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Introduction

This paper is about a class of strange attractors that have the dual prop-
erty of occurring naturally and being amenable to analysis. Roughly speaking,
a rank one attractor is an attractor that has some instability in one direction
and strong contraction in m− 1 directions, m here being the dimension of the
phase space.

The results of this paper can be summarized as follows. Among all maps
with rank one attractors, we identify, inductively, subsets Gn, n = 1, 2, 3, · · · ,
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consisting of maps that are “well-behaved” up to the nth iterate. The maps
in G := ∩n>0Gn are then shown to be nonuniformly hyperbolic in a controlled
way and to admit natural invariant measures called SRB measures. This is the
content of Part II of this paper. The purpose of Part III is to establish existence
and abundance. We show that for large classes of 1-parameter families {Ta},
Ta ∈ G for positive measure sets of a.

Leaving precise formulations to Section 1, we first put our results into
perspective.

A. In relation to hyperbolic theory. Axiom A theory, together with its
extension to the theory of systems with invariant cones and discontinuities, has
served to elucidate a number of important examples such as geodesic flows and
billiards (see e.g. [Sm], [A], [Si1], [B], [Si2], [W]). The invariant cones property
is quite special, however. It is not enjoyed by general dynamical systems.

In the 1970s and 80s, an abstract nonuniform hyperbolic theory emerged.
This theory is applicable to systems in which hyperbolicity is assumed only
asymptotically in time and almost everywhere with respect to an invariant
measure (see e.g. [O], [P], [R], [LY]). It is a very general theory with the
potential for far-reaching consequences.

Yet using this abstract theory in concrete situations has proved to be dif-
ficult, in part because the assumptions on which this theory is based, such as
the positivity of Lyapunov exponents or existence of SRB measures, are inher-
ently difficult to verify. At the very least, the subject is in need of examples.
To improve its utility, better techniques are needed to bridge the gap between
theory and application. The project of which the present paper is a crucial
component (see B and C below) is an attempt to address these needs.

We exhibit in this paper large numbers of nonuniformly hyperbolic attrac-
tors with controlled dynamics near every 1D map satisfying the well-known
Misiurewicz condition. A detailed account of the mechanisms responsible for
the hyperbolicity is given in Part II.

With a view toward applications, we sought to formulate conditions for
the existence of SRB measures that are verifiable in concrete situations. These
conditions cannot be placed on the map directly, for in the absence of invari-
ant cones, to determine whether a map has this measure requires knowing it
to infinite precision. We resolved this dilemma for the systems in question
by identifying checkable conditions on 1-parameter families. These conditions
guarantee the existence of SRB measures with positive probability, i.e. for pos-
itive measure sets of parameters. See Section 1.

B. In relation to one dimensional maps. In terms of techniques, this pa-
per borrows heavily from the theory of iterated 1D maps, where much progress
has been made in the last 25 years. Among the works that have influenced us
the most are [M], [J], [CE], [BC1] and [TTY]. The first breakthrough from 1D
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to a family of strongly dissipative 2D maps is due to Benedicks and Carleson,
whose paper [BC2] is a tour de force analysis of the Hénon maps near the
parameters a = 2, b = 0. Much of the local phase-space analysis in this paper
is a generalization of their techniques, which in turn have their origins in 1D.
Based on [BC2], SRB measures were constructed for the first time in [BY] for
a (genuinely) nonuniformly hyperbolic attractor. The results in [BC2] were
generalized in [MV] to small perturbations of the same maps. These papers
form the core material referred to in the second box below.

Theory of
1D maps

−→ Hénon maps
& perturbations

−→ Rank one
attractors

All of the results in the second box depend on the formula of the Hénon
maps. In going from the second to the third box, our aim is to take this
mathematics to a more general setting, so that it can be leveraged in the
analysis of attractors with similar characteristics (see below). Our treatment
of the subject is necessarily more conceptual as we replace the equation of
the Hénon maps by geometric conditions. A 2D version of these results was
published in [WY1].

We believe the proper context for this set of ideas is m dimensions, m ≥ 2,
where we retain the rank one character of the attractor but allow the number of
stable directions to be arbitrary. We explain an important difference between
this general setup and 2D: For strongly contractive maps T with T (X) ⊂ X, by
tracking Tn(∂X) for n = 1, 2, 3, · · · , one can obtain a great deal of information
on the attractor ∩n≥0T

n(X). This is because the area or volume of Tn(X)
decreases to zero very quickly. Since the boundary of a 2D domain consists of
1D curves, the study of planar attractors can be reduced to tracking a finite
number of curves in the plane. This is what has been done in 2D, implicitly
or explicitly. In D > 2, both the analysis and the geometry become more
complex; one is forced to deal directly with higher dimensional objects. The
proofs in this paper work in all dimensions including D = 2.

C. Further results and applications. We have a fairly complete dynamical
description for the maps T ∈ G (see the beginning of this introduction), but
in order to keep the length of the present paper reasonable, we have opted
to publish these results separately. They include (1) a bound on the number
of ergodic SRB measures, (2) conditions that imply ergodicity and mixing
for SRB measures, (3) almost-everywhere behavior in the basin, (4) statistical
properties of SRB measures such as correlation decay and CLT, and (5) coding
of orbits on the attractor, growth of periodic points, etc. A 2D version of these
results is published in [WY1]. Additional work is needed in higher dimensions
due to the increased complexity in geometry.
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We turn now to applications. First, by leveraging results of the type in this
paper, we were able to recover and extend – by simply checking the conditions
in Section 1 – previously known results on the Hénon maps and homoclinic
bifurcations ([BC2],[MV],[V]).

The following new applications were found more recently: Forced oscilla-
tors are natural candidates for rank one attractors. We proved in [WY2],[WY3]
that any limit cycle, when periodically kicked in a suitable way, can be turned
into a strange attractor of the type studied here. It is also quite natural to
associate systems with a single unstable direction with scenarios following a
loss of stability. This is what led us to the result on the emergence of strange
attractors from Hopf bifurcations in periodically kicked systems [WY3]. Fi-
nally, we mention some work in preparation in which we, together with K. Lu,
bring some of the ideas discussed here including strange attractors and SRB
measures to the arena of PDEs.

About this paper. This paper is self-contained, in part because relevant
results from previously published works are inadequate for our purposes. The
table of contents is self-explanatory. We have put all of the computational
proofs in the Appendices so as not to obstruct the flow of ideas, and recommend
that the reader omit some or all of the Appendices on first pass. This suggestion
applies especially to Section 3, which, being a toolkit, is likely to acquire
context only through subsequent sections. That having been said, we must
emphasize also that the Appendices are an integral part of this paper; our
proofs would not be complete without them.

1. Statement of results

We begin by introducing M, the class of one-dimensional maps of which
all maps studied in this paper are perturbations. In the definition below, I

denotes either a closed interval or a circle, f : I → I is a C2 map, C = {f ′ = 0}
is the critical set of f , and Cδ is the δ-neighborhood of C in I. In the case
of an interval, we assume f(I) ⊂ int(I), the interior of I. For x ∈ I, we let
d(x, C) = minx̂∈C |x − x̂|.

Definition 1.1. We say f ∈ M if the following hold for some δ0 > 0:

(a) Critical orbits: for all x̂ ∈ C, d(fn(x̂), C) > 2δ0 for all n > 0.

(b) Outside of Cδ0 : there exist λ0 > 0, M0 ∈ Z
+ and 0 < c0 ≤ 1 such that

(i) for all n≥M0, if x, f(x), · · · , fn−1(x) �∈Cδ0 , then |(fn)′(x)|≥eλ0n;

(ii) if x, f(x), · · · , fn−1(x) �∈ Cδ0 and fn(x) ∈ Cδ0 , any n, then
|(fn)′(x)| ≥ c0e

λ0n.

(c) Inside Cδ0 : there exists K0 > 1 such that for all x ∈ Cδ0 ,



TOWARD A THEORY OF RANK ONE ATTRACTORS 353

(i) f ′′(x) �= 0;

(ii) ∃p = p(x), K−1
0 log 1

d(x,C) < p(x) < K0 log 1
d(x,C) , such that f j(x) �∈

Cδ0 ∀j < p and |(fp)′(x)| ≥ c−1
0 e

1
3
λ0p.

This definition may appear a little technical, but the properties are exactly
those needed for our purposes. The class M is a slight generalization of the
maps studied by Misiurewicz in [M].

Assume f ∈ M is a member of a one-parameter family {fa} with f = fa∗ .
Certain orbits of f have natural continuations to a near a∗: For x̂ ∈ C, x̂(a)
denotes the corresponding critical point of fa. For q ∈ I with infn≥0 d(fn(q), C)
> 0, q(a) is the unique point near q whose symbolic itinerary under fa is
identical to that of q under f . For more detail, see Sections 2.1 and 2.4.

Let X = I × Dm−1 where I is as above and Dm−1 is the closed unit
disk in R

m−1, m ≥ 2. Points in X are denoted by (x, y) where x ∈ I and
y = (y1, · · · , ym−1)∈Dm−1. To F : X→I we associate two maps, F# : X→X

where F#(x, y) = (F (x, y), 0) and f : I → I where f(x) = F (x, 0). Let
‖ · ‖Cr denote the Cr norm of a map. A one-parameter family Fa : X → I (or
Ta : X → X) is said to be C3 if the mapping (x, y; a) �→ Fa(x, y) (respectively
(x, y; a) �→ Ta(x, y)) is C3.

Standing Hypotheses. We consider embeddings Ta : X → X, a ∈ [a0, a1],
where ‖Ta − F#

a ‖C3 is small for some Fa satisfying the following conditions:

(a) There exists a∗ ∈ [a0, a1] such that fa∗ ∈ M.

(b) For every x̂ ∈ C = C(fa∗) and q = fa∗(x̂),

d

da
fa(x̂(a)) �= d

da
q(a) 1 at a = a∗.(1)

(c) For every x̂ ∈ C, there exists j ≤ m − 1 such that

∂F (x̂, 0; a∗)
∂yj

�= 0.(2)

A T -invariant Borel probability measure ν is called an SRB measure if (i)
T has a positive Lyapunov exponent ν-a.e.; (ii) the conditional measures of ν on
unstable manifolds are absolutely continuous with respect to the Riemannian
measures on these leaves.

Theorem. In addition to the Standing Hypotheses above, assume that
‖Ta − F#

a ‖C3 is sufficiently small depending on {Fa}. Then there is a positive
measure set Δ ⊂ [a0, a1] such that for all a ∈ Δ, T = Ta admits an SRB
measure.

1Here q(a) is the continuation of q(a∗) viewed as a point whose orbit is bounded away
from C; it is not to be confused with fa(x̂(a)).
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Notation. For z0 ∈ X, let zn = Tn(z0), and let Xz0 be the tangent space
at z0. For v0 ∈ Xz0 , let vn = DTn

z0
(v0). We identify Xz freely with R

m, and
work in R

m from time to time in local arguments. Distances between points
in X are denoted by | · − · |, and norms on Xz by | · |. The notation ‖ · ‖ is
reserved for norms of maps (e.g. ‖Ta‖C3 as above, ‖DT‖ := supz∈X ‖DTz‖).

For definiteness, our proofs are given for the case I = S1. Small modifica-
tions are needed to deal with the case where I is an interval. This is discussed
in Section 3.9 at the end of Part I.

PART I. PREPARATION

2. Relevant results from one dimension

The attractors studied in this paper have both an m-dimensional and a
1-dimensional character, the first having to do with how they are embedded
in m-dimensional space, the second due the fact that the maps in question
are perturbations of 1D maps. In this section, we present some results on 1D
maps that are relevant for subsequent analysis. When specialized to the family
fa(x) = 1− ax2 with a∗ = 2, the material in Sections 2.2 and 2.3 is essentially
contained in [BC2]; some of the ideas go back to [CE]. Part of Section 2.4 is
a slight generalization of part of [TTY], which also contains an extension of
[BC1] and the 1D part of [BC2] to unimodal maps.

2.1. More on maps in M
The maps in M are among the simplest maps with nonuniform expansion.

The phase space is divided into two regions: Cδ0 and I \ Cδ0 . Condition (b)
in Definition 1.1 says that on I \ Cδ0 , f is essentially (uniformly) expanding.
(c) says that every orbit from Cδ0 , though contracted initially, is not allowed
to return to Cδ0 until it has regained some amount of exponential growth.

An important feature of f ∈ M is that its Lyapunov exponents outside of
Cδ are bounded below by a strictly positive number independent of δ. Let δ0,
λ0, M0 and c0 be as in Definition 1.1.

Lemma 2.1. For f ∈ M, ∃c′0 > 0 such that the following hold for all
δ < δ0:

(a) if x, f(x), · · · , fn−1(x) �∈ Cδ, then |(fn)′(x)| ≥ c′0δe
1
3
λ0n;

(b) if x, f(x), · · · , fn−1(x) �∈ Cδ and fn(x) ∈ Cδ0 , any n, then |(fn)′(x)| ≥
c0e

1
3
λ0n.

Obviously, as we perturb f , its critical orbits will not remain bounded
away from C. The expanding properties of f outside of Cδ, however, will
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persist in the manner to be described. Note the order in which ε and δ are
chosen in the next lemma.

Lemma 2.2. Let f and c′0 be as in Lemma 2.1, and fix an arbitrary δ < δ0.
Then there exists ε = ε(δ) > 0 such that the following hold for all g with
‖g − f‖C2 < ε:

(a) if x, g(x), · · · , gn−1(x) �∈ Cδ, then |(gn)′(x)| ≥ 1
2c′0δe

1
4
λ0n;

(b) if x, g(x), · · · , gn−1(x) �∈ Cδ and gn(x) ∈ Cδ0 , any n, then |(gn)′(x)| ≥
1
2c0e

1
4
λ0n.

Lemmas 2.1 and 2.2 are proved in Appendix A.1.

2.2. A larger class of 1D maps with good properties

We introduce next a class of maps more flexible than those in M. These
maps are located in small neighborhoods of f0 ∈ M. They will be our model
of controlled dynamical behavior in higher dimensions.

For the rest of this subsection, we fix f0 ∈ M, and let δ0, λ0, M0 and c0

be as in Definition 1.1. We fix also λ < 1
5λ0 and α  min{λ, 1}. The letter

K ≥ 1 is used as a generic constant that is allowed to depend only on f0 and λ.
By “generic”, we mean K may take on different values in different situations.

Let δ > 0, and consider f with ‖f − f0‖C2  δ. Let C be the critical set
of f . We assume that for all x̂ ∈ C, the following hold for all n > 0:

(G1) d(fn(x̂), C) > min{δ, e−αn};2

(G2) |(fn)′(f(x̂))| ≥ ĉ1e
λn for some ĉ1 > 0.

Proposition 2.1. Let δ > 0 be sufficiently small depending on f0. Then
there exists ε = ε(f0, λ, α, δ) > 0 such that if ‖f − f0‖C2 < ε and f satisfies
(G1) and (G2), then it has properties (P1)–(P3) below.

(P1) Outside of Cδ. There exists c1 > 0 such that the following hold:

(i) if x, f(x), · · · , fn−1(x) �∈ Cδ, then |(fn)′(x)| ≥ c1δe
1
4
λ0n;

(ii) if x, f(x), · · · , fn−1(x) �∈ Cδ and fn(x) ∈ Cδ0 , any n, then |(fn)′(x)| ≥
c1e

1
4
λ0n.

For x̂ ∈ C, let Cδ(x̂) = (x̂ − δ, x̂ + δ). We now introduce a partition P
on I: For each x̂ ∈ C, P|Cδ(x̂) = {I x̂

μj} where I x̂
μj are defined as follows: For

2We will, in fact, assume f is sufficiently close to f0 that fn(x̂) �∈ Cδ0 for all n with
e−αn > δ.



356 QIUDONG WANG AND LAI-SANG YOUNG

μ ≥ log 1
δ (which we may assume is an integer), let I x̂

μ = (x̂+e−(μ+1), x̂+e−μ);
for μ ≤ log δ, let I x̂

μ be the reflection of I x̂
−μ about x̂. Each I x̂

μ is further
subdivided into 1

μ2 subintervals of equal length called I x̂
μj . We usually omit

the superscript x̂ in the notation above, with the understanding that x̂ may
vary from statement to statement. For example, “x ∈ Iμj and fn(x) ∈ Iμ′j′”
may refer to x ∈ I x̂

μj and fn(x) ∈ I x̂′

μ′j′ for x̂ �= x̂′. The rest of I, i.e. I \ Cδ, is
partitioned into intervals of length ≈ δ.

(P2) Partial derivative recovery for x ∈ Cδ(x̂)\{x̂}. For x ∈ Cδ(x̂)\{x̂},
let p(x), the bound period of x, be the largest integer such that |f i(x)−f i(x̂)| ≤
e−2αi ∀j < p(x). Then

(i) K−1 log 1
|x−x̂| ≤ p(x) ≤ K log 1

|x−x̂| .

(ii) |(fp(x))′(x)| > e
λ

3
p(x).

(iii) If ω = Iμj , then |fp(x)(Iμj)| > e−Kα|μ| for all x ∈ ω.

The idea behind (P1) and (P2) is as follows: By choosing ε sufficiently
small depending on δ, we are assured that there is a neighborhood N of f0

such that all f ∈ N are essentially expanding outside of Cδ. Non-expanding
behavior must, therefore, originate from inside Cδ. We hope to control that
by imposing conditions (G1) and (G2) on C, and to pass these properties on
to other orbits starting from Cδ via (P2).

(P2) leads to the following view of an orbit:

Returns to Cδ and ensuing bound periods. For x ∈ I such that f i(x) �∈ C

for all i ≥ 0, we define (free) return times {tk} and bound periods {pk} with

t1 < t1 + p1 ≤ t2 < t2 + p2 ≤ · · ·
as follows: t1 is the smallest j ≥ 0 such that f j(x) ∈ Cδ. For k ≥ 1, pk is
the bound period of f tk(x), and tk+1 is the smallest j ≥ tk + pk such that
f j(x) ∈ Cδ. Note that an orbit may return to Cδ during its bound periods, i.e.
ti are not the only return times to Cδ.

The following notation is used: If P ∈ P, then P+ denotes the union of P

and the two elements of P adjacent to it. For an interval Q ⊂ I and P ∈ P, we
say Q ≈ P if P ⊂ Q ⊂ P+. For practical purposes, P+ containing boundary
points of Cδ can be treated as “inside Cδ” or “outside Cδ”.3 For an interval
Q ⊂ I+

μj , we define the bound period of Q to be p(Q) = minx∈Q{p(x)}.
(P3) is about comparisons of derivatives for nearby orbits. For x, y ∈ I,

let [x, y] denote the segment connecting x and y. We say x and y have the same

3In particular, if Iμ0j0 is one of the outermost Iμj in Cδ, then I+
μ0j0

contains an interval
of length δ just outside of Cδ.
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itinerary (with respect to P) through time n − 1 if there exist t1 < t1 + p1 ≤
t2 < t2 +p2 ≤ · · · ≤ n such that for every k, f tk([x, y]) ⊂ P+ for some P ⊂ Cδ,
pk = p(f tk([x, y])), and for all i ∈ [0, n) \ ∪k[tk, tk + pk), f i([x, y]) ⊂ P+ for
some P ∩ Cδ = ∅.

(P3) Distortion estimate. There exists K (independent of δ, x, y or n)
such that if x and y have the same itinerary through time n − 1, then∣∣∣∣(fn)′(x)

(fn)′(y)

∣∣∣∣ ≤ K.

We remark that the partition of Iμ into Iμj-intervals is solely for purposes
of this estimate. A proof of Proposition 2.1 is given in Appendix A.1.

2.3. Statistical properties of maps satisfying (P1)–(P3)

We assume in this subsection that f satisfies the assumptions of Proposi-
tion 2.1, so that in particular (P1)–(P3) hold. Let ω ⊂ I be an interval. For
reasons to become clear later, we write γi = f i, i.e. we consider γi : ω → I,
i = 0, 1, 2, · · · .

Lemma 2.3. For ω ≈ Iμ0j0 , let n be the largest j such that all s ∈ ω have
the same itinerary up to time j. Then n ≤ K|μ0|.

We call n + 1 the extended bound period for ω. The next result, the proof
of which we leave as an exercise, is used only in Lemma 8.2.

Lemma 2.4. For ω ≈ Iμ0j0 , there exists n ≤ K|μ0| such that γn(ω) ⊃
Cδ(x̂) for some x̂ ∈ C.

The results in the rest of this subsection require that we track the evolution
of γi to infinite time. To maintain control of distortion, it is necessary to divide
ω into shorter intervals. The increasing sequence of partitions Q0 < Q1 < Q2 <

· · · defined below is referred to as a canonical subdivision by itinerary for the
interval ω: Q0 is equal to P|ω except that the end intervals are attached to
their neighbors if they are strictly shorter than the elements of P containing
them. We assume inductively that all ω̂ ∈ Qi are intervals and all points in ω̂

have the same itinerary through time i. To go from Qi to Qi+1, we consider
one ω̂ ∈ Qi at a time.

– If γi+1(ω̂) is in a bound period, then ω̂ is automatically put into Qi+1.
(Observe that if γi+1(ω̂) ∩ Cδ �= ∅, then γi+1(ω̂) ⊂ I+

μ′j′ for some μ′, j′;
i.e., no cutting is needed during bound periods. This is an easy exercise.)

– If γi+1(ω̂) is not in a bound period, but all points in ω̂ have the same
itinerary through time i + 1, we again put ω̂ ∈ Qi+1.
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– If neither of the last two cases hold, then we partition ω̂ into segments
{ω̂′} that have the same itineraries through time i+1 and with γi+1(ω̂′) ≈
P for some P ∈ P. (If, for example, a segment appears that is strictly
shorter than the Iμj containing it, then it is attached to a neighboring
segment.) The resulting partition is Qi+1|ω̂.

For s ∈ ω, let Qi(s) be the element of Qi to which s belongs. We consider
the stopping time S on ω defined as follows: For s ∈ ω, let S(s) be the smallest
i such that γi(Qi−1(s)) is not in a bound period and has length > δ.

Lemma 2.5. Assume δ is sufficiently small, and let ω ≈ Iμ0j0. Then

|{s ∈ ω : S(s) > n}| < e−
1
2
K−1n |ω| for all n > K|μ0|.

Here K is the constant in the statement of Lemma 2.2.

Corollary 2.1. There exists K̂ > 0 such that for any ω ⊂ I with δ <

|ω| < 3δ,

|{s ∈ ω : S(s) > n}| < e−K̂−1n|ω| for n > K̂ log δ−1.

For δ̂ < δ, s ∈ ω and n ≥ 0, let Bn(s) be the number of i ≤ n such that
γi(s) is in a bound period initiated from a visit to Cδ̂.

Proposition 2.2. Given any σ > 0, there exists ε1 > 0 such that for all
δ̂ > 0 sufficiently small, the following holds for all ω ≈ Iμ0j0 :

|{s ∈ ω : Bn > σn}| < e−ε1n |ω| for all n ≥ σ−1Kμ0.

Proofs of all the results in this subsection are given in Appendix A.2 except
that of Lemma 2.4, which is left to the reader as an exercise.

Remark. The main use of Proposition 2.2 in this paper is in parame-
ter estimates. When used in that context, it will be necessary for us to stop
considering certain elements ω′ of Qi corresponding to deletions. Without go-
ing further into parameter considerations, we introduce the following notation.
Let ∗ be the “garbage symbol”. At step i, we may, in principle, choose to set
γi = ∗ on any collection of elements of Qi. Once we set γi|ω′ = ∗, it follows
automatically that γj |ω′ = ∗ for all j ≥ i, i.e. we do not iterate ω′ forward
from time i on. We leave it as an (easy) exercise to verify that Proposition 2.2
remains valid in this slightly more general setting if we count only those i for
which γi(s) �= ∗ in the definition of Bn(s).

2.4. Parameter transversality

We begin with a description of the structure of f ∈ M in terms of its
symbolic dynamics. Let J = {J1, · · · , Jq} be the components of I \ C. For
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x ∈ I such that f i(x) �∈ C for all i ≥ 0, let φ(x) = (ιi)i=0,1,··· be given by ιi = k

if f i(x) ∈ Jk.

Lemma 2.6. For f ∈ M, there exists an increasing sequence of compact
sets Λ(n) with ∪nΛ(n) dense in I such that the following hold :

(a) Λ(n) ∩ C = ∅, f(Λ(n)) ⊂ Λ(n), and f |Λ(n) is conjugate to a shift of finite
type;

(b) if infi≥0 d(f i(x), C) > 0, then x ∈ Λ(n) for some n.

Our next result, which is a corollary of Lemmas 2.2 and 2.6, guarantees
that continuations of the type in Standing Hypothesis (b) are well defined.

Corollary 2.2. Let f ∈ M, and let q ∈ f(I) be such that δ1 :=
infn≥0 d(fn(q), C) > 0. Then for all g with ‖g − f‖C2 < ε where ε = ε(δ1) is
as in Lemma 2.2, there is a unique point qg ∈ I with φg(qg) = φf (q).

Let {fa} be as in Section 1, with fa∗ ∈ M. We fix x̂ ∈ C(fa∗), and let
q = fa∗(x̂). Let ω be an interval containing a∗ on which x̂(a) and q(a) (as
given by Corollary 2.2) are well defined. We write x̂k(a) = fk

a (x̂(a)).

Proposition 2.3. (i) a �→ q(a) is differentiable;

(ii) as k → ∞,

Qk(a∗) :=
dx̂k

da (a∗)

(fk−1
a∗ )′(x̂1(a∗))

→ dx̂1

da
(a∗) − dq

da
(a∗) =

∞∑
i=0

∂afa(x̂i(a∗))|a=a∗

(f i
a∗)′(x̂1(a∗))

.

A proof of this proposition, which is a slight adaptation of a result in
[TTY], is given in Appendix A.3. Hypothesis (b) states that the expression on
the right is nonzero. This condition, which can be viewed as a transversality
condition for one-parameter families in the space of C2 maps, is open and dense
among the set of all 1-parameter families fa passing through a given f ∈ M.
The proof in [TTY] is easily adapted to the present setting.

3. Tools for analyzing rank one maps

This section is a toolkit for the analysis of maps T : X → X that are
small perturbation of maps from X to I × {0}. More conditions are assumed
as needed, but detailed structures of the maps in question are largely unim-
portant. The purpose of this section is to develop basic techniques for use in
the rest of the paper.

Notation. The following rules on the use of constants are observed
throughout:
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- Two constants, K0 ≥ 1 and 0 < b  1, are used to bound the sizes of
the objects being studied; they appear in assumptions.

- K is used as a generic constant; it appears in statements of results. In
Sections 3.1–3.4, K depends only on K0 and m, the dimension of X;
from Section 3.5 on, it depends on an additional object to be specified.

- b is assumed to be as small as need be; it is shrunk a finite number of
times as we go along. Under no conditions is K allowed to depend on b.

For small angles, θ is often confused with | sin θ|.

3.1. Stability of most contracted directions

Most contracted directions on planes. Consider first M ∈ L(2, R) and
assume M �= cO where O is orthogonal and c ∈ R. Then there is a unit vector
e, uniquely defined up to sign, that represents the most contracted direction of
M , i.e. |Me| ≤ |Mu| for all unit vectors u. From standard linear algebra, we
know e⊥ is the most expanded direction, meaning |Me⊥| ≥ |Mu| for all unit
vectors u, and Me ⊥ Me⊥. The numbers |Me| and |Me⊥| are the singular
values of M .

Next let M ∈ L(m, R) for m ≥ 2, and let S ⊂ R
m be a 2D linear subspace.

Then the ideas in the last paragraph clearly apply to M |S , and we say e = e(S)
is a most contracted direction of M restricted to S if |Me| ≥ |Mu| for all unit
vectors u ∈ S. We let f denote one of the two unit vectors in S orthogonal to
e, i.e. f represents the most expanded direction in S, and |Mf | = ‖M |S‖, the
norm of M restricted to S.

Two notions of stability for most contracted directions. For M1, M2, · · · ∈
L(m, R), we let M (i) denote the composition Mi · · ·M2M1.

(1) Let S ⊂ R
m be as above, and let ei(S) be the most contracted direction

of M (i)|S assuming it is well defined. It is known that if M (i)|S , i = 1, 2, · · · ,
has two distinct Lyapunov exponents as i → ∞, then ei(S) converges to some
e∞(S) as i → ∞. We are interested in the speed of this convergence.

(2) For parametrized families of linear maps Mi(s) and plane fields S(s)
where s = (s1, · · · , sq) is a q-tuple of numbers, control of ∂kei and ∂kM (n)ei

represents another form of stability for ei. Here ∂k denotes any one of the kth
partial derivatives in s.

Main results. The ideas above are used to study the relation between pairs
of vectors under the action of DTn. To accommodate the many situations in
which this analysis will be applied, we formulate our next lemma in terms
of abstract linear maps. For motivation, the reader should think of Mi as
DTzi−1 where z0 ∈ X and T : X → X is as in Section 1.1. For (H2), consider
z0(s) ∈ X, S(s) ⊂ Xz0(s), and Mi(s) = DTzi−1(s).
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(H1) Let Mi = (M̂1
i , · · · , M̂m

i ) ∈ L(m, R); i.e., M̂ j
i : R

m → R. Then for all
i ≥ 1,

(i) |M̂1
i | < K0;

(ii)|M̂ j
i | < b for j = 2, · · · , m.

(H2) Let u(s) and v(s) ∈ R
m be linearly independent, and let S(s) =

S(u(s), v(s)) be the 2D subspace spanned by u and v. Let Mi(s) ∈
L(m, R). We assume the maps s �→ u(s), v(s), Mi(s) are C2 with

(i) ‖u‖C2 , ‖v‖C2 < K0;

(ii) ‖M̂1
i ‖C2 < Ki

0;

(iii) ‖M̂ j
i ‖C2 < Ki

0b for j = 2, · · · , m.

Lemma 3.1. (a) Let Mi be as in (H1), let S ⊂ R
m be an arbitrary 2D

subspace, and let κ be such that b
1
3 < κ ≤ 1. If ‖M (i)|S‖ > K−1

0 κi−1 for all
1 ≤ i ≤ n, then

|ei+1(S) − ei(S)|< (Kb κ−2)i for i < n;

|M (i)en(S)|< (Kb κ−2)i for i ≤ n.

(b) Let Mi(s) and S(s) be as in (H2), and b
1
5 ≤ κ ≤ 1. If for 1 ≤ i ≤ n,

‖M (i)|S‖ > K−1
0 κi−1 for all s, then for k = 1, 2,

|∂ke1(S)|< K;

|∂k(ei+1(S) − ei(S))|<
(
Kb κ−(2+k)

)i
for i < n;

|∂kM (i)en(S)|<
(
Kb κ−(2+k)

)i
for i ≤ n.

A proof of Lemma 3.1 is given in Appendix A.5, after some preliminary
material in Appendix A.4.

Assumptions for the rest of Section 3. We consider T : X → X with
the following properties: Let T = (T̂ 1, · · · , T̂m) be the coordinate maps of T .
Then

(i) ‖T̂ 1‖C3 < K0;

(ii) ‖T̂ j‖C3 < b for j = 2, · · · , m.

3.2. A perturbation lemma

The next lemma compares wn = DTn
z0

(w0) and w′
n = DTn

z′
0
(w′

0) where zi

is near z′i for 0 ≤ i < n and w0 ∈ Xz0 and w′
0 ∈ Xz′

0
are unit vectors such that

w0 ≈ w′
0.
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Lemma 3.2. There exists K1 depending on K0 such that for κ and η

satisfying κ ≤ 1 and b
1
2 < η < K−1

1 κ8, the following hold : Let (z0, w0) and
(z′0, w

′
0) be such that ∠(w0, w

′
0) < η

1
4 , |wi| > K−1

0 κi−1 and |zi − z′i| < ηi+1 for
1 ≤ i < n. Then

(a) |w′
n| > 1

2K−1
0 κn−1;

(b) ∠(wn, w′
n) < η

n+1
4 .

Lemma 3.2 is proved in Appendix A.6.

3.3. Temporary stable curves and manifolds

One dimensional strong stable curves – temporary or infinite-time – can
be obtained by integrating vector fields of most contracted directions. In the
proposition below, a neighborhood of 0 in Xz0 is identified with a neighborhood
of z0 in X, which in turn is identified with an open set of R

m.

Proposition 3.1. Let κ and η be as in Lemma 3.2, and let z0 ∈ X and
w0 ∈ Xz0 be such that |wi| ≥ K−1

0 κi−1|w0| for i = 1, · · · , n. Let S be a 2D
plane in X containing z0 and z0 + w0. For any n ≥ 1, we view en(S) as a
vector field on S, defined where it makes sense, and let γn = γn(z0, S) be the
integral curve to en(S) with γn(0) = z0. Then

(a) γn is defined on [−η, η] or until it runs out of X;

(b) for all z ∈ γn, |T iz0 − T iz| < (Kb
κ2 )iη for all i ≤ n.

Proposition 3.1 is proved in Appendix A.7.
We call γn a temporary stable curve or stable curve of order n through z0.

To obtain the full temporary stable manifold through z0, we let S vary over
all 2D planes containing z0 and z0 + w0, obtaining

W s
n(z0) := ∪S γn(z0, S),

which we call a temporary stable manifold of order n through z0. Observe that
W s

n(z0) is a C1-embedded disk of co-dimension one. (The fact that W s
n(z0)

is C1 away from z0 follows from Lemma 3.1; at z0 it has continuous partial
derivatives.)

3.4. A curvature estimate

Let γ0 : [c1, c2] → X be a C2 curve, and let γi(s) = T i(γ0(s)). We denote
the curvature of γi at γi(s) by ki(s). Here γ′

i(s) is the tangent vector to γi(s).

Lemma 3.3. Let κ > b
1
3 , and let γ0 be such that k0(s) ≤ 1 for all s. Then

the following hold for every n > 0: If

|DTn−j
γj(s)

(γ′
j(s))| ≥ κn−j |γ′

j(s)|
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for every j < n, then

kn(s) ≤ Kb

κ3
.

Lemma 3.3 is proved in Appendix A.8.

Additional assumptions for Sections 3.5–3.8. Let δ > 0 be a small
number.

(1) The following is assumed about T̂ 1 : X → I and f := T̂ 1|I×{0}. Let
C = {f ′ = 0}. Then

(i) outside of Cδ, f satisfies (P1) in Section 2.2;

(ii) inside Cδ, |f ′′| > K−1
0 ;

(iii) for all x̂ ∈ C, there exists i such that |∂yi T̂ 1(x, 0)| > K−1
0 for all

x ∈ Cδ(x̂).

(2) From here on we restrict T to R1 := I × {|y| ≤ (m − 1)
1
2 b}. Note that

T (R1) ⊂ R1 (see assumption (ii) at the end of Section 3.1).

From here on in this section the generic constant K depends on the map
T̂ 1 as well as K0 and m. We introduce the following notation used in the rest
of the paper:

• The first critical region C(1) is defined to be

C(1) = {(x, y) ∈ R1 : |x − x̂| < δ, x̂ ∈ C(f)}.

• v ∈ R
m (identified with Xz, any z) is a fixed unit vector with zero x-

component such that |DT̂ 1
(x,0)v| > K−1

0 for all x ∈ Cδ. The existence
of v is guaranteed by assumption (1)(iii) above. (We may take it to be
orthogonal to the kernel of DT̂ 1

(x̂,0) for x̂ ∈ C but that is not necessary.)
In general, v will be thought of as a reference vector in the “vertical”
direction.

3.5. Dynamics outside of C(1)

For u ∈ R
m, let (ux, uy) denote its x and y (or first and last m − 1)

components, and let s(u) = |uy|
|ux| . Curvature continues to be denoted by k.

Definition 3.1. Assuming |f ′| > K−1
0 δ outside of C(1), we say u ∈ R

m is
b-horizontal if s(u) < 3K0

δ b. A curve γ in R1 is called a C2(b)-curve if γ′(s) is
b-horizontal and k(s) is < K1b

δ3 for all s where K1 is as defined explicitly in the
proof of Lemma 3.4.4

4Quantities such as K1
δ3 b, 3K0

δ
b appearing in this definition will be denoted as O(b).
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Lemma 3.4. (a) For z �∈ C(1), if u ∈ Xz is b-horizontal, then so is DTz(u);
in fact, s(DTz(u)) < 3K0

2δ b. Also, for z ∈ C(1), DTz(v) is b-horizontal.
(b) If γ is a C2(b)-curve outside of C(1), then T (γ) is again a C2(b)-curve.

Proof. The first assertion in (a) follows from the following invariant cones
condition: Let u be such that |ux| = 1 and |uy| < 3K0

δ b. Then

s(DTz(u)) <
b(1 + 3K0

δ b)

K−1
0 δ − K0

3K0
δ b

<
3K0

2δ
b

provided b is sufficiently small. For z ∈ C(1), s(DTz(v)) < 2K0b. For (b) we
apply Lemma 3.3 to one iteration of T : Since T is a small perturbation of f ,
we have |DT (γ′)| > 1

2c1δ|γ′| where c1 is as in (P1). This together with Lemma
3.3 gives k < K1

δ3 b where K1 = 8c−3
1 K and K is as in Lemma 3.3.

The next lemma says that outside of C(1), iterates of b-horizontal vectors
behave in a way very similar to that in 1D. Its proof is an easy adaption of the
arguments in Sections 2.1 and 2.2 made possible by part (a) of the last lemma.

Lemma 3.5. There exists c2 > 0 independent of δ such that the following
hold : Let z0 ∈ R1 be such that zi ∈ R1 \ C(1) for i = 0, 1, · · · , n − 1, and let
w0 ∈ Xz0 be b-horizontal. Then

(i) |wn| > c2δe
1
4
λ0n|w0|;

(ii) if, in addition, zn ∈ C(1), then |wn| ≥ c2e
1
4
λ0n|w0|.

3.6. Properties of e1(S) for suitable S

We consider in this subsection e1 of DT restricted to suitable choices of S.

Lemma 3.6. For z0 �∈ C(1), let w ∈ Xz0 be b-horizontal, and let S ⊂ Xz0

be any 2D plane containing w. Then ∠(e1(S), w) > K−1δ.

Proof. Assuming |w| = 1, write e1 = a1w+a2v where v ∈ S is a unit vector
⊥ w. Then Kb > |DT (e1)| = |a1DT (w) + a2DT (v)|. Since |DT (w)| > K−1δ,
it follows that |a2| > K−1δ.

Let γ be a C2(b) curve in C(1) parametrized by arclength. At each point
γ(s), we let S(s) = S(γ′(s),v). Let u(s) = γ′(s), v(s) = v−〈u,v〉u

|v−〈u,v〉u| (i.e. v(s) is
a unit vector in S(s) perpendicular to u(s)) and let η(s) = 〈e1(S(s)), v(s)〉.

Lemma 3.7. Let γ(s), S(s) and η(s) be as above. Then e1(S(s)) is well-
defined on all of γ, and ∣∣∣∣dη(s)

ds

∣∣∣∣ > K−1
1(3)

for some K1 independent of γ.
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Lemma 3.7 is a direct consequence of our assumptions that f ′′(x̂) �= 0 and
∂yi T̂ 1

(x̂,0) �= 0 for x̂ ∈ C. A proof is given in Appendix A.9.

3.7. Critical points on C2(b) curves in C(1)

We fix K̂0 > 10K0 where K0 satisfies |DT̂ 1
(x,0)v| > K−1

0 .

Definition 3.2. Let γ be a C2(b)-curve in C(1). We say that z0 is a critical
point of order n on γ if

(a) |DT i
z0

(v)| ≥ K̂−1
0 for i = 1, 2, · · · , n;

(b) at z0, ∠(en(S), γ′) = 0 with S = S(γ′,v).

Corollary 3.1 (Corollary to Lemma 3.7). On any C2(b)-curve travers-
ing the full length of a component of C(1), there exists a unique critical point
of order 1.

We now turn to the problem of inducing new critical points on nearby
curves starting from a known critical point on a C2(b)-curve. We begin with
two lemmas the exact form of which will be used.

Lemma 3.8. Let γ and γ̂ be C2(b)-curves parametrized by arclength in
C(1). Assume

(a) γ(0) is a critical point of order n on γ with |DT i
γ(0)(v)| ≥ 2K̂−1

0 for i ≤ n;

(b) |γ(0) − γ̂(0)|, |γ′(0) − γ̂′(0)| < b
n

4 ; and

(c) γ̂(s) is defined for all s ∈ [−b
n

5 , b
n

5 ].

Then there exists a unique s, |s| < Kb
n

4 , such that γ̂(s) is a critical point of
order n on γ̂.

Lemma 3.9. There exists K2 for which the following holds: Let γ be a
C2(b)-curve parametrized by arclength in C(1), and let z = γ(0) be a critical
point of order n. If

(a) |DT i
z(v)| ≥ 2K̂−1

0 for i = 1, 2, · · · , n + m, and

(b) γ(s) is defined for s ∈ [−K2(Kb)n, K2(Kb)n],

then there exists a unique critical point ẑ of order n + m on γ, and |ẑ − z| <

K2(Kb)n.

Proofs of Corollary 3.1 and Lemmas 3.8 and 3.9 are given in Appendix
A.10.

3.8. Tracking wn = DTn
z0

(w0): a splitting algorithm

Let z0 ∈ R1, and let w0 ∈ Xz0 be a b-horizontal unit vector. In the case
where zi �∈ C(1) for all i, the resemblance to 1D dynamics is made clear in
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Lemmas 3.4 and 3.5. Consider next an orbit z0, z1, · · · that visits C(1) exactly
once, say at time t > 0. Assume:

(i) There exists � > 1 such that |DT i
zt

(v)| ≥ K−1
0 for all i ≤ �, so that in

particular e	(S) is defined at zt with S = S(v, wt).

(ii) ∠(wt, e	(S)) ≥ b
�

2 .

Then DT i
z0

(w0) can be analyzed as follows. We split wt into wt = ŵt+Ê where
ŵt is a scalar multiple of v and Ê is a scalar multiple of e	(S). For i ≤ t and
i ≥ t + �, let w∗

i = wi. For i with t < i < t + �, let w∗
i = DT i−t

zt
(ŵt). We

claim that all the w∗
i are b-horizontal vectors, and that {|w∗

i+1|/|w∗
i |}i=0,1,2,···

resembles a sequence of 1D derivatives, with |w∗
t+1|/|w∗

t | simulating a drop in
the derivative when an orbit comes near a critical point in 1D.

In light of Lemma 3.4, to show that w∗
i is b-horizontal, it suffices to consider

w∗
t+	. Observe from assumption (ii) above that |ŵt| > b

�

2 |Ê|. (Note that e	 is
close to e1 from Lemma 3.1, and s(e1) < Kδ for z ∈ C(1).) This together with
assumption (i) implies that

|DT 	
zt

(Ê)| ≤ (Kb)	|Ê| ≤ K	b
�

2 |ŵt| ≤ K0K
	b

�

2 |DT 	
zt

(ŵt)|.
Since s(DT 	

zt
(ŵt)) < 3K0

2δ b (see Lemma 3.4), w∗
t+	 = DT 	

zt
(ŵt) + DT 	

zt
(Ê) is

b-horizontal.
The discussion above motivates the following:

Splitting algorithm. We give this algorithm only for z0 ∈ C(1) and w0 = v
since this is mostly how it will be used. Let t1 < t2 < · · · be the times > 0 when
zi ∈ C(1). For each tj , fix �tj

≥ 2 with the property that |DT i
ztj

(v)| > K−1
0 for

i = 1, · · · , �tj
(such �tj

always exist). The following algorithm generates two
sequences of vectors w∗

i and ŵi:
1. For 0 ≤ i < t1, let w∗

i = ŵi = wi.
2. At i = t1, set w∗

i = wi, and define ŵi as follows: If w∗
i is a scalar

multiple of v, let ŵi = w∗
i . If not, let S = S(w∗

i ,v). Then split w∗
i into

w∗
i = ŵi + Êi

where ŵi is a scalar multiple of v and Êi is a scalar times e	i
(S).

3. For i > t1, we let

w∗
i = DTzi−1(ŵi−1) +

∑
j: tj+	tj

=i

DT
	tj
ztj

(Êtj
),(4)

and define ŵi as follows: if i = tj , split w∗
i into w∗

i = ŵi + Êi as in item 2; if
i �= tj for any j, set ŵi = w∗

i .

This algorithm is of interest when the contributions from the Êi-terms as
they rejoin w∗

i are negligible; the meaning of w∗
i and ŵi are unclear otherwise.
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The next lemma contains a set of technical conditions describing a “good”
situation:

Lemma 3.10. Let z0, �tj
, wi and w∗

i be as above, and let Ij := [tj , tj + �tj
).

Assume

(a) for each i = tj , |ŵi| > b
�i
2 |Êi|;

(b) the Ij are nested, i.e. for j < j′, either Ij ∩ Ij′ = ∅ or Ij′ ⊂ Ij.

Then the w∗
i are b-horizontal.

A proof of Lemma 3.10 is given in Appendix A.11.

3.9. Attractors arising from interval maps

We explain how to deal with the endpoints of I in the case where I is an
interval.

Let f ∈ M. By assumption, f(I) ⊂ int(I). We let Λ = Λ(n) be as
in Lemma 2.6 where n is large enough that f(I) is well inside [x1, x2], the
shortest interval containing Λ. It is a standard fact that periodic points are
dense in topologically transitive shifts of finite type. From this, one deduces
easily that pre-periodic points are dense in all shifts of finite type, transitive
or not. Let y1 and y2 be pre-periodic points so that f(I) is well inside [y1, y2].
For i = 1, 2, let ki and ni be such that fki+ni(yi) = fni(yi). Our plan is to
prove the following for T when b is sufficiently small:

(i) Near (fni(yi), 0), i = 1, 2, T has a periodic point zi of period ki.

(ii) zi is hyperbolic; it therefore has a codimension one stable manifold
W s(zi). We claim that Wi, the connected component of W s(zi) con-
taining zi, spans R1 in the sense that it is the graph of a function from
{|y| ≤ (m − 1)

1
2 b} to I.

(iii) Near (yi, 0) there is a connected component Vi of W s(zi); Vi also spans
R1.

(iv) If R̂1 is the part of R1 between V1 and V2, then T (R̂1) ⊂ R̂1.

The existence and hyperbolicity of zi follows from the fact that
|(fki)′(fni(yi))| > 1 (Lemma 2.1). That Wi spans the cross-section of R1

follows from Lemma 3.1 and the construction in Section 3.3 with n → ∞.
Moving on to (iii), the existence of a component of T−niWi near (yi, 0) follows
by continuity. Repeating the arguments at zi on a (any) point in Vi, we see
that not only does Vi span R1 but its tangent vectors make angles > K−1δ

with the x-axis. Thus the diameter of Vi is arbitrarily small as b → 0, and (iv)
follows from f(I) ⊂ (y1, y2).
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In Part II, we restrict the domain of T to R̂1. The two ends of R̂1, namely
V1 ∪ V2, are asymptotic to the periodic orbits of z1 and z2. In particular,
they stay away from C(1). This part of ∂R̂1 is not visible in local arguments.
In Sections 7 and 8, in the treatment of monotone branches, there will be
some special branches that end in T j(Vi). Modifications in the arguments are
straightforward.

In Part III, we take zi(a) to be continuations of the same periodic orbits,
so that R̂1(a) varies continuously with a.

Notation for the rest of the paper.

• We assume T = (T̂ 1, · · · , T̂m) : X → X is such that ‖T̂ j‖C3 < b for
j = 2, · · · , m.

• R1 := I ×{y ∈ R
m−1 : |y| < (m− 1)

1
2 b}; Rk := T k−1R1 for k = 2, 3, · · · .

• For definiteness, we let F1 be the foliation on R1 given by {y =constant}
(this can be replaced by any foliation whose leaves are C2(b) curves); for
k > 1, Fk := T k−1

∗ (F1); i.e., the leaves of Fk are the T k−1-images of
those of F1.

• A subset H ⊂ Rj is called a section of Rj if it is the diffeomorphic
image of Φ : [−1, 1]×Dm−1 → Rj with Φ−1(∂Rj) = [−1, 1]× ∂Dm−1. A
section H of Rj is called horizontal if each component of Φ({±1}×Dm−1)
is contained in a hyperplane {x = const} and all the leaves of Fj |H
are C2(b)-curves. The cross-sectional diameter of a horizontal section
H is defined to be the supremum of diam(V ∩ H) as V varies over all
hyperplanes perpendicular to S1.

• The distance from z to z′ in R1 is denoted by |z−z′|, and their horizontal
distance, i.e. difference in x-coordinates, is denoted by |z − z′|h.

PART II. PHASE-SPACE DYNAMICS

The goal of Part II is to identify, among all maps T : X → X that are near
small perturbations of 1D maps, a class G with certain desirable features. To
explain what we have in mind, consider the situation in 1D. In Section 2.2, we
show that for maps sufficiently near f0 ∈ M, two relatively simple conditions,
(G1) and (G2), imply dynamical properties (P1)–(P3), which in turn lead to
other desirable characteristics. Our class G will be modelled after these maps.

The first major hurdle we encounter as we attempt to formulate higher
dimensional analogs of (G1) and (G2) is the absence of a well defined critical
set. As we will show, the concept of a critical set can be defined, but only
inductively and only for certain maps. This implies that our “good maps” can
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only be identified inductively. The task before us, therefore, is the inductive
construction of Gn, n = 1, 2, · · · , consisting of maps that are “good” in their
first n iterates, and G is taken to be ∩n≥0Gn.

We do not claim in Part II that G is nonempty, and we consider one map
at a time to determine if it is in G; no parameters are involved. The existence
(and abundance) of maps in G is proved in Part III.

Organization. Sections 4–9, which comprise Part II, are organized as fol-
lows: Section 4.1 contains five statements describing five aspects of dynamical
behavior. Together, these statements give a snapshot of the maps in Gn for
certain n. The rest of Section 4 is devoted to the elucidation of the ideas
introduced.

Implications of these ideas are developed in Section 5, and a formal in-
ductive construction of Gn for n ≤ N0 ∼ (log 1

b )
2 is given in Section 6.

After N0 iterates, a fundamental, qualitative change in geometry occurs.
The new complexities that arise are dealt with in Sections 7 and 8.

The existence of SRB measures for T ∈ G is proved in Section 9.
The notation is as in Section 1, namely that f : S1 → S1, F : R1 → S1

and F# : R1 → R1 are related by F (x, 0) = f(x) and F#(x, y) = (F (x, y), 0),
and T : R1 → R1 is a C3 embedding.

Standing hypotheses. Throughout Part II, we fix f0 ∈ M and K0 > 1,
and consider

• f : S1 → S1 with ‖f − f0‖C2 < a,
• F : R1 → S1 with ‖F‖C3 < K0 and |DF(x̂,0)(v)| > K−1

0 for x̂ ∈ C(f0),
and

• T : R1 → R1 with ‖T − F#‖C3 < b

where a, b > 0 are as small as need be. The letter K is used as a generic
constant which, in Part II, is allowed to depend only on f0, K0 and our choice
of λ.

4. Critical structure and orbits

4.1. Formal assumptions

We describe in this subsection several aspects of geometric and dynamical
behaviors to be viewed as desirable. These assumptions, labelled (A1)– (A5),
will eventually be part of the inductive cycle up to a certain time. For the
moment they are only formal statements.

For purposes of the present discussion, λ > 0 can be any number < 1
5λ0

(see §2.2). We choose α so that b  α  min(λ, 1), and let α∗ = 6
λα. Let

θ = K
log 1

b

where K is chosen so that bθ < ‖DT‖−20. Let N be a positive integer

� 1. For simplicity of notation, we assume θN, θ−1, 1
α∗ ∈ Z

+ (otherwise write
[θN ], [θ−1], [ 1

α∗ ]).
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(A1) Geometry of critical regions. There are sets C(1) ⊃ C(2) ⊃ · · · ⊃
C(θN) called critical regions with the following properties:

(i) C(1) is as introduced in Section 3.4. For 1 < k ≤ θN , C(k) is the union
of a finite number of connected components {Q(k)} each one of which
is a horizontal section of Rk of length min(2δ, 2e−λk) and cross-sectional
diameter < b

k

2 .

(ii) C(k) is related to C(k−1) as follows: For each Q(k−1), either Rk∩Q(k−1) = ∅
or it meets Q(k−1) in a finite number of horizontal sections {H} each
one of which extends > 1

2e−αk beyond the two ends of Q(k−1). Each
H ∩ Q(k−1) contains exactly one component of C(k) located roughly in
the middle. (See Figure 1.)

(iii) Inside each Q(k), a point z0 = z∗0(Q
(k)) whose x-coordinate is exactly

half-way between those of the two ends of Q(k) is singled out; z0 is a
critical point of order k in the sense of Definition 3.2 with respect to the
leaf of the foliation Fk containing it.

H
(k−1)

Q Q(k)

Figure 1. Structure of critical regions

We call z∗0(Q
(k)) a critical point of generation k, and let Γk denote the set

of all critical points of generation ≤ k. Let Q(k)(z0) denote the component of
C(k) containing z0.

The next three assumptions prescribe certain behaviors on the orbits of
z0 ∈ ΓθN . To state them, we need the following definitions:

First, we define a notion of distance to critical set for zi, denoted dC(zi).
If zi �∈ C(1), let dC(zi) = δ + d(zi, C(1)). If zi ∈ C(1), we let dC(zi) = |zi − φ(zi)|
where φ(zi) is defined as follows. Let j be the largest integer ≤ α∗θi with the
property that zi ∈ C(j). Then φ(zi) := z∗0(Q

(j)(zi)) is called the guiding critical
point for zi. As the name suggests, the orbit of φ(zi) will be thought of as
guiding that of zi through its derivative recovery. Suppose zi ∈ C(1) and φ(zi)
is of generation j. We say w ∈ Xzi

is correctly aligned, or correctly aligned
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with respect to the leaves of the Fj-foliation, if ∠(τj(zi), w)  K−1
1 dC(zi) where

K−1
1 is the lower bound on | d

dsη| along C2(b)-curves in C(1) in Lemma 3.7 and
τj(zi) is tangent to the leaf of Fj through zi. We say w is correctly aligned
with ε-error if ε  K−1

1 and ∠(τj(zi), w) < εdC(zi).
For z0 ∈ ΓθN , we let w0 = v, and for a chosen family of �i corresponding to

zi ∈ C(1), let w∗
i , i = 0, 1, 2, · · · , be given by the splitting algorithm in Section

3.8. The numbers {�i} are called the splitting periods for z0. Let ε0  K−1
1 be

fixed. We shrink δ if necessary so that it is  ε0.

(A2)–(A4) Properties of critical orbits. For z0 ∈ ΓθN of generation k, the
following hold for all i ≤ kθ−1:

(A2) dC(zi) > min(δ, e−αi).

(A3) There exist {�j} (to be specified in §4.4) so that w∗
i is correctly aligned

with ε0-error when zi ∈ C(1).

(A4) |w∗
i | > 1

2c2e
λi where c2 is as in Lemma 3.5.

Our next assumption gives the relation between zi and φ(zi). Let β̂ be
such that α  β̂  1. For z0, ξ0 ∈ R1, let p̂(z0, ξ0) be the smallest j > 0 such
that |zj − ξj | ≥ e−β̂j . For reasons to be explained in Section 4.3B, we will be
interested in a range of p near p̂(z0, ξ0). Inside each Q(k), let

B(k) = {z ∈ Q(k) : |z − z∗0(Q
(k))|h < b

1
5
k}.

(A5) How critical orbits influence nearby orbits. For z0 = z∗0(Q
(k))

and ξ0 ∈ Q(k) \ B(k), k ≤ θN , the following hold for all p ∈ [p̂(z0, ξ0),
(1 + 9

λα)p̂(z0, ξ0)]:

(i) (Length of bound period). Suppose |z0 − ξ0| = e−h. Then
1

3 ln ‖DT‖ h ≤ p ≤ 3
λ

h

the first inequality being valid if 1
3 ln ‖DT‖h ≤ kθ−1 and the second if

3
λh ≤ kθ−1.

(ii) (Partial derivative recovery). If p ≤ kθ−1, then |wp(z0)||ξ0 − z0| ≥ e
1
3
λp.

(iii) (Quadratic nature of turns). Let γ be the Fk-leaf segment joining ξ0 to
B(k). Then for all η0 ∈ γ and �(η0) < i ≤ min{p, kθ−1},

|ηi − zi| =
1
2

(∣∣∣∣de1

ds
(z0)

∣∣∣∣ ±O(b)
)
·
(
|wi(z0)| ± O(|η0 − z0|

1
2 )

)
· |η0 − z0|2.

Here �(η0) is defined by b
�(η0)

2 = |η0 − z0|, and e1 = e1(S) where S =
S(v, τk), τk being the tangent to the Fk-leaf through z0.
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This completes the formulation of the five statements (A1)–(A5). We also
write (A1)(N)–(A5)(N) when more than one time frame is involved. The rest
of this section contains some immediate clarifications.

Three important time scales. We point out that in the dynamical picture
described by (A1)–(A5), there are three distinct time scales: θN  αN  N .
The fastest time scale, N , gives the number of times the map is iterated. The
slowest, θN , is the number of generations of critical regions and critical points
constructed. The middle time scale, which is on the order of αN (α∗N to
be precise), is an upper bound for the lengths of the bound periods initiated
by critical orbits returning to C(1) at times ≤ N (this follows from (A2) and
(A5)(i) combined).

We assume (A1)–(A5) for the rest of Section 4.

4.2. Clustering of critical orbits

In Section 4.1, we presented a viewpoint — convenient for some practical
purposes — in which a critical point z∗0(Q

(k)) in each component Q(k) of C(k)

is singled out for special consideration. To understand the relation among the
points in ΓθN , it is more fruitful to group them into clusters. We propose here
to view these clusters as represented by B(k). To justify this view, we prove

Lemma 4.1. For all k < k̂ < θN , if Q(k̂) ⊂ Q(k), then

|z∗0(Q(k)) − z∗0(Q
(k̂))| < Kb

k

4

and B(k̂) ⊂ B(k).

The proof of this lemma uses the technical estimate below. Both results
rely on the geometric information on Q(k) in (A1). Proofs are given in Ap-
pendix A.12.

Lemma 4.2. Let k < k̂, Q(k̂) ⊂ Q(k), z ∈ Q(k), ẑ ∈ Q(k̂), and let γ and γ̂

be the Fk- and Fk̂-leaves containing z and ẑ respectively. Let τ and τ̂ be the
tangent vectors to γ and γ̂ at z and ẑ. Then

∠(τ, τ̂) ≤ b
k

4 + Kδ−3b · |z − ẑ|h.

Evolution of critical blobs. A theme that runs through our discussion is
that orbits emanating from the same B(k) are viewed as essentially indistin-
guishable for kθ−1 iterates. Informally, we call these finite orbits of B(k) critical
blobs.

Recall that θ is assumed so that bθ < ‖DT‖−20. This implies that for
all i ≤ kθ−1, diam(T iB(k)) < b

1
5
k‖DT‖i < (bθ)

1
5
i‖DT‖i. This is  e−αi, the

minimum allowed distance to the critical set (see (A2)).
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Obviously, we cannot iterate indefinitely and hope that T iB(k) remains
small; that is why we regard z∗0(Q

(k)) as active for only kθ−1 iterates. The
word “active” here refers to both (i) prescribed behavior for zi (as in (A2)–
(A4)) and (ii) the use of zi as guiding critical orbit or in the sense of (A5).

It is useful to keep in mind the following dynamical picture: At time i = 0,
T has a set B(1) corresponding to each critical point of f . For i ≤ θ−1, the
T i-images of B(1) are relatively small, so that {T iB(1)}i=0,1,··· ,θ−1 for each B(1)

can be treated as a single orbit.
As i increases, the sizes of T iB(1) become larger, eventually becoming too

large for {T iB(1)}i=0,1,··· to be treated as a single orbit. We stop considering
these critical blobs long before that time, however. At time i = θ−1, we replace
each T θ−1

B(1) by the collection of T θ−1
B(2) contained in it. For θ−1 < i ≤ 2θ−1,

T iB(2) are again relatively small, and so can be viewed as a finite collection
of orbits. At time i = 2θ−1, each T 2θ−1

B(2) is replaced by the collection of
T 2θ−1

B(3) inside it, and so on.
As i increases, the number of relevant critical blobs increases, each becom-

ing smaller in size. Blobs that have separated move about “independently”.
By virtue of (A2), they are allowed to come closer to the critical set with the
passage of time.

We finish by recording a technical fact that will be used in conjunction
with Lemma 3.8.

Lemma 4.3. For any C2(b)-curve s �→ l(s) traversing a given B(k) ⊂ Q(k),
there exists a point in l, denoted by l(0), such that

∠(l′(0), τ(z0)) < b
k

4

where z0 = z∗0(Q
(k)) and τ(z0) is tangent to the leaf of Fk at z0.

As with Lemma 4.2, Lemma 4.3 is proved by a straightforward application
of Sublemma A.12.1 in Appendix A.12. We leave it as an exercise.

4.3. Bound periods

Let z0 ∈ ΓθN be of generation k, and let zi ∈ C(1), i ≤ kθ−1. In Section
4.1, we assigned to zi a guiding critical point φ(zi) ∈ ΓθN . (A5)(i)–(iii) hold for
all p ∈ [p̂, (1 + 9

λα)p̂] where p̂ = p̂(zi, φ(zi)). We now choose a specific number
p = p(zi) in this range with certain desirable properties. This number will be
called the bound period of zi.

A. Remarks on φ(·) and dC(·). In general, when zi ∈ C(1), it is in many
Q(j). Since C(j) for larger j give better approximations of the eventual critical
set, it is natural to want to define dC(zi) using the largest j possible. We do
not do exactly that; instead, we take φ(zi) to be z∗0(Q

(ĵ)(zi)) where ĵ is the
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largest j ≤ α∗θi such that zi ∈ Q(j). The significance of this upper bound on
j will become clear in Section 6. For now we observe

Lemma 4.4. (i) |zi − φ(zi)| � b
ĵ

5 ; in particular, zi ∈ Q(ĵ) \ B(ĵ), so that
(A5) applies.

(ii) Let p ∈ [p̂, (1 + 9
λα)p̂] be as in (A5). Then p ≤ ĵθ−1.

Proof : Case 1. ĵ + 1 ≤ α∗θi. This implies zi ∈ (Q(ĵ) ∩ Rĵ+1) \ C(ĵ+1), i.e.

dC(zi) > e−λ(ĵ+1). Hence b
ĵ

5  dC(zi) and p  ĵθ−1 by (A5)(i).

Case 2. ĵ + 1 > α∗θi. Using this relation between i and ĵ, we see that
dC(zi) > e−αi > e−

α

α∗ θ−1(ĵ+1), which we check is � b
ĵ

5 by the definition of bθ

and the facts that α
α∗ = λ

6 and eλ < ‖DT‖. Also, p ≤ 3
λαi by (A2) and (A5)(i).

This upper bound is = 1
2α∗i ≤ 1

2(ĵ + 1)θ−1 ≤ ĵθ−1.

We use φ(zi) to define dC(zi). One may ask if it makes a significant
difference if some other critical point is used. The answer is that when dC(zi)
is relatively large, for example when dC(zi) > b

1
5 , it does not matter much, but

when dC(zi) is small, the values of |ẑ−zi| or even |ẑ−zi|h can vary nontrivially
as ẑ varies over ΓθN . For the same reason, for zi, z

′
j ∈ C(1), we cannot conclude

– without further information – that |dC(zi)− dC(z′j)| ≈ |zi − z′j |, for zi and z′j
can be in very different “layers” of the critical structure, resulting in φ(zi) and
φ(z′j) being relatively far apart.

We do have the following:

Lemma 4.5. (i) Let z ∈ Q(k) \ B(k). Then for all ẑ, z̃ ∈ ΓθN ∩ B(k), we
have |z − ẑ| = (1 ±O(b

k

20 ))|z − z̃|.
(ii) Suppose ẑ0 = φ(zi), and ẑj ∈ C(1) for some 0 < j < p̂(ẑ0, zi). Then

dC(zi+j) = (1 ±O(e−
1
2
β̂j))dC(ẑj).

Proof. (i) By Lemma 4.1, |ẑ − z̃| < Kb
k

4 , and by assumption, z is > b
k

5

from the center of Q(k). This proves |z − ẑ| = (1 ±O(b
k

20 )) |z − z̃|.
(ii) By definition, |zi+j − ẑj | < e−β̂j  e−αj , which is < dC(ẑj) by (A2).

As explained above, this in itself is insufficient for guaranteeing the asserted
relationship between dC(zi+j) and dC(ẑj). We have, however, the following
additional information: By (A5)(iii), there is a curve ω joining zi to ẑ0 such that
diam(T j(ω))  e−αj . Now suppose ẑj ∈ C(1) is such that φ(ẑj) = z∗0(Q

(k̂)).
Since k̂  j, T j(ω) is contained, or nearly contained, in Q(k̂)(ẑj). Part (i) now
enables us to make the desired comparison.

B. Definition of bound periods. Consider z0 ∈ ΓθN . For each i such that
zi ∈ C(1), let p(zi) be the bound period of zi to be defined. We say {p(zi)} has
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a nested structure if whenever i < j are such that zi, zj ∈ C(1) and j < i+p(zi),
we have j + p(zj) ≤ i + p(zi).

To define p(zi), we start with p̂i := p̂(φ(zi), zi) where p̂(φ(zi), zi) is as
defined in Section 4.1. There is no reason why {p̂i} should have a nested
structure. We call j0 < j1 < · · · < jn a chain of overlapping bound intervals
if zjk

∈ C(1) and jk ∈ (jk−1, jk−1 + p̂jk−1) for every k ≤ n. Let Λi be the set
of all integers k > i such that there is a chain of overlapping bound intervals
j0 < j1 < · · · < jn with j0 = i and jn + p̂n ≥ k. We define p(zi) := i′ − i where
i′ is the supremum of the set Λi. A priori, p(zi) can be � p̂i; it can even be
infinite. We prove in Lemma 4.6 below that this is not the case.

Lemma 4.6. For all z0 ∈ ΓθN and all zi ∈ C(1),

(a) p(zi) < (1 + 6
λα)p̂i.

(b) {p(zi)} has a nested structure.

Proof. (a) For zi ∈ C(1), let j be such that i < j < i + p̂i. Then dC(zj) ≈
dC((φ(zi))j−i)) by Lemma 4.5(ii). Applying (A2) to φ(zi) and then (A5)(i) to
zj , we obtain p̂j ≤ 3

λα(j − i) ≤ 3
λαp̂i. If j0 < j1 < · · · < jn is a chain of

overlapping bound intervals with j0 = i, then similar reasoning gives p̂jk
≤

3
λαp̂jk−1 , so that

p̂j0 + p̂j1 + · · · + p̂jn
< (1 +

3
λ

α + (
3
λ

α)2 + · · · )p̂i < (1 +
6
λ

α)p̂i.

Since this bound is valid for all chains, we have p(zi) < (1 + 6
λα)p̂i.

(b) We need to show that if j ∈ (i, i + p(zi)), then j + p(zj) ≤ i + p(zi).
Note that since p(·) is finite, there exists a chain of overlapping intervals i =
j0 < · · · < jn such that jn + p̂jn

= i + p(zi). If j + p(zj) > i + p(zi), then the
chain that goes from i to i + p(zi) combined with the one that goes from j to
j + p(zj) forms a new chain starting from i and extending beyond i + p(zi).
This contradicts the definition of p(zi).

Let β = β̂ − 9
λ ln ‖DT‖α, and let p(z0, ξ0) be the smallest j such that

|zj − ξj | ≥ e−βj . An easy calculation gives p̂(z0, ξ0)(1 + 9
λα) ≤ p(z0, ξ0).

Clarification: Relation between p̂(·, ·), p(·, ·) and p(zi) for z0 ∈ ΓθN .
1. These definitions are brought about by the tension between our desire

to define “bound periods” in terms of the distances separating two orbits, and
the advantages of having a nested structure for bound periods along individual
orbits. We showed in Lemma 4.6 that a nested structure can be arranged if we
allow some flexibility in scale when measuring distances, so that for z0 ∈ ΓθN ,
there exist {p(zi)} with a nested structure and satisfying p̂(zi, φ(zi)) ≤ p(zi) ≤
p(zi, φ(zi)).
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2. In general, in results pertaining to a single bound period (e.g. Propo-
sitions 5.1), we use p(·, ·), so that the result is valid for as long a duration as
possible. In situations in which we follow the long range evolution of single
orbits (e.g. Section 5.2), a nested structure arranged as above is used.

C. Bound and free states. For z0 ∈ ΓθN of generation k, we now have
a decomposition of the orbit z0, z1, · · · , zkθ−1 into intervals of bound and free
periods, i.e. we say zi is free if and only if it is not in a bound period. If we call
the maximal bound intervals primary bound periods, the nested structure above
allows us to speak of secondary bound periods, tertiary bound periods, and so
on. Returns to C(1) at the beginning of primary bound periods are called free
returns, while returns at the start of seconding or higher order bound periods
are called bound returns.

4.4. The splitting algorithm applied to DT i
z0

(v), z0 ∈ ΓθN

The considerations below are motivated by the discussion in Section 3.8
and by Lemma 3.10 in particular. We continue to use the notation here.

A. Splitting periods. Fix z0 ∈ ΓθN . We explain how the �i at return times
i in (A3) are chosen. From Section 3.8, we see that the following properties
are desirable:

(i) �i ≥ 2;
(ii) |DT j

zi(v)| > K−1 for j = 1, 2, · · · , �i;
(iii) the intervals Ii = [i, i + �i) have the nested property.

We explain why these properties can, in principle, be arranged. As a first
approximation, let �̂ be such that b

�̂

3 = dC(zi). Then (ii) holds for all � ≤
5
3 �̂. To justify this claim, we need to check that 5

3 �̂ ≤ the order of φ(zi)
as a critical point (this follows from Lemma 4.4(i)), and that the expanding
property |DT j

φ(zi)
(v)| > K−1

0 passes to a disk of radius > dC(zi) (Lemma 3.2).

To achieve (iii), we need to show that if zj is a return for i < j < i + �̂i, then
�̂j < Kα(log 1

b )
−1�̂i (for which we follow the proof of Lemma 4.6).

Algorithm for choosing �i in (A3). Let �̂i be as above. First we set �′i =
max{2, �̂i}, then increase �′i to �∗i if necessary so that the intervals Ii = [i, i+�∗i )
are nested, and finally, for convenience, let �i = �∗i + 1 or 2 to ensure that no
splitting period ends at a return or at the step immediately after a return.

B. Correct alignment implies correct splitting. For z0 ∈ ΓθN , we let
w∗

i , i = 1, 2, · · · be generated by the splitting algorithm in Section 3.8 using
the �i above. Our next lemma connects the “correct alignment” assumption
in (A3) to hypothesis (a) in Lemma 3.10. Suppose zi ∈ C(1) and write w∗

i =
Aie	i

(S) + Biv where S = S(v, w∗
i ).
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Lemma 4.7. If w∗
i is correctly aligned with ε-error where ε  K−1

1 , then

|Bi|
|Ai|

>
1
2
K−1

1 dC(zi)

where K−1
1 is the lower bound of | d

dsη| as in Lemma 3.7.

When the conclusion of Lemma 4.7 holds, we say w∗
i splits correctly. We

caution that when dC(·) is very small, b-horizontal vectors do not necessarily
split correctly.

Corollary 4.1. If at all returns, w∗
i is correctly aligned with ε-error

where ε  K−1
1 , then w∗

i is b-horizontal and splits correctly.

A proof of Lemma 4.7 is given in Appendix A.13. Corollary 4.1 follows
from a direct application of Lemma 3.10 once we note that 1

2K−1
1 dC(zi) � b

�i
2 .

5. Properties of orbits controlled by the critical set

We continue to assume (A1)–(A5). This section contains a general dis-
cussion of the extent to which the orbits of z0 ∈ ΓθN can be used to guide
other (noncritical) orbits, or, put differently, the extent to which (ξ0, w0) for
arbitrary ξ0 ∈ R1 and w0 ∈ Xξ0 can be controlled by ΓθN . The word control is
given a formal definition in Section 5.2.

5.1. Copying segments of critical orbits

For z, ξ in the same component of C(1), let p(z, ξ) be as defined as in Section
4.3B; i.e., it is the smallest j such that |T jz−T jξ| > e−βj . For z0 = z∗0(Q

(k)) ∈
ΓθN and ξ0, ξ

′
0 ∈ Q(1)(z0), we let p(z0; ξ0, ξ

′
0) := min{p(z0, ξ0), p(z0, ξ

′
0), kθ−1}.

Unlike (A5), we do not presuppose here any geometric relationship between ξ0,
ξ′0 and z0. In particular, p(z0; ξ0, ξ

′
0) may not be in the time range for which

(A5) is applicable.
Let w0(ξ0) = w0(ξ′0) = w0(z0) = v. We apply the splitting algorithm to

z0, ξ0 and ξ′0 for i ≤ p(z0; ξ0, ξ
′
0) using for all three points the splitting periods

for z0 as specified in Section 4.4. Our next proposition compares w∗
i (ξ0) and

w∗
i (ξ

′
0). Let

Δn(ξ0, ξ
′
0) :=

n∑
s=0

b
s

4 2	n−s |ξn−s − ξ′n−s|(5)

where �n−s is the length of the longest splitting period zn−s find itself in, 0 if
zn−s is out of all splitting periods.

Proposition 5.1. There is a constant K1 such that for all ξ0, ξ
′
0 and z0

as above and i < p(z0; ξ0, ξ
′
0),
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|w∗
i (ξ0)|

|w∗
i (ξ

′
0)|

,
|w∗

i (ξ
′
0)|

|w∗
i (ξ0)|

≤ exp

{
K1

i−1∑
n=1

Δn(ξ0, ξ
′
0)

dC(zn)

}
(6)

and

∠(w∗
i (ξ0), w∗

i (ξ
′
0))) ≤ b

1
2 Δi−1(ξ0, ξ

′
0).(7)

This proposition would not be very useful without a priori bounds for the
quantities involved. We explain how a bound for the right side of equations
(6) and (7) can be arranged.

Lemma 5.1. Assume that (i) β is sufficiently large compared to α, (ii) δ

is sufficiently small depending on α and β, and (iii) b is small enough. Then
for all z0, ξ0, ξ

′
0, i and n as above,

Δn < 2e−
1
2
βn  ε0dC(zn)

and

K1

i−1∑
n=1

Δn(ξ0, ξ
′
0)

dC(zn)
 1.

Proposition 5.1 and Lemma 5.1 are proved in Appendix A.14. Our first
application of Proposition 5.1 is to the case where ξ′0 = z0. We assume α, β, δ

and b are chosen so that the following is an immediate corollary of Proposition
5.1 and Lemma 5.1.

Corollary 5.1. Let z0 ∈ ΓθN be of generation k. Then for ξ0 ∈ Q(1)(z0)
and i < min{kθ−1, p(z0, ξ0)},

(i) |w∗
i (ξ0)| > 1

4c2e
λi;

(ii) at return to C(1), w∗
i (ξ0) is correctly aligned with 2ε0-error.

5.2. A formal notion of “control”

Very roughly, a controlled orbit is one obtained by splicing together a
finite number of orbit segments each one of which is either free or bound to a
critical orbit. The goal of this subsection is to identify sufficient conditions at
the joints that will guarantee that the resulting orbit has desirable properties.

Let ξ0 ∈ R1 be an arbitrary point.

Definition 5.1. We say ξ0 is controlled by ΓθN for M iterates, or equiva-
lently, the orbit segment ξ0, ξ1, · · · , ξM−1 is controlled by ΓθN , if the following
hold: whenever ξi ∈ C(1), 0 ≤ i < M , there exists Q(k), k ≤ θN , such that

(i) ξi ∈ Q(k) \ B(k), and

(ii) min(p̂(z0, ξi), M − i) ≤ kθ−1 where z0 = z∗0(Q
(k)).
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Condition (i) guarantees that (A5) applies to ξi. Condition (ii) guarantees
that the guiding orbit z0 remains active until either the bound period or the
period of control expires.

Orbits controlled by ΓθN can be seen as follows: Let n1 ≥ 0 be the first
time ξi ∈ C(1). For i ≤ n1, we regard ξi as free. At time n1, we assume there
exists z0 ∈ ΓθN satisfying the conditions in Definition 5.1. Such a critical point
is usually not unique. We make an arbitrary choice, call it φ̃(ξn1), and define
d̃C(ξn1) := |φ̃(ξn1) − ξn1 |. From Lemma 4.1 we see that among the admissible
choices φ̃(ξn1), d̃C(ξn1) do not differ substantially. Instead of φ̃(·) and d̃C(·), we
write φ(·) and dC(·) for notational simplicity.

For the next p̂(ξn1 , φ(ξn1)) iterates, we think of ξn1 as bound to φ(ξn1) as
in Section 5.1, inheriting from the orbit of φ(ξn1) bound and splitting periods.
At the end of the p̂(ξn1 , φ(ξn1)) iterates, there may be some bound periods that
have not expired. In the interest of a nested structure for bound periods, we
extend p̂(ξn1 , φ(ξn1)) to p1, so that n1 + p1 is the first moment when all bound
periods initiated before n1 + p1 have expired. For the same reason as in the
proof of Lemma 4.6, we have p1 < (1+ 6

λα)p̂(ξn1 , φ(ξn1)). (This uses condition
(i) in Definition 5.1.)

We regard ξn1+p1 as “free”, and think of its orbit as remaining free until
n2, the first time ≥ n1 + p1 when ξn2 ∈ C(1). For a controlled orbit, we are
guaranteed the existence of at least one critical point satisfying the conditions
of Definition 5.1 with respect to ξn2 . We think of ξn2 as bound to φ(ξn2) for
p2 iterates, and so on.

The process continues until the period of control expires. Splitting periods
with a nested structure are defined similarly.

Next we discuss what it means for a (ξ0, w0)-pair to be controlled. Let ε1

be such that 4ε0 < ε1  K−1
1 where ε0 and K1 are as in Section 4.1. Let ξ0 be

a controlled orbit, and let w0 ∈ Xξ0 be an arbitrary unit vector. The vectors
w∗

i (ξ0) are obtained by using the splitting periods defined above.

Definition 5.2. We say (ξ0, w0) is controlled by ΓθN for M iterates, or
equivalently, the sequence (ξ0, w0), · · · , (ξM−1, wM−1) is controlled by ΓθN , if
ξ0 is controlled for M iterates and the following holds: whenever ξi ∈ C(1),
0 ≤ i < M , w∗

i is correctly aligned with ε1-error, i.e. if φ(ξi) is of generation j

and dC(ξi) is as above, then ∠(w∗
i (ξ0), τ) < ε1dC(ξi) where τ is the tangent to

the leaf of Fj through ξi.

A slightly expanded definition. It is convenient to expand the definition of
control to allow the following initial condition: If ξ0 ∈ C(1) and w0 = v, then
the conditions in Definitions 5.1 and 5.2 are waived at time 0. (The rationale
for this inclusion is that since no splitting occurs at time 0, derivative recovery
is automatic.)
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The properties of a controlled (ξ0, w0)-pair can be summarized as follows:

Proposition 5.2. Assume that (ξ0, w0) is controlled by ΓθN for M iter-
ates. Then

(1) there exist 0 ≤ n1 < n1 + p1 ≤ n2 < n2 + p2 ≤ n3 · · · < M such that for
each i,

(i) there is φ(ξni
) ∈ ΓθN to which ξni

is bound for pi iterates, pi ∼
log 1

dC(ξni
) ;

(ii) ξj �∈ C(1) for ni + pi ≤ j < ni+1;

(2) w∗
i has the following growth properties:

|w∗
ni+pi

|
|w∗

ni
| > K−1e

1
3
λpi ;

|w∗
ni+1

|
|w∗

ni+pi
| >

1
2
c2e

1
4
λ0(ni+1−(ni+pi)).

Proof. (1) is a summary of the discussion following Definition 5.1; the
estimate for pi uses (A5)(i). The second inequality in (2) follows immediately
from Lemma 3.5. The first is proved as follows: By Proposition 5.1, we have
|DT pi

ξni
(v)| > 1

2 |DT pi

φ(ξni
)(v)|. For purposes of this proof, it is simplest to split

off a vector from w∗
ni

that is known to contract for pi iterates. Let e = epi
be the

most contracted direction for DT pi

ξni
on S = S(wni

,v). We claim that if w∗
ni

=
Ae+Bv, then |B| > K−1dC(ξni

). (Reason: correct splitting is assumed at time
ni; the (normal) splitting period, �, is  pi; and so ∠(e, e	) < (Kb)	, which is 
b

�

3 ≈ dC(ξn1).) (A5)(ii) then gives |DT pi

ξni
(Bv)| > K−1|DT pi

φ(ξni
)(v)|dC(ξni

) >

K−1e
1
3
λpi . The addition of DT pi

ξni
(Ae) has negligible effect.

In Section 2.2, we proved that for a class of “good” 1D maps, every orbit
not passing through the critical set has the properties in Proposition 5.2. A
consequence of the definition of control, therefore, is that (ξ0, w0)-pairs have
1D behavior.

5.3. A collection of useful facts

We record in this subsection a miscellaneous collection of facts related to
controlled orbits that are used in the future. Lemmas 5.2–5.6 are proved in
Appendices A.15–A.17. Proposition 5.3 is proved in Appendix A.18.

A. Relation between |wi| and |w∗
i |.

Lemma 5.2. Assume that (ξ0, w0) is controlled by ΓθN for M iterates.
Under the additional assumption that dC(ξi) > min(δ, e−αi) for all i < M ,

K−εi|w∗
i (ξ0)| ≤ wi(ξ0) ≤ Kεie2αi|w∗

i (ξ0)|, ε = Kαθ.(8)
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B. Angles at bound returns.

Lemma 5.3. Let ξ0 be controlled by ΓθN for M iterates, and assume that
at all free returns, w∗

i is correctly aligned with < ε1-error. Then at all bound
returns, w∗

i is correctly aligned with < 3ε0-error.

Since ε1, the error in alignment of w∗
i at free returns, can be � 3ε0,

Lemma 5.3 implies that the magnitudes of the errors at free returns are not
reflected in the angles at returns during ensuing bound periods provided they
are within an acceptable range.

C. Growth of |wi|, |w∗
i | and ‖DT i‖. The next three results provide more

detailed information on derivative growth than Proposition 5.2.

Lemma 5.4. There exists λ′ slightly smaller than 1
3λ such that if (ξ0, w0)

is controlled by ΓθN for M iterates, then for every 0 ≤ k < n < M ,

|w∗
n| ≥ K−1dC(ξj)eλ′(n−k)|w∗

k|
where j is the first time ≥ k when a bound period extending beyond time n is
initiated. If no such j exists, set dC(ξj) = δ.

Lemma 5.5. The setting and notation are as in Lemma 5.4. If in addition
ξn is free, then

|wn| > δK−Kθ(n−k)eλ′(n−k)|wk|.
If ξn is a free return, then δ on the right side can be omitted.

We finish by recording a technical lemma that will be used in Part III.

Lemma 5.6. Suppose (ξ0, w0) is controlled for M iterates by ΓθN , and
that dC(ξi) > e−αi for all i ≤ M . Then there exist constants K and λ̂ > 0
slightly smaller than 1

2λ′ such that for every 0 ≤ s < i < M ,

‖DT i−s
ξs

‖ ≤ Ke−λ̂s|wi|.

D. Quadratic properties of turns. We consider in this paragraph the special
situation where the critical point on a C2(b)-curve is controlled. The quadratic
distance formula in Proposition 5.3 is used to prove estimates of the kind in
(A5).

The precise setting is as follows: Let γ ⊂ C(1) be a C2(b)-curve, and let
z0 ∈ γ be a critical point of order M on γ in the sense of Definition 3.2. (There
is no restriction on the size of M ; it can be > N .) We assume that

(1) (z0,v) is controlled by ΓθN for M iterates; and

(2) dC(zi) > min(δ, e−αi) for all 0 < i ≤ M .

Let s �→ ξ0(s) be the parametrization of γ by arclength with ξ0(0) = z0.



382 QIUDONG WANG AND LAI-SANG YOUNG

Proposition 5.3. For given s1 > 0, let p(s1) = min{p(ξ0(s1), z0), M}.
Then for all 0 < s ≤ s1 and i ∈ [�(s), p(s1)] with �(s) = 2 log s

log b ,

|ξi(s) − zi| ≈ 1
2

∣∣∣∣ d

ds
e1(0)

∣∣∣∣ |wi(0)| s2

where e1 = e1(S) and S = S(γ′,v).

6. Identification of hyperbolic behavior:
Formal inductive procedure

6.1. Global constants (mostly review)

For N = 1, 2, · · · , we define below a set of “good” maps T : X → X

denoted by
GN = GN (f0, K0, a, b; λ, α; δ, β, ε0, θ).

The arguments on the right side can be understood conceptually as follows:
1. The first group consists of f0 ∈ M and three constants, K0, a and b.

These items appear in the Standing Hypotheses at the beginning of Part II;
they define an open set in the space of C3 embeddings of X into itself.

2. In the next group are λ and α, two constants that appear in (A2) and
(A4). As we will see, (A2) and (A4) play a special role in determining if T in
the open set above is in GN ; they are analogous to (G1) and (G2) for 1D maps
(see §2.2).

3. Unlike the situation in 1D, auxiliary constructions are needed before
we are able to properly formulate (A2) and (A4). The constants in the last
group, namely δ, β, ε0 and θ, appear in these auxiliary constructions. They
do not directly impact whether a map is in GN , but help maintain uniform
estimates in the constructions.

In the definition of GN , f0 is chosen first; it can be any element of M. We
then fix K0, which can be any number > ‖f0‖C3 . Precise conditions imposed
on the rest of the constants are given in the text. We review below their (rough)
meanings and give the order in which they are chosen. To ensure consistency
in our choices, it is important that (i) only upper bounds are imposed on each
constant, and (ii) these bounds are allowed to depend only on the constants
higher up on the list (in addition to f0, K0, and m, the dimension of X).
Except for λ, all the constants listed below are  1 and must be taken to be
as small as necessary.

Important constants, their meanings, and the order in which they are cho-
sen.

– λ is our targeted Lyapunov exponent; it can be anything < 1
5λ0 where

λ0 is a growth rate of |f ′
0| (see Definition 1.1). Once chosen, it is fixed

throughout.
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– Next we fix α and β and think of e−αn and e−βn as representing two small
scales. The requirements are that 0 < α, β  min{λ, 1} and β > Kα

for some K depending on f0 and K0. The meaning of α is that critical
orbits are not allowed to approach the critical set at speeds faster than
e−αn. Two orbits {zi} and {z′i} with |zi − z′i| < e−βi are to be thought
of as “bound together”.

– ε0, which depends only on f0, K0 and m, has the following meaning:
For z ∈ C(1), vectors v ∈ Xz that make angles < ε0dC(z) with certain
Fk-leaves are viewed as “correctly aligned”.

– The size of δ is limited by many factors: examples of which include δ < δ0

where δ0 is as in Definition 1.1, a bound used in distortion (Lemma 5.1),
the Taylor formula estimate at “turns” (Proposition 5.3), δ  ε0, and
some purely numerical inequalities (e.g. if δ = e−μ, then 1

μ2  e−μ).

– Chosen last are a and b. It is best to think of a and b as very small
numbers that we may need to decrease a finite number of times as we go
along.

- The smaller a is, the longer fn(x̂), x̂ ∈ C, can be kept out of Cδ0 .

- The smaller b is, the more closely T mimics F#.

– There is an important constant defined at the same time as b, namely
θ := K

log 1
b

where K is chosen so that bθ = ‖DT‖−20. With this choice

of θ, critical orbits emanating from the same B(k) can be viewed as a
single orbit for kθ−1 iterates. We may, therefore, regard the number of
critical orbits (or “critical blobs”) present at time N as ≤ KθN for some
K depending on f0.

When referring to GN in the future, it will be understood that the ar-
guments above are implicit. In particular, G0 is the set of maps T satisfying
the conditions at the beginning of Part II with regard to some fixed f0, K0, a

and b. Constants (such as K1) not on this list are regarded as local in context;
they must be specified each time they are used. Finally, we emphasize that
the generic constant K that appears in many of our results is allowed only to
depend on f0, K0, m and λ provided that the other constants are appropriately
small.

6.2. Three stages of evolution

Our construction of GN comes in three distinct stages: For N ≤ θ−1, the
situation is, in many ways, not far from that in 1D. This part is simple and
is disposed of immediately in the next paragraph. At time N = θ−1, certain
local complexities of higher dimensional maps begin to develop, “turns” play a
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more prominent role, and the definition of GN becomes necessarily inductive.
We have been building up the dynamical picture for this part in Sections 4
and 5 and will complete its construction in Sections 6.3 and 6.4. At N = θ−2,
the global structure of T begins to depart from those of 1D maps. New ideas
are needed; they are discussed in Sections 7 and 8.

Getting started : the first θ−1 steps. Let T ∈ G0, and assume the leaves of
F1 are parallel to the x-axis. Let C = {x̂1, · · · , x̂q} be the critical set of f . Then
near each x̂i, there exists x̃i such that e1(S) = ∂x at (x̃i, 0) where S = S(∂x,v).
A simple computation gives |x̃i − x̂i| < Kb. Let Γ1 = {(x̃1, 0), · · · , (x̃q, 0)}.
These are the only critical points for the first θ−1 iterates.

Before proceeding further, we observe that if γ0 is a C2(b)-segment with
the property that γi := T i(γ0) does not meet B(1) for all i < n, then the curves
γi are roughly horizontal for all i ≤ n. This follows immediately from the fact
that for z with dC(z) > b

1
5 and u ∈ Xz with s(u) < b

3
4 , s(DTz(u)) < b

3
4 (see

§3.5).
For N = 1, 2, · · · , θ−1, let

GN = {T ∈ G0 | (A2) and (A4) hold for all z0 ∈ Γ1 and i ≤ N}.
(A2) and (A4) are, as noted earlier, analogs of (G1) and (G2) in Section 2.2.

We claim that for T ∈ GN , (A3) and (A5) are satisfied automatically.
(A3) is easily verified since all b-horizontal vectors are correctly aligned at
dC > e−αθ−1

> b
1
5 (bθ < e−5α by definition, so b

1
5  e−αθ−1

). (A5) follows from
1D estimates: Let γ0 be the curve joining ξ0 ∈ Q(1) \ B(1) to B(1) in (A5).
Then during its bound period, all tangent vectors to γi are roughly horizontal
as explained above and curvatures are < Kb

2
5 . An argument entirely parallel

to that in Appendix A.1 proves (A5)(i)–(iii).

Inductive scheme for going from N = θ−1 to N = θ−2. Beyond N = θ−1,
more critical points are needed as orbits emanating from B(1) begin to diverge.
To help describe the structures needed for the identification of new critical
points, we have introduced a set of assumptions, namely (A1)–(A5). In Section
6.3, we will add another one, (A6), which is also trivially satisfied up to time
θ−1. Let

GN := {T ∈ G0 | (A1)(N)–(A6)(N) hold, N ≤ θ−2.

Observe that this definition is consistent with the one defined earlier for N ≤
θ−1. The goal of Sections 6.3 and 6.4 is to prove the following:

(∗) Let θ−1 < N < 1
α∗ N ≤ θ−2. Assume T ∈ GN , and prove that if T

satisfies (A2) and (A4) up to time 1
α∗ N , then it is in G 1

α∗ N .

The time step of the construction above is determined by the fact that at
times ≤ 1

α∗ N , the lengths of the bound periods are ≤ N . This ratio is noted
in the paragraph on “three important time scales” in Section 4.1.
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Why stop at N = θ−2? We emphasize that the material in this section is
for iterates N ≤ θ−2. The reason for this time restriction is that as mentioned
above, the sets T kB(1) begin to get “large” at k = θ−1, affecting the geometry
of the critical regions. (A1) and (A6), which we will introduce shortly, cannot
be sustained as formulated for N > θ−2.

Notation. In this section and the next, we will be working with the
foliations Fk. Given that we have defined F1 to be the initial foliation on R1,
it is advantageous in discussions involving Fk to let ξ1 denote arbitrary points
in R1 and τ1 unit tangent vectors to the leaves of F1. This convention (instead
of the usual (ξ0, τ0)) leads to more pleasing notation such as ξk ∈ Rk and τk

as tangent vectors to the leaves of Fk.

6.3. Controlling Fk, and pushing forward (A1) and (A6)

One way to gain a better grip on the geometry of Rk is to control (ξi, τi)
for ξ1 ∈ R1.

Rules for setting control. (1) We stop controlling (ξi, τi) once ξi enters
B(i); this is compatible with the idea that T kB(i), k = 1, 2, · · · , iθ−1, is to be
seen as the orbit of a single point.

(2) In our inductive scheme to be detailed shortly, the control of (ξi, τi)
proceeds in parallel with the construction of Γi. For this reason, we will take
φ(ξi) ∈ Γi.

(3) As explained in Section 5.2, it suffices to set control at free returns.
Let i be a free return. Then φ(ξi) is chosen as follows: If there exists j < i

such that ξi ∈ C(j) \ C(j+1), then we let φ(ξi) = z∗0(Q
(j)) where Q(j) = Q(j)(ξi).

If ξi ∈ Q(i), we have no choice (in view of (2)) but to let φ(ξi) = z∗0(Q
(i)).

To the five assumptions (A1)–(A5) in Section 4.1, we now add another
one. We say the foliation Fk+1 is controlled on Rk+1 by Γk if for all ξ1 ∈ R1

and i ≤ k, (ξi, τi) is controlled by Γk provided ξi �∈ B(i) for all i ≤ k. (The
indices in the last sentence are intended as written: we say Fk+1 is controlled
because control of (ξi, τi) for i ≤ k leads to geometric knowledge of the leaves
of Fk+1.)

(A6) (N) For all k ≤ θN , Fk+1 is controlled on Rk+1 by Γk.

At this point we would like to assert that (A1)( 1
α∗ N) and (A6)( 1

α∗ N)
hold for T ∈ GN . A proof would involve simultaneously constructing C(k) and
Γk, and using Γk to control Fk+1. What prevents us from making a clean
statement to this effect at this time is that without having first assumed or
proved (A2)(kθ−1)–(A5)(kθ−1) for k > θN , we cannot, in principle, conclude
that orbits controlled by Γk have the properties in Section 5.3.
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We examine the situation more closely: Assume T satisfies (A1)(N)–
(A6)(N). Fix θN < i ≤ 1

α∗ θN , and assume (A1)(iθ−1) holds. Let ξi ∈ C(1)

be an arbitrary point. We define φ(ξi) as in (3) above and assume that τi is
correctly aligned (with respect to Fj where j is the generation of φ(ξi)). The
discussion below pertains only to time ≤ 1

α∗ θN .

Case 1. j ≤ θN . In this case, (ξi, τi) is controlled by ΓθN for the next
min(p, 1

α∗ θN − i) iterates where p is the bound period between ξi and φ(ξi).

Case 2. j > θN , and ξi �∈ B(θN). The conclusion is as in Case 1. The
orbit of ẑ0 := φ(ξi) and that of z0 = z∗0(B

(θN)(φ(ξi))) remain extremely close
during the period in question (more precisely, |ẑk − zk| < ‖DT‖kb

θN

5  e−βk),
and it makes no difference whether we view ξi as bound to ẑ0 or to z0.

Case 3. j > θN and ξi ∈ B(θN). The estimate in the last paragraph shows
that ξi is bound to φ(ξi) – and to z∗0(B

(θN)(φ(ξi)) – through time 1
α∗ θN . From

Proposition 5.1, we know that e	 is well defined on all of B(θN) for all � ≤ N ,
and by our correct alignment assumption together with Lemma 4.7, τi splits
correctly. The evolution of the v-component at ξi can then be compared to
that at z∗0(B

(θN)) by Proposition 5.1 and Lemma 5.3.

The discussion above tells us that in the control (ξ1, τ1), (ξ2, τ2), · · · up
to time 1

α∗ θN , the only role played by Γk \ ΓθN and Fk for k > θN is to
determine the correctness of alignment and subsequent splitting period at free
returns. The rest of the control is really provided by ΓθN . We have argued
that Lemmas 5.2–5.6 apply up to time 1

α∗ θN . Nevertheless, to distinguish
between the present situation and that after we have conferred (A2)–(A5)
upon Γk, we will say, if correct alignment holds for all i ≤ k, that the sequence
(ξ1, τ1), · · · , (ξk, τk) is provisionally controlled by Γk.

We now state the main result of this subsection.

Proposition 6.1. Let θ−1 ≤ N < 1
α∗ N ≤ θ−2, and assume T satisfies

(A1)(N)–(A6)(N). Then for θN < k ≤ 1
α∗ θN :

(a)k C(k) and Γk with the properties in (A1) can be constructed ;

(b)k if ξ1 ∈ R1 is such that ξi �∈ B(i) for all i ≤ k, the sequence (ξ1, τ1), · · · (ξk, τk)
is provisionally controlled by Γk.

Proof. We assume (a)i and (b)i for all i < k.

Proof of (a)k. Noting that it makes sense to speak about those segments
of Fk-leaves that are provisionally controlled as being in a bound or free state,
we begin with the following result of independent interest:

Lemma 6.1. Let γ be a leaf of Fk. If every ξk ∈ γ is free, then γ is a
C2(b)-curve.
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Proof. That τk is b-horizontal follows from Corollary 4.1. As for cur-
vature, we appeal to Lemma 3.3 after using Lemma 5.5 to establish that
|τk| ≥ δK−Kθ(k−i)|τi| for all i < k.

Let γ be a leaf segment of Fk meeting C(k−1). We claim that it is contained
in a maximal free segment that traverses the entire length of Q(k−1), extending
as a C2(b)-curve by > 1

2e−αk on both sides. To see this, let ξk ∈ Rk be such
that dC(ξk) < 1

2e−αk, and suppose it is not free. Then there are only two
possibilities: (1) For some i < k, ξi ∈ B(i) and we stopped controlling its
orbit, or (2) ξi is controlled for all i < k, and ξk is in a bound period initiated
at some time i < k. (1) is not feasible, for if we let z0 = z∗0(B

(i)), then
dC(zk−i) > e−α(k−i), and diam(T k−iB(i))  e−α(k−i) (here we need k < θ−1),
contradicting dC(ξk) < 1

2e−αk. (2) is also impossible, for if we let z0 = φ(ξi),
then dC(zk−i) > e−α(k−i) while |ξk − zk−i| < e−β(k−i)  e−α(k−i).

We have proved that Rk∩Q(k−1), if non-empty, is the union of a collection
of horizontal sections {H}. In each H, we arbitrarily pick an Fk-leaf γ. The
critical point z∗0(Q

(k−1)) constructed in step (a)k−1 induces a critical point of
order k − 1 on γ (Lemma 4.3 and 3.8). By Lemma 3.9, this critical point can
be upgraded to one of order k. We make it an element of Γk, and construct
a Q(k) of length min(2δ, e−λk) centered at it. Doing this for every horizontal
section H that passes through every Q(k−1) completes the construction of C(k)

and Γk.
It follows directly from the next lemma that the sectional diameter of Q(k)

is < b
k

2 .

Lemma 6.2. Every ξk ∈ Q(k) is contained in a codimension one manifold
W with the property that

(i) W meets every connected component of Fk-leaf in Q(k) in exactly one
point;

(ii) for all ξ1, ξ
′
1 ∈ T−(k−1)W , |ξi − ξ′i| < b

i

2 for all i ≤ k.

Lemma 6.2 is proved in Appendix A.19.

Proof of (b)k. As noted earlier, it suffices to consider the case where ξk

is a free return, and it suffices to show correct alignment of τk at ξk. Let γ be
the maximal free segment of Fk-leaf containing ξk. Then the endpoints of γ

are in a bound state, and so are outside of C(k). This leaves two possibilities
for the relation between γ and C(k).

Case 1. γ passes through the entire length of some Q(k). We consider
Q(k) ⊂ Q(k−1) ⊂ Q(k−2) ⊂ · · · until we reach the first Q(j) that contains ξk.
Since ξk ∈ (Q(j) ∩ Rj+1) \ C(j+1), dC(ξk) > e−λ(j+1). We let γ̂ be the Fj leaf
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through ξk, and apply Lemma 4.3 to obtain two points γ(0) and γ̂(0) in γ and
γ̂ respectively with

(i) |ξk − γ(0)| ≈ |ξk − γ̂(0)| ≈ dC(ξk), and

(ii) ∠(γ̂′(0), γ′(0)) < Kb
j

4 .

Letting τ̂j and τk denote the tangents to γ̂ and γ respectively at ξk and using
the fact that γ and γ̂ are C2(b)-curves between the points in question, we have

∠(τ̂j , τk)≤∠(τ̂j , γ̂
′(0)) + ∠(γ̂′(0), γ′(0)) + ∠(γ′(0), τk)

<
Kb

δ3
dC(ξk) + Kb

j

4 +
Kb

δ3
dC(ξk)

< b
1
5 dC(ξk).

Case 2. γ does not meet C(k). We first formally treat the geometry before
making the required angle estimates.

Geometry: (i) Let j be the largest integer such that ξk ∈ Q(j), so that
ξk ∈ H\Q(j+1) where H is a component of Rj+1∩Q(j). Suppose for definiteness
that ξk lies in the right chamber of H \ Q(j+1). We move along γ to the left
until we reach either ξ, the left endpoint of γ, or the right boundary of Q(j+1),
whichever happens first. Once ξ is reached, we stop. Otherwise we continue
moving through Q(j+1) until we reach either ξ or the right boundary of Q(j+2).
(We have used implicitly the fact that γ, which is a leaf of Fk, does not meet
∂Ri for i < k.) By assumption, ξ is reached before we arrive at Q(k), so that
ξ ∈ Q(j′) \ C(j′+1) for some j′ with k > j′ ≥ j.

(ii) We note that ξ can also be regarded as in bound state, and argue now
that φ(ξ) is to the left of ξ. More precisely, we write ξ = ηk, let ηi, i < k,
be the last free return, and let φ(ηi) = ẑ0. Recalling the definition of φ(·) for
critical orbits (§§4.1 and 4.3A), we deduce that φ(ξ) = φ(ẑk−i) is of generation
j′′ for some j′′ ≤ j′ (it can be considerably smaller), and that both ξ and ẑk−i

are in Q(j′′) \ B(j′′). To see that ξ is in the right chamber of Q(j′′) \ B(j′′), we
interpolate between Q(j′) ⊂ · · · ⊂ Q(j′′), noting that the right chamber of each
Q(i) does not meet the left chamber of Q(i−1).

Angles: Let γ̂ be the leaf of Fj through ξk and γ̃ the leaf of Fj′′ through ξ.
We will use the following notation: τk,ξk

and τk,ξ are tangents to γ at ξk and
ξ respectively; τ̂j,ξk

is tangent to γ̂ at ξk, and τ̃j′′,ξ is tangent to γ̃ at ξ. Then

∠(τk,ξk
, τ̂j,ξk

) ≤ ∠(τk,ξk
, τk,ξ) + ∠(τk,ξ, τ̃j′′,ξ) + ∠(τ̃j′′,ξ, τ̂j,ξk

).

The terms above are estimated by

(i) ∠(τk,ξk
, τk,ξ) < Kb

δ3 |ξ − ξk| since γ is free and hence C2(b);

(ii) ∠(τk,ξ, τ̃j′′,ξ) < 3ε0|ξ−φ(ẑk−i)| since ξ = ηk is a bound return (Lemma 5.3);

(iii) ∠(τ̃j′′,ξ, τ̂j,ξk
) < b

1
4

min(j,j′′) + Kb
δ3 |ξ − ξk| from Lemma 4.2.
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Also, we have argued that φ(ẑk−i) is to the left of ξ, so that |ξ − ξk|,
|ξ − φ(ẑk−i)| < dC(ξk). These inequalities together with dC(ξk) � b

j

4 and
dC(ξk) > dC(ξ) > b

j′′
5 give ∠(τk,ξk

, τ̂j,ξk
) < 4ε0dC(ξk).

6.4. What it takes to go from GN to G 1
α∗ N

In this subsection we fix N with θ−1 ≤ N < 1
α∗ N ≤ θ−2, and assume that

T ∈ GN , i.e. (A1)(N)–(A6)(N) hold for T . It is proved in Proposition 6.1 that
without further assumptions, (A1)( 1

α∗ N) holds automatically. The purpose of
this subsection is to determine what constraints we need to impose on T to
put it in G 1

α∗ N .

(A2): Rate of approach to critical set. By assumption, all z0 ∈ ΓθN

obey (A2). At issue is whether or not z0 ∈ Γ 1
α∗ θN \ ΓθN obeys (A2) as

stated in Section 4.1. We distinguish between the two time intervals [1, N ] and
[N + 1, 1

α∗ N ]: On [1, N ], each z0 ∈ Γ 1
α∗ θN \ ΓθN follows closely a critical point

of generation θN (Corollary 5.1). The two orbits do differ by a little, however,
so it is possible for zi to violate slightly the condition in (A2). On [N +1, 1

α∗ N ],
there is no reason why (A2) is respected by z0 ∈ Γ 1

α∗ θN \ ΓθN . We conclude
that (A2)( 1

α∗ N) is a new condition that must be imposed on T if it is to belong
in G 1

α∗ N .

(A3): Correct alignment. We will prove that (A3), in fact, comes for free.
The mechanisms for ensuring correct alignment of w∗

i at free returns and at
bound returns are entirely different. At free returns, this comes from geometry,
from the “rank one” character of T in particular. At bound returns, it comes
from copying. We emphasize that we do not deduce (A3)( 1

α∗ N) directly from
(A3)(N). We prove it from scratch, in a sense, keeping track of the increase
in error each time the picture is copied.

Proposition 6.2. Let T ∈ GN . We assume Γ 1
α∗ θN is constructed, and

fix z0 ∈ Γ 1
α∗ θN . Also, assume the condition in (A2) is imposed on z0 up to

time 1
α∗ N .5 Then (z0,v) is controlled by ΓθN up to time 1

α∗ N . In fact, we
have the following stronger results:

(i) If zi is a free return, then wi is aligned correctly with error < dC(zi)  ε0.

(ii) If zi is a bound return, then w∗
i is aligned correctly with < ε0-error.

Proof. To establish control for the orbit of (z0, w0) with w0 = v, we define
φ(zi) for i ≤ 1

α∗ N according to the rule in Section 4.1, i.e. φ(zi) is the critical

5By this, we mean the condition dC(zi) > min(δ, e−αi) is assumed but only for the orbit
of z0; i.e., no assumptions are made on the behavior of other critical orbits beyond time N .
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point of highest generation j ≤ α∗θi ≤ θN with the property that zi ∈ C(j).
Note that this implies φ(zi) ∈ ΓθN .6 With (A2) imposed on z0, Lemma 4.4
shows that the conditions in Definition 5.1 are met. Correct splitting is proved
inductively as follows. Assume that (z0, w0) is controlled for k − 1 iterates by
ΓθN for some k ≤ 1

α∗ N .

(i) zk is a free return. Let j + 1 be the generation of φ(zk), and let τzk,j+1

be tangent to Fj+1 at zk. We need to show ∠(wk, τzk,j+1)  ε0dC(zk). Let
ξ1 = T−jzk, i.e. zk = ξj+1. From (A6)(N), we know that (ξ1, τ1) is controlled
for j iterates unless ξn ∈ B(n) for some n ≤ j, which is impossible because
that would contradict our assumption that zk is free (j +1 < θ−1 is again used
here). Observe that

∠(wk, τzk,j+1) =∠(DT j
ξ1

wk−j , DT j
ξ1

τ1) ≤
|DT j

ξ1
wk−j ∧ DT j

ξ1
τ1|

|wk||τj+1|

≤ (Kb)j |wk−j ∧ τ1|
|wk||τj+1|

≤ (Kb)j |wk−j |
|wk||τj+1|

.

The second inequality above comes from Sublemma A.4.2 in Appendix A.4; the
rest are straightforward. To estimate the quantity in the final bound, we claim
that |wk−j |

|wk| < Ke−λ′′j where λ′′ is slightly smaller than 1
3λ. This is because

(z0, w0) is, by inductive assumption, controlled by ΓθN for k iterates, and zk

being a free return, Lemma 5.5 applies. Next we claim that 1
|τj+1| < Ke−λ′′j .

This is again a consequence of Lemma 5.5, after we establish the following:
With j ≤ θN , (ξ1, τ1) is a controlled pair by (A6)(N), and ξj+1 is a free return
because the bound-free structure on the orbit segment ξ1, ξ2, · · · , ξj+1 can be
taken to be identical to that of zk−j , zk−j+1, · · · , zk except that bound periods
for zi initiated before time k − j do not count for ξ1. Thus ∠(wk, τzk,j+1) <

(Kb)j .
Correct alignment at zk is now straightforward: If j + 1 < θN , then

∠(wk, τzk,j+1) < (Kb)j  e−2λj ≈ (dC(zk))2. In general, dC(zk) > e−αk ≥
e−α( 1

α∗ N), so that if j + 1 = θN , then

∠(wk, τzk,j+1) < (Kb)j = (Kb)θN−1 < e−
λ

3
N = e−α( 2

α∗ N) ≤ (dC(zk))2.

This completes the proof of the free return case.

(ii) zk is a bound return. Consider first the following scenario: Suppose
zj , j < k, is a free return, and the bound period initiated at that time extends
beyond time k. Let φ(zj) = ẑ0, and assume ẑk−j is a free return.

We estimate the error in alignment at zk as follows: Let g and ĝ be the
generations of φ(zk) and φ(ẑk−j). We claim that g ≥ ĝ − 1. This is because if
ẑk−j ∈ Q(n), then zk is also in Q(n) – or it is just outside, in which case it is

6This is the reason why we require j ≤ α∗θi in our definition of φ(zi) in Section 4.1.
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in the Q(n−1) containing Q(n) (see Lemma 4.5). Now in the definition of φ(·),
there is an upper bound on the generation of the guiding critical orbit. Since
k > k− j, a more stringent upper bound is imposed on ẑk−j than on zk, hence
the assertion.

In the discussion to follow, we let τz,n denote the tangent to the Fn-leaf
at z. The angle to be estimated, ∠(w∗

k(z0), τzk,g), is bounded above by

∠(w∗
k(z0), τzk,g)≤∠(w∗

k(z0), wk−j(ẑ0))

+∠(wk−j(ẑ0), τẑk−j ,ĝ) + ∠(τẑk−j ,ĝ, τzk,g).

From part (i), we have that the second term on the right is < (dC(zk))2:
ẑk−j is free, and dC(zk) ≈ dC(ẑk−j) from Lemma 4.5. The third term is
< Kb

1
4
(ĝ−1) + Kbδ−3e−β(k−j) from Lemma 4.2. To estimate the first term

we write wj(z0) = Aek−j + Bv to obtain

∠(w∗
k(z0), wk−j(ẑ0))<∠(wk−j(zj), wk−j(ẑ0)) + (Kb)k−j

<
1
2
e−

1
2
β(k−j) + (Kb)k−j ;

the second inequality is from Proposition 5.1 and Lemma 5.1. Plugging dC(zk) >

b
1
5
(ĝ−1) (Lemma 4.4) and dC(zk) > e−α(k−j) into the three estimates above, we

obtain

∠(w∗
k(z0), τzk,g)< dC(zk) {dC(zk) + Ke( 1

2
β−α)(k−j) + (Kb)k−j + Kb

1
20

(ĝ−1)}
< ε0dC(zk).

In general, there exist j1 < j2 < · · · < jn < k and ẑ
(1)
0 , · · · , ẑ

(n)
0 ∈ ΓθN

such that

– zj1 is the last free return before time k, with φ(zj1) = ẑ
(1)
0 ;

– ẑ
(1)
k−j1

is not a free return; its last free return is at time j2, with φ(ẑ(1)
j2−j1

)

= ẑ
(2)
0 ;

– ẑ
(2)
k−j2

is not a free return; its last free return is at time j3, and so on,
until

– finally, ẑ
(n)
k−jn

is a free return.

Considerations similar to those above show that as we go through the different
layers of bindings, the errors in alignment form a geometric series which add
up to ≤ e−

1
2
β(k−jn) + (Kb)k−jn .

(A4): Growth of |w∗
i |.

Corollary 6.1. Under the hypothesis of Proposition 6.2, for the critical
orbit z0 in question,

|w∗
i (z0)|

|w∗
N (z0)|

> K−1e( 1
3
λ−2α)(i−N), N < i ≤ 1

α∗N.
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This corollary, which follows from the control of (z0,v) proved in Proposi-
tion 6.2, the condition in (A2), and Lemma 5.4, is in the direction of maintain-
ing (A4)( 1

α∗ N) but the gain in Lyapunov exponent is only about 1
3 of what is

needed for that purpose. Indeed, (A4) is not a self-perpetuating condition: the
exponent in Corollary 6.1, when copied again in future inductive steps, may
lead to a downward spiral in the Lyapunov exponent along critical orbits.

We conclude that (A4)( 1
α∗ N) must be imposed (by external means) to

ensure that T ∈ G 1
α∗ N .

(A5): Quadratic turns, lengths of bound periods and derivative recovery.

Proposition 6.3. Let T ∈ GN be such that (A2)( 1
α∗ N) and (A4)( 1

α∗ N)
hold. Then (A5)( 1

α∗ N) holds automatically.

Proof. Let z0 ∈ Γ 1
α∗ θN be fixed. Suppose z0 = z∗0(Q

(k)), and let ξ0 ∈
Q(k) \ B(k). For the definitions of and relation between p̂(z0, ξ0) and p(z0, ξ0),
see Section 4.3B.

Proof of (A5)(iii). Let γ be the Fk-leaf containing ξ0 in Q(k). Then
there exists z̃0 ∈ γ ∩ B(k) such that z̃0 is a critical point of order p =
min{p(z0, ξ0), kθ−1} on γ. For all practical purposes, z0 and z̃0 are indis-
tinguishable for p iterates, so we may regard z̃0 as satisfying the hypotheses
of Proposition 5.3 (which z0 has been shown to satisfy). Proposition 5.3 then
gives the desired result (with z̃0 instead of z0).

Proof of (A5)(i). For the lower bound, we have, for all j ≤ h
3 log ‖DT‖ ,

|ξj − zj | < ‖DT‖j |ξ0 − z0| < e−
2h

3  e
−β̂ h

3 log ‖DT‖ ,

proving p̂(z0, ξ0) ≥ h
3 log ‖DT‖ .

For the upper bound, by Proposition 5.3, p = p(z0, ξ0) is the smallest
integer i such that |wi(0)| · |z0 − ξ0|2 > K−1

1 e−βi. We claim that p ≤ 3h
λ . If

not, then

|w 3h

λ
(z0)| · |z0 − ξ0|2 > K−ε 3h

λ |w∗
3h

λ

(z0)| · |z0 − ξ0|2 > K−ε 3h

λ eλ· 3h

λ e−2h > 1.

Lemma 5.2 is used in the first inequality above.

Proof of (A5)(ii). First we consider p̂ = p̂(z0, ξ0), for which we have
|wp̂(z̃0)| ≈ |wp̂(z0)| (Corollary 5.1), and

|z0 − ξ0||wp̂(z0)|= (|z0 − ξ0||wp̂(z0)|
1
2 ) · |wp̂(z0)|

1
2

> K−1|zp̂ − ξp̂| · |wp̂(z0)|
1
2 by (A5)(iii)

> K−1e−
β̂

2
p̂ · eλp̂

2 .
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Now let p ∈ [p̂, p̂(1+ 9
λα)]. From Lemmas 5.2 and 5.4, |wp(z0)| ≥ e−4αp|wp̂(z0)|,

and so

|z0 − ξ0||wp(z0)| > K−1e−4αpe−
β̂

2
p̂ · eλp̂

2 > e
1
3
λp.

(A6): Control of foliations. With (A2) and (A4) assumed and (A3) and
(A5) proved up to time 1

α∗ N , the provisional control proved in Proposition 6.1
is, by definition, upgraded to control in the usual sense.

Summary. (∗) in Section 6.2 is proved.

7. Global geometry via monotone branches

The purpose of this section is to introduce the main geometric ideas needed
to construct T ∈ Gn beyond N = θ−2, and to reformulate (A1) and (A6) to
accommodate these new geometric structures.

7.1. Introduction

The idea of studying piecewise monotonic 1D maps via their monotone
branches has been used many times. We attempt in this section to introduce a
corresponding notion for T . For small n, it is easy to see that Rn is the union
of sets that are tubular neighborhoods of 1D monotone curve segments. These
should be, by any definition, monotone branches of T . For n ≤ θ−1, we have
seen that Rn is punctuated by (tiny) sections that are T i-images of B(n−i), i.e.
the “critical blobs” of Section 4.2. Intuitively, these sets are located at sharp
“turns”; they divide Rn into connected components that are comparatively
“straight”. Leaving precise definitions for later, we think of these components
as monotone branches of generation n.

The picture in the last paragraph cannot be maintained indefinitely, how-
ever, for it relies on the fact that critical blobs are very small compared to their
distances to the critical set. As n increases, it is inevitable that the images of
B(k) will grow large, making it impossible to keep them away from the critical
regions. See Figure 2. As explained in Section 6.2, the significance of time
N = θ−2 is that at time θ−2, the geometry of Rθ−1 becomes relevant, and θ−1

is the time beyond which we cannot guarantee the smallness of the images
of B(1).

critical region

Figure 2. The images of B(k) cannot avoid critical regions forever
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To avoid dealing with the situation depicted in Figure 2, we declared in
Section 4.2 that B(k) ceases to be active after kθ−1 iterates. Once B(k) ceases to
be active, we must “discontinue”, i.e. stop considering, the monotone branches
that end in T kθ−1

B(k). We do not wish to relinquish control completely of the
region occupied by a discontinued branch, however, for it is likely to contain
part of the attractor.

Central to our scheme is the idea of branch replacement. We will prove that
all monotone branches that are discontinued can be systematically replaced by
branches of higher generations, so that at every step n, there is a collection
of “good” branches of generations ∼ n that together account for all parts of
the attractor. This replacement procedure is discussed at the end of Section 8,
after we make precise the notion of a monotone branch and integrate these new
geometric ideas into the dynamical picture described in Sections 4, 5 and 6.

A 2D version of monotone branches was introduced in [WY1]. They were
not used, however, in the inductive construction of the dynamical picture.

7.2. Formal definitions and assumptions

The idea of monotone branches is inseparable from that of critical regions.
Any definition necessarily assumes that certain relevant critical structures have
been identified. Likewise, the identification of these critical structures relies
on the idea of monotone branches. Definition 7.1 below is how we have elected
to enter this inductive cycle.

We say A1 ∪ A2 ∪ A3 are contiguous sections of Rk if (i) each Ai is a
section of Rk, and (ii) if Φi : [−1, 1] × Dm−1 → Rk are the defining maps
for Ai (see the definitions immediately preceding Part II), then for i = 1, 2,
Φi({1} × Dm−1) = Φi+1({−1} × Dm−1).

Definition 7.1. Let T ∈ G0 and n ≥ 2. Suppose that for each k < n,
a collection of sections {B(k)} of Rk has been identified. Then a monotone
branch M of generation n for T is a section of Rn that is the union of three
contiguous sections E ∪ M◦ ∪ E′ with the following properties:

(a) There exist i, i′ < n and B̂(n−i), B̂(n−i′) such that

(i) T−i(E) = B̂(n−i) and i ≤ (n − i)θ−1;

(ii) T−i′(E′) = B̂(n−i′) and i′ ≤ (n − i′)θ−1;

(b) for all i < n, T−i(M◦) ∩ B(n−i) = ∅ for all B(n−i).

E and E′ are called the ends of the monotone branch M , and M◦ is its
main body. We say the end E has reached the end of its period of activity if
i = (n− i)θ−1. For T ∈ Gθ−2 and k ≤ θ−1, {B(k)} is as in Section 4.1. Thus we
know from Sections 4–6 that monotone branches of generation n ≤ θ−1 +1 are
well defined. In this time range, every Rn is the union of a finite number of
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monotone branches, with adjacent branches overlapping in T iB(n−i) for some
B(n−i).

Remark. In the case that I is an interval, there are two special branches
of generation n for all n ≥ 2 with the property that one of their two ends is
Tn−1(Vi). Here V1 and V2 are the two “vertical” components in the boundary
of R̂1; see Section 3.9.

Tree of monotone branches. Associated with T ∈ Gθ−2 is a combinatorial
object ∪1≤k≤θ−1Tk defined as follows: We declare R1 to be the unique monotone
branch of generation 1 (even though it has no ends), and let T1 = {R1}. In
general, Tk consists of a collection of monotone branches of generation k. Let
M ∈ Tk for some k < θ−1. Here is how M reproduces: By construction, M

either does not intersect any of the B(k), or it contains in its main body a
finite number of them, say B1, B2, · · · , Bs, in that order. In the first case,
T (M) ∈ Tk+1. In the second, T (M) is the union of s + 1 elements of Tk+1, the
main bodies of which connect T (E) to T (B1), T (Bi) to T (Bi+1), and T (Bs)
to T (E′). This construction defines a finite tree with θ−1 levels.

Suppose for n ≥ θ−1 the tree ∪1≤k≤nTk is defined, i.e. each Tk consists of
a collection of monotone branches of generation k and Tk and Tk+1 are related
as above. We assume further that the critical regions Q(n) and B(n) have been
identified. Then we may extend the tree to level n + 1: Consider one M ∈ Tn

at a time. First we check to see if either one of the two ends E and E′ of M has
reached the end of its period of activity. If so, the branch M is “discontinued”;
i.e., we do not iterate it further. If not, then M reproduces as in the last
paragraph, and Tn+1 consists of all the offspring so obtained as M ranges over
Tn. (Note that no branch is discontinued for n < θ−1.)

Provided that the relevant monotone branches and {B(k)} are well defined
and are related in the manner described above, one can extend Tn indefinitely
and obtain, as n → ∞, an infinite tree T := ∪k≥1Tk.

We turn next to the inductive construction of Tk and C(k). From the pre-
vious discussion, it is clear that the construction of these two objects must
proceed hand in hand. Moreover, after time N = θ−2, due to the discon-
tinuation of certain branches, the structure of critical regions becomes more
complex, and (A1) and (A6) have to be modified accordingly. In (A1′) and
(A6′) below, we try to give as complete a geometric description of these struc-
tures as possible, without seeking to present a minimal set of conditions.

(A1′)(N) Critical regions. For 1 ≤ k ≤ θN , there are sets C(k) called
critical regions with the following properties:

(I) Geometric structure. C(1) is as defined after Section 3.4. For k ≤ θN ,
C(k) has a finite number of connected components {Q(k)} each one of which is
a horizontal section of Rk.
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(a) Relations among different Q(k):

(i) For Q(k) and Q(k′) with k < k′, either Q(k′) ⊂ Q(k) or Q(k) ∩ Q(k′) = ∅.
This defines a partial ordering on the set {Q(k), 1 ≤ k ≤ θN} with Q < Q′

if and only if Q′ ⊂ Q.

(ii) If Q(k1) < · · · < Q(kn) is a maximal chain,7 then ki+1 ≤ ki(1 + 2θ).

(b) Properties of individual Q(k):

(i) Q(k) has length min(2δ, 2e−λk) and cross-sectional diameter < b
k

2 .

(ii) Exactly halfway between the two ends of Q(k) a point z0 = z∗0(Q
(k)) is

singled out; z0 is a critical point of order k with respect to the leaf of the
foliation Fk containing it, and B(k) := {z ∈ Q(k) : |z − z0|h < b

k

5 }.

(II) Construction and relation to Tk. Let M ∈ Tk, k ≤ θN , and let Q

be a component of C(j), (1 + 2θ)−1k ≤ j < k. Then either M ∩ Q = ∅ or it is
the union of a finite number of horizontal sections each one of which extends
> 1

2e−αk on both sides of Q. If M ∩ Q �= ∅, then each connected component
H of M ∩Q contains a unique Q(k), which is located in roughly the middle of
H in terms of the x-coordinate. All Q(k) are constructed this way.

(A6′)(N) Monotone branches. ∪0≤k≤θNTk+1 is defined with the following
properties:

(I) Construction and relation to C(k). For each M ∈ Tk, 1 ≤ k ≤ θN ,
either M does not meet any B(k), or it contains in its main body a finite
number of them, and it reproduces as described in the paragraph on “Tree of
monotone branches”.

(II) Dynamical control. For M ∈ ∪0≤k≤θNTk+1, Fk+1 is controlled on M◦

by Γk.

(III) Relation to Rk. For k ≤ θN(1 + 2θ)−1,

Rk(1+2θ) ⊂ ∪{M, M ∈ ∪k≤j<k(1+2θ)Tj}.

As before, we call z∗0(Q
(k)) a critical point of generation k, and let Γk

denote the set of critical points of generation ≤ k.
We are finally in a position to give the definition of GN that is valid for

all N ∈ Z
+:

GN := {T ∈ G0 | (A1′)(N), (A2)(N)–(A5)(N), and (A6′)(N) hold}.

7By “maximal” we mean no other Q(k) can be squeezed between between Q(ki) and
Q(ki+1).
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The goal for the remainder of Part II, then, is to prove the following,
which is a more general statement than (*) in Section 6.2:

(∗∗) For all N ≥ θ−1, if T ∈ GN satisfies (A2) and (A4) up to time 1
α∗ N , then

it is in G 1
α∗ N .

7.3. Clarification and implications

We have tried to capture in (A1′) and (A6′) a relatively concise summary
of the geometric structures that appear after generation θ−1. Before embarking
on a formal proof of (∗∗), we would like to take this subsection to elaborate on
the implications of these statements and to highlight those features that are
new.

In the discussion below, T is assumed to be in GN .

(1) Neighborhoods of attractors. Our attractor Ω is defined to be Ω =
∩k≥1Rk. For k ≤ θ−1, it is natural to see Rk as an approximation of Ω with
“finite geometry”. Beyond k = θ−1, we are forced to choose between Rk, the
geometry of which becomes increasingly complex, and something with simpler
geometry. We opted for the latter. The set ∪M∈Tk

M , is in general not a
good approximation of Rk; in particular, ∪M∈Tk

M �⊃ Ω. On the other hand,
(A6′)(III) tells us that for all j, ∪{M, M ∈ ∪j≤k<j(1+2θ)Tk} ⊃ Ω. That is to
say, while any one level of the tree T may not be adequate, sets that are unions
of branches from ∼ jθ levels starting with level j are bona fide neighborhoods
of Ω with finite geometry.

(2) Structure of critical regions. (a) The structure of C(k) in (A1′) is not
as complete as that in (A1). First, these regions are no longer nested; i.e. it is
not necessarily the case that C(k+1) ⊂ C(k). From its construction in (A1′)(II),
however, it follows that

C(k) ⊂
⋃

(1+2θ)−1k≤j<k

C(j).

(b) The following structure inside each component Q of C(k) is used many
times in the analysis to follow:8

– With regard to the partial order in (A1′)(I)(a), there exist components
of C(j), j > k, which lie immediately below Q, i.e. if we call these com-
ponents Qi, then Qi > Q and there is no other Q′ with Qi > Q′ > Q.

– By (A1′)(I)(a)(ii), Qi is of generation ki with k < ki ≤ k(1 + 2θ). We
remark that for k ≤ θ−1, ki = k + 1. For k > θ−1, this is not necessarily
the case. The phenomenon described here will be referred to as the

8If the degree of T is zero, then it can happen that Q ∩
(
∪j>kC(j)

)
= ∅.
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“skipping of generations”; it introduces a number of technical problems
(that will be addressed in §8.1).

– By (A1′)(II), each Qi is contained in a horizontal section Hi that stretches
across Q, extending considerably beyond, and

– if k ≤ θN(1 + 2θ)−1, then by (A6′)(III), (Q ∩ Rk(1+2θ)) ⊂ ∪iHi.

We caution that there may be points z ∈ Q(k) ∩ Rk+1 that are not in ∪iHi.

(3) Eventual set of critical points. At the end of our inductive construc-
tion, there is a set C defined by

C = lim
k→∞

Γk or, equivalently, C = ∩n>0 ∪k≥n C(k).

C is the set of critical points for T ∈ G. Note that all orbits of z0 ∈ C satisfy
(A2) and (A4).

(4) Critical blobs and geometry of monotone branches. (a) In the notation
of Definition 7.1, E and E′ are precisely what we called critical blobs in Section
4.2. The requirements that n − i ≤ iθ−1 and n − i′ ≤ i′θ−1 are equivalent to
discontinuing M as soon as one of z∗0(B

(i)) or z∗0(B
(i′)) ceases to be active.

(b) We state a result which together with Lemma 6.1 reinforces our mental
picture of what a monotone branch should be: either M is relatively small (such
as when all or most of it is in bound state), or it consists of a relatively long
horizontal section, namely the part that is free, connecting two relatively small
pieces at the ends consisting of points that are in bound state.

Lemma 7.1. Let T ∈ GN , N ≥ θ−1. Then for M ∈ Tk, 1 ≤ k ≤ θN , the
set

{ξk+1 ∈ M : ξk+1 is free},

if nonempty, is a connected set omitting a neighborhood of E ∪ E′ in M .

Corollary 7.1 below is a direct consequence of Lemma 7.1. A bound of
this type is needed in the treatment of parameter issues in Part III.

Corollary 7.1. There exist K1, K2 depending only on f0 such that for
all T ∈ GN , the following hold for k ≤ θN :

(i) M ∈ Tk has at most K1 children;

(ii) C(k) has at most Kk
2 connected components.

Lemma 7.1 and Corollary 7.1 are proved in Appendix A.20.
We note again that (A1′) and (A6′) are consistent with (A1) and (A6) for

N ≤ θ−2. This is because no monotone branches are discontinued before time
N = θ−2.
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8. Completion of induction

8.1. Preparation: Sections 4, 5 and 6 revisited

Assume T ∈ GN . We begin by bringing to the foreground how the new ge-
ometry introduced in Section 7 affects the statements and/or proofs in Sections
4, 5 and 6.

1. Angles between leaves of Fk for different k (Lemma 4.2): The statement
of Lemma 4.2 is unchanged. Its proof, as stated, compares the leaves of Fk

and Fk′ by going through the leaves of Fj for all intermediate j. Since not all
of the Q(j) are present, the argument needs to be modified slightly: Replace
k + i by ki, i = 0, 1, · · · , n, where Q(k) = Q(k0) ⊃ Q(k1) ⊃ · · · ⊃ Q(kn) = Q(k̂)

are the critical regions present. Since ki+1 ≤ ki(1+2θ), the proof goes through
as is.

2. Distances between critical points (Lemma 4.1): The statement of
Lemma 4.1 is unchanged. In the proof, which estimates |z∗0(Q(k))−z∗0(Q

(k+1))|,
replace k + 1 by k′ where k′ is the generation of the next Q(i) inside Q(k). To
use Lemma 3.8 to induce a new critical point it suffices to have γ̂ traverse
B(k). This holds easily because k′ ≤ k(1+2θ). The order of the newly induced
critical point is then updated as before.

3. “Reproduction” of critical blobs (last paragraph of Section 4.2): Let
Q and Qi be as in paragraph (2)(b) in Section 7.3, and let B(k) and B(ki)

be associated with Q and Qi respectively. Then at time kθ−1, T kθ−1
(B(k)) is

replaced by {T kθ−1
(B(k1)), · · · , T kθ−1

(B(ks))}; i.e., in the absence of in-between
generations, some of the critical blobs T kθ−1

(B(kj)) may be born a little earlier
than before.

4. Existence of suitable φ(·) for critical orbits (Lemma 4.4): This is a
genuine concern, since fewer critical regions and therefore fewer critical points
are available. Both the definition of φ(zi) and the statement of Lemma 4.4 are
unchanged. Its proof is modified as follows:

Case 1. ĵ(1 + 2θ) ≤ α∗θi. This implies zi ∈ Q(ĵ) ∩ (H \ Q(j)) for some
horizontal section H of generation j crossing Q(ĵ), ĵ < j ≤ ĵ(1 + 2θ).

Case 2. ĵ ≤ α∗θi < ĵ(1 + 2θ). Here all ĵ + 1 are replaced by ĵ(1 + 2θ),
and dC(zi) > e−αi is used as before.

In both cases, there is enough room for the new estimates to go through.
With regard to Section 5, unlike the situation in the last paragraph, the

results in this section assume the existence of guiding critical orbits and so are
unaffected. We go directly to Section 6.3.

5. Setting control for (ξk, τk) (§6.3): Here we need to set control for all
ξi ∈ M◦ ∩ C(1), M ∈ Ti. The rules on the selection of φ(ξi) at free returns
are essentially the same as (1)–(3) in the beginning of Section 6.3, with (3)
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modified to read as follows: If there exists j < i such that ξi ∈ C(j) \ ∪k>jC(k),
then we let φ(ξi) = z∗0(Q

(j)(ξi)); otherwise φ(ξi) is of generation i. At issue
is the suitability of this choice of φ(ξi). Given that φ(ξi) may be of a lower
generation than it would have been (due to the skipping of generations) and
that certain monotone branches are discontinued, two questions are: (i) Do we
know that φ(ξi) will remain active for as long as it is needed? (ii) If φ(ξi) is of
generation j < i, is ξi �∈ B(j)?

Let j be the generation of φ(zi). There are two cases to consider.

Case 1. j ≤ i(1+2θ)−1. Here ξi, which is in Ri, lies in a horizontal section
of generation j′ crossing Q(j)(ξi). We may assume j < j′ ≤ j(1+2θ); see (2)(b)
in Section 7.3. Observe that since j′ > j, ξi is not in C(j′) by assumption. It
follows that dC(ξi) > e−λ(j+1)(1+2θ), so that ξi �∈ B(j) and p(ξi)  θ−1j.

Case 2. j > i(1+2θ)−1. By assumption, ξi ∈ Mi ∩Q(j) for some Mi ∈ Ti.
It follows, by (A1′)(II), that Mi extends all the way across Q(j) and Mi ∩Q(j)

contains a component Q(i) of C(i). If ξi �∈ Q(i), the situation is as in Case 1. If
ξi ∈ Q(i), then φ(ξi) = z∗0(Q

(i)(ξi)). It is easy to show that for k = 1, 2, · · · ,
T kξi and T kφ(ξi) lie in the same element of Ti+k until either this branch is
discontinued or the bound period of ξi expires. Recall that when the orbit of
φ(ξi) ceases to be active, the monotone branch containing it is automatically
discontinued.

6. Proposition 6.1 (§6.3): With the idea of provisional control as before,
we reformulate Proposition 6.1 as follows:

Proposition 8.1. For T ∈ GN , and θN < k ≤ 1
α∗ θN :

(a)k C(k) and Γk with the properties in (A1′) can be constructed ;

(b)k Tk+1 with the properties in (A6′) — except for the provisional nature of
the control in (A6′)(II) — can be constructed.

The proof of this proposition is postponed to Section 8.2. Assuming it for
now, we continue with our list of modifications.

7. Alignment of vectors at free returns (§6.4): In the proof of Proposition
6.2(i), we view zk−j as a point ξ1 ∈ R1 and show that (ξ1, τ1) is controlled
for j iterates. In this type of argument, one needs to verify that there exists
M ∈ Tj+1 such that ξj+1 ∈ M ; i.e., the ancestors of this branch were not
discontinued. Here we know M exists because our choice of φ(zk) implies the
existence of Q(j+1) with φ(zk) = z∗0(Q

(j+1)) and ξj+1 = zk ∈ Q(j+1), and, by
definition, every Q(j+1) is contained in some M ∈ Tj+1. The rest of the proof
of Proposition 6.2 is not affected.

The quadratic estimate in (A5) relies on the behavior of the guiding critical
orbits and not on global geometry; it is therefore not affected.
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This completes our list of modifications for Sections 4, 5 and 6 and hence
the proof of (∗∗) stated at the end of Section 7.2 – modulo the proof of Propo-
sition 8.1.

8.2. Construction of critical regions and monotone branches

Proof of Proposition 8.1. We follow in outline the proof of Proposition
6.1, focusing on those aspects of the situation that are new.

Assume (a)i and (b)i for all i < k. For M ∈ Tk, if ξ1 ∈ T−(k−1)M◦, then
the sequence (ξ1, τ1), · · · (ξk−1, τk−1) is provisionally controlled by Γk−1. Thus
it makes sense to speak about the leaf segments of Fk on M◦ as being in bound
or free states. We divide the proof of (a)k and (b)k into the following steps:

1. Construction of C(k) and Γk. Let M ∈ Tk, and let Q = Q(j),
k(1 + 2θ)−1 ≤ j < k, be such that M ∩ Q �= ∅. We observe that M ∩ Q

is the union of horizontal sections each extending > 1
2e−αk on both sides of Q.

This is true because by (A2) for a much earlier time, (E ∪ E′) ∩ Q = ∅ where
E and E′ are the ends of M . We then consider one Fk-leaf segment in M at
a time and argue as in the proof of Proposition 6.1.

Next we explain where Q(k) is constructed (postponing how it is done to
the next paragraph). For each M ∈ Tk, let I(M) be the set of all connected
components of M ∩ Q(j), k(1 + 2θ)−1 ≤ j < k. We define a partial order on
I(M) by set inclusion, i.e. S < S′ if S ⊃ S′. Let H(M) be the set of maximal
elements. A critical region Q(k) is constructed in each H ∈ H(M).

As to how to construct Q(k), let H ∈ H(M) be a component of M ∩Q(j).
We fix an arbitrary Fk-leaf γ in H, and use Lemma 3.8 and z∗0(Q

(j)) to induce
a (unique) critical point z′0 of order j on γ. In the x-coordinate, we know from
Lemma 3.8 that z′0 is < Kb

j

4 away from the center of Q(j). Lemma 3.9 then
tells us that near z′0 there is a unique critical point z0 of order k on γ. We put
z0 ∈ Γk, and construct a Q(k), i.e. a section of length 2 min(δ, e−λk) centered
at it.

C(k) is defined to be the union of all the Q(k) constructed as we let M vary
over Tk.

2. Verification of (A1′). The procedure above immediately gives the fol-
lowing: (1) The Q(k) constructed are disjoint sections of Rk and hence are
genuine connected components of C(k). (2) The partial order in (A1′)(I)(a) is
extended to {Q(k′), k′ ≤ k}; this is because each Q(k) constructed lies imme-
diately below a unique Q(j), k(1 + 2θ)−1 ≤ j < k, in this partial order. (2)
implies (3), namely that the jumps in generation in (A1′)(I)(ii) are as claimed.
Observe also that (A1′)(II) is fulfilled. As for (A1′)(I)(b), all statements are
true by construction except the one regarding sectional diameter, which follows
directly from the next lemma.
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Lemma 8.1. Let M ∈ Tk. Then for all ξk ∈ M◦, there exists a codimen-
sion one manifold W with ξk ∈ W such that

– W meets every connected component of Fk-leaf in M in exactly one point ;

– for all ξ1, ξ
′
1 ∈ T−k+1W , |ξi − ξ′i| < (Kb)

i

2 for i ≤ k.

The proof of this lemma is a small modification of that of Lemma 6.2.
Details are left to the reader.

3. Construction of Tk+1 and verification of (A6′)(I) and (II). The rela-
tion between M ∈ Tk and B(k) follows immediately from our construction in
Step 1. We construct Tk+1 as described in the paragraph on “Tree of monotone
branches” in Section 7.2, proving (A6′)(I). To prove (A6′)(II), it suffices, as
in the proof of Proposition 6.1, to prove correct alignment of the τ -vectors at
free returns, and we consider the two cases as before. To make transparent the
effect of the “missing generations”, we describe in some detail the geometry in
Case 2, the case where γ, our maximal free Fk-segment, does not meet C(k).

Let ξk be fixed. We let j = j0 be the largest integer such that ξk ∈ C(j), and
let Q(j0) = Q(j0)(ξk). Then j0(1+2θ) < k; otherwise γ would lie in a monotone
branch crossing Q(j0), contradicting our assumption that it does not meet C(k).
By (A6′)(III), ξk ∈ Rj0(1+2θ)+1 ⊂ ∪{M, M ∈ ∪j0<	≤j0(1+2θ)T	}. Thus ξk ∈ H

where H is a horizontal section of generation j1, j0 < j1 ≤ j0(1 + 2θ), that
crosses the entire length of Q(j0)(ξk). We may assume Q(j1) is immediately
below Q(j0) in the partial order. Suppose for definiteness that ξk lies in the
right chamber of H \ Q(j1). We move left along γ until we reach either ξ, the
left endpoint of γ, or the right boundary of Q(j1), noting that since j1 < k, γ

cannot meet ∂Rj1 . If we reach the boundary of Q(j1) before reaching ξ, then
we continue to move left along γ, going into Q(j1). For the same reason as
above, j1(1 + 2θ) < k, so that as we enter Q(j1), we have entered a horizontal
section of generation j2, j1 < j2 ≤ (1 + 2θ)j1, that crosses the entire length of
Q(j1), and so on. After going through a finite number of Q(ji), we must arrive
at ξ, for the ji are strictly increasing with i and < k(1 + 2θ)−1.

The argument showing φ(ξ) is to the left of ξ is essentially the same, except
for the fact that the interpolating chain Q(j′) ⊂ · · · ⊂ Q(j′′) also involves skips
in generation. One way to see that such a chain exists is to start from Q(j′′).

After these preparations, the angle estimates are unchanged. This com-
pletes the verification of (A6′)(II).

4. Proof of (A6′)(III). This step involves a very different set of ideas.
We formulate the result as Proposition 8.2 and give the proof in the next
subsection.
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Proposition 8.2. Consider T ∈ GN , and let n ≤ 1
α∗ θN . Assume (a)k

and (b)k in Proposition 8.1 for all k ≤ n − 1. Then for all k ≤ n(1 + 2θ)−1,

Rk(1+2θ) ⊂ ∪{M, M ∈ ∪k≤j<k(1+2θ)Tj}.(9)

Modulo this result, the proof of Proposition 8.1 is now complete.

8.3. Branch replacement: Proof of Proposition 8.2

As explained in Section 8.1, a monotone branch is discontinued before
either one of its ends becomes too large. The problem of “branch replacement”,
roughly speaking, is one of finding a collection of branches of higher generations
that together cover the part of the attractor “exposed” by the removal of the
discontinued branch. Proposition 8.2 tells us explicitly what neighborhoods
are covered by which collections of branches.

We begin with some preliminary definitions. Let M1 be a monotone branch
of generation k1 > k. We say M1 is subordinate to M if (i) M1 ⊂ M , (ii) the
ends of M and M1 are related as follows: Let E and E′ be the ends of M , and
E1 and E′

1 the ends of M1. Suppose T−iE = B̂(k−i); then T−iE1 = B̂
(k1−i)
1

with B̂
(k1−i)
1 ⊂ B̂(k−i); and E′ and E′

1 are related the same way. A collection
of monotone branches {Mj} subordinate to M is called a viable replacement
for M if (M◦ ∩ Ω) ⊂ ∪jMj .

Lemma 8.2. There exists K > 0 for which the following holds: Suppose
M ∈ Tk, k ≤ n, has an end E with the property that T−iE = B̂(k−i), i ≥
Kα(k − i). Then T−iM is contained in a horizontal section H of Rk−i of
length < e−2α(k−i) centered at B̂(k−i).

Lemma 8.2 is proved in Appendix A.21. Let M be as in Lemma 8.2 and
assume, for definiteness, that T−iM lies in the right half of H (it contains,
needless to say, B̂(k−i)). To look for a viable replacement for M , we examine
the structures inside H more closely.

For j = 1, 2, · · · , i − 1, let Sj ∈ Tk−i+j be the ancestors of M , and let
Ŝ0 = T−1S1, so that Ŝ0 is a section of Rk−i containing the right half of H.
From Lemma 8.2, it follows that there exists � with � < Kα(k − i) such that
T−	S	 ⊂ H.

Consider now P ∈ Tp, (k−i) < p < (1+2θ)(k−i+1), such that P ∩H �= ∅.
Then P ∩ H is the union of horizontal sections that run the entire length of
H. (See Figure 3.) We fix one component of H ∩ P , call it Ĥ, and let B̂(p)

denote the B(p) in Ĥ. Whenever possible, we define Pj ∈ Tp+j , j = 1, 2, · · · , i,
as follows: P1 is the child of P such that T−1P1 contains the right half of Ĥ;
for j > 1, Pj is the child of Pj−1 one of whose ends is T jB̂(p). If well defined,
Pj depends on M, P and Ĥ; we write Pj(M, P, Ĥ).
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Figure 3. Replacement branches: ∪P is used to replaced M

We observe that Pj may not be defined: First, P may be discontinued,
in which case it has no children. If that is not the case, then P1 is defined.
Let E′

1 denote the end of P1 not equal to T (B̂(p)). This is clearly the older of
the two ends of P1. It may cause P1 to be discontinued. We may also have
P2 = T (P1), with T (E′

1) causing P2 to be discontinued, and so on.
Let n be as in the statement of Proposition 8.2, and let M, P and H be

as above.

Lemma 8.3. Assume k ≤ (1 + 2θ)−1n. Then the following hold for every
component Ĥ of P ∩ H: If P1 is well defined and E′

1 remains active for �

generations for some � with T−	S	 ⊂ H, then

(i) Pj is well defined for all j ≤ i, and

(ii) Pi is subordinate to M .

Lemma 8.3 is proved in Appendix A.21.

Proof of Proposition 8.2. Our strategy is to construct, for m = 1, 2, · · · ,

n(1+2θ)−1, a collection of monotone branches Sm with the following properties:

(i) For every M ∈ Sm, if M ∈ Tk and E is an end of M with T−iE = B(k−i),
then i ≤ 2

3(k − i)θ−1;

(ii) Sm ⊂ ∪m≤k<m(1+2θ)Tk, and

(iii) ∪{M, M ∈ Sm} ⊃ Rm(1+2θ).

Proposition 8.2 follows immediately from (ii) and (iii). We say M ∈ Sm is
at replacement time if equality holds in (i), i.e. i = 2

3(k − i)θ−1, for one of
its ends. For reasons to become clear momentarily, we have elected to define
replacement time to occur somewhat before the branch is discontinued.

Let S1 = {R1}. We assume for all k ≤ m, Sk has been constructed and
has properties (i)–(iii).
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Construction of Sm+1 with property (i): We consider M ∈ Sm one at a
time. If M has not reached its replacement time, then we put all the children of
M into Sm+1. If it has, then we put into Sm+1 the children of {P ′} where {P ′}
is defined as follows: Suppose M ∈ Tk and E is an end with T−iE = B̂(k−i)

and i = 2
3(k − i)θ−1. Then {P ′} = {Pi(M, P, Ĥ) : P ∈ Sk−i+1 and Ĥ is a

component of H ∩ P}.9
First we show that P ′ is well defined as an element of Tp+i where p is the

generation of P . To do that, it suffices to verify the hypotheses of Lemma 8.3.
To begin with, P1 is well defined as an element of Tp+1 because P ∈ Sk−i+1

and by property (i) for Sk−i+1, both ends of P will remain active for some
period of time. Let E′

1 be as above, i.e. the “other” end of P1. We claim that
E′

1 will last � Kα(k − i) generations: Suppose it was created � generations
prior to p + 1. Then � ≤ 2

3(p + 1 − �)θ−1, so that

Kα(k − i) + �≤Kα(k − i − �) + (Kα + 1)�

≤Kα(k − i − �) + (Kα + 1)
2
3
(p + 1 − �)θ−1

< (p + 1 − �)θ−1.

The hypothesis of Lemma 8.3 is verified and P ′ is defined.
To prove that the children of P ′ meet the condition in property (i) for

Sm+1, we let Ê and Ê′ be its two ends, Ê being the one contained in E. This
end is created the same time E is created. Clearly, i < 2

3pθ−1 since p > k − i.
As for Ê′, it follows from the analysis in Lemma 8.3 that this is the younger
of the two ends. Thus it cannot have reached replacement time if Ê has not.
This completes the construction of Sm+1 with property (i).

Proof of property (ii) for Sm+1: Let M ∈ Sm. If M is not replaced,
then the children of M are obviously of acceptable generation. If replacement
occurs, then the generation of P ′ is estimated as follows: Let all notation be
as above. Since P ∈ Sk−i+1, by inductive assumption, p < (1 + 2θ)(k − i + 1).
Combining this with 3

2θi = k − i, we have

p + i ≤ i + (1 + 2θ)(k − i + 1) = i + (1 + 2θ)
(

3
2
θi + 1

)
< (i + 1)(1 + 2θ).

To complete the proof, we show that i ≤ m. First, it is true for m = 2. In
general, we claim that if E is an end of M and T−iE = B(k−i), then i ≤ m.
This is obviously so if no replacement occurs. In a replacement procedure,
observe that even though the generations of the new branches are higher, their
ends are created exactly the same number of generations earlier as the branch
replaced. (See the proof of Lemma 8.3.)

9If H ∩ P = ∅ for all P ∈ Sk−i+1, then there is no need for replacement. Also, where I
is an interval (see §3.9), the two special branches in Tm having T m−1Vi as one of their ends
are always in Sm.
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Proof of property (iii) for Sm+1: As before, it suffices to consider the
case where M ∈ Sm is at replacement time. We claim that {P ′} is a viable
replacement for M . Let H be as above. By the induction hypothesis, more
specifically, by (iii) for k − i + 1,

H ∩ R(k−i+1)(1+2θ) ⊂ H ∩ (∪{M ′, M ′ ∈ Sk−i+1}) ⊂ H ∩ (∪P );

that is to say, H \ (∪P ) does not meet R(k−i+1)(1+2θ). Thus the part of phase
space deleted as we replace M by {P ′} does not meet Rg where

g := (k − i + 1)(1 + 2θ) + i .

The same computation as in the proof of property (ii) gives g < (m+1)(1+2θ).
This completes the proof of Proposition 8.2.

Remarks. 1. As the proof shows, there is a natural time step for branch
replacements. They occur very infrequently, roughly once every ∼ θ−1 iterates.
Thus when working with the replacement of a branch of generation k, it is
mostly structures of generation up to ∼ θk – including assumption (A6′)(III)
for these times – that count, although certain properties of critical orbits and
the well-definedness of branches up to time k − 1 are also needed.

2. In spite of the qualitative flavor of the statement, the existence of viable
replacements in the setting above reflects the fact that monotone branches
reproduce at rates much faster than the speed with which critical blobs are
allowed to approach the critical set.

9. Construction of SRB Measures

The definition of SRB measures is given in Section 1. For more information
on the subject, see [Y1] and [Y2]. The goal of this section is to prove

Proposition 9.1. Let T ∈ G. Then T has an SRB measure.

9.1. Generic part of construction

Our construction can be thought of as having a “generic” part, i.e. a part
that can be used for many dynamical systems, and a “situation-dependent”
part, i.e. a part that relies (seriously) on the properties of the map in question.
The goal of this subsection is to treat the generic part. We pinpoint what
specific information is needed and then assume it to complete the construction.
For notational convenience, we give the proof in the setting of Part II of this
paper, remarking that aside from dimW u = 1, other properties of T used below
are inessential.

Step 1. Pushing forward Lebesgue measure on a W u-leaf. Let l0 be a piece
of local unstable manifold through ẑ where ẑ is a hyperbolic periodic point or
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belongs in a uniformly hyperbolic invariant set. We let m0 be the Riemannian
measure on l0, and for n = 1, 2, · · · , define

νn =
1
n

n−1∑
i=0

T i
∗(m0)

where T i
∗(m0) is the measure with T i

∗(m0)(E) = m0(T−i(E)) for all Borel
sets E. Let ν be a limit point of νn in the weak∗ topology. It is easy to see
that ν is T -invariant.

To prove that ν is an SRB measure, it is necessary to show that it has
absolutely continuous conditional measures (accm) on unstable manifolds. By
design, this property is enjoyed by νn for all n. Whether it is passed from νn

to ν, however, depends on a number of factors that are situation-dependent.
We describe in Step 2 a construction to facilitate this passage if the conditions
are right. Our construction is based on the idea (also used in [BY]) that it
suffices to control a small fraction of νn.

Step 2. “Catching” a fraction of ν with accm on unstable curves. First
we introduce some language convenient for our purposes. We call a curve γ

an unstable curve if there exist κ < 1 and K > 1 such that for all z ∈ γ and
τ ∈ Xz tangent to γ, |DT−n

z τ | ≤ Kκn|τ | for all n ≥ 0. Next we introduce
the objects used to “catch” a part of ν. Let L be an interval, and let Σ be a
compact set. We say Ψ : L×Σ → R1 is a continuous family of unstable curves
if

(a) Ψ maps L × Σ homeomorphically onto its image;

(b) for each α ∈ Σ, Ψ|L×{α} is a C1 embedding, and Dα := Ψ(L × {α}) is
an unstable curve;

(c) α �→ Ψ|L×{α} is continuous as a map from Σ to C1(L, R1).

We will use the notation N = Ψ(L × Σ) = ∪αDα.
The following condition, the validity of which depends on the specifics of

the map in question, is assumed for the rest of this subsection:

(S) There exist c > 0, K ≥ 1, a continuous family of unstable curves N =
∪αDα, and a sequence of integers n1 < n2 < · · · for which the following
hold. For each i ≥ 0, there is a collection {ω(i)

j } of subsegments of l0
such that

(i) for each i, j, T i(ω(i)
j ) = Dα for some α;

(ii) letting τ(z) denote a unit vector tangent to l0 at z ∈ l0, we have, for
all z, z′ ∈ ω

(i)
j ,

|DT i
zτ(z)|

|DT i
z′τ(z′)| < K;
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(iii) 1
nk

∑nk−1
i=0 m0(∪jω

(i)
j ) > c m0(l0) for all nk.

Let ν̂nk
= 1

nk

∑nk−1
i=0 T i

∗(m0|∪jω
(i)
j

), and let ν̂ be a limit point of ν̂nk
. It

follows from (iii) in Condition (S) that ν̂(N ) > cm0(l0) > 0. From (i) and
(ii), we see that for each nk, ν̂nk

is supported on a finite number of Dα, and
its densities with respect to arclength measure on Dα are bounded between
K and 1

K . The absolute continuity of conditional measures of ν̂ on {Dα} is
now a simple exercise: Let η1 < η2 < · · · be any increasing sequence of finite
partitions on Σ such that

∨
i>0 ηi partitions Σ into points, and let Ei be the

partition on N given by {Ψ(L×S) : S ∈ ηi}. Then E∞ :=
∨ Ei is the partition

of N into {Dα}. Let � ⊂ L be an arbitrary interval, and let A = Ψ(� × Σ).
Then there exists K ′ depending on the constant K in (S)(ii) and on the norms
of the embeddings Ψ|L×{α} such that for all nk and i,

1
K ′

|�|
|L| ≤ (ν̂nk

|Ei)(A) ≤ K ′ |�|
|L| .(10)

Here ν̂nk
|Ei denotes the conditional measure of ν̂nk

given Ei. The relation in
(10) is first passed to ν̂|Ei by letting nk → ∞. It is then passed, by the
martingale convergence theorem, to ν̂|E∞. Our assertion on the conditional
measures of ν̂ follows as we let � range over a countable basis of the Borel
topology on L.

Step 3. Extracting an SRB measure from ν. Let ν be as in Step 1. Then
ν(N ) ≥ ν̂(N ) > 0, and νN := ν|N is TN -invariant where TN : N → N is the
first return map of T to N . Let R : N → Z

+ be the first return time, and
assume for the moment that νN has accm on {Dα}. We claim that

μ :=
∑
n>0

n−1∑
k=0

T k
∗ (νN |{R=n})

normalized is an SRB measure. To prove this, it suffices to show (i) T has a
positive Lyapunov exponent μ-a.e., and (ii) the Dα-curve through a.e. z ∈ N
is its local unstable manifold. Both are true by the construction in Step 2.

While ν̂ (which is not necessarily TN -invariant) has accm on {Dα}, we
do not know in general that νN does as well. The following procedure is used
to extract a part of νN with the desired property: Let νΣ = (πΣ)∗(Ψ−1

∗ (νN ))
where πΣ : L × Σ → Σ is projection. Let λ denote Lebesgue measure on
L, and let νLeb = Ψ∗(λ × νΣ). We then decompose νN into νN = νac + ν⊥
where νac is absolutely continuous with respect to νLeb and ν⊥ is singular with
respect to it (written νac  νLeb and μ⊥ ⊥ νLeb). Since (TN )∗(νac)  νLeb

and (TN )∗(ν⊥) ⊥ νLeb, it follows that both νac and ν⊥ are TN -invariant. By
Condition (S), νac(N ) ≥ ν̂(N ) > 0. The construction of μ above can now be
carried out with νac in the place of νN .
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Summary. We have shown that if for some l0 = W u
loc(ẑ) there is a family

of unstable curves N = ∪αDα for which Condition (S) is satisfied, then T

admits an SRB measure.
For the rest of this section, we assume T ∈ G.

9.2. Dynamics on unstable manifolds

Let
Ωδ := {z0 ∈ Ω : dC(zi) ≥ δ ∀i ∈ Z}.

From Section 3.5, we know that T |Ωδ
is uniformly hyperbolic. Fix ẑ ∈ Ωδ, and

let l0 = W u
r (ẑ) denote its local unstable curve of radius r. We assume r is

small enough that for all ξ0 ∈ l0, dC(ξ−i) > 1
2δ for all i ≥ 0. In the rest of this

section, we let τ0(ξ0) ∈ Xξ0 denote the positively oriented unit vector tangent
to l0, and use τ to denote generic unit vectors tangent to li := T il0.

A. Control of (ξ0, τ0) for ξ0 ∈ l0. For z ∈ Ω \ C, a natural choice of φ(z)
is φ(z) = z∗0(Q

(j)) where j is the largest k such that z ∈ Q(k). Observe that
j = ∞ corresponds exactly to z ∈ C. Thus for all ξ0 ∈ Ω such that ξi �∈ C for
all 0 ≤ i < k, ξ0 is controlled by ∪j>0Γj for k iterates. Proof of control for
τ0(ξ0) is obtained by leveraging (A6′); details are given in Appendix A.22.

Lemma 9.1. For all ξ0 ∈ l0, the sequence (ξ0, τ0), · · · , (ξk, τk) is controlled
by ∪Γj provided ξi �∈ C for all i < k.

Once control is established, the evolution of li is very similar to that of
Fk-leaves. We record their geometric and dynamical properties in B and C
below.

B. Geometry of li. The proof of the following is entirely parallel to that of
Lemma 7.1: (i) For each i > 0, li is partitioned by {T i−kz0, k < i, z0 ∈ (lk∩ Γ̄)}
where Γ̄ is the closure of ∪jΓj into a finite disjoint union of monotone segments
{σ}.

(ii) The free part of σ, if nonempty, is connected, and the function on σ

giving the number of iterates before a point becomes free is U -shaped. (See
the last paragraph of the proof of Lemma 7.1 in Appendix A.20.)

(iii) If σ ∩ Q(1) �= ∅, then either (a) σ ∩ Q(1) meets Γ̄ in a single point ẑ0,
and σ contains a C2(b) curve of length e−αi centered at ẑ0, or (b) σ ∩Q(1) lies
strictly to one side of Γ̄; in this case we let ẑ0 = φ(ξ) where ξ is the point in
σ ∩ Q(1) closest to C.

C. 1D behavior. Behavior near the “turns” excepted, the dynamics of
l0 → l1 → l2 → · · · bear a striking resemblance to those of iterated 1D maps.
By this, we mean a qualitative resemblance rather than the existence of a spe-
cific map f : I → I with the property that fk(πx(l0)) ≈ πx(lk) for all k. Here
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πx denotes projection onto the x-axis. To make precise this qualitative resem-
blance, we formulate three properties in analogy with (P1)–(P3) in Section 2.2.

Proposition 9.2. T k|l0 , k = 1, 2, · · · , satisfy (P1′)–(P3′) below.

(P1′) (Outside of C(1)). Let f0 ∈ M be as in Section 6.1, and let ε =
max(O(a),O(b)). Then for all z ∈ li \ C(1) in a free state, we have

|πx(Tz) − f0(πx(z))|, ||DTz(τ)| − |f ′
0(πx(z))|| < ε.

From this it follows that results analogous to (P1)(i),(ii) with |(fn)′| replaced
by |DTn(τ)| hold with slightly weaker constants for segments of li in free state.

(P2′) (Bound periods and derivative recovery). Let ω be the maximal
free segment in a component of li ∩ C(1), let ẑ0 be as in B(iii) above, and let
P ẑ0 be the partition in Section 2.2 centered at πx(ẑ0). Then there exist K0

and K1 such that
(i) K−1

0 log 1
|z−ẑ0| ≤ p(z) ≤ K0 log 1

|z−ẑ0| for all z ∈ ω;

(ii) |DT p
z (τ)| > e

1
4
λp(z) for all z ∈ ω;

(iii) if πx(ω) ≈ Iμj for some Iμj ∈ P ẑ0 , then |T p(ω)| > e−K1α|μ|.
Let ω be a segment of li. We say all z ∈ ω have the same itinerary for

n − 1 iterates if there exist t1 < t1 + p1 ≤ t2 < t2 + p2 ≤ · · · ≤ n such that for
every k, πx ◦ T tkω ⊂ P+ for some P ⊂ Cδ, pk = minz∈ω p(T tkz), and for all
i ∈ [0, n) \ ∪k[tk, tk + pk), πx ◦ T iω ⊂ P+ for some P ∩ Cδ = ∅.

(P3′) (Distortion estimate). There exists K2 such that the following hold
for all i, n and ω ⊂ li satisfying (i) all z ∈ ω have the same itinerary for n − 1
iterates and (ii) both ω and Tn(ω) are free. Then for all z, z′ ∈ ω,

|DTn
z (τ(z))|

|DTn
z′(τ(z′))| < K2.

A proof of Proposition 9.2 is given in Appendix A.22.

9.3. Distribution of free segments of length > δ

For definiteness, assume l0 is such that either (i) πx(l0) = Iμ0j0 where Iμ0j0

is one of the outermost Iμj or (ii) l0∩C(1) = ∅ and has length > K−1δ. Following
the procedure in Section 2.3, we introduce on l0 an increasing sequence of
partitions Q0 < Q1 < Q2 < · · · with Qi representing a canonical subdivision
by itinerary. This means in particular that Q0 = {l0}, and each ω ∈ Qi−1

has the property that all z ∈ ω have the same itinerary through step i − 1 in
the sense of Section 9.2C. We are particularly interested in those ω ∈ Qi−1 for
which T iω is free and |T iω| > δ. These are the segments that will be used in
our constructions in Section 9.1. Observe that (P3′) holds for T i|ω.
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As in Section 2.3, let S be the stopping time on l0 defined by S(z) = i if
and only if T i(Qi−1(z)) is free and has length > δ. We introduce a sequence
of stopping times S0 < S1 < S2 < · · · on l0 as follows: Let S0 = 0 and S1 = S.
On ω ∈ Qi−1 such that Sk|ω = i, we define Sk+1(z) to be the smallest j > i

such that T j(Qj−1(z)) is free and has length > δ.

Lemma 9.2. There exists K3 such that the following holds for all k ≥ 0
and n > K3 log 1

δ : If ω ∈ Qi−1 is such that Sk|ω = i, then

m0(ω ∩ {(Sk+1 − Sk) > n}) < e−K−1
3 n m0(ω).

Proof. This lemma corresponds to Lemma 2.5 and Corollary 2.1 in Sec-
tion 2.3. The proofs in Appendix A.2 for Lemma 2.5 and Corollary 2.1 depend
only on (P1)–(P3), and they continue to hold as (P1)–(P3) are replaced by
(P1′)–(P3′).

The next lemma locates sites suitable for the construction of N .

Lemma 9.3. There exist an interval L̃ ⊂ I, a number c̃ > 0, a sequence
of integers n1 < n2 < · · · , and a collection of segments {ω̃(i)

j } of l0 such that

(i) πx(T i(ω̃(i)
j )) = L̃;

(ii) 1
nk

∑nk−1
i=0 m0(∪jω̃

(i)
j ) ≥ c̃ m0(l0).

Proof. (1) Estimate from below of the total measure of ω ∈ Qi−1 with
|T i(ω)| > δ. Let Rik = {ω ∈ Qi−1 : Sk|ω = i}. By Lemma 9.2, there exists K ′′

such that ∫
ω
(Sk+1 − Sk)dm0 ≤ K ′′m0(ω) for all ω ∈ Rik.

Writing Sn =
∑n−1

k=0(Sk+1 − Sk) and summing over all ω ∈ ∪iRik for each k,
we obtain ∫

l0

Sndm0 ≤ K ′′n · m0(l0).(11)

Let N be a large integer. Applying Chebychev’s Inequality to (11), we obtain

m0{S[ 1
2K′′ N ] > N} ≤ 1

N

∫
S[ 1

2K′′ N ]dm0 ≤ 1
N

(K ′′ 1
2K ′′N) m0(l0) =

1
2
m0(l0).

This implies ∑
i≤N

m0(∪{ω ∈ ∪kRik}) ≥ 1
4K ′′N m0(l0).(12)

(2) Selection of L̃. We partition I into intervals L1, L2, · · · , L 3
δ

of length
1
3δ each. For ω ∈ Rik, since |T i(ω)| > δ, there exists q = ψ(ω) such that
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πx(T i(ω)) ⊃ Lq. Let ω̂ = ω ∩ T−i(π−1
x (Lq)). By (P3′), there exists K ′′′

independent of ω such that m0(ω̂) > K
′′′−1m0(ω). Together with (12), this

implies that for each N , there exists q(N) such that

1
N

∑
i≤N

m0(∪{ω̂ : ω ∈ ∪kRik, ψ(ω) = q}) ≥ δ

12K ′′K ′′′ m0(l0).

Let L̃ = Lq where q = q(N) for infinitely many N . For each i, then, the
collection {ω̃(i)

j } is {ω̂ : ω ∈ ∪kRik, ψ(ω) = q}.

9.4. Completing the proof of Proposition 9.1

As explained in Section 9.1, it suffices to verify Condition (S). Let l0 be
as in Section 9.2. Using the notation in Lemma 9.3, we let L be the middle 9

10

of L̃, and let

N := closure
{(

∪i,j>0 T i(ω̃(i)
j )

)
∩ (L × Dm−1)

}
.

It remains to show that N is a continuous family of unstable curves.

Lemma 9.4. Let M ∈ Tn be such that M ∩N �= ∅. Then

(i) there exists ω̃
(i)
j such that T i(ω̃(i)

j ) ⊂ M◦;

(ii) M ∩ (L × Dm−1) is a horizontal section.

Proof. (i) Since N ⊂ Ω ⊂ int(Rn), M ∩ N �= ∅ =⇒ M ∩ γ �= ∅ for some
γ = T i(ω̃(i)

j ). It remains to show that γ cannot meet E ∪ E′, the ends of M .
This is because all points in E ∪ E′ are in bound state, while γ is free. (We
need to know ξi ∈ γ is free when we view the orbit as starting from ξi−n. For
n > i, this is true because for ξ0 ∈ l0, dC(ξj) > 1

2δ for all j < 0.) (ii) By
Lemma 8.1, there is, through each ξ ∈ γ, a codimension-one stable manifold
V (ξ) := Tn(W s

n(T−nξ)). Each V (ξ) has diameter < Kb
n

5 and spans the cross-
section of M , i.e. ∪ξ∈γV (ξ) is a section of Rn. All points in this section are
free, so it is a horizontal section of length ≈ 1

3δ, of which roughly the middle
9
10 is occupied by M ∩ (L × Dm−1).

Verification of Condition (S). Construction of {Ei}. Let

An = {M ∩ (L × Dm−1) : M ∈ Tn, M ∩N �= ∅}.
By Lemma 9.4, elements of An are horizontal sections. We give an algorithm
below that selects, for each n, a cover E ′

n of N by a finite number of pairwise
disjoint elements of ∪j≥nAj . We then let En = {E ∩N : E ∈ E ′

n}.
Let E ′

1 = A1, and assume E ′
i−1 is constructed. To construct E ′

i, we first put
all E ∈ E ′

i−1 of generation ≥ i in E ′
i. Each E ∈ E ′

i−1 of generation i− 1 is then
replaced systematically by elements of {A ∈ Aj , j ≥ i, A ⊂ E} as follows: first
pick all F ∈ Ai, then pick all F ∈ Ai+1 that cover some points in N ∩ E not
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yet covered, then pick all F ∈ Ai+2 covering some points not covered before,
and so on. Notice at each stage that the branches chosen are pairwise disjoint.
Moreover, the process stops in finite time, for every z ∈ N lies in some M ∈ T .

Properties of E∞ =
∨

n>0 En. First we show that the elements of E∞ form
a continuous family of C1 curves. Since every E ∈ E∞ is the nested intersection
of a sequence of horizontal sections whose cross-sectional diameters tend to
zero, it is the graph of a function ϕ : L → Dm−1. By Lemma 9.4, ϕ is the
pointwise limit of a sequence of functions ϕk, the graph of each one of which
is contained in T i(ω̃(i)

j ) for some ω̃
(i)
j . Since T i(ω̃(i)

j ) is a C2(b) curve, |ϕ′′
k| is

uniformly bounded for all k; therefore a subsequence ϕki
converges to ϕ in the

C1 norm.
To see that the curves in E∞ are unstable curves, we use the fact that

T i(ω̃(i)
j ) are unstable curves (Lemma 5.5). The uniform derivative estimates

along these curves in backward time are passed to the graph of ϕ, and the
distortion estimate in (S)(ii) is verified similarly.

Finally, (S)(iii) is given by Lemma 9.3. This completes the verification of
Condition (S) and the proof of Proposition 9.1.

PART III. PARAMETER ISSUES

Let G = ∩n≥0Gn. The purpose of Part III is to prove the existence and
abundance of maps in G. More specifically, we will prove that for 1-parameter
families Ta : X → X satisfying the Standing Hypotheses in Section 1, the set
{a : Ta ∈ G} has positive Lebesgue measure. Our plan is to construct a set
Δ ⊂ {a : Ta ∈ G} with a generalized Cantor structure in which the gap ratios
tend to zero exponentially fast.

We cannot overemphasize the dependence of Part III on earlier sections.
Results from Part II on properties of individual T ∈ G are clearly relevant as
we now seek to identify such maps from a given 1-parameter family. Since the
criteria for belonging in G reside with the behavior of critical orbits, a major
focus of the present study is on the evolution of critical curves, i.e. curves of
the form a �→ zi(a), i = 0, 1, 2, · · · , where z0 is a critical point. We will show
that a �→ zi(a) define processes that have a great deal in common with the 1D
maps studied in Section 2. Part of the analysis involves adapting the results
of Section 2 to the present context.

Each of the first three sections of Part III discusses one important aspect
of the problem. These ideas culminate in Section 13, which contains the actual
construction of Δ.

Hypotheses for Part III. We assume

(1) {Ta, a ∈ [a0, a1]} satisfies the Standing Hypotheses in Section 1;
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(2) [a0, a1] is in a sufficiently small neighborhood of a∗ that Ta satisfies the
hypotheses at the beginning of Part II for all a ∈ [a0, a1].

The generic constant K here depends on the family Ta as well as our choice
of λ.

10. Dependence of dynamical structures on parameter

Notation such as Tk(a) and C(k)(a) are used to indicate dependence on the
map Ta.

10.1. Continuation of critical regions and critical points

Definition 10.1. Let J ⊂ [a0, a1] be an interval, and assume that for some
â ∈ J , Tâ ∈ Gn. We say {Ta, a ∈ J} is a continuation of Tâ in Gn if the following
hold:

(1) For all a ∈ J , Ta ∈ Gn, and there is a choice of Γθn(a) with the following
properties:

(2) The monotone branches of Tâ of generation ≤ θn deform continuously
on J ; i.e., for each k ≤ θn, there is a map Φk defined on J × Tk(â) such
that

(i) for each fixed a, M �→ Φk(a, M) is a bijection between Tk(â) and
Tk(a);

(ii) for each fixed M , a �→ Φk(a, M) is continuous (in the Hausdorff
metric).

(3) The critical regions of Tâ of generation ≤ θn deform continuously on J ;
i.e., for each k ≤ θn, there is a map Ψk defined on J × {Q(k)(â)} such
that

(i) for each fixed a, Q �→ Ψk(a, Q) is a bijection between {Q(k)(â)} and
{Q(k)(a)};
(ii) for each fixed Q, a �→ Ψk(a, Q) is continuous.

(4) The critical points of Tâ of generation ≤ θn continue smoothly to all of
J ; i.e., for each z0(â) = z∗0(Q

(k)(â)), k ≤ θn, a �→ z0(a) is a C2 curve
satisfying

(i) z0(a) = z∗0(Q
(k)(a)) where Q(k)(a) = Ψ(a, Q(k)(â));

(ii) if ξ1(â) = T
−(k−1)
â z0(â) and l is the F1-leaf containing ξ1(â),10 then

there is a C2-function ξ1 : J → l such that z0(a) = T k−1
a (ξ1(a)).

10We assume F1 is independent of a.
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We refer to a �→ Γθn(a) with property (4) as a coherent choice of Γθn(a).11

Observe that if {Ta, a ∈ J} is a continuation of Tâ, then (i) {Φk} “com-
mutes” with the actions of Ta; i.e., if M ∈ Tk(â) is such that TâM = ∪s

i=1Mi,
Mi ∈ Tk+1(â), then TaΦk(a, M) = ∪s

i=1Φk(a, Mi); and (ii) the partial order on
{Q(k), k ≤ θn} is respected by {Ψk}. The validity of these statements is easily
seen by comparing two nearby a.

Our first goal is to give sufficient conditions for the existence of contin-
uations. To ensure that a nontrivial continuation exists, we choose Tâ in the
“interior” of GN . Let

G#
N = {T ∈ GN : T satisfies (A2)# and (A4)#}

where (A2)# and (A4)# below require that for all z0 ∈ ΓθN of generation k,
the following hold for all i ≤ kθ−1:

(A2)# dC(zi) > min(δ, 2e−αi);

(A4)# |w∗
i | > c2e

λ∗i where λ∗ = λ + 1
100λ0.

Clearly, G#
N ⊂ GN .

Proposition 10.1 (Dynamical continuation). There exists ρ > 0 de-
pending only on ‖Ta‖C3 and c2 for which the following holds: Assume Tâ ∈ G#

N .
For n ≤ N , let Jn = [â− ρn, â + ρn]. Then {Ta, a ∈ Jn ∩ [a0, a1]} is a continu-
ation of Tâ in Gn.

Proof. We assume the following hold for n < N and prove it for n + 1:

(i) {Ta, a ∈ Jn} is a continuation of Tâ in Gn;

(ii) (a priori estimate on | d
daz0(a)|) there is a constant K > 0 independent

of ρ such that for all a ∈ Jn, if z0(a) ∈ Γ[θn](a) is of generation j, then∣∣∣∣ d

da
z0(a)

∣∣∣∣ < Kj .

There is nothing to do if kθ−1 < n+1 < (k+1)θ−1: no new monotone branches
or critical regions are constructed, and all critical points of generation ≤ k are
treated in the previous step. We assume therefore that n + 1 = (k + 1)θ−1 for
some k.

1. Coherent choice of Γk+1(a), construction of C(k+1)(a) and Tk+1(a), and
verification of (2) and (3) in Definition 10.1 for objects of generation k + 1.
For each individual a ∈ Jn, since T = Ta ∈ Gn, we know by Proposition 8.1
that C(k+1) and Tk+1 can be constructed. Moreover, for each M ∈ T (k) and

11For Ta ∈ Gn, Γθn(a) is determined only up to a finite precision; the exact location of
Γθn(a) depends on choices of Fk-leaves on which critical points are constructed.
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Q = Q(j), (k + 1)(1 + 2θ)−1 ≤ j ≤ k, there is the following dichotomy: either
TM ∩ Q = ∅, or a horizontal section of TM pierces through the entire length
of Q .

Now let a vary over Jn. For M ∈ Tk(â), we know by inductive assumption
that M(a) := Φk(a, M) varies continuously with a, as does Q(a) := Ψj(Q).
Since the dichotomy above holds for all a – and there is no way to go from
one scenario to the other in a continuous manner – it follows that exactly one
of the two scenarios must prevail for all a ∈ Jn. Indeed, the number of times
TaM(a) goes through Q(a) is constant for all a. This proves properties (2)(i)
and (3)(i) in Definition 10.1.

Suppose for M and Q as above, Tâ has a critical point ẑ0(a) ∈ TâM(â) ∩
Q(â). Let lk(â) be the connected component of Fk-leave in M(â) on which
T−1

â z0(â) is located. Let l = T−k+1
â lk. Then l is a leaf of F1, and F1 does not

depend on a. From the last paragraph, we know that T k
a (l) pierces through

Q(a) for all a. Let z0(a) be constructed on T k
a (l). This construction guarantees

the continuity of a �→ z0(a) for all critical points of generation k + 1 and
consequently properties (2)(ii) and (3)(ii) in Definition 10.1.

2. Smoothness of a �→ z0(a) and estimate on | d
daz0(a)| for z0 of genera-

tion k + 1. Continuing to use notation from the last paragraph, we let x �→
γ(x, a) = (x, ψ(x, a)) be the curve T k

a l in Q(k+1)(a), and let z0(a) = (x̄(a), ȳ(a)).
For each (x, a), we consider in Xγ(x,a) the 2D plane S = S(∂xγ(x, a),v) with
orthonormal basis {u, v} where u = ∂xγ/|∂xγ| and v points in roughly the same
direction as v. Let ek+1 be the most contracted direction of DT k+1

a in S. As
in Section 3.6, we write ek+1 as a linear combination of u and v, and let ηk+1

denote its v-component. Then x̄(a) is defined implicitly by ηk+1(x̄(a), a) = 0,
and therefore is C2 as a function of a. Likewise, ȳ(a) = ψ(x̄(a), a) is a C2

function of a.
The following lemma is proved in Appendix A.23.

Lemma 10.1. As functions of x and a,
(a) ‖u‖C2 , ‖v‖C2 < Kk+1;
(b) ‖ηk+1‖C2 < Kk+1.

Corollary 10.1. ∣∣∣∣dz0(a)
da

∣∣∣∣ ,

∣∣∣∣d2z0(a)
da2

∣∣∣∣ ≤ Kk+1.(13)

Proof of Corollary 10.1. Differentiating ηk+1(x̄(a), a) = 0, we obtain

dx̄(a)
da

= −∂aηk+1

∂xηk+1
(x̄(a), a).(14)

Observe that |∂xηk+1| > K−1: This follows from Lemma 3.7 and the fact that
derivative growth along the orbit of z∗0(Q

(k)(a)) is passed on to that of z0(a)



TOWARD A THEORY OF RANK ONE ATTRACTORS 417

via Lemma 3.2. Our claim on the first derivative follows directly from Lemma
10.1(b) and the fact that dȳ

da = ∂xψ dx̄
da +∂aψ. To estimate the second derivative

we differentiate (14) one more time with respect to a, and use again Lemma
10.1.

3. Proofs of (A2)(n + 1) and (A4)(n + 1). Let z0 be a critical point
of generation k + 1. We give details only for step n + 1: By Corollary 10.1,
|z0(a) − z0(â)| ≤ Kk+1(2ρn+1) for all a ∈ Jn+1, so that

|zn+1(a) − zn+1(â)| < K‖DT‖n+1|z0(a) − z0(â)|  e−α(n+1)(15)

provided ρ is sufficiently small relative to ‖DT‖−1 and K−1. To finish, we need
to deal with the differences between dC(a)(·) and dC(â)(·). Suppose zn+1(â) ∈
C(1), and φ(zn+1(â)) = z∗0(Q

(j)(â)). Then j ≤ α∗(n + 1)θ, zn+1(â) ∈ Q(j)(â),
and Tâ has a horizontal section H(â) extending considerably beyond Q(j)(â)
on both sides. We conclude from the continuous deformation of structures of
generation j, the estimate |z∗0(Q(j)(â)) − z∗0(Q

(j)(a))| ≤ Kj |â − a| and (15)
above that zn+1(a) is either in Q(j)(a) or it is in H(a) and just outside of
Q(j)(a), and dCa

(zn+1(a)) > 1
2dCâ

(zn+1(â)) > e−α(n+1).
To prove (A4)(n+1), we first convert the problem to one involving |wi|,

thereby picking up some factors of eαi. The comparability of |wi(a)| and |wi(â)|
is given by the following lemma, the proof of which follows closely that of
Lemma 3.2 and is omitted.

Lemma 10.2. Let z0(â) be of generation j ≤ θ(n + 1). For i ≤ n + 1,
let wi(â) = (DT i

â)z0(â)v, and wi(a) = (DT i
a)z0(a)v, a ∈ Jn+1. Then |wi(a)| ≥

1
2 |wi(â)|.

This completes the proof of (i) and (ii) for step n + 1.

10.2. Properties of a �→ z0(a), z0 ∈ ∪Γj

Unlike the situation in 1D, ∪j≥1Γj is an infinite set, and the domains of
definition of a �→ z0(a) decrease as the generation of z0 increases. For Tâ ∈ G#

N

and z0 ∈ ΓθN (â) of generation θn, n ≤ N , we guarantee the continuation of
z0(â) only to the interval Jn = [â−ρn, â+ρn]. We claim, however, that there is
a uniform bound on d

daz0(a) that is valid for all z0 (independent of generation)
on their respective intervals of continuation.

Lemma 10.3. Let â, Jn and Γθn be as in Proposition 10.1, and let a �→
z
(k)
0 (a), a ∈ Jn, be a curve of critical points of generation k ≤ [θn]. Then there

is z
(k′)
0 of generation k′, k′ < k ≤ k′(1 + 2θ), with z

(k)
0 ∈ Q(k′)(z(k′)

0 ) such that∣∣∣∣ d

da
(z(k)

0 (a) − z
(k′)
0 (a))

∣∣∣∣ < b
k′
9 .

A proof of Lemma 10.3 is given in Appendix A.23.
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Corollary 10.2. Under the hypotheses of Lemma 10.3, there exists K1

such that for every curve of critical points a �→ z
(k)
0 (a), k ≤ θn, if z

(k)
0 =

(x0, y0), then ∣∣∣∣ d

da
x0(a)

∣∣∣∣ ≤ K1,

∣∣∣∣ d

da
y0(a)

∣∣∣∣ ≤ b
1
10 .

Proof. Let z0 = z∗0(Q
(k)), and suppose Q(k) = Q(k0) ⊂ Q(k1) ⊂ · · · ⊂

Q(1) are consecutive critical regions. We obtain, by comparing a �→ z
(ki)
0 and

a �→ z
(ki−1)
0 , that | d

da(z(k)
0 (a) − z

(1)
0 (a))| < b

1
10 . The assertions in this corollary

now follow immediately from properties of the finitely many critical points
z
(1)
0 = (x(1)

0 , y
(1)
0 ) of generation one, namely d

day
(1)
0 = 0 and | d

dax
(1)
0 | < 1

2K1 for
some K1.

Remark. Lemma 10.3 and Corollary 10.2 together imply the following:
(1) The speeds of movement of all critical points are uniformly bounded. (2)
While Γn as a whole moves with speed O(1), the relative speed of motion of z′0
and z0 for z′0 ∈ Q(k)(z0) decreases exponentially fast with k.

10.3. Setting for the analysis to follow

Recall that for a single map T ∈ GN , whether or not T is in G 1
α∗ N is

determined by whether (A2) and (A4) are satisfied up to time 1
α∗ N . We now

consider a family {Ta, a ∈ J} where Ta ∈ GN for all a. In addition to asking
whether Ta ∈ G 1

α∗ N for each individual a, we will also want to know for what
fraction of a ∈ J is Ta ∈ G 1

α∗ N .
This leads us to study the evolution of ζi : a �→ zi(a) where ζ0 is a coherent

choice of z0 ∈ Γ 1
α∗ θN . The analysis is highly inductive: For each Ta, critical

points are defined inductively, and the presence of certain structures is needed
to track their orbits. We wish now to track not single orbits but entire curves.
Precise conditions under which this analysis will be carried out are as follows:

Assumptions in the inductive analysis of critical curves. Let J ⊂ [a0, a1]
be a parameter interval.

(C1) {Ta, a ∈ J} is a continuation (of some Tâ) in GN .

(C2) A coherent choice of Γ 1
α∗ θN (a), a ∈ J , has been made.

Clarification 1. (C1) and (C2) are related as follows: If, in addition to
(C1), we have Tâ ∈ G#

N for some â ∈ J , then steps 1 and 2 in Proposition 10.1
can be carried out for critical points of generation k for all k ≤ 1

α∗ θN . In
Sections 11 and 12 we are not concerned with how (C2) comes about, but note
that once a coherent choice of Γ 1

α∗ θN (a) is made, the estimates in Lemma 10.3
and Corollary 10.2 are valid for the critical points in question. Justifications
for this claim follow verbatim those in Sections 10.1 and 10.2.
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2. Nothing is assumed or claimed at this point about the behavior of
critical orbits beyond time N . That is the objective of the investigation in the
pages to follow. More precisely, we will be concerned with the evolution of

ζi : a �→ zi(a) for a ∈ J, z0 ∈ Γ 1
α∗ θN \ ΓθN , i ≤ 1

α∗N

with particular interest in the time range N < i ≤ 1
α∗ N .

3. As we will see, this analysis requires that all critical structures of gen-
eration ≤ θN exist and vary with parameter in a certain way. This is provided
by (C1) and Corollary 10.2. Also, critical structures beyond generation θN

are not relevant for this analysis.

11. Dynamics of curves of critical points

The aim of this section is to bring to light a certain resemblance between
the evolution of ζi and that of certain “horizontal” curves under the iteration of
Ta for a fixed a. The reason behind this resemblance is that | d

daζi| is comparable
to |DT i(v)|. We will show that for as long as Ta ∈ GN , this comparability self-
perpetuates once we get it going, and the start-up mechanism is provided by
the parameter transversality condition in the Standing Hypotheses in Section 1.
This is discussed in Section 11.1. Basic properties in the evolution of ζi, such
as bound and free periods, are discussed in Section 11.2.

Conditions (C1) and (C2) in Section 10.3 are assumed throughout.

11.1. Equivalence of space- and a-derivatives

We use the notation zi(a) = T i
a(z0(a)), wi(a) = (DT i

a)z0(a)(v) and τi(a) =
d
dazi(a).

Proposition 11.1. There exist K̂ > 1 and i0 ∈ Z
+ (both depending only

on {Fa}), such that the following holds for all (a, b) sufficiently close to (a∗, 0):
Fix z0 ∈ Γ 1

α∗ θN \ ΓθN . We assume that for some n ≤ 1
α∗ N , dC(zi(a)) ≥

min(δ, e−αi) for all a ∈ J and i < n. Then

K̂−1 ≤ |τi|
|wi|

≤ K̂ for all i0 < i ≤ n.

The required proximity of (a, b) to (a∗, 0) depends also on i0, and under
the conditions above, the pair (z0, w0) is controlled by ΓθN up to time n (see
Proposition 6.2).

Proposition 11.1 is a consequence of Standing Hypothesis (b) in Section 1
and can be viewed as the higher dimensional analog of Proposition 2.3 in



420 QIUDONG WANG AND LAI-SANG YOUNG

Section 2.4. Recall from Proposition 2.3 that

lim
k→∞

k∑
s=1

d
da(fa(xs−1))(a∗)
(fs−1)′(x1(a∗))

=
[

d

da
fa(x̂(a)) − d

da
q(a)

]
a=a∗

:= ĉ.(16)

The constant K̂ in Proposition 11.1 is derived from ĉ together with angle and
other considerations.

Proof. Letting ψ(z) = ∂
∂a(Taz), we write

τi = DTzi−1τi−1 + ψ(zi−1) = DT i
z0

τ0 +
i∑

s=1

DT i−s
zs

ψ(zs−1) := I + II

where

I = DT i
z0

τ0 +
i0∑

s=1

DT i−s
zs

ψ(zs−1) and II =
i∑

s=i0+1

DT i−s
zs

ψ(zs−1),

i0 being a number to be determined. We will show there exist K0 (depending
only on {Ta}) and i0 such that if (a, b) is sufficiently near (a∗, 0), then for
i0 < i ≤ n,

– K−1
0 |ĉ| < |I|

|wi| < K0|ĉ| and

– |II|
|wi| is as small as we wish.

These estimates together give the desired result.

Estimate on |II|
|wi| . Since |ψ(·)| < K, it follows from Lemma 5.6 that

|II| ≤ K

i∑
s=i0+1

‖DT i−s
zs

‖ ≤ K
i∑

s=i0+1

Ke−λ̂s|wi|.

Choosing i0 large enough, we can make K2
∑∞

s=i0+1 e−λ̂s  K−1
0 |ĉ|.

Estimate on |I|
|wi| . Increase i0 if necessary so that with k = i0, the sum

on the left side of (16) is < 1
2 ĉ from its limit; i0 is fixed from here on. Let V

be such that I = DT i−i0
zi0

V , i.e.

V = DT i0
z0

τ0 +
i0∑

s=1

DT i0−s
zs

ψ(zs−1).

The verification of Lemma 11.1 is given in Appendix A.24.

Lemma 11.1. As (a, b) → (a∗, 0),

|w1|
|wi0 |

V →
(
±

i0∑
s=1

d
da(fa(xs−1))(a∗)
(fs−1)′(x1(a∗))

, 0

)
.
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It is important to note that the convergence above is uniform among all
critical curves. This is evident from the uniform bound on d

daz0 and the proof
of Lemma 11.1.

To finish, we write

|I|
|wi|

=
|DT i−i0

zi0
(V )|

|DT i−i0
zi0

(wi0)|
=

|DT i−i0
zi0

( V
|V |)|

|DT i−i0
zi0

( wi0
|wi0 |

)|
· |V |
|wi0 |

.

Notice first that by Lemma 11.1, 1
3

ĉ
|w1| < |V |

|wi0 |
< 2 ĉ

|w1| . We claim that

K−1 <
|DT i−i0( V

|V |)|
|DT i−i0( wi0

|wi0 |
)| < K(17)

provided (a, b) is sufficiently near (a∗, 0). Assume ∠(V, wi0) �= 0, and let ej−i0 =
ej−i0(S) be the most contracted vector of order j− i0 where S = S(V, wi0). To
prove (17), it suffices to show that ej−i0 is well-defined, ∠(ej−i0 , wi0) > K−1,
and ∠(V, wi0)  K−1. With (a, b) sufficiently near (a∗, 0), we may assume for
some s0 � i0 that dC(zs) > 1

2δ0 for all s < s0 (δ0 is as in Definition 1.1). This
together with our assumption that dC(zj) ≥ min(δ, e−αj) implies that for all
j > i0, |wj |/|wi0 | > K−1e(λ′−2α)(j−i0), proving ej−i0 is well-defined. Since wi0

is b-horizontal, we have ∠(e1, wi0) > K−1 by Lemma 3.7. This together with
∠(e1, ej−i0) < (Kb)j−i0 (Lemma 3.1) gives ∠(ej−i0 , wi0) > K−1. As for V ,
Lemma 11.1 tells us its slope is as small as we wish. Hence ∠(V, wi0)  K−1.

We remark that all the estimates in the proof above — and hence the
constants in the statement of the proposition — are independent of N . For
as long as both τi and wi grow in magnitude, the angles between them must
shrink by rank-one arguments. The assumptions in the next lemma are as in
Proposition 11.1. A detailed proof is given in Appendix A.24.

Lemma 11.2. If zi is a free return, then ∠(τi, wi) < K
|τi| .

The following are assumed for the rest of this paper : (i) i0 is sufficiently
large, (ii) (a, b) is sufficiently close to (a∗, 0), and (iii) all critical points stay
at distances > 1

2δ0 away from C for � i0 iterates – where “sufficiently large”,
“sufficiently close” and “�” are as required in the proof of Proposition 11.1.

11.2. Resemblance to phase-space dynamics

In addition to (C1) and (C2), we now fix z0 ∈ Γ 1
α∗ θN \ ΓθN and impose

on it

(C3) For some i0 < n ≤ 1
α∗ N , dC(zi) > min(δ, e−αi) for all i ≤ n.
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We discuss below four aspects of the dynamics of ζi : a �→ zi(a), i =
0, 1, 2, · · · . The notation is as in Section 11.1; in particular, wi(a)=(DT i

a)z0(a)(v)
and τi(a) = d

dazi(a). Recall also that s(u) = |uy|
|ux| where u = (ux, uy) is a vector

in R
m = R × R

m−1.

A. Outside of C(1). For the first i0 iterates, we do not have a great deal
of information on τi. Let ε̂ := K̂c2e

− 1
4
λ0i0 +O(b) where K̂ is as in Proposition

11.1. We may assume ε̂  δ.

Lemma 11.3. The following hold for every a:

(a) If zn is free, then s(τn) < ε̂.

(b) If zn is free, and zn+j �∈ C(1) ∀ 0 ≤ j < j0, then

(i) |τn+j | > K−1δe
1
4
λ0j |τn| for j ≤ j0; and

(ii) if in addition γn+j0 ∈ C(1), then |τn+j0 | > K−1e
1
4
λ0j0 |τn|.

Proof. (a) follows from Lemma 11.2 and the b-horizontal property of wn.
As for (b), since |τn+j | � 1, we have |τn+j+1|/|τn+j | ≈ |f ′(xn+j)|, zi = (xi, yi).
The assertions follow by a proof similar to that of Lemma 3.5.

Remark. We do not claim that free segments of ζi are C2(b), only that
they are roughly horizontal (because ε̂  1). No effort will be made to control
(z0, τ0). Information on τi is obtained instead through comparisons with wi

via Proposition 11.1 and Lemma 11.2.

B. Geometry of critical curves inside Q(1). Let ω be a subinterval of J .
We assume ζn(ω) is free (meaning zn(a) is free for each a), and ζn(ω) ⊂ Q(1).
For each individual a, we have seen in Part II how zn(a) is related to the
critical structure of Ta. We now describe the geometric relationship between
the curve ζn and the 1-parameter family of critical structures.

By Lemma 11.3(a), ζn is roughly horizontal. Consider an arbitrary point
â ∈ ω, and assume that ζn(â) lies in the interior of Q(j)(â) for some j ≤ n.
We also assume, for definiteness, that as a increases, we move right along ζn.
By continuity, for all a in a neighborhood of â, ζn(a) also lies in the interior
of Q(j)(a). Let ā be the first a for which the last statement is not valid. Then
ζn(ā) ∈ ∂Q(j)(ā). Since it cannot be in ∂Rj (because n ≥ j), it has to lie in
the right (vertical) boundary of Q(j)(ā).

We claim that as a increases, ζn crosses Q(j)(a) in exactly one point,
i.e. for all a > ā, ζn(a) �∈ Q(j)(a). This is because for a ∈ ω, | d

daζn| >

K̂−1|wn| > K−1eλn (Proposition 11.1 and Lemma 5.2), while | d
daz∗0(Q

(j))| <

K1 (Corollary 10.2). Since z∗0(Q
(j)) and the “vertical” boundaries of Q(j) move

in the horizontal direction at the same speed, and we may assume n is large
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enough that K−1eλn � K1, a �→ ζn(a) crosses ∪a∂Q(j)(a) transversally in
R1 × J in exactly one point.

The picture can therefore be summarized as follows. Let j0 be the largest
j ≤ 1

α∗ θn such that ζn meets Q(j), and assume ζn(â) lies in the interior of Q(j0).
Let Q(j0) ⊂ Q(j1) ⊂ Q(j2) · · · be consecutive critical regions starting from Q(j0)

for Tâ. This structure, as we know, is identical for all the Ta. As a increases
(or decreases), this nested structure moves with speed O(1), which is very slow
relative to the speed of a �→ ζn(a). Thus from the point of view of ζn, the
critical structure appears stationary, and the picture resembles that of a single
map.

C. Bound period and recovery. The setting is as in B above. For each
a, we have defined for the map Ta the notion of φ(z) for z = ζn(a), dC(z) :=
|φ(z) − z|, and p(z). To emphasize their dependence on the map Ta, we now
write φa(z), dC(a)(z) and pa(z). For purposes of studying the evolution of ζn,
we can, if we so choose, use the definitions associated with each individual a

for ζn(a). For aesthetic as well as practical reasons (to become clear in the
next section), we prefer to have some coherence along ζn, even if this involves
some small modifications in the definitions above. We explain how this can be
done:

Step 1. Choosing a common guiding critical point φ(ω). The choice is
quite arbitrary. Let j0 be the largest j ≤ 1

α∗ θn such that ζn meets Q(j), and pick
â with ζn(â) ∈ Q(j0). Let φ(ω) := z∗0(Q

(j0))(â), and define dC(z) = |z − φ(ω)|
for z ∈ ζn(a).

Lemma 11.4. For z = ζn(a), let j be the generation of φa(z). Then

|dC(a)(z) − dC(z)| ≤ b
j

4 + K1|a − â|.

Proof. Let j0 > j1 > · · · be as in B. Then z ∈ Q(ji)(a) for some i ≥ 0. By
definition, j ≤ ji, and so Q(j0) ⊂ Q(j). We then have

|dC(a)(z) − dC(z)| ≤ |z∗0(Q(j))(a) − z∗0(Q
(j0))(â)|

≤ |z∗0(Q(j))(a) − z∗0(Q
(j0))(a)| + |z∗0(Q(j0))(a) − z∗0(Q

(j0))(â)|
≤ b

j

4 + K1|a − â|;
the first term in the last inequality is by Lemma 4.1 and the second by Corollary
10.2.

The first term in the error above is innocuous. Since

|a − â| < K̂e−λn|ζn(a) − ζn(â)|,
the second term is negligible if dC(a)(z) is � K1K̂e−λnδ. In particular, for z

with dC(a)(z) > e−αn, we have dC(a)(z) ≈ dC(z).
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Step 2. Definition of a new bound period p(·). Let Pω be the partition P
as in Section 2.2, centered at πx(φ(ω)), and let ω̂ be such that πx(ζn(ω̂)) ≈ Iμj .
We define

p(ω̂) = min
a∈ω̂

pa(ζn(a)).

For this definition to be meaningful, we must verify that it has the properties
of bound periods in the sense of pa(·) for a single map. The next lemma, the
proof of which is given in Appendix A.25, assures us this is the case.

Lemma 11.5. Let ω̂ be as above, and let p = p(ω̂). Then

(a) K−1|μ| < p < K|μ|;
(b) for a, a′ ∈ ω̂ and j < p, |ζn+j(a) − ζn+j(a′)| < 2e−βj ;

(c) |τn+p(a)| > K−1e
p

4 |τn(a)| for all a ∈ ω̂;

(d) ζn+p(a) is out of all splitting periods, s(τn+p(a)) < ε̂;

(e) |ζn+p(ω̂)| ≥ 1
μ2 e−Kα|μ|.

D. Decomposition into bound and free states. With bound periods defined,
we may now assign a bound or free state to each ζi(a) in the evolution of ζi,
namely that ζi(a) is free if it is not in a bound period as defined in C. We
remark that this notion is not necessarily consistent with the one for a single
map Ta. Note that in Lemma 11.3, and in the setting of B and C, the word
“free” as stated referred to “free” in the sense of individual maps. We leave it
to the reader to check that these statements are, in fact, valid if “free” is given
the meaning in this paragraph.

12. Derivative growth via statistics

This section is about how to deal with (A4) (see §4.1). We focus on
one critical point at a time, and discuss (i) what it takes to maintain regular
derivative growth along its orbit, and (ii) why one should expect the conditions
guaranteeing this growth to be satisfied by a positive measure set of parameters.

12.1. Estimating |w∗
i | in terms of itinerary

We return in this subsection to the dynamics of a single map to motivate
a few ideas. As explained earlier, (A4) is not a self-perpetuating property. We
now give a condition in terms of the itinerary of zi that guarantees sustained
exponential growth of |w∗

i (z0)|.
Consider for definiteness T ∈ GN , and assume that for some z0 ∈ Γ 1

α∗ θN \
ΓθN , dC(zi) > e−αi for all i ≤ n, n ≤ 1

α∗ N . We know from Corollary 6.1 that
for w0 = v ∈ Xz0 , |w∗

i | > K−1e( 1
3
λ−2α)i for all i ≤ n. Let us examine more

closely how this growth comes about. Let t1 < t1 + p1 ≤ t2 < t2 + p2 ≤ t3 <



TOWARD A THEORY OF RANK ONE ATTRACTORS 425

t3 + p3 ≤ · · · be such that ti are the consecutive free return times up to time
n and pi the lengths of the ensuing bound periods. Then we have

(i)
|w∗

ti+1
|

|w∗
ti+pi

| ≥ c2e
1
4
λ0(ti+1−(ti+pi)), (ii)

|w∗
ti+pi

|
|w∗

ti
| ≥ K−1e

1
3
λpi .

Observe that in (i), the exponent is the “outside exponent” 1
4λ0, which is

strictly > λ. As for (ii), the guaranteed growth rate of 1
3λ does not contribute

much to maintaining a Lyapunov exponent of λ. It is no significant loss if we
replace it by the weaker estimate

|w∗
ti+pi

|
|w∗

ti
| ≥ c−1

2 , which is what we will do.
We continue to reason as follows: If the fraction of time zi spends in bound

periods between time 0 and n is < σ, and zn is not in a bound period, then
|w∗

n| > const e(1−σ) 1
4
λ0n. This number is > eλn if σ is sufficiently small. Since

the “outside exponent” does not decrease as δ decreases (Lemma 2.1), it is
logical to attempt to decrease σ by decreasing δ, the idea being that some of
the time intervals that are bound periods for the original δ would no longer
be counted as bound periods for a smaller δ. We summarize the conclusion of
this reasoning in the following lemma:

Let B(δ̂; 0, n) be the total time between 0 and n during which zi spends
in bound periods initiated from visits to the region dC(·) < δ̂.

Lemma 12.1. Let z0 be as above, and let σ > 0 and 0 < δ̂ ≤ δ. If
B(δ̂; 0, n) < σn, then

|w∗
n| > K−1δ̂e[(1−σ) 1

4
λ0−3α]n.

Proof. Consider first the case where zn is free. Let t̂1 < t̂1 + p̂1 ≤ t̂2 <

t̂2 + p̂2 ≤ · · · ≤ t̂k + p̂k ≤ n be such that t̂1, · · · , t̂k are the consecutive free
return times to {dC(·) < δ̂}. Then

|wn| =
|wn|

|wt̂k+p̂k
| · · ·

|wt̂2
|

|wt̂1+p̂1
|

|wt̂1+p̂1
|

|wt̂1
| |wt̂1

|.

We have |wn|
|wt̂k+p̂k

| > c2δ̂e
1
4
λ0(n−t̂k−p̂k) by Lemma 3.5(i) with δ̂ in the place of

δ, and
|wt̂i+1

|
|wt̂i+p̂i

| > c2e
1
4
λ0(t̂i+1−t̂i−p̂i) by Lemma 3.5(ii). To cancel c2 we use

|wt̂i+p̂i
|

|wt̂i
| > c−1

2 , which is a trivial consequence of (P2′)(ii). This gives |w∗
n| >

K−1δ̂e[(1−σ) 1
4
λ0]n since p̂1 + · · · + p̂k ≤ σn by assumption. The factor −3αn is

needed if n is not free; see Lemma 5.4.

In this lemma, we think of δ̂ as possibly  δ, and the factor δ̂ as the
price to pay due to the greater nonuniformity in growth properties “outside”
– where “outside” now means dC(·) > δ̂. As we will see, this factor will be
absorbed into the initial growth if the critical orbit remains outside of C(1) for
a long time.
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We point out that a quantity similar to Bn(δ̂; 0, n) has already appeared
in the context of 1D maps; see Proposition 2.2. Our next step is to make a
connection to this proposition.

12.2. Processes defined by curves of critical points

In Section 9.3, we borrowed some results from Section 2.3 for the dynamics
of T ∈ G on unstable manifolds – after establishing a strong resemblance
between T k|W u and iterated 1D maps. Section 11.2 suggests that this similarity
can perhaps be extended to ζi : a �→ zi(a). But the relation between the
“dynamics” of critical curves and iterated 1D maps is a little more tenuous.
For one thing, there is no reasonable description of global geometry for critical
curves: even though ζ0 is defined on an interval, it is inevitable that one will
lose control of ζn on parts of this interval as n increases.

We claim, nevertheless, that the statistical results in Section 2.3 are valid.
To see that, we return to Section 2 to examine the situation more closely:

Observations. 1. In order to apply the results in Section 2.3 to critical
curves, we must verify for them estimates analogous to (P1)–(P3) in Section
2.2 and fix a definition of canonical subdivision by itinerary with properties
identical to those in Section 2.3.

2. Once that is done, we may proceed, letting γi = ζi wherever it makes
sense. It is not important in Section 2.3 for γi to be = f i or the ith iterate of
any map; {γi} could have been a process, meaning a sequence of maps from J

to I.

3. Finally, as noted at the end of Section 2.3, the stated results are entirely
unaffected if we choose to stop considering any element of Qi at any time by
simply setting ζj = ∗ for all j ≥ i. Here, the symbol ∗ will correspond to
deleted parameters.

Definition of a process {γi} associated with ζi : a �→ zi(a). We assume
(C1) and (C2) on an interval J , and fix z0 ∈ Γ 1

α∗ θN \ΓθN . Associated with z0,
we seek to define a sequence of maps

γi : J → R1 ∪ {∗} for 0 ≤ i ≤ 1
α∗N

with the property that γi(a) = ζi(a) = zi(a) whenever γi(a) �= ∗. Here as in
Section 2.3, ∗ is the “garbage symbol”: once γi(a) = ∗ for some i, γj(a) = ∗
for all j > i; that is to say, we stop considering a ∈ J from that point on. To
facilitate the description of γi, we first introduce the following language:

Let γ : ω → R1 be such that d
daγ is nonzero and roughly horizontal. We

introduce on ω a partition that will be referred to as the “canonical partition
defined by γ”. This partition is the pullback of the following partition on γ(ω):
First we divide γ(ω) \ C(1) into intervals of length ≈ δ each (except possibly



TOWARD A THEORY OF RANK ONE ATTRACTORS 427

for the end interval(s), which may be shorter), and partition each component
of γ(ω)∩ C(1) into {π−1

x Iμj} using the guiding critical orbit φ(ω) to center the
partition P as is done in Section 11.2C. The final partition on γ(ω) is obtained
by adjoining the end intervals in the partition above to their neighbors. We say
a canonical partition is nontrivial if at least one partition point is introduced.
Note that in a nontrivial partition, each element ω′ has the property that either
γ(ω′) ∩ C(1) = ∅ and δ ≤ |γ(ω′)| ≤ 3δ, or γ(ω′) ⊂ C(1) and πx(γ(ω′)) ≈ Iμj for
some Iμj .12

The canonical subdivision by itinerary for γi proceeds as follows. We
ignore the first i0 iterates as they are not particularly meaningful. In general,
for ω ∈ Qi, we use the language “delete ω” and “set γi|ω = ∗” interchangeably.
Let Qi0 be the canonical partition on J defined by γi0 . Here is how we go from
one step to the next:

Case 1. Consider ω ∈ Qi where ζi(ω) is free and outside of C(1). We take
the canonical partition defined by ζi+1 on ω, and set ζi+1|ω′ = ∗ for elements
ω′ of this partition for which dC(ζi+1(ω′)) < e−α(i+1). On the part of ω not
deleted, we set γi+1 = ζi+1, and call the restriction of the canonical partition
on it Qi+1.

Case 2. Consider ω ∈ Qi for which γi(ω) is free and inside C(1). It follows
from the previous step that πx(γi(ω)) ⊂ I+

μj . A bound period p(ω) is set as
in Section 11.2C. We put ω ∈ Qi+j for all j < p, and at step i + p, we do
as in Case 1, i.e. consider the canonical partition defined by ζi+p, delete those
elements with dC(·) < e−α(i+p), set γi+p = ζi+p on the rest and call the resulting
partition Qi+p.

This completes the definition of the canonical subdivision by itinerary. We
remark that by virtue of (C1), dC(zi(a)) > e−αi for all i ≤ N and a ∈ J , so that
no deletions take place before time N . For N < n ≤ 1

α∗ N , the construction
above is designed to guarantee that if γn(a) �= ∗, then (C3) is satisfied for z0

up to time n on the parameter interval ω ∈ Qn containing a.

Verification of estimates analogous to (P1)–(P3) for γn. When τn =
d
daγn, Lemmas 11.3 and 11.5 play the role of (P1) and (P2). (P3) at i0 follows
from (a) the corresponding result for wi0 , (b) the fact that all ζn(a), a ∈ J ,
remain very close to each other for all n ≤ i0, and (c) Proposition 11.1. The
following distortion estimate for parameters is needed to take the place of (P3)
for n > i0. Its proof is given in Appendix A.26.

12Some fuzziness is allowed in boundary situations due to the adjoining of end intervals.
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Lemma 12.2. There exists K > 0 such that for any ω ∈ Qn−1 such that
γn(ω) is free,

K−1 <
|τn(a)|
|τn(a′)| < K for all a, a′ ∈ ω.

12.3. Large deviation estimate

Having established the resemblance between γi and iterated 1D maps,
we now state the analog of Proposition 2.2 for parameters. For i1 < i2, let
B(a, δ̂; i1, i2) denote the number of i ∈ (i1, i2] such that γi(a) is in a bound
period initiated at a previous time j where dC(zj(a)) < δ̂. Built into this
definition is the implication that if i is one of the times counted in B(a, δ̂; i1, i2),
then γi(a) �= ∗. The proof of Corollary 12.1 follows closely that of Proposition
2.2.

Corollary 12.1. Assume (C1) and (C2), and let z0 ∈ Γ 1
α∗ θN \ ΓθN .

Then Proposition 2.2 holds for {γi, i ≤ 1
α∗ N}, where {γi} is the process asso-

ciated with a �→ zi(a) defined above. More precisely, given any σ > 0, there
exists ε̂1 > 0 such that the following holds for all sufficiently small δ̂ > 0: Let
t0 and ω ∈ Qt0 be such that γt0(ω) is free and ≈ Iμ0j0 (in particular, γt0 |ω �= ∗),
and let n be such that (i) t0 + n ≤ 1

α∗ θN and (ii) n > Kσ−1|μ0|. Then

|{a ∈ ω : B(a, δ̂; t0, t0 + n) > σn}| < e−ε̂1n|ω|.

This result holds also if γt0(ω) is outside of C(1), free and has length ≥ δ. In
this case condition (ii) for n is replaced by n > Kσ−1 log 1

δ .

12.4. In preparation for the selection of good parameters

The main ingredients for dealing with (A4) are treated in the last 3 sub-
sections. The results as stated, however, are not quite in a form that can be
applied directly. This subsection contains the adjustments needed to render
Lemma 12.1 and Corollary 12.1 ready for use in the construction in Section 13.
We also specify the desired relations between σ, δ̂ etc. and constants chosen
earlier.

Setting. We assume (C1) and (C2), and continue to focus on a single
critical point z0 ∈ Γ 1

α∗ θN \ ΓθN . Let γi, i ≤ 1
α∗ θN , be the process associated

with z0. In what follows, we may assume also that dC(zi) > δ0 for all i ≤ n0

where n0 is as large as we need, and that at least one subdivision of the
parameter interval takes place before γi(J) meets C(1).
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(1) Measure of parameters deleted in connection with (A4). The pro-
cedure in Section 13 requires that we work with time intervals of the type
[n, 2n].

Corollary 12.2. Assume σ � α, and let ε̂1 = ε̂1(1
2σ) be given by Corol-

lary 12.1 (with 1
2σ in the place of σ). Let δ̂ be small enough to satisfy the

requirement in Corollary 12.1. Then for all ω ∈ Qn with γn|ω �= ∗,

|{a ∈ ω : B(a, δ̂;n, 2n) > σn}| < e−ε̂1n|ω|.

Proof. We explain the modifications necessary to apply Corollary 12.1.
If γn(ω) is free and is either ≈ Iμj or is outside and has length ≥ δ, then
we apply Corollary 12.1 directly with t0 = n. Note that the lower bound
on n in Corollary 12.1 is satisfied: if γn(ω) ≈ Iμj , then μ ≤ αn, so that
n ≥ 1

αμ � σ−1μ; we may assume n > Kσ−1 log 1
δ since n0 can be arbitrarily

large. If γn(ω) is not free or is shorter than required, we back up to step
n1 when ω was first created as an element of some Qn1 . Notice first that
there is such an n1, for by assumption a subdivision occurred before time n.
Moreover, γn1(ω) is free, and it is either ≈ Iμj or is outside and has length ≥ δ.
By the parameter version of Lemma 2.3, n ≤ (1+Kα)n1. We may then apply
Corollary 12.1 with t0 = n1 and 1

2σ in the place of σ. Since σ � α, a parameter
a with B(a, δ̂;n1, 2n) > σ(2n − n1) clearly satisfies B(a, δ̂;n, 2n) > 1

2σn.

(2) Growth of |w∗
i (z0)| for good parameters. Let n = 2j1n0, and consider

the following procedure repeated on time intervals [n0, 2n0], · · · , [2jn0, 2j+1n0],
· · · , [2j1−1n0, n]: On each time interval [2jn0, 2j+1n0], in addition to the dele-
tions corresponding to (C3) (see §11.2), we delete at time 2j+1n0 all ω ∈ Q2j+1n0

on which B(a, δ̂; 2jn0, 2j+1n0) > σ2jn0. The following corollary gives a lower
bound on |w∗

i (z0)| for T = Ta where a survives these deletions up to time n.

Corollary 12.3. Assume

(a) dC(zi) > min(δ, e−αi) for all i ≤ n;

(b) B(δ̂; 2jn0, 2j+1n0) < σ2jn0 for all j < j1.

Then for all i ≤ n, |w∗
i (z0)| > c2e

[ 1
4
(1−2σ)λ0−3α]i.

Proof. Assumptions (a) and (b) together with Lemma 12.1 imply that at
times 2jn0, |w∗

i | > K−1δ̂e[ 1
4
(1−σ)λ0−3α]i. Between times i and 2i, the worst-case

scenario is that all the close returns (i.e. returns to {dC(·) < δ̂}) occur at the
beginning of this time block. Even so, we guarantee easily that for all k < i,
|w∗

i+k| > K−1δ̂e[ 1
4
(1−2σ)λ0−3α](i+k). Observe finally that the factor K−1δ̂ can

be replaced by c2, i.e. it is absorbed into the initial stretch if n0 is sufficiently
large depending on δ̂.
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(3) Choice of constants. The exponents directly related to derivative
growth are λ0, λ, λ∗ and α. We review briefly what they represent. First,
outside of C(1), b-horizontal vectors grow at rate 1

4λ0; see Lemma 3.5. The
first constant chosen in this paper, λ < 1

5λ0, is the minimum growth rate
along critical orbits guaranteed by (A4). Because more stringent estimates are
needed for reasons to be explained, we fix a slightly larger target Lyapunov
exponent λ∗ = λ + 1

100λ0; see Section 10.1. The constant α is then chosen to
satisfy α  min{λ, 1}.

Next we come to σ, which is chosen so that 1
4(1−2σ)λ0−3α, the exponent

in Corollary 12.3, is > λ∗. For example, σ = 1
100 will work. We may assume

this is in agreement with the relation σ � α as required in Corollary 12.2.
Once σ is fixed, we choose δ̂ small enough to satisfy Corollary 12.1.

Summary. If σ and δ̂ are as in the last paragraph, and the hypotheses
of Corollary 12.3 are satisfied, then |w∗

i (z0)| > c2e
λ∗i for all i ≤ n. Moreover,

between times 2jn0 and 2j+1n0, the measure of parameters in violation of
Corollary 12.3(b) is, by Corollary 12.2, < e−ε̂2jn0 |J |.

13. Positive measure sets of good parameters

The purpose of this section is to construct, for a given family {Ta} sat-
isfying the Standing Hypotheses in Section 1 and with b sufficiently small, a
sequence of sets

Δ0 ⊃ Δn0 ⊃ Δ2n0 ⊃ Δ22n0 ⊃ · · ·

in parameter space with the properties that

(i) {Ta, a ∈ Δ2jn0} ⊂ G#
2jn0

(where G#
n is as defined in Section 10.1) and

(ii) Δ := ∩j≥0Δ2jn0 has positive Lebesgue measure.

Together with the material in Section 9, this construction brings to completion
the proof of our Main Theorem.

The construction in this section requires more stringent conditions on the
global constants in Section 6.1 than are imposed in Part II. See, for instance,
the end of Section 11.1 and Section 12.4(3).

13.1. Getting started

The two properties required of the start-up interval Δ0 are:

(1) For all a ∈ Δ0 and z0 ∈ Γ1, dC(zi) > δ0 for all i ≤ n0 where n0 is a very
large number to be prescribed.

(2) For each z0 ∈ Γ1, a subdivision occurs in the process a �→ zi(a) before
γi(Δ0) meets C(1).
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Here δ0 is as in Definition 1.1; recall that d(f i
a∗(x̂), C) > 2δ0 for all i > 0.

Lower bounds have been placed on n0 a finite number of times in previous
sections: among the more important places where this condition appeared are
(i) to provide time for hyperbolicity of Ta to build up initially (in Part II);
(ii) to allow the comparability of space and a-derivatives to take hold (see
Proposition 11.1); and (iii) to absorb the small constant δ̂ from Lemma 12.1
(see Corollary 12.3). A few more conditions on n0 will be imposed in this
section. The process referred to in (2) is the one in Section 12.2. The purpose
of (2) is to ensure that the entire parameter interval is not lost in the first
deletion: Let n1 be the first time Δ0 is subdivided. Then |γn1(ω)| ≥ δ for
every ω ∈ Qn1 , and if ω ∈ Qj is such that γi(ω) ∩ C(1) = ∅ for all i < j and
γj(ω) ∩ C(1) �= ∅, then |γj(ω)| > K̂−1c2δ. Thus assuming n0 is large enough
that e−αn0  K̂−1c2δ, we are guaranteed that only a small fraction of the
measure is deleted.

We claim that for any Δ0 containing a∗ short enough for (1) to be satisfied,
(2) is automatically satisfied if b is sufficiently small. To see this, let {x̂k

0} be
the critical points of the 1D maps fa, and let a �→ x̂k

i (a), i = 0, 1, · · · , be the
critical curves defined by the 1D maps. For each k, let n̂k

1 ≥ n0 be the first time
|x̂k

i (Δ0)| > 3δ, and let n̂1 be the maximum of the n̂k
1. Now let ζk

i : a �→ zk
i (a)

where zk
0 is the critical point of Ta near (x̂k

0, 0). We choose b small enough
that |x̂k

i (a) − πx(zk
i (a))|  δ for i ≤ n̂1 for all a ∈ Δ0. Then for i < n̂k

1,
ζk
i (Δ0) ∩ C(1) = ∅, and |ζk

n̂k
1
(Δ0)| > 2δ, so a subdivision occurs at or before

time n̂k
1 in the process associated with zk

0 .

In the rest of this section, let λ∗ and G#
n be as defined in Section 10.1.

For clarity of presentation, we first describe the construction up to time θ−1

(where the situation is simpler) before giving it in full generality.

13.2. Construction of ΔN for N ≤ θ−1

A. Outline of scheme. This time period is characterized by the fact that
the only relevant critical points are those in Γ1 := {z1

0 , · · · , zq
0}. Associated

with each zk
0 , we construct a sequence of parameter sets Δ0 = Δk

0 ⊃ Δk
1 ⊃

Δk
2 ⊃ · · · ⊃ Δk

θ−1 with the property that for a ∈ Δk
i , zk

j (a) has the desired
properties for all j ≤ i. The parameter sets Δi := ∩1≤k≤qΔk

i consist, therefore,
of parameters for which all the critical orbits have the desired properties up to
time i.

The sets {Δk
i } are constructed in the following order. First, we set Δk

i =
Δ0 for all i ≤ n0 and all k. Then we proceed with an N -to-2N scheme, i.e. we
go from step n0 to step 2n0, 2n0 to 4n0, 4n0 to 8n0, and so on, until θ−1, which
we may assume is = 2	0n0, is reached. Within each stage, i.e. from N = 2	n0

to 2N , we construct for each k the parameter sets Δk
i , N < i ≤ 2N . Which
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k goes first is immaterial, but it is important that all the critical orbits be
treated up to time 2N before we go to the next stage.

Remark. The number 2 in our N -to-2N scheme is somewhat arbitrary;
the idea of updating all the critical orbits to order ∼ N simultaneously (as op-
posed to treating one to an arbitrarily large time before beginning on a second)
is not. This is because the derivative estimate (A4) for the q critical orbits
cannot be developed independently of each other: when zk

i visits Q(1)(zk′

0 ), it
relies on the orbit of zk′

0 to guide it through its derivative recovery, and param-
eters that are favorable for zk

0 may have been deleted for zk′

0 . As we will see,
the times 2	n0, � = 1, 2, · · · , are designated times for different critical orbits to
communicate to each other their selected parameter sets.

B. Processes {γk
i } defined on Δ0. In Section 12.2, we considered a

parameter interval J on which all Ta are assumed to be in GN , and introduced
for each critical point a process γi defined up to time 1

α∗ N . In a similar manner,
we now wish to define for each zk

0 a process

γk
i : Δ0 → R1 ∪ {∗}, i = 0, 1, 2, · · · , θ−1.

Section 12.2 does not guarantee that such a process is well defined, for it is not
likely that Ta ∈ Gα∗θ−1 for all a ∈ Δ0. Here is how we circumvent the problem:
we use the procedure in Section 12.2 to extend γk

i from step N = 2	n0 to step
2N whenever it is feasible, and to set γi = ∗ whenever it is not. More precisely,
for fixed k and N , we assume γk

i is defined on Δ0 for all i ≤ N . Associated
with γi is its canonical subdivision by itinerary Qi. For each ω ∈ QN , we
set γN+1|ω = ∗ unless Ta ∈ G2α∗N for all a ∈ ω. Thus when γN+1|ω �= ∗,
the construction in Section 12.2 can legitimately be carried out on ω up to
time 2N .

There is one other difference between the construction here and that in
Section 12.2, where γi = ∗ is set only to achieve dC(zi) > e−αi. Here we permit
the setting of γi|ω = ∗, ω ∈ Qi, for a wider range of reasons as we will see in
paragraph C.

C. Formal procedure from step N = 2	n0 to step 2N . At time N , assume
we are handed the following objects: For each k = 1, 2, · · · , q, there is a process
γk

i : Δ0 → R1 ∪ {∗} well defined up to time N . The set Δk
N := {γk

N �= ∗} has
the property that for all a ∈ Δk

N ,

(i) dC(zk
i (a)) > 3e−αi for all i ≤ N ;

(ii) B(a, δ̂; 2jn0, 2j+1n0) < σ2jn0 for all j < �.

Observe, by Corollary 12.3, that ΔN := ∩kΔk
N ⊂ G#

N .

How to go from step N to step 2N . The following steps are taken for
each k.
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(1) First we set γk
N+1|ω̂ = ∗ on those ω̂ ∈ Qk

N with ω̂ ∩ ΔN = ∅.

(2) On the rest of the ω̂ ∈ Qk
N , we extend the process γk

i to 2N (see justifi-
cation below), deleting all ω ∈ Qi|ω with dC(γi(ω)) < 3e−αi.

(3) Set γk
2N |ω = ∗ on those ω ∈ Qk

2N with the property that B(a, δ̂;N, 2N) >

σN for a ∈ ω.

Step (1) stipulates that unless some a ∈ ω̂ is good for all q critical points,
the entire parameter interval will be abandoned.

Justification for step (2): We need to show that Ta ∈ G2α∗N for all
a ∈ ω̂. By assumption, there exists â ∈ ω̂ such that Tâ ∈ G#

N . It fol-
lows from Proposition 10.1 that Tâ has a continuation in G2α∗N on the in-
terval [â − ρ−2α∗N , â + ρ−2α∗N ]. On the other hand, Proposition 11.1 gives
|ω̂| < K̂e−λ̂N , which is  ρ−2α∗N .

Note that steps (2) and (3) lead directly to (i) and (ii) above at time 2N .

D. Measure deleted from step N to step 2N . Consider one zk
0 at a time.

We wish to estimate the contribution to ΔN \ Δ2N by the orbit of zk
0 (this is

not to be confused with Δk
N \ Δk

2N ).

Deletions in Step (1). We have no control on the total measure of all the
ω̂ ∈ Qk

N removed in this step, but all the ω̂ removed have the property that
ω̂ ∩ ΔN = ∅: the very fact that ω̂ ∩ ΔN = ∅ means that all the parameters
in ω̂ have been deleted earlier due to violations on the part of critical orbits
other than that of zk

0 . Thus from the point of view of ΔN \ Δ2N , no measure
is deleted in this step.

Deletions in Step (2). For i with N < i ≤ 2N , we consider ω ∈ Qk
i−1,

and give an upper bound on the fraction of ω that may be deleted at the ith
iterate. Let i0 be the smallest j < i such that ω ∈ Qk

j , i.e. i0 is the time when
the partition interval ω is created. There are two possibilities:

(i) γk
i0

(ω) is outside of C(1) and δ < |γk
i0

(ω)| < 3δ. In this case,
|γk

i (ω)| > K−1δ, and not knowing the location of γk
i (ω), we assume the worst-

case scenario, i.e. γk
i (ω) crosses entirely a forbidden region dC(·) < 3e−αi. The

fraction of ω deleted is then < Kδ−16e−αi < Ke−
1
2
αi. Here K is the distortion

constant (Lemma 12.2) as one transfers the length ratio on γk
i (ω) back to ω.

(ii) πx(γk
i0

(ω)) ≈ Iμj . Let p be the bound period initiated at time i0. Then
p ≤ K|μ|, so that |γk

i (ω)| > K−1|γk
i0+p(ω)| > K−1

μ2 e−Kα|μ| > e−2Kα|μ|. For the
first inequality above, we use first Proposition 11.1, then |wi| ≥ c2|wi0+p|. For
the second inequality, we use Lemma 11.5(e). Thus the fraction of ω deleted
is < K6e−αie2Kα2n < Ke−

1
2
αi. (We note here the significance of the rule that

in canonical subdivisions no partition point is introduced that would result in
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an element ω with πx(γk
i0

(ω)) ⊂ Iμj and |γk
i0

(ω)|  |Iμj |. For such an element,
we would not be able to control the fraction of parameters deleted.)

We conclude that between times N and 2N , the total measure deleted in
the course of executing step (2) on the orbit of each zk

0 is

<
∑

N<i≤2N

Ke−
1
2
αi|Δ0|.

Deletions in Step (3). By Corollary 12.2, on each ω̂ ∈ Qk
N , the total

measure deleted is < e−ε̂1N |ω̂|. Thus the total measure deleted at time 2N on
account of executing step (3) on the orbit of zk

0 is < e−ε̂1N |Δ0|.

Summary. Let Dk
N,2N denote the set of a ∈ ΔN deleted on account of

the orbit of zk
0 as we carry out our procedure from time N to time 2N . Then

|Dk
N,2N | <

⎛
⎝K

∑
N<i≤2N

e−
1
2
αi + e−ε̂1N

⎞
⎠ |Δ0|.

Writing the quantity in parentheses as K ′e−ε′N , and letting DN,2N denote the
set of all parameters deleted from ΔN between time N and time 2N , we have
the estimate

|DN,2N | ≤ q Ke−ε′N |Δ0|.

13.3. Construction of ΔN for N > θ−1

A. Outline of scheme. Our basic strategy is as before; i.e., we work with
cycles that go from time N to time 2N , treating all relevant critical orbits
in each cycle before going to the next and making deletions with the aid of
processes of the type in the last subsection. There are two new aspects in the
situation: the number of distinguishable critical orbits grows with time, and
the critical structures of the maps Ta are not uniform for all a ∈ Δ0. The
processes we consider must reflect this reality; they are discussed in part B
below.

Parts C and D follow their counterparts in Section 13.2. Except for treat-
ing the new complexities brought to light in part B, they do not differ sub-
stantially from before.

B. Processes defined by critical orbits: two new aspects.
(1) Processes associated with critical blobs. Relabeling the processes {γk

i }
in Section 13.2B as {γz0

i }, we seek to explain what is meant by a process {γz0
i }

where z0 is an arbitrary critical point. Questions surrounding the domains of
definition of {γz0

i } are treated in item (2) below. We discuss here the more
basic question of whether to set γz0

i = zi when it is �= ∗.
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Setting γz0
i = zi for all i is only natural, but it has the following drawback:

Let z′0 ∈ B(j)(z0). Even though the orbits of z0 and z′0 stay together for a
long time, if treated independently, the canonical subdivisions accompanying
a �→ zi(a) and a �→ z′i(a) are likely to produce slightly different partitions, and
rules of deletion such as those in Section 13.2C may yield slightly different
results. However inconsequential, these differences are a technical nuisance.

To avoid this technical nuisance, we have elected to view {γz0
i } as associ-

ated with critical blobs. More precisely, let z0 be a critical point of generation
j. We let B(j1) ⊃ B(j2) ⊃ · · · ⊃ B(jn) be the complete chain of critical blobs
containing B(j)(z0); i.e., j1 = 1, jn = j, and for each i, there is no B(k),
ji < k < ji+1, such that B(ji) ⊃ B(k) ⊃ B(ji+1). (See §7.3 for the geometry of
critical regions.) We say B(ji) is visible on the time interval (ji−1θ

−1, jiθ
−1],

thinking of it as “hidden” inside lower-generation critical blobs before time
ji−1θ

−1 and no longer active after time jiθ
−1. During the time period when

B(ji) is visible, we set γz0
	 = z

(ji)
	 or ∗ where z

(ji)
0 = z∗0(B

(ji)). That is to say,
B(1)(z0) is visible in the first θ−1 iterates, and for � ≤ θ−1, γz0

	 = z
(1)
	 or ∗.

Since z
(1)
0 = zk

0 for some k, {γz0
i } is identical to one of the processes defined in

the last subsection for i ≤ θ−1. At time θ−1, the critical blob B(1) retires, and
B(2) becomes visible. We have γz0

	 = z
(2)
	 or ∗ for θ−1 < � ≤ 2θ−1, and so on.

(Note that some of the orbit segments are visible for more than θ−1 steps due
to the “skipping of generations”; see Section 7.3).

Assuming for the moment that all definitions are legitimate and all rules
for deletion are as in Section 13.2C, we make the following observation: During
the period when γz0

	 = z
(ji)
	 or ∗, dC(z

(ji)
	 ) > 3e−α	 implies that dC(ξ	) > 2e−α	

for all ξ0 ∈ B(ji). This follows from earlier estimates on the sizes of critical
blobs; see Section 4.2. Moreover, if dC(γz0

	 ) > 3e−α	 for all � ≤ jθ−1, then all
ξ0 ∈ B(j)(z0) satisfy dC(ξ	) > 2e−α	. In particular, all critical points inside
B(j)(z0) obey (A2)# up to time jθ−1. The same conclusion is valid for (A4)#

since up to time jθ−1, all ξ0 ∈ B(j)(z0) can be regarded as having the same
itinerary. Hence they have the same fraction of “bad iterates” in the sense of
B(·, δ̂;n, 2n).

(2) Stabilization of critical structures and extending the processes {γz0
i }.

In Section 13.2, we considered processes defined by z0 ∈ Γ1, which has a
continuation on all of Δ0. Critical structures of higher generations do not have
such continuations. To stabilize these structures, we introduce an increasing
sequence of partitions Jθ−1 < J2θ−1 < J4θ−1 < · · · on Δ0 with the following
properties: Jθ−1 = {Δ0}; for each N = 2	θ−1, � ≥ 1, JN is a refinement of
J 1

2
N and partitions Δ0 into intervals of length ≈ ρα∗N . Leaving precise rules

of deletion to part C, we explain here the relation between these partitions and
the processes defined in (1).

For N = 2	θ−1, � = 1, 2, · · · , the picture is as follows:
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(i) There is a decreasing sequence of “good sets” ΔN with the property that
Ta ∈ G#

N for all a ∈ ΔN . (This is not the definition of ΔN , however.)

(ii) There are subcollections of “good” intervals J ∗
N ⊂ JN . For each JN ∈

J ∗
N ,

- JN ⊂ J 1
2
N for some J 1

2
N ∈ J ∗

1
2
N

,

- JN ∩ Δ 1
2
N �= ∅.

(iii) For each JN ∈ J ∗
N , let ΓN (JN ) be the set of critical points of Ta, a ∈ JN ,

of generations between 1
2θN and θN . Then for each z0 ∈ ΓN (JN ) of

generation k, there is a well defined process {γz0
i , i ≤ min(kθ−1, N)}, the

domains of definition of which are as follows: Let Δ0 = Jθ−1 ⊃ J2θ−1 ⊃
· · · ⊃ JN be the elements of J2�θ−1 containing JN . Then

– γz0
i , i ≤ θ−1, is defined on Δ0 = Jθ−1 (this is what is constructed in

Section 13.2);

– the process above is extended from i = θ−1 to i = 2θ−1 on J2θ−1 ,
then from i = 2θ−1 to i = 4θ−1 on J4θ−1 , and so on, up to i = 1

2N ;

– the product of this last extension is extended from i = 1
2N to i =

min(kθ−1, N) on JN where k, as we recall, is the generation of z0.

We explain how to go from step N to step 2N , clarifying along the way
what exactly is meant by some of the statements in (iii) and how they can be
achieved:

Elements of JN not in J ∗
N are discarded since all parameters in them

have been deleted in a previous step (second property of JN in assumption (ii)
above). Let JN ∈ J ∗

N be fixed. We consider J2N |JN
, and put into J ∗

2N those
elements of J2N that meet ΔN (as required by (ii)). Consider a (fixed) J ⊂ JN

such that J ∈ J ∗
2N . Since there exists â ∈ J such that Tâ ∈ G#

N (assumption
(ii)), Ta ∈ G2α∗N for all a ∈ J (Proposition 10.1). Thus on J there is a coherent
choice of Γ2θN whose orbits can be treated up to time min(kθ−1, 2N) where k

is the generation of the critical point.
Fix z0 ∈ Γ2N (J). Since k, the generation of z0, is ≥ θN , γz0

i is defined for
all i ≤ N in the sense of (iii). As mandated by (iii), we now seek to extend
this process to all i ≤ min(kθ−1, 2N) on the interval J . Such an extension is
carried out on one ω ∈ Qz0

N at a time. Fix ω such that γz0
N |ω �= ∗. If ω ⊂ J ,

then we consider γz0
i for i = N + 1, N + 2, · · · starting from ω as explained in

Section 13.2B. If ω ∩ J = ∅, then ω is not our concern. It remains to consider
the case ω ∩ ∂J �= ∅.

Observation. If for all a ∈ ω, z0(a) satisfies the hypotheses of Proposi-
tion 11.1 up to time N , then |ω|  |J |.
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Indeed, ω ∈ Qz0
N and J ∈ JN have exponentially different length scales.

This is because by Proposition 11.1, |ω| < K̂e−λ̂N , which is  ρα∗N = |J |, and
our rules of deletion, which are stated precisely in part C below, are built to
ensure that the hypotheses of Proposition 11.1 are satisfied for z0(a) for every
a ∈ {γz0

N �= ∗}. To deal with those ω that intersect some J ∈ J ∗
N but are not

completely contained in it, we let J+ be, say, 10% longer than J , and treat all
ω ∈ Qz0

N that are completely contained in J+. The properties of J continue
to be valid in J+, and these overlapping intervals lead to an overcount by a
factor of at most 2. This completes the qualitative description of the extension
of (iii).

We finish with the inductive definition of ΔN , even though the following
acquires meaning only after the deletion rules are specified. We let

Δz0
2N := {γz0

min(kθ−1,2N) �= ∗}, Δ2N (J) := ∩z0∈Γ2N (J) Δz0
2N

and
Δ2N := ΔN ∩

(
∪J∈J ∗

2N
Δ2N (J)

)
.

Our deletion rules are designed to ensure that ΔN as defined above has the
property in assumption (i), and that ∩NΔN has positive measure.

Remarks. (1) The intersection with ΔN in the definition of Δ2N may seem
redundant, for on J ∈ J ∗

2N , all critical blobs corresponding to z0 ∈ Γ2N (J)
have already been treated up to time min{k−1θ, 2N}. Consequently, it is
tempting to claim that Ta ∈ G#

2N for all a ∈ ∪J∈J ∗
2N

Δ2N (J). This is not true in
general, for not every critical blob has offspring (meaning smaller critical blobs
inside), and the definition of ∪J∈J ∗

2N
Δ2N (J) does not take into consideration

the behavior of critical blobs that expired without reproducing before time N .
To ensure that Ta ∈ G#

2N for all a ∈ Δ2N , we require that Δ2N ⊂ ΔN , and
use the inductively obtained fact that for all a ∈ ΔN , all z0 ∈ ΓN (J) are well
behaved.

(2) To deal with the phenomenon called “skipping of generations”, we
need to work with slightly overlapping intervals of generations to ensure that
all critical behaviors are represented. For example, we should have included
in the definition of ΓN (J) all critical points from generation θN to generation
2θN(1 + 2θ), and the elements of JN should have been taken to be of length
≈ 1

2ρα∗N(1+2θ), and so on. We have omitted – and will continue to omit – all
of these factors of (1 + 2θ) to slightly simplify the discussion. The problem is
easy to rectify (and should probably be ignored on first pass).

C. Formal procedure from step N = 2	θ−1 to step 2N . We now give the
formal procedure at a generic step N . The following should not be thought of
as induction hypotheses, but rather as a summary of the situation as we arrive
at step N following the procedure described in part B. At time N we assume
we have the following:
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(a) A subcollection J ∗
N of JN with the property that on each J ∈ J ∗

N ,
there is a coherent choice of ΓθN ; ΓN (J) and ΔN (J) are as defined above.

(b) On each J ∈ J ∗
N , associated with each z0 ∈ ΓN (J) of generation k, is

a process γz0
i : J → R1 ∪ {∗} for which the following hold: For all a ∈ Δz0

N and
i ≤ min(kθ−1, N),

(i) dC(γz0
i (a)) > 3e−αi;

(ii) B(a, δ̂; 2jθ−1, 2j+1θ−1) < σ2jθ−1.

(c) A subset of ∪J∈J ∗
N
ΔN (J) in {a : Ta ∈ G#

N} is called ΔN .

As noted in B(1) above, all z0 ∈ ΓN (J) of generation k obey (A2)# and
(A4)# up to time min(kθ−1, N). Step (c) is needed because ∪J∈J ∗

N
ΔN (J) is

not necessarily in {a : Ta ∈ G#
N} (see Remark (1) in B(2) above).

What is done from time N to time 2N .

(0) First we introduce the partition J2N , and let J ∗
2N ⊂ J2N be the collection

of J with J ∩ΔN �= ∅. Elements of J2N \ J ∗
2N are excluded from further

consideration.

We then treat one J ∈ J ∗
2N at a time, carrying out for it steps (1)–(4)

below. Steps (1)–(3) are carried out for each z0 ∈ Γ2N (J), beginning with the
z0 of the lowest generations.

(1) Set γz0
N+1|ω = ∗ on those ω ∈ Qz0

N with ω ∩ ΔN = ∅.

(2) On the rest of the ω ∈ Qz0
N , we continue the process to time 2N in

the manner described above, deleting along the way all ω′ ∈ Qz0
i with

dC(γz0
i (ω′)) < 3e−αi.

(3) Set γz0
2N |ω = ∗ on those ω ∈ Qz0

2N with the property that B(a, δ̂, N, 2N) >

σN for a ∈ ω.

(4) Define Δz0
2N = {γz0

min(kθ−1,2N) �= ∗} and Δ2N (J) = ∩z0∈Γ2N (J)Δ
z0
2N as in

Part B.

Finally, after all the J ∈ J ∗
2N are treated, we set

Δ2N = ΔN ∩ (∪J∈J ∗
2N

Δ2N (J)).

Step (0) is to ensure the existence of a coherent choice of Γ2θN on each
selected J . Step (1) is to ensure that the process can legitimately be extended
on those ω on which γz0

N+1 �= ∗. Note also that every z0 has an ancestor, so
all γz0

i are extensions of previously constructed processes. Since many of the
z0 ∈ Γ2N (J) are related to each other via ancestry, the steps above in fact
contain many duplications.
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It is evident that the steps above lead to (a)–(c) at the beginning of Part
B for time 2N .

D. Measure deleted from time N to time 2N . First we estimate the mea-
sure deleted on account of a fixed J ∈ J ∗

2N and a fixed z0 ∈ Γ2N (J): Step (0)
does not contribute to ΔN \Δ2N since no a ∈ ∪J ∗

N \∪J ∗
2N belongs in ΔN . The

same remark holds for step (1). Explanations and estimates for steps (1)–(3)
are exactly as before, except that |Δ0| should be replaced by |J+|. Thus we
have

|Dz0
N,2N | ≤ K ′e−ε′N · 2|J |.

Since the cardinality of Γ2N is ≤ 2NθK
2θN(1+2θ)
2 (Corollary 7.1), we have

|DN,2N | ≤
∑

J∈J ∗
2N

∑
z0∈Γ2N

|Dz0
N,2N | ≤ 2NθK

2θN(1+2θ)
2 · K ′e−ε′N · 2|Δ0|.

13.4. The final count

From Sections 13.1, 13.2C and 13.3D, we see that the total measure deleted
at the end of the procedure is

≤

⎛
⎝Kδ−1

0 e−αn0 + qK ′ ∑
N=2�n0,	∈Z+

NθK
2θN(1+2θ)
2 · e−ε′N ·

⎞
⎠ |Δ0|.

As (a, b) → (a∗, 0), n0 → ∞ and θ → 0, but none of the other constants is
affected. Thus with (a, b) sufficiently near (a∗, 0), the quantity in parenthesis
can be made arbitrarily small. In other words, |Δ| can be made as large
a fraction of |Δ0| as we wish. This completes the proof of (ii) in the first
paragraph of this section.

Appendices

A.1. Properties of “good” 1D maps (§§2.1 and 2.2)

Proof of Lemma 2.1. Let x be such that f i(x) �∈ Cδ for i ∈ [0, n). We
divide [0, n] into maximal time intervals [i, i + k] such that f i+j(x) �∈ Cδ0 for
0 < j < k, and estimate |(fk)′(f i(x))| as follows:

Case 1. f i(x), f i+k(x) ∈ Cδ0 . Definitions 1.1(b)(ii) and (c)(ii) together
guarantee that |(fk)′(f i(x))| ≥ e

1
3
λ0k.

Case 2. f i(x) �∈ Cδ0 , f
i+k(x) ∈ Cδ0 , same as Definition 1.1(b)(ii).

Case 3. f i(x), f i+k(x) �∈ Cδ0 . If k ≥ M0, then |(fk)′(f i(x))| > eλ0k from
Definition 1.1(b)(i). If k < M0, we let k̂ be the smallest integer > k such
that f i+k̂(x) ∈ Cδ0 . Using Definition 1.1(b)(i) for k̂ ≥ M0 and Definition
1.1(b)(ii) for k̂ < M0, we conclude that |(fk)′(f i(x))| > c0K

−M0
0 eλ0k where

K0 = max |f ′(x)|.
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Case 4. f i(x) ∈ Cδ0 , f
i+k(x) �∈ Cδ0 , same as Case 3, with an extra factor

≥ (miny∈Cδ0
|f ′′(y)|) δ.

Cases 3 and 4 are relevant only for part (a).

Proof of Lemma 2.2. Proceed as in the proof of Lemma 2.1. From
Definitions 1.1(b)(i) and (c)(ii), we see that for f , the estimates in all four
cases are determined by |(f j)′(y)| for y �∈ Cδ and j ≤ N := max(M0, K log 1

δ ).
Choose g sufficiently near f that |gj(y) − f j(y)| is sufficiently small for all
y �∈ Cδ and j ≤ N .

We will use the notation xi = f i(x).

Proof of Proposition 2.1. (P1) is Lemma 2.2. Let x ∈ Cδ(x̂).

Sublemma A.1.1. For all y ∈ [x̂, x] and k < p,

1
2
≤ (fk)′(y1)

(fk)′(x̂1)
≤ 2

provided that δ and ε are sufficiently small.

Proof. We write

log
(fk)′(y1)
(fk)′(x̂1)

≤
k∑

j=1

|f ′(yj) − f ′(x̂j)|
|f ′(x̂j)|

≤ K

k∑
j=1

|yj − x̂j |
d(x̂j , C)

.

We first choose h0 large enough that 1
δ0

∑∞
i=h0+1 e−2αj  1, followed by δ small

enough that δ
∑h0

j=1
1
δ0

Kj  1. We then require ε to be sufficiently small so
that d(x̂j , C) > δ0 ∀j < n0 for some n0 satisfying e−αn0 < δ. These choices
ensure that

k∑
j=1

|yj − x̂j |
d(x̂j , C)

<

h0∑
j=1

1
δ0

Kjδ +
n0∑

j=h0+1

1
δ0

e−2αj +
k∑

j=n0+1

e−(2α−α)j  1. �

Proof of (P2). Suppose |x − x̂| = e−h. Then (G2) together with the
sublemma above imply that

|xp − x̂p| = |(fp−1)′(y1)||x1 − x̂1| ≥ K−1eλ(p−1)(x − x̂)2.

From |xp − x̂p| < 1, we read off the upper bound p < 3
λh for h sufficiently

large. For the lower bound, we write |xp − x̂p| < Kp−1e−2h and recall that p is
defined such that |xp − x̂p| ≥ e−2αp. That p > constant·h follows directly from
Kp−1e−2h > e−2αp.

To prove (P2)(ii) we again write |xp − x̂p| < K|(fp−1)′(y1)|(x − x̂)2, so
that

K|(fp−1)′(x̂1)|
1
2 |x − x̂| > e−αp.(18)
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We also have

|(fp)′(x)| = |(fp−1)′(x1)||f ′(x)| > (K−1|(fp−1)′(x̂1)|) · (K−1|x − x̂|).
Combined with (18) this gives

|(fp)′(x)| > K−3|(fp−1)′(x̂1)|
1
2 e−αp > ĉ

1
2
1 K−3e

1
2
λ(p−1)e−αp,

which we may assume is > e−
1
3
λp if p is sufficiently large, or equivalently, δ is

sufficiently small.
It remains to prove (P2)(iii). From (P2)(i), (ii) and Sublemma A.1.1, for

Iμj ∈ P|Cδ(x̂),

|fp(Iμj)| ≥ K−1 |f(Iμj)|
|f([x̂, x̂ + e−μ])| |f

p([x̂, x̂+e−μ])| ≥ K−1 1
μ2

e−2αp > e−Kα|μ|.

Proof of (P3). We write σ0 = [x, y], σk = f tkσ0, and assume for definite-
ness that σ0 ⊂ Cδ and n ≥ tq + pq. Then

log
(fn)′(x)
(fn)′(y)

≤
n−1∑
j=0

|f ′(yj) − f ′(xj)|
|f ′(yj)|

≤ K

q∑
k=1

(S′
k + S′′

k )

where

S′
k =

tk+pk−1∑
j=tk

|yj − xj |
d(yj , C)

and S′′
k =

tk+1−1∑
tk+pk

|yj − xj |
d(yj , C)

except for S′′
q which ends at index n − 1.

I. Bound on
∑q

k=1 S′′
k . For k < q and tk + pk ≤ j < tk+1 − 1, we have,

by (P1)(ii), |σk+1| ≥ c1e
λ(tk+1−j)|xj − yj |, so that S′′

k ≤ K |σk+1|
δ . Also, by

combining (P2)(ii) and (P1)(ii), we have |σk+1| ≥ e
1
3
λ(tk+1−tk)|σk| ≥ τ |σk| for

some τ > 1, so that
∑q−1

t=0 S′′
k ≤ K |σq|

δ .
The term S′′

q is treated differently because xn may not be a return. Ob-
serve the following: (i) If [xn, yn] ⊂ Cδ0 , then (P1)(ii) gives, as before, S′′

q ≤
1
δ K|yn − xn| which is ≤ K since |yn−1 − xn−1| � δ by definition. (ii) If for
tq + pq ≤ j < n, [xj , yj ] ∩ Cδ0 = ∅, then (P1)(i) with δ0 in the place of δ gives
S′′

q ≤ 1
δ0

K
δ0
|yn − xn| ≤ Kδδ−2

0 ≤ K. In general, if there is n̂ ≥ tq + pq such that
n̂ is the last return to Cδ0 before time n, then we apply (i) to

∑n̂
tq+pq

and (ii)
to

∑n−1
n̂+1.

II. Bound on
∑q

k=1 S′
k. First we estimate S′

k. Suppose ytk
∈ Cδ(x̂). For

tk < j < tk + pk we write

|yj − xj |
d(yj , C)

=
|yj − xj |

|yj − x̂j−tk
| ·

|yj − x̂j−tk
|

d(yj , C)
.
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By Sublemma A.1.1 and the usual estimates near x̂, the first factor on the
right is

< K
|ytk+1 − xtk+1|
|ytk+1 − x̂1|

< K
|f ′(xtk

)| |ytk
− xtk

|
|ytk

− x̂|2 < K
|σk|

d(ytk
, C)

.

Thus

S′
k =

|ytk
− xtk

|
d(ytk

, C)
+

tk+pk−1∑
j=tk+1

|yj − xj |
d(yj , C)

≤K
|σk|

d(ytk
, C)

⎛
⎝1 +

tk+pk−1∑
j=tk+1

|yj − x̂j−tk
|

d(yj , C)

⎞
⎠ < K

|σk|
d(ytk

, C)
.

Now let Kμ = {k ≤ q : σk ⊂ Iμ,j for some j}. Then
∑

k∈Kμ

S′
k <

∑
k∈Kμ

K
|σk|
e−|μ| < K

1
μ2

.

The first inequality is from above. The second follows from the next two facts:
(i) |σk+1| ≥ τ |σk| for k < q, and (ii) the term with the largest index is bounded
above by |I+

μ,j |, which is < K 1
μ2 e−μ. To finish, we sum over all μ to obtain∑

S′
k < K.

A.2. Growth estimates and large deviations (§2.3)

To avoid cumbersome notation, we write μ instead of |μ| in all estimates.

Proof of Lemma 2.3. Since points in ω are assumed to have the same
itinerary up to time n, [0, n] is divided into bound intervals (tk, tk + pk) and
free intervals [tk + pk, tk+1]. From (P2)(ii), we have |γtk+pk

(ω)| > e
1
4
λpk |γtk

(ω)|
and from (P1)(ii), we have |γtk+1(ω)| > c1e

1
4
λ0(tk+1−tk−pk)|γtk+pk

(ω)|. Thus for
any time j such that γj(ω) is free, |γj(ω)| > e

1
5
λj |ω|. Now |γn(ω)| < 1 forces n

to be < Kμ0.

Proof of Lemma 2.5. Let s ∈ ω be such that S(s) > n. We define
the essential return times t1 < t2 < · · · and corresponding return addresses
Ii1
μ1j1

, Ii2
μ2j2

, · · · for s as follows: Let t1 be the smallest i > 0 when either (a)
γi(ω) is out of bound period and |γi(ω)| > δ or (b) i is the extended bound
period of γ0(ω), whichever happens first. If (a) happens first, then S|ω = t1,
and we stop iterating. If not, then we may assume γt1(ω) ⊂ Cδ, and the return
address of s at time t1 is Ii1

μ1j1
if γt1(Qt1(s)) ≈ Iμ1j1 ⊂ Cδ(x̂i1). Similarly, t2(s)

is the first i > t1(s) when either (a) γi(Qt1(s)) is out of bound period and
|γi(Qt1(s))| > δ or (b) i is the extended bound period of Qt1(s), whichever
happens first. Again if (a) happens first, then S|Qt1 (s) = t2 and we stop
considering Qt1(s); otherwise γt2(Qt2(s)) ≈ Iμ2j2 ⊂ Cδ(x̂i2), and so on.
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Let Aq = {s ∈ ω : S(s) > n, and γi(s) makes a total of exactly q essential
returns before time n}. Then |{S > n}| =

∑
q |Aq|. We write Aq = ∪RAq,R

where Aq,R = {s ∈ Aq : if (μ1, · · · , μq) are the μ-coordinates of its first q return
addresses, then |μ1| + |μ2| + · · · + |μq| = R}. We further decompose Aq,R into
intervals σ consisting of points whose first q return addresses are identical. For
σ with return addresses (Iμ1j1 , · · · , Iμqjq

), we let Qti
= Qti

(s) for s ∈ σ. Then

|σ| =
|Qtq

|
|Qtq−1 |

|Qtq−1 |
|Qtq−2 |

· · · |Qt1 |
|ω| |ω| ≤ Kq |γtq

(Qtq
)|

|γtq
(Qtq−1)|

· · · |γt1(Qt1)|
|γt1(ω)| |ω|

where K is the distortion constant in (P3). Now |γtq+1(Qtq
)| < 1, and by

(P2)(iii) and (P1)(ii), we have

|γtk
(Qtk

)|
|γtk+1(Qtk)|

≤ K
|Iμkjk

|
|γtk+pk

(Qtk
)| ≤ Ke−(1−Kα)μk .

Thus

|σ| < Kqe−
∑q

k=1
9
10

μk+Kαμ0 |ω| = Kqe−
9
10

R+Kαμ0 |ω| := |σ|R.

(For q = 0, this estimate presumes that γi(ω) has completed its initial bound
period, i.e. n > Kμ0.) We estimate |{S > n}| by

|{S > n}| =
∑
q,R

|Aq,R| ≤
∑
R

(number of σ in ∪q Aq,R) · |σ|R .

There are
(
R−1

q

)
ways of decomposing R into a sum of q+1 integers. For a

fixed q-tuple (μ1, · · · , μq), we claim there are ≤ 2qμ2
1μ

2
2 · · ·μ2

q possibilities for σ

with these data. This is because γtk
(Qtk

(σ)) is short enough that it can meet at
most one Cδ(x̂), which contains ≤ 2μ2

k intervals of the form Iμkj . Furthermore,
for (μ1, · · · , μq) with μ1 + μ2 + · · · + μq = R, we have μ2

1μ
2
2 · · ·μ2

q ≤ (R
q )2q.

There is one other piece of information that is crucial to us, namely that
all bound periods are ≥ Δ := K−1 log 1

δ . This means that for a given R, the
only feasible q are ≤ R

Δ . For a fixed R, then, the number of σ in ∪qAq,R is

≤
∑

q

(
R − 1

q

)
· 2q

(
R

q

)2q

≤ R

Δ
·

(
R
R
Δ

)
· 2

R

Δ Δ2 R

Δ ,

which, by Sterling’s formula, is ∼ R
Δ

(
eε( 1

Δ
) 2

1
Δ Δ

2
Δ

)R
where ε

(
1
Δ

)
→ 0 as

δ → 0. Calling the expression above (1 + η(δ))R, we have η(δ) → 0 as δ → 0.
Observe also that n ≤ KR+Kμ0 by Lemma 2.3 and so R ≥ K−1n−μ0. Thus

|{S > n}|<
∑

R≥K−1n−μ0

Kq(1 + η(δ))Re−
9
10

R+Kαμ0 |ω|

< e−
4
5
K−1n+μ0 |ω| < e−

1
2
K−1n|ω|

provided that n > 3Kμ0.
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Proof of Corollary 2.1. Let t1 ≥ 0 be the smallest i such that there are
points s, s′ ∈ ω with different itineraries in their first i iterates. Then either
t1 = 0, or t1 < K log δ−1 and |γt1(ω)| > K−1δ by (P1). Let n be an arbitrary
integer > t1. We partition ω into {ω̂} ∪ {ωμj} where s ∈ ω̂ if γt1(Qt1(s)) is
outside of Cδ and γt1(ωμj) ≈ Iμj . Then S|ω̂ = t1. For μ with n > 3Kμ,
|ωμj ∩ {S > n + t1}| < Ke−

1
2
K−1n|ωμj | by Lemma 2.4; K here is the distortion

constant in (P3). Note also that the total length of Iμj with n ≤ 3Kμ is
≤ 2e−

1
3
K−1n. It follows therefore that

|{s ∈ ω, S(s) > n+t1}| < Ke−
1
2
K−1n|ω|+K

(
2e−

1
3
K−1n

K−1δ

)
|ω| < e−K̂−1(n+t1)|ω|

provided K̂ is sufficiently large and n + t1 > K̂ log δ−1.

In the next proof, it is advantageous to take a probabilistic viewpoint, with
(ω, P ), P being normalized Lebesgue measure, as the underlying probability
space.

Proof of Proposition 2.2. Let δ̂ > 0 be a small number to be determined,
and let Bn be as in the statement of the proposition. The idea of this proof
is to introduce random variables X̂i, i = 0, 1, · · · , with the property that (i)
Bn ≤ ∑

i≤n X̂i and (ii) the conditional expectations of X̂i are dominated by
certain exponential random variables.

Step I. Reformulation of problem as one involving
∑

i≤n X̂i. Define a
sequence of random variables t1 < t2 < · · · marking certain intersection times
with Cδ̂ as follows: If Iμ0j0 ⊂ Cδ̂, let t1 = 0, and let S1 be the stopping time
S defined in Section 2.3. If Iμ0j0 ∩ Cδ̂ = ∅, let t1 be the smallest i for which
γi(Qi−1(s)) ∩ Cδ̂ �= ∅, and define S1 on each element of Qt1 as follows: If
γt1(Qt1(s)) ∩ Cδ̂ = ∅, set S1(s) = 0. If γt1(Qt1(s)) ≈ Iμj ⊂ Cδ̂, let S1 be the
stopping time S on Qt1(s) for the sequence γt1 , γt1+1, · · · (instead of γ0, γ1, · · · );
that is to say, S1(s) is the smallest i such that γt1+i(Qt1+i−1(s)) is not in a
bound period and |γt1+i(Qt1+i−1(s))| > δ. Then on each element of Qt1 , we
define t2 to be the smallest i ≥ t1 + S1 such that γi(Qi−1(s)) ∩ Cδ̂ �= ∅, and
on each Qt2(s), define S2 to be either S or 0 as before depending on whether
γt2(Qt2(s)) ⊂ Cδ̂ or not, and so on.

Before proceeding further, we record the following lower estimate on
|γti

(Qti−1(s))|. Let t be the time Qti−1(s) is created. By definition, ti−1 +
Si−1 ≤ t < ti, and γt(Qti−1(s)) ≈ P for some P ∈ P. Moreover, there are
only two possibilities: either P is outside and |P | ≥ δ, or it is ≈ Iμj for some
Iμj ⊂ Cδ \ Cδ̂. By (P1) and (P2)(iii), |γti

(Qti−1(s))| > δ̂′ := min(c2δ, δ̂
K1α).

Note that if δ̂  δ, then δ̂′ � δ̂.
We now head toward the promised random variables. For i = 0, 1, 2, · · · ,

let Xi(s) = 1 for i ∈ [tk, tk + Sk), any k, and = 0 otherwise. Then Bn ≤
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∑
i≤n Xi; in fact, this is likely to be an overcount, for Sk goes beyond bound

periods. It is thus sufficient to show that P{∑i≤n Xi > σn} decreases expo-
nentially with n.

As we will see, it simplifies the discussion slightly if we “speed up time”
to skip over the intervals [tk, tk + Sk). Let T−1 = −1. With Ti defined, we let
Ti+1 = Ti +1 except when Ti +1 = tk, in which case we let Ti+1 = Ti +1+Sk.
We let X̂0 = S if ω ⊂ Cδ̂, 0 otherwise, and let X̂i+1 = Sk if Ti + 1 = tk, 0
otherwise. Let QTi

be the partition defined by QTi
(s) = QTi(s)(s), and note

that X̂i is measurable with respect to QTi
. Since Xi ≤ X̂i, it is all the more

true that Bn ≤ ∑
i≤n X̂i.

Step II. Conditional distribution of X̂i+1 given QTi
. Let i ≥ 0, and con-

sider Q ∈ QTi
. On most Q, X̂i+1 is identically equal to 0. The only time when

this is not the case is when γTi(Q)+1(Q) meets Cδ̂. We note that

(1) for all s, s′ ∈ Q, γ′
Ti(Q)+1(s)/γ′

Ti(Q)+1(s
′) < K;

(2) |γTi(Q)+1(Q)| > δ̂′.

(1) follows from (P3); (2) is from Step I. From (1) and (2), we deduce that (i)
P (X̂i+1 = 0 | Q) ≥ 1 − Kδ̂δ̂

′−1 and (ii) P (X̂i+1 > n | Q ∩ {γTi+1 ∈ Iμj}) <

Ke−
1
2
K−1n if n ≥ 3Kμ (Lemma 2.5); for n < 3Kμ, there is no information. It

follows that for all n ≥ 0,

P (X̂i+1 > n | Q) < Kδ̂
′−1 min(δ̂, e−(3K)−1n) + Kδ̂δ̂

′−1e−
1
2
K−1n.(19)

A simple computation shows that if ε < 1
6K−1 (where K is as in the exponents

above), then E[eεX̂i+1 |Q] < ∞. We note further that by decreasing δ̂ (keeping
ε fixed), E[eεX̂i+1 |Q] can be made arbitrarily close to 1. Let η > 0 be a
number to be determined shortly, and choose δ̂ = δ̂(η) sufficiently small that
E[eεX̂i+1 |Q] < eη. Observing that the upper bound in (19) and hence that for
E[eεX̂i+1 |Q] do not depend on i or on Q, we conclude that with δ̂ = δ̂(η) as
above, E[eεX̂i+1 |QTi

] < eη for every i ≥ 0.

Step III. Large deviation estimate for
∑

i≤n X̂i. To finish, we write

E
[
eε

∑
i≤n X̂i

]
= E

[
E[eε

∑
i≤n X̂i |QTn−1 ]

]
= E

[
eε

∑
i<n X̂i E[eεX̂n |QTn−1 ]

]
< eη E

[
eε

∑
i<n X̂i

]
,

giving inductively E[eε
∑

i≤n X̂i ] < enηE[eεX̂0 ]. Since E[eεX̂0 ] < eKεμ0 , we arrive
at

P {Bn > σn} < P

⎧⎨
⎩

∑
i≤n

X̂i > σn

⎫⎬
⎭ < eηn−εσn+Kεμ0 .

This is < e−
1
2
εσn if η is chosen < 1

4εσ and n is > Kμ0σ
−1.
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A.3. Parameter transversality (§2.4)

Proof of Lemma 2.6. First we show that ∪i≥0f
−iC is dense in I. If

not, there would be an interval ω with the property that φ(x) is identical
for all x ∈ ω. Let ω be a maximal interval of this type. Then either (i)
fn+k(ω) ⊂ fn(ω) for some n, k, or (ii) fk(ω), k = 0, 1, · · · , are pairwise disjoint.
Case (i) cannot happen since it implies the presence of a periodic point x with
|(fk)′x| ≤ 1. Case (ii) is equally absurd, for it implies the existence of {ki}
where fki(ω) are arbitrarily short and arbitrarily close to C, a scenario not
permitted by Definition 1.1 (c)(ii) and Lemma 2.1.

For each n, let ln(x̂) and rn(x̂) be the two points in ∪0<i≤nf−iC closest
to x̂ ∈ C. In the case I = S1, let

Λ(n) = {x ∈ I : f ix �∈ ∪x̂∈C(ln(x̂), rn(x̂)) ∀i ≥ 0}.
If I is an interval, we may assume n is large enough that f(I) ⊂ (z1

n, z2
n) where

z1
n and z2

n are the two points in ∪0≤i≤nf−iC closest to the ends of I. We
then define Λ(n) as in the circle case but with I replaced by [z1

n, z2
n]. In both

cases, Λ(n) is compact and f(Λ(n)) ⊂ Λ(n). Clearly, ∪Λ(n) is dense in I since
∪i≥0f

−iC is dense in I and the gaps in Λ(n) decrease in size as n increases.
For part (a), it remains to show that f |Λ(n) is conjugate to a shift of finite

type. Let J (n) = {J (n)
i } be the partition of I by ∪0≤i≤nf−iC. Observe that

for Ji(n) �= (ln(x̂), x̂) or (x̂, rn(x̂)), f(J (n)
i ) is equal to the union of a finite

number of elements of J (n). Let Λ(n)
i = Λ(n) ∩ J

(n)
i . Then the alphabet of the

shift in question is {i : Λ(n)
i �= ∅}, and the transition i → j is admissible if

f(Λ(n)
i ) ⊃ Λ(n)

j .
Assertion (b) follows from our construction.

Proof of Corollary 2.2. Fix n large enough that for all i ≥ 0, f i(q) �∈
(ln(x̂), rn(x̂)) for all x̂ ∈ C, and let Λ = Λ(n). Let B = ∪i∂Λ̄i where Λ̄i is the
shortest interval containing Λi. Since B is a finite set with f(B) ⊂ B, it consists
of pre-periodic points. From Lemma 2.1, these periodic points are repelling.
Thus if g is sufficiently near f , there is a unique set Bg with g(Bg) ⊂ Bg such
that g|Bg

is conjugate to f |B. Using Bg, we recover a set Λg on which g is
conjugate to f |Λ. The uniqueness of qg follows from the expanding property
of g away from C (Lemma 2.2).

Proof of Proposition 2.3. (i) We prove a �→ q(a) is differentiable with

d

da
q(a) = −

∞∑
i=1

∂afa(f i−1
a (q))

(f i
a)′(q)

.(20)

Here all objects depend on a, mention of which is often suppressed (e.g. f = fa,
q = q(a)). Continuing to use the notation in Corollary 2.2, we let Λi0,i1,··· ,in

=
{x ∈ I : f j(x) ∈ Λij

, 0 ≤ j ≤ n}, and let Λi0,i1,··· ,in
(q) be the cylinder set
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containing q. For each n, choose qn ∈ ∂Λ̄i0,i1,··· ,in
(q). We will show that as

functions of a, d
daqn converge uniformly to the right side of (20). This requires

in particular the uniform bound maxi0,i1,··· ,in
|Λ̄i0,i1,··· ,in

| < Ke−
1
4
λ0n for all

n > 0 (see Lemma 2.1).
Introduce G(x, a) = (fa(x), a), and let Gn(qn, a) = (pn, a). Then pn ∈ B.

Differentiating, we obtain

d

da
pn =

n∑
i=1

∂xfn−i(f iqn)∂af(f i−1qn) + ∂xfn(qn)
d

da
qn.

Hence we have

d

da
qn =

d
dapn

∂xfn(qn)
−

n∑
i=1

∂af(f i−1qn)
∂xf i(qn)

.(21)

Since B is a finite set, d
dapn is uniformly bounded for all n. With |(fn)′(qn)|

growing exponentially, the first term on the right is exponentially small. It
remains to check that the second term converges uniformly to the right side of
(20). In addition to the growth of fn, this uses our estimates on max |Λ̄i0,i1,··· ,in

|
above and a distortion estimate for f i. We leave it as an exercise.

(ii) This is a direct application of (20) to q defined by q(a∗) = fa∗(x̂):
d
dafn(x̂)

∂xfn−1(x̂1)
=

1
∂xfn−1(x̂1)

(
∂xfn−1(x̂1)

dx̂1

da
+ ∂af

n−1(x̂1)
)

=
dx̂1

da
+

∂af
n−1(x̂1)

∂xfn−1(x̂1)
.

Thus the limit as n → ∞ at a = a∗ differs from dq
da(a∗) by dx̂1

da (a∗), which is also
easily seen to be the term corresponding to i = 0 in the sum in Proposition
2.3(ii).

A.4. Most contracted directions: Preliminaries (§3.1)

We record in this appendix some elementary estimates in preparation for
the proof of Lemma 3.1.

I. Area growth. Let {E1, E2, · · · , Em} denote the usual basis of R
m.

Recall that if u =
∑

uiEi and v =
∑

viEi, then u∧ v =
∑

i<j IijEi ∧Ej where
Iij = uivj − viuj , and the area of the parallelogram spanned by u and v is
equal to

|u ∧ v| =
√

|u|2|v|2 − 〈u, v〉2 =

⎛
⎝∑

i<j

I2
ij

⎞
⎠

1
2

.

Sublemma A.4.1. Let M and M̃ have the properties in (H1) in Sec-
tion 3.1. Then
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(a) |Mu ∧ Mv| < Kb |u ∧ v|;
(b) |Mu ∧ M̃v| ≤ Kb |u||v|.

Consider next linearly independent unit vectors u(0) and v(0) parametrized
by s = (s1, s2). For n = 1, 2, · · · , let u(n) = Mnu(n−1) and v(n) = Mnv(n−1),
and let u(n) ∧ v(n) =

∑
i<j I

(n)
ij Ei ∧ Ej .

Sublemma A.4.2. For k = 0, 1, 2, assume the respective versions of (H2),
in which the C2-norms are replaced by the corresponding Ck-norms. Then

|∂k(u(n) ∧ v(n))| < (Kb)n.

It follows that if Δn = |u(n) ∧ v(n)|, then |∂kΔ2
n| < (Kb)2n.

II. Formulas for e and f . We fix M ∈ L(m, R) and S = S(u, v) where
for simplicity we assume u and v are unit vectors with u ⊥ v. The formulas
below all pertain to M |S ; mention of S is suppressed (e.g. we write e = e(S))
except where ambiguity arises. The following formulas are results of elementary
computations:

First, we write down the squares of the singular values of M |S :

|Me|2 =
1
2
(B −

√
B2 − 4C) := λ, |Mf |2 =

1
2
(B +

√
B2 − 4C)

where B = |Mu|2+ |Mv|2, C = |Mu∧Mv|2. (Note that the formulas above are
in agreement with |Mu∧Mv| = |Me||Mf |.) We then write e = α0u+β0v, and
solve for |Me| =

√
λ subject to α2

0 + β2
0 = 1. There are two solutions (a vector

and its negative): either e = ±v, or the solution with a positive u-component
is given by

e =
1
Z

(αu + βv)(22)

with α = |Mv|2 − λ, β = −〈Mv, Mu〉 and Z =
√

α2 + β2. From this we
deduce that a solution for f is f = 1

Z (−βu + αv).

A.5. Most contracted directions: Proof of Lemma 3.1 (§3.1)

I. Proof of Lemma 3.1(a). We assume Mi satisfies (H1) and let S =
S(u, v). As before, mention of S is suppressed. Recall that Δi := |M (i)u ∧
M (i)v|.

Sublemma A.5.1. (i) Δi < (Kb)i;

(ii) |M (i)ei| <
(

Kb
κ

)i
;

(iii) |M (i+1)fi| = |M (i+1)fi+1| ± O((Kb
κ )i) � K−1

0 κi;
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(iv) If we substitute u = ei, v = fi and M = M (i+1) into the formulas in
Appendix A.4, part II, and let αi+1, βi+1 and Zi+1 be the resulting quantities,
then Zi+1 ≈ |αi+1| ≈ |M (i+1)fi|2.

Proof. (i) is the k = 0 case of Sublemma A.4.2. For (ii), write |M (i)ei| =
Δi

|M (i)fi| ; the assertion follows from (i) and our assumption on |M (i)fi|. Now
make the substitution in (iv). From the formula for |Mf |, we see that

|M (i+1)fi+1|2 = Bi+1 + O(Ci+1) = |M (i+1)fi|2 + |Mi+1M
(i)ei|2 + O(Ci+1);

estimates for the last two terms are given by (ii) and (i). This proves (iii). (iv)
is now obvious. �

We now prove Lemma 3.1(a). Continuing to substitute u = ei and v = fi

in the formulas in Appendix A.4, we have, from (22),

ei+1 − ei =
1

Zi+1

( −β2
i+1

αi+1 + Zi+1
ei + βi+1fi

)
.(23)

To estimate |ei+1 − ei|, then, we need to obtain a suitable upper bound for
|βi+1| and lower bounds for |αi+1| and Zi+1. Sublemma A.5.1 gives

|βi+1| ≤ |M (i+1)ei||M (i+1)fi| <

(
Kb

κ

)i √
Zi+1(24)

and |αi+1| ≈ Zi+1. These estimates together with Zi+1 > K−2
0 κ2i tell us

|ei+1−ei| ≈ |βi+1|
Zi+1

<
(

Kb
κ2

)i
. The second assertion follows easily from |M (i)en| ≤

|M (i)(en − en−1)| + · · · + |M (i)(ei+1 − ei)| + |M (i)ei| <
(

Kb
κ2

)i
.

II. Proof of Lemma 3.1(b): First derivative estimates. For this part we
assume Mi and S satisfy (H2) with C2 norms replaced by C1 norms. Let ∂

denote a fixed partial derivative.

Sublemma A.5.2. |∂e1|, |∂f1| < K1 for some K1.

Proof. Switching u and v in (H2) if necessary, we may assume |M1v| ≥
|M1u|. Then from Appendix A.4.II we have Z1 > α ≥ |M1v|2 − Kb > 1

2B −
Kb > 1

4K−2
0 . Differentiating (22) gives the desired result. �

Our plan of proof is as follows: For k = 1, 2, · · · , we assume for all i ≤ k

(∗) |∂ei|, |∂fi| < 2K1 where K1 is as in Sublemma A.5.2,

and prove for all i ≤ k:

(A) |∂(M (i)fi)| < Ki, |∂(M (i)ei)| <
(

Kb
κ2

)i
;

(B) |∂(ei+1 − ei)|, |∂(fi+1 − fi)| < (Kb
κ3 )i.
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Observe that for i = 1, (*) is given by Sublemma A.5.2. It is easy to see
that (B) above implies (*) with i = k + 1, namely |∂fk+1| ≤ |∂(fk+1 − fk)| +
· · · + |∂(f2 − f1)| + |∂f1|. From (B), we have |∂(fi+1 − fi)| <

(
Kb
κ3

)i
, and from

Sublemma A.5.2, we have |∂f1| < K1. Hence |∂fk+1| < Kb
κ3 + K1, which, for b

sufficiently small, is < 2K1. The computation for ek+1 is identical.

Proof that (∗) =⇒ (A). First we prove the estimate for ∂(M (i)fi).
Writing ∂(M (i)fi) =

∑i
j=1 Mi · · · (∂Mj) · · ·M1fi + M (i)∂fi, we obtain easily

|∂(M (i)fi)| ≤
∑i

j=1 |Mi · · · (∂Mj) · · ·M1fi| + ‖M (i)‖|∂fi| ≤ iKi + Ki(2K1).
This inequality is used to estimate ∂(M (i)ei).13 Write ∂(M (i)ei) = (I) +

(II) where (I) is its component in the direction of M (i)fi and (II) is its com-
ponent orthogonal to M (i)fi. Recall that ∂〈M (i)ei, M

(i)fi〉 = 0. We have

|(I)| =

∣∣∣∣∣〈∂(M (i)ei),
M (i)fi

|M (i)fi|
〉
∣∣∣∣∣ =

1
|M (i)fi|

|〈M (i)ei, ∂(M (i)fi)〉| <
1
κi

(
Kb

κ

)i

Ki ;

|(II)| |M (i)fi| = |∂(M (i)ei)∧M (i)fi| ≤ |∂(M (i)ei∧M (i)fi)|+|M (i)ei∧∂(M (i)fi)|.
The first term in the last line is < (Kb)i by Sublemma A.4.2, since we have
established |∂ei|, |∂fi| < 2K1; the second term is < (Kb

κ )i ·Ki. This completes
the proof of (A). �

To prove (B), we first compute some quantities associated with the next
iterate. Substitute u = ei, v = fi, M = M (i+1) into the formulas in Appendix
A.4, and let Bi+1, Ci+1, λi+1 etc. be the resulting quantities. The following is
a straightforward computation.

Sublemma A.5.3. Assume (∗) and (A). Then for all i ≤ k:

(a) |∂λi+1| <
(

Kb
κ2

)2(i+1)
;

(b) |∂βi+1| < (Kb
κ2 )i

√
Zi+1;

(c) |∂αi+1|, |∂Zi+1| < Ki
√

Zi+1.

Proof that (∗), (A) =⇒ (B). We work with ei; the computation for fi is
similar. From (23) we have ∂(ei+1 − ei) = (III) + (IV) + (V) where

|(III)|= | 1
Zi+1

(ei+1 − ei)∂1Zi+1| <
Ki

√
Zi+1

Zi+1
·
(

Kb

κ2

)i

<

(
Kb

κ3

)i

;

|(IV)|= | 1
Zi+1

∂(βi+1fi)| <
1

Zi+1
(|∂βi+1| + |βi+1||∂fi|) <

(
Kb

κ3

)i

;

|(V)|= | 1
Zi+1

∂

(
β2

i+1

αi+1 + Zi+1
ei

)
| 

(
Kb

κ3

)i

.

13We thank O. Lanford for showing us this argument.
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To estimate (III), we have used Sublemmas A.5.1, A.5.3(c) and part (a) of
Lemma 3.1. To estimate (IV), we have used Sublemma A.5.3(b), (*) and
|βi+1| < (Kb

κ )i. The estimate for (V) is easy. �

This completes the proofs of the first derivative estimates in Lemma 3.1(b).

III. Proof of Lemma 3.1(b): Second derivative estimates. We now assume
the full force of (H2). The proof proceeds in a manner entirely analogous to
that for first derivatives: We first prove |∂2e1|, |∂2f1| < K ′

1 for some K ′
1. Then

for k = 1, 2, · · · , we assume for all i ≤ k

(∗′) |∂2ei|, |∂2fi| < 2K ′
1,

and prove for all i ≤ k:

(A′) |∂2(M (i)fi)| < Ki, |∂2(M (i)ei)| <
(

Kb
κ3

)i
;

(B′) |∂2(ei+1 − ei)|, |∂2(fi+1 − fi)| < (Kb
κ4 )i.

Details are left to the reader.

A.6. A perturbation lemma (§3.2)

Proof of Lemma 3.2. Assume inductively that ∠(wi, w
′
i) < η

i+1
4 for all

i < n. Let n = 2j (or 2j±1). Let uj = wj

|wj | , A = DT j
zj , and let u′

j and A′ be the
corresponding quantities for (z′0, w

′
0). Since |wj | < Kj and |w2j | > K−1

0 κ2j−1

by hypothesis, we have

|Auj | =
|w2j |
|wj |

>

(
κ2

K

)j

.(25)

We observe first that |A′u′
j | � (κ2

K )j : Clearly, |A′u′
j | ≥ |Auj | − ‖A‖|uj − u′

j | −
‖A − A′‖|u′

j |. The desired estimate follows from the fact that ‖A‖|uj − u′
j | ≈

‖A‖∠(uj , u
′
j) ≤ Kjη

j+1
4 , ‖A − A′‖ = |DT j

zj − DT j
z′

j
| ≤ jKjηj+1, and both of

these quantities are  (κ2

K )j by the relation imposed on η and κ.
We estimate ∠(u2j , u

′
2j) ≈ |u2j ∧ u′

2j | by

|u2j ∧ u′
2j | ≤

|Auj ∧ Au′
j |

|Auj | · |A′
ju

′
j |

+
|Auj ∧ (A − A′)u′

j |
|Auj | · |A′

ju
′
j |

.

The first term is < (Kb)jη
j+1
4 ( K

κ2 )2j . The second term is < Kj(Kη)j+1( K
κ2 )2j .

Both are < 1
2η

n+1
4 by the relations we imposed on b, η and κ with K1 appro-

priately chosen. This completes the proof of (b) for n = 2j.
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To prove (a), we write

|w′
2j |

|w′
j |

≥ |w2j |
|wj |

(
1 − |wj |

|w2j |
(‖A′ − A‖ + ‖A‖|u′

j − uj |)
)

.

Using the same bounds as before, we see that the factor inside parenthe-
ses is > 1 − (Kκ−2)j [(Kη)j+1 + Kjη

j+1
4 ] > 1 − (1

4)j . This proves |w′
2j | ≥

|w2j |(
∑

1≤i≤j
1
4i ).

A.7. Temporary stable curves (§3.3)

Proof of Proposition 3.1. Let B0 be the ball of radius η in S centered at
z0. Then on B0 we have, by Lemma 3.2, ‖DT |S‖ ≥ 1

2K−1
0 , so that e1(S) is

well defined. Let γ1 be the integral curve to e1(S) defined for s ∈ (−η, η) with
γ1(0) = z0. Note that |DT (e1)| < Kb.

To construct γ2, let B1 be the η2

2K0
-neighborhood of γ1 in S where K0 is a

constant related to ‖T‖C2 . For ξ ∈ B1, let ξ′ be a point in γ1 with |ξ−ξ′| < η2

2K0
.

Then |Tξ −Tz0| ≤ |Tξ −Tξ′|+ |Tξ′−Tz0| ≤ η2

2 + Kb
κ2 η < η2. Thus by Lemma

3.2, ||DT 2
ξ |S‖ ≥ 1

2K−1
0 κ. This ensures that e2(S) is defined on all of B1. Let

γ2 be the integral curve to e2(S) with γ2(0) = z0. We verify that γ2 is defined
on (−η, η) and runs alongside γ1. More precisely,

| d

ds
(γ2(s) − γ1(s))| ≤ |e2(γ2(s)) − e1(γ2(s))| + |e1(γ2(s)) − e1(γ1(s))|

≤ |e2 − e1| + |∂e1||γ2(s) − γ1(s)| ≤ Kb

κ2
+

K

κ3
|γ2(s) − γ1(s)|

by Lemma 3.1. By Gronwall’s inequality, |γ2(s) − γ1(s)| ≤ Kb
κ2 |s|e

K

κ3 |s|, which
is  η2

2K0
for |s| < η. This ensures that γ2 remains in B1 and hence is well

defined for all s < η.
In general, we inductively construct γi by letting Bi−1 be the ηi

2Ki−1
0

-

neighborhood of γi−1 in S. Then for all ξ ∈ Bi−1, |T jξ − T jz0| < ηj+1 for
k < i. Thus by Lemma 3.2, ‖DT i

ξ |S‖ ≥ 1
2K−1

0 κi−1, and so ei is well de-
fined. Integrating and arguing as above, we obtain γi with |γi(s) − γi−1(s)| <

K(Kb
κ2 )i−1|s|  ηi

2Ki−1
0

for all s with |s| < η.

A.8. A curvature estimate (§3.4)

Proof of Lemma 3.3. Recall that

ki(s) =
|γ′

i(s) ∧ γ′′
i (s)|

|γ′(s)|3 .

Since γ′
i = DTγi−1(γ′

i−1), we have γ′′
i = ( d

dsDTγi−1)(γ′
i−1) + DTγi−1(γ′′

i−1). Thus
ki ≤ 1

|γ′
i|3 (I + II) where

I = |DT (γ′
i−1) ∧ DT (γ′′

i−1)|, II = |DT (γ′
i−1) ∧ (

d

ds
DTγi−1)(γ

′
i−1)|.
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Since DT = DTγi−1 has the form in (H1) in Section 3.1, we have I < Kb|γ′
i−1∧

γ′′
i−1| (see Sublemma A.4.1). Observe that d

dsDTγi−1 has the same form with
K0 replaced by K0|γ′

i−1|, i.e. if d
dsDTγi−1 = M = (M̂1, · · · , M̂m), then ‖M̂1‖ <

K0|γ′
i−1| and ‖M̂ j‖ < K0|γ′

i−1|b for j ≥ 2. Thus II < Kb|γ′
i−1|3, and so

ki ≤ (Kb · ki−1 + Kb)
|γ′

i−1|3
|γ′

i|3
=

i−1∑
j=1

(Kb)j
|γ′

i−j |3
|γ′

i|3
+ (Kb)i |γ′

0|3
|γ′

i|3
κ0 ≤ Kb

κ3
.

A.9. Properties of e1 in C(1) (§3.6)

Proof of Lemma 3.7. Consider T0 = (T̂ 1, 0, · · · , 0) acting at (x, 0), x ∈ Cδ,
and let e1 = e1(T0, (x, 0);S( ∂

∂x ,v)) be the most contracted direction of DT0 at
(x, 0) on the plane indicated. Since det(DT0(e1)) = 0, it is easy to see that

〈e1,v〉 = ± f ′(x)√
|DT0(v)|2 + (f ′(x))2

,

the sign depending on the orientation of DT0(v). Using the facts that |f ′′| >

K−1 and |DT0(v)| > K−1, one verifies readily that | d
dxe1(T0, (x, 0);S( ∂

∂x ,v))| >

K−1.

Observe that if b is sufficiently small, then by continuity,

e1(T, γ(x);S(γ′(x),v))

is defined everywhere on γ. We compare it to e1(T0, (x, 0);S( ∂
∂x ,v)): First, we

continue to focus on (x, 0) and S = S( ∂
∂x ,v), and interpolate between T0 and

T by introducing Ts := (T̂ 1, s√
b
T̂ 2, · · · , s√

b
T̂m), s ∈ [0,

√
b]. More precisely,

we consider the 2-parameter family M(s, x) := (DTs)(x,0). Observing that M

satisfies (H2) in Section 3.1 with
√

b in the place of b, we obtain, by Lemma 3.1,
| ∂2

∂x∂se1| < K. From this we conclude∣∣∣∣ d

dx
e1(T, (x, 0);S(

∂

∂x
,v)) − d

dx
e1(T0, (x, 0);S(

∂

∂x
,v))

∣∣∣∣ = O(
√

b).

Next we consider T and interpolate between the x-axis and γ. Write
γ(x) = (x, γy(x)). For s ∈ [0, b], let z(s, x) = (x, s

bγy(x)), and let M(s, x) =
DTz(s,x), S = S(u(s, x),v) where u(s, x) = (1, s

bγ
′
y(x)). Another application of

Lemma 3.1 gives∣∣∣∣ d

dx
e1(T, γ(x);S(γ′(x),v)) − d

dx
e1(T, (x, 0);S(

∂

∂x
,v))

∣∣∣∣ = O(b).

The inequality in (3) now follows from | d
dse1| > K−1 and the fact that

both | d
dsγ

′|, which is equal to the curvature of γ, and | d
dsS(γ′,v)| are  1.
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A.10. Critical points on C2(b)-curves (§3.7)

Proof of Corollary 3.1. Let γ : [x̂ − δ, x̂ + δ] → R1 be the C2(b)-curve in
question, with x̂ ∈ C and γ(x) = (x, γy(x)). Let η = 〈e1(S), v〉 be as defined
in Section 3.6. Since |dη

dx | > K−1
1 (Lemma 3.7), there can be at most one

x ∈ [x̂ − δ, x̂ + δ] with η(x) = 0. Observe that if we show η(x̂) = O(b), that
will force η(x) = 0 for some x with |x − x̂| < K1|η(x̂)|. The claim on η(x̂)
follows by interpolating between (T0, (x, 0), S( ∂

∂x ,v)) and (T, γ(x), S(γ′(x),v))
as detailed in Appendix A.9.

Proof of Lemma 3.8. We obtain by using Lemma 3.2 that for all i < n,
DT i

z(v) > K̂−1
0 for all z with |z − γ(0)| < 2b

n

5 . This guarantees that en(S)
with S = S(γ̂′,v) is defined at γ̂(s) for all s ∈ [−b

n

5 , b
n

5 ].
Let ηn be defined by using en instead of e1 in the definition of η in Sec-

tion 3.6. We have | d
dsηn| = | d

dsη1| + O(b) > 1
2K−1

1 from Lemmas 3.1 and 3.7.
This shows that there is at most one point at which ηn = 0, i.e. a critical point
of order n. To see there exists one such point, we first interpolate between
(γ(0), S(γ′(0),v)) and (γ̂(0), S(γ̂′(0),v)). By Lemma 3.1 and assumption (b)
in this lemma,

|en(γ̂(0)) − en(γ(0))| < Kb
n

4 .(26)

We have

|ηn(0)| ≤ |en(γ̂(0)) − en(γ(0))| + |en(γ(0)) − γ′(0)| + |γ′(0) − γ̂′(0)| < Kb
n

4

because |en(γ(0))− γ′(0)| = 0, and |γ′(0)− γ̂′(0)| < b
n

4 from assumption (b) of
this lemma. This estimate on ηn(0) forces ηn(s) = 0 for some s with |s| < Kb

n

4 .

Proof of Lemma 3.9. Since en+1 is defined on a neighborhood of γ(0) of
radius � (Kb)n, and |ηn+1(0)| < (Kb)n by Lemma 3.1(a), we proceed as in
the proof of Lemma 3.8 to obtain a critical point of order n+1. This argument
is then repeated to obtain successively critical points of order n+2, n+3, and
so on. The distances between critical points of consecutive orders decrease
geometrically. (It is not necessary to increase the order by 1 each time, but we
may not be able to construct a critical point of order n + m in a single step:
for m large, en+m may not be defined in a neighborhood of order (Kb)n.)

A.11. Splitting algorithm (§3.8)

Proof of Lemma 3.10. Consider first Ij with the property that Ij �⊃ Ij′ for
any j′. We observe that (i) for i = tj +1, · · · , tj + �tj

− 1, w∗
i is b-horizontal by

Lemma 3.4, and (ii) w∗
tj+	tj

is b-horizontal by assumption (a) in the lemma and
the single-return argument in Section 3.8. We emphasize that the preceding
discussion is entirely independent of what happens before time tj , for assump-
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tion (a) guarantees that whatever happens before, w∗
tj

splits in a desirable
manner.

Consider next Ij with the property that all Ij′ ⊂ Ij are of the type in the
last paragraph. For definiteness, we label these inner intervals as Ij1 , · · · , Ijk

with j1 < · · · < jk. Then applying the observations in the last paragraph to
each of the inner intervals and Lemma 3.4 to the times in between, we see that
the only time i we need to be concerned with is i = tj + �tj

. There are two
cases: tjk

+ �tk
< i, and = i.

If tjk
+ �tk

< i, the b-horizontal property of w∗
i follows from an argument

identical to that of the single-return case applied to the time interval Ij ; note
that when making this argument, one is entirely oblivious to whether or not
ŵtj

is split and recombined between times tj and i.
If tjk

+�tk
= i, we argue first that the rejoining of DT tjk (Êjtk

) increases the

slope of DTzi−1(w∗
i−1) by at most (Kb)

1
2
	tjk . Then we apply the single-return

argument to Ij (ignoring the splitting and re-combinations that occurred in
between), and note that with the rejoining of DT 	tj Êtj

, the slope deteriorates
by an additional (Kb)

1
2
	tj . Since s(DTzi−1(w∗

i−1)) < 3K0
2δ b, the resulting vector

w∗
i is still b-horizontal.

Inducting on the number of layers inside an Ij , we see that the only
question that remains to be treated is the following: Suppose there exist j1 <

· · · < jk such that j1 + �j1 = · · · = jk + �jk
= i. Can we be assured of the

b-horizontal property of w∗
i for arbitrary k? We answer in the affirmative, on

the grounds that the deterioration in slope caused by recombining DT 	jt (Êjt
)

is a geometric series of the form
∑

(Kb)q. To see this, one must start from the
rejoining of the vector that is split off last, and work backwards one step at a
time in the estimation of additional deterioration in slope.

A.12. Estimates on B(k) and Fk (§4.2)

Sublemma A.12.1. For ε, a > 0, let J be an interval containing [0, ε
a ],

and let ψ : J → R be a C2 function with |ψ′′| ≤ a and |ψ( ε
a) − ψ(0)| ≤ 1

2
ε2

a .
Then |ψ′(0)| ≤ ε.

Proof. Suppose |ψ′(0)| = ε′ > ε. Then |ψ( ε
a)−ψ(0)| ≥ ε′ εa− 1

2a( ε
a)2 > 1

2
ε2

a .
�

Proof of Lemma 4.2. Between Q(k) and Q(k̂) we have Q(k) ⊃ Q(k+1) ⊃
· · · ⊃ Q(k+n) = Q(k̂). Denote ẑ as ẑ(k+n), and for 0 ≤ i < n, choose z(k+i) so
that

– z(k+i) ∈ Q(k+i),
– z(k+i) has the same x-coordinates as ẑ, and
– z(k) lies on the Fk-leaf containing z.
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Let γk+i be the Fk+i-leaf containing z(k+i) and let τk+i be the tangent to γk+i

at z(k+i). We claim that ∠(τk+i, τk+i+1) ≤ Kδ−
3
2 b

k+i

4
+ 1

2 . To see this, re-
gard γk+i and γk+i+1 as graphs of functions defined on the x-axis, fix l with
1 ≤ l < m (where m = dim(X)), and let ψ(x) = yl coordinate of γk+i+1(x) −
yl coordinate of γk+i(x). Since the diameter of Q(k+i) is < b

k+i

2 by (A1)(ii),
and the γj are C2(b)-curves, we wish to use Sublemma A.12.1 with a = Kb

δ3

and 1
2

ε2

a = b
k+i

2 to conclude that |ψ′| ≤ ε = Kδ−
3
2 b

k+i

4
+ 1

2 . To do this,
we need to first verify that ε

a  the length of Q(k+i+1), i.e. Kδ
3
2 b

k+i

4
− 1

2 
min{δ, e−λ(k+i+1)}. This is true for k + i > 1. The claim is also valid when
k + i = 1, for |ψ′| < Kb

δ by the C2(b)-property of the curves in question.
Thus we have

∠(τ, τ̂) ≤ ∠(τ, τk) +
n−1∑
i=0

∠(τi+k, τi+k+1) < Kδ−3b · |z − ẑ|h + b
k

4 ,

the first term in the last inequality following again from the fact that γk is
C2(b).

Proof of Lemma 4.1. It suffices for us to prove |z∗0(Q(k)) − z∗0(Q
(k+1))| <

Kb
k

4 . The rest follows immediately. To prove the estimate on z∗0 , let γ and γ̂

be the leaves of Fk and Fk+1 containing z∗0(Q
(k)) and z∗0(Q

(k+1)) respectively,
parametrized so that γ(0) = z∗0(Q

(k)) and γ̂(0) has the same x-coordinate as
γ(0). We apply Lemma 3.8 to obtain a critical point ẑ of order k on γ̂: the
bound for |γ(0)− γ̂(0)| comes from the diameter bound for Q(k) given by (A1);
the one for |γ′(0)− γ̂′(0)| comes from Lemma 4.2. Lemma 3.8 tells us also that
|ẑ − γ̂(0)| < Kb

k

4 . Lemma 3.9 says that |z∗0(Q(k+1)) − ẑ| < (Kb)k.

A.13. Correct alignment implies correct splitting (§4.4)

Proof of Lemma 4.7. Assume that φ(zi) = z∗0(Q
(j)), and let γ and γ̂

be the Fj-leaves parametrized by arc-length through φ(zi) and zi respectively.
Both γ and γ̂ are C2(b)-curves by (A1)(ii). Let �i be the splitting period of zi.

From Lemma 4.3 and Lemma 3.8, there exists a critical point ẑ of order j

on γ̂ with |ẑ − φ(zi)| < Kb
j

4  dC(zi). From Lemma 3.2, the most contracted
direction of order �i in S is well defined on γ̂ from ẑ to zi where S = S(γ̂′,v).
By Lemma 3.7, | d

dse1| > K−1
1 . By Lemma 3.1, | d

ds(e	i
− e1)| < Kb. Together

we have

∠(e	i
(S), γ̂′)(zi) > K−1

1 |ẑ − zi| − |ej(ẑ) − e	i
(ẑ)| >

3
4
K−1

1 dC(zi).(27)

For the last inequality we used |ej(ẑ)−e	i
(ẑ)| < min((Kb)

1
4
j , (Kb)	i)  dC(zi).

Next we pass from e	i
(S) to e	i

(S∗) at zi where S∗ = S(w∗
i ,v). This is

a straightforward interpolation between u = γ̂′ and u = w∗
i by Lemma 3.1.
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Since the difference in u is ≤ εdC(zi) by the assumption of correct alignment,
we obtain

|∠(e	i
(S), e	i

(S∗))| < KεdC(zi)(28)

where K is the constant in Lemma 3.1. Finally, |Bi|/|Ai| in Lemma 4.7 is
≈ |∠(e	i

(S∗), w∗
i )|, and from (27) and (28), we have the following estimates at

zi:

|∠(e	i
(S∗), w∗

i )|> |∠(e	i
(S), γ̂′)| − |∠(e	i

(S), e	i
(S∗))| − |∠(w∗

i , γ̂
′)|

>
3
4
K−1

1 dC(zi) − KεdC(zi) − εdC(zi) >
1
2
K−1

1 dC(zi).

A.14. Comparison of derivatives during bound periods (§5.1)

The following sublemma is used in a number of places. Its proof is easy
and left to the reader:

Sublemma A.14.1. Let z0 ∈ ΓθN be of generation k. Then for all i ≤
θ−1k, the size of the longest splitting period zi is in is < Kθαi.

Proof of Proposition 5.1. The proof proceeds by induction. Let i < N be
the inductive index. We assume that (6) and (7) hold for all triples (z0, ξ0, ξ

′
0)

in the same component of C(1) and all j ≤ min(p(z0; ξ0, ξ
′
0), i − 1). We then

fix a specific triple (z0, ξ0, ξ
′
0) and prove for it step i of these two assertions

assuming i ≤ p(z0; ξ0, ξ
′
0). Note that K1, the constant in the statement of the

proposition, must not be allowed to increase from step to step. It is larger
than any other generic constant K that appears in the proof. In particular, K

does not depend on K1.
Let Mi = |w∗

i (ξ0)|, M ′
i = |w∗

i (ξ
′
0)|, and θi(ξ0, ξ

′
0) = ∠(w∗

i (ξ0), w∗
i (ξ

′
0)).

Case 1. No splitting period expires at zi and i − 1 is not a return time.
In this case w∗

i = DTw∗
i−1. Writing C = DTξi−1 , C ′ = DTξ′

i−1
, u = w∗

i−1(ξ0)

|w∗
i−1(ξ0)|

and u′ = ŵ∗
i−1(ξ

′
0)

|ŵ∗
i−1(ξ

′
0)| , we have

θi(ξ0, ξ
′
0) ≈

|Cu ∧ C ′u′|
|Cu||C ′u′| ≤ K−1δ−2

(
|Cu ∧ Cu′| + |Cu ∧ (C ′ − C)u′|

)
.

By Sublemma A.4.1, |Cu ∧ Cu′| < Kbθi−1. This together with

|Cu ∧ (C ′ − C)u′| < Kb|ξi−1 − ξ′i−1|
gives θi ≤ Kb

δ2 (|ξi−1 − ξ′i−1| + θi−1) < b
1
2 Δi−1(ξ0, ξ

′
0), proving (7) for step i.

To compare magnitudes, we have

M ′
i

Mi
=

M ′
i−1

Mi−1
· |C

′u′|
|Cu| ≤ M ′

i−1

Mi−1

(
1 +

|C ′u′ − Cu|
|Cu|

)

≤ M ′
i−1

Mi−1

(
1 +

‖C ′ − C‖
|Cu| +

|C(u − u′)|
|Cu|

)
.
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Since |Cu| > K−1dC(zi−1), ‖C−C ′‖ < K|ξi−1−ξ′i−1| and |u−u′| ≈ θi−1(ξ0, ξ
′
0) <

b
1
2 Δi−2(ξ0, ξ

′
0),

M ′
i

Mi
≤ M ′

i−1

Mi−1

(
1 + K

Δi−1(ξ0, ξ
′
0)

dC(zi−1)

)
≤ exp

{
K1

i−1∑
n=1

Δn(ξ0, ξ
′
0)

dC(zn)

}
,(29)

the last inequality following from (6) for step i− 1 and the fact that K < K1.

Case 2. i − 1 is a return time. In this case the angle estimate is trivial
since θi(ξ0, ξ

′
0) = ∠(Cv, C ′v). To compare magnitudes, we first recall that

w∗
i−1(ξ0) = A(ξi−1) · e(ξi−1) + B(ξi−1) · v

where e = e(ξi−1) = e	(zi−1)(ξi−1, S(w∗
i−1(ξ0),v)); w∗

i−1(ξ
′
0) and e′ = e(ξ′i−1)

are defined similarly. From Lemma 3.1,

|e − e′| ≤ K(|ξi−1 − ξ′i−1| + θi−1(ξ0, ξ
′
0)).(30)

Let B0 = B(ξi−1)
|w∗

i−1(ξ0)| . Since w∗
i (ξ0) = B(ξi−1) · Cv,

M ′
i

Mi
=

M ′
i−1

Mi−1
· |B

′
0|

|B0|
· |C

′v|
|Cv| .(31)

To estimate B′
0

B0
, we let u = wi−1(ξ0)

|wi−1(ξ0)| , and let e⊥ denote the unit vector
orthogonal to e in S(u,v). Then a straightforward computation (using the fact
that 〈v, e⊥〉 ≈ 1) gives

|B0 − B′
0|=

∣∣∣∣ 〈u, e⊥〉
〈v, e⊥〉 −

〈u′, e
′⊥〉

〈v, e′⊥〉

∣∣∣∣(32)

≤ 2(|u − u′| + |e⊥ − e
′⊥|) ≤ 2(|u − u′| + |e − e′|).

This together with |B0| ∼ dC(zi−1) gives∣∣∣∣B′
0

B0
− 1

∣∣∣∣ <
K

|B0|
(
b

1
2 Δi−2 + |ξi−1 − ξ′i−1|

)
<

KΔi−1(ξ0, ξ
′
0)

dC(zi−1)
.(33)

For the last ratio,∣∣∣∣ |C ′v|
|Cv| − 1

∣∣∣∣ ≤ K|ξi−1 − ξ′i−1| <
KΔi−1(ξ0, ξ

′
0)

dC(zi−1)
.(34)

Thus (6) is proved for step i by substituting (33) and (34) into (31) and taking
K1 > 2K.

Case 3. At least one splitting period initiated previously expires at
time i. Among the splitting periods expiring at this time, let j be the time
when the first one is initiated. Then

w∗
i (ξ0) = B(ξj) · DT i−j

ξj
v + A(ξj) · DT i−j

ξj
e(ξj).(35)
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Let

B0 =
B(ξj)
|w∗

j (ξ0)|
, A0 =

A(ξj)
|w∗

j (ξ0)|
, V = DT i−j

ξj
v, E = DT i−j

ξj
e(ξj).

As before, all corresponding quantities for ξ′0 carry a prime. We shall use
θi(ξ0, ξ

′
0) ≤ (I) + (II) where

(I) :=
∣∣∣∣ V ′

|V ′| −
V

|V |

∣∣∣∣ and (II) :=
∣∣∣∣ A′

0E
′

B′
0|V ′| −

A0E

B0|V |

∣∣∣∣ .

Assume that zj is bound to η0 ∈ ΓθN . We apply our inductive hypotheses
to the triple (η0, ξj , ξ

′
j) for time i − j. From (7), we get (I) < b

1
2 Δ̂i−j−1 where

Δ̂n =
n∑

s=1

b
s

4 2	̂n−s |ξj+n−s − ξ′j+n−s|(36)

and �̂n−s is the longest splitting period ηn−s finds itself in. Clearly we have
�j+n−s ≥ �̂n−s + n0 where n0 is the minimum number of iterations between
returns to C(1). Set n0 = 2 if there is no return to C(1) between time j +1 to i.
Then Δ̂n < 2−n0Δj+n and (I) < 1

2b
1
2 Δi−1.

For (II), we first write

(II) ≤ |A0|
|B0|

· |E
′ − E|
|V | +

∣∣∣∣ A0

B0|V | −
A′

0

B′
0|V ′|

∣∣∣∣ |E′|.(37)

From |A0|
|B0| ∼

1
dC(zj)

, |E′ −E| ≤ (Kb)i−j(|ξj − ξ′j |+ θj(ξ0, ξ
′
0)) (Lemma 3.1), and

|V | > 1, we obtain

|A0|
|B0|

|E′ − E|
|V | < K(Kb)

2
3
(i−j)Δj  b

1
2 Δi−1.(38)

For the second term on the right side of (37), we write∣∣∣∣ A0

B0|V | −
A′

0

B′
0|V ′|

∣∣∣∣ |E′| ≤ (Kb)i−j |A′
0|

|B′
0|

· 1
|V | ·

(∣∣∣∣A0

A′
0

· B′
0

B0
− 1

∣∣∣∣ +
∣∣∣∣1 − |V |

|V ′|

∣∣∣∣
)

≤ (Kb)i−j

dC(zj)

( |A0|
|A′

0|

∣∣∣∣B′
0

B0
− 1

∣∣∣∣ +
∣∣∣∣A0

A′
0

− 1
∣∣∣∣ +

∣∣∣∣1 − |V |
|V ′|

∣∣∣∣
)

.

This is estimated term by term: For the first term,

(Kb)i−j

dC(zj)
· |A0|
|A′

0|
·
∣∣∣∣B′

0

B0
− 1

∣∣∣∣ ≤ (Kb)i−j

dC(zj)
· Δj

dC(zj)
< (Kb)

i−j

3 Δj  b
1
2 Δi−1(39)

because b
i−j

3 ≈ dC(zj) by the definition of splitting period. For the second
term,

(Kb)i−j

dC(zj)
·
∣∣∣∣A0 − A′

0

A′
0

∣∣∣∣ ≤ (Kb)i−j

dC(zj)
KΔj  b

1
2 Δi−1(40)
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because A′
0 ≈ 1 and |A0 −A′

0| ≤ K(|ξj − ξ′j |+ θj(ξ0, ξ
′
0)). Finally, for the third

term, we have

(Kb)i−j

dC(zj)

∣∣∣∣1 − |V ′|
|V |

∣∣∣∣≤ (Kb)i−j

dC(zj)

i−j−1∑
k=1

K1Δ̂k

dC(zk+j)
(41)

< K1(Kb)
2
3
(i−j)

i−1∑
k=j

eα(k−j)Δk  b
1
2 Δi−1.

Here we have used our inductive assumption (6) for |V ′|
|V | . Putting (38)–(41)

together, we conclude (II)  b
1
2 Δi−1. Hence θi(ξ0, ξ

′
0) < (I) + (II) < b

1
2 Δi−1.

To compare magnitudes, we write

M ′
i

Mi
=

M ′
j

Mj
· |B

′
0V

′ + A′
0E

′|
|B0V + A0E| ≤

M ′
j

Mj
· |V

′|
|V | ·

|B′
0|

|B0|
·

⎛
⎝1 +

∣∣∣ V ′

|V ′| − V
|V | + A′

0E
′

B′
0|V ′| − A0E

B0|V |

∣∣∣∣∣∣ V
|V |+

A0E
B0|V |

∣∣∣
⎞
⎠.

Since |A0|
|B0| ∼

1
dC(zj)

and |E|
|V | ≤ d3

C(zj) (by the definition of the splitting period

at zj) , it follows that |A0E|
|B0V |  1, giving

M ′
i

Mi
≤

M ′
j

Mj
· |V

′|
|V | ·

|B′
0|

|B0|
·
(

1 + 2
∣∣∣∣ V ′

|V ′| −
V

|V |

∣∣∣∣ + 2
∣∣∣∣ A′

0E
′

B′
0|V ′| −

A0E

B0|V |

∣∣∣∣
)

.(42)

We estimate the contributions from the first three ratios on the right side.
Applying our inductive assumption (6) to the first ratio, we obtain an upper
bound of exp{K1

∑j−1
n=1

Δn(ξ0,ξ′
0)

dC(zn) }. Let zj be bound to η0 ∈ ΓθN . Applying
inductive assumption (6) to (η0, ξj , ξ

′
j), we obtain

|V ′|
|V | ≤ 1 + 2−n0+1K1

i−j−1∑
k=1

Δj+k

dC(zk+j)
= 1 +

K1

2n0−1

i−1∑
k=j+1

Δk

dC(zk)
.(43)

Observe that without the factor 2−n0+1 in front of K1, there would be no room
for contributions from the remaining terms (unless we allow K1 to increase).
|B′

0|
|B0| is estimated as in (33), giving∣∣∣∣B′

0

B0
− 1

∣∣∣∣ <
KΔj

dC(zj)
.(44)

Since K is independent of K1, this term is easily absorbed. Finally the terms
inside parentheses in (42) sum up to

< 1 + 2(I) + 2(II) < 1 + 2b
1
2 Δi−1(ξ0, ξ

′
0).(45)

Substituting (43)–(45) into (42), we complete the proof of (6) for the triple
(z0, ξ0, ξ

′
0) at step i.
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Proof of Lemma 5.1. From Sublemma A.14.1, we have �n−s < Kαθ(n−s),
from which it follows that Δn <

∑n
s=0 b

s

4 e−
1
2
β(n−s) < 2e−

1
2
βn. We now choose

b small enough, and follow the last part of the proof of Sublemma A.1.1 in
Appendix A.1 to finish.

A.15. Properties of w∗
i along controlled orbits (§5.3A,B)

Proof of Lemma 5.2. We may assume that ξi is in a splitting period;
otherwise there is nothing to prove. Let i1 < i ≤ i2 be the longest splitting
period containing i. By Sublemma A.14.1 we have i2 − i1 ≤ Kαθi. Let
wi1 = Ae + Bv be the usual splitting. An upper bound for |w∗

i | in terms of
|wi| is then given by

|w∗
i | ≤ Ki−i1 |B| ≤ Ki−i1 |w∗

i2 | = Ki−i1 |wi2 | ≤ Ki−i1(Ki2−i|wi|) ≤ Kεi|wi|.

The first “≤” uses the fact that |w∗
j+1|

|w∗
j | ≤ some K, the second uses |w∗

i2
| >

K−1|B|, and the third ‖DT‖ ≤ K.
To obtain an upper bound for |wi| in terms of |w∗

i |, we let j1 < · · · < jn be
the return times between i1 and i with the property that the splitting period
initiated at each jk extends beyond i. Using the nested structure of splitting
periods, and from the way w∗

i is defined, we have

|wi| ≤ Ki−i1 |wi1 | ≤ Ki−i1 |ξi1 − φ(ξi1)|−1|ξj1 − φ(ξj1)|−1 · · · |ξjn
− φ(ξjn

)|−1|w∗
i |.

From Sublemma A.14.1 and (A2), we have

i − jk < Kαθ(i − jk−1) < · · · < (Kαθ)k+1i1

and
|ξjk

− φ(ξjk
)| > e−α(i−jk−1).

Hence |wi| < Ki−i1eα(1+2Kαθ)i1 |w∗
i | < Kεie2αi|w∗

i |.

Proof of Lemma 5.3. Observe first that if t is any return, and �t is its
splitting period, then by Corollary 5.1, w∗

i aligns correctly at all returns in the
time interval (t, t + �t) with 2ε0-error. This is because before the rejoining of
the vector split off at time t, the situation is identical to that in Proposition 5.1.

To prove the lemma, we consider, in the notation of Proposition 5.2, one
bound interval [ni, ni +pi) at a time. At time ni, we have correct alignment by
assumption. From the observation in the first paragraph, it suffices to consider
returns at time t ∈ (ni, ni + pi) where ξt is not in any splitting period. Write
w∗

ni
= Bv + Aepi

. Then wt = B · DT t−ni

ξni
v + A · DT t−ni

ξni
epi

. The first of

these two vectors has length > K−1dC(ξni
)eλ(t−ni) and aligns correctly with

< 2ε0-error at time t by Corollary 5.1. Addition of the second, which has
length < (Kb)t−ni , changes the angle of alignment by an insignificant amount
relative to dC(ξt) > e−α(t−ni) because t − ni is larger than the splitting period
initiated at ξni

by assumption. Thus wt aligns correctly with < 3ε0-error.
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A.16. Derivative growth along controlled orbits (§5.3C)

Proof of Lemma 5.4. We give a proof in the case where j exists; the other
case is simpler. Let k ≤ i1 < i1 + p1 ≤ i2 < i2 + p2 ≤ · · · ≤ ir = j < n be
defined as follows: we let i1 be the first return to C(1) at or after time k, p1

the bound period of zi1 , i2 the first return after i1 + p1, and so on until ir = j.
Writing k = i0 + p0, we have that |w∗

n|
|w∗

k|
is a product of factors of the following

three types:

I :=
|w∗

is+1
|

|w∗
is+ps

| , II :=
|w∗

is+1+ps
|

|w∗
is+1

| and III :=
|w∗

n|
|w∗

j |
.

First we prove the lemma assuming that no splitting period initiated be-
fore time k expires between times k and n. By Lemma 3.5,

I ≥ 1
2
c2e

1
4
λ0(is+1−(is+ps)).

By Proposition 5.2(ii), II ≥ K−1e
λ

3
ps+1 . Moreover, K−1 can be easily ab-

sorbed into the exponential estimate for the bound period [is, is + ps]. For
III, let � be the splitting period initiated at time j. If � > n − j, then
III ≥ K−1dC(ξj)eλ(n−j). If not, we split w∗

j into w∗
j = Aen−j + Bv where

en−j is the most contracted direction of order n − j at ξj in S = S(v, w∗
j ).

(Note that en−j is well-defined.) Then III ≥ K−1dC(ξj)eλ(n−j)− (Kb)n−j . The
last term is negligible because dC(ξj) ∼ b

�

3 � (Kb)n−j . Altogether, this gives
|w∗

n|
|w∗

k|
≥ K−1dC(ξj)eλ′(n−k) for some λ′ > 0 as claimed.
To finish this proof, we view contributions from splitting periods initiated

before time k as perturbations of the estimates above, and verify that they are
in fact inconsequential.

Proof of Lemma 5.5. The case where ξk is not in a splitting period is
contained in Lemma 5.4. Let j be the starting point of the largest splitting
period covering ξk. We claim that its length � is < Kθ(n − j). If not, then
we would have |ξj − z0| < bKθ(n−j) where z0 = φ(ξj), so that for all m̂ with
j < m̂ ≤ n,

|ξm̂ − zm̂−j | < ‖DT‖m̂−jbKθ(n−j) < e−β(m̂−j),

contradicting our assumption that ξn is free. Since n − j > p(ξj) � �(ξj) >

k−j, it follows that � < 2Kθ(n−k). By Lemma 5.4, |wn| > K−1δeλ′(n−j)|wj | ≥
K−1δeλ′(n−k)K−	|wk|.

A.17. ‖DT i−s
ξs

‖ and wi(ξ0) (§5.3C)

It suffices to show for any (fixed) unit vector u ∈ R
m that |DT i−s

ξs
u| ≤

Ke−λ̂s|wi|. Since this involves only two vectors, the problem is a 2-dimensional
one.
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To understand the result, recall that in 2D, we have, by simple linear
algebra,

‖DT i
ξ0
‖ = ‖DT s

ξ0
‖‖DT i−s

ξs
‖ · ∠(es(DT−s

ξs
), ei−s(DT i−s

ξs
)).(46)

Note that ‖DT i
ξ0
‖ ∼ |wi| and ‖DT s

ξ0
‖ ∼ |ws|. This is because |wj | > eλ′′j

for j = 1, 2, · · · (Lemmas 5.2 and 5.4), so that Lemma 3.1 applies, and since
w0 makes a definite angle with e1 = e1(DT ), it makes a definite angle with
ej = ej(DT j) for all j. Plugging these estimates into (46), we obtain

|wi|
|ws|

∼ ‖DT i−s
ξs

‖ · ∠(es(DT−s
ξs

), ei−s(DT i−s
ξs

)).

The key, therefore, is to understand the angle in the displayed formula above,
and to compare it to |ws|, which is > eλ′′s. This angle is clearly more delicate
during or around splitting periods.

Sublemma A.17.1. Let t be a return time to C(1) for ξ0. We denote its
splitting period by �t, and let It := (t − 5�t, t + �t). Then modifying It slightly
to Ĩt = (t− (5±ε)�t, t+(1±ε)�t), we may assume {Ĩt} has a nested structure.

Proof. We consider t = 0, 1, 2, · · · in this order, and determine, if t is a
return time, what Ĩt will be. The right end point of Ĩt is determined by the
following algorithm: Go to t + �t, and look for the largest t′ inside the bound
period initiated at time t with the property that t′ − 5�t′ < t + �t. If no such
t′ exists, then t + �t is the right end point of Ĩt. If t′ exists, then the new
candidate end point is t′ + �t′ , and the search continues. For the same reasons
as in the proof of Lemma 4.6, the increments in length are exponentially small
and the process terminates.

As for the left end point of Ĩt, it is possible that t − 5�t ∈ Ĩt′ for some
t′, the bound period initiated at which time does not extend to time t. This
means that �t′  �t, and since we assume a nested structure has been arranged
for Ĩt′ for all t′ < t, we simply extend the left end of Ĩt to include the largest
Ĩt′ that it meets. ♦

Let us assume this nested structure and write It instead of Ĩt from here on.

Sublemma A.17.2. For s �∈ ∪It, for all j with 1 ≤ j < i − s, |ws+j | ≥
b

j

9 |ws|.

Proof. We fix j and let r be such that ξr makes the deepest return between
times s and s + j. Let j′ be the smallest integer ≥ j such that ξs+j′ is outside
of all splitting periods. Then, from Lemma 5.4, it follows that

|ws+j | ≥ K−Kθ(j′−j)|ws+j′ | ≥ K−Kθ(j′−j)dC(zr)|ws| ≈ K−Kθ(j′−j)b
�r
3 |ws|.

(47)
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Case 1. s + j �∈ Ir. In this case, 6�r < j since Ir is sandwiched between
s and s + j, and j′ − j ≤ �r because r is the deepest return. The rightmost
quantity in (47) is therefore > K−	rb

�r
3 |ws| > b

j

9 |ws|.
Case 2. s + j ∈ Ir. The argument is as above, except we only have

5�r < j.

This completes the proof of the sublemma. ♦

Proof of Lemma 5.6. Consider the case s �∈ ∪It, and assume for the
moment that dC(ξs) ≥ δ0. Then by Sublemma A.17.2 ei−s(ξs) is well defined,
and since ws is b-horizontal, we have ∠(ws, ei−s(ξs)) > K−1 by Lemma 3.6.
Thus ‖DT i−s

ξs
‖ |ws| ≤ K|DT i−s(ξs)ws| = K|wi|, which together with |ws| >

eλ′′s gives the desired estimate. Here λ′′ is slightly less than λ′. For s with
s �∈ ∪It and dC(ξs) < δ0, consider ξs+1. It remains to prove the lemma for
s ∈ ∪It. Let Ir be the maximal It-interval containing s. Observe that 6�r <

Kαθs (recall that ξ0 obeys (A2)). If i ∈ Ir, then ‖DT i−s
ξs

‖ < K6	r  e
1
2
λ′′i <

e−
1
2
λ′′seλ′′i < e−

1
2
λ′′s|wi|. If i �∈ Ir, let s′ = r + �r. Then s′ �∈ ∪It. This case

having been dealt with, we have

‖DT i−s
ξs

‖ ≤ ‖DT s′−s
ξs

‖ · ‖DT i−s′

ξs′
‖ ≤ K6	r · Ke−λ′′s′ |wi|.

In summary, Lemma 5.6 holds with λ̂ = 1
2λ′′.

A.18. Quadratic turn estimates (§5.3D)

Proof of Proposition 5.3. We fix s1 > 0, and let

p∗ = min
0<s≤s1

{p(ξ0(s), z0), M}.

All time indices i considered are ≤ p∗, and all s considered are in (0, s1), with
further restrictions indicated where necessary. For s ∈ (0, s1) and S = S(γ′,v),
ep∗ = ep∗(S) is well defined by Proposition 5.1. Let

γ′(s) = A0(s)ep∗(s) + B0(s)v.(48)

Then
γ′

i(s) = A0(s)DT iep∗(s) + B0(s)wi(s).

All splitting periods below are determined by the orbit of z0; we use them for
all the ξ0(s) in question. Writing

wi(s) = wi(0) + (w∗
i (s) − w∗

i (0)) + (Ei(s) − Ei(0))

where
Ei(s) =

∑
k∈Λi

Ak(s)DT i−ke	k
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and Λi is the collection of k > 0 such that the splitting period begun at time
k extends beyond time i, we arrive at the formula

ξi(s) − zi =
∫ s

0
γ′(u)du = wi(0)

∫ s

0
B0(u)du + I + II + III(49)

where

I =
∫ s

0
A0(u)DT i(u)ep∗(u)du, II =

∫ s

0
B0(u)(w∗

i (u) − w∗
i (0))du,

III =
∫ s

0
B0(u)(Ei(u) − Ei(0))du.

Plan of proof. We will prove that for i and s satisfying i ∈ [�(s), p∗], the
first term on the right side of (49) dominates, so that assuming s1 is sufficiently
small,

ξi(s) − zi ≈ wi(0)
∫ s

0
B0(u)du ≈ 1

2
B′

0(0)s2 wi(0).

The following estimate then completes the proof: Differentiating (48), we ob-
tain γ′′ = A′

0ep∗ +A0
d
dsep∗ +B′

0v. On the left side, |γ′′| = O(b) since γ is C2(b).
On the right side, |A0

d
dsep∗ | ≈ | d

dse1| > K−1 (Lemma 3.7) and 〈ep∗ , d
dsep∗〉 = 0.

It follows therefore that B′
0v ≈ d

dse1.
We divide the main argument of the proof into the following two steps:

Step I. Estimates on |I|, |II| and |III|. Beginning with |I|, we have A0(s)≈1,
so that |I| ≤ (Kb)is  s2 provided bi < b	(s) := s2. This is where the lower
bound on i is used for each s.

By assumption, z0 is a critical point of order M . If p∗ = M , then B(0) = 0.
For p∗ < M , B(0) may not be zero but we have |B(0)| < (Kb)p∗

. Since this
error is negligible, we will write B(0) = 0 in the computation that follows. For
|II|, then,

|II| ≤K|w∗
i (0)|

∫ s

0
u

∣∣∣∣ |w∗
i (u)|

|w∗
i (0)| − 1

∣∣∣∣ du ≤ K|w∗
i (0)|

∫ s

0
u

⎛
⎝∑

j<i

Δj

dC(zj)

⎞
⎠ du

≤K|w∗
i (0)|

∫ s

0
u

⎛
⎝∑

j<i

(2KαθjdC(zj))−1

⎞
⎠ sup

j<i
|zj − ξj(u)|du

≤Ke2αi|w∗
i (0)|

∫ s

0
u sup

j<i
|zj − ξj(u)|du.

Here we have used Proposition 5.1 for the second inequality, and assumption
(2) in Section 5.3D and Sublemma A.14.1 for the next two.

To estimate |III|, we have, for each k ∈ Λi,

|AkDT i−k
ξk

e(ξk) − Ak(0)DT i−k
zk

e(zk)|
≤ (Kb)i−k|Ak − Ak(0)| + |Ak(0)| |DT i−k

ξk
e(ξk) − DT i−k

zk
e(zk)|.
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We claim that the first term can be estimated by

|Ak(u) − Ak(0)| < K|w∗
k(0)|e4αk sup

j<k
|zj − ξj | < K|w∗

i (0)|e5αi sup
j<i

|zj − ξj |.

For the first inequality, we use∣∣∣∣Ak(u)
Ak(0)

− 1
∣∣∣∣ ≈

∣∣∣∣ |w∗
k(s)|

|w∗
k(0)|(1 + O(|zk − ξk| + θk(ξ0(u), z0))) − 1

∣∣∣∣ ,

and |Ak(0)| ≤ K|w∗
k(0)|eαk because w∗

k(0) aligns correctly at time k. For the
second inequality, we use |w∗

k(0)| ≤ Keαk|w∗
i (0)| by virtue of Lemma 5.4 and

assumption (2) in Section 5.3D. Summing over all k ∈ Λi is not problematic
because of the factor (Kb)i−k in front. For the second term we use

|DT i−k
ξk

e(ξk) − DT i−k
zk

e(zk)| ≤ (Kb)i−k(|ξk − zk| + θk(ξ0(u), z0)).

This inequality is derived from Lemma 3.1. Altogether, we have proved

|II|, |III| < K|w∗
i (0)|e5αi

∫ s

0
u sup

j<i
|zj − ξj(u)|du.(50)

Step II. Proof of formula for |ξi(s) − zi|. Fix i0 so that e9αi0e−βi0  1.
We define

Ui := Ke5αi sup
j≤i

|w∗
j (0)|

where K is the constant in the bound for |II| and |III| above. By choosing δ suf-
ficiently small, we may assume Ui0s

2 ≤ Ui0δ
2  1. We now prove inductively

(and in tandem) the following two statements:
(i) Ke2αiUis

2  1,
(ii) |ξi(s)−zi| ≈ 1

2 | d
dse1(0)||wi(0)|s2, or, equivalently, |II|, |III|  |wi(0)|s2.

The first n0 steps, where the entire action takes place away from C(1), are
trivial. We assume now that (i) and (ii) have been proved for all j < i, and
prove (i) for step i. Using Lemmas 5.2 and 5.4, one has

sup
j≤i

|w∗
j (0)| < eαi|w∗

i (0)| ≤ e2αi|wi(0)| ≤ Ke2αi|wi−1(0)|.

This combined with (ii) for step i − 1 gives

Uis
2 ≤ Ke5αi (Ke2αi|wi−1(0)|)s2 ≈ K2e7αi

∣∣∣∣ d

ds
e1(0)

∣∣∣∣
−1

|ξi−1(s) − zi−1|.

Thus

Ke2αiUis
2 ≤ K2e9αi

∣∣∣∣ d

ds
e1(0)

∣∣∣∣
−1

e−β(i−1)  1,(51)

proving (i). To prove (ii), first observe that from Lemmas 5.2 and 5.4 we have

|wj(0)| < e2αi|wi(0)|(52)
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for all j < i. We claim that

|II| + |III| ≤ 2Ui

∫ s

0
u sup

j<i
|zj − ξj(u)| du ≤ KUi sup

j<i
|wj(0)|s4

≤ (Ke2αiUis
2)|wi(0)|s2  |wi(0)|s2.

The first inequality above is the conclusion of Step I, the second is obtained
by using (ii) for j < i, the third is by (52), and the last is step i of (i). This
completes the proof of Step II.

Step III. Monotonicity of s �→ p(s). To prove that the distance formula
(Step II(ii)) holds for all i ∈ [�(s), p(s1)] and 0 < s < s1, it remains to show
that p(s) is monotone in s so that p∗ introduced at the beginning of this proof
is equal to min{p(ξ0(s1), z0), M}. To do this, we check that for s and i with
i > �(s), ∣∣∣∣ d

ds
I

∣∣∣∣ ,

∣∣∣∣ d

ds
II

∣∣∣∣ ,

∣∣∣∣ d

ds
III

∣∣∣∣  |B0(s)||wi(0)|.

Thus d
ds(ξi(s) − zi) ≈ B0(s)wi(0) ≈ B′

0(0)s wi(0); i.e., |ξi(s) − zi| increases
monotonically with s. It follows by definition that p(s) is monotone in s.

A.19. Sectional diameter of Q(k) (§6.3)

Proof of Lemma 6.2. Let ξk ∈ Q(k) be fixed. We argue as before that
dC(ξi) > 2b

i

5 for i = 1, · · · , k−1. Let S be a 2D subspace through ξ1 containing
ξ1 and ξ1 +τ1. All constructions are in S until the very end of the proof. There
is clearly a stable curve γ1 of order one in S passing through ξ1. Since dC(ξ1) >

2b
1
5 , γ1 makes an angle � b

1
5 with the x-axis by Lemma 3.7; thus it connects the

two components of ∂(R1 ∩ S). We wish to borrow the argument in Appendix
A.7 to construct inductively stable curves γi of order i, i = 2, 3, · · · , k, through
ξ1, but are prevented from doing so due to the following technical problem:
with κ = b

1
5 , Lemma 3.2 (a general perturbative result) does not apply. We

seek instead to use Lemma 5.4, which relies on the control of (ξ1, τ1) for k

iterates, to estimate the growth of τi. Details of the argument are as follows:
Assume that γi = γi(S) with the following properties has been con-

structed: (i) γi is tangent to ei, passes through ξ1 and connects the two com-
ponents of ∂R1 ∩ S; and (ii) for ξ ∈ γi, dC(T jξ) > 3

2b
j

5 for 1 ≤ j ≤ i.
To construct γi+1 we let Ui be the b

i+1
4 -neighborhood of γi. Then the

following hold for all ξ ∈ Ui: First, dC(T jξ) > b
j

5 , so if τ1 is tangent to F1 at
ξ, then (ξ, τ1) is provisionally controlled by Γk for i iterates.

Claim. |τj | > (Kb)
j

5 for j ≤ i.

Proof. If T jξ is out of all splitting periods, then |τj | > (Kb)
j

5 by Lemma
5.4. If not, let j1 < j be the time at which the longest splitting period extending
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beyond j is initiated. Since dC(T j1ξ) > b
j1
5 , it follows that lj1 , the splitting pe-

riod initiated at j1, is < 3j1
5 . Thus |τj | > (‖DT‖)− 3

5
j1 |τj1+	j1

| > (‖DT‖)− 3
5
j1b

j

5 ;
the second inequality is obtained by applying Lemma 5.4 to τj1+lj1

. �

By Lemma 3.1, ei+1(ξ) is well-defined, |DT j
ξ (ei+1)| < (Kb

3
5 )j for all j ≤

i+1, |ei+1−ei| < (Kb
3
5 )i, and | d

ds(ei+1−ei)| < (Kb
2
5 )i. Let γi+1 be the integral

curve of ei+1 through ξ1. We verify following the computation in Appendix A.7
that |γi+1 − γi| < Kb

3
5
i, so γi+1 stays in Ui until it meets ∂R1 ∩ S. Properties

(i) and (ii) are again valid for γi+1.
To finish, we let W = T k−1W1 where W1 = ∪Sγk(S), the union being

taken over all 2D planes S containing ξ1 and ξ1 + τ1.

A.20. Geometry of monotone branches (§7.3)

The proof of Lemma 7.1 uses material in Sections 7.3, 8.1 and 8.2.

Proof of Lemma 7.1. Let T ∈ GN . For k ≤ θN , let R̂1,k = {ξ1 ∈ R1 :
ξk ∈ ∪M∈Tk

M◦}. Then for ξ1 ∈ R̂1,k and time indices ≤ k, bound periods
p(ξi) for ξi ∈ C(1) are well defined and {p(ξi)} has a nested structure; i.e.,
i + p(ξi) ≥ j + p(ξj) for ξi, ξj ∈ C(1) satisfying i < j < i + p(ξi). We introduce
a function bk(ξ1) on R̂1,k as follows:

– if ξk is free, then bk(ξ1) = 0;

– if ξk is bound to some point and the bound period lasts beyond time θN ,
then having no knowledge of events beyond time θN , we set bk(ξ1) = ∞;

– if (j, j+p(ξj)) is the longest bound period ξk finds itself in, and j+p(ξj) ≤
θN , then we set bk(ξ1) = j + p(ξj) − k.

That is to say, bk(ξ1) gives the number of iterates it takes for ξk to become
free – without knowledge of events after time θN . We observe immediately
that due to the nested structure of {p(ξi)}, if bk−1(ξ1) = i, 0 < i ≤ ∞, then
bk(ξ1) = i − 1.

Let l be an arbitrary F1-leaf parametrized by s. Then bk is defined on
lk := l ∩ R̂1,k, and the T k−1-images of the connected components of lk are
exactly the maximal Fk-segments in M◦ for M ∈ Tk. We say bk restricted to
ω = l(s1, s2) ⊂ lk is a U -shaped function if there exists s∗ ∈ (s1, s2) such that
bk is non-increasing on l(s1, s

∗] and nondecreasing on l[s∗, s2). Lemma 7.1 is
reduced to the following. We claim that on all connected components of lk, bk

is a U -shaped function, and leave the proof to the reader as an exercise.

Proof of Corollary 7.1. Corollary 7.1 follows immediately from the argu-
ments above. The numbers K1 and K2 are determined from f0 as follows: Let
x̂1 < x̂2 < · · · < x̂r = x̂0 be the critical points of f0, and let Ii = (x̂i−1, x̂i).
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Then
K1 = max

1≤i≤r
Ni and K2 = max

1≤i≤r

∑
1≤j≤r

Lij

where Ni is the number of Ij-intervals counted with multiplicity f0(Ii) inter-
sects at least partially, and Lij is the cardinality of f0(Ij) ∩ {x̂i}.

A.21. Branch replacement (§8.3)

Proof of Lemma 8.2. Let 1
3H be the middle third of H. We will show

T−iM◦ is inside 1
3H so that T−iM ⊂ H. To prove T−iM◦ ⊂ 1

3H, it suffices to
show that if we start from B(k−i) ⊂ H and move right along any Fk−i-segment
γ, we will get out of T−iM◦ before we reach the end of 1

3H. Suppose, to derive
a contradiction, that this is not true for some γ. Then every point in γ, which
we may assume runs from B(k−i) to the right end of 1

3H, is controlled for the
next i iterates. We will show if this is the case then there exists j < Kα(k− i)
such that T jγ crosses some Q(1). It follows that T jγ crosses some B(k−i+j).

Let γ0 be a segment of γ such that πx(γ0) = Iμj(x̂) for some Iμj(x̂) with
μ ∼ 2α(k − i) (see §2.2 for a formal definition of Iμj), and let γi = T iγ0. We
follow the argument in Section 9.2 to conclude that γi obeys the rules (P1′)
and (P2′) in Section 9.2C (leaving details as an exercise to the reader). That
T jγ crosses Q(1) for some j < Kα(k− i) is then proved by repeating the proof
of Lemma 2.4 using (P1′) and (P2′).

Proof of Lemma 8.3. Let n1 be the smallest � for which T−	S	 ⊂ H.
First, we observe that if P1 is well defined and E′

1 remains active for at least n1

generations, then all the offspring of P1 survive; i.e., they are not discontinued,
for at least n1 generations. This is because the new ends created as the offspring
of P1 reproduce are younger than the end originating from B̂(k−i), and so will
last longer than it. It follows that Pj , j ≤ n1, are well defined, and Tn1−1P1 is
a union of branches in Tk−i+n1 with adjacent ones overlapping in critical blobs.

We prove next that Pn1 is subordinate to Sn1 . Observe that since n1 is the
smallest � with the property that T−	S	 ⊂ H, it follows that Sn1−1 contains a
B(k−i+n1−1) and Sn1 is the image of the subset of Sn1−1 between Tn1−1B̂(k−i)

and this B(k−i+n1−1). We claim that Tn1−2P1 meets the Q(k−i+n1−1) contain-
ing B(k−i+n1−1), so that Tn1−2P1∩B(k−i+n1−1) contains a B(p+n1−1). To prove
this, let z ∈ B(k−i+n1−1). By Lemma 6.2, we know there exists a stable man-
ifold W = W s

k−i+n1−1 whose T k−i+n1−1-image contains z and along which T

contracts at a rate ∼ b
1
2 . Since T k−i−1W meets every fiber in H and has di-

ameter < b
k−i−1

2 , the desired result follows from the relation between T−n1Sn1 ,
H and P .

We explain why Tn1−1P1 is a monotone branch: From the observation in
the first paragraph of this proof, we see that it suffices to show there are no
critical blobs between Tn1B̂(p) and TB(p+n1−1): If there was one, look at when
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and where it was created, and argue that the corresponding iterate of T−n1Sn1

also crosses some Q(j) containing it, leading to the existence of a monotone
branch of generation k − i + n1 contained properly in Sn1 , which is absurd.

For n1 < j ≤ i, the arguments are as above, namely that if Sj subdivides,
then so does Pj in corresponding locations; and that no other subdivisions of
Pj are possible.

A.22. Dynamics on unstable manifolds (§9.2)

Proof of Lemma 9.1. As before, it suffices to prove correct alignment at
free returns. Inducting on k, we let ξk be a free return, and let τ∗ denote the
tangent to Fj at ξk where φ(ξk) is of generation j. We need to show ∠(τk, τ

∗) <

ε1dC(ξk), and our plan is to deduce that from the control of foliations proved
earlier.

Let n ≥ k be a sufficiently large number to be determined. We let ξk = ζn,
so that τk is a multiple of DTn

ζ0
τ , τ ∈ Xζ0 being a unit vector tangent to T k−nl0.

Let τ̂1 ∈ Xζ0 be a unit vector tangent to F1. By the bound on |det(DT )|, we
have

∠(DTn
ζ0

τ, DTn
ζ0

τ̂1) ≤ (Kb)n 1
|DTn

ζ0
τ |

1
|DTn

ζ0
τ̂1|

.

Observe that |DTn
ζ0

τ | > K−1eλ′′n: for the first n − k iterates, Lemma 3.5 ap-
plies since ζi is essentially outside of C(1); for the next k iterates, use Lemma
5.4 and the fact that ξk is a free return. The constraints on n are as follows:
First, ζn must be in a monotone branch in Tn+1, so that (ζ0, τ̂1) is controlled
through this time, giving |DTn

ζ0
τ̂1| > K−1eλ′′n. This is not a problem since

ξ0 ∈ Ω. Second, we assume n ≥ j, so that our choice of φ(ζn) in the control
of foliations is compatible with the definition of φ(ξk). (A6′) then guaran-
tees ∠(DTn

ζ0
τ̂1, τ

∗) < ε1dC(ζn), and the desired conclusion follows if n is large
enough that ∠(DTn

ζ0
τ, DTn

ζ0
τ̂1) is negligible.

Proof of Proposition 9.2. (P1′) is an easy exercise. (P2′)(iii) and (P3′)
require the following extensions of Proposition 5.1.

Sublemma A.22.1. The setting is as in Proposition 5.3. Let ξ0, ξ
′
0 ∈ γ

be such that |ξ0 − ξ′0| < 1
10dC(ξ0), and let � = �(ξ0), p = p(ξ0). Then

(a) for � < i ≤ p,

|ξi − ξ′i|
|ξi − zi|

< K6αi+1 |ξ0 − ξ′0|
dC(ξ0)

;

(b) with wi = DT iv, we have

|wp(ξ0)|
|wp(ξ′0)|

< exp
{

K
|ξ0 − ξ′0|
dC(ξ0)

}
, ∠(wp(ξ0), wp(ξ′0)) ≤ Kb

1
2
|ξ0 − ξ′0|
dC(ξ0)

.
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Proof. (a) We remark that this is a rough a priori bound in which factors
of Kαi are allowed to accumulate. Let s �→ ξ0(s) be the parametrization of the
segment from ξ0 to ξ′0. We write S = S(τ,v), ep = ep(S), and decompose τ

into τ = Aep + Bv. For � < i ≤ p, since |DT i(ep)| is negligible, we have

|DT i
ξ0

τ | ≈ |B||wi(ξ0)| where |B| ≈
∣∣∣∣ d

ds
e1

∣∣∣∣ dC(ξ0).(53)

The combined use of Proposition 5.1, Lemma 5.1 and Lemma 5.2 gives, on the
other hand,

|wi(ξ0(s1))|
|wi(ξ0(s2))|

,
|wi(ξ0)|
|wi(z0)|

≤ K3αi(54)

where s1, s2 are any parameters and z0 is the guiding critical point. Clearly,
|B(s1)|/|B(s2)| < K. We have thus shown that

|DT i
ξ0(s1)

τ |
|DT i

ξ0(s2)
τ | ≈

|B(s1)|
|B(s2)|

|wi(ξ0(s1))|
|wi(ξ0(s2))|

< K1+3αi.(55)

Using “∼” to denote omitted factors of K3αi so the main terms show up more
clearly, we then have for � < i ≤ p:

(i) |ξi − ξ′i| � |DT i
ξ0

τ | · |ξ0 − ξ′0|;
(ii) |ξi − zi| ∼ (|wi(z0)| dC(ξ0)) · dC(ξ0).

(i) comes from |ξi − ξ′i| ≤
∫
|DT i

ξ0(s)
τ(ξ0(s))|ds together with (55); (ii) is

(A5)(iii). The assertions in this sublemma are immediate upon comparing (i)
and (ii), substituting in (53), and using the comparison of |wi(ξ0)| and |wi(z0)|
in (54).

(b) Proposition 5.1 can be written as |wp(ξ0)|/|wp(ξ′0)| < exp{∑p−1
i=1 KDi}

where

Di = 2Kαθi|ξi − ξ′i|
(

1
dC(zi)

+
b

1
4

dC(zi+1)
+ · · · + b

p−i

4

dC(zp)

)
< 2e2αi|ξi − ξ′i|.

The upper bound for |ξi − ξ′i| in (a) is used in the estimates below.

Case 1. i ≥ �. Using |ξi − zi| < e−βi, we obtain Di < Ke−(β−Kα)i · |ξ0−ξ′
0|

dC(ξ0)
.

Case 2. i < �. Using |ξi − zi| ≤ ‖DT‖i dC(ξ0) and b3	 ≈ dC(ξ0), we obtain
dC(ξ0)
|ξ0 − ξ′0|

∑
i<	

Di <
∑
i<	

KidC(ξ0) < K	dC(ξ0) < (dC(ξ0))1−Kθ.

The angle estimate is similar. �

Remark. For i = p, the inequality sign in (i) in the proof of (a) becomes
∼ because T pγ is roughly horizontal. The same argument then gives

|ξp − ξ′p|
|ξp − zp|

> K−6αp−1 |ξ0 − ξ′0|
dC(ξ0)

.(56)
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Sublemma A.22.2. Letting τ and τ ′ be unit tangent vectors to γ at ξ0

and ξ′0 respectively, we have

|DT p
ξ0

τ |
|DT p

ξ′
0
τ ′| < exp

{
K

|ξ0 − ξ′0|
dC(ξ0)

}
.

Proof. Splitting τ = Aep + Bv where ep is the most contracted direction
of DT p in S(τ,v), and letting V = DT p

ξ0
v, V ′ = DT p

ξ′
0
v, E = DT p

ξ0
ep, and

E′ = DT p
ξ′
0
e′p, we obtain

|DT p
ξ′
0
τ ′|

|DT p
ξ0

τ | <
|V ′|
|V | ·

|B′|
|B| · (1 + 2(I) + 2(II)).(57)

where

(I) =
∣∣∣∣ V

|V | −
V ′

|V ′|

∣∣∣∣ , (II) =
∣∣∣∣ A′E′

B′|V ′| −
AE

B|V |

∣∣∣∣ .

To obtain (57), we have used |AE|  |BV | and |A′E′|  |B′V ′|. For |V ′|
|V | , see

Sublemma A.22.1(b). Since γ is C2(b), we have |τ − τ ′| ≤ Kb
δ3 |ξ0 − ξ′0|. Lemma

3.1 then gives |ep − e′p| ≤ K|ξ0 − ξ′0|. The remaining estimates resemble those
in the proof of Proposition 5.1 in Appendix A.14. As in (32), we have

|B − B′|, |A − A′| < K(|ξ0 − ξ′0| + |ep − e′p| + |τ ′ − τ |) < K|ξ0 − ξ′0|.(58)

This gives |B′|
|B| ≤ 1 + |B′−B|

|B| < 1 + K|ξ0−ξ′
0|

dC(ξ0)
. (I) is the angle part of Sublemma

A.22.1(b). As in Case 3 in the proof of Proposition 5.1, (II) is bounded by the
sum of a collection of terms of the form

(i) = K
|E − E′|
dC(ξ0)

, (ii) =
|E|

dC(ξ0)

∣∣∣∣B′

B
− 1

∣∣∣∣ ,

(iii) =
|E|

dC(ξ0)

∣∣∣∣A′

A
− 1

∣∣∣∣ , (iv) =
|E|

dC(ξ0)

∣∣∣∣ |V ′|
|V | − 1

∣∣∣∣ .

For (i), Lemma 3.1 gives |E−E′| < (Kb)p|ξ0−ξ′0|. Observing that |E|  dC(ξ0),
we estimate (ii) using the bound on |B′|

|B| above, (iii) is similar, and (iv) is given
by Sublemma A.22.1(b). �

Proof of (P2′). Extending ω as a C2(b) curve to B(j)(ẑ0) if necessary, we
obtain (P2′)(i) from (A5)(i). For (ii), the desired bound follows from (A5)(ii)
and (54) above. For (iii), (56) gives

|T p(ω)| ≥ K−1e−6αp|ξp − ẑp| ·
|Iμj |
e−|μ| > K−1 1

μ2
e−(β+6α)p >

1
μ2

e−K1α|μ|.

Proof of (P3′). Follow the proof of (P3) in Appendix A.1 and use Sub-
lemma A.22.2.
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A.23. Bounds for d
daz0 (§§10.1 and 10.2)

Proof of Lemma 10.1. (a) To bound the first derivatives of u, it suffices to
estimate ∂aψ and ∂axψ; bounds for ∂xψ and ∂xxψ are known since x �→ γ(x, a)
is C2(b). To pass between γ and l = T−k

a γ, we use the notation

t(x, a) := πx(T−k
a γ(x, a)) and (X(t, a), Y (t, a)) := T k

a (t, y0),

assuming l ⊂ {y = y0}. Differentiating ψ(x, a) = Y (t(x, a), a), we obtain

∂aψ = ∂tY (t, a)∂at(x, a) + ∂aY (t, a).(59)

Here and in the rest of the proof, we use the fact that all first and second
partial derivatives of Y are bounded above by Kkb, and corresponding partials
of X are bounded by Kk. Partials in t, however, are potentially problematic
and must be treated with care. To bound ∂at(x, a), we write it as

∂at(x, a) = −∂aX(t, a)
∂tX(t, a)

.(60)

Since T k
a |l is controlled, |∂tX(t, a)| > 1, and so this term is < Kk. Thus

|∂aψ| < Kk.
To estimate ∂axψ, we take one more derivative to obtain

∂axψ = ∂ttY ∂xt∂at + ∂tY ∂axt + ∂atY ∂xt.

Since t = t(x, a) is implicitly defined by x = X(t, a), we have |∂xt(x, a)| =
|∂tX(t, a)|−1 < 1, and finally

|∂xat(x, a)| =
1

|∂tX(t, a)|2 |∂atX∂xt∂tX − ∂ttX∂xt∂aX| < Kk+1.

This completes the proof of |∂axψ| < Kk+1.
To bound the second derivatives of u, we need to bound the third deriva-

tives of ψ. These are estimated similarly and are left to the reader. Since
v = (v − 〈u,v〉u)/|v − 〈u,v〉u|, bounds for ‖v‖C2 follow from those of u. This
completes the proof of (a).

For (b) we cannot appeal simply to Lemma 3.1 because the bound on
the C2-norms of u and v in Lemma 10.1 is not a single number depending
on the family Ta; it increases with the generation of the critical point. We go
directly instead to the formulas for the most contracted directions in Appendix
A.4II. Since ηk+1 is the quantity β in Appendix A.4II with S = S(u, v) and
M = DT k+1

a (γ(x, a)), we have ηk+1 = 〈Mu, Mv〉. (b) follows now from (a)
and the C2-norm of M .

Proof of Lemma 10.3. From Proposition 10.1, z
(k)
0 (a) is well-defined on

Jn with n = kθ−1. Let k′ < k be the largest integer such that Q(k′)(a) ⊃
Q(k)(a), and let z

(k′)
0 (a) = z∗0(Q

(k′)(a)). Then (1+2θ)−1k ≤ k′ (see (A1′)) and
|z(k′)

0 (a) − z
(k)
0 (a)| < Kb

k′
4 (Lemma 4.1).
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The following calculus estimate will be used: Let g be a real valued C2-
function defined on an interval of length L, and assume that |g| ≤ M0 and
|g′′| < M2. If 4M0 < L2, then |g′| ≤

√
M0(1 + M2).

To apply this estimate, we write z
(k)
0 (a) = (x(k)

0 (a), y(k)
0 (a)), and let g(a) =

x
(k)
0 (a) − x

(k′)
0 (a). Then g is defined on Jn and so L = 2ρn = 2ρkθ−1

. Here
M0 = Kb

k′
4 , and M2 = Kk from Corollary 10.1. When bθ < ρ5, 4M0 < L2

holds. Therefore ∣∣∣∣ d

da
(x(k)

0 (a) − x
(k′)
0 (a))

∣∣∣∣ < b
k′
8 Kk < b

k′
9 .

A similar estimate holds for d
day

(k)
0 .

A.24. Equivalence of τ- and a-derivatives (§11.1)

Proof of Lemma 11.1. In this proof we fix i0 and let (a, b) → (a∗, 0).
Recall that if τ0 = (τ0,x, τ0,y), then by Corollary 10.2, τ0,y → 0 as b → 0. The
two terms of V are estimated as follows:

(i) Writing T i0
a∗,0 = (T 1, 0), we have, as b → 0,

(DT i0
a )z0τ0 →

(
∂T 1

∂x
(x0, 0)τ0,x +

∂T 1

∂y
(x0, 0)τ0,y, 0

)
= (0, 0).

(ii) Assume zs stays out of C(1) for > i0 iterates. Then as (a, b) → (a∗, 0),∑i0
s=1 DT i0−s

zs
ψ(zs−1)

|wi0 |/|w1|
→

(∑i0
s=1(f

i0−s)′(xs(a∗)) d
da(fa(xs−1))(a∗)

±(f i0−1)′(x1(a∗))
, 0

)

=

(
±

i0∑
s=1

d
da(fa(xs−1))(a∗)
(fs−1)′(x1(a∗))

, 0

)
.

Proof of Lemma 11.2.

|∠(wi, τi)| ≈
|wi ∧ τi|
|wi||τi|

≤ 1
|τi|

(
i∑

s=1

1
|wi|

|wi ∧ DT i−s
zs

ψ(zs−1)| +
|wi ∧ DT i

z0
τ0|

|wi|

)

≤ 1
|τi|

(
i∑

s=1

|ws|
|wi|

∣∣∣∣ ws

|ws|
∧ ψ(zs−1)

∣∣∣∣ bi−s +
|τ0|
|wi|

bi

)
≤ K

|τi|

∞∑
s=0

bs.

The last inequality is valid if |ws| ≤ |wi| for all s ≤ i, which is the case at free
returns.

A.25. Bound period estimates for parameters (§11.2)

We begin with some estimates on derivative comparisons. Let a, a′ ∈ ω̂ be
as in Lemma 11.5. We let ξ0 = ζn(a), ξ′0 = ζn(a′), wi(ξ0) = (DT i

a)ξ0v, wi(ξ′0) =
(DT i

a′)ξ′
0
v and p = p(ω̂). We wish to compare wi(ξ0) and wi(ξ′0) for i ≤ p.
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Sublemma A.25.1 (Parameter version of Proposition 5.1). There exists
K > 0 such that

|wi(ξ0)|
|wi(ξ′0)|

,
|wi(ξ′0)|
|wi(ξ0)|

≤ K3αi · exp

⎧⎨
⎩

i−1∑
j=0

Ke2αj |ξj − ξ′j | + Ki|a − a′|

⎫⎬
⎭ for i ≤ p;

(61)

∠(wp(ξ0), wp(ξ′0)) < b
1
2

p−1∑
j=0

b
j

4 2	p−1−j |ξp−j−1 − ξ′p−j−1| + Kp|a − a′|.(62)

Remarks. (i) The factor K3αi in (61) can be dropped if ξi is out of all
splitting periods (see the proof below). (ii) We may assume the quantity inside
brackets in (61) is  1 (cf. Lemma 5.1). This is because p < Kαn and
|a − a′| < K̂e−λ′n (Proposition 11.1).

Proof. Let ηj = T j
aξ′0, vj = (DT j

a )ξ′
0
v. Then |wi(ξ0)|

|wi(ξ′
0)| = |wi(ξ0)|

|vi|
|vi|

|wi(ξ′
0)| . Since

|ξj − ηj | ≤ |ξj − ξ′j |+ |ξ′j − ηj | < |ξj − ξ′j |+ Kj |a− a′|, we have, by Proposition
5.1 (see the proof of Sublemma A.22.1 in Appendix A.22),

|wi(ξ0)|
|vi|

≤K3αi exp

⎧⎨
⎩

i−1∑
j=0

Ke2αj |ξj − ηj |

⎫⎬
⎭(63)

≤K3αi exp

⎧⎨
⎩

i−1∑
j=0

Ke2αj |ξj − ξ′j | + Ki|a − a′|

⎫⎬
⎭ ,

the K3αi factor being there to account for the discrepancy between wi(ξ0) and
w∗

i (ξ0). Since |wi(ξ′0)| > K−1 and |vi − wi(ξ′0)| < Ki|a − a′|, we have

|vi|
|wi(ξ′0)|

< 1 +
|vi − wi(ξ′0)|

|wi(ξ′0)|
< 1 + Ki|a − a′|,(64)

completing the proof of (61).
For (62), we write ∠(wp(ξ0), wp(ξ′0)) ≤ ∠(wp(ξ0), vp) + ∠(vp, wp(ξ′0)). By

Proposition 5.1,

∠(wp(ξ0), vp) < b
1
2

p−1∑
j=0

b
j

4 2	p−j−1 |ξp−j−1 − ηp−j−1|(65)

< b
1
2

⎛
⎝p−1∑

j=0

b
j

4 2	p−j−1 |ξp−j−1 − ξ′p−j−1| + Kp|a − a′|

⎞
⎠ .

To estimate ∠(vp, wp(ξ′0)), note that by (64) and Remark (ii) above, |vi|
|wi(ξ′

0)| ≈ 1

for all i ≤ p. Proceeding inductively, we let i ≤ p
2 , u = vi

|vi| , and û = wi(ξ′
0)

|wi(ξ′
0)| .
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Since |w2i(ξ′0)| > K−1, we have

∠(v2i, w2i(ξ′0)) < |(DT i
a)ηi

u ∧ (DT i
a′)ξ′

i
û| |vi|

|v2i|
|wi(ξ′0)|
|w2i(ξ′0)|

≤
(
|(DT i

a)ηi
u ∧ (DT i

a)ηi
û| + |(DT i

a)ηi
u ∧ ((DT i

a)ηi
− (DT i

a′)ξ′
i
)û|

)
K2i

≤ (Kb)i∠(vi, wi(ξ′0)) + K4i|a − a′|.

We conclude inductively that ∠(vp, wp(ξ′0)) < K2p|a−a′|, completing the proof
of (62). �

Sublemma A.25.2 (Parameter version of Sublemma A.22.1 in Appendix
A.22). Let ẑ0 = φ(ξ0(a)). Then

(a) for � < i < p where � is the splitting period of ξ0, we have

|ξi − ξ′i|
|ξi − ẑi|

< K6αi+1 |ξ0 − ξ′0|
|ξ0 − ẑ0|

,
|ξp − ξ′p|
|ξp − ẑp|

> K−6αp−1 |ξ0 − ξ′0|
|ξ0 − ẑ0|

;

(b)
|wp(ξ0)|
|wp(ξ′0)|

< exp
{

K
|ξ0 − ξ′0|
dC(a)(ξ0)

+ Kp|a − a′|
}

.

Proof. The proof follows closely that of Sublemma A.22.1 with the follow-
ing modifications: In part (a), we consider the parametrization of the critical
curve ζnk

from ξ0 to ξ′0 by arclength, and split its tangent vectors τ . The
correctness of this splitting is a consequence of Lemma 11.2 and the fact that
wnk

splits correctly. (53) is a statement about individual parameters. To prove
(54), we use Sublemma A.25.1 instead of Proposition 5.1. The rest of the proof
then proceeds as before. The term Kp|a− a′| in (b) is from the corresponding
term in (61). �

Proof of Lemma 11.5. Let ã ∈ ω̂ be the parameter at which the minimum
in the definition of p(ω̂) is attained. Then (a) is an immediate consequence of
(A5)(i) for Tã.

Let ẑ0(a) = φa(ζn(a)). (b) follows from the fact that for all a ∈ ω̂ and
j < p(ω̂), |ẑj(a) − ẑj(ã)| ≤ Kj |ω̂| ≤ KαnK̂e−λ′n  e−βj . In the second
inequality we have used p(ω̂) ≤ αn and |ω̂| ≤ K̂e−λ′n, which follows from
|ζn(ω̂)| ≤ 1 and Proposition 11.1.

(c) is proved via the following string of inequalities:

|τn+p(a)|
|τn(a)| > K̂−2 |wn+p(a)|

|wn(a)| > K−1K̂−2 |wn+p(ã)|
|wn(ã)| > K−1K̂−2e

p

3
λ.

The first inequality above is based on Proposition 11.1. For the second inequal-
ity, first recall that for both of the maps Ta and Tã, since wn splits correctly,
we have |wn+p| ≈ 1

2
de1
ds dC(zn)|DT p

zn(v)| · |wn|. We then use Sublemma A.25.1
and the remarks following it to compare |(DT p

a )zn(a)(v)| and |(DT p
ã )zn(ã)(v)|,
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and note that the other factors are comparable up to a fixed constant. The
last inequality follows from Proposition 5.2(2) for Tã.

(d) is a simple consequence of the bound on ∠(τn+i, wn+i) (Lemma 11.2)
and the fact that ∠(wn+i, DT i

zn
(v))  1 outside of splitting periods.

(e) is an application of the second inequality in Sublemma A.25.2(a).

A.26. Distortion estimates for parameters (§12.2)

We prove Lemma 12.2 in this appendix. Let ω ∈ Qn−1 be as in Lemma
12.2, and let a, a′ ∈ ω. Where no ambiguity arises, we will omit mention of
the parameters and write zi = zi(a), z′i = zi(a′), wi = wi(z0) = (DT i

a)z0(v),
w′

i = wi(z′0) = (DT i
a′)z′

0
(v), and similarly for τi and τ ′

i .

Plan of proof. Since the formula for the evolution of τi is more involved,
we again invoke Proposition 11.1 and prove |wn|

|w′
n| < K. Let 0 < n1 < n1 + p1 ≤

n2 < n2 + p2 ≤ n3 < · · · < nq + pq ≤ n be such that nk is a free return, pk is
the ensuing bound period, and nk+1 is the first return following nk + pk. We
write

|wn| = |wn1 | ·
|wn1+p1 |
|wn1 |

· |wn2 |
|wn1+p1 |

· |wn2+p2 |
|wn2 |

· |wn3 |
|wn2+p2 |

· · ·(66)

and estimate the factors in (66) separately. These factors are of two types, the
more complicated of which being |wnk+pk

|
|wnk

| . In the proof of Lemma 11.5(c) in

Appendix A.25, we reduced the comparison of |wnk+pk
|

|wnk
| to that of |DT pk

znk
(v)|

with bounded error. A more refined estimate is needed here to control the
cumulative effect of these errors over time intervals that may contain arbitrarily
large numbers of bound periods. Such a comparison involves the difference in
slopes between wnk

and w′
nk

. Let θi := ∠(wi, w
′
i).

Sublemma A.26.1. (i) Let i0 be as in Proposition 11.1. Then θi0 <

Ki0 |a − a′|.
(ii) For all k ≥ 1,

(a) θnk
< Kb

1
2 |znk−1−z′nk−1|+2b

1
2 |a−a′|+b

1
2
(nk−(nk−1+pk−1))θnk−1+pk−1 , with

“n0 + p0” in the inequality above replaced by “i0” in the case k = 1;

(b) θnk+pk
≤ 2b

1
2
∑pk−1

j=0 b
j

4 2	nk+pk−j−1 |znk+pk−j−1 − z′nk+pk−j−1|
+ Kpk |a − a′| + b

pk
4 θnk

.

Proof. (i) is straightforward since |z0−z′0| < K|a−a′| from Corollary 10.2.
(ii) follows from estimates very similar to those in the proof of Proposition 5.1
(Appendix A.14). More precisely:
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(a) Let Θj = ∠((DT j
a )znk+pk

wnk+pk
, (DT j

a′)z′
nk+pk

w′
nk+pk

). The assertion
is proved inductively by showing, as in Case 1 of Proposition 5.1,

Θj ≤ b
1
2 (Θj−1 + |a − a′| + |znk+pk+j−1 − z′nk+pk+j−1|).(67)

(b) Let p = pk, and write u = wnk
(ξ0)

|wnk
(ξ0)| . Let e = ep(S) where S = S(u,v).

As usual, we split u into u = Bv+Ae. Following the computation in the proof
of Proposition 5.1, Case 2, we obtain

|B′ − B|, |A′ − A| < K(θnk
+ |znk

− z′nk
| + |a − a′|).(68)

Here |u−u′| = θnk
, and by Lemma 3.1, |e−e′| ≤ K(θnk

+ |a−a′|+ |znk
−z′nk

|).
The rest of the proof follows Case 3 in the same proof. As usual, we write
V = (DT p

a )zn
v, V ′ = (DT p

a′)z′
n
v, E = (DT p

a )zn
e, E′ = (DT p

a′)z′
n
e′. Then we

have θnk+pk
≤ (I) + (II) where (I) = ∠(V, V ′), (II) =

∣∣∣ A′E′

B′|V ′| − AE
B|V |

∣∣∣. For
(I) we use the angle part of Sublemma A.25.1. The other estimates involve
the same terms as in the proof of Proposition 5.1, Case 3, and are carried out
similarly. �

Corollary A.1. (i) θnk
≤ b

1
2 |znk−1 − z′nk−1| + KKαn|a − a′|.

(ii) Letting u = wnk

|wnk
| and p = pk, we have

|(DT p
a )znk

u|
|(DT p

a′)z′
nk

u′| < exp
{

K
|znk

− z′nk
|

dC(a)(znk
)

+ KKαn|a − a′|
}

.

Proof. (i) follows inductively from Sublemma A.26.1(ii). We use Kαn to
dominate pk, and assume n is sufficiently large that b

1
4
(n−i0)Ki0 < KKαn. For

(ii), we split u as in part (ii) of Sublemma A.26.1, obtaining
|(DT p

a )znk
u|

|(DT p

a′ )z′
nk

u′| <

|B|
|B′|

|V |
|V ′|(1 + 2(I) + 2(II)). From the estimates in Sublemma A.26.1(ii) and

the bound on θnk
in (i) above, we see that the right side of this inequality is

bounded by terms of the form as claimed. �

Proof of Lemma 12.2. This proof follows that of (P3) in Appendix A.1.
Letting ui = wi

|wi| , we write log |wn|
|w′

n| ≤ K
∑q

k=1(S
′
k + S′′

k ) where

S′
k = log

|(DT pk
a )znk

unk
|

|(DT pk

a′ )z′
nk

u′
nk
| and S′′

k = log
|(DT

nk+1−(nk+pk)
a )znk+pk

unk+pk
|

|(DT
nk+1−(nk+pk)
a′ )z′

nk+pk
u′

nk+pk
|

except for S′′
q which ends at index n − 1.

To estimate S′
k, we let σk = |znk

− z′nk
|. Then Corollary A.1(ii) gives

S′
k < K |σk|

dC(znk
) + KKαn|a − a′|. The sum

∑
k K |σk|

dC(znk
) is estimated as in

Appendix A.1. The additional term representing parameter contributions
sums to < nKKαn|a − a′| < nKKαne−λ′n, which is uniformly bounded in n.
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Now,
∑

S′′
k , which treats iterates outside of C(1), is easily estimated to be

< K |σq|
δ + nKKαne−λ′n.
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