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Uniform expansion bounds
for Cayley graphs of SL2(Fp)

By Jean Bourgain and Alex Gamburd*

Abstract

We prove that Cayley graphs of SL2(Fp) are expanders with respect to
the projection of any fixed elements in SL(2,Z) generating a non-elementary
subgroup, and with respect to generators chosen at random in SL2(Fp).

1. Introduction

Expanders are highly-connected sparse graphs widely used in computer
science, in areas ranging from parallel computation to complexity theory and
cryptography; recently they also have found some remarkable applications in
pure mathematics; see [5],[10], [15], [20], [21] and references therein. Given an
undirected d-regular graph G and a subset X of V , the expansion of X, c(X), is
defined to be the ratio |∂(X)|/|X|, where ∂(X) = {y ∈ G : distance(y,X) = 1}.
The expansion coefficient of a graph G is defined as follows:

c(G) = inf
{
c(X) | |X| < 1

2
|G|
}
.

A family of d-regular graphs Gn,d forms a family of C-expanders if there is a
fixed positive constant C, such that

(1) lim inf
n→∞

c(Gn,d) ≥ C.

The adjacency matrix of G, A(G) is the |G | by |G | matrix, with rows and
columns indexed by vertices of G, such that the x, y entry is 1 if and only if x
and y are adjacent and 0 otherwise.

By the discrete analogue of Cheeger-Buser inequality, proved by Alon and
Milman, the condition (1) can be rewritten in terms of the second largest
eigenvalue of the adjacency matrix A(G) as follows:

(2) lim sup
n→∞

λ1(An,d) < d.

*The first author was supported in part by NSF Grant DMS-0627882. The second author
was supported in part by NSF Grants DMS-0111298 and DMS-0501245.
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Given a finite group G with a symmetric set of generators S, the Cayley
graph G(G,S), is a graph which has elements of G as vertices and which has
an edge from x to y if and only if x = σy for some σ ∈ S. Let S be a
set of elements in SL2(Z). If 〈S〉, the group generated by S, is a finite index
subgroup of SL2(Z), Selberg’s theorem [23] implies (see e.g. [15, Th. 4.3.2]) that
G(SL2(Fp), Sp) (where Sp is a natural projection of S modulo p) form a family
of expanders as p → ∞. A basic problem, posed by Lubotzky [15], [16] and
Lubotzky and Weiss [17], is whether Cayley graphs of SL2(Fp) are expanders
with respect to other generating sets. The challenge is neatly encapsulated in
the following 1-2-3 question of Lubotzky [16]. For a prime p ≥ 5 let us define

S1
p =

{(
1 1
0 1

)
,

(
1 0
1 1

)}
,

S2
p =

{(
1 2
0 1

)
,

(
1 0
2 1

)}
,

S3
p =

{(
1 3
0 1

)
,

(
1 0
3 1

)}
,

and for i = 1, 2, 3 let Gip = G
(
SL2(Fp) , Sip

)
, a Cayley graph of SL2(Fp) with

respect to Sip. By Selberg’s theorem G1
p and G2

p are families of expander graphs.
However the group 〈( 1 3

0 1 ) , 〈( 1 0
3 1 )〉 has infinite index, and thus does not come

under the purview of Selberg’s theorem.
In [24] Shalom gave an example of infinite-index subgroup in PSL2(Z[ω])

(where ω is a primitive third root of unity) yielding a family of SL2(Fp) ex-
panders. In [7] it is proved that if S is a set of elements in SL2(Z) such
that Hausdorff dimension of the limit set1 of 〈S〉 is greater than 5/6, then
G(SL2(Fp), Sp) form a family of expanders. Numerical experiments of Lafferty
and Rockmore [12], [13], [14] indicated that Cayley graphs of SL2(Fp) are ex-
panders with respect to projection of fixed elements of SL2(Z), as well as with
respect to random generators.

Our first result resolves the question completely for projections of fixed
elements in SL2(Z).

Theorem 1.Let S be a set of elements in SL2(Z). Then the G(SL2(Fp),Sp)
form a family of expanders if and only if 〈S〉 is non-elementary , i.e. the limit
set of 〈S〉 consists of more than two points (equivalently, 〈S〉 does not contain
a solvable subgroup of finite index ).

1Let S be a finite set of elements in SL2(Z) and let Λ = 〈S〉 act on the hyperbolic plane H
by linear fractional transformations. The limit set of Λ is a subset of R∪∞, the boundary of
H, consisting of points at which one (or every) orbit of Λ accumulates. If Λ is of infinite index
in SL2(Z) (and is not elementary), then its limit set has fractional Hausdorff dimension [1].
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Our second result shows that random Cayley graphs of SL2(Fp) are ex-
panders. (Given a group G, a random 2k-regular Cayley graph of G is the
Cayley graph G(G,Σ ∪ Σ−1), where Σ is a set of k elements from G, selected
independently and uniformly at random.)

Theorem 2. Fix k ≥ 2. Let g1, . . . , gk be chosen independently at random
in SL2(Fp) and set Srand

p = {g1, g−1
1 , . . . , gk, g

−1
k }. There is a constant κ(k)

independent of p such that as p→∞ asymptotically almost surely

λ1(A(G(SL2(Fp), Srand
p )) ≤ κ < 2k.

Theorem 1 and Theorem 2 are consequences of the following result (recall
that the girth of a graph is a length of a shortest cycle):

Theorem 3. Fix k ≥ 2 and suppose that Sp = {g1, g−1
1 , . . . , gk, g

−1
k } is a

symmetric generating set for SL2(Fp) such that

(3) girth(G(SL2(Fp), Sp)) ≥ τ log2k p,

where τ is a fixed constant independent of p. Then the G(SL2(Fp), Sp) form a
family of expanders.2

Indeed, Theorem 3 combined with Proposition 4 (see §4) implies Theo-
rem 1 for S such that 〈S〉 is a free group. Now for arbitrary S generating a
non-elementary subgroup of SL(2,Z) the result follows since 〈S〉∩Γ(2) (where

Γ(p) = {γ ∈ SL2(Z) : γ ≡
(

1 0
0 1

)
mod p} ) is a free nonabelian group. The-

orem 2 is an immediate consequence of Theorem 3 and the fact, proved in [8],
that random Cayley graphs of SL2(Fp) have logarithmic girth (Proposition 5).

The proof of Theorem 3 consists of two crucial ingredients. The first one
is the fact that nontrivial eigenvalues of G(SL2(Fp), S) must appear with high
multiplicity. This follows (as we explain in more detail in Section 2) from
a result going back to Frobenius, asserting that the smallest dimension of a
nontrivial irreducible representation of SL2(Fp) is p−1

2 , which is large compared
to the size of the group (which is of order p3). The second crucial ingredient
is an upper bound on the number of short closed cycles, or, equivalently, the
number of returns to identity for random walks of length of order log |G|.

The idea of obtaining spectral gap results by exploiting high multiplicity
together with the upper bound on the number of short closed geodesics is
due to Sarnak and Xue [22]; it was subsequently applied in [5] and [7]. In
these works the upper bound was achieved by reduction to an appropriate

2In fact, our proof gives more than expansion (and this is important in applications [2]):
if λ is an eigenvalue of A(G(SL2(Fp), Sp)), such that λ 6= ±2k, then |λ| ≤ κ < 2k where
κ = κ(τ) is independent of p.



628 JEAN BOURGAIN AND ALEX GAMBURD

diophantine problem. The novelty of our approach is to derive the upper bound
by utilizing the tools of additive combinatorics. In particular, we make crucial
use (see §3) of the noncommutative product set estimates, obtained by Tao
[26], [27] (Theorems 4 and 5); and of the result of Helfgott [9], asserting that
subsets of SL2(Fp) grow rapidly under multiplication (Theorem 6). Helfgott’s
paper, which served as a starting point and an inspiration for our work, builds
crucially on sum-product estimates in finite fields due to Bourgain, Glibichuk
and Konyagin [3] and Bourgain, Katz, and Tao [4]. Our proof also exploits
(see §4) the structure of proper subgroups of SL2(Fp) (Proposition 3) and a
classical result of Kesten ([11, Prop. 7]), pertaining to random walks on a free
group.

Acknowledgement. It is a pleasure to thank Enrico Bombieri, Alex
Lubotzky and Peter Sarnak for inspiring discussions and penetrating remarks.

2. Proof of Theorem 3

For a Cayley graph G(G,S) with S = {g1, g−1
1 , . . . , gk, g

−1
k } generating

G, the adjacency matrix A can be written as

(4) A(G(G,S)) = πR(g1) + πR(g−1
1 ) + . . .+ πR(gk) + πR(g−1

k ),

where πR is a regular representation of G, given by the permutation action of
G on itself. Every irreducible representation ρ ∈ Ĝ appears in πR with the
multiplicity equal to its dimension

(5) πR = ρ0 ⊕
⊕
ρ∈Ĝ
ρ 6=ρ0

ρ⊕ · · · ⊕ ρ︸ ︷︷ ︸
dρ

,

where ρ0 denotes the trivial representation, and dρ denotes the dimension of
the irreducible representation ρ. A result going back to Frobenius [6], asserts
that for G = SL2(Fp) (the case we consider from now on) we have

(6) dρ ≥
p− 1

2
for all nontrivial irreducible representations.

We will show in subsection 4.1 (see Proposition 6) that logarithmic girth
assumption (3) implies that for p large enough, the set Sp generates all of
SL2(Fp). Let N = |SL2(Fp)|. The adjacency matrix A is a symmetric matrix
having N real eigenvalues which we can list in decreasing order:

2k = λ0 > λ1 ≥ . . . ≥ λN−1 ≥ −2k.

The eigenvalue 2k corresponds to the trivial representation in the decomposi-
tion (5); the strict inequality

2k = λ0 > λ1
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is a consequence of our graph being connected (that is, of Sp generating all
of SL2(Fp)). The smallest eigenvalue λN−1 is equal to −2k if and only if the
graph is bipartite, in the latter case it occurs with multiplicity one. Denoting
by W2m the number of closed walks from identity to itself of length 2m, the
trace formula takes form

(7)
N−1∑
j=0

λ2m
j = NW2m.

Denote by µS the probability measure on G, supported on the generating
set S,

µS(x) =
1
|S|
∑
g∈S

δg(x),

where

δg(x) =

{
1 if x = g

0 if x 6= g;

when it is clear which S is meant we will omit the subscript S. Let µ(l) denote
the l-fold convolution of µ:

µ(l) = µ ∗ · · · ∗ µ︸ ︷︷ ︸
l

,

where

(8) µ ∗ ν(x) =
∑
g∈G

µ(xg−1)ν(g).

Note that we have

(9) µ
(2l)
S (1) =

W2l

(2k)2l
.

For a measure ν on G we let

‖ν‖2 =

∑
g∈G

ν2(g)

1/2

,

and
‖ν‖∞ = max

g∈G
ν(g).

Proposition 1. Suppose G(SL2(Fp), Sp) with |Sp| = 2k satisfies logarith-
mic girth condition (3); that is,

girth(G(SL2(Fp), Sp)) ≥ τ log2k p.

Then for any ε > 0 there is C(ε, τ) such that for l > C(ε, τ) log2k p

(10) ‖µ(l)
Sp
‖2 < p−

3
2
+ε.
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Now observe that since S is a symmetric generating set, we have

µ(2l)(1) =
∑
g∈G

µ(l)(g)µ(l)(g−1) =
∑
g∈G

(µ(l)(g))2 = ‖µ(l)‖22;

therefore, keeping in mind (9), we conclude that (10) implies that for

l > C(ε) log2k p

we have

(11) W2l <
(2k)2l

p3−2ε
.

Let λ be the largest eigenvalue of A such that λ < 2k. Denoting by mp(λ)
the multiplicity of λ, we clearly have

(12)
N−1∑
j=0

λ2l
j > mp(λ)λ2l,

since the other terms on the left-hand side of (7) are positive.
Combining (12) with the bound on multiplicity (6), and the bound on the

number of closed paths (11), we obtain that for l > C(ε) log p,

(13)
p− 1

2
λ2l < |SL2(Fp)|

(2k)2l

p3−2ε
.

Since |SL2(Fp)| = p(p2 − 1) < p3, this implies that

(14) λ2l � (2k)2l

p1−2ε
,

and therefore, taking l = C(ε, τ) log p, we have

(15) λ1 ≤ λ < (2k)1−
(1−2ε)
C(ε) < 2k,

establishing Theorem 3.
Proposition 1 will be proved in Section 4; a crucial ingredient in the proof

is furnished by Proposition 2, established in Section 3.

3. Property of probability measures on SL2(Fp)

Proposition 2. Suppose ν ∈ P(G) is a symmetric probability measure
on G; that is,

(16) ν(g) = ν(g−1),

satisfying the following three properties for fixed positive γ, 0 < γ < 3
4 :

(17) ‖ν‖∞ < p−γ ,
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(18) ‖ν‖2 > p−
3
2
+γ ,

(19) ν(2)[G0] < p−γ for every proper subgroup G0 .

Then for some ε = ε(γ) > 0, for all sufficiently large p:

(20) ‖ν ∗ ν‖2 < p−ε‖ν‖2.

Proof of Proposition 2. Assume that (20) fails; that is, suppose that for
any ε > 0,

(21) ‖ν ∗ ν‖2 > p−ε‖ν‖2.

We will prove that by choosing ε sufficiently small (depending on γ), property
(19) fails for some subgroup. More precisely, we will show that for some a ∈ G
and some proper subgroup G0 we have that

(22) ν[aG0] > p−γ/2,

and this in turn will imply that ν(2)(G0) > p−γ .
Set

(23) J = 10 log p

and let

(24) ν̃ =
J∑
j=1

2−jχAj ,

where Aj are the level sets of the measure ν: for 1 ≤ j ≤ J ,

(25) Aj = {x | 2−j < ν(x) ≤ 2−j+1}.

Setting
AJ+1 = {x | 0 < ν(x) ≤ 2−J},

we have, for any x ∈ G,

ν̃(x) ≤ ν(x) ≤ 2ν̃(x) +
1
2J
χAJ+1(x);

hence, keeping in mind (23) we obtain

(26) ν̃(x) ≤ ν(x) ≤ 2ν̃(x) +
1
p10

.

Note also, that for any j satisfying 1 ≤ j ≤ J , we have

(27) |Aj | ≤ 2j .

By our assumption, (21) holds for arbitrarily small ε; consequently, in light
of (26), so does

(28) ‖ν̃ ∗ ν̃‖2 > p−ε‖ν̃‖2.
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Using the triangle inequality

‖f + g‖2 ≤ ‖f‖2 + ‖g‖2,

we obtain

‖ν̃ ∗ ν̃‖2 = ‖
∑

1≤j1,j2≤J
2−j1−j2χAj1 ∗ χAj2‖2 ≤

∑
1≤j1,j2≤J

2−j1−j2‖χAj1 ∗ χAj2‖2.

Thus by the pigeonhole principle, for some j1, j2, satisfying J ≥ j1 ≥ j2 ≥ 1,
we have

(29) J22−j1−j2‖χAj1 ∗ χAj2‖2 ≥ ‖ν̃ ∗ ν̃‖2.

On the other hand,

‖ν̃‖2 =

 J∑
j=1

1
22j
|χAj |

1/2

≥
(

1
22j1
|Aj1 |+

1
22j2
|Aj2 |

)1/2

≥
(

2−j1−j2 |Aj1 |1/2|Aj2 |1/2
)1/2

;

therefore

(30) ‖ν̃‖2 ≥ 2−j1/22−j2/2|Aj1 |1/4|Aj2 |1/4.

Note that we also have

J22−j1−j2‖χAj1 ∗ χAj2‖2 ≥ p
−ε max(2−j1 |Aj1 |

1
2 , 2−j2 |Aj2 |

1
2 ),

and since
|Aj1 |

1
2 |Aj2 |

1
2 min(|Aj1 |

1
2 , |Aj2 |

1
2 ) ≥ ‖χAj1 ∗ χAj2‖2,

we obtain

(31) min(2−j1 |Aj1 |, 2−j2 |Aj2 |) ≥
p−ε

J2
.

Now combining (28), (29) and (30) we have

J22−j1−j2‖χAj1 ∗ χAj2‖2 ≥ ‖ν̃ ∗ ν̃‖2 ≥ p
−ε2−j1/22−j2/2|Aj1 |1/4|Aj2 |1/4,

yielding

‖χAj1 ∗ χAj2‖2 ≥
p−ε

J2
2j1/22j2/2|Aj1 |1/4|Aj2 |1/4;

recalling (23) and (27), we obtain

(32) ‖χAj1 ∗ χAj2‖2 ≥ p
−2ε|Aj1 |3/4|Aj2 |3/4.

Let

(33) A = Aj1 and B = Aj2 .
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Given two multiplicative sets A and B in an ambient group G, their multi-
plicative energy is given by

(34) E(A,B) = |{(x1, x2, y1, y2) ∈ A2 ×B2|x1y1 = x2y2}| = ‖χA ∗ χB‖22.

Inequality (32) means that for the sets A and B, defined in (33),

(35) E(A,B) ≥ p−4ε|A|3/2|B|3/2.

We are ready to apply the following noncommutative version of Balog-
Szemerédi-Gowers theorem, established by Tao [26]:

Theorem 4 ([27, Cor. 2.46]). Let A,B be multiplicative sets in an am-
bient group G such that E(A,B) ≥ |A|3/2|B|3/2/K for some K > 1. Then
there exists a subset A′ ⊂ A such that |A′| = Ω(K−O(1)|A|) and |A′ · (A′)−1| =
O(KO(1)|A|) for some absolute C.

Theorem 4 implies that there exists A1 ⊂ A such that

(36) |A1| > p−ε1 |A|,

where

(37) ε1 = 4C1ε with an absolute constant C1,

such that

(38) |A1(A1)−1| < pε1 |A1|,

which means that

(39) d(A1, A
−1
1 ) < ε1 log p,

where

d(A,B) = log
|A ·B−1|
|A|1/2|B|1/2

is Ruzsa distance between two multiplicative sets.
The following result, connecting Ruzsa distance with the notion of an

approximate group in a noncommutative setting was established by Tao [26].

Theorem 5 ([27, Th. 2.43]). Let A,B be multiplicative sets in a group
G, and let K ≥ 1. Then the following statements are equivalent up to constants,
in the sense that if the j-th property holds for some absolute constant Cj , then
the k-th property will also hold for some absolute constant Ck depending on
Cj :

(1) d(A,B) ≤ C1 logK where d(A,B) = log |A·B−1|
|A|1/2|B|1/2 is Ruzsa distance

between two multiplicative sets.
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(2) There exist a C2K
C2-approximate group H such that |H| ≤ C2K

C2 |A|,
A ⊂ X ·H and B ⊂ Y ·H for some multiplicative sets X, Y of cardinality
at most C2K

C2.

By definition, a multiplicative K-approximate group is any multiplicative
set H which is symmetric;

(40) H = H−1

contains the identity, and is such that there exists a set X of cardinality

(41) |X| ≤ K,

such that we have the inclusions

(42) H ·H ⊆ X ·H ⊆ H ·X ·X;

(43) H ·H ⊆ H ·X ⊆ X ·X ·H.

Note, that equations (41), (42), (43) imply

(44) |H3| = |H ·H2| ≤ |H2 ·X| < |H ·X2| < K2|H|.

By Theorem 5, (39) implies that there exists a pε2- approximative group
H, where

(45) ε2 = C2ε1 with an absolute constant C2,

satisfying the following properties:

(46) |H| < pε2 |A1|

and

(47) A1 ⊂ XH, A1 ⊂ HY with |X||Y | < pε2 .

Now since A1 ⊂
⋃
x∈X xH and |X| < pε2 , there is x0 ∈ X such that

(48) |A1 ∩ x0H| > p−ε2 |A1|.

Since A1 ⊂ A = Aj1 , by definition (25) of Aj , we have

ν(x0H) > ν(A1 ∩ x0H) >
1

2j1
|A1 ∩ x0H|

(48)
>

1
2j1

p−ε2 |A1|
(36)
>

1
2j1

p−ε2p−ε1 |Aj1 |,

and consequently, keeping in mind (31), we have

(49) ν(x0H) > p−ε3

with

(50) ε3 = ε1 + ε2 + 2ε.

Now (46) combined with A1 ⊂ Aj1 and (27) implies that

(51) |H| ≤ pε22j1 .
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Using Young’s inequality

(52) ‖f ∗ g‖2 ≤ ‖f‖1‖g‖2,

we have
‖χAj1 ∗ χAj2‖2 ≤ |Aj2 ||Aj1 |

1/2;

therefore
2j2 |Aj1 |1/2 ≥ |Aj2 ||Aj1 |1/2 ≥ ‖χAj1 ∗ χAj2‖2

and

(53) 2−j1 |Aj1 |1/2 ≥ 2−j1−j2‖χAj1 ∗ χAj2‖2.

Since by (27)
2−j1/2 ≥ 2−j1 |Aj1 |1/2

and since by (23), (26), (28), (29),

2−j1−j2‖χAj1 ∗ χAj2‖2 ≥ p
−2ε‖ν‖2,

equation (53) implies that

2−j1/2 ≥ p−2ε‖ν‖2,

which combined with (18) yields

(54) 2j1 ≤ p4ε‖ν‖−2
2 ≤ p3−2γ+4ε.

Therefore, recalling (51), we have

(55) |H| ≤ pε22j1 ≤ p3−2γ+4ε+ε2 .

On the other hand, combining equation (49) with (17) we have

(56) |H| > pγ−ε3 .

Since H is a pε2-approximate group, it follows from (44) that

(57) |H ·H ·H| < p2ε2 |H|,

and, therefore, using (56), we have

(58) |H ·H ·H| < |H|1+
2ε2
γ−ε3 .

Recalling (55), we now apply to H the following product theorem in
SL2(Fp), due to Helfgott [9].

Theorem 6 ([9]). Let H be a subset of SL2(Fp). Assume that |H| < p3−δ

for δ > 0 and H is not contained in any proper subgroup of SL2(Fp). Then

|H ·H ·H| > c|H|1+κ,

where c > 0 and κ > 0 depends only on δ.
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It follows, that by choosing ε sufficiently small (depending on γ) we can
conclude that H is contained in some proper subgroup G0 of SL2(Fp); conse-
quently (by (49), with a = x0 and ε3 < γ/2), it follows that (22) is satisfied.
We have thus obtained a desired contradiction and completed the proof of
Proposition 2.

4. Proof of Proposition 1

4.1. Preliminary results on SL2(Fp).

4.1.1. Structure of subgroups. We recall the classification of subgroups of
SL2(Fp) [25].

Theorem 7 (Dickson). Let p be a prime with p ≥ 5. Then any subgroup
of SL2(Fp) is isomorphic to one of the following subgroups:

(1) The dihedral groups of order 2(p±1
2 ) and their subgroups.

(2) A Borel group of order p(p−1
2 ) and its subgroups.

(3) A4, S4, or A5.

The following proposition easily follows:

Proposition 3. If G0 is a proper subgroup of G and |G0| > 60 then G0

has trivial second commutators; that is, for all g1, g2, g3, g4 in G0,

(59) [[g1, g2], [g3, g4]] = 1.

4.1.2. Girth. Proposition 4 is proved in [7, §2], following closely the
method of Margulis [19].

Proposition 4. Let S be a symmetric set of elements in SL2(Z) such
that 〈S〉 is a free group. For a matrix L define its norm by

‖L‖ = sup
x 6=0

‖Lx‖
‖x‖

,

where the norm of x = (x1, x2) is the standard Euclidean norm ‖x‖ =
√
x2

1 + x2
2;

let
α(S) = max

L∈S
‖L‖.

The girth of Cayley graphs Gp = G(SL2(Fp), Sp) is greater than 2 logα(p/2).

Proposition 5 is proved in [8].
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Proposition 5 ([8]). Let d be a fixed integer greater than 2. As p→∞,
asymptotically almost surely the girth of the d-regular random Cayley graph of
G = SL2(Fp) is at least

(1/3− o(1)) · logd−1 |G|.

Logarithmic girth implies connectivity for sufficiently large p:

Proposition 6. Fix d ≥ 2 and suppose Sp, |Sp| = d is a set of elements
in SL2(Fp) such that

girth(G(SL2(Fp), Sp)) ≥ τ logd p.

Then for p > d17/τ the graphs G(SL2(Fp), Sp) are connected.

Proof. Let Gp be a subgroup of SL2(Fp) generated by Sp. We want to
show that Gp = SL2(Fp) for p large enough. Suppose not. Then Gp is a certain
proper subgroup listed in Theorem 7. The subgroups of order less than 60 can
be eliminated as possibilities for Gp since they contain elements of small order
which clearly violate the girth bound. For the remaining subgroups, we have
by Proposition 3, that for all x1, x2, y1, y2 ∈ Gp the following relation holds:

(x1y1x
−1
1 y−1

1 )(x2y2x
−1
2 y−1

2 )(y1x1y
−1
1 x−1

1 )(y2x2y
−1
2 x−1

2 ) = 1.

If we take x1, y1, x2, y2 to be any generators in Sp, then we see that this con-
dition provides a closed cycle of length 16. However, such a cycle also violates
the girth bound, whenever τ logd p ≥ 17.

4.2. Preliminary results on Fk. Let Fk denote the free group on k gener-
ators {g̃1, . . . , g̃k}. Denote by µ̃ the probability measure on Fk supported on
g̃i’s and their inverses,

(60) µ̃ =
1
2k

k∑
i=1

(δg̃i + δg̃−1
i

).

Denote by p̃(l)(x, y) the probability of being at y after starting at x and per-
forming a random walk according to µ̃ for l steps. We will make use of the
following classical result of Kesten.

Proposition 7 (Kesten [11]). Notation being as above,

(61) lim sup
l→∞

p̃(l)(x, x)1/l =
√

2k − 1
k

.

In particular, this implies (see, e.g. [28, Lemma (1.9)]) that

(62) p̃(l)(x, y) ≤ p̃(l)(x, x) ≤
(√

2k − 1
k

)l
.
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We will also need the following elementary results pertaining to the free
group.

Lemma 1 ([18, Ex. 2, p. 41]). If u and v are elements in a free group
and uk = vk, then u = v.

Lemma 2 ([18, Ex. 6, p. 42]). Two elements of a free group commute if
and only if they are powers of the same element.

4.3. Proof of Proposition 1. We now apply Proposition 2 to ν = µ
(l)
Sp

with l ∼ log p, for a symmetric set of generators Sp, |Sp| = 2k, such that the
associated Cayley graphs, Gp = G(SL2(Fp), Sp) satisfy the large girth condition,

(63) girth(G(SL2(Fp), Sp)) > τ log2k p.

The assumption (63) implies that for walks of length up to l0 given by

(64) l0 = b1
2
τ log2k pc − 1,

the part of Gp visited by the random walk performed according to µSp is iso-
morphic to a part of a 2k-regular tree (which is Cayley graph of a free group
Fk) visited by the random walk associated with the measure µ̃, defined in Sec-
tion 4.2. In particular, denoting by support(ν) the set of those elements x for
which ν(x) > 0, we have

|support(µ(l0))| = |support(µ̃(l0))| > (2k − 1)l0 ,

where the latter inequality follows from the elementary fact that the number
of points on a 2k-regular tree whose distance to a given vertex is at most l0 is
equal to

(2k − 1)l0k − 1
k − 1

.

Consequently,
|support(µ(l0))| > (2k − 1)τ/2 log2k p = pγ1

with

(65) γ1 =
τ

2
log2k(2k − 1),

and, therefore, since
‖µ(l0)‖∞|support(µ(l0))| ≤ 1,

we obtain that µ(l0) satisfies condition (17) with γ = γ1, as given in (65).
Further, using Young’s inequality

‖f ∗ g‖∞ ≤ ‖f‖∞‖g‖1,

we conclude that (17) will also hold for µ(l) with l ≥ l0.
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We now show that for l ≥ l0 the measure ν = µ(2l) satisfies (19) with

(66) γ <
3τ
16
.

Assume that ν violates (19); more precisely, assume that it satisfies (22) for
some proper subgroup G0. We first show that under this assumption µ(2l0) will
also violate (19); more precisely, we will show that there is b ∈ G such that

(67) µ(l0)(bG0) > p−γ/2,

which would imply that

(68) µ(2l0)(G0) > p−γ .

To prove (67), observe that

p−γ/2 < µ(l)(aG0) =
∑
y∈G

µ(l−l0)(y)µ(l0)(yaG0) ≤ max
b
µ(l0)(bG0).

It remains to rule out (68).
Denote by WS(L) the set of words of length L in generators S, and let

(69) Σ(S, l0) = {g ∈ G0 ∩WS(2l0)}.

Keeping in mind (63) and (64), and applying Kesten’s result (62) we have
that
(70)

|Σ(S, l0)| ≥ µ(2l0)(G0)
‖µ(2l0)‖∞

>
p−γ

‖µ̃(2l0)‖∞
> p−γ

(√
2k − 1
k2

)−2l0

>

(
k2

2k − 1

) l0
4

,

where in the last inequality we used (66).
Now the following proposition, combined with Proposition 3 and the log-

arithmic girth property, will imply a contradiction to (70), and consequently
a contradiction with the assumption given in (22), completing the proof of
Proposition 1.

Proposition 8. Denote by W̃k(L) the set of words in a free group Fk
of length L. Let Σ̃(k, l0) be a subset of elements of Fk lying in W̃k(2l0) and
satisfying the following property: ∀ g1, g2, g3, g4 ∈ Σ̃

[[g1, g2], [g3, g4]] = 1.

Then

(71) |Σ̃(k, l0)| < l60.

Proposition 8, in turn, follows from the following lemma.
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Lemma 3. Let T = {[g1, g2] | g1, g2 ∈ Σ̃} and assume that

|Σ̃(k, l0)| > l60.

Then

(72) |T | > l30.

To show that Lemma 3 implies Proposition 8, we note that since [x1, x2]
= 1 for all x1, x2 ∈ T , by Lemma 2, T is contained in a cyclic group; further,
since it lies in W̃k(8l0), we have that |T | = O(l0), establishing a contradiction
with the conclusion of Lemma 3 and thus proving Proposition 8.

Proof of Lemma 3. Assume that (72) is not satisfied. Then there is a ∈ T
such that

(73) |{g1, g2} ∈ Σ̃ | [g1, g2] = a| > |Σ̃|2l−3
0 .

Consequently, there is b ∈ Σ̃, b 6= 1, such that

(74) |{g ∈ Σ̃ | [b, g] = a}| > |Σ̃|l−3
0 > l30.

Let Σ̃1 = {g ∈ Σ̃ | [b, g] = a}.
Taking g and h in Σ̃1, we have

gb−1g−1 = b−1a,

and
hb−1h−1 = b−1a.

Consequently,
gb−1g−1hbh−1 = 1,

and, therefore
bh−1g = h−1gb,

implying that b and h−1g commute.
By Lemma 2, there are x ∈ Fk and positive integers m,n such that xm = b

and xn = h−1g; hence

(75) bn = (h−1g)m.

Observe that since xm ∈ W̃k(2l0), we have m < 2l0 and, similarly, n < 2l0.
Therefore we have at most 4l20 possibilities for m,n.

We also note that in light of Lemma 1, equation (75) determines h−1g

uniquely in terms of b.
We therefore have

|Σ̃1|2 < 4l20|Σ̃1|;

hence
|Σ̃1| < 4l20,
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and we have obtained a contradiction, completing the proof of Lemma 3 and
Proposition 1.
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