
Annals of Mathematics, 167 (2008), 643–680

Almost all cocycles over

any hyperbolic system have
nonvanishing Lyapunov exponents

By Marcelo Viana*

Abstract
We prove that for any s > 0 the majority of Cs linear cocycles over any

hyperbolic (uniformly or not) ergodic transformation exhibit some nonzero
Lyapunov exponent: this is true for an open dense subset of cocycles and,
actually, vanishing Lyapunov exponents correspond to codimension-∞. This
open dense subset is described in terms of a geometric condition involving the
behavior of the cocycle over certain heteroclinic orbits of the transformation.

1. Introduction

In its simplest form, a linear cocycle consists of a dynamical system
f : M → M together with a matrix valued function A : M → SL(d,C):
one considers the associated morphism F (x, v) = (f(x), A(x)v) on the trivial
vector bundle M ×Cd. More generally, a linear cocycle is just a vector bundle
morphism over the dynamical system. Linear cocycles arise in many domains
of mathematics and its applications, from dynamics or foliation theory to spec-
tral theory or mathematical economics. One important special case is when
f is differentiable and the cocycle corresponds to its derivative: we call this a
derivative cocycle.

Here the main object of interest is the asymptotic behavior of the products
of A along the orbits of the transformation f ,

An(x) = A(fn−1(x)) · · ·A(f(x))A(x),

especially the exponential growth rate (largest Lyapunov exponent)

λ+(A, x) = lim
n→∞

1
n

log ‖An(x)‖ .
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The limit exists µ-almost everywhere, relative to any f -invariant probability
measure µ on M for which the function log ‖A‖ is integrable, as a consequence
of the subadditive ergodic theorem of Kingman [21].

We assume that the system (f, µ) is hyperbolic, possibly nonuniformly.
Our main result asserts that, for any s > 0, an open and dense subset of Cs

cocycles exhibit λ+(A, x) > 0 at almost every point. Exponential growth of
the norm is typical also in a measure-theoretical sense: full Lebesgue measure
in parameter space, for generic parametrized families of cocycles.

This provides a sharp counterpart to recent results of Bochi, Viana [6],
[7], where it is shown that for a residual subset of all C0 cocycles the Lyapunov
exponent λ+(A, x) is actually zero, unless the cocycle has a property of uniform
hyperbolicity in the projective bundle (dominated splitting). In fact, their
conclusions hold also in the, much more delicate, setting of derivative cocycles.

Precise definitions and statements of our results follow.

1.1. Linear cocycles. Let f : M → M be a continuous transformation
on a compact metric space M . A linear cocycle over f is a vector bundle
automorphism F : E → E covering f , where π : E →M is a finite-dimensional
real or complex vector bundle over M . This means that π ◦ F = f ◦ π and F

acts as a linear isomorphism on every fiber.
Given r ∈ N ∪ {0} and 0 ≤ ν ≤ 1, we denote by Gr,ν(f, E) the space

of r times differentiable linear cocycles over f with rth derivative ν-Hölder
continuous (for ν = 0 this just means continuity), endowed with the Cr,ν

topology. For r ≥ 1 it is implicit that the space M and the vector bundle
π : E → M have Cr structures. Moreover, we fix a Riemannian metric on E
and denote by Sr,ν(f, E) the subset of F ∈ Gr,ν(f, E) such that detFx = 1 for
every x ∈M .

Let F : E → E be a measurable linear cocycle over f : M → M , and
µ be any invariant probability measure such that log ‖Fx‖ and log ‖F−1

x ‖ are
µ-integrable. Suppose first that f is invertible. Oseledets’ theorem [24] says
that almost every point x ∈M admits a splitting of the corresponding fiber

(1) Ex = E1
x ⊕ · · · ⊕ Ekx , k = k(x),

and real numbers λ1(F, x) > · · · > λk(F, x) such that

(2) lim
n→±∞

1
n

log ‖Fnx (vi)‖ = λi(F, x) for every nonzero vi ∈ Eix .
When f is noninvertible, instead of a splitting one gets a filtration into vector
subspaces

Ex = F 0
x > · · · > F k−1

x > F kx = 0

and (2) is true for vi ∈ F i−1
x \F ix and as n→ +∞. In either case, the Lyapunov

exponents λi(F, x) and the Oseledets subspaces Eix, F ix are uniquely defined
µ-almost everywhere, and they vary measurably with the point x. Clearly,
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they do not depend on the choice of the Riemannian structure. In general, the
largest exponent λ+(F, x) = λ1(F, x) describes the exponential growth rate of
the norm on forward orbits:

(3) λ+(F, x) = lim
n→+∞

1
n

log ‖Fnx ‖ .

Finally, the exponents λi(F, x) are constant on orbits, and so they are constant
µ-almost everywhere if µ is ergodic. We denote by λi(F, µ) and λ+(F, µ) these
constants.

1.2. Hyperbolic systems. We call a hyperbolic system any pair (f, µ) where
f : M → M is a C1 diffeomorphism on a compact manifold M with Hölder
continuous derivative Df , and µ is a hyperbolic nonatomic invariant probabil-
ity measure with local product structure. The notions of hyperbolic measure
and local product structure are defined in the sequel:

Definition 1.1. An invariant measure µ is called hyperbolic if all Lyapunov
exponents λi(f, x) = λi(Df, x) are nonzero at µ-almost every x ∈M .

Given any x ∈ M such that the Lyapunov exponents λi(A, x) are well-
defined and all different from zero, let Eux and Esx be the sums of all Oseledets
subspaces corresponding to positive, respectively negative, Lyapunov expo-
nents. Pesin’s stable manifold theorem (see [14], [26], [27], [30]) states that
through µ-almost every such point x there exist C1 embedded disks W s

loc(x)
and W u

loc(x) such that

(a) W u
loc(x) is tangent to Eux and W s

loc(x) is tangent to Esx at x.

(b) Given τx < mini |λi(A, x)| there exists Kx > 0 such that

dist(fn(y1), fn(y2))≤Kxe
−nτx dist(y1, y2)(4)

for all y1, y2 ∈W s
loc(x) and n ≥ 1,

dist(f−n(z1), f−n(z2))≤Kxe
−nτx dist(z1, z2)

for all z1, z2 ∈W u
loc(x) and n ≥ 1.

(c) f
(
W u

loc(x)
) ⊃W u

loc(f(x)) and f
(
W s

loc(x)
) ⊂W s

loc(f(x)).

(d) W u(x) =
∞⋃
n=0

fn
(
W u

loc(f
−n(x)

)
and W s(x) =

∞⋃
n=0

f−n
(
W u

loc(f
n(x)

)
.

Moreover, the local stable set W s
loc(x) and local unstable set W u

loc(x) depend
measurably on x, as C1 embedded disks, and the constants Kx and τx may also
be chosen depending measurably on the point. Thus, one may find compact
hyperbolic blocks H(K, τ), whose µ-measure can be made arbitrarily close to 1
by increasing K and decreasing τ , such that



646 MARCELO VIANA

(i) τx ≥ τ and Kx ≤ K for every x ∈ H(K, τ) and

(ii) the disks W s
loc(x) and W u

loc(x) vary continuously with x in H(K, τ).

In particular, the sizes of W s
loc(x) and W u

loc(x) are uniformly bounded from
zero on each x ∈ H(K, τ), and so is the angle between the two disks.

Let x ∈ H(K, τ) and δ > 0 be a small constant, depending onK and τ . For
any y ∈ H(K, τ) in the closed δ-neighborhood B(x, δ) of x, W s

loc(y) intersects
W u

loc(x) at exactly one point and, analogously, W u
loc(y) intersects W s

loc(x) at
exactly one point. Let

N u
x (δ) = N u

x (K, τ, δ) ⊂W u
loc(x) and N s

x(δ) = N s
x(K, τ, δ) ⊂W s

loc(x)

be the (compact) sets of all intersection points obtained in this way, when y

varies in H(K, τ) ∩ B(x, δ). Reducing δ > 0 if necessary, W s
loc(ξ) ∩W u

loc(η)
consists of exactly one point [ξ, η], for every ξ ∈ N u

x (δ) and η ∈ N s
x(δ). Let

Nx(δ) be the image of N u
x (δ)×N s

x(δ) under the map

(5) (ξ, η) 7→ [ξ, η] .

By construction, Nx(δ) contains H(K, τ) ∩ B(x, δ), and its diameter goes to
zero when δ → 0. Moreover, Nx(δ) is homeomorphic to N u

x (δ)×N s
x(δ) via (5).

Definition 1.2. A hyperbolic measure µ has local product structure if for
every point x in the support of µ and every small δ > 0 as before, the restriction
ν = µ | Nx(δ) is equivalent to the product measure νu × νs, where νu and νs

are the projections of ν to N u
x (δ) and N s

x(δ), respectively.

Lebesgue measure has local product structure if it is hyperbolic; this fol-
lows from the absolute continuity of Pesin’s stable and unstable foliations [26].
The same is true, more generally, for any hyperbolic probability having ab-
solutely continuous conditional measures along unstable manifolds or stable
manifolds [27].

1.3. Uniformly hyperbolic homeomorphisms. The assumption that f is dif-
ferentiable will never be used directly: it is needed only to ensure the geometric
structure (Pesin stable and unstable manifolds) described in the previous sec-
tion. Consequently, our arguments remain valid in the special case of uniformly
hyperbolic homeomorphisms, where such structure is part of the definition. In
fact, the conclusions take a stronger form in this case, as we shall see.

The notion of uniform hyperbolicity is usually defined, for smooth maps
and flows, as the existence of complementary invariant subbundles that are
contracted and expanded, respectively, by the derivative [31]. Here we use
a more general definition that makes sense for continuous maps on metric
spaces [1]. It includes the two-sided shifts of finite type and the restrictions
of Axiom A diffeomorphisms to hyperbolic basic sets, among other examples.
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Let f : M → M be a continuous transformation on a compact metric space.
The stable set of a point x ∈M is defined by

W s(x) = {y ∈M : dist(fn(x), fn(y))→ 0 when n→ +∞}
and the stable set of size ε > 0 of x ∈M is defined by

W s
ε (x) = {y ∈M : dist(fn(x), fn(y)) ≤ ε for all n ≥ 0}.

If f is invertible the unstable set and the unstable set of size ε are defined
similarly, with f−n in the place of fn.

Definition 1.3. We say that a homeomorphism f : M → M is uniformly
hyperbolic if there exist K > 0, τ > 0, ε > 0, δ > 0, such that for every x ∈M

(1) dist(fn(y1), fn(y2)) ≤ Ke−τn dist(y1, y2) for all y1, y2 ∈W s
ε (x), n ≥ 0;

(2) dist(f−n(z1), f−n(z2)) ≤ Ke−τn dist(z1, z2) for all z1, z2 ∈W u
ε (x), n ≥ 0;

(3) if dist(x1, x2) ≤ δ then W u
ε (x1) and W s

ε (x2) intersect at exactly one
point, denoted [x1 , x2], and this point depends continuously on (x1, x2).

The notion of local product structure extends immediately to invariant
measures of uniformly hyperbolic homeomorphisms; by convention, every in-
variant measure is hyperbolic. In this case K, τ, δ may be taken the same for
all x ∈ M , and Nx(δ) is a neighborhood of x in M . We also note that ev-
ery equilibrium state of a Hölder continuous potential [11] has local product
structure. See for instance [10].

1.4. Statement of results. Let π : E → M be a finite-dimensional real or
complex vector bundle over a compact manifold M , and f : M →M be a C1

diffeomorphism with Hölder continuous derivative. We say that a subset of
Sr,ν(f, E) has codimension-∞ if it is locally contained in finite unions of closed
submanifolds with arbitrary codimension.

Theorem A. For every r and ν with r + ν > 0, and any ergodic hyper-
bolic measure µ with local product structure, the set of cocycles F such that
λ+(F, x) > 0 for µ-almost every x ∈ M contains an open and dense subset of
Sr,ν(f, E). Moreover, its complement has codimension-∞.

The following corollary provides an extension to the nonergodic case:

Corollary B. For every r and ν with r + ν > 0, and any invariant
hyperbolic measure µ with local product structure, the set of cocycles F such
that λ+(F, x) > 0 for µ-almost all x ∈M contains a residual (dense Gδ) subset
A of Sr,ν(f, E).
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Now let π : E →M be a finite-dimensional real or complex vector bundle
over a compact metric space M , and f : M → M be a uniformly hyperbolic
homeomorphism. In this case, one recovers the full conclusion of Theorem A
even in the nonergodic case.

Corollary C. For every r and ν with r+ν > 0, and any invariant mea-
sure µ with local product structure, the set of cocycles F such that λ+(F, x) > 0
for µ-almost all x ∈ M contains an open and dense subset A of Sr,ν(f, E).
Moreover, its complement has codimension-∞.

The conclusion of Corollary C was obtained before by Bonatti, Gomez-
Mont, Viana [9], under the additional assumptions that the measure is ergodic
and the cocycle has a partial hyperbolicity property called domination. Then
the set A may be chosen independent of µ. In the same setting, Bonatti,
Viana [10] get a stronger conclusion: generically, all Lyapunov exponents have
multiplicity 1, that is, all Oseledets subspaces Ei are one-dimensional. This
should be true in general:

Conjecture. Theorem A and the two corollaries remain true if one
replaces λ+(F, x) > 0 by all Lyapunov exponents λi(F, x) having multiplicity 1.

Theorem A and the corollaries are also valid for cocycles over noninvert-
ible transformations: local diffeomorphisms equipped with invariant expanding
probabilities (that is, such that all Lyapunov exponents are positive), and uni-
formly expanding maps. The arguments, using the natural extension (inverse
limit) of the transformation, are standard and will not be detailed here.

Our results extend the classical Furstenberg theory on products of inde-
pendent random matrices, which correspond to certain special linear cocycles
over Bernoulli shifts. Furstenberg [16] proved that in that setting the largest
Lyapunov exponent is positive under very general conditions. Before that,
Furstenberg, Kesten [17] investigated the existence of the largest Lyapunov
exponent. Extensions and alternative proofs of Furstenberg’s criterion have
been obtained by several authors. Let us mention specially Ledrappier [22],
that has an important role in our own approach. A fundamental step was due
to Guivarc’h, Raugi [19] who discovered a sufficient criterion for the Lyapunov
spectrum to be simple, that is, for all the Oseledets subspaces to be one-
dimensional. Their results were then sharpened by Gol’dsheid, Margulis [18],
still in the setting of products of independent random matrices.

Recently, it has been shown that similar principles hold for a large class
of linear cocycles over uniformly hyperbolic transformations. Bonatti, Gomez-
Mont, Viana [9] obtained a version of Furstenberg’s positivity criterion that
applies to any cocycle admitting invariant stable and unstable holonomies, and
Bonatti, Viana [10] similarly extended the Guivarc’h, Raugi simplicity crite-
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rion. The condition on the invariant holonomies is satisfied, for instance, if the
cocycle is either locally constant or dominated. The simplicity criterion of [10]
was further improved by Avila, Viana [4], who applied it to the solution of the
Zorich-Kontsevich conjecture [5]. Previous important work on the conjecture
was due to Forni [15]. It is important to notice that in those works, as well
as in the present paper, a regularity hypothesis r + ν > 0 is necessary. In-
deed, results of Bochi [6] and Bochi, Viana [7] show that generic C0 cocycles
over general transformations often have vanishing Lyapunov exponents. Even
more, for Lp cocycles, 1 ≤ p <∞, the Lyapunov exponents vanish generically,
by Arbieto, Bochi [2] and Arnold, Cong [3].

1.5. Comments on the proofs. It suffices to consider ν ∈ {0, 1}: the
Hölder cases 0 < ν < 1 are immediately reduced to the Lipschitz one ν = 1
by replacing the metric dist(x, y) in M by dist(x, y)ν . So, we always suppose
r+ν ≥ 1. We focus on the case when the vector bundle is trivial: E = M ×Kd

with K = R or K = C; the case of a general vector bundle is treated in the
same way, using local trivializing charts. Then A(x) = Fx may be seen as a
d × d matrix with determinant 1, and we identify Sr,ν(f, E) with the space
Sr,ν(M,d) of Cr,ν maps from M to SL(d,K). The Cr,ν topology is defined by
the norm

‖A‖r,ν = max
0≤i≤r

sup
x∈M
‖DiA(x)‖

+ sup
x 6=y

‖DrA(x)−DrA(y)‖
dist(x, y)ν

(for ν = 0 omit the last term).

Local product structure is used in Sections 3.2, 4.2, and 5.3. Ergodicity of
µ intervenes only at the very end of the proof in Section 5. In Section 6 we
discuss a number of related open problems.

In the remainder of this section we give an outline of the proof of the
main theorem. The basic strategy is to consider the projective cocycle fA :
M × P(Kd) → M × P(Kd) defined by (f,A), and to analyze the probability
measures m on M ×P(Kd) that are invariant under fA and project down to µ
on M . There are three main steps:

The first step, in Section 2, starts from the observation that, for µ-almost
every x, if λ(A, x) = 0 then the cocycle is dominated at x. This is a point-
wise version of the notion of domination in [9]: it means that the contraction
and expansion of the iterates of fA along the projective fiber {x} × P(Kd) are
strictly weaker than the contraction and expansion of the iterates of the base
transformation f along the Pesin stable and unstable manifolds of x. This en-
sures that there are strong-stable and strong-unstable sets through every point
(x, ξ) ∈ {x} × P(Kd), and they are graphs over W s

loc(x) and W u
loc(x), respec-

tively. Projecting along those sets, one obtains stable and unstable holonomy
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maps,

hsx,y : {x} × P(Kd)→ {y} × P(Kd) and hux,z : {x} × P(Kd)→ {z} × P(Kd),

from the fiber of x to the fibers of the points in its stable and unstable mani-
folds, respectively. Similarly to the notion of hyperbolic block in Pesin theory,
we call domination block a compact (noninvariant) subset of M where hyper-
bolicity and domination hold with uniform estimates.

The second step, in Section 3, is to analyze the disintegration {mx :x∈M}
into conditional probabilities along the projective fibers of any fA-invariant
probability measure m that projects down to µ on M . Using a theorem of
Ledrappier [22], we prove that if the Lyapunov exponents vanish then these
conditional probabilities are invariant under holonomies

my = (hsx,y)∗mx and mz = (hux,y)∗mx

almost everywhere on a neighborhood N of any point inside a domination
block. Combining this fact with the assumption of local product structure, we
show that the measure admits a continuous disintegration on N : the condi-
tional probabilities vary continuously with the base point x. Continuity means
that the conditional probability at any specific point in the support of the mea-
sure, somehow reflects the behavior of the invariant measure at nearby generic
points. This idea is important in what follows. In particular, this continuous
disintegration is invariant under holonomies at every point of N .

The third step, in Section 4, is to construct special domination blocks
containing an arbitrary number of periodic points which, in addition, are hete-
roclinically related. This is based on a well-known theorem of Katok [20] about
the existence of horseshoes for hyperbolic measures. Our construction is a bit
delicate because we also need the periodic points to be in the support of the
measure restricted to the hyperbolic block. That is achieved in Section 4.3,
where we use the hypothesis of local product structure.

The proofs of the main results are given in Section 5. Suppose the Lya-
punov exponents of FA vanish. Consider the continuous disintegration of an
invariant probability measure m as in the previous paragraph, over a domina-
tion block with a large number 2` of periodic points. Outside a closed subset of
cocycles with positive codimension, the eigenvalues of the cocycle at any given
periodic point are all distinct in norm (this statement holds for both K = C
and K = R, although the latter case is more subtle). Then the conditional
probability on the fiber of the periodic point is a convex combination of Dirac
measures supported on the eigenspaces. We conclude that, up to excluding a
closed subset of cocycles with codimension ≥ `, for at least ` periodic points
pi the conditional probabilities are combinations of Dirac measures.

Finally, consider the heteroclinic points associated to those periodic points.
Since the disintegration is invariant under holonomies at all points,

(hupi,q)∗mpi = mq = (hspj ,q)∗mpi for any q ∈W u(pi) ∩W s(pj).
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In view of the previous observations, this implies that the hupi,q-image of some
eigenspace of pi coincides with the hspj ,q-image of some eigenspace of pj . Such
a coincidence has positive codimension in the space of cocycles. Hence, its
happening at all the heteroclinic points under consideration has codimension
≥ `. Together with the previous paragraph, this proves that the set of cocycles
with vanishing Lyapunov exponents has codimension ≥ `, and its closure is
nowehere dense. Since ` is arbitrary, we get codimension-∞.

Acknowledgments. Some ideas were developed in the course of previous
joint projects with Jairo Bochi and Christian Bonatti, and I am grateful to
both for their input.

2. Dominated behavior and invariant foliations

Let µ be a hyperbolic measure and A ∈ Sr,ν(M,d) define a cocycle over
f : M →M . Let H(K, τ) be a hyperbolic block associated to constants K > 0
and τ > 0, as in Section 1.2. Given N ≥ 1 and θ > 0, let DA(N, θ) be the set
of points x satisfying

(6)
k−1∏
j=0

‖AN (f jN (x))‖ ‖AN (f jN (x))−1‖ ≤ ekNθ for all k ≥ 1,

together with the dual condition, where f and A are replaced by their inverses.

Definition 2.1. Given s ≥ 1, we say that x is s-dominated for A if it is in
the intersection of H(K, τ) and DA(N, θ) for some K, τ,N, θ with sθ < τ .

Notice that if B is an invertible matrix and B# denotes the action of B on
the projective space, then ‖B‖ ‖B−1‖ is an upper bound for the norm of the
derivatives of B# and B−1

# . Hence, this notion of domination means that the
contraction and expansion exhibited by the cocycle along projective fibers are
weaker, by a definite factor larger than s, than the contraction and expansion
of the base dynamics along the corresponding stable and unstable manifolds.

2.1. Generic dominated points. Here we prove that almost every point
x ∈M with λ+(A, x) = 0 is s-dominated for A, for every s ≥ 1.

Lemma 2.2. For any δ > 0 and almost every x ∈ M there exists N ≥ 1
such that

(7)
1
k

k−1∑
j=0

1
N

log ‖AN (f jN (x))‖ ≤ λ+(A, x) + δ for all k ≥ 1.
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Proof. Fix ε > 0 small enough so that 4ε sup log ‖A‖ < δ. Let η ≥ 1 be
large enough so that the set ∆η of points x ∈M such that

1
η

log ‖Aη(x)‖ ≤ λ+(A, x) +
δ

2

has µ(∆η) ≥ (1 − ε2). Let τ(x) be the average sojourn time of the fη-orbit
of x inside ∆η, and Γη be the subset of points for which τ(x) ≥ 1 − ε. By
sub-multiplicativity of the norms,

(8)
1
k

k−1∑
j=0

1
lη

log ‖Alη(f jlη(x))‖ ≤ 1
kl

kl−1∑
j=0

1
η

log ‖Aη(f jη(x))‖

for any x ∈ Γη and any k, l ≥ 1. Fix l large enough so that for any n ≥ l at
most (1− τ(x) + ε)n of the first iterates n of x under fη fall outside Γη . Then
the right-hand side of the previous inequality is bounded by

λ+(A, x) +
δ

2
+ (1− τ(x) + ε) sup log ‖A‖ ≤ λ+(A, x) +

δ

2
+ 2ε sup log ‖A‖

< λ+(A, x) + δ.

Recall that Lyapunov exponents are constant on orbits. Therefore, x satisfies
(7) with N = lη. On the other hand,

µ(Γη) + (1− ε)µ(M \ Γη) ≥
∫
τ(x) dµ(x) = µ(∆η) ≥ (1− ε2)

implies that µ(Γη) ≥ (1 − ε). Thus, making ε → 0 we get the conclusion (7)
for µ-almost every x ∈M .

Remark 2.3. When µ is ergodic for all iterates of f then the proof of
Lemma 2.2 gives some N ≥ 1 such that

lim sup
l→∞

1
l

l−1∑
j=0

1
N

log ‖AN (f jN (x))‖ ≤ λ+(A, x) + δ for µ-almost every x.

Indeed, ergodicity implies µ(Γη) = 1. Take k = 1. For every x ∈ Γη the
expression in (8) is smaller than λ+(A, x) + δ if l is large enough.

Corollary 2.4. Given θ > 0 and λ ≥ 0 such that dλ < θ, then µ-almost
every x ∈M with λ+(A, x) ≤ λ is in DA(N, θ) for some N ≥ 1. In particular,
µ-almost every x ∈M with λ+(A, x) = 0 is s-dominated for A, for every s ≥ 1.

Proof. Fix δ such that dλ+ dδ < θ. Let x and N be as in Lemma 2.2:

1
k

k−1∑
j=0

1
N

log ‖AN (f jN (x))‖ ≤ λ+(A, x) + δ for all k ≥ 1.
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Since detAN (z) = 1 we have ‖AN (z)−1‖ ≤ ‖AN (z)‖d−1 for all z ∈M . So, the
previous inequality implies

1
kN

k−1∑
j=0

log
(‖AN (f jN (x))‖‖AN (f jN (x))−1‖)

≤ dλ+(A, x) + dδ < θ for all k ≥ 1.

This means that x satisfies (6). The dual condition is proved analogously. The
second part of the statement is an immediate consequence: given any K, τ ,
and s, take sθ < τ and λ = 0, and apply the previous conclusion to the points
of H(K, τ).

2.2. Strong-stable and strong-unstable sets. We are going to show that if
x ∈M is 2-dominated then the points in the corresponding fiber have strong-
stable sets and strong-unstable sets, for the cocycle, which are Lipschitz graphs
over the stable set and the unstable set of x. For the first step we only need
1-domination:

Proposition 2.5. Given K, τ , N , θ with θ < τ , there exists L > 0 such
that for any x ∈ H(K, τ) ∩ DA(N, θ) and any y, z ∈W s

loc(x),

Hs
y,z = Hs

A,y,z = lim
n→+∞

An(z)−1An(y)

exists and satisfies ‖Hs
y,z − id ‖ ≤ Ldist(y, z) and Hs

y,z = Hs
x,z ◦Hs

y,x.

We begin with the following observation:

Lemma 2.6. There exists C = C(A,K, τ,N) > 0 such that

‖An(y)‖ ‖An(z)−1‖ ≤ Cenθ
for all y, z ∈W s

loc(x), x ∈ DA(N, θ), and n ≥ 0.

Proof. By sub-multiplicativity of the norms,

‖An(y)‖ ‖An(z)−1‖ ≤ C1

k−1∏
j=0

‖AN (f jN (y))‖ ‖AN (f jN (z))−1‖

where k = [n/N ] and the constant C1 = C1(A,N). Since A ∈ Sr,ν(M,d) with
r + ν ≥ 1, there exists L1 = L1(A,N) such that

‖AN (f jN (y))‖/‖AN (f jN (x))‖≤ exp
(
L1 dist(f jN (x), f jN (y))

)
≤ exp

(
L1Ke

−jNτ)
and similarly for ‖AN (f jN (z))−1‖/‖AN (f jN (x))−1‖. It follows that
k−1∏
j=0

‖AN (f jN (y))‖ ‖AN (f jN (z))−1‖ ≤ C2

k−1∏
j=0

‖AN (f jN (x))‖ ‖AN (f jN (x))−1‖

where C2 = exp(L1K
∑∞

j=0 e
−jNτ ). The last term is bounded by C2e

kNθ ≤
C2e

nθ, by domination. Therefore, it suffices to take C = C1C2 .



654 MARCELO VIANA

Proof of Proposition 2.5. Each difference

‖An+1(z)−1An+1(y)−An(z)−1An(y)‖
is bounded by

‖An(z)−1‖ · ‖A(fn(z))−1A(fn(y))− id ‖ · ‖An(y)‖ .
Since A is Lipschitz continuous, the middle factor is bounded by

L2 dist(fn(y), fn(z)) ≤ L2Ke
−nτ dist(y, z),

for some L2 > 0 that depends only on A. Using Lemma 2.6 to bound the other
factors, we have

(9) ‖An+1(z)−1An+1(y)−An(z)−1An(y)‖ ≤ CL2Ke
n(θ−τ) dist(y, z).

Since θ − τ < 0, this proves that the sequence is Cauchy and the limit Hs
y,z

satisfies

‖Hs
y,z − id ‖ ≤ Ldist(y, z) with L =

∞∑
n=0

CL2Ke
n(θ−τ).

The last claim in the proposition follows directly from the definition of Hs
y,z .

Remark 2.7. If x is dominated for A then it is dominated for any other
cocycle B in a C0 neighborhood. More precisely, if x ∈ DA(N, θ) then, given
any θ′ > θ, we have x ∈ DB(N, θ′) if B is uniformly close to A. Using this
observation and the fact that the constants L1, L2 may be taken to be uniform
in a neighborhood of the cocycle, we conclude that L itself is uniform in a
neighborhood of A. The same comments apply to the constant L̂ in the next
corollary.

Corollary 2.8. Given K, τ , N , θ with 2θ < τ , there exists L̂ > 0 such
that for any x ∈ H(K, τ) ∩ DA(N, θ) and any y, z ∈W s

loc(x),

Hs
f j(y),f j(z) = lim

n→+∞
An(f j(z))−1An(f j(y)) = Aj(z) ·Hs

y,z ·Aj(y)−1

exists for every j ≥ 1, and satisfies

‖Hs
fj(y),f j(z) − id ‖ ≤ L̂ej(2θ−τ) dist(y, z) ≤ L̂dist(y, z).

Proof. The first statement follows immediately from the fact that

An(f j(z))−1An(f j(y)) = Aj(z)
[
An+j(z)−1An+j(y)

]
Aj(y)−1.

Using Lemma 2.6 and inequality (9), with n replaced by n+ j, we deduce

‖An+1(f j(z))−1An+1(f j(y))−An(f j(z))−1An(f j(y))‖
≤ CejθCL2Ke

(n+j)(θ−τ) dist(y, z).

Summing over n ≥ 0 we get the second statement, with L̂ = CL.
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2.3. Dependence of the holonomies on the cocycle. In the next lemma we
study the differentiability of Hs

A,x,y as a function of A ∈ Sr,ν(M,d). At this
point we assume 3-domination. Notice that Sr,ν(M,d) is a submanifold of the
Banach space of Cr,ν maps from M to the space of all d × d matrices. Thus,
each TASr,ν(M,d) is a subspace of that Banach space.

Lemma 2.9. Given K, τ , N , θ with 3θ < τ , there is a neighborhood U ⊂
Sr,ν(M,d) of A such that for any x ∈ H(K, τ) ∩DA(N, θ) and y, z ∈W s

loc(x),
the map B 7→ Hs

B,y,z is of class C1 on U , with derivative

∂BH
s
B,y,z : Ḃ 7→

∞∑
i=0

Bi(z)−1
[
Hs
B,f i(y),f i(z)B(f i(y))−1 Ḃ(f i(y))

−B(f i(z))−1 Ḃ(f i(z))Hs
B,f i(y),f i(z)

]
Bi(y).

Proof. By Remark 2.7, for any θ′ > θ we may find a neighborhood U of
A, such that x ∈ H(K, τ) ∩ DB(N, θ′) for all B ∈ U . Choose 3θ′ < τ ; then
Hs
B,y,z is well defined on U . Before proving this map is differentiable, let us

check that the expression ∂BH
s
B,y,z is also well-defined.

Let i ≥ 0. By Lemma 2.6, we have ‖Bi(z)−1‖‖Bi(y)‖ ≤ Ceiθ
′
. Corol-

lary 2.8 gives

‖Hs
B,f i(y),f i(z) − id ‖ ≤ L̂ei(2θ′−τ) dist(y, z).

It is clear that ‖B(f i(y))−1 Ḃ(f i(y))‖ ≤ ‖B−1‖r,ν‖Ḃ‖r,ν . Moreover, since B ∈
Sr,ν(M,d) and Ḃ ∈ TBSr,ν(M,d) are Lipschitz continuous,

‖B(f i(y))−1Ḃ(f i(y))−B(f i(z))−1Ḃ(f i(z))‖ ≤ 2L3‖Ḃ‖r,ν Ke−iτ dist(y, z)

where L3 = sup{‖B−1‖r,ν : B ∈ U}. This shows that

‖∂BHs
B,y,z · Ḃ‖ ≤

∞∑
i=0

Ceiθ
′[

2L̂ei(2θ
′−τ)L3 + 2L3Ke

−iτ ]dist(y, z)‖Ḃ‖r,ν .

Thus

‖∂BHs
B,y,z · Ḃ‖ ≤

∞∑
i=0

C3e
i(3θ′−τ) dist(y, z)‖Ḃ‖r,ν

where C3 = 2CL3(L̂+K). This proves that the series does converge.
We have seen in Proposition 2.5 that Hn

B,y,z = Bn(z)−1Bn(z) converges
to Hs

B,y,z as n → ∞. By Remark 2.7, this convergence is uniform on U .
Elementary differentiation rules give us that each Hn

B,x,y is a differentiable
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function of B, with derivative

∂BH
n
B,y,z · Ḃ=Bn(z)−1

n−1∑
i=0

Bn−i(f i(y))B(f i(y))−1Ḃ(f i(y))Bi(y)

−
n−1∑
i=0

Bi(z)−1B(f i(z))−1Ḃ(f i(z))Bn−i(f i(z))−1Bn(y).

So, to prove the lemma it suffices to show that ∂BHn
B,y,z converges uniformly

to ∂BHs
B,y,z when n→∞. As a first step we rewrite,

∂BH
n
B,y,z · Ḃ=

n−1∑
i=0

Bi(z)−1
[
Hn−i
B,f i(y),f i(z)B(f i(y))−1Ḃ(f i(y))

−B(f i(z))−1Ḃ(f i(z))Hn−i
B,f i(y),f i(z)

]
Bi(y).

Let 0 ≤ i ≤ n− 1. From Corollary 2.8 we find that

‖Hn−i
B,f i(y),f i(z) −Hs

B,f i(y),f i(z)‖ ≤ L̂eiθen(θ−τ) dist(y, z).

We deduce that the difference between the ith terms in the expressions of
∂BH

n
B,y,z · Ḃ and ∂BH

s
B,y,z · Ḃ is bounded by

2CeiθL̂eiθen(θ−τ) dist(y, z)L3‖Ḃ‖r,ν ≤ C4e
2iθen(θ−τ) dist(y, z)‖Ḃ‖r,ν

with C4 = 2CL̂3L. Using the estimates in the previous paragraph to bound
the sum of all terms i ≥ n in the expression of ∂BHs

B,y,z · Ḃ, we obtain

‖∂BHn
B,y,z · Ḃ − ∂BHs

B,y,z · Ḃ‖

≤
(
n−1∑
i=0

C4e
2iθen(θ−τ) +

∞∑
i=n

C3e
i(3θ−τ)

)
dist(y, z)‖Ḃ‖r,ν .

The right-hand side tends to zero uniformly when n → ∞, so the proof is
complete.

2.4. Holonomy blocks. The linear cocycle FA(x, v) = (f(x), A(x)v) induces
a projective cocycle

fA : M × P(Kd)→M × P(Kd)

in the projective space P(Kd) of Kd. For any y, z ∈W s
loc(x) let hsy,z : P(Kd)→

P(Kd) be the projective map induced by Hs
y,z. We call hsx,y the strong-stable

holonomy between the projective fibers of x and y. This terminology is justified
by the next lemma, which says that the Lipschitz graph

W s
loc(x, ξ) = {(y, hsx,y(ξ)) : y ∈W s

loc(x)}
is a strong-stable set for every point (x, ξ) in the projective fiber of x. Strong-
unstable sets W u

loc(x) and strong-unstable holonomies hux,y are defined anal-
ogously. The next lemma explains this terminology. Since it is not strictly
necessary for our arguments, we omit the proof.
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Lemma 2.10. Let x ∈ H(K, τ) ∩ DA(N, θ) with θ < τ . For every y ∈
W s

loc(x) and ξ in the projective space,

(1) lim sup
n→+∞

1
n

log dist
(
fnA(x, ξ), fnA(y, hsx,y(ξ))

) ≤ −τ for all ξ ∈ Ex;

(2) lim inf
n→+∞

1
n

log dist
(
fnA(x, ξ), fnA(y, η)

)
< −θ if and only if η = hsx,y(ξ).

We call holonomy block for A any compact set O that is contained in
H(K, τ) ∩ DA(N, θ) for some K, τ,N, θ with 3θ < τ . By Proposition 2.5,
points in the local stable set, respectively local unstable set, of a holonomy
block have strong-stable, respectively strong-unstable, holonomies Lipschitz
continuous with uniform Lipschitz constant L = L(A,K, τ,N, θ). More than
that, by Remark 2.7,

Corollary 2.11. Given any K, τ,N, θ with 3θ < τ , there is a neighbor-
hood U of A in Sr,ν(M,d) such that any compact subset O of H(K, τ)∩DA(N, θ)
is a holonomy block for every B ∈ U , and the Lipschitz constant L for the cor-
responding strong-stable and strong-unstable holonomies may be taken uniform
on the whole U .

3. Invariant measures of projective cocycles

In this section we assume λ+(A, x) = 0 for µ-almost every x ∈ M . Let
fA be the projective cocycle associated to A. We are going to analyze the
probability measures m on M × P(Kd), invariant under fA and projecting to
µ under (x, ξ) 7→ x. Such measures always exist, by continuity of fA and
compactness of its domain. A disintegration of m is a family of probability
measures {mz : z ∈M} on the fibers Fz = {z} × P(Kd), such that

m(E) =
∫
mz

(Fz ∩ E) dµ(z)

for every measurable subset E. Such a family exists and is essentially unique,
meaning that any two coincide on a full measure subset [28].

3.1. Invariance along strong foliations. Let O ⊂ M be a holonomy block
with positive µ-measure. By definition, O is contained in some hyperbolic block
H(K, τ). Let δ > 0 be some small constant, depending only on (K, τ). Fix
any point x̄ ∈ supp(µ | O) and let N s

x̄(δ) = N s
x̄(K, τ, δ), N u

x̄ (δ) = N u
x̄ (K, τ, δ),

and Nx̄(δ) = Nx̄(K, τ, δ) be the sets introduced in Section 1.2. Moreover, let
N s
x̄(O, δ), N u

x̄ (O, δ), Nx̄(O, δ) be the subsets of N s
x̄(δ), N u

x̄ (δ), Nx̄(δ) obtained
replacing H(K, τ) by O in the definitions. By construction, Nx̄(O, δ) contains
O ∩B(x̄, δ), and so it has positive µ-measure.
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Proposition 3.1. Let m be any fA-invariant probability measure that
projects down to µ. Then the disintegration {mz} of m is invariant under
strong-stable holonomy µ-almost everywhere on Nx̄(O, δ); there exists a full
µ-measure subset Es of Nx̄(O, δ) such that

mz2 =
(
hsz1,z2

)
∗mz1

for every z1, z2 ∈ Es in the same stable leaf [z,N s
x̄(δ)].

Replacing f by f−1 we get that the disintegration is also invariant under
strong-unstable holonomy over a full µ-measure subset Eu of Nx̄(O, δ) .

The proof of Proposition 3.1 is based on the following slightly specialized
version of Theorem 1 of Ledrappier [22]. Let (M∗,M∗, µ∗) be a Lebesgue space
(complete probability space with the Borel structure of the interval together
with a countable number of atoms), T : M∗ →M∗ be a one-to-one measurable
transformation, and B : M∗ → GL(d,C) be a measurable map such that
log ‖B‖ and log ‖B−1‖ are integrable. Denote by FB the linear cocycle and by
fB the projective cocycle defined by B over T . Let λ−(B, x) be the smallest
Lyapunov exponent of FB at a point x. Recall that λ+(B, x) denotes the
largest exponent.

Theorem 3.2 (Ledrappier [22]). Let B ⊂M∗ be a σ-algebra such that

(1) T−1(B) ⊂ B mod 0 and {Tn(B) : n ∈ Z} generates M∗ mod 0;

(2) the σ-algebra generated by B is contained in B mod 0.

If λ−(B, x) = λ+(B, x) at µ∗-almost every point then, for any fB-invariant
measure m on M∗ × P(Cd), the disintegration z 7→ mz of m along projective
fibers is B-measurable mod 0.

We also need the following result, whose proof we postpone to Section 3.3:

Proposition 3.3. There exists N ≥ 1 and a family of sets {S(z) : z ∈
N u
x̄ (δ)} such that

(1) [z,N s
x̄(δ)] ⊂ S(z) ⊂W s

loc(z) for all z ∈ N u
x̄ (δ);

(2) for all l ≥ 1 and z, ζ ∈ N u
x̄ (δ), if f lN (S(ζ))∩ S(z) 6= ∅ then f lN (S(ζ)) ⊂

S(z).

We are going to deduce Proposition 3.1 from Theorem 3.2 applied to a
modified cocycle, constructed with the aid of Proposition 3.3 in the way we
now explain. Since Proposition 3.1 is not affected when one replaces f by any
iterate, we may suppose N = 1 in all that follows. Consider the restriction
{S(z) : z ∈ N u

x̄ (O, δ)} of the family in Proposition 3.3. For each z ∈ N u
x̄ (O, δ)
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let r(z) > 0 be the largest such that f j(S(z)) does not intersect the union of
S(w), w ∈ N u

x̄ (O, δ), for all 0 < j ≤ r(z) (possibly r(z) = ∞). Take B ⊂ M
to be the sub-σ-algebra generated by the family {f j(S(z)) : z ∈ N u

x̄ (O, δ) and
0 ≤ j ≤ r(z)}; that is, B consists of all measurable sets E which, for every z

and j, either contain f j(S(z)) or are disjoint from it. Define B : M → GL(d,C)
by

(10) B(x) = A(f j(z)) = Hs
f(x),f j+1(z) ◦A(x) ◦Hs

f j(z),x

if x ∈ f j(S(z)) for some z ∈ N u
x̄ (O, δ) and 0 ≤ j < r(z);

(11) B(x) = Hs
f(x),w ◦A(x) ◦Hs

fj(z),x

if x ∈ f j(S(z)) for some z ∈ N u
x̄ (O, δ) , j = r(z), and f j+1(S(z)) ⊂ S(w); and

(12) B(x) = A(x) in all other cases.

Lemma 3.4. (1) f−1(B) ⊂ B and {fn(B) : n ∈ N} generatesM∗mod 0.

(2) The σ-algebra generated by B is contained in B.

(3) The functions log ‖B‖ and log ‖B−1‖ are bounded.

(4) A and B have the same Lyapunov exponents at µ-almost every x.

Proof. It is clear that f(B) is the sub-σ-algebra generated by {f j+1(S(z)) :
z ∈ N u

x̄ (O, δ) and 0 ≤ j ≤ r(z)}. The Markov property in part (2) of Propo-
sition 3.3 implies that this σ-algebra contains B. Equivalently, f−1(B) ⊂ B.
More generally, fn(B) is generated by {f j+n(S(z)) : z ∈ N u

x̄ (O, δ) and 0 ≤
j ≤ r(z)} for each n ≥ 1. By (4),

diam f j+n(S(z)) ≤ const e−τn → 0

uniformly as n→∞. Hence fn(B), n ≥ 1 generateM mod 0. This proves (1).
Definitions (10) and (11) imply that B−1(E) is in the σ-algebra B for every
measurable subset E of SL(d,C). That is the content of statement (2). Claim
(3) is clear, except possibly for case (11) of the definition. To handle that case
notice that Hs

f j+1(ζ),w and Hs
fj(z),f j(ζ) are uniformly close to the identity, by

Proposition 2.5 and Corollary 2.8. To prove (4), it suffices to notice that A
and B are conjugate, by a conjugacy at bounded distance from the identity.
Indeed, the relations (10), (11), (12) may be rewritten as

B(x) = H(f(x)) ◦A(x) ◦H−1
x

where H(y) = Hs
y,fj(z) if y ∈ f j(S(z)) for some (uniquely determined) point

z ∈ N u
x̄ (O, δ) and 0 ≤ j < r(z), and H(y) = id otherwise. That H is at

bounded distance from the identity is a consequence of Proposition 2.5 and
Corollary 2.8.
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Proof of Proposition 3.1. The claim will follow from application of Theo-
rem 3.2 with M∗ = M ,M∗ = completion of the Borel σ-algebra of M relative
to µ∗ = µ, T = f , and B as constructed above. Notice that (M∗,M∗, µ∗) is a
Lebesgue space (because M is a separable metric space; see [29, Theorem 9]).
Since A takes values in SL(d,C), the sum of all Lyapunov exponents vanishes
identically. Therefore,

(d− 1)λ−(A, x) + λ+(A, x) ≤ 0 ≤ λ−(A, x) + (d− 1)λ+(A, x).

So, λ+(A, x) = 0 if and only if λ−(A, x) = λ+(A, x) and, by part (4) of
Lemma 3.4, this is equivalent to λ−(B, x) = λ+(B, x). The other hypotheses
of the theorem are also granted by Lemma 3.4. Let m be any fA-invariant
measure as in the statement. Invariance means that

A(x)∗mx = mf(x) µ-almost everywhere.

Define m̃ to be the probability measure on M × P(Kd) projecting down to µ
and with disintegration {m̃x} defined by

m̃x =
{ (

hx,f j(z)
)
∗mx if x ∈ f j(S(z)) with z ∈ N u

x̄ (O, δ) and 0 ≤ j ≤ r(z)
mx otherwise.

Let us check that m̃ is fB-invariant. If x ∈ f j(S(z)) with 0 ≤ j < r(z) then,
by (10),

B(x)∗m̃x =
(
hsf(x),f j+1(z)

)
∗A(x)∗mx =

(
hsf(x),f j+1(z)

)
∗mf(x) = m̃f(x) µ-a.s.

Similarly, if x ∈ f j(S(z)) with j = r(z) and f j+1(S(z)) ⊂ S(w) then, by (11),

B(x)∗m̃x =
(
hsf(x),w

)
∗A(x)∗mx =

(
hsf(x),w

)
∗mf(x) = m̃f(x) µ-a.s.

Case (12) of the definition is obvious. Thus, m̃ is indeed fB-invariant. Using
Theorem 3.2, we conclude that x 7→ m̃x is B-measurable mod 0. This implies
that there exists a full measure subset Es of Nx̄(O, δ) such that

z1, z2 ∈ Es ∩ S(z)⇒ m̃z1 = m̃z2

⇔ (hsz1,z

)
∗mz1 =

(
hsz2,z

)
∗mz2 ⇒

(
hsz1,z2

)
∗mz1 = mz2 .

Since S(z) contains [z,N s
x̄(δ)], this proves the proposition.

3.2. Consequences of local product structure. Here we use, for the first
time, that µ has local product structure. The following is a straightforward
consequence of the definitions:

(13) supp(µ | Nx̄(O, δ)) = [supp(µu | N u
x̄ (O, δ)), supp(µs | N s

x̄(O, δ))].
The crucial point in this section is that the conclusion of the next proposition
holds for every, not just almost every, point in the support of µ | Nx̄(O, δ) .
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Proposition 3.5. Every fA-invariant measure m projecting down to µ

admits a disintegration {m̃z : z ∈M} such that

(1) sup(µ | Nx̄(O, δ)) 3 z 7→ m̃z is continuous relative to the weak topology.

(2) m̃z is invariant under strong-stable and strong-unstable holonomies ev-
erywhere on sup(µ | Nx̄(O, δ)):

m̃x =
(
hsz,x

)
∗ m̃z and m̃y =

(
huz,y

)
∗ m̃z

whenever z, x are in the same local stable manifold, and z, y are in the
same local unstable manifold.

Proof. Let E = Es∩Eu, where Es and Eu are the full measure subsets of
Nx̄(O, δ) given by Proposition 3.1. Since µ(Nx̄(O, δ)\E) = 0 and µ ≈ µu×µs,
we have

µs
(
[ξ,N s

x̄(O, δ)] ∩ (Nx̄(O, δ) \ E)
)

= 0

for µu-almost every ξ ∈ N u
x̄ (O, δ). Fix any such ξ. Consider the family {m̄z :

z ∈ M} of probabilities obtained by starting with an arbitrary disintegration
{mz : z ∈ M} of m and forcing strong-unstable invariance from [ξ,N s

x̄(O, δ)].
What we mean by this is that, by definition,

m̄z = (huη,z)∗mη

if z ∈ [N u
x̄ (O, δ), η] for some η ∈ [ξ,N s

x̄(O, δ)], and m̄z = mz at all other points.
From the definition and the local product structure, we get that m̄z = mz

at µ-almost every z ∈ M . So, this new family is still a disintegration of m.
Moreover, m̄z varies continuously with z along every unstable leaf [N u

x̄ (O, δ), η],
as a consequence of the Lipschitz property of holonomies in Proposition 2.5.

Next, fix η ∈ N s
x̄(O, δ) such that µu

(
[N u

x̄ (O, δ), η] ∩ (Nx̄(O, δ) \ E)
)

= 0
and let {ms

z : z ∈ M} be the family of probabilities obtained starting with
the disintegration {m̄z : z ∈ M} and forcing strong-stable invariance from
[N u

x̄ (O, δ), η]. For the same reasons as before, this third family is again a
disintegration of m. By construction, this disintegration is invariant under
strong-stable holonomies everywhere on Nx̄(O, δ) . Most important, ms

z varies
continuously with z on the whole Nx̄(O, δ) .

By a dual procedure, we obtain a disintegration {mu
z : z ∈ M} varying

continuously with z on Nx̄(O, δ) and invariant under strong-stable holonomies
everywhere on Nx̄(O, δ) . Then ms

z and mu
z must coincide almost everywhere.

Hence, by continuity, ms
z = mu

z at every point z ∈ supp(µ | Nx̄(O, δ)). Define
m̃z = ms

z = mu
z if z ∈ Nx̄(O, δ) and m̃z = mz otherwise. The properties in the

conclusion of the proposition follow immediately from the construction.

3.3. A Markov type construction. Here we prove Proposition 3.3. Fix
N ≥ 1 such that Ke−Nτ < 1/4, then let g = fN . For each z ∈ N u

x̄ (δ) define
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S0(z) = [z,N s
x̄(δ)] and

(14) Sn+1(z) = S0(z) ∪
⋃

(j,w)∈Zn(z)

gj(Sn(w))

where Zn(z) is the set of pairs (j, w) ∈ N×N u
x̄ (δ) such that gj(Sn(w)) intersects

S0(z). By induction, Sn+1(z) ⊃ Sn(z) and Zn+1(z) ⊃ Zn(z) for all n ≥ 0.
Define

S∞(z) =
∞⋃
n=0

Sn(z) and Z∞(z) =
∞⋃
n=0

Zn(z).

Then Z∞(z) is the set of (j, w) ∈ N × N u
x̄ (δ) such that gj(S∞(w)) intersects

S0(z), and

(15) S∞(z) = S0(z) ∪
⋃

(j,w)∈Z∞(z)

gj(S∞(w)).

Finally, define

(16) S(z) = S∞(z) \
⋃

(k,ξ)∈V (z)

gk(S∞(ξ))

where (k, ξ) ∈ V (z) if and only if gk(S∞(ξ)) is not contained in S∞(z).

Lemma 3.6. We have S0(z) ⊂ S(z) ⊂ S∞(z) ⊂ W s
loc(z) for all z ∈

N u
x̄ (δ).

Proof. Relation (15) and the definition of V (z) imply that gk(S∞(ξ)) is
disjoint from S0(z) for all (k, ξ) ∈ V (z). Since S∞(z) contains S0(z), it follows
that S0(z) ⊂ S(z). Next, for each z ∈ N u

x̄ (δ) and 0 ≤ n ≤ ∞, define internal
radii

∆n = sup{dist(z, η) : η ∈ Sn(z) and z ∈ N u
x̄ (δ)}.

It is clear that ∆0 goes to zero with δ (linearly). Assume δ is small enough
so that the local stable manifold of every z ∈ N u

x̄ (δ) contains the disk of
radius 2∆0 around z. Our choice of N above implies that diam g(E) ≤
Ke−Nτ diam(E) < (1/4) diam(E) for all j ≥ 1 and E ⊂ W s

loc(z). Therefore,
the definition (14) gives

∆n+1 ≤ ∆0 +
1
4

sup
w∈Nu

x̄ (δ)
diamSn(w) ≤ ∆0 +

1
2

∆n

for all n ≥ 0. By induction, it follows that ∆n ≤ 2∆0 for every n ≥ 1. Then
∆∞ ≤ 2∆0 and so S∞(z) ⊂W s

loc(z) for every z ∈ N u
x̄ (δ).

Lemma 3.7. Suppose gl(S(ζ)) ∩ S∞(z) 6= ∅. Then, for any (k, ξ) ∈ V (z),

(1) gl(S∞(ζ)) ⊂ S∞(z) and

(2) if gl(S(ζ)) ∩ gk(S∞(ξ)) 6= ∅ then gl(S(ζ)) ⊂ gk(S∞(ξ)).
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Proof. If gl(S(ζ)) ⊂ gl(S∞(ζ)) intersects S0(z) then (l, ζ) ∈ Z∞(z) and
the conclusion follows directly from (15). So, to prove the first claim, we
only need to consider the case when gl(S(ζ)) intersects gj(S∞(w)) for some
(j, w) ∈ Z∞(z). Suppose first that l ≤ j. Then S(ζ) intersects gj−l(S∞(w))
and so, by the definition (16) of S(ζ), we have that gj−l(S∞(w)) is contained
in S∞(ζ). It follows that gj(S∞(w)) ⊂ gl(S∞(ζ)). This implies that (l, ζ) ∈
Z∞(z), because (j, w) ∈ Z∞(z), and so gl(S∞(ζ)) ⊂ S∞(z). Now suppose that
l > j. Then gl−j(S(ζ)) intersects S∞(w). This is analogous to the hypothesis
of the lemma, with z replaced by w and l replaced by l − j < l. Hence, by
induction on l, we may assume that gl−j(S∞(ζ)) ⊂ S∞(w). It follows that
gl(S∞(ζ)) ⊂ gj(S∞(w)) ⊂ S∞(z), as claimed.

Now we prove the second claim. Suppose l ≤ k. Then S(ζ) intersects
gk−l(S∞(ξ)). In view of (16), this implies gk−l(S∞(ξ)) ⊂ S∞(ζ). Then, using
also claim (1) in this lemma, we have

gk(S∞(ξ)) ⊂ gl(S∞(ζ)) ⊂ S∞(z),

contradicting the assumption (k, ξ) ∈ V (z). So, we must have l > k. Then
gl−k(S(ζ)) intersects S∞(ξ). By claim (1) in this lemma, it follows that
gl−k(S(ζ)) ⊂ gl−k(S∞(ζ)) is contained in S∞(ξ). That is, gl(S(ζ)) ⊂ gk(S∞(ξ)),
as we wanted to prove.

Proof of Proposition 3.3. The first part is contained in Lemma 3.6,
since [z,N s

x̄(δ)] = S0(z). Let us prove the second part. Recall that g = fN

and we are assuming gl(S(ζ)) intersects S(z). Then Lemma 3.7(1) gives that
gl(S(ζ)) ⊂ gl(S∞(ζ)) ⊂ S∞(z). So, in view of (16), to prove that gl(S(ζ)) is
contained in S(z) we only have to show that gl(S(ζ)) is disjoint from gk(S∞(ξ))
for all (k, ξ) ∈ V (z). This is ensured by Lemma 3.7(2): if gl(S(ζ)) intersected
gk(S∞(ξ)) then it would be contained in it, in which case it would not intersect
S(z).

4. Periodic points and obstructions to vanishing exponents

The next goal is to exhibit geometric obstructions to the vanishing of Lya-
punov exponents, in terms of holonomies over local stable and local unstable
sets of periodic points of f . To this end, we construct holonomy blocks Õ
containing any number of dominated periodic points.

4.1. Dominated periodic points. Let p be a periodic point of f , and κ ≥ 1
be its period. Suppose p is hyperbolic, with hyperbolicity constants K and τ .
We fix s = 3 in what follows, and say that p is dominated if it is in DA(N, θ)
for some N and θ with sθ < τ . An equivalent condition is that there be P ≥ 1
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and θ with sθ < τ such that

(17) ‖AκP (p)‖ ‖AκP (p)−1‖ ≤ eκPθ.
Indeed, (17) implies p ∈ DA(κP, θ), by periodicity, and p ∈ DA(N, θ) implies
(17) with P = N , by sub-multiplicity of norms.

Suppose p is dominated, and let z be any point in the local stable set
W s

loc(p). Let Hs
p,z = Hs

A,p,z and hsp,z = hsA,p,z be the corresponding strong-
stable holonomies. Recall that

Hs
A,p,z = lim

n→+∞
Aκn(z)−1Aκn(p),

and hsA,p,z is the projectivization of Hs
A,p,z. In particular, these holonomies

depend only on the values of Ak on the local stable manifold of p.

Proposition 4.1. Let p ∈ M be a dominated periodic point for A ∈
Sr,ν(M,d). Then there is a neighborhood U of A such that for any z ∈W s

loc(p)
the map B 7→ hsB,p,z is of class C1 on U . Moreover, given any linearly inde-
pendent points ξ1 , . . . , ξd in P(Kd),

(18) U 3 B 7→ (
hsB,p,z(ξ1), . . . , hsB,p,z(ξd)

) ∈ P(Kd)d

is a submersion, even restricted to maps with values prescribed outside a neigh-
borhood of z.

In other words, for every B ∈ U and any neighborhood U of z, the restric-
tion of (18) to those maps which coincide with B outside U is differentiable at
B and the derivative is surjective.

Remark 4.2. The proof uses the following property ofG = SL(d,K): given
any linearly independent η1 , . . . , ηd ∈ P(Kd), the map

G→ P(Kd)d, β 7→ (β(η1), . . . β(ηd))

is a submersion. Equivalently (think of the ηi as norm 1 vectors), for every
β ∈ G,

{(β̇(η1), . . . , β̇(ηd)) : β̇ ∈ TβG}+
(
Kη1 × · · · ×Kηd

)
= (Kd)d.

Firstly, we note that the evaluation evz : Sν,r(M,d) → SL(d,K), B 7→
B(z) is always a submersion, even restricted to maps with values prescribed
outside a neighborhood of z.

Lemma 4.3. Let B ∈ Sr,ν(M,d), z ∈ M , and U be a neighborhood of
z. For every β̇ ∈ TB(z) SL(d,K) there exists a C1 curve (−ε, ε) 3 t 7→ Bt ∈
Sr,ν(M,d) such that B0 = B, (∂tBt)t=0(z) = β̇, and Bt = B outside U for
all t.
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Proof. Let (−ε, ε) 3 t 7→ βt ∈ SL(d,K) be a C1 curve such that β0 = B(z)
and (∂tβt)t=0 = β̇. Let τ : M → [0, 1] be a Cr,ν function such that τ(z) = 1
and τ(w) = 0 if w /∈ U . Define

(−ε, ε) 3 t 7→ Bt ∈ Sr,ν(M,d) by Bt(w) = βtτ(w)B(z)−1B(w).

Then B0 = B and Bt(w) = B(w) for all t ∈ (−ε, ε) and w /∈ U . The
curve t 7→ Bt is C1, with derivative τ(w)∂tβtτ(w)B(z)−1B(w). In particular,
(∂tBt)t=0(z) = (∂tβt)t=0 = β̇.

Proof of Proposition 4.1. The first statement is a direct consequence of
Lemma 2.9, since the projectivization SL(d,K)→ PSL(d,K) is a smooth map.
To prove the second one, let U be any neighborhood of z. Restricting to
cocycles that coincide with B outside of U means that we consider tangent
vectors Ḃ with Ḃ(w) = 0 for every w /∈ U . It is no restriction to take U small
enough so that it is disjoint from {f j(p), f j(z) : j ≥ 1}. Then the expression
of the derivative of B 7→ HB,p,z given in Lemma 2.9 reduces to

∂BH
s
B,p,z · Ḃ = −B(z)−1Ḃ(z)Hs

B,p,z .

Thus, the derivative of B 7→ (
Hs
B,p,z(ξi)

)
i=1,...,d

∈ (Kd)d (think of the ξi as
norm 1 vectors) is

Ḃ 7→ (−B(z)−1Ḃ(z)Hs
B,p,z(ξi)

)
i=1,...,d

.

The ηi = Hs
B,p,z(ξi) are linearly independent. By Lemma 4.3, Ḃ(z) takes all

the values in TB(z) SL(d,K). Therefore, using the property in Remark 4.2, we
have{(
Ḃ(z)ηi

)
i=1,...,d

: Ḃ ∈ TBSr,ν(M,d)
}

+ (KB(z)η1 × · · · ×KB(z)ηd) = (Kd)d.

Multiplying by −B(z)−1 on the left, we find that{(
∂BH

s
B,p,zḂ(ξi)

)
i=1,...,d

: Ḃ ∈ TBSr,ν(M,d)
}⊕ (Kη1 × · · · ×Kηd) = (Kd)d.

Since hsB,p,z is the projectivization of Hs
B,p,z, this means that

TBSr,ν(M,d) 3 Ḃ 7→ ∂Bh
s
B,p,z · Ḃ

is surjective at every B ∈ Sr,ν(M,d) as claimed.

From Lemma 4.3 we also get the following useful consequence:

Corollary 4.4. Given periodic points p1 , . . . , pk of f , with minimum
periods κ1 , . . . , κk,

A 7→ (
Aκ1(p1), . . . , Aκk(pk)

) ∈ SL(d,K)k

is a submersion at every A ∈ Sr,ν(M,d).
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Proof. For each j = 1, . . . , k, write βj = Aκj (pj) and let β̇j be any tangent
vector to SL(d,K) at βj . Fix a neighborhood Uj of each pj , small enough so
that these neighborhoods are pairwise disjoint and pj is the unique point in
the intersection of Uj with these periodic orbits. Using Lemma 4.3 with z = pj
and U = Uj , successively for j = 1, . . . , k, we obtain a C1 curve (−ε, ε) 7→ At
in Sr,ν(M,d) such that A0 = A, At = A outside U1 ∪ · · · ∪ Uk, and

(∂tAt)t=0(pj) = A−κj+1(pj)β̇j for j = 1, . . . , k.

Then A
κj
t (pj) = Aκj−1(f(pj))At(pj) and so

(∂tA
κj
t )t=0(pj) = Aκj−1(f(pj))(∂tAt)t=0(pj) = β̇j .

This proves that the derivative of A 7→ (
Aκj (pj)

)
j=1,...,k

is surjective, as
claimed.

4.2. Holonomy blocks containing periodic points. Let M0 = {x ∈ M :
λ+(A, x) = 0} and assume µ(M0) > 0. We are going to prove that there exist
holonomy blocks containing any given number of (dominated) periodic points.
More precisely,

Proposition 4.5. Given ε > 0 and ` ≥ 1, there exists a holonomy block
Õ of A such that µ(M0 \ Õ) < ε and there exist ` distinct dominated periodic
points p1 , . . . , p` ∈ Õ such that

(1) every W u
loc(pi) intersects every W s

loc(pj) at exactly one point and

(2) every pi ∈ supp
(
µ | Õ ∩ f−κi(Õ)

)
, where κi = per(pi).

The main tool is the following classical result of Katok [20], that extends
the shadowing lemma (see Bowen [11]) to the nonuniformly hyperbolic setting.
The Main Lemma in [20] is stated in terms of a family Λχ,` of hyperbolic
blocks defined through a number of uniformity conditions, whose form does
not concern us here. We take Kj = Λχj ,`j with χj → ∞ and `j → ∞ as
j →∞, and it suffices to know that µ(Kj) goes to 1 as j →∞.

Theorem 4.6 (Katok [20]). Given j ≥ 1 there are K > 0, τ > 0, ρ > 0,
and given γ > 0 there is ε > 0 such that, for any z ∈ Kj and κ ≥ 1 with
fκ(z) ∈ Kj and dist(fκ(z), z) < ε, there exists a periodic point p ∈ M of
period κ such that

(1) p is a hyperbolic point for f and the eigenvalues αs of Dfκ(p) satisfy
| log |αs|| > κτ . Moreover, dist(fn(x), fn(y)) ≤ Ke−τn dist(x, y) for all
n ≥ 0 and x, y ∈ W s

loc(p) and analogously for W u
loc(p) with fn replaced

by f−n.
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(2) W s
loc(p) has size > ρ and is uniformly transverse (angle > ρ) to the un-

stable sets of all points w ∈ Kj in the ρ-neighborhood of z. In particular,
W s

loc(p) intersects W u
loc(w) at exactly one point and analogously, inter-

changing stable with unstable.

(3) dist(f j(p), f j(z)) < γ for every 0 ≤ j ≤ κ.

The uniform bound on the eigenvalues of p is not explicitly stated in [20],
but is easily read out from the proof, for instance from (3.42) and (3.44).
The rest of statement (1) is also part of the proof of the Main Lemma of
[20]: see Proposition 2.4(ii) and bounds (3.38) and (3.40). The uniform es-
timates in statement (2) are part of the definition of (s, 1)−admissible and
(u, 1)−admissible curves, see [20, p. 153], and the intersection property is given
by Proposition 2.5 in [20]. Let us also comment on the way part (3) is proven
in [20], as we shall need a similar argument in a while. Uniform transversality
of the local invariant manifolds gives that the local stable manifold of p inter-
sects the local unstable manifold of z at a unique point ζ, and the distances
from ζ to p and z are bounded by Cε for some constant C > 0. Then fκ(ζ)
is a heteroclinic point of p and fκ(z), and the distances from it to the latter
points are also bounded by Cε. It follows that

(19)
dist(f j(p), f j(ζ)) ≤ Ke−τj dist(p, ζ) ≤ Ke−τjCε and

dist(f j(ζ), f j(z)) ≤ Ke−τ(κ−j) dist(fκ(ζ), fκ(z)) ≤ Ke−τ(κ−j)Cε,

and so dist(f j(p), f j(ζ)) ≤ 2KCε. Choosing ε small with respect to γ, one
gets the claim.

Proof of Proposition 4.5. Clearly, it is no restriction to suppose ε is
smaller than µ(M0). Fix j ≥ 1 such that µ(M0 \ Kj) < ε/2. Take K, τ , ρ
as given by Theorem 4.6. Fix θ > 0 such that sθ < τ . By Corollary 2.4, for
µ-almost every x ∈ M0 there exists N ≥ 1 such that x ∈ DA(N, θ). Notice
that DA(N, θ) increases when N is replaced by a multiple, by sub-multiplicity
of the norm. Thus, we may choose N such that the measure of M0 \DA(N, θ)
is less than ε/2. Then O = Kj ∩ DA(N, θ) is a holonomy block. Moreover,
µ(M0 \ O) < ε and so µ(O) is positive. Fix any point x ∈ supp(µ | O).

Lemma 4.7. Given ε > 0, there are ` distinct points z1 , . . . , z` and there
are κ1 , . . . , κ` ∈ N such that

(1) both zi and fκi(zi) are in B(x, ρ/2), and dist(fκi(zi), zi) < ε;

(2) zi ∈ supp
(
µ | O ∩ f−κi(O)

)
; in particular both zi and fκi(zi) are in

supp(µ | O).

Moreover, we may choose min{dist(zi , zj) : i 6= j} ≥ r with r > 0 independent
of ε.



668 MARCELO VIANA

Proof. Since x ∈ supp(µ | O) and µ is nonatomic, there exist dis-
tinct points ζ1 , . . . , ζ` in B(x, ρ/2) ∩ supp(µ | O). Fix any r > 0 such that
dist(ζi , ζj) > r for all i 6= r. For each i = 1, . . . , ` and any ε > 0, we may
find a compact set Γi ⊂ B(ζi , ε/2) ∩ O with µ(Γi) > 0. Moreover, we may
choose Γi ⊂ B(x, ρ/2) with dist(Γi ,Γj) ≥ r for all i 6= j. By the Poincaré
recurrence theorem, there exist κi ≥ 1 such that Γi ∩ f−κi(Γi) has positive
measure. Pick any zi in the support of (µ | Γi ∩ f−κi(Γi)). Since Γi is con-
tained in B(x, ρ/2) ∩ B(ζi, ε/2), part (1) of the lemma follows immediately.
Since Γi ⊂ O, part (2) is also a direct consequence. Finally, it is clear from
the construction that dist(zi , zj) ≥ r.

We may assume that the κi are all multiples of N : it suffices to use the
recurrence theorem for fN instead of f . This observation will be useful in
Lemma 4.10. Now from Theorem 4.6 we obtain (see Figure 1),

Corollary 4.8. For every γ > 0 there exist ` distinct periodic points
p1 , . . . , p` ∈ B(x, ρ/2), with periods κ1 , . . . , κ` satisfying

(1) dist(fn(x), fn(y)) ≤ Ke−τn dist(x, y) for all n ≥ 0 and x, y ∈ W s
loc(pi).

Analogously for the unstable manifold, with f replaced by its inverse.

(2) W s
loc(pi) has size > ρ and intersects W u

loc(w) at exactly one point, for
every w ∈ O in B(zi , ρ) ⊃ B(x, ρ/2), and the same is true if we inter-
change stable with unstable.

(3) dist(f j(pi), f j(zi)) < γ for every 0 ≤ j ≤ κi .

Proof. It is no restriction to consider γ < r/2. Let ε > 0 be as in
Theorem 4.6 and then take zi and κi as in Lemma 4.7. The theorem gives, for
each i = 1, . . . , `, a periodic point pi with period κi satisfying (1), (2), (3). For
part (2) notice that B(x, ρ/2) ⊂ B(zi , ρ), because zi ∈ B(x, ρ/2). Finally, the
choice of γ ensures that the pi’s are all distinct.

In particular, from part (2) of the lemma we get that these periodic points
are all heteroclinically related, as claimed in part (1) of Proposition 4.5: the
local unstable manifold of every pi intersects the stable manifold of every pj ,
transversely, at exactly one point.

4.3. Extended domination blocks. The main step to get part (2) of Propo-
sition 4.5 is to construct a new holonomy block Õ ⊃ O such that pi ∈ Õ and
pi is in the support of µ | Õ ∩ f−κi(Õ) for every 1 ≤ i ≤ N . Let us explain
how this is done, with the aid of Figure 1.

Let ν > 0 be small. Since zi is in the support (µ | O | f−κi(O)), we
may find a compact set with µ(Oi) > 0 such that Oi ⊂ B(zi , ν) ∩ O and
fκi(Oi) ⊂ B(fκi(zi), ν)∩O. Reducing ν if necessary, and recalling that fκi(zi)
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z1
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Oi(1 0)
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i

Γu
i

,

,

Figure 1: Extended holonomy block

and zi are close to each other, we may suppose that both Oi and fκi(Oi) are
contained in B(zi , ρ). Then we may use part (2) of Corollary 4.8 to conclude
that W s

loc(pi) intersects the local unstable set of every point in Oi and W u
loc(pi)

intersects the local stable set of every point in fκi(Oi). Let Γsi ⊂ W s
loc(p) and

Γui ⊂W u
loc(pi) be the corresponding (compact) intersections. Denote

Γui (k) = f−κik(Γui ) and Γsi (l) = fκil(Γsi ), for k, l ≥ 0,

with the convention Γui (∞) = Γsi (∞) = {pi}. Reducing ν if necessary, we see
that the Γui (k) are pairwise disjoint and so are the Γsi (l). The λ-lemma (see
[25]) implies that, for every k+ l ≥ 1, the local stable manifolds through Γui (k)
intersect the local unstable manifolds through Γsi (l) transversely, with angles
uniformly bounded from zero. Let Oi(k, l) be the corresponding (compact)
intersection set. Notice that Oi(1, 0) = Oi and Oi(0, 1) = fκi(Oi). Finally,
define

Õ = O ∪
⋃

k+l≥1

Oi(k, l).

It is clear that µ(M0 \ Õ) ≤ µ(M0 \ O) < ε. The λ-lemma also implies
that local stable manifolds and local unstable manifolds have sizes uniformly
bounded from zero, and vary continuously with the point over the whole Õ.
In addition,

Lemma 4.9. There is K ′ > 0 such that, given any ξ ∈ Õ and ξ′, ξ′′ ∈
W s

loc(ξ),

dist(fn(ξ′), fn(ξ′′)) ≤ K ′e−τn dist(ξ′, ξ′′) for every n ≥ 0,

and analogously for ξ′, ξ′′ ∈W u
loc(ξ) and n ≤ 0.

Proof. It follows from O ⊂ H(K, τ) that every local stable manifold
through O is contracted by ≤ Ke−τn under every forward iterate fn. The
same is true for the local stable manifold of any ξ ∈ W s

loc(pi), according to
part (1) of Corollary 4.8. Then, just continuity, the local stable manifold
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of any ξ ∈ W s(Γsi (k)) is contracted by ≤ 2Ke−τn under fn, if k is large
enough and we restrict ourselves to iterates inside some small neighborhood
of W s

loc(pi). Then, choosing a convenient Ki > 2K , the local stable manifold
of any ξ ∈ Oi(k, l) with k ≥ 1 is contracted by ≤ Kie

−τn under every fn

with n ≤ κik. By construction, the fκik-image of any such stable manifold
is contained in a local stable manifold through Oi(0, 1) ⊂ O. So, in view of
the first sentence in the proof, we have the conclusion of the lemma as long as
K ′ > KiK.

This means we may consider Õ a subset of a hyperbolic block H(K ′, τ).
Hence, the next lemma proves that Õ is a holonomy block.

Lemma 4.10. Fix θ′ > θ with sθ′ < τ and assume γ was chosen suffi-
ciently small. Then Õ is contained in DA(N, θ′).

Proof. By construction, O ⊂ DA(N, θ) ⊂ DA(N, θ′). Therefore, we only
have to prove that every Oi(k, l) is contained in DA(N, θ′). Let ζ ∈ Oi(k, l)
for some i, k, l. The first step is to observe that, if k > 0,

(20) dist(f j(ζ), f j(zi)) < γ for all 0 ≤ j ≤ κi .
This follows from the same argument as in part (3) of Theorem 4.6; recall
(19). By a similar calculation, if k = 0 and w ∈ B(fκi(zi), ν) ∩ O is such that
ζ ∈W s

loc(w),

(21) dist(f j(ζ), w) < γ for all j ≥ 0.

Notice also that fκi (Oi(k, l)) ⊂ Oi(k− 1, l+ 1) whenever k > 0. Assume γ has
been chosen small enough so that

dist(ξ, η) ≤ γ ⇒ ‖AN (ξ)‖ ‖AN (ξ)−1‖ ≤ eN(θ′−θ)‖AN (η)‖ ‖AN (η)−1‖ .
As observed before, we may suppose that the κi are multiples of N . Denote
m̄ = kκi/N . The relation (20) implies that dist(f jN (ζ), zi) < γ, and so

‖AN (f jN (ζ))‖ ‖AN (f jN (ζ))−1‖ ≤ eN(θ′−θ)‖AN (f jN (zi))‖ ‖AN (f jN (zi))−1‖
for all j < m̄. Consequently, recalling that zi ∈ DA(N, θ), we obtain

(22)

m−1∏
j=0

‖AN (f jN (ζ))‖ ‖AN (f jN (ζ))−1‖

≤ emN(θ′−θ)
m−1∏
j=0

‖AN (f jN (zi))‖ ‖AN (f jN (zi))−1‖ ≤ emNθ′

for any m ≤ m̄. Similarly, (21) implies that dist(f jN (ζ), f (j−m̄)N (w)) < γ, and
so

‖AN (f jN (ζ))‖ ‖AN (f jN (ζ))−1‖
≤ eN(θ′−θ)‖AN (f (j−m̄)N (w))‖ ‖AN (f (j−m̄)N (w))−1‖
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for every j ≥ m̄. Therefore, using that w ∈ DA(N, θ), we obtain
(23)
m−1∏
j=m̄

‖AN (f jN (ζ))‖ ‖AN (f jN (ζ))−1‖

≤ e(m−m̄)N(θ′−θ)
m−m̄−1∏
j=0

‖AN (f jN (w))‖ ‖AN (f jN (w))−1‖ ≤ e(m−m̄)Nθ′

for every m > m̄. Inequalities (22) and (23) show that ζ ∈ DA(N, θ′), as
claimed.

By construction, O contains the periodic points pi for every i = 1, . . . , N .
Our construction also yields

Lemma 4.11. We have pi ∈ supp(µ | O∩f−κi(O)) for every i = 1, . . . , N .

Proof. By construction, O(1, 0) = Oi and O(0, 1) = fκi(Oi). Then, more
generally,

(24) fκi(Oi(k, l − 1)) = Oi(k − 1, l) for all k > 0 and l > 0.

We claim that µ(Oi(k, l)) > 0 for all k + l ≥ 1. In view of (24), and the fact
that µ is f -invariant, it suffices to prove this when l = 0, say. We do that by
induction on k. Notice that the case k = 1 corresponds to µ(Oi) > 0. For
the inductive step, suppose it is known that µ(Oi(k, 0)) > 0. By local product
structure, it follows that µu(Γui (k)) > 0. Moreover, µ(Oi(0, 1)) > 0 implies
µs(Γsi (1)) > 0. Since Oi(k, 1) = [Γui (k),Γsi (1)], it follows that µ(Oi(k, 1)) > 0
and, by (24) again, µ(Oi(k + 1, 0) > 0. This proves our claim. Now, it is
clear that pi is accumulated by sets Oi(k, l) with k > 0. All these sets are
contained in Õ and, by (24) once more, also in f−κi(Õ). Consequently, pi is
in the support of µ restricted to Õ ∩ f−κi(Õ), as claimed.

This gives part (2) of Proposition 4.5, and so the proof of the proposition
is complete.

Corollary 4.12. Let p1 , . . . , p` be dominated periodic points as in Propo-
sition 4.5, and qi be the point of intersection of W s

loc(pi) with W u
loc(p`), for

i = 1, . . . , ` − 1. Consider any points ξia ∈ P(Kd), 1 ≤ i ≤ ` − 1, 1 ≤ a ≤ d

such that every {ξi1, . . . , ξid} is independent. Then the map

B 7→ (
hspi,qi(ξ

i
a), i ∈ {1, . . . , `− 1}, a ∈ {1, . . . , d}) ∈ P(Kd)(`−1)d

is a submersion on a neighborhood of A, even restricted to cocycles with values
prescribed on a neighborhood of {f−j(qi) : j ≥ 1}, 1 ≤ i ≤ `− 1, and {f j(pi) :
1 ≤ j ≤ κi}, 1 ≤ i ≤ `.



672 MARCELO VIANA

Proof. This is an application of Proposition 4.1. Indeed, the proposition
states that every

B 7→ (hspi,qi(ξ
i
a), a ∈ {1, . . . , d}

) ∈ P(Kd)d

is a submersion on a neighborhood of A, even restricted to cocycles with values
prescribed outside any neighborhood Vi of qi . We may choose these neighbor-
hoods so that their closures are pairwise disjoint. Then the cocycle may be
modified independently on each Vi . It follows that the map in the statement
of the corollary is a submersion restricted to cocycles with values prescribed on
the complement U of V̄1∪· · ·∪ V̄`−1. By further reducing those neighborhoods,
we ensure that U is a neighborhood of every {f−j(qi) : j ≥ 1}, 1 ≤ i ≤ `− 1,
and every {f j(pi) : 1 ≤ j ≤ κi}, 1 ≤ i ≤ `. This gives the claim in the
corollary.

Notice that hup`,qi depends only on the values of the cocycle over {f−j(qi) :
j ≥ 1} ∪ {p`}. Thus, the corollary implies that the stable holonomy map
B 7→ (hspi,qi(ξ

i
a), i, a) is a submersion, even under perturbations of the cocycle

that do not affect the unstable holonomies hup`,qi nor the value of the cocycle
over the periodic orbit pi . This is the way the corollary will be used in the
next section.

5. Proofs of the main results

5.1. Complex valued cocycles. Here we prove Theorem A when K = C. Let
(f, µ) be an ergodic hyperbolic system. Suppose A ∈ Sr,ν(M,d) is such that
λ+(A,µ) = 0. Fix any ` ≥ 1. By Proposition 4.5 there is a positive measure
holonomy block Õ ⊂M containing at least 2` periodic points p1 , . . . , p2` such
that the local unstable set of every pi intersects the local stable set of every
pj at exactly one point. By Corollary 2.11 there exists a neighborhood U of A
in Sr,ν(M,d) such that Õ is a holonomy block for every B ∈ U . Let κi be the
minimum period of each pi. By Corollary 4.4 the map

U 3 B 7→ (Bκ1(p1), . . . , Bκ2`(p2`)) ∈ SL(d,C)2`

is a submersion. Let S be the subset of matrices α ∈ SL(d,C) such that
the norms of the eigenvalues of α are not all distinct. Clearly, S is closed and
contained in a finite union of closed submanifolds of SL(d,C) with codimension
≥ 1. It follows that the subset Z1 of B ∈ U such that Bκi(pi) ∈ S for at
least ` periodic points pi is closed and contained in a finite union of closed
submanifolds with codimension ≥ `.

For every B ∈ U \ Z1 there are at least ` + 1 periodic points pi such
that all the eigenvalues of Bκi(pi) have distinct norms. Restricting to open
subsets of U \ Z1 , and renumbering if necessary, one may suppose that they
are p1 , . . . , p`+1. Let ξia ∈ P(Cd), a ∈ {1, . . . , d} represent the eigenspaces of
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Figure 2: Stable holonomies

Bκi(pi) and let qi be the point in W s
loc(pi) ∩W u

loc(p`+1), for i ∈ {1, . . . , `}. By
Corollary 4.12 the map

U1 3 B 7→
(
hspi,qi(ξ

i
a), i ∈ {1, . . . , `}, a ∈ {1, . . . , d}

) ∈ P(Kd)`d

is a submersion, even restricted to cocycles with values prescribed on the for-
ward orbit of pi and on {f−j(qi) : j ≥ 1}, for 1 ≤ i ≤ `. See Figure 2. It
follows that the subset Z2 of B ∈ U \ Z1 such that for every i ∈ {1, . . . , `}
there exist a, b ∈ {1, . . . , d} such that

hspi,qi(ξ
i
a) = hup`+1,qi(ξ

`+1
b )

is closed and contained in a finite union of closed submanifolds with codimen-
sion ≥ `.

For any B ∈ U \ (Z1 ∪ Z2), i ∈ {1, . . . , `}, and a, b ∈ {1, . . . , d},
(25) hspi,qi(ξ

i
a) 6= hup`+1,qi(ξ

`+1
b ).

We claim that λ+(B,µ) > 0 for every B ∈ U \ (Z1 ∪ Z2). Indeed, suppose
λ+(B,µ) vanishes. Let m be any fB-invariant probability. Proposition 3.5
gives that m admits a disintegration {m̃z : z ∈M} such that

(a) The map z 7→ m̃z is continuous on Õ, relative to the weak topology.

(b) m̃z is invariant under strong-stable and strong-unstable holonomies on
the whole Õ.

Since m is fB-invariant, B(z)∗m̃z = m̃f(z) for µ-almost every z ∈ M . By
Proposition 4.5 each pi is in the support of µ | Õ ∩ f−κi(Õ). Hence, we may
find z ∈ Õ arbitrarily close to p such that B(z)κi∗ m̃z = m̃fκi (z) and fκi(z) ∈ Õ.
Consequently, by continuity (a),

Bκi(pi)∗m̃pi = m̃pi for all 1 ≤ i ≤ `+ 1.

As B /∈ Z1 , this implies that each m̃pi is a convex combination of Dirac
measures supported on the eigenspaces ξia, a ∈ {1, . . . , d}. Fix a such that ξ`+1

a
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is in the support of m̃p`+1 . Invariance (b) implies that for every i ∈ {1, . . . , `}
there is b ∈ {1, . . . , d} such that

hspi,qi(ξ
i
b) = hup`+1,qi(ξ

i
a).

For B ∈ U \ (Z1 ∪ Z2) this contradicts (25), which proves our claim.
Let Z0 be the subset of A ∈ Sr,ν(M,d) such that λ+(A,µ) = 0. We have

shown that for every ` ≥ 1 and A ∈ Z0 there exists a neighborhood U of A
such that Z0 ∩ U is contained in a closed nowhere dense subset Z1 ∪ Z2 of
U , itself contained in a finite union of closed submanifolds with codimension
≥ `. Thus Z0 has codimension-∞, and its closure Z̄0 is nowhere dense. Then
A = Sr,ν(M,d) \ Z̄0 is an open dense subset such that every A ∈ A has
λ+(A,µ) > 0. The proof of Theorem A is complete, in the complex case.

5.2. Real valued cocycles. The previous arguments apply without change
in the case K = R, except for the statement about the set S of matrices whose
eigenvalues are not all distinct in norm: this set has nonempty interior in
SL(d,R), corresponding to the existence of pairs of complex conjugate eigen-
values. The way to bypass this is by showing that, up to a perturbation of
the cocycle, one may always choose the periodic points so that the eigenvalues
of the cocycle on the corresponding orbits are all real and distinct in norm.
Formally, this means that the first exclusion of a codimension ≥ ` subset Z1

takes place right after Corollary 4.8, allowing for each pi to be replaced by a
nearby periodic point p̄i for which the eigenvalues are real and distinct and
the corollary remains valid. We are going to outline this step, referring the
reader to Section 8 of [10], where the same idea has been used before, for more
details.

Start with 2` periodic points pi as in Corollary 4.8. Fix i for a while. By
construction, pi is dominated and has transverse homoclinic points. Fix some
homoclinic point zi and let Hi be the uniformly hyperbolic set (horseshoe)
formed by those points whose orbits remain in a neighborhood of the orbits
of pi and zi. When this neighborhood is sufficiently small, the cocycle is
dominated restricted to Hi, and so is any perturbation of it. This ensures that
the arguments in Section 8 of [10] apply in the present setting. Excluding a
codimension 1 subset of cocycles, we may suppose that

(1) all the eigenvalues of Bκi(pi) are real and have distinct norms, except for
c ≥ 0 pairs of complex conjugate eigenvalues;

(2) hspi,zi(E)∩hupi,zi(F ) = {0} for any direct sums E and F of eigenspaces of
Bκi(pi) with dimE + dimF ≤ d.

Proposition 8.1 of [10] shows how, avoiding another positive codimension sub-
set of cocycles, one can find a new periodic point p̄i ∈ Hi, with period κ̄i a
multiple of κi, such that all the eigenvalues of Bκ̄i(p̄i) are real and distinct.
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When the neighborhood of zi that defines Hi is small enough, the conclusion
of Corollary 4.8 remains valid for p̄i. In this way, avoiding a codimension `

subset of cocycles, we may suppose that the p̄i are defined for at least ` + 1
values of i. Up to renumbering, we may suppose they are i = 1, 2, . . . , ` + 1.
Now we may replace each pi by the corresponding p̄i. From then on the proof
of Theorem A proceeds just as in the complex case.

5.3. Proofs of the corollaries. We begin with the following simple ergodic
decomposition statement:

Lemma 5.1. If µ is a hyperbolic measure with local product structure, then
there exist finite or countably many constants cj > 0 and ergodic hyperbolic
probabilities µj with local product structure such that µ =

∑
j cjµj . In the

uniformly hyperbolic case the number of ergodic components µi is uniformly
bounded.

Proof. Let M0 ⊂ M be the full measure subset of points where forward
and backward Birkhoff averages exist and coincide, for every continuous func-
tion. Consider that the equivalence relations defined on M0 by x1 ∼ x2 ⇔ x1

and x2 have the same Birkhoff averages. The equivalence classes are invari-
ant sets. Let Nx(δ) = Nx(K, τ, δ) be as in Section 1.2, for some K, τ , and
x ∈ supp(µ | M0 ∩ H(K, τ)). Note that M0 ∩ Nx(δ) has positive µ-measure
and so, by local product structure, M0 intersects some unstable set [N u

x (δ), η]
in a set Mη with positive µu-measure. Equivalently, µ(M s

η ) > 0 where M s
η

is the union of all stable sets [ξ,N s
x(δ)] through the points of Mη . On the

other hand, M s
η intersects a unique equivalence class, because of the definition

of M0 and the fact that forward (backward) Birkhoff averages of continuous
functions are constant on stable (unstable) sets. This proves that there exists
an equivalence class Γ1 ⊂ M0 with µ(Γ1) > 0. Take Γ1 with largest measure.
If µ(M0 \ Γ1) > 0, repeat the argument with M0 replaced by M0 \ Γ1 . In
this way one constructs finite or countably many equivalence classes Γj with
µ(Γj) > 0 and µ(∪jΓj) = 1. The normalized restrictions µj = (µ | Γj)/µ(Γj)
are invariant ergodic probabilities, and µ =

∑
j µ(Γj)µj .

It is clear that µj is absolutely continuous with respect to µ and so µj is a
hyperbolic measure. To show that µj has local product structure, consider any
Nz(δ) = [N u

z (δ),N s
z (δ)] with z ∈ supp(µ | Γj). For a measurable set V ⊂ Nz(δ)

let V s be the union of all stable sets [ξ,N s
z (δ)] through points of V , and V u

be the corresponding notion for unstable sets. The hypothesis that µ has local
product structure means that µ(V ) = 0 if and only if µ(V s) ·µ(V u) = 0. Since
each stable set and each unstable set intersect at most one equivalence class,
Γj = Γsj = Γuj up to zero measure sets. So, (V ∩ Γj)s = V s ∩ Γj mod 0 and
(V ∩ Γj)u = V u ∩ Γj mod 0. It follows that µj has local product structure:

µj(V ) = 0⇔ µ(V ∩Γj) = 0⇔ µ(V s∩Γj)·µ(V u∩Γj) = 0⇔ µj(V s)·µj(V u) = 0.
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In the uniformly hyperbolic case K, τ , δ may be taken the same for all
x ∈ M . Recall that Nx(δ) contains the ball of radius δ around x in M .
Since M0 ∩ Nx(δ) has full µ-measure in Nx(δ), we may choose η such that
M0 ∩ [N u

x (δ), η] has full µu-measure in [N u
x (δ), η]. Then M s

η has full measure
in Nx(δ). Recall that, M s

η intersects a unique equivalence class. This proves
that a full µ-measure subset of M is covered by equivalence classes each of
which contains a full measure subset of some δ-ball. Since δ is uniform, there
are only finitely many such equivalence classes. The last claim in the lemma
follows.

This immediately leads to the versions of Theorem A for nonergodic mea-
sures stated in the corollaries:

Proof of Corollaries B and C. Let µ be any invariant hyperbolic measure
with local product structure. By Lemma 5.1, the measure µ has countably
many ergodic components µj and they have local product structure. Thus,
for each j, Theorem A provides an open dense subset Aj such that for every
A ∈ Aj we have λ+(A,µj) > 0. Then A = ∩jAj is a residual subset and
λ+(A, x) > 0 at µ-almost every point, for every A ∈ A. This completes the
proof of Corollary B. In the uniform case the ergodic components are finitely
many, and so A is open and dense. Moreover, the set Z0(µ) of cocycles A such
that λ+(A, x) = 0 for a positive µ-measure set of points x is contained in the
union of the corresponding sets Z0(µj) for all ergodic components. Hence, since
every Z0(µj) has codimension-∞, so does Z0(µ). This proves Corollary C.

6. Final remarks

6.1. Uniformity and continuity. The conclusion of Corollary C was
first obtained in [9] under the assumption that the cocycle is dominated.
The cocycle defined by a ν-Hölder function A over a transformation f : M
→ M is dominated if f is uniformly hyperbolic (or uniformly expanding),
with hyperbolicity constants K, τ , and there exist N ≥ 1 and θ < τ such that
‖AN (x)‖ ‖AN (x)−1‖ < eθNν for every x ∈M . In this situation one may choose
the subset A in the statement independent of the measure µ. Our methods
fall short of extending this conclusion to the general (nondominated) case:

Problem 1. Can the residual subset in Corollary B be chosen the same
for every hyperbolic invariant measure µ with local product structure? Can
the open dense subset in Corollary C be chosen the same for every invariant
measure µ with local product structure?

In either setting, in view of the arguments in Section 5.3 it suffices to
consider the ergodic case. A possible approach goes as follows. For each
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ergodic measure µ with local product structure and each cocycle A such that
λ+(A,µ) = 0, we have found a neighborhood U of A and a closed nowhere
dense subset Z = Z1 ∪ Z2 containing all the B ∈ U such that λ+(B,µ) = 0.
This closed set is defined in terms of certain dominated periodic points of f
contained in the support of µ. As µ varies, so do the periodic points, and
the set Z with them. However, since there are only countably many periodic
points, the union of all these Z would be a meager set, containing all cocycles
that have vanishing exponents for some ergodic measure with local product
structure. The difficulty is that the neighborhood U itself, where those periodic
points remain dominated, also depends on the measure µ.

Problem 2. Does the closure of the set Z0 ⊂ Sr,ν(M,d) of cocycles with
λ+(A,µ) = 0 have codimension-∞? Is the set Z0 closed in Sr,ν(M,d) relative
to the Cr,ν topology?

In view of our results, the second question is stronger than the first one.
Both would follow immediately if we knew that Lyapunov exponents F 7→
λi(F, µ) =

∫
λi(F, x) dµ vary continuously in Sr,ν(f, E) relative to the Cr,ν

topology, when r + ν > 0. However, the latter is not true in general. Indeed,
[6], [7] give a necessary and sufficient condition for a cocycle F over an arbitrary
transformation to be a point of continuity of F 7→ λi(F, µ) relative to the C0 =
C0,0 topology: the Oseledets splitting must be either dominated or else trivial,
over almost every orbit. In particular, for d = 2 it was shown in [6] that every
cocycle is C0 approximated by another which either is uniformly hyperbolic
or has Lyapunov exponents equal to zero almost everywhere. A closer look
at the arguments shows that they provide examples of discontinuity of the
Lyapunov exponents in the C0,ν topology for small ν > 0. This conclusion and
the formulation of the next problem benefitted from conversations with Jairo
Bochi and Artur Avila:

Problem 3. When do Lyapunov exponents F 7→ λi(F, µ) vary continu-
ously on Sr,ν(f, E) relative to the Cr,ν topology, with r+ ν > 0? In particular,
when the base dynamics is uniformly hyperbolic, do Lyapunov exponents vary
continuously in the subset of dominated cocycles in Sr,ν(f, E)?

6.2. Other matrix groups. We have focussed on normalized cocycles, with
values in the group SL(d,K), but the same arguments apply to general cocycles
in GL(d,K). One gets that for an open dense subset of Gr,ν the spectrum is
not reduced to a point and, indeed, one-point spectrum has codimension-∞.
More generally, one may consider cocycles with values in a given subgroup
G ⊂ GL(d,K). For our previous arguments to apply directly, the group should
be sufficiently rich:
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(a) Every α ∈ G can be “approximated” by matrices in G whose eigenvalues
are all distinct in norm.

(b) G 3 B 7→ (B(ξ1), . . . , B(ξd)) ∈ P(Kd)d is a submersion, for any choice
{ξ1, . . . , ξd} of a basis of Kd.

That property (a) holds for G = SL(d,C) was used in Section 5.1 to prove den-
sity. In the case G = SL(d,R) this assumption took a much more subtle format,
as discussed in Section 5.2. Concerning property (b), recall Remark 4.2. No-
tice that it requires dimG ≥ d(d− 1). On the other hand, these two sufficient
conditions are probably not optimal for getting the conclusion of the theorem:

Problem 4. Characterize the class of groups G ⊂ GL(d,K) for which the
theorem is valid. Does it include the symplectic group Symp(d,K)?

6.3. Partially hyperbolic maps and flows. Our arguments rely on the base
dynamics being fairly “chaotic”, but it is probably not necessary to assume
the full strength of (nonuniform) hyperbolicity. One possible extension is to
cocycles over partially hyperbolic maps with some indecomposability property
such as accessibility. A diffeomorphism f : M → M is partially hyperbolic if
there exists a Df -invariant splitting TM = Eu ⊕ Ec ⊕ Es and there exists
λ < 1 and N ≥ 1 such that

‖DfN | Esx‖ < λ and ‖(DfN | Esx)(DfN | Ecx)−1‖ < λ

and

‖(DfN | Eux)−1‖ < λ and ‖(DfN | Eux)−1(DfN | Ecx)‖ < λ

for all x. Assume all three subbundles have positive dimension. One calls f
accessible if any two points may be joined by a smooth curve t 7→ γ(t) such
that γ̇(t) ∈ Euγ(t) ∪ Esγ(t) at every point; the velocity γ̇ is allowed to vanish at
a finite number of points. See [8], [12], [13] and references therein for more
information.

Problem 5. Do almost all Cr,ν cocycles, r + ν > 0 over an accessi-
ble, partially hyperbolic volume-preserving diffeomorphism have some nonzero
Lyapunov exponents? Analogously, when the base system is a dissipative dif-
feomorphism endowed with some physical (Sinai-Ruelle-Bowen) measure?

A cocycle over a flow f t : M →M , t ∈ R is a flow F t : M×Kd →M×Kd,
t ∈ R of the form F t(x, v) = (f t(x), At(x)v). The cocycle is Cr,ν if x 7→ At(x)
is Cr,ν for every t ∈ R.

Problem 6. Do almost all Cr,ν cocycles, r + ν > 0 over a hyperbolic flow
(f t, µ) with local product structure have some nonzero Lyapunov exponents?
Analogously, for cocycles over Lorenz-like flows [23]?
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Added in proof . Substantial progress on Problem 5 is reported by Avila,
Santamaria, and the present author, in a recent preprint Cocycles over partially
hyperbolic maps.

6.4. Derivative cocycles. Michael Herman [32, § 4.6] has constructed open
sets of volume-preserving diffeomorphisms for which all Lyapunov exponents
of the derivative cocycle are zero on some positive volume subset. The next
problem is a step in the direction of understanding whether this is necessarily
the case for robustly nonhyperbolic systems. A related discussion appeared in
[8, Example 12.15].

Problem 7. For generic Cs volume-preserving uniformly (or just partially)
hyperbolic diffeomorphisms, s > 1, is the Lyapunov spectrum of the derivative
cocycle simple?

It was shown in [10] that generic dominated cocycles over uniformly hy-
perbolic systems have simple Lyapunov spectrum. As mentioned in the Intro-
duction, we expect the statement to hold in general, without the domination
hypothesis. Notice that derivative cocycles are never dominated.

IMPA, Rio de Janeiro, Brazil
E-mail address: viana@impa.br
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