Uniform expansion bounds for Cayley graphs of $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$

By Jean Bourgain and Alex Gamburd*

Abstract

We prove that Cayley graphs of $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$ are expanders with respect to the projection of any fixed elements in $\mathrm{SL}(2, \mathbb{Z})$ generating a non-elementary subgroup, and with respect to generators chosen at random in $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$.

1. Introduction

Expanders are highly-connected sparse graphs widely used in computer science, in areas ranging from parallel computation to complexity theory and cryptography; recently they also have found some remarkable applications in pure mathematics; see [5],[10], [15], [20], [21] and references therein. Given an undirected d-regular graph \mathcal{G} and a subset X of V, the expansion of $X, c(X)$, is defined to be the ratio $|\partial(X)| /|X|$, where $\partial(X)=\{y \in \mathcal{G}:$ distance $(y, X)=1\}$. The expansion coefficient of a graph \mathcal{G} is defined as follows:

$$
c(\mathcal{G})=\inf \left\{\left.c(X)| | X\left|<\frac{1}{2}\right| \mathcal{G} \right\rvert\,\right\} .
$$

A family of d-regular graphs $\mathcal{G}_{n, d}$ forms a family of C-expanders if there is a fixed positive constant C, such that

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} c\left(\mathcal{G}_{n, d}\right) \geq C . \tag{1}
\end{equation*}
$$

The adjacency matrix of $\mathcal{G}, A(\mathcal{G})$ is the $|\mathcal{G}|$ by $|\mathcal{G}|$ matrix, with rows and columns indexed by vertices of \mathcal{G}, such that the x, y entry is 1 if and only if x and y are adjacent and 0 otherwise.

By the discrete analogue of Cheeger-Buser inequality, proved by Alon and Milman, the condition (1) can be rewritten in terms of the second largest eigenvalue of the adjacency matrix $A(\mathcal{G})$ as follows:

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \lambda_{1}\left(A_{n, d}\right)<d . \tag{2}
\end{equation*}
$$

[^0]Given a finite group G with a symmetric set of generators S, the Cayley graph $\mathcal{G}(G, S)$, is a graph which has elements of G as vertices and which has an edge from x to y if and only if $x=\sigma y$ for some $\sigma \in S$. Let S be a set of elements in $\mathrm{SL}_{2}(\mathbb{Z})$. If $\langle S\rangle$, the group generated by S, is a finite index subgroup of $\mathrm{SL}_{2}(\mathbb{Z})$, Selberg's theorem [23] implies (see e.g. [15, Th. 4.3.2]) that $\mathcal{G}\left(\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right), S_{p}\right)$ (where S_{p} is a natural projection of S modulo p) form a family of expanders as $p \rightarrow \infty$. A basic problem, posed by Lubotzky [15], [16] and Lubotzky and Weiss [17], is whether Cayley graphs of $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$ are expanders with respect to other generating sets. The challenge is neatly encapsulated in the following 1-2-3 question of Lubotzky [16]. For a prime $p \geq 5$ let us define

$$
\begin{aligned}
& S_{p}^{1}=\left\{\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)\right\}, \\
& S_{p}^{2}=\left\{\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right)\right\}, \\
& S_{p}^{3}=\left\{\left(\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right)\right\},
\end{aligned}
$$

and for $i=1,2,3$ let $\mathcal{G}_{p}^{i}=\mathcal{G}\left(\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right), S_{p}^{i}\right)$, a Cayley graph of $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$ with respect to S_{p}^{i}. By Selberg's theorem \mathcal{G}_{p}^{1} and \mathcal{G}_{p}^{2} are families of expander graphs. However the group $\left\langle\left(\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right),\left\langle\left(\begin{array}{cc}1 & 0 \\ 3 & 1\end{array}\right)\right\rangle\right.$ has infinite index, and thus does not come under the purview of Selberg's theorem.

In [24] Shalom gave an example of infinite-index subgroup in $\operatorname{PSL}_{2}(\mathbb{Z}[\omega])$ (where ω is a primitive third root of unity) yielding a family of $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$ expanders. In [7] it is proved that if S is a set of elements in $\mathrm{SL}_{2}(\mathbb{Z})$ such that Hausdorff dimension of the limit set^{1} of $\langle S\rangle$ is greater than $5 / 6$, then $\mathcal{G}\left(\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right), S_{p}\right)$ form a family of expanders. Numerical experiments of Lafferty and Rockmore [12], [13], [14] indicated that Cayley graphs of $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$ are expanders with respect to projection of fixed elements of $\mathrm{SL}_{2}(\mathbb{Z})$, as well as with respect to random generators.

Our first result resolves the question completely for projections of fixed elements in $\mathrm{SL}_{2}(\mathbb{Z})$.

Theorem 1. Let S be a set of elements in $\mathrm{SL}_{2}(\mathbb{Z})$. Then the $\mathcal{G}\left(\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right), S_{p}\right)$ form a family of expanders if and only if $\langle S\rangle$ is non-elementary, i.e. the limit set of $\langle S\rangle$ consists of more than two points (equivalently, $\langle S\rangle$ does not contain a solvable subgroup of finite index).

[^1]Our second result shows that random Cayley graphs of $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$ are expanders. (Given a group G, a random $2 k$-regular Cayley graph of G is the Cayley graph $\mathcal{G}\left(G, \Sigma \cup \Sigma^{-1}\right)$, where Σ is a set of k elements from G, selected independently and uniformly at random.)

Theorem 2. Fix $k \geq 2$. Let g_{1}, \ldots, g_{k} be chosen independently at random in $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$ and set $S_{p}^{\mathrm{rand}}=\left\{g_{1}, g_{1}^{-1}, \ldots, g_{k}, g_{k}^{-1}\right\}$. There is a constant $\kappa(k)$ independent of p such that as $p \rightarrow \infty$ asymptotically almost surely

$$
\lambda_{1}\left(A\left(\mathcal{G}\left(\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right), S_{p}^{\text {rand }}\right)\right) \leq \kappa<2 k\right.
$$

Theorem 1 and Theorem 2 are consequences of the following result (recall that the girth of a graph is a length of a shortest cycle):

Theorem 3. Fix $k \geq 2$ and suppose that $S_{p}=\left\{g_{1}, g_{1}^{-1}, \ldots, g_{k}, g_{k}^{-1}\right\}$ is a symmetric generating set for $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$ such that

$$
\begin{equation*}
\operatorname{girth}\left(\mathcal{G}\left(\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right), S_{p}\right)\right) \geq \tau \log _{2 k} p \tag{3}
\end{equation*}
$$

where τ is a fixed constant independent of p. Then the $\mathcal{G}\left(\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right), S_{p}\right)$ form a family of expanders. ${ }^{2}$

Indeed, Theorem 3 combined with Proposition 4 (see §4) implies Theorem 1 for S such that $\langle S\rangle$ is a free group. Now for arbitrary S generating a non-elementary subgroup of $\operatorname{SL}(2, \mathbb{Z})$ the result follows since $\langle S\rangle \cap \Gamma(2)$ (where $\left.\Gamma(p)=\left\{\gamma \in \mathrm{SL}_{2}(\mathbb{Z}): \gamma \equiv\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \bmod p\right\}\right)$ is a free nonabelian group. Theorem 2 is an immediate consequence of Theorem 3 and the fact, proved in [8], that random Cayley graphs of $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$ have logarithmic girth (Proposition 5).

The proof of Theorem 3 consists of two crucial ingredients. The first one is the fact that nontrivial eigenvalues of $\mathcal{G}\left(\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right), S\right)$ must appear with high multiplicity. This follows (as we explain in more detail in Section 2) from a result going back to Frobenius, asserting that the smallest dimension of a nontrivial irreducible representation of $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$ is $\frac{p-1}{2}$, which is large compared to the size of the group (which is of order p^{3}). The second crucial ingredient is an upper bound on the number of short closed cycles, or, equivalently, the number of returns to identity for random walks of length of order $\log |G|$.

The idea of obtaining spectral gap results by exploiting high multiplicity together with the upper bound on the number of short closed geodesics is due to Sarnak and Xue [22]; it was subsequently applied in [5] and [7]. In these works the upper bound was achieved by reduction to an appropriate

[^2]diophantine problem. The novelty of our approach is to derive the upper bound by utilizing the tools of additive combinatorics. In particular, we make crucial use (see $\S 3$) of the noncommutative product set estimates, obtained by Tao [26], [27] (Theorems 4 and 5); and of the result of Helfgott [9], asserting that subsets of $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$ grow rapidly under multiplication (Theorem 6). Helfgott's paper, which served as a starting point and an inspiration for our work, builds crucially on sum-product estimates in finite fields due to Bourgain, Glibichuk and Konyagin [3] and Bourgain, Katz, and Tao [4]. Our proof also exploits (see $\S 4$) the structure of proper subgroups of $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$ (Proposition 3) and a classical result of Kesten ([11, Prop. 7]), pertaining to random walks on a free group.

Acknowledgement. It is a pleasure to thank Enrico Bombieri, Alex Lubotzky and Peter Sarnak for inspiring discussions and penetrating remarks.

2. Proof of Theorem 3

For a Cayley graph $\mathcal{G}(G, S)$ with $S=\left\{g_{1}, g_{1}^{-1}, \ldots, g_{k}, g_{k}^{-1}\right\}$ generating G, the adjacency matrix A can be written as

$$
\begin{equation*}
A(\mathcal{G}(G, S))=\pi_{R}\left(g_{1}\right)+\pi_{R}\left(g_{1}^{-1}\right)+\ldots+\pi_{R}\left(g_{k}\right)+\pi_{R}\left(g_{k}^{-1}\right) \tag{4}
\end{equation*}
$$

where π_{R} is a regular representation of G, given by the permutation action of G on itself. Every irreducible representation $\rho \in \hat{G}$ appears in π_{R} with the multiplicity equal to its dimension

$$
\begin{equation*}
\pi_{R}=\rho_{0} \oplus \bigoplus_{\substack{\rho \in \hat{G} \\ \rho \neq \rho_{0}}} \underbrace{\rho \oplus \cdots \oplus \rho}_{d_{\rho}} \tag{5}
\end{equation*}
$$

where ρ_{0} denotes the trivial representation, and d_{ρ} denotes the dimension of the irreducible representation ρ. A result going back to Frobenius [6], asserts that for $G=\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$ (the case we consider from now on) we have

$$
\begin{equation*}
d_{\rho} \geq \frac{p-1}{2} \tag{6}
\end{equation*}
$$

for all nontrivial irreducible representations.
We will show in subsection 4.1 (see Proposition 6) that logarithmic girth assumption (3) implies that for p large enough, the set S_{p} generates all of $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$. Let $N=\left|\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)\right|$. The adjacency matrix A is a symmetric matrix having N real eigenvalues which we can list in decreasing order:

$$
2 k=\lambda_{0}>\lambda_{1} \geq \ldots \geq \lambda_{N-1} \geq-2 k
$$

The eigenvalue $2 k$ corresponds to the trivial representation in the decomposition (5); the strict inequality

$$
2 k=\lambda_{0}>\lambda_{1}
$$

is a consequence of our graph being connected (that is, of S_{p} generating all of $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$). The smallest eigenvalue λ_{N-1} is equal to $-2 k$ if and only if the graph is bipartite, in the latter case it occurs with multiplicity one. Denoting by $W_{2 m}$ the number of closed walks from identity to itself of length $2 m$, the trace formula takes form

$$
\begin{equation*}
\sum_{j=0}^{N-1} \lambda_{j}^{2 m}=N W_{2 m} \tag{7}
\end{equation*}
$$

Denote by μ_{S} the probability measure on G, supported on the generating set S,

$$
\mu_{S}(x)=\frac{1}{|S|} \sum_{g \in S} \delta_{g}(x)
$$

where

$$
\delta_{g}(x)=\left\{\begin{array}{l}
1 \text { if } x=g \\
0 \text { if } x \neq g
\end{array}\right.
$$

when it is clear which S is meant we will omit the subscript S. Let $\mu^{(l)}$ denote the l-fold convolution of μ :

$$
\mu^{(l)}=\underbrace{\mu * \cdots * \mu}_{l},
$$

where

$$
\begin{equation*}
\mu * \nu(x)=\sum_{g \in G} \mu\left(x g^{-1}\right) \nu(g) . \tag{8}
\end{equation*}
$$

Note that we have

$$
\begin{equation*}
\mu_{S}^{(2 l)}(1)=\frac{W_{2 l}}{(2 k)^{2 l}} . \tag{9}
\end{equation*}
$$

For a measure ν on G we let

$$
\|\nu\|_{2}=\left(\sum_{g \in G} \nu^{2}(g)\right)^{1 / 2}
$$

and

$$
\|\nu\|_{\infty}=\max _{g \in G} \nu(g)
$$

Proposition 1. Suppose $\mathcal{G}\left(\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right), S_{p}\right)$ with $\left|S_{p}\right|=2 k$ satisfies logarithmic girth condition (3); that is,

$$
\operatorname{girth}\left(\mathcal{G}\left(\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right), S_{p}\right)\right) \geq \tau \log _{2 k} p
$$

Then for any $\varepsilon>0$ there is $C(\varepsilon, \tau)$ such that for $l>C(\varepsilon, \tau) \log _{2 k} p$

$$
\begin{equation*}
\left\|\mu_{S_{p}}^{(l)}\right\|_{2}<p^{-\frac{3}{2}+\varepsilon} . \tag{10}
\end{equation*}
$$

Now observe that since S is a symmetric generating set, we have

$$
\mu^{(2 l)}(1)=\sum_{g \in G} \mu^{(l)}(g) \mu^{(l)}\left(g^{-1}\right)=\sum_{g \in G}\left(\mu^{(l)}(g)\right)^{2}=\left\|\mu^{(l)}\right\|_{2}^{2} ;
$$

therefore, keeping in mind (9), we conclude that (10) implies that for

$$
l>C(\varepsilon) \log _{2 k} p
$$

we have

$$
\begin{equation*}
W_{2 l}<\frac{(2 k)^{2 l}}{p^{3-2 \varepsilon}} . \tag{11}
\end{equation*}
$$

Let λ be the largest eigenvalue of A such that $\lambda<2 k$. Denoting by $m_{p}(\lambda)$ the multiplicity of λ, we clearly have

$$
\begin{equation*}
\sum_{j=0}^{N-1} \lambda_{j}^{2 l}>m_{p}(\lambda) \lambda^{2 l} \tag{12}
\end{equation*}
$$

since the other terms on the left-hand side of (7) are positive.
Combining (12) with the bound on multiplicity (6), and the bound on the number of closed paths (11), we obtain that for $l>C(\varepsilon) \log p$,

$$
\begin{equation*}
\frac{p-1}{2} \lambda^{2 l}<\left|\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)\right| \frac{(2 k)^{2 l}}{p^{3-2 \varepsilon}} . \tag{13}
\end{equation*}
$$

Since $\left|\operatorname{SL}_{2}\left(\mathbb{F}_{p}\right)\right|=p\left(p^{2}-1\right)<p^{3}$, this implies that

$$
\begin{equation*}
\lambda^{2 l} \ll \frac{(2 k)^{2 l}}{p^{1-2 \varepsilon}}, \tag{14}
\end{equation*}
$$

and therefore, taking $l=C(\varepsilon, \tau) \log p$, we have

$$
\begin{equation*}
\lambda_{1} \leq \lambda<(2 k)^{1-\frac{(1-2 \varepsilon)}{C(\varepsilon)}}<2 k, \tag{15}
\end{equation*}
$$

establishing Theorem 3.
Proposition 1 will be proved in Section 4; a crucial ingredient in the proof is furnished by Proposition 2, established in Section 3.

3. Property of probability measures on $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$

Proposition 2. Suppose $\nu \in \mathcal{P}(G)$ is a symmetric probability measure on G; that is,

$$
\begin{equation*}
\nu(g)=\nu\left(g^{-1}\right), \tag{16}
\end{equation*}
$$

satisfying the following three properties for fixed positive $\gamma, 0<\gamma<\frac{3}{4}$:

$$
\begin{equation*}
\|\nu\|_{\infty}<p^{-\gamma} \tag{17}
\end{equation*}
$$

$$
\begin{gather*}
\|\nu\|_{2}>p^{-\frac{3}{2}+\gamma} \tag{18}\\
\nu^{(2)}\left[G_{0}\right]<p^{-\gamma} \text { for every proper subgroup } G_{0} . \tag{19}
\end{gather*}
$$

Then for some $\varepsilon=\varepsilon(\gamma)>0$, for all sufficiently large p :

$$
\begin{equation*}
\|\nu * \nu\|_{2}<p^{-\varepsilon}\|\nu\|_{2} \tag{20}
\end{equation*}
$$

Proof of Proposition 2. Assume that (20) fails; that is, suppose that for any $\varepsilon>0$,

$$
\begin{equation*}
\|\nu * \nu\|_{2}>p^{-\varepsilon}\|\nu\|_{2} \tag{21}
\end{equation*}
$$

We will prove that by choosing ε sufficiently small (depending on γ), property (19) fails for some subgroup. More precisely, we will show that for some $a \in G$ and some proper subgroup G_{0} we have that

$$
\begin{equation*}
\nu\left[a G_{0}\right]>p^{-\gamma / 2} \tag{22}
\end{equation*}
$$

and this in turn will imply that $\nu^{(2)}\left(G_{0}\right)>p^{-\gamma}$.
Set

$$
\begin{equation*}
J=10 \log p \tag{23}
\end{equation*}
$$

and let

$$
\begin{equation*}
\tilde{\nu}=\sum_{j=1}^{J} 2^{-j} \chi_{A_{j}} \tag{24}
\end{equation*}
$$

where A_{j} are the level sets of the measure ν : for $1 \leq j \leq J$,

$$
\begin{equation*}
A_{j}=\left\{x \mid 2^{-j}<\nu(x) \leq 2^{-j+1}\right\} . \tag{25}
\end{equation*}
$$

Setting

$$
A_{J+1}=\left\{x \mid 0<\nu(x) \leq 2^{-J}\right\},
$$

we have, for any $x \in G$,

$$
\tilde{\nu}(x) \leq \nu(x) \leq 2 \tilde{\nu}(x)+\frac{1}{2^{J}} \chi_{A_{J+1}}(x)
$$

hence, keeping in mind (23) we obtain

$$
\begin{equation*}
\tilde{\nu}(x) \leq \nu(x) \leq 2 \tilde{\nu}(x)+\frac{1}{p^{10}} . \tag{26}
\end{equation*}
$$

Note also, that for any j satisfying $1 \leq j \leq J$, we have

$$
\begin{equation*}
\left|A_{j}\right| \leq 2^{j} \tag{27}
\end{equation*}
$$

By our assumption, (21) holds for arbitrarily small ε; consequently, in light of (26), so does

$$
\begin{equation*}
\|\tilde{\nu} * \tilde{\nu}\|_{2}>p^{-\varepsilon}\|\tilde{\nu}\|_{2} \tag{28}
\end{equation*}
$$

Using the triangle inequality

$$
\|f+g\|_{2} \leq\|f\|_{2}+\|g\|_{2},
$$

we obtain

$$
\|\tilde{\nu} * \tilde{\nu}\|_{2}=\left\|\sum_{1 \leq j_{1}, j_{2} \leq J} 2^{-j_{1}-j_{2}} \chi_{A_{j_{1}}} * \chi_{A_{j_{2}}}\right\|_{2} \leq \sum_{1 \leq j_{1}, j_{2} \leq J} 2^{-j_{1}-j_{2}}\left\|\chi_{A_{j_{1}}} * \chi_{A_{j_{2}}}\right\|_{2}
$$

Thus by the pigeonhole principle, for some j_{1}, j_{2}, satisfying $J \geq j_{1} \geq j_{2} \geq 1$, we have

$$
\begin{equation*}
J^{2} 2^{-j_{1}-j_{2}}\left\|\chi_{A_{j_{1}}} * \chi_{A_{j_{2}}}\right\|_{2} \geq\|\tilde{\nu} * \tilde{\nu}\|_{2} . \tag{29}
\end{equation*}
$$

On the other hand,

$$
\begin{aligned}
\|\tilde{\nu}\|_{2}=\left(\sum_{j=1}^{J} \frac{1}{2^{2 j}}\left|\chi_{A_{j}}\right|\right)^{1 / 2} & \geq\left(\frac{1}{2^{2 j_{1}}}\left|A_{j_{1}}\right|+\frac{1}{2^{2 j_{2}}}\left|A_{j_{2}}\right|\right)^{1 / 2} \\
& \geq\left(2^{-j_{1}-j_{2}}\left|A_{j_{1}}\right|^{1 / 2}\left|A_{j_{2}}\right|^{1 / 2}\right)^{1 / 2}
\end{aligned}
$$

therefore

$$
\begin{equation*}
\|\tilde{\nu}\|_{2} \geq 2^{-j_{1} / 2} 2^{-j_{2} / 2}\left|A_{j_{1}}\right|^{1 / 4}\left|A_{j_{2}}\right|^{1 / 4} . \tag{30}
\end{equation*}
$$

Note that we also have

$$
J^{2} 2^{-j_{1}-j_{2}}\left\|\chi_{A_{j_{1}}} * \chi_{A_{j_{2}}}\right\|_{2} \geq p^{-\varepsilon} \max \left(2^{-j_{1}}\left|A_{j_{1}}\right|^{\frac{1}{2}}, 2^{-j_{2}}\left|A_{j_{2}}\right|^{\frac{1}{2}}\right),
$$

and since

$$
\left|A_{j_{1}}\right|^{\frac{1}{2}}\left|A_{j_{2}}\right|^{\frac{1}{2}} \min \left(\left|A_{j_{1}}\right|^{\frac{1}{2}},\left|A_{j_{2}}\right|^{\frac{1}{2}}\right) \geq\left\|\chi_{A_{j_{1}}} * \chi_{A_{j_{2}}}\right\|_{2},
$$

we obtain

$$
\begin{equation*}
\min \left(2^{-j_{1}}\left|A_{j_{1}}\right|, 2^{-j_{2}}\left|A_{j_{2}}\right|\right) \geq \frac{p^{-\varepsilon}}{J^{2}} . \tag{31}
\end{equation*}
$$

Now combining (28), (29) and (30) we have

$$
J^{2} 2^{-j_{1}-j_{2}}\left\|\chi_{A_{j_{1}}} * \chi_{A_{j_{2}}}\right\|_{2} \geq\|\tilde{\nu} * \tilde{\nu}\|_{2} \geq p^{-\varepsilon} 2^{-j_{1} / 2} 2^{-j_{2} / 2}\left|A_{j_{1}}\right|^{1 / 4}\left|A_{j_{2}}\right|^{1 / 4}
$$

yielding

$$
\left\|\chi_{A_{j_{1}}} * \chi_{A_{j_{2}}}\right\|_{2} \geq \frac{p^{-\varepsilon}}{J^{2}} 2^{j_{1} / 2} 2^{j_{2} / 2}\left|A_{j_{1}}\right|^{1 / 4}\left|A_{j_{2}}\right|^{1 / 4} ;
$$

recalling (23) and (27), we obtain

$$
\begin{equation*}
\left\|\chi_{A_{j_{1}}} * \chi_{A_{j_{2}}}\right\|_{2} \geq p^{-2 \varepsilon}\left|A_{j_{1}}\right|^{3 / 4}\left|A_{j_{2}}\right|^{3 / 4} . \tag{32}
\end{equation*}
$$

Let

$$
\begin{equation*}
A=A_{j_{1}} \text { and } B=A_{j_{2}} \tag{33}
\end{equation*}
$$

Given two multiplicative sets A and B in an ambient group G, their multiplicative energy is given by

$$
\begin{equation*}
E(A, B)=\left|\left\{\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \in A^{2} \times B^{2} \mid x_{1} y_{1}=x_{2} y_{2}\right\}\right|=\left\|\chi_{A} * \chi_{B}\right\|_{2}^{2} \tag{34}
\end{equation*}
$$

Inequality (32) means that for the sets A and B, defined in (33),

$$
\begin{equation*}
E(A, B) \geq p^{-4 \varepsilon}|A|^{3 / 2}|B|^{3 / 2} \tag{35}
\end{equation*}
$$

We are ready to apply the following noncommutative version of Balog-Szemerédi-Gowers theorem, established by Tao [26]:

Theorem 4 ([27, Cor. 2.46]). Let A, B be multiplicative sets in an ambient group G such that $E(A, B) \geq|A|^{3 / 2}|B|^{3 / 2} / K$ for some $K>1$. Then there exists a subset $A^{\prime} \subset A$ such that $\left|A^{\prime}\right|=\Omega\left(K^{-O(1)}|A|\right)$ and $\left|A^{\prime} \cdot\left(A^{\prime}\right)^{-1}\right|=$ $O\left(K^{O(1)}|A|\right)$ for some absolute C.

Theorem 4 implies that there exists $A_{1} \subset A$ such that

$$
\begin{equation*}
\left|A_{1}\right|>p^{-\varepsilon_{1}}|A| \tag{36}
\end{equation*}
$$

where

$$
\begin{equation*}
\varepsilon_{1}=4 C_{1} \varepsilon \text { with an absolute constant } C_{1}, \tag{37}
\end{equation*}
$$

such that

$$
\begin{equation*}
\left|A_{1}\left(A_{1}\right)^{-1}\right|<p^{\varepsilon_{1}}\left|A_{1}\right|, \tag{38}
\end{equation*}
$$

which means that

$$
\begin{equation*}
d\left(A_{1}, A_{1}^{-1}\right)<\varepsilon_{1} \log p, \tag{39}
\end{equation*}
$$

where

$$
d(A, B)=\log \frac{\left|A \cdot B^{-1}\right|}{|A|^{1 / 2}|B|^{1 / 2}}
$$

is Ruzsa distance between two multiplicative sets.
The following result, connecting Ruzsa distance with the notion of an approximate group in a noncommutative setting was established by Tao [26].

Theorem 5 ([27, Th. 2.43]). Let A, B be multiplicative sets in a group G, and let $K \geq 1$. Then the following statements are equivalent up to constants, in the sense that if the j-th property holds for some absolute constant C_{j}, then the k-th property will also hold for some absolute constant C_{k} depending on C_{j} :
(1) $d(A, B) \leq C_{1} \log K$ where $d(A, B)=\log \frac{\left|A \cdot B^{-1}\right|}{|A|^{1 / 2}|B|^{1 / 2}}$ is Ruzsa distance between two multiplicative sets.
(2) There exist a $C_{2} K^{C_{2}}$-approximate group H such that $|H| \leq C_{2} K^{C_{2}}|A|$, $A \subset X \cdot H$ and $B \subset Y \cdot H$ for some multiplicative sets X, Y of cardinality at most $C_{2} K^{C_{2}}$.

By definition, a multiplicative K-approximate group is any multiplicative set H which is symmetric;

$$
\begin{equation*}
H=H^{-1} \tag{40}
\end{equation*}
$$

contains the identity, and is such that there exists a set X of cardinality

$$
\begin{equation*}
|X| \leq K, \tag{41}
\end{equation*}
$$

such that we have the inclusions

$$
\begin{align*}
& H \cdot H \subseteq X \cdot H \subseteq H \cdot X \cdot X \tag{42}\\
& H \cdot H \subseteq H \cdot X \subseteq X \cdot X \cdot H \tag{43}
\end{align*}
$$

Note, that equations (41), (42), (43) imply

$$
\begin{equation*}
\left|H^{3}\right|=\left|H \cdot H^{2}\right| \leq\left|H^{2} \cdot X\right|<\left|H \cdot X^{2}\right|<K^{2}|H| . \tag{44}
\end{equation*}
$$

By Theorem 5, (39) implies that there exists a $p^{\varepsilon_{2}}$ - approximative group H, where

$$
\begin{equation*}
\varepsilon_{2}=C_{2} \varepsilon_{1} \text { with an absolute constant } C_{2}, \tag{45}
\end{equation*}
$$

satisfying the following properties:

$$
\begin{equation*}
|H|<p^{\varepsilon_{2}}\left|A_{1}\right| \tag{46}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{1} \subset X H, A_{1} \subset H Y \text { with }|X \| Y|<p^{\varepsilon_{2}} \tag{47}
\end{equation*}
$$

Now since $A_{1} \subset \bigcup_{x \in X} x H$ and $|X|<p^{\varepsilon_{2}}$, there is $x_{0} \in X$ such that

$$
\begin{equation*}
\left|A_{1} \cap x_{0} H\right|>p^{-\varepsilon_{2}}\left|A_{1}\right| . \tag{48}
\end{equation*}
$$

Since $A_{1} \subset A=A_{j_{1}}$, by definition (25) of A_{j}, we have
$\nu\left(x_{0} H\right)>\nu\left(A_{1} \cap x_{0} H\right)>\frac{1}{2^{j_{1}}}\left|A_{1} \cap x_{0} H\right| \stackrel{(48)}{>} \frac{1}{2^{j_{1}}} p^{-\varepsilon_{2}}\left|A_{1}\right| \stackrel{(36)}{>} \frac{1}{2^{j_{1}}} p^{-\varepsilon_{2}} p^{-\varepsilon_{1}}\left|A_{j_{1}}\right|$,
and consequently, keeping in mind (31), we have

$$
\begin{equation*}
\nu\left(x_{0} H\right)>p^{-\varepsilon_{3}} \tag{49}
\end{equation*}
$$

with

$$
\begin{equation*}
\varepsilon_{3}=\varepsilon_{1}+\varepsilon_{2}+2 \varepsilon . \tag{50}
\end{equation*}
$$

Now (46) combined with $A_{1} \subset A_{j_{1}}$ and (27) implies that

$$
\begin{equation*}
|H| \leq p^{\varepsilon_{2}} 2^{j_{1}} . \tag{51}
\end{equation*}
$$

Using Young's inequality

$$
\begin{equation*}
\|f * g\|_{2} \leq\|f\|_{1}\|g\|_{2} \tag{52}
\end{equation*}
$$

we have

$$
\left\|\chi_{A_{j_{1}}} * \chi_{A_{j_{2}}}\right\|_{2} \leq\left|A_{j_{2}}\right|\left|A_{j_{1}}\right|^{1 / 2}
$$

therefore

$$
2^{j_{2}}\left|A_{j_{1}}\right|^{1 / 2} \geq\left|A_{j_{2}}\right|\left|A_{j_{1}}\right|^{1 / 2} \geq\left\|\chi_{A_{j_{1}}} * \chi_{A_{j_{2}}}\right\|_{2}
$$

and

$$
\begin{equation*}
2^{-j_{1}}\left|A_{j_{1}}\right|^{1 / 2} \geq 2^{-j_{1}-j_{2}}\left\|\chi_{A_{j_{1}}} * \chi_{A_{j_{2}}}\right\|_{2} \tag{53}
\end{equation*}
$$

Since by (27)

$$
2^{-j_{1} / 2} \geq 2^{-j_{1}}\left|A_{j_{1}}\right|^{1 / 2}
$$

and since by (23), (26), (28), (29),

$$
2^{-j_{1}-j_{2}}\left\|\chi_{A_{j_{1}}} * \chi_{A_{j_{2}}}\right\|_{2} \geq p^{-2 \varepsilon}\|\nu\|_{2}
$$

equation (53) implies that

$$
2^{-j_{1} / 2} \geq p^{-2 \varepsilon}\|\nu\|_{2}
$$

which combined with (18) yields

$$
\begin{equation*}
2^{j_{1}} \leq p^{4 \varepsilon}\|\nu\|_{2}^{-2} \leq p^{3-2 \gamma+4 \varepsilon} . \tag{54}
\end{equation*}
$$

Therefore, recalling (51), we have

$$
\begin{equation*}
|H| \leq p^{\varepsilon_{2}} 2^{j_{1}} \leq p^{3-2 \gamma+4 \varepsilon+\varepsilon_{2}} \tag{55}
\end{equation*}
$$

On the other hand, combining equation (49) with (17) we have

$$
\begin{equation*}
|H|>p^{\gamma-\varepsilon_{3}} \tag{56}
\end{equation*}
$$

Since H is a $p^{\varepsilon_{2}}$-approximate group, it follows from (44) that

$$
\begin{equation*}
|H \cdot H \cdot H|<p^{2 \varepsilon_{2}}|H|, \tag{57}
\end{equation*}
$$

and, therefore, using (56), we have

$$
\begin{equation*}
|H \cdot H \cdot H|<|H|^{1+\frac{2 \varepsilon_{2}}{\gamma-\varepsilon_{3}}} . \tag{58}
\end{equation*}
$$

Recalling (55), we now apply to H the following product theorem in $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$, due to Helfgott [9].

Theorem 6 ([9]). Let H be a subset of $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$. Assume that $|H|<p^{3-\delta}$ for $\delta>0$ and H is not contained in any proper subgroup of $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$. Then

$$
|H \cdot H \cdot H|>c|H|^{1+\kappa}
$$

where $c>0$ and $\kappa>0$ depends only on δ.

It follows, that by choosing ε sufficiently small (depending on γ) we can conclude that H is contained in some proper subgroup G_{0} of $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$; consequently (by (49), with $a=x_{0}$ and $\varepsilon_{3}<\gamma / 2$), it follows that (22) is satisfied. We have thus obtained a desired contradiction and completed the proof of Proposition 2.

4. Proof of Proposition 1

4.1. Preliminary results on $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$.
4.1.1. Structure of subgroups. We recall the classification of subgroups of $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$ [25].

Theorem 7 (Dickson). Let p be a prime with $p \geq 5$. Then any subgroup of $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$ is isomorphic to one of the following subgroups:
(1) The dihedral groups of order $2\left(\frac{p \pm 1}{2}\right)$ and their subgroups.
(2) A Borel group of order $p\left(\frac{p-1}{2}\right)$ and its subgroups.
(3) A_{4}, S_{4}, or A_{5}.

The following proposition easily follows:
Proposition 3. If G_{0} is a proper subgroup of G and $\left|G_{0}\right|>60$ then G_{0} has trivial second commutators; that is, for all $g_{1}, g_{2}, g_{3}, g_{4}$ in G_{0},

$$
\begin{equation*}
\left[\left[g_{1}, g_{2}\right],\left[g_{3}, g_{4}\right]\right]=1 \tag{59}
\end{equation*}
$$

4.1.2. Girth. Proposition 4 is proved in [7, §2], following closely the method of Margulis [19].

Proposition 4. Let S be a symmetric set of elements in $\mathrm{SL}_{2}(\mathbb{Z})$ such that $\langle S\rangle$ is a free group. For a matrix L define its norm by

$$
\|L\|=\sup _{x \neq 0} \frac{\|L x\|}{\|x\|}
$$

where the norm of $x=\left(x_{1}, x_{2}\right)$ is the standard Euclidean norm $\|x\|=\sqrt{x_{1}^{2}+x_{2}^{2}}$; let

$$
\alpha(S)=\max _{L \in S}\|L\| .
$$

The girth of Cayley graphs $\mathcal{G}_{p}=\mathcal{G}\left(\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right), S_{p}\right)$ is greater than $2 \log _{\alpha}(p / 2)$.
Proposition 5 is proved in [8].

Proposition 5 ([8]). Let d be a fixed integer greater than 2. As $p \rightarrow \infty$, asymptotically almost surely the girth of the d-regular random Cayley graph of $G=\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$ is at least

$$
(1 / 3-o(1)) \cdot \log _{d-1}|G| .
$$

Logarithmic girth implies connectivity for sufficiently large p :
Proposition 6. Fix $d \geq 2$ and suppose $S_{p},\left|S_{p}\right|=d$ is a set of elements in $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$ such that

$$
\operatorname{girth}\left(\mathcal{G}\left(\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right), S_{p}\right)\right) \geq \tau \log _{d} p
$$

Then for $p>d^{17 / \tau}$ the graphs $\mathcal{G}\left(\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right), S_{p}\right)$ are connected.
Proof. Let G_{p} be a subgroup of $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$ generated by S_{p}. We want to show that $G_{p}=\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$ for p large enough. Suppose not. Then G_{p} is a certain proper subgroup listed in Theorem 7. The subgroups of order less than 60 can be eliminated as possibilities for G_{p} since they contain elements of small order which clearly violate the girth bound. For the remaining subgroups, we have by Proposition 3, that for all $x_{1}, x_{2}, y_{1}, y_{2} \in G_{p}$ the following relation holds:

$$
\left(x_{1} y_{1} x_{1}^{-1} y_{1}^{-1}\right)\left(x_{2} y_{2} x_{2}^{-1} y_{2}^{-1}\right)\left(y_{1} x_{1} y_{1}^{-1} x_{1}^{-1}\right)\left(y_{2} x_{2} y_{2}^{-1} x_{2}^{-1}\right)=1 .
$$

If we take $x_{1}, y_{1}, x_{2}, y_{2}$ to be any generators in S_{p}, then we see that this condition provides a closed cycle of length 16. However, such a cycle also violates the girth bound, whenever $\tau \log _{d} p \geq 17$.
4.2. Preliminary results on F_{k}. Let F_{k} denote the free group on k generators $\left\{\tilde{g}_{1}, \ldots, \tilde{g}_{k}\right\}$. Denote by $\tilde{\mu}$ the probability measure on F_{k} supported on \tilde{g}_{i} 's and their inverses,

$$
\begin{equation*}
\tilde{\mu}=\frac{1}{2 k} \sum_{i=1}^{k}\left(\delta_{\tilde{g}_{i}}+\delta_{\tilde{g}_{i}^{-1}}\right) . \tag{60}
\end{equation*}
$$

Denote by $\tilde{p}^{(l)}(x, y)$ the probability of being at y after starting at x and performing a random walk according to $\tilde{\mu}$ for l steps. We will make use of the following classical result of Kesten.

Proposition 7 (Kesten [11]). Notation being as above,

$$
\begin{equation*}
\limsup _{l \rightarrow \infty} \tilde{p}^{(l)}(x, x)^{1 / l}=\frac{\sqrt{2 k-1}}{k} \tag{61}
\end{equation*}
$$

In particular, this implies (see, e.g. [28, Lemma (1.9)]) that

$$
\begin{equation*}
\tilde{p}^{(l)}(x, y) \leq \tilde{p}^{(l)}(x, x) \leq\left(\frac{\sqrt{2 k-1}}{k}\right)^{l} \tag{62}
\end{equation*}
$$

We will also need the following elementary results pertaining to the free group.

Lemma 1 ([18, Ex. 2, p. 41]). If u and v are elements in a free group and $u^{k}=v^{k}$, then $u=v$.

Lemma 2 ([18, Ex. 6, p. 42]). Two elements of a free group commute if and only if they are powers of the same element.
4.3. Proof of Proposition 1. We now apply Proposition 2 to $\nu=\mu_{S_{p}}^{(l)}$ with $l \sim \log p$, for a symmetric set of generators $S_{p},\left|S_{p}\right|=2 k$, such that the associated Cayley graphs, $\mathcal{G}_{p}=\mathcal{G}\left(\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right), S_{p}\right)$ satisfy the large girth condition,

$$
\begin{equation*}
\operatorname{girth}\left(\mathcal{G}\left(\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right), S_{p}\right)\right)>\tau \log _{2 k} p \tag{63}
\end{equation*}
$$

The assumption (63) implies that for walks of length up to l_{0} given by

$$
\begin{equation*}
l_{0}=\left\lfloor\frac{1}{2} \tau \log _{2 k} p\right\rfloor-1, \tag{64}
\end{equation*}
$$

the part of \mathcal{G}_{p} visited by the random walk performed according to $\mu_{S_{p}}$ is isomorphic to a part of a $2 k$-regular tree (which is Cayley graph of a free group F_{k}) visited by the random walk associated with the measure $\tilde{\mu}$, defined in Section 4.2. In particular, denoting by support (ν) the set of those elements x for which $\nu(x)>0$, we have

$$
\left|\operatorname{support}\left(\mu^{\left(l_{0}\right)}\right)\right|=\left|\operatorname{support}\left(\tilde{\mu}^{\left(l_{0}\right)}\right)\right|>(2 k-1)^{l_{0}},
$$

where the latter inequality follows from the elementary fact that the number of points on a $2 k$-regular tree whose distance to a given vertex is at most l_{0} is equal to

$$
\frac{(2 k-1)^{l_{0}} k-1}{k-1}
$$

Consequently,

$$
\mid \text { support }\left(\mu^{\left(l_{0}\right)}\right) \mid>(2 k-1)^{\tau / 2 \log _{2 k} p}=p^{\gamma_{1}}
$$

with

$$
\begin{equation*}
\gamma_{1}=\frac{\tau}{2} \log _{2 k}(2 k-1) \tag{65}
\end{equation*}
$$

and, therefore, since

$$
\left\|\mu^{\left(l_{0}\right)}\right\|_{\infty}\left|\operatorname{support}\left(\mu^{\left(l_{0}\right)}\right)\right| \leq 1
$$

we obtain that $\mu^{\left(l_{0}\right)}$ satisfies condition (17) with $\gamma=\gamma_{1}$, as given in (65). Further, using Young's inequality

$$
\|f * g\|_{\infty} \leq\|f\|_{\infty}\|g\|_{1}
$$

we conclude that (17) will also hold for $\mu^{(l)}$ with $l \geq l_{0}$.

We now show that for $l \geq l_{0}$ the measure $\nu=\mu^{(2 l)}$ satisfies (19) with

$$
\begin{equation*}
\gamma<\frac{3 \tau}{16} . \tag{66}
\end{equation*}
$$

Assume that ν violates (19); more precisely, assume that it satisfies (22) for some proper subgroup G_{0}. We first show that under this assumption $\mu^{\left(2 l_{0}\right)}$ will also violate (19); more precisely, we will show that there is $b \in G$ such that

$$
\begin{equation*}
\mu^{\left(l_{0}\right)}\left(b G_{0}\right)>p^{-\gamma / 2} \tag{67}
\end{equation*}
$$

which would imply that

$$
\begin{equation*}
\mu^{\left(2 l_{0}\right)}\left(G_{0}\right)>p^{-\gamma} \tag{68}
\end{equation*}
$$

To prove (67), observe that

$$
p^{-\gamma / 2}<\mu^{(l)}\left(a G_{0}\right)=\sum_{y \in G} \mu^{\left(l-l_{0}\right)}(y) \mu^{\left(l_{0}\right)}\left(y a G_{0}\right) \leq \max _{b} \mu^{\left(l_{0}\right)}\left(b G_{0}\right) .
$$

It remains to rule out (68).
Denote by $W_{S}(L)$ the set of words of length L in generators S, and let

$$
\begin{equation*}
\Sigma\left(S, l_{0}\right)=\left\{g \in G_{0} \cap W_{S}\left(2 l_{0}\right)\right\} \tag{69}
\end{equation*}
$$

Keeping in mind (63) and (64), and applying Kesten's result (62) we have that

$$
\begin{equation*}
\left|\Sigma\left(S, l_{0}\right)\right| \geq \frac{\mu^{\left(2 l_{0}\right)}\left(G_{0}\right)}{\left\|\mu^{\left(2 l_{0}\right)}\right\|_{\infty}}>\frac{p^{-\gamma}}{\left\|\tilde{\mu}^{\left(2 l_{0}\right)}\right\|_{\infty}}>p^{-\gamma}\left(\sqrt{\frac{2 k-1}{k^{2}}}\right)^{-2 l_{0}}>\left(\frac{k^{2}}{2 k-1}\right)^{\frac{l_{0}}{4}} \tag{70}
\end{equation*}
$$

where in the last inequality we used (66).
Now the following proposition, combined with Proposition 3 and the logarithmic girth property, will imply a contradiction to (70), and consequently a contradiction with the assumption given in (22), completing the proof of Proposition 1.

Proposition 8. Denote by $\tilde{W}_{k}(L)$ the set of words in a free group F_{k} of length L. Let $\tilde{\Sigma}\left(k, l_{0}\right)$ be a subset of elements of F_{k} lying in $\tilde{W}_{k}\left(2 l_{0}\right)$ and satisfying the following property: $\forall g_{1}, g_{2}, g_{3}, g_{4} \in \tilde{\Sigma}$

$$
\left[\left[g_{1}, g_{2}\right],\left[g_{3}, g_{4}\right]\right]=1
$$

Then

$$
\begin{equation*}
\left|\tilde{\Sigma}\left(k, l_{0}\right)\right|<l_{0}^{6} . \tag{71}
\end{equation*}
$$

Proposition 8, in turn, follows from the following lemma.

Lemma 3. Let $T=\left\{\left[g_{1}, g_{2}\right] \mid g_{1}, g_{2} \in \tilde{\Sigma}\right\}$ and assume that

$$
\left|\tilde{\Sigma}\left(k, l_{0}\right)\right|>l_{0}^{6} .
$$

Then

$$
\begin{equation*}
|T|>l_{0}^{3} . \tag{72}
\end{equation*}
$$

To show that Lemma 3 implies Proposition 8, we note that since $\left[x_{1}, x_{2}\right.$] $=1$ for all $x_{1}, x_{2} \in T$, by Lemma $2, T$ is contained in a cyclic group; further, since it lies in $\tilde{W}_{k}\left(8 l_{0}\right)$, we have that $|T|=O\left(l_{0}\right)$, establishing a contradiction with the conclusion of Lemma 3 and thus proving Proposition 8.

Proof of Lemma 3. Assume that (72) is not satisfied. Then there is $a \in T$ such that

$$
\begin{equation*}
\left|\left\{g_{1}, g_{2}\right\} \in \tilde{\Sigma}\right|\left[g_{1}, g_{2}\right]=a\left|>|\tilde{\Sigma}|^{2} l_{0}^{-3}\right. \tag{73}
\end{equation*}
$$

Consequently, there is $b \in \tilde{\Sigma}, b \neq 1$, such that

$$
\begin{equation*}
|\{g \in \tilde{\Sigma} \mid[b, g]=a\}|>|\tilde{\Sigma}| l_{0}^{-3}>l_{0}^{3} . \tag{74}
\end{equation*}
$$

Let $\tilde{\Sigma}_{1}=\{g \in \tilde{\Sigma} \mid[b, g]=a\}$.
Taking g and h in $\tilde{\Sigma}_{1}$, we have

$$
g b^{-1} g^{-1}=b^{-1} a
$$

and

$$
h b^{-1} h^{-1}=b^{-1} a .
$$

Consequently,

$$
g b^{-1} g^{-1} h b h^{-1}=1,
$$

and, therefore

$$
b h^{-1} g=h^{-1} g b
$$

implying that b and $h^{-1} g$ commute.
By Lemma 2, there are $x \in F_{k}$ and positive integers m, n such that $x^{m}=b$ and $x^{n}=h^{-1} g$; hence

$$
\begin{equation*}
b^{n}=\left(h^{-1} g\right)^{m} . \tag{75}
\end{equation*}
$$

Observe that since $x^{m} \in \tilde{W}_{k}\left(2 l_{0}\right)$, we have $m<2 l_{0}$ and, similarly, $n<2 l_{0}$. Therefore we have at most $4 l_{0}^{2}$ possibilities for m, n.

We also note that in light of Lemma 1, equation (75) determines $h^{-1} g$ uniquely in terms of b.

We therefore have

$$
\left|\tilde{\Sigma}_{1}\right|^{2}<4 l_{0}^{2}\left|\tilde{\Sigma_{1}}\right|
$$

hence

$$
\left|\tilde{\Sigma_{1}}\right|<4 l_{0}^{2}
$$

and we have obtained a contradiction, completing the proof of Lemma 3 and Proposition 1.

Institute for Advanced Study, Princeton, NJ
E-mail address: bourgain@math.ias.edu
University of California at Santa Cruz, Santa Cruz, CA
E-mail address: agamburd@ucsc.edu

References

[1] A. F. Beardon, The Geometry of Discrete Groups, Springer-Verlag, New York, 1983.
[2] J. Bourgain, A. Gamburd, and P. Sarnak, Sieving and expanders, Comptes Rendus Acad. Sci. Paris, Ser. I 343 (2006), 155-159.
[3] J. Bourgain, A. Glibichuk, and S. Konyagin, Estimate for the number of sums and products and for exponential sums in fields of prime order, J. London Math. Soc. 73 (2006), 380-398.
[4] J. Bourgain, n. Katz, and T. Tao, A sum-product estimate in finite fields and applications, GAFA 14 (2004), 27-57.
[5] G. Davidoff, P. Sarnak, and A. Valette, Elementary Number Theory, Group Theory, and Ramanujan Graphs, Cambridge Univ. Press, Cambridge, 2003.
[6] G. Frobenius, Über Gruppencharaktere, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin, 1896, 985-1021.
[7] A. Gamburd, Spectral gap for infinite index "congruence" subgroups of $\mathrm{SL}_{2}(\mathbb{Z})$, Israel J. Math. 127 (2002), 157-200.
[8] A. Gamburd, S. Hoory, M. Shahshahani, A. Shalev, and B. Virág, On the girth of random Cayley graphs, Random Structures and Algorithms, to appear.
[9] H. Helfgott, Growth and generation in $\mathrm{SL}_{2}(\mathbb{Z} / p \mathbb{Z})$, Ann. of Math. 167 (2008), 000-000.
[10] S. Hoory, N. Linial, and A. Wigderson, Expander graphs and their application, Bull. Amer. Math. Soc. 43 (2006), 439-561.
[11] H. Kesten, Symmetric random walks on groups, Trans. Amer. Math. Soc. 92 (1959), 336-354.
[12] J. Lafferty and D. Rockmore, Fast Fourier analysis for SL_{2} over a finite field and related numerical experiments, Experimental Mathematics 1 (1992), 115-139.
[13] - Numerical investigation of the spectrum for certain families of Cayley graphs, in DIMACS Series in Disc. Math. and Theor. Comp. Sci. Vol. 10 (J. Friedman, ed.) (1993), 63-73.
[14] —, Level spacings for Cayley graphs, in IMA Vol. Math. Appl. 109 (1999), 373-387.
[15] A. Luboтzкy, Discrete Groups Expanding Graphs and Invariant Measures, Progress in Math. 195, Birkhäuser, Basel, 1994.
[16] _ Cayley graphs: eigenvalues, expanders and random walks, in Surveys in Combinatorics (P. Rowbinson ed.), London Math. Soc. Lecture Note Ser. 18, 155-189, Cambridge Univ. Press, Cambridge, 1995.
[17] A. Lubotzky and B. Weiss, Groups and expanders, in DIMACS Series in Disc. Math. and Theor. Comp. Sci. Vol. 10 (J. Friedman, ed.) (1993), 95-109.
[18] W. Magnus, A. Karrass, and D. Solitar, Combinatorial Group Theory, Interscience Publishers, New York, 1966.
[19] G. A. Margulis, Explicit construction of graphs without short cycles and low density codes, Combinatorica 2 (1982), 71-78.
[20] O. Reingold, S. Vadhan, and A. Wigderson, Entropy waves, the zig-zag graph product, and new constant-degree expanders, Ann. of Math. 155 (2002), 157-187.
[21] P. Sarnak, What is an expander?, Notices of the Amer. Math. Soc. 51 (2004), 762-763.
[22] P. Sarnak and X. Xue, Bounds for multiplicities of automorphic representations, Duke Math. J. 64 (1991), 207-227.
[23] A. Selberg, On the estimation of Fourier coefficients of modular forms, Proc. Sympos. Pure Math. VII (1965), 1-15.
[24] Y. Shalom, Expanding graphs and invariant means, Combinatorica 17 (1997), 555-575.
[25] M. Suzuki, Group Theory I, Springer-Verlag, New York, 1982.
[26] T. TaO, Product sets estimates for non-commutative groups, preprint, 2005.
[27] T. Tao and V. Vu, Additive Combinatorics, Cambridge Univ. Press, Cambridge, 2006.
[28] W. Woess, Random Walks on Infinite Graphs and Groups, Cambridge Univ. Press, Cambridge, 2000.
(Received November 3, 2005)

[^0]: *The first author was supported in part by NSF Grant DMS-0627882. The second author was supported in part by NSF Grants DMS-0111298 and DMS-0501245.

[^1]: ${ }^{1}$ Let S be a finite set of elements in $\mathrm{SL}_{2}(\mathbb{Z})$ and let $\Lambda=\langle S\rangle$ act on the hyperbolic plane \mathbb{H} by linear fractional transformations. The limit set of Λ is a subset of $\mathbb{R} \cup \infty$, the boundary of \mathbb{H}, consisting of points at which one (or every) orbit of Λ accumulates. If Λ is of infinite index in $\mathrm{SL}_{2}(\mathbb{Z})$ (and is not elementary), then its limit set has fractional Hausdorff dimension [1].

[^2]: ${ }^{2}$ In fact, our proof gives more than expansion (and this is important in applications [2]): if λ is an eigenvalue of $A\left(\mathcal{G}\left(\operatorname{SL}_{2}\left(\mathbb{F}_{p}\right), S_{p}\right)\right)$, such that $\lambda \neq \pm 2 k$, then $|\lambda| \leq \kappa<2 k$ where $\kappa=\kappa(\tau)$ is independent of p.

