the associated virial potential

Va(t) =
∫

R3

a(x)|φ(t, x)|2dx(10.1)

and the associated Morawetz action

Ma(t) =
∫

R3

aj2Im(φφj)dx.(10.2)

A calculation using Lemma 2.3 shows that

∂tVa = Ma + 2
∫

R3

a{N , φ}mdx,(10.3)

25See (10.5), where the novelty over the arguments from [13], [12] is now the presence of
the spatial cut-off function.

26The discussion here gives another way to frame our regularity argument which was
sketched in Section 4. We only bother to show that a minimal energy blowup solution
must be localized in space in order that we can apply the reverse Sobolev inequality to such
solutions. The reverse Sobolev inequality is needed in the proof of the frequency localized
L4

x,t bound.
27In other contexts it’s useful to consider also time dependent weight functions a(t, x).
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so that Ma = ∂tVa when N = F ′(|φ|2)φ. Using Lemma 2.3, a longer but
similar calculation establishes,

Lemma 10.2 (Virial-type Identity). Let φ be a (Schwartz ) solution of
(2.1). Then

∂tMa =
∫

R3

(−ΔΔa)|φ|2 + 4ajkRe(φjφk) + 2aj{N , φ}j
pdx.(10.4)

We now infer a useful identity by choosing the weight function a(x) above
to be,

a(x) = |x|χ(|x|),(10.5)

where χ(r) denotes a smooth nonnegative bump function defined on r ≥ 0,
supported on 0 ≤ r ≤ 2 and satisfying χ(r) = 1 for 0 ≤ r ≤ 1. We calculate,

aj(x) =
xj

|x| χ̃(|x|) where χ̃(r) = χ(r) + rχ′(r),

ajk(x) =
1
|x|

(
δjk − xj

|x|
xk

|x|

)
χ̃(|x|) +

xj

|x|
xk

|x| χ̃
′(|x|),

Δa(x) =
2
|x| χ̃(|x|) + χ̃′(|x|),

ΔΔa(x) = 2Δ
(

1
|x|

)
χ̃(|x|) + ψ(|x|),

where ψ(|x|) is smooth and supported in 1 ≤ |x| ≤ 2. Define now the notation
M0 := Ma when a(x) is chosen as in (10.5). (Later we will localize around a
different fixed point y ∈ R3, in which case we’ll write the Morawetz action as
My. Note that the letter a is dropped completely now from the notation for
the Morawetz action.) By the definition (10.2),

M0(t) = 2Im
∫

R3

xj

|x| χ̃(|x|)φj(t, x)φ(t, x)dx.(10.6)

Note that28

|M0(t)| ≤ 2‖φ(t)‖L2
x
‖φ(t)‖Ḣ1 .(10.7)

Inserting the calculation below (10.5) above into (10.4), and using the notation
∂r(0) to denote the radial part of the gradient with center at 0 ∈ R3 (so that

28One can also show that |M0(t)| � ‖φ(t)‖2
Ḣ1/2 ; see Lemma 2.1 in [13].
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∂r(0) ≡ x
|x| · ∇), we get

∂tM
0 = −2

∫
R3

Δ(
1
|x|)|φ(x)|2χ̃(|x|)dx

+ 4
∫

R3

[|∇φ(x)|2 − |∂r(0)φ(x)|2] 1
|x| χ̃(|x|)dx

+ 2
∫

R3

(x)
|x| · {N , φ}pχ̃(|x|)dx

−
∫

R3

|φ(x)|2ψ(|x|)dx + 4
∫

R3

|∂r(0)φ|2χ̃′(|x|)dx.

As remarked above, we translate the origin and choose, for fixed y ∈ R3

a(x) = |x − y|χ(|x − y|),(10.8)

instead of (10.5), in which case the Morawetz action (10.2) is written My.
Then the preceding formula adjusts to give the following spatially localized
virial-type identity, where we write χ̃ for another bump function with the
same properties as χ,

∂tM
y =(10.9)

− 2
∫

R3

Δ(
1

|x − y|)|φ(x)|2χ̃(|x − y|)dx(10.10)

+ 4
∫

R3

|∇/ yφ(x)|2 1
|x − y| χ̃(|x − y|)dx(10.11)

+ 2
∫

R3

(x − y)
|x − y| · {N , φ}pχ̃(|x − y|)dx(10.12)

+ O

(∫
R3

(|φ(x)|2 + |∂r(y)φ(x)|2)|ψ(x − y)|dx

)
.(10.13)

We have used here the notation ∂r(y) to denote the radial portion of the gradient
centered at y and ∇/ y for the rest of the gradient. That is,

∂r(y) :=
x − y

|x − y| · ∇ and ∇/ y := ∇− x − y

|x − y|(
x − y

|x − y| · ∇).

We have also taken the liberty to dismiss some of the structure in (10.13) using
the fact that χ̃′ has the same support properties as ψ.

10.2. Interaction virial identity and general interaction Morawetz estimate
for general equations. When we choose a(x) = |x|χ(x) above, the virial poten-
tial reads Va(t) =

∫
R3 |φ(x, t)|2|x|χ(x)dx and hence M0(t) := d

dtVa(t) might be
thought of as measuring the extent to which the mass of φ (near the origin at
least) is moving away from the origin at time t. Similarly, for fixed y ∈ R3,
My(t) gives some measure of the mass movement away from the point y.

Since we are ultimately interested in global decay and scattering properties
of φ, it’s reasonable to look for some measure of how the mass is moving away
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from (or interacting with) itself. We might therefore sum over all y ∈ R3 the
extent to which mass is moving away from y (that is, My(t)) multiplied by the
amount of mass present at that point y (that is, |φ(y, t)|2dy). The result is the
following quantity which we’ll call the spatially localized Morawetz interaction
potential.

M interact(t) =
∫

R3
y

|φ(t, y)|2My(t)dy(10.14)

= 2Im
∫

R3
y

∫
R3

x

|φ(t, y)|2χ̃(|x − y|)(x − y)
|x − y|(10.15)

· [∇φ(t, x)]φ(t, x)dxdy.

Note that, using (10.7),

|M interact(t)| � ‖φ(t)‖3
L2

x
‖φ(t)‖Ḣ1

x
.(10.16)

We calculate, using (10.9) and (2.4),

∂tM
interact =

∫
R3

y

|φ(y)|2∂tM
ydy(10.17)

+
∫

R3
y

[2∂ykIm(φφk)(y) + 2{N , φ}m]My(t)dy.(10.18)

The ∂yk appearing in (10.18) will now be integrated by parts. Thus, using
Lemma 2.3 and the fact that on R3,Δ 1

|x| = −4πδ, we have our spatially local-
ized interaction virial-type identity

∂tM
interact =(10.19)

8π

∫
R3

|φ(t, y)|4dy(10.20)

+ 4
∫

R3
y

∫
R3

x

|φ(t, y)|2
[

1
|x − y| χ̃(|x − y|)

]
|∇/ yφ(t, x)|2dxdy(10.21)

+ 2
∫

R3
y

∫
R3

x

|φ(t, y)|2
[
χ̃(|x − y|)(x − y)

|x − y|

]
· {N , φ}p(t, x)dxdy(10.22)

− 4
∫

R3
y

∫
R3

x

Im(φφk)(t, y)∂yk

[
(x − y)j

|x − y| χ̃(|x − y|)
]

Im(φjφ(t, x))dxdy(10.23)

+ O

(∫
R3

y

∫
R3

x

|φ(t, y)|2|ψ(|x − y|)|[|φ(t, x)|2 + |∂r(y)φ(t, x)|2]dxdy

)
(10.24)

+ 4
∫

R3
y

∫
R3

x

{N , φ}m(t, y)
[
χ̃(|x − y|)(x − y)

|x − y|

]
· Im(φ∇φ)(t, x)dxdy.(10.25)

The ∂yk differentiation in (10.23) produces two terms. When ∂yk falls on
χ̃(|x − y|), we encounter a term controlled by (10.24). Indeed, we get a term
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bounded by∫
R3

y

∫
R3

x

|φ(x)||∂r(y)φ(x)||φ(y)||∂r(x)φ(y)|χ̃′(|x − y|)dxdy.

Upon grouping the terms in the integrand as [|φ(x)||∂r(x)φ(y)|][|φ(y)||∂r(y)φ(x)|]
and using |ab| � |a|2 + |b|2, we find the second part of the expression (10.24).
When the derivative falls on the unit vector, we encounter a term of indetermi-
nate sign but which is bounded from below by (10.21). We present the details
(which also appear in Proposition 2.2 of [13]). The term we are considering is
(with t dependence supressed)

− 4
∫

R3
y

∫
R3

x

Im(φφk)(y)
[
−δjk +

(x − y)j(x − y)k

|x − y|2
]

· Im(φjφ)(x)
[

1
|x − y| χ̃(|x − y|)

]
dxdy

≥ −4
∫

R3
x

∫
R3

y

∣∣∣Im(φ∇/ xφ)(y) · Im(φ∇/ yφ)(x)
∣∣∣ [

1
|x − y| χ̃(|x − y|)

]
dxdy

≥ −4
∫

R3
x

∫
R3

y

|φ(y)||∇/ xφ(y)||φ(x)||∇/ yφ(x)|
[

1
|x − y| χ̃(|x − y|)

]
dxdy

≥ −2
∫

R3
y

∫
R3

x

(|φ(y)|2|∇/ yφ(x)|2 + |φ(x)|2|∇/ xφ(y)|2)
[

1
|x − y| χ̃(|x − y|)

]
dxdy

≥ (10.21).

Thus, apart from another term of the form (10.24), we have shown that
−(10.21) and (10.23) together contribute a nonnegative term.

Restricting the above calculations to the time interval I0, we have the
following useful estimate.

Proposition 10.3 (Spatially Localized Interaction Morawetz Inequality).
Let φ be a (Schwartz ) solution to the equation (2.1) on a spacetime slab I0×R3

for some compact interval I0. Then

8π

∫
I0

∫
R3

y

|φ(t, y)|4dydt

+ 2
∫

I0

∫
R3

y

∫
R3

x

|φ(t, y)|2
[
χ̃(|x − y|)(x − y)

|x − y|

]
· {N , φ}p(t, x)dxdydt

≤2‖φ‖3
L∞

t L2
x(I0×R3)‖φ‖L∞

t Ḣ1
x(I0×R3)

+ 4
∫

I0

∫
R3

y

∫
R3

x

|{N, φ}m(t, y)||χ̃(|x − y|)||φ(t, x)||∇φ(t, x)|dxdydt

+ O

(∫
I0

∫
R3

y

∫
R3

x

|φ(t, y)|2|ψ(|x − y|)|[|φ(t, x)|2 + |∂r(y)φ(t, x)|2]dxdydt

)
.



SCATTERING FOR 3D CRITICAL NLS 827

The proof follows directly by integrating (10.19) over the time interval I0

using (10.16).

Remark 10.4. If we replace (10.8) by

a(x) = |x − y|χ
( |x − y|

R

)
(10.26)

then there are adjustments to the inequality obtained in Proposition 10.3. Of
course, χ̃(·) is replaced by χ̃(·/R). The annular cutoff ψ in the final term
arises in the analysis above when derivatives fall on χ or χ̃. A review of the
derivation shows that this term adjusts under (10.26) into

O

(∫
I0

∫
R3

y

∫
R3

x

|φ(t, y)|2
∣∣∣∣ψ( |x − y|

R

)∣∣∣∣ [
1

R3
|φ(t, x)|2+

1
R
|∂r(y)φ(t, x)|2

]
dxdydt

)
.

(10.27)

If we send R → ∞ and specialize to solutions of (1.1), then we can apply (2.6),
(2.8) to obtain the bound∫

I0

∫
R3

y

|u(t, y)|4dydt

+
∫

I0

∫
R3

y

∫
R3

x

|u(t, y)|2|u(t, x)|6
|x − y| dxdydt � ‖u‖3

L∞
t L2

x(I0×R3)‖u‖L∞
t Ḣ1

x(I0×R3),

which is basically (1.8) (see Footnote 10.1). However for the purposes of prov-
ing Proposition 4.9, it turns out not to be feasible to send R → ∞, as one of
the error terms (specifically, the portion of the mass bracket {N , φ}m which
looks schematically like u5

hiulo) becomes too difficult to estimate.

11. Interaction Morawetz: The setup and an averaging argument

Having discussed interaction Morawetz inequalities in general, we are now
ready to begin the proof of Proposition 4.9.

From the invariance of this proposition under the scaling (1.3) we may
normalize N∗ = 1. Since we are assuming 1 = N∗ < c(η3)Nmin, we have in
particular that 1 < c(η3)N(t) for all t ∈ I0. From Corollary 4.4 and Sobolev
we have the low frequency estimate

‖u<1/η3
‖L∞

t Ḣ1
x(I0×R3) + ‖u<1/η3

‖L∞
t L6

x(I0×R3) � η3(11.1)

(for instance), if c(η3) was chosen sufficiently small. By (4.11) we thus see
that our choice of N∗ = 1 has forced Nmin ≥ c(η0)η−1

3 . Define Phi := P≥1 and
Plo := P<1, and then define uhi := Phiu and ulo := Plou. Observe from (11.1)
that ulo has small energy,

‖ulo‖L∞
t Ḣ1

x(I0×R3) + ‖ulo‖L∞
t L6

x(I0×R3) � η3.(11.2)
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while from (11.1), (1.16) and (4.5) we see that uhi has small mass:

‖uhi‖L∞
t L2

x(I0×R3) � η3.(11.3)

We wish to prove (4.19), or in other words

‖uhi‖L4
t L4

x(I0×R3) � η
1/4
1 .(11.4)

By a standard continuity argument,29 it will suffice to show this under the
bootstrap hypothesis

‖uhi‖L4
t L4

x(I0×R3) ≤ (C0η1)1/4(11.5)

where C0 
 1 is a large constant (depending only on the energy, and not on
any of the η’s). In practice we will overcome this loss of C0 with a positive
power of η3 or η1.

We now use Proposition 10.3 to obtain a Morawetz estimate for φ := uhi.

Theorem 11.1 (Spatially and frequency localized interaction Morawetz
inequality). Let the notation and assumptions be as above. Then for any
R ≥ 1,

∫
I0

∫
R3

|uhi|4 dxdt +
∫

I0

∫ ∫
|x−y|≤2R

|uhi(t, y)|2|uhi(t, x)|6
|x − y| dxdydt � XR,

(11.6)

where XR denotes the quantity

XR := η3
3

(11.7)

+
∫

I0

∫ ∫
|x−y|≤2R

|uhi(t, y)|2|ulo(t, x)|5|uhi(t, x)|
|x − y| dxdydt

(11.8)

+
4∑

j=0

∫
I0

∫ ∫
|x−y|≤2R

|uhi(t, y)||PhiO(uj
hiu

5−j
lo )(t, y)|

(11.9)

· |uhi(t, x)||∇uhi(t, x)| dxdydt

+
∫

I0

∫ ∫
|x−y|≤2R

|uhi(t, y)||PloO(u5
hi)(t, y)||uhi(t, x)||∇uhi(t, x)| dxdydt

(11.10)

29Strictly speaking, one needs to prove that (11.5) implies (11.4) whenever I0 is replaced
by any subinterval I1 of I0, in order to run the continuity argument correctly, but it will be
clear that the argument below works not only for I0 but also for all subintervals of I0.
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+ η
1/10
3

1
R

∫
I0

( sup
x∈R3

∫
B(x,2R)

|uhi(t, y)|2 dy)dt(11.11)

+
1
R

∫
I0

∫ ∫
|x−y|≤2R

|uhi(t, y)|2(|∇uhi(t, x)|2 + |uhi(t, x)|6) dxdydt.(11.12)

Remark 11.2. This should be compared with (1.8). The terms (11.8)–
(11.12) may look fearsome, but most of these terms are manageable, because
of the spatial localization |x − y| ≤ 2R, and because there are not too many
derivatives on the high-frequency term uhi; the only truly difficult terms will
be the last two (11.11), (11.12). Observe from (4.3), (4.4) that we could control
(11.12) by (11.11) if we dropped the η

1/10
3 factor from (11.11); however this

type of factor is indispensable in closing our bootstrap argument, and so we
must treat (11.12) separately. The idea is to use the reverse Sobolev inequality,
Proposition 4.8, to control (11.12) by the second term in (11.6), plus an error
of the form (11.11). This can be done, but requires us to apply Theorem 11.1
not just for R = 1 (which would be the most natural choice of R) but rather
for a range of R and then average over such R; see the discussion after the
proof of this theorem.

Proof. We apply Phi to (1.1) to obtain

(i∂t + Δ)uhi = Phi(|u|4u),

and then apply Proposition 10.3 with φ := uhi and F := Phi(|u|4u), to obtain

c1

∫
I0

∫
R3

|uhi(t, x)|4 dxdt

+ c2

∫
I0

∫
R3

∫
R3

|uhi(t, y)|2χ̃(
x − y

R
)

x − y

|x − y| · {Phi(|u|4u), uhi}p(t, x) dxdydt

� ‖uhi‖3
L∞

t L2
x(I0×R3)‖uhi‖L∞

t Ḣ1
x(I0×R3)

+
∫

I0

∫ ∫
|x−y|≤2R

|{Phi(|u|4u), uhi}m(t, y)||uhi(t, x)||∇uhi(t, x)| dxdydt

+
1
R

∫
I0

∫ ∫
|x−y|≤2R

|uhi(t, y)|2( 1
R2

|uhi(t, x)|2 + |∇uhi(t, x)|2) dxdydt.

We now estimate the right-hand side by XR. Observe from (4.3), (11.3)
that

‖uhi‖3
L∞

t L2
x(I0×R3)‖uhi‖L∞

t Ḣ1
x(I0×R3) � η3

3 = (11.7) ≤ XR,

while from (11.3) again we have∫
R3

1
R2

|uhi(t, x)|2 dx � η2
3/R2 ≤ η3
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and hence
1
R

∫
I0

∫ ∫
|x−y|≤2R

|uhi(t, y)|2 1
R2

|uhi(t, x)|2 dxdydt � (11.11) ≤ XR.

Similarly we have

1
R

∫
I0

∫ ∫
|x−y|≤2R

|uhi(t, y)|2|∇uhi(t, x)|2 dxdydt � (11.12) ≤ XR.

Now we deal with the mass bracket term. We take advantage of the
cancellation (2.6) to write

{Phi(|u|4u), uhi}m = {Phi(|u|4u) − |uhi|4uhi, uhi}m.

We can write, using the notation (1.15),

Phi(|u|4u) − |uhi|4uhi =Phi(|u|4u − |uhi|4uhi) − Plo(|uhi|4uhi)

=
4∑

j=0

PhiO(uj
hiu

5−j
lo ) + PloO(u5

hi).

Thus these terms can be bounded by O((11.9) + (11.10)) = O(XR) (where we
take absolute values everywhere). To summarize so far, we have shown that

c1

∫
I0

∫
R3

|uhi(t, x)|4 dxdt + c2

∫
I0

∫
R3

∫
R3

|uhi(t, y)|2χ̃(
x − y

R
)

x − y

|x − y|
· {Phi(|u|4u), uhi}p(t, x) dxdydt � XR.

We now deal with the momentum bracket term, which is a little more in-
volved as it requires a little more integration by parts. We will need to exploit
the positivity of one of the components of this term. In order to exploit the
cancellation (2.8), we break up the momentum bracket into three pieces:

{Phi(|u|4u), uhi}p

= {|u|4u, uhi}p − {Plo(|u|4u), uhi}p

= {|u|4u, u}p − {|u|4u, ulo}p − {Plo(|u|4u), uhi}p

= {|u|4u, u}p − {|ulo|4ulo, ulo}p − {|u|4u − |ulo|4ulo, ulo}p − {Plo(|u|4u), uhi}p

= −2
3
∇(|u|6 − |ulo|6) − {|u|4u − |ulo|4ulo, ulo}p − {Plo(|u|4u), uhi}p.

We first deal with {Plo(|u|4u), uhi}p estimating the contribution of this term
crudely in absolute values as

O

(∫
I0

∫ ∫
|x−y|≤2R

|uhi(t, y)|2|{uhi, Plo(|u|4u)}p(t, x)| dxdydt

)
.

We wish to bound this term by O((11.11)) = O(XR), recalling that any positive
power of η3 overwhelms any loss in R powers, this follows from
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Lemma 11.3.

∫
R3 |{uhi, Plo(|u|4u)}p| dx � η

1/2
3 .

Proof. By (4.3), Hölder and Bernstein (1.19),∫
R3

|{uhi, Plo(|u|4u)}p| dx �
∫

R3

|∇uhi||Plo(|u|4u)| dx+
∫

R3

|uhi||∇Plo(|u|4u)| dx

� ‖∇uhi‖L2
x
‖Plo(|u|4u)‖L2

x
+‖uhi‖L2

x
‖∇Plo(|u|4u)‖L2

x

� ‖Plo(|u|4u)‖L2
x
.

Now decompose u = uhi + ulo, and use (1.15) to then decompose

Plo(|u|4u) =
5∑

j=0

PloO(uj
hiu

5−j
lo ).

The terms j = 0, 1, 2, 3, 4 can be estimated by using Bernstein (1.19) and then
Hölder to estimate

4∑
j=0

‖PloO(uj
hiu

5−j
lo )‖L2

x
�

4∑
j=0

‖O(uj
hiu

5−j
lo )‖L

6/5
x

�
4∑

j=0

‖uhi‖j
L6

x
‖ulo‖5−j

L6
x

� η3,

thanks to (4.4), (11.1). For the j = 5 term, we argue similarly; indeed we have

‖PloO(u5
hi)‖L2

x
� ‖O(u5

hi)‖L1
x

� ‖uhi‖9/2
L6

x
‖uhi‖1/2

L2
x

� η
1/2
3

by (4.3), (11.1).

Now we deal with the second term in the momentum bracket, namely
{|u|4u − |ulo|4ulo, ulo}p. We first move the derivative in (2.3) into a more
favorable position, using the identity

{f, g}p = ∇O(fg) + O(f∇g)

and the identity |u|4u − |ulo|4ulo =
∑5

j=1 O(uj
hiu

5−j
lo ) from (1.15) to write

{|u|4u − |ulo|4ulo, ulo}p =
5∑

j=1

(∇O(uj
hiu

6−j
lo ) + O(uj

hiu
5−j
lo ∇ulo)).

For the second term, we argue crudely again, estimating this contribution in
absolute value as

O
( ∫

I0

5∑
j=1

∫ ∫
|x−y|≤2R

|uhi(t, y)|2|uhi(t, x)|j |ulo(t, x)|5−j |∇ulo(t, x)| dxdydt
)
.

(11.13)

But by (4.4), (11.1) and the low frequency localization of ulo we have∫
R3

|uhi|j |ulo|5−j |∇ulo| dx�‖uhi‖j
L6

x
‖ulo‖5−j

L6
x
‖∇ulo‖L6

x
�‖uhi‖j

L6
x
‖ulo‖6−j

L6
x

�η3,
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and so this term can also be bounded by O((11.11)) = O(XR). For the first
term, we can integrate by parts and then take absolute values to estimate the
contribution of this term by

5∑
j=1

O
( ∫

I0

∫ ∫
|x−y|≤2R

|uhi(t, y)|2|uhi(t, x)|j |ulo(t, x)|6−j

|x − y| dxdydt
)
.(11.14)

Note that the terms where the integration by parts hits the cutoff is of the same
type, but with the 1

|x−y| factor replaced by O( 1
R) on the region where |x−y|∼R;

it is clear that this term is dominated by (11.14) (or by a variant of (11.13),
where we remove the ∇ from ulo). We hold off on estimating this term for
now, and turn to the first term in the momentum bracket: −2

3∇(|u|6 − |ulo|6).
After an integration by parts, this term can be written as

c3

∫
I0

∫ ∫
|x−y|≤2R

|uhi(t, y)|2(|u(t, x)|6 − |ulo(t, x)|6)
|x − y| dxdydt

+ O
( 1

R

∫
I0

∫ ∫
|x−y|≤2R

|uhi(t, y)|2||u(t, x)|6 − |ulo(t, x)|6|| dxdydt
)
,

for some explicit constant c3 > 0; note that the error incurred by removing the
cutoff χ(x−y

R ) by the cruder cutoff |x − y| ≤ 2R can be controlled by (11.12)
which is acceptable. To control the error term, we use (1.14) to split

|u(t, x)|6 − |ulo(t, x)|6 = |uhi(t, x)|6 +
5∑

j=1

O(uj
hi(t, x)u6−j

lo (t, x)).(11.15)

The |uhi|6 term is of course bounded by O((11.12)) = O(XR). The remaining
terms have an L1

x norm of O(η3) by (4.4), (11.1), and Hölder, so that this error
term is bounded by O((11.11)) = O(XR). For the main term, we again use
(11.15) and observe that the contributions of the error terms are bounded by
(11.14). Collecting all these estimates together, we have now shown that

c1

∫
I0

∫
R3

|uhi(t, x)|4 dxdt

+ c3

∫
I0

∫ ∫
|x−y|≤2R

|uhi(t, y)|2|uhi(t, x)|6
|x − y| dxdydt � XR

+
5∑

j=1

O(
∫

I0

∫ ∫
|x−y|≤2R

|uhi(t, y)|2|uhi(t, x)|j |ulo(t, x)|6−j

|x − y| dxdydt).

We can eliminate the j = 2, 3, 4, 5 terms using the elementary inequality

|uhi(t, x)|j |ulo(t, x)|6−j ≤ ε|uhi(t, x)|6 + C(ε)|uhi(t, x)||ulo(t, x)|5

for some small absolute constant ε; this allows us to control the j = 2, 3, 4, 5
terms by the j = 1 term, plus a small multiple of the j = 6 term which can then
be absorbed by the second term on the left-hand side (shrinking c3 slightly).
The theorem follows.
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We would like to use Theorem 11.1 to prove (11.4). If it were not for the
error terms (11.8)–(11.12) then this estimate would follow immediately from
Theorem 11.1, since we can discard the second term in (11.6) as being positive.
One would then hope to estimate all of the error terms (11.8)–(11.12) by O(η1)
using the bootstrap hypothesis (11.5) and the other estimates available (e.g.
(4.3), (4.4), (11.1), (11.3)). It turns out that this strategy works (with R = 1)
for the first four error terms (11.8)–(11.11) but not for the fifth term (11.12).
To estimate this term we need the reverse Sobolev inequality, which effectively
replaces the |∇uhi|2 density here by |uhi|6, at which point one can hope to
control this term by the second positive term in (11.6). But to do so it turns
out that one cannot apply Theorem 11.1 for a single value of R, but must
instead average over a range of R.

We turn to the details. We let J = J(η1, η2) 
 1 be a large30 integer, and
apply Theorem 11.1 to all dyadic radii R = 1, 2, . . . , 2J separately. We then
average over R to obtain∫

I0

∫
R3

|uhi|4 dxdt + Y � X,(11.16)

where Y is the positive quantity

Y :=
1
J

∑
1≤R≤2J

∫
I0

∫ ∫
|x−y|≤2R

|uhi(t, y)|2|uhi(t, x)|6
|x − y| dxdydt

(R is always understood to sum over dyadic numbers), and X is the quantity

X := η3
3

(11.17)

+ sup
1≤R≤2J

∫
I0

∫ ∫
|x−y|≤2R

|uhi(t, y)|2|ulo(t, x)|5|uhi(t, x)|
|x − y| dxdydt

(11.18)

+ sup
1≤R≤2J

4∑
j=0

(11.19)

·
∫

I0

∫ ∫
|x−y|≤2R

|uhi(t, y)||PhiO(uj
hiu

5−j
lo )(t, y)||uhi(t, x)||∇uhi(t, x)| dxdydt

+ sup
1≤R≤2J

∫
I0

∫ ∫
|x−y|≤2R

|uhi(t, y)||PloO(u5
hi)(t, y)||uhi(t, x)||∇uhi(t, x)| dxdydt

(11.20)

30But it is not too large; any factor of η3 will easily be able to overcome any losses depending
on J .
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+ η
1/10
3 sup

1≤R≤2J

1
R

∫
I0

(
sup
x∈R3

∫
B(x,2R)

|uhi(t, y)|2 dy
)
dt

(11.21)

+
1
J

∑
1≤R≤2J

1
R

∫
I0

∫ ∫
|x−y|≤2R

|uhi(t, y)|2(|∇uhi(t, x)|2 + |uhi(t, x)|6) dxdydt,

(11.22)

where we have estimated the average 1
J

∑
1≤R≤2J by the supremum in those

terms for which the averaging is not important.31

The terms (11.17)–(11.22) are roughly arranged in increasing order of
difficulty to estimate. But let us use the reverse Sobolev inequality already ob-
tained in Proposition 4.8 to deal with the most difficult term (11.22), replacing
it by easier terms.

Lemma 11.4.

(11.21) + (11.22) � η
1/100
1 (Y + W )

where

W := sup
1≤R≤C(η1,η2)2J

1
R

∫
I0

( ∑
x∈ R

100
Z3

( ∫
B(x,3R)

|uhi(t, y)|2 dy
)100)1/100

dt,

(11.23)

and R
100Z3 is the integer lattice Z3 dilated by R/100.

Proof. We first handle (11.21). For every x ∈ R3 there exists x′ ∈ R
100Z3

such that B(x, 2R) is contained in B(x′, 3R). Thus

1
R

sup
x∈R3

∫
B(x,2R)

|uhi(t, y)|2 dy � 1
R

( ∑
x′∈ R

100
Z3

( ∫
B(x′,3R)

|uhi(t, y)|2 dy
)100)1/100

,

and the claim follows by noting that η
1/10
3 � η

1/100
1 .

Now we consider (11.22), writing this term as

1
J

∑
1≤R≤2J

1
R

∫
I0

∫
R3

|uhi(t, y)|2ehi(t, y, 2R) dydt,

where ehi(t, y, 2R) is the local energy,

ehi(t, y, 2R) :=
∫

B(y,2R)
|∇uhi(t, x)|2 + |uhi(t, x)|6 dx.

We will denote the same quantity with uhi replaced with u by e(t, y, 2R). We
split this term into the regions ehi(t, y, 2R) � η1 and ehi(t, y, 2R) 
 η1.

31Indeed, in those terms we will extract a gain of η3 which will easily absorb any losses
relating to R = O(2J), since J depends only on η1 and η2.
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Large energy regions. Consider first the large energy regions ehi(t, y, 2R)

 η1. By (11.2), the same lower bound holds for e(t, y, 2R). For (t, y) in such
regions, we apply Proposition 4.8 to conclude that∫

B(y,2R)
|∇u(t, x)|2dx ≤ 1

2
e(t, y, 2R) + C(η1, η2)

∫
B(y,C(η1,η2)R)

|u(t, x)|6dx

which implies∫
B(y,2R)

|∇u(t, x)|2dx � C(η1, η2)
∫

B(y,C(η1,η2)R)
|u(t, x)|6dx.

The same estimate is valid for uhi in light of (11.2). Thus we can bound the
contribution to (11.22) of the large energy regions by

� C(η1, η2)
1
J

∑
1≤R≤2J

1
R

∫
I0

∫ ∫
|x−y|�C(η1,η2)R

|uhi(t, y)|2|uhi(t, x)|6 dxdydt.

Shifting R by C(η1, η2), we can bound this by

� (C(η1, η2))2
1
J

∑
1≤R≤C(η1,η2)2J

AR(11.24)

where
AR :=

1
R

∫
I0

∫ ∫
|x−y|≤R

|uhi(t, y)|2|uhi(t, x)|6 dxdydt.

To bound this by η
1/100
1 (Y + W ) (and not just by O(Y )) we exploit the aver-

aging32 in R. First observe that∑
1≤R≤R′

AR �
∫

I0

∫ ∫
|x−y|≤R′

|uhi(t, y)|2|uhi(t, x)|6
|x − y| dxdydt

for all R′. Averaging this over all 1 ≤ R′ ≤ 2J , we see that

1
J

∑
1≤R′≤2J

∑
1≤R≤R′

AR

� 1
J

∑
1≤R′≤2J

∫
I0

∫ ∫
|x−y|≤R′

|uhi(t, y)|2|uhi(t, x)|6
|x − y| dxdydt � Y.

Now let 1 < J0 < J be a parameter depending on η1, η2 to be chosen shortly.
Observe that for each 1 ≤ R ≤ 2J−J0 there are at least J0 values of R′ which
involve that value of R in the above sum. Thus we have

J0

J

∑
1≤R≤2J−J0

AR � Y,

32The key point here is that while the AR quantities have a factor of 1/R, the quantities
in Y have a larger factor of 1/|x − y|. After averaging, the latter factor begins to dominate
the former.
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and thus the contribution to (11.24) of the terms where R ≤ 2J−J0 is bounded
by O( (C(η1,η2))2

J0
Y ), which is acceptable if J0 is chosen sufficiently large depend-

ing on η1, η2.
It remains to control the expression

(C(η1, η2))2

J

∑
2J−J0≤R≤C(η1,η2)2J

1
R

∫
I0

∫ ∫
|x−y|≤R

|uhi(t, y)|2|uhi(t, x)|6dxdydt.

This is bounded by

C(η1, η2, J0)
J

sup
1≤R≤C(η1,η2)2J

1
R

∫
I0

∫
sup
x∈R3

( ∫
B(x,R)

|uhi(t, y)|2dy
)
|uhi(t, x)|6dxdt.

Using the energy bound (4.4), we see that this is in turn bounded by

� C(η1, η2, J0)
J

sup
1≤R≤C(η1,η2)2J

1
R

(∫
I0

sup
x∈R3

( ∫
B(x,R)

|uhi(t, y)|2dy
)
dt

)
� 1

J
C(η1, η2, J0)W

� η
1/100
1 W

when J = J(η1, η2) is sufficiently large.

Small energy regions. Now we deal with the contribution of the low
energy regions:

1
J

∑
1≤R≤2J

1
R

∫
I0

∫
ehi(t,y,2R)�η1

|uhi(t, y)|2ehi(t, y, 2R) dydt.

Observe that if y is such that ehi(t, y, 2R) � η1, then there exists y′ ∈ R
100Z3

such that y ∈ B(y′, R) ⊆ B(y, 2R) ⊂ B(y′, 3R), and thus ehi(t, y, R) �
min(η1, ehi(t, y′, 3R)). Thus we can dominate the above expression by

� 1
J

∑
1≤R≤2J

1
R

∫
I0

∑
y′∈ R

100
Z3

min(η1, ehi(t, y′, 3R))
∫

B(y′,3R)
|uhi(t, y)|2 dydt.

Now from (4.3) we have, using min(η1, ehi(·))100/99 ≤ η
1/99
1 ehi(·), that⎛⎝ ∑

y′∈ R

100
Z3

min(η1, ehi(t, y′, 3R))100/99

⎞⎠99/100

� η
1/100
1

⎛⎝ ∑
y′∈ R

100
Z3

ehi(t, y′, 3R)

⎞⎠99/100

� η
1/100
1 .

Thus, by Hölder’s inequality we can bound the previous expression by
O(η1/100

1 W ) as desired.
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In light of all the above estimates, we have thus shown that∫
I0

∫
R3

|uhi|4 dxdt � η3
3 + (11.18) + (11.19) + (11.20) + η

1/100
1 W,(11.25)

since the Y term on the left can be used to absorb the η
1/100
1 Y term which would

otherwise appear on the right. It thus suffices to show that all of the quantities
(11.18)-(11.20) are O(η1), while the factor of η

1/100
1 allows the quantity W to

be estimated using the weaker bound of O(C0η1). (This is the main purpose of
the reverse Sobolev inequality, Proposition 4.8, in our argument. The constant
C0 was defined in our bootstrap assumption (11.5).).

As mentioned earlier, the terms (11.18)–(11.20) are roughly arranged in
increasing order of difficulty, and W is more difficult still. To estimate any
of these expressions, we of course need good spacetime estimates on uhi and
ulo. We do already have some estimates on these quantities (11.5), (4.3),
(4.4), (11.2), (11.3), but it turns out that these are not directly sufficient to
estimate (11.18)–(11.20) and W . Thus we shall first use the equation (1.1) and
Strichartz estimates to bootstrap (11.5) to yield further spacetime integrability;
this will be the purpose of the next section.

12. Interaction Morawetz: Strichartz control

In this section we establish the spacetime estimates we need in order to
bound (11.18)–(11.20) and W . Ideally one would like to use (11.5) to show
that u obeys the same estimates as a solution to the free Schrödinger equation;
however the quantity (11.5) is supercritical (it has roughly the scaling of Ḣ1/4,
instead of Ḣ1), and we must therefore accept some loss of derivatives in the
high frequencies;33 a model example of a function u obeying (11.5) to keep
in mind is a pseudosoliton solution where u has magnitude |u(t, x)| ∼ N1/2

on the spacetime region x = O(N−1), t = O(N) and has Fourier transform
supported near the frequency N for some large N 
 1. We will however be
able to show that u does behave like a solution to the free Schrödinger equation
modulo a high frequency forcing term which is controlled in L2

t L
1
x but not in

dual Strichartz spaces.
Recall that the constant C0 which we use throughout these next three

sections of the paper was defined in (11.5), our bootstrap hypothesis on the
L4 norm of uhi. We begin by estimating the low frequency portion ulo of the
solution, which does behave like the free equation from the point of view of
Strichartz estimates:

33Recall that uhi and ulo were defined at the beginning of Section 11.
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Proposition 12.1 (Low frequency estimate). For the functions uhi, ulo

defined at the start of Section 11,

‖∇ulo‖L2
t L6

x(I0×R3) � C
1/2
0 η

1/2
1(12.1)

and

‖ulo‖L4
t L∞

x (I0×R3) � η
1/2
3 .(12.2)

In fact, there is the slightly more general statement that (12.1), (12.2) hold for
all u≤N when N ∼ 1.

Observe that the L4
t L

∞
x estimate gains a power of η3, which will be very

useful for us in overcoming certain losses of R in the sequel.

Proof. We may assume that N ≥ 1, since the case when N < 1 of course
then follows. Let Z denote the quantity

Z := ‖∇u≤N‖L2
t L6

x(I0×R3) + ‖u≤N‖L4
tL∞

x (I0×R3).(12.3)

By Strichartz (3.7), (3.4) we have

Z � ‖u≤N‖Ṡ1(I0×R3) � ‖u≤N (t0)‖Ḣ1
x

+ ‖∇P≤N (|u|4u)‖L2
tL

6/5
x (I0×R3).

By (11.1) we have
‖u≤N (t0)‖Ḣ1

x
� η3.

Now we consider the nonlinear term. We split u = u≤N + u>N and use (1.15)
to write

∇P≤N (|u|4u) =
5∑

j=0

∇P≤NO(uj
>Nu5−j

≤N ).

Considering the j = 0 term first, we discard P≤N and use the Leibnitz rule
and Hölder to estimate

‖∇P≤NO(u5
≤N )‖L2

t L
6/5
x (I0×R3) � ‖O(u4

≤N∇u≤N )‖L2
t L

6/5
x (I0×R3)

� ‖u≤N‖4
L∞

t L6
x(I0×R3)‖∇u≤N‖L2

tL6
x(I0×R3);

by (11.1) and (12.3) this term is thus bounded by O(η4
3Z).

Now consider the j = 1 term. We argue similarly to estimate this term as

‖∇P≤NO(u4
≤Nu>N )‖L2

tL
6/5
x (I0×R3)

� ‖O(u4
≤N∇u>N )‖L2

tL
6/5
x (I0×R3)

+ ‖O(u3
≤Nu>N∇u≤N )‖L2

t L
6/5
x (I0×R3)

� ‖u≤N‖2
L4

t L∞
x (I0×R3)‖u≤N‖2

L∞
t L6

x(I0×R3)‖∇u>N‖L∞
t L2

x(I0×R3)

+ ‖u≤N‖3
L∞

t L6
x(I0×R3)‖u>N‖L∞

t L6
x(I0×R3)‖∇u≤N‖L2

t L6
x(I0×R3);

by (4.4), (11.1), (12.3) these terms are thus bounded by O(η2
3Z

2 + η3
3Z).
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Now consider the j = 2, 3, 4, 5 terms. This time we use Bernstein’s in-
equality (1.20) (recalling that N ∼ 1) and Hölder to estimate

‖∇P≤NO(u5−j
≤N uj

>N )‖L2
t L

6/5
x (I0×R3)

� ‖O(u5−j
≤N uj

>N )‖L2
t L1

x(I0×R3)

� ‖u>N‖2
L4

t L4
x(I0×R3)‖u>N‖j−2

L∞
t L6

x(I0×R3)‖u≤N‖5−j
L∞

t L6
x(I0×R3).

Applying (11.5), (4.4) we can bound these terms by O(C1/2
0 η

1/2
1 ) (we can do

significantly better on the j = 2, 3, 4 terms but we will not exploit this). Com-
bining all these estimates we see that

Z � η3 + η4
3Z + η2

3Z
2 + η3

3Z + C
1/2
0 η

1/2
1 ;

by standard continuity arguments this then implies that Z � C
1/2
0 η

1/2
1 . This

proves (12.1), but we did not achieve the η3 gain in (12.2).
To obtain (12.2) we must refine the above analysis. Let u0

≤N be the
solution to the free Schrödinger equation with initial data u0

≤N (t0) = u≤N (t0)
for some t0 ∈ I0. Then by (11.1) and Lemma 3.1

‖u0
≤N‖L4

t L∞
x (I0×R3) � η3.

Thus it suffices to prove that

‖u≤N − u0
≤N‖L4

t L∞
x (I0×R3) � η

1/2
3 .

We estimate the left-hand side as∑
N ′�N

‖uN ′ − u0
N ′‖L4

t L∞
x (I0×R3).

By Bernstein (1.20) we may bound this by∑
N ′�N

N ′‖uN ′ − u0
N ′‖L4

t L3
x(I0×R3)

which by interpolation can be bounded by∑
N ′�N

N ′‖uN ′ − u0
N ′‖1/2

L2
tL6

x(I0×R3)‖uN ′ − u0
N ′‖1/2

L∞
t L2

x(I0×R3).

But from (11.1),

‖uN ′ − u0
N ′‖L∞

t L2
x(I0×R3) � (N ′)−1‖u≤N − u0

≤N‖L∞
t Ḣ1(I0×R3) � (N ′)−1η3

so that

‖u≤N − u0
≤N‖L4

t L∞
x (I0×R3) � η

1/2
3

∑
N ′≤N

(N ′)1/2‖uN ′ − u0
N ′‖1/2

L2
t L6

x(I0×R3).
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Applying Strichartz (3.7) yields

‖u≤N − u0
≤N‖L4

t L∞
x (I0×R3) � η

1/2
3

∑
N ′≤N

(N ′)1/2‖PN ′(|u|4u)‖1/2

L2
t L

6/5
x (I0×R3)

.

But the preceding analysis already showed that

‖PN ′(|u|4u)‖L2
t L

6/5
x (I0×R3) � η4

3Z + η2
3Z

2 + η3
3Z + C

1/2
0 η

1/2
1 � 1

(for instance), and the claim follows.

Now we estimate the high frequencies. We first need an estimate on the
high-frequency portion of the nonlinearity |u|4u. It turns out that this quan-
tity cannot be easily estimated in a single Strichartz norm, but must instead
be decomposed into two pieces estimated using separate space-time Lebesgue
norms (cf. the appearance of M in Lemma 3.2).

Proposition 12.2. We can decompose

Phi(|u|4u) = F + G

where F , G are Schwartz functions with Fourier support in the region |ξ| � 1
and

‖∇F‖L2
tL

6/5
x (I0×R3) � η

1/2
3

and
‖G‖L2

t L1
x(I0×R3) � C

1/2
0 η

1/2
1 .

Of the two pieces, F is by far the better term; indeed, if G were not present,
then the Strichartz estimate (3.7) would be able to obtain L10

t,x bounds on uhi.
The reader may in fact assume as a first approximation that F is negligible,
and that the nonlinearity Phi(|u|4u) is primarily in L2

t L
1
x, which is not a dual

Ṡ1 Lebesgue norm. Note also that the η
1
2
1 bound ultimately determines the η1

on the right side of (4.19) at the end of Section 14.

Proof. We split u = ulo + uhi, and then use (1.15) to split

Phi(|u|4u) =
5∑

j=0

PhiO(uj
hiu

5−j
lo ).

Considering the j = 0 term first, we have

‖∇PhiO(u5
lo)‖L2

t L
6/5
x (I0×R3)

� ‖O(u4
lo∇ulo)‖L2

t L
6/5
x (I0×R3)

� ‖ulo‖2
L4

tL∞
x (I0×R3)‖ulo‖2

L∞
t L6

x(I0×R3)‖∇ulo‖L∞
t L2

x(I0×R3)

which is O(η1/2
3 ) (for instance) by Proposition 12.1 and (4.4), (4.3). Thus this

term may be placed as part of F .
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Now consider the j = 1 term. We have

‖∇PhiO(u4
louhi)‖L2

t L
6/5
x (I0×R3)

� ‖O(u4
lo∇uhi)‖L2

tL
6/5
x (I0×R3)

+ ‖O(u3
louhi∇ulo)‖L2

t L
6/5
x (I0×R3)

� ‖ulo‖2
L4

t L∞
x (I0×R3)‖ulo‖2

L∞
t L6

x(I0×R3)‖∇uhi‖L∞
t L2

x(I0×R3)

+ ‖ulo‖3
L∞

t L6
x(I0×R3)‖uhi‖L∞

t L6
x(I0×R3)‖∇ulo‖L2

tL6
x(I0×R3).

Applying Proposition 12.1, (4.4), (4.3), and (11.1) this expression is O(η3
3) and

so this term may also be placed as part of F .
Now consider the j = 2, 3, 4, 5 terms. We estimate

‖PhiO(uj
hiu

5−j
lo )‖L2

t L1
x(I0×R3)

� ‖uhi‖2
L4

t L4
x(I0×R3)‖uhi‖j−2

L∞
t L6

x(I0×R3)‖ulo‖5−j
L∞

t L6
x(I0×R3)

which is O(C1/2
0 η

1/2
1 ) by (11.5) and (4.4). Thus we may place this term as part

of G.

Corollary 12.3. For every N ≥ 1,

‖uN‖L2
t L6

x(I0×R3) � C
1/2
0 N1/2η

1/2
1 .(12.4)

Proof. From Strichartz (3.7) and Proposition 12.2,

‖uN‖L2
t L6

x(I0×R3) � ‖uN (t0)‖L2
x(R3) + ‖PNF‖L2

t L
6/5
x (I0×R3) + ‖PNG‖L2

t L
6/5
x (I0×R3).

The first term is certainly acceptable by (11.3). The second term is O(η1/2
3 N−1)

by Proposition 12.2, and the third term is O(C1/2
0 N1/2η

1/2
1 ) by Bernstein (1.20)

and Proposition 12.2. The claim follows.

13. Interaction Morawetz: Error estimates

We now show that the comparatively easy terms (11.18), (11.19), (11.20)
are indeed controlled by O(η1), which is in turn bounded by the right-hand
side of (11.4). The term W is however significantly harder and will be deferred
to the next section.

• The estimation of (11.18). We have to show that∫
I0

∫ ∫
|x−y|≤2R

|uhi(t, y)|2|ulo(t, x)|5|uhi(t, x)|
|x − y| dxdydt � η1

for all 1 ≤ R ≤ 2J . This term will be fairly easy because of the localization
|x − y| ≤ 2R. Observe that the kernel 1

|x| has an L1
x norm of O(R2) ≤ O(22J)
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on the ball B(0, 2R). Thus by Young’s inequality and Cauchy-Schwarz we see
that ∫ ∫

|x−y|≤2R

F (x)G(y)
|x − y| dxdy � R2‖F‖L2

x
‖G‖L2

x

for any functions F , G. In particular the expression to be estimated is bounded
by

� 22J

∫
I0

‖uhi(t)‖2
L4

x
‖|ulo|5|uhi|(t)‖L2

x
dt.

We use Hölder and (11.3) to estimate

‖|ulo|5|uhi|(t)‖L2
x

� ‖ulo(t)‖5
L∞

x
‖uhi(t)‖L2

x
� η3‖ulo(t)‖5

L∞
x

.

We dispose of three of the five factors of ‖ulo(t)‖5
L∞

x
by observing from (4.4) and

Bernstein’s inequality (1.20) that ‖ulo(t)‖3
L∞

x
� η3

3 � 1. Combining all these
estimates and then using Hölder in time, we thus can bound the expression to
be estimated by

22Jη3‖uhi‖2
L4

tL4
x(I0×R3)‖ulo‖2

L4
t L∞

x (I0×R3),

which is bounded by the right-hand side of (11.4) using (11.5) and Proposition
12.1 (note that η3 will absorb 22J since J depends only on η1 and η2). This
concludes the treatment of (11.18).

• The estimation of (11.19). We now handle (11.19). We have to show
that∫

I0

∫ ∫
|x−y|≤2R

|uhi(t, y)||PhiO(uj
hiu

5−j
lo )(t, y)||uhi(t, x)||∇uhi(t, x)| dxdydt � η1

for j = 0, 1, 2, 3, 4 and 1 ≤ R ≤ 2J .
We begin by considering the cases j = 1, 2, 3, 4. We observe from Hölder

and (4.3) that∫
B(y,2R)

|uhi(t, x)||∇uhi(t, x)| dx �R3/4‖uhi(t)‖L4
x
‖∇uhi(t)‖L2

x

�R3/4‖uhi(t)‖L4
x
,

and hence it suffices to show that

R
3
4

∫
I0

‖uhi(t)‖L4
x

∫
R3

|uhi(t, y)||PhiO(uj
hiu

5−j
lo )(t, y)| dydt � η1.

We use Hölder (and the hypothesis j = 1, 2, 3, 4) to estimate this as

� R
3
4 ‖uhi‖3

L4
t L4

x(I0×R3)‖ulo‖L4
tL∞

x (I0×R3)‖uhi‖j−1
L∞

t L6
x(I0×R3)‖ulo‖4−j

L∞
t L6

x(I0×R3).

The L∞
t L6

x(I0 × R3) factors are bounded by (4.4), leaving us to prove

R
3
4 ‖uhi‖3

L4
tL4

x(I0×R3)‖ulo‖L4
t L∞

x (I0×R3) � η1.



SCATTERING FOR 3D CRITICAL NLS 843

But this follows from (11.5) and Proposition 12.1, again using η3 to wallop a
positive power of R.

Finally, we consider the j = 0 case of (11.19), where we have to prove∫
I0

∫ ∫
|x−y|≤2R

|uhi(t, y)||PhiO(u5
lo)(t, y)||uhi(t, x)||∇uhi(t, x)| dxdydt � η1.

Here we use Cauchy-Schwarz and (11.3) to crudely bound∫
R3

|uhi(t, x)||∇uhi(t, x)| dx � η3

and then use Hölder to reduce to showing that

η3‖uhi‖L∞
t L2

x(I0×R3)‖PhiO(u5
lo)‖L1

t L2
x(I0×R3) � η1.

The factor ‖uhi‖L∞
t L2

x(I0×R3) is O(η3) by (11.3). For the second factor, we take
advantage of the high frequency localization (using (1.16)) to write

‖PhiO(u5
lo)‖L1

tL2
x(I0×R3) � ‖∇O(u5

lo)‖L1
t L2

x(I0×R3)

� ‖O(u4
lo∇ulo)‖L1

t L2
x(I0×R3)

� ‖∇ulo‖L∞
t L2

x(I0×R3)‖ulo‖4
L4

t L∞
x (I0×R3).

The claim then follows from (4.3) and Proposition 12.1.

• The estimation of (11.20). We now handle (11.20). We have to show
that

∫
I0

∫ ∫
|x−y|≤2R

|uhi(t, y)||PloO(u5
hi)(t, y)||uhi(t, x)||∇uhi(t, x)| dxdydt � η1.

(13.1)

We begin by using Hölder to write∫
B(y,2R)

|uhi(t, x)||∇uhi(t, x)| dx � R1/2‖uhi(t)‖L3
x
‖∇uhi(t)‖L2

x

and apply (4.3) to estimate the left-hand side of (13.1) by

� R
1
2

∫
I0

‖uhi(t)‖L3
x

∫
|uhi(t, y)||PloO(u5

hi)(t, y)| dy.

By Hölder and Bernstein (1.20) we have∫
|uhi(t, y)||PloO(u5

hi)(t, y)| dy � ‖uhi(t)‖L3
x
‖PloO(uhi(t)5)‖L

3/2
x

� ‖uhi(t)‖L3
x
‖O(uhi(t)5)‖L1

x

� ‖uhi(t)‖L3
x
‖uhi(t)‖2

L4
x
‖uhi(t)‖3

L6
x
.
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The terms ‖uhi(t)‖3
L6

x
are bounded by (4.4), so by a Hölder in time and (11.5)

we have

(11.20)� R
1
2 ‖uhi‖2

L4
tL3

x(I0×R3)‖uhi‖2
L4

t L4
x(I0×R3)(13.2)

� R1/2C
1/2
0 η

1/2
1 ‖uhi‖2

L4
t L3

x(I0×R3).

From the triangle inequality and Hölder,

‖uhi‖L4
t L3

x(I0×R3) �
∑
N≥1

‖uN‖L4
t L3

x(I0×R3)

�
∑
N≥1

‖uN‖1/2
L∞

t L2
x(I0×R3)‖uN‖1/2

L2
t L6

x(I0×R3).

From (11.3), (4.5) we have ‖uN‖L∞
t L2

x(I0×R3) � min(η3, N
−1). Applying (12.4)

we thus have

‖uhi‖L4
t L3

x(I0×R3) �
∑
N≥1

min(η3, N
−1)1/2C

1/4
0 N1/4η

1/4
1 � η

1/2
3 C

1/4
0 η

1/4
1 .

Inserting this estimate into (13.2) we see that (11.20) is acceptable (again, the
power of η3 counteracts the loss in C0 and the presence of the power R1/2).

Note that the first four factors on the right side of (11.25) have all in fact
been shown to be controlled with a positive power of η3.

14. Interaction Morawetz: A double Duhamel trick

To conclude the proof of Proposition 4.9, we have to show that

W � C0η1,

or in other words that
1
R

∫
I0

( ∑
x∈ R

100
Z3

( ∫
B(x,3R)

|uhi(t, y)|2 dy
)100)1/100

dt � C0η1

for all 1 ≤ R ≤ C(η1, η2)2J . By duality we have( ∑
x∈ R

100
Z3

( ∫
B(x,3R)

|uhi(t, y)|2 dy
)100)1/100

=
∑

x∈ R

100
Z3

c(t, x)
∫

B(x,3R)
|uhi(t, y)|2 dy

where c(t, x) > 0 are a collection of numbers which are almost summable in
the sense that ∑

x∈ R

100
Z3

c(t, x)100/99 = 1(14.1)

for all t. Thus it suffices to show that
1
R

∫
I0

∑
x∈ R

100
Z3

c(t, x)
∫

B(x,3R)
|uhi(t, y)|2 dydt � C0η1.



SCATTERING FOR 3D CRITICAL NLS 845

Let ψ be a bump function adapted to B(0, 5) which equals 1 on B(0, 3). Since

∫
B(x,3R)

|uhi(t, y)|2 dy �
∫

|uhi(t, y)|2ψ
(

y − x

R

)
dy,

it suffices to show that

1
R

∫
I0

∑
x∈ R

100
Z3

c(t, x)
∫

R3

|uhi(t, y)|2ψ
(

y − x

R

)
dydt � C0η1.(14.2)

In the proof of Lemma 11.4, we obtained spacetime control on uhi by using
the (forward-in-time) Duhamel formula (1.13) followed by Strichartz estimates.
This seems to be insufficient to prove (14.2) (the best argument available seems
to lose a logarithm of the derivative); instead, we rely on both the forward-
in-time and backward-in-time Duhamel formulae (1.13), and argue using the
fundamental solution (1.11). This will only lose a factor of C0 (see (11.5)),
which is acceptable because of the gain of η

1/100
1 which was obtained earlier in

Lemma 11.4.
Let us write I0 = [t−, t+] for some times −∞ < t− < t+ < ∞. We use

Proposition 12.2 to decompose Phi(|u|4u) = F + G. We define the functions
u±

hi to solve the Cauchy problem

(i∂t + Δ)u±
hi = F ; u±

hi(t±) = uhi(t±);

thus this is the same equation as uhi satisfies but without the term G. From
(1.13) observe the forward-in-time Duhamel formula

uhi(t) = u−
hi(t) − i

∫
t−<s−<t

ei(t−s−)ΔG(s−) ds−

and the backward-in-time Duhamel formula

uhi(t) = u+
hi(t) + i

∫
t<s+<t+

ei(t−s+)ΔG(s+) ds+.

Let us see how we would prove (14.2) if uhi were replaced by u±
hi. From

Strichartz (3.7), (11.3), and Proposition 12.2 (discarding a derivative) we see
that

‖u±
hi‖L2

t L6
x(I0×R3) � η

1/2
3 .
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But from Hölder we have
1
R

∑
x∈ R

100
Z3

c(t, x)
∫

R3

|u±
hi(t, y)|2ψ

(
y − x

R

)
dy

� 1
R

∑
x∈ R

100
Z3

c(t, x)R2

(∫
R3

|u±
hi(t, y)|6ψ

(
y − x

R

)
dy

)1/3

� R

⎛⎝ ∑
x∈ R

100
Z3

c(t, x)3/2

⎞⎠2/3 ⎛⎝ ∑
x∈ R

100
Z3

∫
R3

|u±
hi(t, y)|6ψ

(
y − x

R

)
dy

⎞⎠1/3

� R

⎛⎝ ∑
x∈ R

100
Z3

c(t, x)100/99

⎞⎠99/100

‖u±
hi‖2

L6
x

= R‖u±
hi‖2

L6
x

and hence
1
R

∫
I0

∑
x∈ R

100
Z3

c(t, x)
∫

R3

|uhi(t, y)|2ψ
(

y − x

R

)
dydt � Rη3

which is acceptable if η3 is sufficiently small (recall that R ≤ C(η1, η2)2J and
J depends only on η1, η2). Thus we see that (14.2) would be easy to prove if
uhi were replaced by u±

hi.
It is now natural to use one of the two Duhamel formulae listed above,

and attempt to prove (14.2) for the integral term. This however turns out
to be rather difficult. It will be significantly easier if we use both formulae
simultaneously. More precisely, we re-arrange the above Duhamel formulae as

−i

∫
t−<s−<t

ei(t−s−)ΔG(s−) ds− = uhi(t) − u−
hi(t)

and
i

∫
t<s+<t+

ei(t−s+)ΔG(s+) ds+ = uhi(t) − u+
hi(t).

Then we multiply the first identity by the conjugate of the second to obtain

−
∫ ∫

t−<s−<t<s+<t+

(ei(t−s−)ΔG(s−))(ei(t−s+)ΔG(s+)) ds+ ds−

= |uhi(t)|2 − u−
hi(t)uhi(t) − uhi(t)u+

hi(t) + u−
hi(t)u

+
hi(t).

From the elementary pointwise estimates

|u−
hi(t)uhi(t)| ≤

1
4
|uhi(t)|2 + O(|u−

hi(t)|2),

|uhi(t)u+
hi(t)| ≤

1
4
|uhi(t)|2 + O(|u+

hi(t)|2),

|u−
hi(t)u

+
hi(t)| ≤ O(|u−

hi(t)|2) + O(|u+
hi(t)|2)



SCATTERING FOR 3D CRITICAL NLS 847

we thus have the pointwise inequality

|uhi(t)|2 �
∣∣∣ ∫ ∫

t−<s−<t<s+<t+

ei(t−s−)ΔG(s−)ei(t−s+)ΔG(s+) ds−ds+

∣∣∣(14.3)

+|u−
hi(t)|2 + |u+

hi(t)|2.

This should be compared with what one would obtain with a single Duhamel
formula (1.13), namely something like

|uhi(t)|2 �
∣∣∣ ∫ ∫

t−<s,s′<t
ei(t−s)ΔG(s)ei(t−s′)ΔG(s′) dsds′

∣∣∣ + |u−
hi(t)|2.

This turns out to be an inferior formulation; the basic problem is that the
integral

∫
t−<s,s′<t

dsds′

|s−s′| is logarithmically divergent, whereas the integral∫
t−<s−<t<s+<t+

ds−ds+

|s−−s+| is not.
We now return to (14.2), and insert (14.3). The latter two terms were

already shown to be acceptable. So we are left to prove that

1
R

∣∣∣ ∫ ∫ ∫
t−<s−<t<s+<t+

∑
x∈ R

100
Z3

c(t, x)
∫

R3

ei(t−s−)ΔG(s−)(y)ei(t−s+)ΔG(s+)(y)

· ψ(
y − x

R
) dyds−ds+dt

∣∣∣ � C0η1.

(14.4)

To compute the y integral, we use the following stationary phase estimate.

Lemma 14.1. For any t− < s− < t < s+ < t+, and any Schwartz func-
tions f−(x), f+(x),∣∣∣ ∑

x∈ R

100
Z3

c(t, x)
∫

R3

ei(t−s−)Δf−(y)ei(t−s+)Δf+(y)ψ(
y − x

R
) dy

∣∣∣
� |s+ − s−|−3/2 min(θ−3/2+3/100, 1)‖f−‖L1

x
‖f+‖L1

x

where θ := |t−s+||t−s−|
R2|s+−s−| .

Proof. Fix t. We use the explicit formula for the fundamental solution
(1.11) to estimate the left-hand side as

� 1
|t − s+|3/2|t − s−|3/2

∑
x∈ R

100
Z3

c(t, x)
∫

R3

∫
R3(∫

R3

ei(|y−x−|2/(t−s−)−|y−x+|2/(t−s+))ψ

(
y − x

R

)
dy

)
f+(x+)f−(x−) dx+dx−,
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so it suffices to show that∣∣∣ ∑
x∈ R

100
Z3

c(t, x)
∫

R3

ei(|y−x−|2/(t−s−)−|y−x+|2/(t−s+))ψ(
y − x

R
)dy

∣∣∣
� |t − s+|3/2|t − s−|3/2

|s+ − s−|3/2
min(θ−3/2+3/100, 1)

= R3 min(θ3/100, θ3/2)

for all x−, x+. With the change of variables y = x + Rz, this becomes∣∣∣ ∑
x∈ R

100
Z3

c(t, x)I(x)
∣∣∣ � min(θ3/100, θ3/2),

where the integrals I(x) are defined by

I(x) :=
∫

R3

eiΦx(z)ψ(z)dz

and Φx = Φx,R,x−,x+,s−,s+,t is the phase

Φx(z) := |x − x− + Rz|2/(t − s−) − |x − x+ + Rz|2/(t − s+).

By the normalization of c(t, x), it thus suffices to prove the bounds( ∑
x∈ R

100
Z3

I(x)100
)1/100

� min(θ3/100, θ3/2).

We now divide into two cases, depending on the size of θ. First suppose that
θ 
 1. Observe that the gradient of the phase Φx in z is

∇zΦx(z) = 2R(x − x− + Rz)/(t − s−) − 2R(x − x+ + Rz)/(t − s+)

= 2R(x + Rz − x∗)
s− − s+

(t − s−)(t − s+)

where x∗ = x∗(s−, s+, t, x−, x+, R) is a quantity not depending on x or z. In
particular, in the region where

|x − x∗| 

|t − s−||t − s+|

R|s+ − s−|
= Rθ 
 R

we can obtain an extremely good bound from the principle of nonstationary
phase,34 namely that

|I(x)| �
( |x − x∗|

Rθ

)−100

.(14.5)

34In other words, one can use repeated integration by parts; see [41]. An alternate approach

in this lemma is to use a Gaussian cutoff e−π|x|2 instead of ψ, and then compute all the
integrals explicitly by contour integration (or equivalently by using the “Gaussian beam”
solutions of the Schrödinger equation).
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In the remaining cases where

|x − x∗| � Rθ

(note that there are O(θ3) such cases), we use the crude bound

|I(x)| � 1,

and obtain the final estimate( ∑
x∈ R

100
Z3

I(x)100
)1/100

� θ3/100

as desired. Now consider the case θ � 1. In the region

|x − x∗| 
 R

one can get very good bounds from nonstationary phase again, namely (14.5).
There are only O(1) remaining values of x. For each of these values we ob-
serve that the double derivative ∇2

zΦx is nondegenerate, indeed it is equal
to 2R2 s−−s+

(t−s−)(t−s+) = 2
θ times the identity matrix. Thus by the principle of

stationary phase (see [41]) we have

|I(x)| � θ3/2

in these cases. Upon summing we obtain( ∑
x∈ R

100
Z3

I(x)100
)1/100

� θ3/2

as claimed.

Using Lemma 14.1, we can estimate the left-hand side of (14.4) as

�
∫ ∫ ∫

t−<s−<t<s+<t+

1
R
|s+ − s−|−3/2

· min

(( |t − s+||t − s−|
R2|s+ − s−|

)−3/2+3/100

, 1

)
‖G(s−)‖L1

x
‖G(s+)‖L1

x
ds−ds+dt.

(14.6)

Now we use the crucial time ordering s− < t < s+. An elementary computation
(treating the cases s+ − s− < R2 and s+ − s− ≥ R2 separately) shows that

1
R

∫
s−<t<s+

|s+ − s−|−3/2 min

(( |t − s+||t − s−|
R2|s+ − s−|

)−3/2+3/100

, 1

)
dt

� min(R|s+ − s−|−3/2, R−1|s+ − s−|−1/2).
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The kernel min(R|s|−3/2, R−1|s|−1/2) has an L1
s norm of35 O(1). Thus by

Young’s inequality in time (and Cauchy-Schwarz in time), we can bound (14.6)
by

‖G‖2
L2

tL1
x(I0×R3)

which is O(C0η1) by Proposition 12.2, as desired. This (finally!) concludes the
proof of Proposition 4.9.

15. Preventing energy evacuation

We now prove Proposition 4.15. By the scaling (1.3) we may take Nmin =1.

15.1. The setup and contradiction argument. Since the N(t) can only
take values in a discrete set (the integer powers of 2), there thus exists a time
tmin ∈ I0 such that

N(tmin) = Nmin = 1.

At this time t = tmin, we see from (4.11) and (1.18) that we have a substantial
amount of mass36 (and energy) at medium frequencies:

‖Pc(η0)≤·≤C(η0)u(tmin)‖L2(R3) ≥ c(η0).(15.1)

This should be contrasted with (4.5), which shows that there is not much mass
at the frequencies much higher than C(η0).

Our task is to prove (4.24). Suppose for contradiction that this estimate
failed; then there exists a time tevac ∈ I0 for which N(tevac) 
 C(η5). If C(η5)
is sufficiently large, we then see from Corollary 4.4 that energy has been almost
entirely evacuated from low and medium frequencies at time tevac:

‖P<1/η5
u(tevac)‖Ḣ1(R3) ≤ η5.(15.2)

Under the intuition that the L2 mass density does not rapidly adjust during the
NLS evolution, (15.2) will be contradicted if the low frequency L2 mass (15.1)
sticks around Nmin until tevac. We will validate this slow L2 mass motion
intuition by proving a frequency localized L2 mass almost conservation law
which leads to the contradiction, provided that the ηj are chosen small enough.

35It is crucial to note here that the powers of R have cancelled out. This seems to be
a consequence of dimensional analysis, although the presence of the frequency localization
|ξ| � 1 makes this analysis heuristic rather than rigorous.

36Note that we are not using the assumption that u is Schwartz (and thus has finite L2

norm) to obtain these estimates; the bounds here are independent of the global L2 norm
of u, which may be very large even for fixed energy E because the very low frequencies
can simultaneously have small energy and large mass, and are also not preserved by the
scale-invariance which we have exploited to normalize Nmin = 1.
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Having surveyed the argument, we carry out the details. Fix tevac; by time
reversal symmetry we may assume that tevac > tmin. (From (15.1) it is clear
that tevac cannot equal tmin).

From (15.1) we have

‖u>c(η0)(tmin)‖L2(R3) ≥ η1

(for instance). In particular, if

Phi := P≥η100
4

, Plo := P<η100
4

, uhi := Phiu, ulo := Plou,

then we have

‖uhi(tmin)‖L2(R3) ≥ η1.(15.3)

Suppose we could show that

‖uhi(tevac)‖L2(R3) ≥
1
2
η1.(15.4)

From (4.3) and (4.5) we would thus have

‖P≤C(η1)uhi(tevac)‖L2(R3) ≥
1
4
η1.

By (1.16) this implies that

‖P≤C(η1)u(tevac)‖Ḣ1(R3) � c(η1, η4).

But then Corollary 4.4 implies that N(tevac) � C(η1, η4), which contradicts
(15.2) if η5 is chosen sufficiently small.

It remains to prove (15.4). We use the continuity method. Suppose we
have a time tmin ≤ t∗ ≤ tevac for which

inf
tmin≤t≤t∗

‖uhi(t)‖L2(R3) ≥
1
2
η1.(15.5)

We will show that (15.5) can be bootstrapped to

inf
tmin≤t≤t∗

‖uhi(t)‖L2(R3) ≥
3
4
η1.(15.6)

This implies that the set of times t∗ for which (15.5) holds is both open and
closed in [tmin, tevac], which will imply (15.4) as desired. Note that the intro-
duction of η100

4 � Nmin allows for the L2 mass near Nmin at time tmin to move
toward low frequencies but the estimate (15.6) shows a portion of the mass
stays above η100

4 for t ∈ [tmin, tevac]. Note also that upon proving (15.6), we
will have established Lemma 4.14.

It remains to derive (15.6) from (15.5). The idea is to treat the L2 norm
of uhi(t); i.e.,

L(t) :=
∫

R3

|uhi(t, x)|2 dx,
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as an almost conserved quantity. From (15.3) we have

L(tmin) ≥ η2
1,

and so by the Fundamental Theorem of Calculus it will suffice to show that∫ t∗

tmin

|∂tL(t)| dt ≤ 1
100

η2
1.

From (2.4) and (2.6) we have

∂tL(t) = 2
∫

{Phi(|u|4u), uhi}m dx

= 2
∫

{Phi(|u|4u) − |uhi|4uhi, uhi}m dx.

Thus it will suffice to show that∫ t∗

tmin

∣∣∣ ∫
{Phi(|u|4u) − |uhi|4uhi, uhi}m dx

∣∣∣dt ≤ 1
100

η2
1.(15.7)

The proof of (15.7) is accomplished using a quintilinear analysis of various
interactions using three inputs: Ṡ1 Strichartz estimates on low frequencies, L4

xt

estimates via frequency localized interaction Morawetz and Bernstein estimates
on medium and higher frequencies, and Ṡ1 Strichartz estimates on very high
frequencies.

15.2. Spacetime estimates for high, medium, and low frequencies. To prove
(15.7) we need a number of spacetime bounds on u, which we now discuss in
this subsection. Observe by the discussion following (15.4) that the hypothesis
(15.5) implies in particular that

N(t) ≤ C(η1, η4) for all tmin ≤ t ≤ t∗.

This in turn can be combined with Corollary 4.13 to obtain the useful Strichartz
bounds

‖u‖Ṡ1([tmin,t∗]×R3) ≤ C(η1, η3, η4).(15.8)

Because of the dependence of the right-hand side on η4, this bound is only
useful for us when there is a power of η5 present. In all other circumstances,
we resort instead to Proposition 4.9, which gives the L4

t,x bounds37∫ tevac

tmin

∫
|P≥Nu(t, x)|4 dxdt � η1N

−3(15.9)

37It is important here to note that while the L2 control on uhi only extends from tmin up
to t∗, the L4

t,x control on u≥N extends all the way up to tevac. This allows us to access the
evacuation hypothesis (15.2) to provide useful new control, especially at low frequencies, in
the time interval [tmin, t∗]. This additional control will be crucial for us to obtain the desired
almost conservation law on the mass of uhi, thus closing the bootstrap and allowing t∗ to
extend all the way up to tevac, at which point we can declare a contradiction.
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whenever N < c(η3). Roughly speaking, the bound (15.9) is better than (15.8)
for medium frequencies, but (15.8) is superior for very high frequencies, and
Lemma 15.1 below will be superior for very low frequencies.

It turns out that we also need some bounds on the low frequencies such
as u≤η4 ; the estimate (15.9) is inappropriate for this purpose because N−3

diverges as N → 0. One can modify Proposition 12.1 to obtain some reasonable
control, but it turns out that the constants obtained by that estimate are not
strong enough to counteract the losses arising from (15.8). We need a stronger
version of Proposition 12.1 which takes advantage of the evacuation hypothesis
(15.2), which asserts among other things that u≤η4 has extremely small energy
at time tevac. Because of this hypothesis we expect u≤η4 to have extremely
small energy at all other times in [tmin, tevac] (i.e. we expect bounds gaining an
η5 instead of just an η3). Of course there is a little bit of energy leaking from
the high frequencies to the low, but fortunately the L4

t,x bound on the high
frequencies will limit38 how far the high frequency energy can penetrate to the
very low modes. This intuition is made rigorous as follows:

Lemma 15.1. With the above notation and assumptions (in particular,
assuming (15.2) and (15.9)) we have

‖P≤Nu‖Ṡ1([tmin,tevac]×R3) � η5 + η
−3/2
4 N3/2(15.10)

for all N ≤ η4.

One should think of the Cη5 term on the right-hand side of (15.10) as
the energy coming from the low modes of u(tevac), while the η

−3/2
4 N3/2 term

comes from the nonlinear corrections generated by the high modes of u(t)
for tmin ≤ t ≤ tevac. Note the very strong decay of N3/2 as N → 0; this
means that the high modes cannot project their energy very far into the low
modes. This estimate should be compared with Proposition 12.1. It begins
to deteriorate if N gets too close to η4; we avoid this problem by making the
high-low frequency decomposition u = uhi + ulo at η100

4 instead of η4. Note
that this bound is superior to either (15.8) or (15.9) at low frequencies.

Proof. As usual, we rely on the continuity method, although now we will
evolve39 backwards in time from tevac, rather than forwards from tmin. Let C0

38It may seem surprising that the L4
t,x bound, which is supercritical, can lead to control on

critical quantities such as the energy. The point is that once one localizes in frequency, the
distinctions between subcritical, critical, and supercritical quantities become less relevant, as
one can already see from Bernstein’s inequality (1.20). In this section the entire analysis is
localized around the frequency Nmin = 1, so that supercritical norms (such as L4

t,x or L∞
t L2

x)
can begin to play a useful role.

39The arguments in this section seem to rely in an essential way on evolving both forwards
and backwards in time simultaneously; compare with the “double Duhamel trick” in Section
14.
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be a large absolute constant (not depending on any of the ηj) to be chosen
later. Let Ω ⊆ [tmin, tevac) denote the set of all times tmin ≤ t < tevac such that
we have the bounds

‖P≤Nu‖Ṡ1([t,tevac]×R3) ≤ C0η5 + η0η
−3/2
4 N3/2(15.11)

for all N ≤ η4. To show (15.10), it will clearly suffice to show that tmin ∈ Ω (the
additional factor of η0 is useful for the continuity method but will be discarded
for the final estimate (15.10)). In particular, we observe from (15.11) that we
have

‖P≤Nu‖Ṡ1([t,tevac]×R3) � η0(15.12)

for all N ≤ η4.
First we show that t ∈ Ω for t sufficiently close to tevac. We use (3.1),

Hölder and Sobolev to estimate

‖P≤Nu‖Ṡ1([t,tevac]×R3) � ‖∇P≤Nu‖L∞
t L2

x([t,tevac]×R3) + ‖∇u‖L2
t L6

x([t,tevac]×R3)

� ‖∇P≤Nu(tevac)‖L2 + C|tevac − t|‖∇∂tu‖L∞
t L2

x(I0×R3)

+ |tevac − t|1/2‖∇u‖L∞
t L6

x(I0×R3).

Since u is Schwartz, the latter two norms are finite (though perhaps very large).
By (15.2) we thus have the estimate

‖P≤Nu‖Ṡ1([t,tevac]×R3) � η5 + C(I0, u)|tevac − t| + C(I0, u)|tevac − t|1/2.

We now see that the bound (15.11) holds for t sufficiently close to tevac, if C0

is chosen large enough (but not depending on I0, u or any of the ηj .)
Now suppose that t ∈ Ω, so that (15.11) holds for all N ≤ η4. We shall

bootstrap (15.11) to

‖P≤Nu‖Ṡ1([t,tevac]×R3) ≤
1
2
C0η5 +

1
2
η0η

−3/2
4 N3/2(15.13)

for all N ≤ η4. If this claim is true, this would imply (since u is Schwartz)
that Ω is both open and closed, and so we have tmin ∈ Ω as desired.

It remains to deduce (15.13) from (15.11). For the rest of the proof, all
spacetime norms will be restricted to [t, tevac] × R3.

Fix N ≤ η4. By (1.1) and Lemma 3.2,

‖P≤Nu‖Ṡ1([t,tevac]×R3) � ‖P≤Nu(tevac)‖Ḣ1(R3) + C
M∑

m=1

‖∇Fm‖
L

q′m
t L

r′m
x ([t,tevac]×R3)

for some dual L2-admissible exponents (q′m, r′m), and some decomposition
P≤N (|u|4u) =

∑M
m=1 Fm which we will give shortly.

From (15.2) we have

‖P≤Nu(tevac)‖Ḣ1(R3) � η5,

which is acceptable for (15.13) if C0 is large enough.
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Now consider the nonlinear term P≤N (|u|4u). We split u into high and low
frequencies u = u≤η4 +u>η4 , where of course u≤η4 := P≤η4u and u>η4 := P>η4u,
and use (1.15) to decompose

P≤N (|u|4u) =
5∑

j=0

Fj ,

where Fj := P≤NO(uj
>η4

u5−j
≤η4

). We now treat the various terms separately.

• Case 1. Estimation of F2, F3, F4, F5. We estimate these terms in L2
t L

6/5
x

norm. We use Bernstein’s inequality (1.19) to bound these terms by

CN3/2‖O(uj
>η4

u5−j
≤η4

)‖L2
t L1

x([t,tevac]×R3),

which by Hölder can be estimated by

CN3/2‖u>η4‖j−2
L∞

t L6
x([t,tevac]×R3)‖u≤η4‖5−j

L∞
t L6

x([t,tevac]×R3)‖u>η4‖2
L4

tL4
x([t,tevac]×R3).

Applying (4.4) and Sobolev, as well as (15.9), we obtain a bound of

Cη
1
2
1 N3/2η

−3/2
4 ,

which is acceptable for (15.13) if η1 is sufficiently small. It is at this step that
the small constant η1 appearing in 4.19 is used to close the bootstrap.

• Case 2a. Estimation of F1 when N � η4. Now consider F1 term

‖∇P≤NO(u>η4u
4
≤η4

)‖
L

q′1
t L

r′1
x

.(15.14)

Suppose first that N < cη4. Then this expression vanishes unless at least one
of the four u≤η4 factors has frequency > cη4. Thus we can essentially write
(15.14) as40

‖∇P≤NO(u3
≤η4

(P>cη4u≤η4)u>η4)‖L2
t L

6/5
x ([t,tevac]×R3),

where we have chosen (q′1, r
′
1) = (2, 6/5). By (15.9), the function P≥cη4u≤η4

obeys essentially the same L4
t,x estimates as u>η4 , and so this term is acceptable

when we repeat the arguments used to deal with F2, F3, F4, F5.

• Case 2b. Estimation of F1 when N ∼ η4. Considering the case when
N ≥ cη4, we choose (q′1, r

′
1) = (1, 2) and use (1.18) to bound (15.14) by

Cη4‖O(u>η4u
4
≤η4

)‖L1
t L2

x([t,tevac]×R3)

40Strictly speaking, one can only write (15.14) as a sum of such terms, where some of the
u≤η4 factors in u3

≤η4
must be replaced by either P>cη4u≤η4 or P≤cη4u≤η4 . As these projections

are bounded on every space under consideration we ignore this technicality. Similarly for
other such decompositions in this lemma.
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which we estimate using Hölder by

Cη4‖u≤η4‖4
L4

t L∞
x ([t,tevac]×R3)‖u>η4‖L∞

t L2
x([t,tevac]×R3).

From (4.3) we obtain

‖u>η4‖L∞
t L2

x([t,tevac]×R3) ≤ Cη−1
4 ,

while from (3.4) and (15.12) we obtain

‖u≤η4‖L4
t L∞

x ([t,tevac]×R3) � ‖u≤η4‖Ṡ1([t,tevac]×R3) � η0.

Thus we can bound (15.14) by O(η4
0), which is acceptable for (15.13) since

N ∼ η4. This concludes the estimation of F1.

• Case 3. Estimation of F0. It remains to consider the F0 term; we set
(q′0, r

′
0) = (1, 2) and estimate

‖∇P≤NO(u5
≤η4

)‖L1
t L2

x([t,tevac]×R3).

We split u≤η4 = u<η5 + uη5≤·≤η4 , and consider any term which involves the
very low frequencies u<η5 ; schematically, this is

‖∇P≤NO(u4
≤η4

u<η5)‖L1
t L2

x([t,tevac]×R3).

For this case we discard the P≤N , and apply Lemma 3.6 to estimate this term
by

� ‖u≤η4‖4
Ṡ1([t,tevac]×R3)

‖u<η5‖Ṡ1([t,tevac]×R3).

Applying (15.11) we can bound this by

� (C0η5 + η0)4(C0η5 + η0η
−3/2
4 η

3/2
5 ) � C0η

4
0η5

which is acceptable.
We can thus discard all the terms involving u<η5 , and reduce to estimating

‖∇P≤NO(u5
η5≤·≤η4

)‖L1
t L2

x([t,tevac]×R3).(15.15)

By Bernstein (1.19), (1.17) we may estimate this by

� N3/2‖O(u5
η5≤·≤η4

)‖L1
t L

3/2
x ([t,tevac]×R3) = N3/2‖uη5≤·≤η4‖5

L5
t L

15/2
x ([t,tevac]×R3)

.

But from (3.4), Bernstein (1.20), (1.18), and (15.11) we have

‖uη5≤·≤η4‖L5
tL

15/2
x

≤
∑

η5≤N ′≤η4

‖PN ′u‖L5
t L

15/2
x ([t,tevac]×R3)

�
∑

η5≤N ′≤η4

(N ′)−3/10‖∇PN ′u‖L5
tL

30/11
x ([t,tevac]×R3)

�
∑

η5≤N ′≤η4

(N ′)−3/10‖PN ′u‖Ṡ1([t,tevac]×R3)

�
∑

η5≤N ′≤η4

(N ′)−3/10(C0η5 + η0η
−3/2
4 (N ′)3/2)

� η0η
−3/10
4 ,



SCATTERING FOR 3D CRITICAL NLS 857

so that (15.15) is estimated by O(η5
0η

−3/2
4 N3/2) which is acceptable if η0 is

small enough. This proves (15.13), which closes the bootstrap.

15.3. Controlling the localized L2 mass increment. Now we have enough
estimates to prove (15.7). We first rewrite

Phi(|u|4u) − |uhi|4uhi =Phi(|u|4u − |uhi|4uhi − |ulo|4ulo)

+Phi(|ulo|4ulo) − Plo(|uhi|4uhi).

Now, it will suffice to consider the three quantities∫ t∗

tmin

|
∫

uhiPhi(|u|4u − |uhi|4uhi − |ulo|4ulo) dx|dt,(15.16) ∫ t∗

tmin

|
∫

uhiPhi(|ulo|4ulo) dx|dt,(15.17) ∫ t∗

tmin

|
∫

uhiPlo(|uhi|4uhi) dx|dt,(15.18)

which we shall estimate below: (15.18).

• Case 1. Estimation of (15.16). We move the self-adjoint operator Phi

onto uhi, and then apply the pointwise estimate (cf. (1.15))

||u|4u − |uhi|4uhi − |ulo|4ulo| � |uhi|4|ulo| + |uhi||ulo|4

to bound (15.16) by

(15.16) �
∫ t∗

tmin

∫
|Phiuhi|(|uhi|4|ulo| + |uhi||ulo|4) dxdt.

For notational convenience, we will ignore the Phi projection and write Phiuhi

as uhi; strictly speaking this is not quite accurate but as Phiuhi obeys all the
same estimates as uhi, and we have already placed absolute values everywhere,
this is a harmless modification. We can now write our bound for (15.16) as

(15.16) �
∫ t∗

tmin

∫
|uhi|5|ulo| + |uhi|2|ulo|4 dxdt.(15.19)

• Case 1a. Contribution of |uhi|2|ulo|4. Consider first the contribution
of |uhi|2|ulo|4; we have to show that∫ t∗

tmin

∫
|uhi|2|ulo|4dxdt � η2

1.(15.20)

By Hölder we can bound this contribution by

(15.20) � ‖uhi‖2
L∞

t L2
x([tmin,t∗]×R3)‖ulo‖4

L4
t L∞

x ([tmin,t∗]×R3).

From (15.10) we have

‖ulo‖L4
t L∞

x ([tmin,t∗]×R3) � η
3/2
4
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while from (4.3), (15.10) we have

‖uhi‖L∞
t L2

x([tmin,t∗]×R3) ≤ ‖P≥η4uhi‖L∞
t L2

x([tmin,t∗]×R3)

+
∑

η100
4 ≤N≤η4

‖PNuhi‖L∞
t L2

x([tmin,t∗]×R3)

� η−1
4 ‖u‖L∞

t Ḣ1
x([tmin,t∗]×R3)

+
∑

η100
4 ≤N≤Cη4

N−1‖PN∇uhi‖L∞
t L2

x([tmin,t∗]×R3)

� η−1
4 +

∑
η100
4 ≤N≤η4

N−1‖PNuhi‖Ṡ1([tmin,t∗]×R3)

� η−1
4 +

∑
η100
4 ≤N≤η4

N−1(η5 + η
−3/2
4 N3/2)

� η−1
4 + η5η

−100
4 + η−1

4

� η−1
4 .

We thus obtain a bound of O(η4
4), which is acceptable.

• Case 1b. Contribution of |uhi|5|ulo|. It remains to control the contri-
bution of |uhi|5|ulo|; in other words, we need to show∫ t∗

tmin

∫
|uhi|5|ulo|dxdt � η2

1.(15.21)

This estimate will also be useful in controlling (15.18).
We will split ulo further into somewhat low, and very low, frequency pieces:

ulo = P>η
1/2
5

ulo + P≤η
1/2
5

u.

The contribution of the very low frequency piece to (15.21) can be bounded
by Sobolev embedding (1.19) and (4.4) as∫ t∗

tmin

∫
|uhi|5|u≤η

1/2
5

|dxdt

� ‖uhi‖5
L5

t L5
x([tmin,t∗]×R3)‖u≤η

1/2
5

‖L∞
t L∞

x ([tmin,t∗]×R3)

� C(η4)‖∇u‖5
L5

t L
30/11
x ([tmin,t∗]×R3)

η
1/4
5 ‖∇u‖L∞

t L2
x([tmin,t∗]×R3)

� C(η4)η
1/4
5 ‖u‖5

Ṡ1([tmin,t∗]×R3)
,

which is acceptable by (15.8). Hence we only need to consider the somewhat
low frequencies P>η

1/2
5

ulo. By Hölder, we obtain the bound

(15.22) ‖|uhi|5|P>η
1/2
5

ulo|‖L1
t,x([tmin,t∗]×R3)

≤ C‖uhi‖5
L10

t L5
x([tmin,t∗]×R3)‖P>η

1/2
5

ulo‖L2
t L∞

x ([tmin,t∗]×R3).
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From Bernstein (1.20) and (15.10) we have

‖P>η
1/2
5

ulo‖L2
t L∞

x ([tmin,t∗]×R3) ≤
∑

η
1/2
5 <N≤η100

4

‖PNu‖L2
t L∞

x ([tmin,t∗]×R3)

≤
∑

η
1/2
5 <N≤η100

4

N−1/2‖∇PNu‖L2
t L6

x([tmin,t∗]×R3)

≤
∑

η
1/2
5 <N≤η100

4

N−1/2‖PNu‖Ṡ1([tmin,t∗]×R3)

≤
∑

η
1/2
5 <N≤η100

4

N−1/2(η5 + η
−3/2
4 N3/2)

≤ Cη
−3/2
4 η100

4 .

To estimate ‖uhi‖L10
t L5

x([tmin,t∗]×R3), we split uhi into the higher frequencies u>η4

and the medium frequencies uη100
4 ≤·≤η4

. For the higher frequencies we use41

(15.9), (4.4), and Hölder to obtain

‖u>η4‖L10
t L5

x([tmin,t∗]×R3) � ‖u>η4‖
2/5
L4

t L4
x([tmin,t∗]×R3)‖u>η4‖

3/5
L∞

t L6
x([tmin,t∗]×R3)

� η
−3/10
4 ,

while for the medium frequencies we instead use Bernstein (1.20), (1.18), (3.4)
and Lemma 15.1 to estimate

‖uη100
4 ≤·≤η4

‖L10
t L5

x([tmin,t∗]×R3) �
∑

η100
4 ≤N≤η4

‖uN‖L10
t L5

x([tmin,t∗]×R3)

�
∑

η100
4 ≤N≤η4

N−3/10‖∇uN‖L10
t L

30/13
x ([tmin,t∗]×R3)

�
∑

η100
4 ≤N≤η4

N−3/10‖uN‖Ṡ1([tmin,t∗]×R3)

�
∑

η100
4 ≤N≤η4

N−3/10(η5 + η
−3/2
4 N3/2)

� η
−3/10
4 .

Inserting these bounds into (15.22) we obtain a bound of η−3
4 η100

4 for (15.21),
which is acceptable.

• Case 2. Estimation of (15.17). Because of the presence of the Phi

projection, one of the ulo terms must have frequency ≥ cη100
4 . We then move

Phi over to the uhi, bounding (15.17) as a sum of terms which are essentially

41Note that this application of (15.9) does not require the small constant η1.
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of the form42 ∫ t∗

tmin

∫
|Phiuhi||P≥cη100

4
ulo||ulo|4 dxdt.

Now observe that Phiuhi and P≥cη100
4

ulo = Plou≥cη100
4

satisfy essentially the
same estimates as uhi, so that this expression can be shown to be acceptable
by a minor modification of (15.20).

• Case 3. Estimation of (15.18). We move projections around, using the
identity Plouhi = Phiulo, to write (15.18) as∫ t∗

tmin

|
∫

Phiulo|uhi|4uhidx|dt.(15.23)

Thus, we are concerned here with a term involving five uhi factors and one
Phiulo factor. But this is basically (15.21), which has already been shown to
be acceptable. (We have Phiulo instead of ulo but the reader may verify that
the Phi is harmless since it does not destroy any of the estimates of ulo).

This proves (15.7), and the proof of Proposition 4.15 is complete. This
(finally!) concludes the proof of Theorem 1.1.

16. Remarks

We make here some miscellaneous remarks concerning certain variants of
Theorem 1.1.

The global well-posedness result in Theorem 1.1 was asserted with regard
to finite energy solutions u in the class C0

t Ḣ1
x∩L10

t,x, in that the solution existed
and was unique in this class, and depended continuously on the initial data
(cf. Lemma 3.10). However, the uniqueness result can be strengthened, in the
sense that the solution constructed by Theorem 1.1 is in fact the only such
solution in the class C0

t Ḣ1
x (without the assumption of finite L10

t,x norm). This
type of “unconditional well-posedness” result was first obtained in [26], [27]
(see also [15], [14]); the result in [26], [27] was phrased for the sub-critical
Schrödinger equation but can be extended to the critical setting thanks to the
endpoint Strichartz estimates in [32] (or Lemma 3.2). For the convenience of
the reader we sketch here the ideas of this argument, which are essentially
in [27], [15], [14], we are indebted to Thierry Cazenave for pointing out the
relevance of the endpoint Strichartz estimate to the Ḣ1-critical uniqueness
problem.

Let u0 be finite energy initial data, and let u ∈ C0
t Ḣ1

x∩L10
t,x be the (global)

solution to (1.1) constructed in Theorem 1.1 with these initial data; thus u(0)
= u0. Suppose for contradiction that we have another (local or global) solution

42Actually, some of the ulo factors in |ulo|4 may have to be replaced by either P≥cη100
4

ulo

or P<cη100
4

ulo, but this will make no difference to the estimates.
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v ∈ C0
t Ḣ1

x to (1.1) with initial u0, in the sense that v verifies the (Duhamel)
integral formulation of (1.1),

v(t) = eitΔu0 − i

∫ t

0
ei(t−s)Δ(|v|4v(s)) ds.

Note that v ∈ C0
t Ḣ1

x ⊆ C0
t L6

x by Sobolev embedding, so that, in particular,
the nonlinearity |v|4v is locally integrable, and the right-hand side of the above
formula makes sense distributionally at least. We now claim that u ≡ v on
the entire time interval for which v is defined. Actually, we shall just show
that u ≡ v for all times t in a sufficiently small neighborhood I of 0; one can
then extend this to the whole time interval by a continuity argument and time
translation invariance.

To prove the claim, we write v = u + w and observe that w obeys a
difference equation, which we write in integral form as

w(t) = −i

∫ t

0
ei(t−s)Δ(|u + w|4(u + w)(s) − |u|4u(s)) ds.

Let ε > 0 be a small number to be chosen shortly. Note that w ∈ C0
t Ḣ1

x ⊆ C0
t L6

x

and w(0) = 0, so that in particular we can ensure that ‖w‖L∞
t L6

x(I×R3) ≤ ε by
choosing I sufficiently small. Also, from the Strichartz analysis u has finite
Ṡ1 norm, and in particular it has finite L8

t L
12
x norm. Thus we can also ensure

that ‖u‖L8
tL12

x (I×R3) ≤ ε by choosing I sufficiently small. Now we use (1.15) to
write the equation for w as

w(t) =
∫ t

0
ei(t−s)Δ(O(|w(s)|5) + O(|u(s)|4|w(s)|)) ds.

We apply Lemma 3.2 with k = 0 to conclude in particular that

‖w‖L2
t L6

x(I×R3) ≤ C‖|w|5‖L2
t L

6/5
x (I×R3) + C‖|u|4|w|‖L1

tL2
x(I×R3).

From our choice of I and Hölder’s inequality we see in particular that

‖w‖L2
t L6

x(I×R3) ≤ Cε4‖w‖L2
tL6

x(I×R3).

Note that the L2
t L

6
x(I × R3) norm of w is finite since w ∈ C0

t L6
x. If we choose

ε sufficiently small, we then conclude that w vanishes identically on I × R3.
One can then extend this vanishing to the entire time interval for which v is
defined by a standard continuity argument which we omit.

We now briefly discuss possible extensions to Theorem 1.1. One obvious
extension to study would be the natural analogue of Theorem 1.1 in higher
dimensions n > 3, with the equation (1.1) replaced by its higher-dimensional
energy-critical counterpart

iut + Δu = |u|
4

n−2 u.
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The four-dimensional case n = 4 seems particularly tractable since the nonlin-
earity is cubic.43 In higher dimensions n ≥ 5 one no longer expects a regularity
result since the nonlinearity is not smooth when u vanishes. However one might
still hope for a global well-posedness result in the energy space (especially since
this is already known to be true for small energies; see [9]). In the radial case,
such a result was obtained in four dimensions in [4], [5] and more recently in
general dimension in [45], and so it is reasonable to conjecture that one in
fact has global well-posedness in the energy space for all dimensions n ≥ 3
and all finite energy data, in analogy with Theorem 1.1. However, extending
our arguments here to the higher dimensional setting is far from automatic,
even in the four-dimensional case; all the Strichartz numerology changes, of
course, but also the interaction Morawetz inequality behave in a somewhat
different manner in higher dimensions (since the quantity Δ 1

|x| is no longer
a Dirac mass, but instead a fractional integral potential). However, it seems
that other parts of the argument, such as the induction on energy machinery,
the localization of minimal-energy blowup solutions, and the energy evacuation
arguments based on frequency-localized approximate mass conservation laws,
do have a good chance of extending to this setting. We will not pursue these
matters in detail here.

Another natural extension would be to add a lower order nonlinearity to
(1.1), for instance combining the pure power quintic nonlinearity |u|4u with
a pure power cubic nonlinearity |u|2u. Heuristically, we do not expect such
lower order terms to affect the global well-posedness and regularity of the
equation (especially if those terms have the same defocusing sign as the top
order term), although they may cause some difficulty in obtaining a scattering
result (especially if one adds a nonlinearity of the form |u|p−1u for very low p,
such as p ≤ 1 + 4

n = 7
3 or p ≤ 1 + 2

n = 5
3). However, these lower order terms

do create some nontrivial difficulties in our argument, which relies heavily on
scale-invariance. One may need to add some lower order terms (such as the L2

mass) to the energy E, or to the definition of the quantity M(E), in order to
salvage the induction on energy argument in this setting. Again, we will not
pursue these matters here.44

As remarked in Remark 5.3, our final bound M(E) for the global L10
t,x

norm of u in terms of the energy E is extremely bad; this is due to our ex-
tremely heavy reliance on the induction on energy hypothesis (Lemma 4.1) in

43Note added in proof: The four-dimensional case has been handled by a very recent
preprint of Ryckman and Visan [37], using a modification of the methods here. The case of
dimensions five and higher has also been very recently settled (Visan, personal communica-
tion).

44Note added in proof: the lower order terms have been successfully treated by Xiaoyi
Zhang (personal communication), relying on this result and perturbation theory.
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our argument.45 We do not expect our bounds to be anywhere close to best
possible. Indeed, any simplification of this argument would almost surely lead
to less use of the induction hypothesis, and consequently to a better bound
on M(E). For recent progress in this direction in the radial case (in which
no induction hypothesis is used at all, leading to a bound on M(E) which is
merely exponential in E), see [45].

The global existence and scattering result obtained here has analogs for the
critical nonlinear Klein-Gordon equation − 1

2c2 utt + Δu = −|u|4u + m2c2

2 u (see
introduction for references). As we remarked earlier, there are some important
differences between the methods employed for the Klein-Gordon equation and
those we use here. In particular, it is not at all clear how our arguments might
help show that the space-time bounds for the nonlinear Klein-Gordon equation
are uniform in the nonrelativistic limit c → ∞, even though one heuristically
expects the nonlinear Klein-Gordon equation to converge in some sense to the
nonlinear Schrödinger equation in this regimen with suitable normalizations
and assumptions on the data. One major difficulty in extending our argu-
ments to the relativistic case is that we have no analogue of the interaction
Morawetz inequality (1.8) (or any localized variants) for the Klein-Gordon
equation. For small energy data, uniform bounds on the solution are available
in the nonrelativistic limit (see remarks in [31]), but for general solutions such
bounds do not seem available. (See also [29] and references therein for further
results on the subcritical problem.)
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