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On the regularity of reflector antennas

By Luis A. Caffarelli, Cristian E. Gutiérrez, and Qingbo Huang*

1. Introduction

By the Snell law of reflection, a light ray incident upon a reflective surface
will be reflected at an angle equal to the incident angle. Both angles are
measured with respect to the normal to the surface. If a light ray emanates
from O in the direction x ∈ Sn−1, and A is a perfectly reflecting surface, then
the reflected ray has direction:

x∗ = T (x) = x − 2 〈x, ν〉 ν,(1.1)

where ν is the outer normal to A at the point where the light ray hits A.
Suppose that we have a light source located at O, and Ω,Ω∗ are two

domains in the sphere Sn−1, f(x) is a positive function for x ∈ Ω (input
illumination intensity), and g(x∗) is a positive function for x∗ ∈ Ω∗ (output
illumination intensity). If light emanates from O with intensity f(x) for x ∈ Ω,
the far field reflector antenna problem is to find a perfectly reflecting surface
A parametrized by z = ρ(x) x for x ∈ Ω, such that all reflected rays by A fall
in the directions in Ω∗, and the output illumination received in the direction
x∗ is g(x∗); that is, T (Ω) = Ω∗, where T is given by (1.1). Assuming there is
no loss of energy in the reflection, then by the law of conservation of energy∫

Ω
f(x) dx =

∫
Ω∗

g(x∗) dx∗.

In addition, and again by conservation of energy, the map T defined by (1.1)
is measure-preserving:∫

T−1(E)
f(x) dx =

∫
E

g(x∗) dx∗, for all E ⊂ Ω∗ Borel set,
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and consequently, the Jacobian of T is
f(x)

g(T (x))
. It yields the following nonlin-

ear equation on Sn−1 (see [GW98]):

det (∇iju + (u − η)eij)
ηn−1 det(eij)

=
f(x)

g(T (x))
,(1.2)

where u = 1/ρ, ∇ = covariant derivative, η =
|∇u|2 + u2

2u
, and e is the metric

on Sn−1. This very complicated fully nonlinear PDE of Monge-Ampère type
received attention from the engineering and numerical points of view because
of its applications [Wes83]. From the point of view of the theory of nonlinear
PDEs, the study of this equation began only recently with the notion of weak
solution introduced by Xu-Jia Wang [Wan96] and by L. Caffarelli and V. Oliker
[CO94], [Oli02].

The reflector antenna problem in the case n = 3, Ω ⊂ S2
+, and Ω∗ ⊂ S2

−,
where S2

+ and S2
− are the northern and southern hemispheres respectively, was

discussed in [Wan96], [Wan04]. The existence and uniqueness up to dilations
of weak solutions were proved in [Wan96] if f and g are bounded away from 0
and ∞. Regularity of weak solutions was also addressed in [Wan96] and it was
proved that weak solutions are smooth if f , g are smooth and Ω, Ω∗ satisfy
certain geometric conditions. Xu-Jia Wang [Wan04] recently discovered that
this antenna problem is an optimal mass transportation problem on the sphere
for the cost function c(x, y) = − log(1 − x · y); see also [GO03].

On the other hand, the global reflector antenna problem (i.e., Ω = Ω∗ =
Sn−1) was treated in [CO94], [GW98]. When f and g are strictly positive
bounded, the existence of weak solutions was established in [CO94] and the
uniqueness up to homothetic transformations was proved in [GW98]. If f ,
g ∈ C1,1(Sn−1), Pengfei Guan and Xu-Jia Wang [GW98] showed that weak
solutions are C3,α for any 0 < α < 1. Actually, slightly more general results
were discussed in these references.

We mention that in the case of two reflectors a connection with mass
transportation was found by T. Glimm and V. Oliker [GO04].

It is noted that the reflector antenna problem is somehow analogous to
the Monge-Ampère equation, however, it is more nonlinear in nature and more
difficult than the Monge-Ampère equation.

Our purpose in this paper is to establish some important quantitative
and qualitative properties of weak solutions to the global antenna problem,
that is, when Ω = Ω∗ = Sn−1. Three important results are crucial for the
regularity theory of weak solutions to the Monge-Ampère equation: interior
gradient estimates, the Alexandrov estimate, and Caffarelli’s strict convexity.
Our first goal here is to extend these fundamental estimates to the setting of
the reflector antenna problem. This is contained in Theorems 3.3–3.5. In our
case these estimates are much more complicated to establish than the coun-
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terpart for convex functions due to the lack of the affine invariance property
of the equation (1.2) and the fact that the geometry of cofocused paraboloids
is much more complicated than that of planes. Our second goal is to prove
the counterpart of Caffarelli’s strict convexity result in this setting, Theorem
4.2. Finally, the third goal is to show that weak solutions to the global re-
flector antenna problem are C1 under the assumption that input and output
illumination intensities are strictly positive bounded. To this end, in Section 5
we establish some properties of the Legendre transforms of weak solutions and
combine them together with Theorem 4.2 to obtain the desired regularity.

2. Preliminaries

Let A be an antenna parametrized by y = ρ(x)x for x ∈ Sn−1. Through-
out this paper, we assume that there exist r1, r2 such that

0 < r1 ≤ ρ(x) ≤ r2, ∀x ∈ Sn−1.(2.1)

Given m ∈ Sn−1 and b > 0, P (m, b) denotes the paraboloid of revolution
in R

n with focus at 0, axis m, and directrix hyperplane Π(m, b) of equation
m ·y +2b = 0. The equation of P (m, b) is given by |y| = m ·y +2b. If P (m′, b′)
is another such paraboloid, then P (m, b)∩P (m′, b′) is contained in the bisector
of the directrices of both paraboloids, denoted by Π[(m, b), (m′, b′)], and that
has equation (m − m′) · y + 2(b − b′) = 0; see Figure 1.

P (m, b)

P (m′, b′)

Π[(m, b), (m′, b′)]

Figure 1

Lemma 2.1. Let P (en, a) and P (m, b) be two paraboloids with m =
(m′, mn). Then the projection onto R

n−1 of P (en, a) ∩ P (m, b) is a sphere
Sa,b,m with equation

Sa,b,m ≡
∣∣∣∣x′ − 2 a

m′

1 − mn

∣∣∣∣
2

=
8ab

1 − mn
= R2

a,b,m.
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Proof. Since P (en, a) has focus at 0, it follows that it has equation

xn =
1
4a

|x′|2 − a. The intersection of P (en, a) and P (m, b) is contained in the

hyperplane of equation (m − en) · x + 2(b − a) = 0. Hence the equation of
Π[(en, a), (m, b)] can be written as

xn =
m′ · x′

1 − mn
+ 2

b − a

1 − mn
.

Therefore the points x = (x′, xn) ∈ P (en, a) ∩ P (m, b) satisfy the equation

1
4a

|x′|2 − a =
m′ · x′

1 − mn
+ 2

b − a

1 − mn
,

which simplifies to the sphere in R
n−1

Sa,b,m ≡
∣∣∣∣x′ − 2 a

m′

1 − mn

∣∣∣∣
2

=
8a(b − a)
1 − mn

+ 4a2

(
1 +

( |m′|
1 − mn

)2
)

= R2
a,b,m.

Since |m′|2 + m2
n = 1, a direct simplification yields

R2
a,b,m =

8ab

1 − mn
.

Definition 2.2 (Supporting paraboloid). We say that P (m, b) is a sup-
porting paraboloid to the antenna A at the point y ∈ A, or that P (m, b) sup-
ports A at the point y ∈ A, if y ∈ P (m, b) and A is contained in the interior
region limited by the surface described by P (m, b).

Definition 2.3 (Admissible antenna). The antenna A is admissible if it
has a supporting paraboloid at each point.

Remark 2.4. We remark that if P (m, b) is a supporting paraboloid to the
antenna A, then r1 ≤ b ≤ r2. To prove it, assume that P (m, b) contacts A at
ρ(x0)x0 for x0 ∈ Sn−1. Obviously, 0 < b ≤ ρ(x0) ≤ r2 by (2.1). On the other
hand, b ≥ ρ(−m) ≥ r1 also by (2.1).

Definition 2.5 (Reflector map). Given an admissible antenna A para-
metrized by z = ρ(x)x and y ∈ Sn−1, the reflector mapping associated with A
is

NA(y) = {m ∈ Sn−1 : P (m, b) supports A at ρ(y) y}.
If E ⊂ Sn−1, then NA(E) = ∪y∈ENA(y).

Obviously, NA is the generalization of the mapping T in (1.1) for nons-
mooth antennas. The set ∪y1 �=y2 [NA(y1) ∩ NA(y2)] has measure 0, and as a
consequence, the class of sets E ⊂ Sn−1 for which NA(E) is Lebesgue measur-
able is a Borel σ-algebra; see [Wan96, Lemma 1.1]. The notion of weak solution
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can be introduced through energy conservation in two ways. The first one is
the natural one and uses

∫
N−1

A (E∗) f dx =
∫
E∗ g dm, through N−1

A . And the
second one uses

∫
E f dx =

∫
NA(E) g dm, through NA. For nonnegative func-

tions f , g ∈ L1(Sn−1), it is easy to show using [Wan96, Lemma 1.1] that these
two ways are equivalent. We will use the second way to define weak solutions.
Given g ∈ L1(Sn−1) we define the Borel measure

μg,A(E) =
∫
NA(E)

g(m) dm.

Definition 2.6 (Weak solution). The surface A is a weak solution of the
antenna problem if A is admissible and

μg,A(E) =
∫

E
f(x) dx,

for each Borel set E ⊂ Sn−1.

By the definition, smooth solutions to (1.2) are weak solutions. If CA is
the C-dilation of A with respect to O, then NCA = NA. Therefore, any dilation
of a weak solution is also a weak solution of the same antenna problem.

We make a remark on (2.1). If the input intensity f and the output inten-
sity g are bounded away from 0 and ∞, and A is normalized with infs∈Sn−1 ρ(x)
= 1, then there exists r0 > 0 such that supx∈Sn−1 ρ(x) ≤ r0, by [GW98].

3. Estimates for reflector mapping

Throughout this paper, we assume that f and g are bounded away from
0 and ∞, and there exist positive constants in λ, Λ such that

λ |E| ≤ |NA(E)| ≤ Λ |E|,(3.1)

for all Borel subsets E ⊂ Sn−1.
Let A be an admissible antenna and P (m, b0) a paraboloid focused at O

such that A ∩ P (m, b0) �= ∅. Let SA(P (m, b0)) be the portion of A cut by
P (m, b0) and lying outside P (m, b0), that is,

SA(P (m, b0)) = {z ∈ A : ∃ b ≥ b0 such that z ∈ P (m, b)}.(3.2)

SA(P (m, b0)) can be viewed as a level set or cross section of the reflector
antenna A.

We shall first establish some estimates for the reflector mapping on cross
sections of the antenna A.

3.1. Projections of cross sections. We begin with a geometric lemma
concerning the convexity of projections of cross sections of A.
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Lemma 3.1. Let A be an admissible antenna and let P (en, a) be a paraboloid
focused at 0 such that P (en, a) ∩ A �= ∅. Then

(a) If x0, x1 ∈ SA(P (en, a)), then there exists a planar curve C ⊂ SA(P (en, a))
joining x0 and x1.

(b) Let R = SA(P (en, a)) and R′ be the projection of R onto R
n−1 which is

identified as a hyperplane in R
n through O with the normal en. Then R′

is convex.

Proof. Let x′
0, x′

1 be the projection of x0, x1 onto R
n−1, and let L be the

2-dimensional plane through x′
0, x

′
1 and parallel to en. Consider the planar

curve L ∩ A that contains x0, x1. We claim that the lower portion of L ∩ A
connecting x0, x1 lies below P (en, a). Indeed, let x be on this lower portion
of L ∩ A and let P (m, b) be a supporting paraboloid to A at the point x. If
m = en, then a ≤ b and x is below P (en, a). Now consider the case m �= en.
Obviously, the points x0, x1 are below P (en, a) and inside P (m, b). Therefore,
x0, x1 lie below the bisector Π[(en, a), (m, b)] and hence below the line L ∩
Π[(en, a), (m, b)]. Since L ∩ A is a convex curve, it follows that the lower
portion of L ∩ A connecting x0 and x1 lies below L ∩ Π[(en, a), (m, b)] and so
does x. It implies that x is below P (en, a). This proves (a) and as a result
part (b) follows.

Remark 3.2. Throughout this section we use the following construction.
If P (en, a)∩A �= ∅, R = SA(P (en, a)), and R′ is the projection of R onto R

n−1

parallel to the directrix hyperplane Π(en, a), then E will denote the Fritz John
(n − 1)-dimensional ellipsoid of R′; that is, 1

n−1E ⊂ R′ ⊂ E; we assume that
E has principal axes λ1, · · · , λn−1 in the coordinate directions e1, · · · , en−1.

3.2. Estimates in case the diameter of E is big. For a convex function v(x)
on a convex domain Ω, it is well known that |Dv(x)| ≤ C oscΩv/dist(x, ∂Ω),
for any x ∈ Ω, see [Gut01, Lemma 3.2.1]. This fact gives rise to an estimate
from above of the measure of the image of the norm mapping. The following
theorem extends this result to the setting of the reflector mapping.

Theorem 3.3. Let A be an admissible antenna satisfying (2.1) and let
P (en, a + h) with h > 0 small be a supporting paraboloid to A. Denote by
R = SA(P (en, a)) the portion of A bounded between P (en, a+h) and P (en, a),
and let R′ and E be defined as in Remark 3.2. Let R1/2 be the lower portion
of R whose projection onto R

n−1 is 1
2(n−1)E.

(a) Assume d1 ≤ d = diam(E) ≤ d2. If P (m, b) is a supporting paraboloid
to A at some Q ∈ R1/2 with m = (m′, mn) = (m1, · · · , mn−1, mn), then
|mi| ≤ Ch/λi for i = 1, · · · , n − 1, and |m′| ≤

√
2
√

1 − mn ≤ C
√

h/d,
where C depends only on structural constants, d1, and d2.
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(b) Assume that

√
h

d
≤ η0 with η0 small. Let ρ−1(R1/2) be the preimage of

R1/2 on Sn−1. Then NA(ρ−1(R1/2)) ⊂ {(m′, mn) ∈ Sn−1 :
√

1 − mn ≤
C
√

h/d} and

|NA(ρ−1(R1/2))| ≤ C

n−1∏
i=1

min

{√
h

d
,

h

λi

}
,

where C depends only on structural constants and η0.

Proof. Suppose that P (m, b) is a supporting paraboloid to A at some

point Q ∈ R1/2. Let τ =
m′

|m′| ∈ R
n−1, mτ = |m′|, and write

m = (mτ τ, mn).(3.3)

We have 1 = |m|2 = m2
n + m2

τ and therefore

m2
τ ≤ 2 (1 − mn).(3.4)

From Lemma 2.1, the points x = (x′, xn) ∈ P (en, a) ∩ P (m, b) satisfy the
equation

Sa,b,m ≡
∣∣∣∣x′ − 2 a

mτ

1 − mn
τ

∣∣∣∣
2

= R2
a,b,m,

with

R2
a,b,m =

8ab

1 − mn
.

Our goal now is to estimate the reflector mapping over the interior lower
portion R1/2 whose projection on R

n−1 is 1
2(n−1)E.

Recall Remark 2.4 and that h is very small. Let Q′ denote the projection
of Q in the direction en; that is, Q′ ∈ 1

2(n−1)E. We may assume m �= en.
Obviously, there exists 0 < ε0 ≤ 1 such that Q ∈ P (en, a + ε0h) ∩ P (m, b);
see Figure 2. Let P be the portion of P (m, b) below R and defined over
R′. Since P (en, a + ε0h) ∩ P (m, b) ⊂ Π[(en, a + ε0h), (m, b)], it follows that
P crosses Π[(en, a + ε0h), (m, b)] and P (en, a + ε0h). Let Sa+ε0h,b,m be the
sphere from Lemma 2.1 obtained projecting Π[(en, a + ε0h), (m, b)] ∩ P (m, b)
on R

n−1, and let Ba+ε0h,b,m be the solid ball whose boundary is Sa+ε0h,b,m.
Since Π[(en, a + ε0h), (m, b)] traverses P (m, b), it follows that P is below the
bisector Π[(en, a + ε0h), (m, b)] in the region R′ ∩ Ba+ε0h,b,m, and therefore P
is below P (en, a + ε0h) in the same region. Therefore, P is above (or inside)
P (en, a + ε0h) in R′ \ Ba+ε0h,b,m.

For x = (x′, xn) ∈ P with x′ ∈ R′\Ba+ε0h,b,m, x must be between P (en, a)
and P (en, a + ε0h). Hence there exists ε = εx such that 0 ≤ ε ≤ ε0 with
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Q

P (m, b)

P (en, a + ε0h)

A

P (en, a)

P (en, a + h)

0

Figure 2

x ∈ P (en, a+εh)∩P (m, b). Consequently, x′ ∈ Sa+εh,b,m and from Lemma 2.1
we have ∣∣∣∣x′ − 2(a + εh)

mτ

1 − mn
τ

∣∣∣∣
2

=
8(a + εh)b

1 − mn
= R2

a+εh,b,m.

On the other hand, x′ is outside Sa+ε0h,b,m. It follows that√
8(a + ε0h)b

1 − mn
≤

∣∣∣∣x′ − 2(a + ε0h)
mτ

1 − mn
τ

∣∣∣∣
≤

∣∣∣∣x′ − 2(a + εh)
mτ

1 − mn
τ

∣∣∣∣ + 2(ε0 − ε)h
mτ

1 − mn

≤
√

8(a + εh)b
1 − mn

+ 2
√

2
h√

1 − mn

≤ (1 + Ch)

√
8(a + ε0h)b

1 − mn
.

One then obtains that R′ \ Ba+ε0h,b,m is contained in a ring with inner radius
R = Ra+ε0h,b,m and width C R h. Since the inner sphere of the ring Sa+ε0h,b,m

passes through Q′ ∈ 1
2(n−1)E, its tangent at Q′ traverses 1

2(n−1)E and the ring.
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Thus, there exists an ellipsoid E0 ⊂ R′ \Ba+ε0h,b,m whose axes are comparable
and parallel to those of E. Moreover, E0 is contained in a cylinder C whose
height is C R h and whose base is an (n−2)-dimensional ball with radius CR

√
h

and center Q′. Since diam(C) = CR
√

h, one obtains that

d ≤ CR
√

h and therefore
√

1 − mn ≤ C
√

h/d.(3.5)

As
√

h/d is small, mn is close to 1 and R is very large. From (3.4) and (3.5)
we obtain the estimate |mτ | ≤ C

√
h/d.

Let x′
0 be the center of E0 and EC be the center of E. We want to show

that ∣∣∣∣
(

m′ − 1 − mn

2a
EC

)
· −−→x′

0x
′
∣∣∣∣ ≤ C h,(3.6)

for all x′ ∈ E0. For simplicity, let C0 = 2(a+ε0h)
mτ

1 − mn
τ be the center of the

ring. We claim that the angle between −−−→
C0EC and the radial direction

−−→
C0Q

′ is
very small; that is, angle(−−−→C0EC ,

−−→
C0Q

′) ≤ C d/R. In fact, by the law of cosines,
we have that

|−−−→ECQ′|2 = |−−→C0Q
′|2 + |−−−→C0EC |2 − 2

−−→
C0Q

′ · −−−→C0EC .

Without loss of generality, we may assume that |−−−→C0EC | ≤ |−−→C0Q
′|. If we set−−→

C0Q
′ = |−−→C0Q

′|τr = R1τr, A1 = |−−−→ECQ′|, and −−−→
C0EC = |−−−→C0EC |τE = (R1−A2)τE ,

where 0 < A2 ≤ A1 ≤ d, then

A2
1 = R2

1 + (R1 − A2)2 − 2R1(R1 − A2) τr · τE .

Since R is large and R1
R ≈ C by (3.5), we get the following

1 − τr · τE =
A2

1 − A2
2

2R1(R1 − A2)
≤ Cd2

R2
,

and the claim is proved.
Continuing with the proof of (3.6), write τE = krτr + ktτt, where τt is a

unit vector in the tangent plane of the sphere Sa+ε0h,b,m at the point Q′; that
is, τt ⊥ τr, and kt ≥ 0. Therefore, we have

τE · τt = kt =
√

1 − (τr · τE)2

=
√

(1 + τr · τE)(1 − τr · τE)

≤
√

2
Cd2

R2
≤ C

d

R
.

For x′, x′′ ∈ E0, write
−−→
x′x′′ = ε1 C R h τr + ε2 d τt + τ⊥,

where −1 < ε1, ε2 < 1, and τ⊥ is perpendicular to both τr and τt. From (3.5)
d ≤ C R

√
h and so
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|τE · −−→x′x′′| ≤ |ε1| |τE · τr CRh| + |ε2| |τE · τt d| ≤ CRh + Cd2/R ≤ CRh.

Note that |−−−→C0EC | ≤ C R. It follows that

|−−−→C0EC · −−→x′x′′| ≤ C R|τE · −−→x′x′′| ≤ CR2h.

Since |−−→x′x′′| ≤ d < R, we have∣∣∣∣
(

EC − 2a
m′

1 − mn

)
· −−→x′x′′

∣∣∣∣ ≤ CR2h,

and then by the definition of R we obtain (3.6).
We are now ready to prove (a). Since d1 ≤ d ≤ d2, from (3.5) and (3.6),

one obtains

|m′ · −−→x′
0x

′| ≤ C h.

Since the ellipsoid E0 has principal axes Cλ1, · · · , Cλn−1 in the coordinate
directions e1, · · · , en−1, it follows from the last inequality that the i-th compo-
nent mi of m′ must satisfy |mi| ≤ Ch/λi.

We now prove (b). For m′ ∈ Bη0(0) with small η0, let w = M(m′) =

m′ − 1 −
√

1 − |m′|2
2a

EC . It is easy to verify that the Jacobian of M is close

to 1 and that for m′, m′
0 ∈ Bη0(0) we have

(1 − Cη0)|m′ − m′
0| ≤ |M(m′) −M(m′

0)| ≤ (1 + Cη0)|m′ − m′
0|.(3.7)

We claim that M is a 1-to-1 mapping from Bη0(0) onto Bη0(wη0), where wη =

−1 −
√

1 − η2

2a
EC for 0 ≤ η ≤ η0. In fact, if |m′| = η, then |w − wη| = η. It is

easy to verify that |wη −wη0 | ≤ Cη0(η0 − η). Hence, M(Bη0) ⊂ Bη0(wη0). On
the other hand, given w �= 0 with |w − wη0 | = μ < η0, consider the continuous
function f(η) = |w − wη|/η for 0 < η ≤ η0. Obviously, limη→0+ f(η) = ∞
and limη→η0 f(η) = μ/η0 < 1. Therefore, there exists 0 < η < η0 such that
f(η) = 1, which implies that |w−wη| = η and w = M(m′) with m′ = w−wη.
Thus, the claim is proved.

From (3.6), if m = (m′, mn) ∈ NA(ρ−1(R1/2)), then w = M(m′) =
(w1, · · · , wn−1) is in the dual ellipsoid E∗ of the ellipsoid E given by E∗ = {w :
|wi| ≤ Ch/λi, 1 ≤ i ≤ n − 1}. Clearly, we have the following estimate

|NA(ρ−1(R1/2))| ≤ |{(m′, mn) ∈ Sn−1 :
√

1 − mn ≤ C
√

h/d and M(m′) ∈ E∗}|
≤ C|{m′ : |M(m′)| ≤ C

√
h/d and M(m′) ∈ E∗}|

= C|M−1{w : |w| ≤ C
√

h/d and |wi| ≤ Ch/λi, 1 ≤ i ≤ n − 1}|

≤ C
n−1∏
i=1

min

{√
h

d
,

h

λi

}
.

This completes the proof of the theorem.
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A fundamental estimate for convex functions is the Alexandrov geometric
inequality which asserts that if u(x) is a convex function in a bounded convex
domain Ω ⊂ R

n such that u ∈ C(Ω) and u = 0 on ∂Ω, then for x0 ∈ Ω

|u(x0)|n ≤ C dist(x0, ∂Ω) diam(Ω)n−1 |Du(Ω)|;

see [Gut01, Lemma 1.4.2]. We extend this result to the setting of the reflector
mapping in the following theorem.

Theorem 3.4. Let A be an admissible antenna satisfying (2.1) and let
P (en, a + h) with h > 0 small be a supporting paraboloid to A. Denote by
R = SA(P (en, a)) the portion of A bounded between P (en, a+h) and P (en, a),
and let R′ and E be defined as in Remark 3.2. Assume that E has center
EC and principal axes λ1, · · · , λn−1 in the coordinate directions e1, · · · , en−1.
Denote by ρ−1(R) the preimage of R on Sn−1.

(a) Assume that d1 ≤ d = diam(E) ≤ d2. Given δ > 0 and z′ = (z1, · · · , zn−1)
∈ R′ such that z = (z′, zn) ∈ R ∩ P (en, a + h) with K − δλ1 ≤ z1 ≤ K,
where K = supx′∈R′ x1, then there exists ε0, independent of δ and z, such
that

F = {m ∈ Sn−1 :
√

1 − mn ≤ ε0

√
h/d,

0 ≤ −m1 ≤ ε0
h

δ λ1
, |mi| ≤ ε0

h

λi
, i = 2, · · · , n − 1} ⊂ NA(ρ−1(R)).

In other words, if m ∈ F , then P (m, b) is a supporting paraboloid to A
at some point on R for some b > 0.

(b) Assume that
√

h/d ≤ C0. Let B be the linear transformation given by
B(y1, · · · , yn−1) = (λ1y1, · · · , λn−1yn−1) such that E −EC = BB1, where
B1 is the unit ball. Given δ > 0 and z = (z′, zn) ∈ R∩ P (en, a + h) with
z′ = EC + (θ − δ)By′, |y′| = 1, EC + θBy′ ∈ ∂R′, and 1

n−1 ≤ θ ≤ 1, then
there exist a small ε0 > 0, independent of δ and z, and n−1 orthonormal
vectors e∗1, · · · , e∗n−1 in R

n−1 such that

C |{w ∈ R
n−1 : |w| ≤ ε0

√
h/d, Bw ∈ E∗}| ≤ |NA(ρ−1(R))|,

where E∗ =

{∑n−1
i=1 w∗

i e
∗
i : −ε0h

3δ
≤ w∗

1 ≤ 0,
∑n−1

i=2 (w∗
i )

2 ≤
(

ε0h

3

)2
}

is

a cylinder with circular base Bε0h/3 and height
ε0h

3δ
.

Proof. Let z ∈ R ∩ P (en, a + h). We have 1 − en
z

|z| =
2(a + h)

|z| ≥ const

by Remark 2.4 and (2.1). If m ∈ Sn−1 and |m − en| ≤ ε0 with ε0 small, then
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Sm,h Sm

Cm,h Cm ΔR

z′

Figure 3: Theorem 3.4

2b � |z|
(

1 − m
z

|z|

)
≥ const and so z ∈ P (m, b). Recall that EC is the center

of E and
√

h/d ≤ C0, and set

F∗ =

{
m ∈ Sn−1 :

√
1 − mn

≤ ε0

√
h/d, sup

x′∈R′

(
−m′ +

1 − mn

2a
EC

)
· −→z′x′ ≤ ε0h

}
.

In order to prove (a) and (b), we first show that

F∗ ⊂ NA(ρ−1(R)).(3.8)

To prove this, we will first claim that for m ∈ F∗, the portion of P (m, b)
that contains z and is over R′ is below P (en, a), and second we will show that
this implies that P (m, b0) (perhaps with b0 different from b) is a supporting
paraboloid to the whole antenna A at a point on R.

To show the first claim, since z is below P (en, a), it suffices to prove that

R′ ⊂ Sm,(3.9)

where Sm = Sa,b,m is the sphere from Lemma 2.1 which is the projection of
the intersection of P (en, a) and the bisector Π[(en, a), (m, b)]. As in the proof
of Theorem 3.3, Sm has equation

Sm ≡
∣∣∣∣x′ − 2 a

mτ

1 − mn
τ

∣∣∣∣
2

=
8ab

1 − mn
= R2

m = R2,

where mτ = |m′| and m′ = mττ . In order to prove (3.9) we now show that

z′ is inside Sm and dist(z′, Sm) ≥ C R h,(3.10)

and next construct a cylinder C defined by (3.11) so that R′ ⊂ C ⊂ Sm.
Indeed, since z ∈ P (en, a + h) ∩ P (m, b), z′ must be on the sphere Sm,h =
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Sa+h,b,m, the projection of the intersection of P (en, a + h) and the bisector
Π[(en, a + h), (m, b)]. Similarly to Sm, Sm,h has equation

Sm,h ≡
∣∣∣∣x′ − 2 (a + h)

mτ

1 − mn
τ

∣∣∣∣
2

=
8(a + h)b
1 − mn

= R2
m,h.

We claim that |b − a| ≤ Cmτ + h ≤ Cε0. In fact, if z = ρ(y)y for some
y ∈ Sn−1, then

ρ(y) =
2(a + h)
1 − en · y =

2b

1 − m · y ,

and consequently

b − a − h

a + h
=

(en − m) · y
1 − en · y .

Therefore

|b − a − h| =
a + h

1 − en · y |(en − m) · y| ≤ 1
2

ρ(y) |en − m| ≤ Cmτ ,

and the claim follows.
Let Cm and Cm,h be the centers of Sm and Sm,h respectively. By the law

of cosines

1 + τ ·
−−−−→
Cm,hz′

|−−−−→Cm,hz′|
= 1 −

−−−−→
Cm,hz′

|−−−−→Cm,hz′|
·
−−−−→
Cm,hO

|−−−−→Cm,hO|
≤ |Oz′|2

2|−−−−→Cm,hz′| · |−−−−→Cm,hO|
≤ C

R2
,

where O is the origin in R
n−1. This means that the angle between −τ and−−−−→

Cm,hz′ is less than C/R. We now estimate |−−→Cmz′| to locate the position of z′

inside Sm. Again by using the inner product, we have

|−−→Cmz′|2 = |−−−−→Cm,hz′|2 + |−−−−−→Cm,hCm|2 − 2
−−−−→
Cm,hz′

−−−−−→
Cm,hCm

=
(

Rm,h − 2h
mτ

1 − mn

)2

+ 2Rm,h · 2h
mτ

1 − mn

[
1 −

−−−−→
Cm,hz′

|−−−−→Cm,hz′|
(−τ)

]

≤
(

Rm,h − 2h
mτ

1 − mn

)2

+ CR · hR · C

R2

≤
(

Rm,h − 2h
mτ

1 − mn

)2

+ C h.

Since Rm,h − 2h mτ

1−mn
≈ R, it follows that

|−−→Cmz′| ≤
(

Rm,h − 2h
mτ

1 − mn

)
+ C

h

R
.
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On the other hand

ΔR � R −
(

Rm,h − 2h
mτ

1 − mn

)

= 2h
mτ

1 − mn
+

√
8ab

1 − mn
−

√
8(a + h)b
1 − mn

=
2h

√
1 + mn√

1 − mn
−

√
8b√

1 − mn

h√
a + h +

√
a

≥ h√
1 − mn

[
2
√

1 + mn −
√

2

√
b

a

]
.

Since |b − a| ≤ Cε0 and mn is close to 1, we obtain that ΔR ≥ C h√
1 − mn

=

CRh. Therefore

R − |−−→Cmz′| ≥ R −
(

Rm,h − 2h
mτ

1 − mn

)
− C

h

R
= ΔR − C

h

R

≥ C R h.

So (3.10) is proved.
Write

−−→
Cmz′ = |−−→Cmz′|τr, i.e., τr is the radial direction at z′. We obtain

that the cylinder

C = {z′ + krτr + ktτt : −R/2 ≤ kr ≤ CRh, |kt| ≤ CR
√

h, τt ⊥ τr, |τt| = 1}
(3.11)

is contained inside the sphere Sm for an appropriate choice of C.
We next prove that if m ∈ F∗, then R′ ⊂ C which will complete the proof

of (3.9). Write −−−−→
CmEC = |−−−−→CmEC |τE . Then the angle between τr and τE is

small. Indeed, by the law of cosines

1 − τrτE ≤ |−−→ECz′|2

2|−−→Cmz′| · |−−−−→CmEC |
≤ C d2

R2
.

Write τr = kEτE + k∗τ∗ such that k∗ ≥ 0, τ∗ ⊥ τE , and |τ∗| = 1. Therefore,
1
2

≤ kE ≤ 1 and 0 ≤ k∗ ≤ C
d

R
. Since m ∈ F∗ and R = C/

√
1 − mn,

|−→z′x′ · τt| ≤ |−→z′x′| ≤ d ≤ ε0CR
√

h for x′ ∈ R′, and we have the following
estimate

−→
z′x′ · τr = kE

−→
z′x′ · τE + k∗

−→
z′x′ · τ∗ ≤ kE

−→
z′x′ ·

(
EC − 2a m′

1−mn

)
|−−−−→CmEC |

+ C
d

R
d

≤ kE

2a
1−mn

ε0h

|−−−−→CmEC |
+ C

d2

R
≤ Cε0 R h + Cε2

0R h = Cε0R h,
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for all x′ ∈ R′, and therefore R′ ⊂ C and so (3.9) follows. As a result, the
portion of P (m, b) over R′ passing through z is strictly below (or outside)
P (en, a). Furthermore, the portion of P (en, a) over R′ is strictly contained in
P (m, b). Geometrically, if we drag P (m, b) downward (i.e., having b increase),
then we can get a supporting paraboloid P (m, b0). In fact, if x = ρ(y)y ∈ R
with |y| = 1, then x ∈ P (en, a + εh) for some 0 ≤ ε ≤ 1 and 1 − eny =
2(a+εh)/ρ(y) ≥ const. Thus, x ∈ P (m, bx) where 2bx � ρ(y)(1−my) ≥ const.
Let b0 = sup{bx : x ∈ R}. We want to prove that P (m, b0) is a supporting
paraboloid to A at a point in the interior of R. Choose zk ∈ R such that
bzk

→ b0. Without loss of generality, assume that zk → z0. Let zk = ρ(yk)yk,
|yk| = 1, and z0 = ρ(y0)y0, |y0| = 1. By taking the limit as k → ∞ in the
equation ρ(yk)(1 − myk) = 2bzk

, we get that z0 ∈ P (m, b0). On the other
hand, every x ∈ R must be on some P (m, bx) which lies inside P (m, b0) since
bx ≤ b0. Hence, R is inside P (m, b0) and touches P (m, b0) at z0. It follows that
P (m, b0) is a supporting paraboloid to R and ∂R is strictly inside P (m, b0).
To show that P (m, b0) is a supporting paraboloid to A, it is enough to show
that A\R is also contained inside P (m, b0). Indeed, suppose by contradiction
that there exists x ∈ A\R lying outside P (m, b0). Then x, z0 lie on or outside
P (m, b0). By Lemma 3.1, there exists a curve C on A connecting z0 and x and
lying on or outside P (m, b0). Then C must cross the boundary of R which is
strictly contained inside P (m, b0), a contradiction. Thus, the proof of (3.8) is
complete.

Now to the proof of Part (a). Given x′ ∈ R′, write
−→
z′x′ = x′ − z′ =

ε1λ1e1 +
∑n−1

i=2 εiλiei, where −2 ≤ ε1 ≤ δ and −2 ≤ εi ≤ 2 for i = 2, · · · , n−1.
If m ∈ F and since d1 ≤ d ≤ d2, then one obtains

−→
z′x′

(
1 − mn

2a
EC − m′

)
≤ Cε2

0h − ε1m1λ1 −
n−1∑
i=2

εimiλi

≤ Cε2
0h + δ

ε0h

δλ1
λ1 + 2(n − 2)ε0h

= C ε0h.

Choosing ε0 in F sufficiently small we get that F ⊂ F∗ (F∗ is now defined
with Cε0 instead of ε0) and (a) follows from (3.8).

To prove (b), and as in the proof of Theorem 3.3, we consider the mapping

w = M(m′) = m′ − 1 −
√

1 − |m′|2
2a

EC . Let

ProjF∗ = {m′ : ∃mn such that (m′, mn) ∈ F∗}

be the projection on R
n−1. Since ε0 is small, it follows from (3.7) that
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{m′ : |M(m′)| ≤ ε0

2

√
h

d
, sup

x′∈R′
[−M(m′)] z′x′ ≤ ε0h}

⊂ {m′ : |m′| ≤ ε0

√
h/d, sup

x′∈R′
[−M(m′)] z′x′ ≤ ε0h}

⊂ ProjF∗.

(3.12)

We claim that

{m′ : BM(m′) ∈ E∗} ⊂ {m′ : sup
x′∈R′

[−M(m′)] z′x′ ≤ ε0h}.

Let R∗ = B−1(R′ − EC). Obviously, B 1
n−1

⊂ R∗ ⊂ B1. By the assumptions,

EC + θBy′ ∈ ∂R′ and hence θy′ ∈ ∂R∗. Let z∗ � (θ − δ)y′ = B−1(z′ − EC),

and let y∗ ∈ ∂R∗ be such that dist(z∗, ∂R∗) = |y∗ − z∗|. Let e∗1 =
y∗ − z∗

|y∗ − z∗|
and choose {e∗i }n−1

i=2 such that {e∗i }n−1
i=1 is a set of orthonormal vectors. Clearly,

e∗1 is normal to ∂R∗ at y∗ and

R∗ ⊂ {z∗ +
n−1∑
i=1

uie
∗
i : −2 ≤ u1 ≤ δ, |ui| ≤ 2, i = 2, · · · , n − 1}.

Therefore, for Bw ∈ E∗, it is easy to verify

sup
x′∈R′

(−w) · z′x′ = sup
u∈R∗

[−Bw] · (u − z∗) ≤ ε0h,

and the claim follows. Therefore from (3.12) we get

{m′ : |M(m′)| ≤ ε0

2

√
h

d
, BM(m′) ∈ E∗} ⊂ ProjF∗.

Since the Jacobian of M is close to one, the conclusion in part (b) follows from
(3.8).

3.3. Estimates in case the diameter of E is small. Theorem 3.3 and
Theorem 3.4 extend the gradient estimate and Alexandrov estimate for convex
functions to reflector antennas in the case

√
h/d ≤ η0. These two theorems are

sufficient for the discussion of strict reflector antennas in Section 4. However,
to get complete extension of the estimates, we also need to prove the following
theorem addressing the case

√
h/d ≥ η0.

Theorem 3.5. Let A be an admissible antenna satisfying (2.1) and (3.1),
and let P (en, a + h) be a supporting paraboloid to A for small h > 0. Let
R = SA(P (en, a)) and let R′ and E be defined as in Remark 3.2, let EC be the

center of E, and d = diam(E). Assume that

√
h

d
≥ η0 > 0.

(a) There exists C > 0 such that C−1d ≤ λi ≤ C d, for i = 1, · · · , n− 1, and

η0 ≤
√

h

d
≤ C.
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(b) Let B be the linear transformation given by

B(y1, · · · , yn−1) = (λ1y1, · · · , λn−1yn−1)

and be such that E − EC = BB1. Given δ > 0 and z = (z′, zn) ∈
R∩P (en, a + h) such that z′ = EC + (1− δ)By′ with 1

n−1 ≤ |y′| ≤ 1, and
EC + By′ ∈ ∂R′, there exists a small ε0 > 0 such that

Cεn−1
0 min

{
1√
h

,
1
δ

} (√
h
)n−1

≤ |NA(ρ−1(R))|,

where ρ−1(R) is the preimage of R on Sn−1.

(c) Let R1/2 be the lower portion of R whose projection onto R
n−1 is 1

2(n−1)E

and ρ−1(R1/2) be its preimage on Sn−1. Then

NA(ρ−1(R1/2)) ⊂ {(m′, mn) ∈ Sn−1 :
√

1 − mn ≤ C
√

h},

where C depends only on the structural constants and η0.

Proof. We first prove part (a). Let z = (z′, zn) ∈ R ∩ P (en, a + h). We
remark that to prove (3.10), it suffices to assume that |m − en| ≤ ε0 with ε0

small, and therefore under this assumption one can conclude as in Theorem
3.4 that the cylinder

C = {z′ + krτr + ktτt : −R/2 ≤ kr ≤ CRh, |kt| ≤ CR
√

h, τt ⊥ τr, |τt| = 1}

is contained strictly inside the sphere Sm, where the symbols have the same
meaning as in that theorem. If on the other hand

√
1 − mn ≤ ε0h/d, then

d ≤ ε0CRh where R is the radius of Sm and R = C/
√

1 − mn and consequently
R′ ⊂ Bd(z′) ⊂ C. Therefore, if

√
1 − mn ≤ min{ε0, ε0h/d}, then R′ ⊂ Sm.

Using the technique of dragging the paraboloid as in the proof of Theorem 3.4,
we then obtain that m ∈ NA(ρ−1(R)); that is,

{m ∈ Sn−1 :
√

1 − mn ≤ min{ε0, ε0h/d}} ⊂ NA(ρ−1(R)).

Let D = ρ−1(R) and P (en, a)|D be the restriction of P (en, a) over D, i.e., the
portion of P (en, a) contained in A. Obviously, |D| ≤ C |P (en, a)|D| ≤ C |R′|.
By (3.1), we obtain

[min{ε0, ε0h/d}]n−1 ≤ C |D| ≤ C |R′| ≤ Cλ1 · · ·λn−1.(3.13)

We claim that if h is small enough, then h/d ≤ 1. Otherwise, if h/d > 1,
then from (3.13), εn−1

0 ≤ Cλ1 · · ·λn−1. This implies that λi ≥ Cεn−1
0 for

i = 1, · · · , n− 1, and therefore

√
h

d
≤

√
h

Cεn−1
0

< η0 for small h, a contradiction.

Thus, the claim is proved. Therefore from (3.13),
(

ε0
h

d

)n−1

≤ Cλ1 · · ·λn−1,
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and so

(ε0η
2
0)

n−1 ≤ εn−1
0

(
h

d2

)n−1

≤ C
λ1 · · ·λn−1

dn−1
≤ C

λi

d
≤ C,

for i = 1, · · · , n − 1. This completes the proof of part (a).
Now prove part (b). By part (a), η0 ≤

√
h/d ≤ C. By Theorem 3.4 (b)

C |{w ∈ R
n−1 : |w| ≤ ε0η0,Bw ∈ E∗}| ≤ |NA(ρ−1(R))|,

where E∗ is a cylinder with circular base Bε0h/3 and height
ε0h

3δ
. By part (a),

|Bw| ≈ Cd|w|. Therefore

C |B−1(BC0ε0η0d ∩ E∗)| ≤C|{w ∈ R
n−1 : |Bw| ≤ C0ε0η0d,Bw ∈ E∗}|

≤|NA(ρ−1(R))|.

Since
√

h/C ≤ d ≤
√

h/η0, it is easy to verify that

|NA(ρ−1(R))| ≥ C

dn−1
min

{
C0ε0η0d,

ε0h

3δ

} [
min

{
C0ε0η0d,

ε0h

3

}]n−2

≥ C(ε0η0)n−1 min
{

1√
h

,
1
δ

} (√
h
)n−1

.

This completes the proof of part (b).
To prove part (c), let z = (z′, zn) ∈ R1/2 and P (m, b) be a support-

ing paraboloid at z. As in the proof of (3.5) in Theorem 3.3, there exists
an ellipsoid E0 ⊂ R′ whose axes are comparable and parallel to those of E

such that E0 is contained in a cylinder C whose height is C R h and whose
base is an (n − 2)-dimensional ball with radius CR

√
h and center z′, where

R = C/
√

1 − mn. By part (a), it follows that Bσ0d ⊂ C for some small σ0.
Therefore, σ0d ≤ CRh = Ch/

√
1 − mn. Since d ≈ C

√
h, we obtain that√

1 − mn ≤ C
√

h. The proof of the theorem is finished.

4. Strict antennas

In this section, we use the estimates established in Section 3 to show that
a reflector antenna satisfying (2.1) and (3.1) must be a strict reflector antenna.

Definition 4.1 (Strict antenna). An admissible antenna A is a strict an-
tenna if every supporting paraboloid of A touches A at only one point.

The following result is concerned with strict antenna.

Theorem 4.2. If A is an admissible antenna satisfying (2.1) and (3.1),
then A is a strict antenna, and consequently, the map NA is injective.
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Proof. Let P (en, a1) be a supporting paraboloid to A. We need to show
that P (en, a1) ∩ A is a single point set. By Lemma 3.1 (b), the projection Δ
on R

n−1 of P (en, a1) ∩ A is a convex set. Suppose by contradiction that Δ
contains at least two points. Then diam(Δ) = constant > 0. For h sufficiently
small, let Rh be the portion of A cut by P (en, a1 − h), R0 the portion of A
cut by P (en, a1) and relabel a = a1 − h, a + h = a1.

We claim that Rh converges to R0 in the Hausdorff metric as h → 0.
Indeed, suppose by contradiction that there exist δ0 > 0 and zh ∈ Rh such
that dist(zh,R0) ≥ δ0. By compactness, passing through a subsequence zh →
z0 ∈ R0 and |zh − z0| ≥ δ0, we obtain a contradiction.

Let R′
h be the projection of Rh on R

n−1. Then by the claim, R′
h → Δ in

the Hausdorff metric as h → 0. Let Eh be the John ellipsoid for the set R′
h

and let λ1(h) be the longest axis of Eh. Then λ1(h) ≈ C ≈ diam(Δ) and there
exists zh ∈ Δ such that K − δh λ1(h) ≤ (zh)1 ≤ K, where K = supz∈R′

h
z1.

Notice that δh → 0 as h → 0. We now apply Theorems 3.3 and 3.4 to get a
contradiction. Let R̂h and (R̂h)1/2 be the lower portions of Rh defined over
R′

h and 1
2(n−1)Eh, respectively, and let Dh and (Dh)1/2 be the preimages on

Sn−1 of R̂h and (R̂h)1/2, respectively. We want to show that |Dh| ≈ |R′
h|.

Given y = ρ(x)x ∈ A with x ∈ Sn−1, let P (e, b) be a supporting paraboloid
to A at y. Let −→n be the inner normal of P (e, b) and A at y. Then by Snell’s
law, n · (−x) = n · e and n · (−x) ≥ const > 0. It follows that |Dh| ≈ |R̂h|.
Similarly, |Dh| ≈ |P (en, a)|Dh

|, where P (en, a)|Dh
is the restriction of P (en, a)

on Dh. Obviously,

|Dh| ≤ C |P (en, a)|Dh
| ≤ C |R′

h| ≤ C |R̂h| ≤ C |Dh|.

This proves that |Dh| ≈ |R′
h|.

Since |(Dh)1/2| ≈ |(R̂h)1/2|, to show that

|(Dh)1/2| ≈ | 1
2(n−1)Eh|,(4.1)

it suffices to prove that (R̂h)1/2 is a Lipschitz graph. For y = ρ(x) x ∈ (R̂h)1/2,
let P (m, b) be a supporting paraboloid to A at y, and −→n be the inner normal
to P (m, b) and (R̂h)1/2 at y. By Theorem 3.3(a), |en − m| ≤ C

√
h. Since

P (m, b) is smooth, m · −→n ≥ const > 0. This implies that en · −→n ≥ const > 0.
Therefore (R̂h)1/2 is a Lipschitz graph and so (4.1) holds.

From Theorem 3.3(a) and (3.1) we get

C |Eh| ≤ |NA((Dh)1/2)| ≤ min

{
C h

λ1
,

C
√

h

diam(Eh)

}
n−1∏
i=2

min

{
C h

λi
,

C
√

h

diam(Eh)

}
.
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On the other hand, from Theorem 3.4(a) and (3.1) we have

|Eh| ≥ |R′
h| ≥C |NA(Dh)|

≥C min

{
ε0 h

δh λ1
,

ε0

√
h

diam(Eh)

}
n−1∏
i=2

min

{
ε0 h

λi
,

ε0

√
h

diam(Eh)

}
.

Therefore,

εn−1
0 min

{
h

δh λ1
,

√
h

diam(Eh)

}
≤ C min

{
h

λ1
,

√
h

diam(Eh)

}
.

Since λ1 ≈ diam(Eh) ≈ const, we obtain for any sufficiently small h > 0

εn−1
0 min

{
h

δh
,
√

h

}
≤ C h,

which gives a contradiction.

Remark 4.3. We notice that if Ak = {xρk(x) : x ∈ Sn−1} is a sequence
of admissible antennas satisfying (2.1), then Ak converges to the antenna A =
{xρ(x) : x ∈ Sn−1} in the Hausdorff metric if and only if ρk converges to ρ

uniformly on Sn−1.

Lemma 4.4. Let Aj = {xρj(x) : x ∈ Sn−1}, j ≥ 1, be admissible antennas
satisfying (2.1). Assume that ρj converges to ρ uniformly on Sn−1. Then

(a) lim supj→∞ |NAj
(K)| ≤ |NA(K)|, for any compact set K ⊂ Sn−1;

(b) lim infj→∞ |NAj
(O)| ≥ |NA(O)|, for any open set O ⊂ Sn−1.

Proof. Part (a) is easy to prove by definition. For completeness, we
prove part (b). Let K ⊂ O be compact and E∗ = ∪x1 �=x2 [NA(x1) ∩ NA(x2)].
Then |E∗| = 0. Let m0 ∈ NA(K) \ E∗. There exist x0 ∈ K and a > 0
such that P (m0, a) is a supporting paraboloid to A at x0ρ(x0). To finish the
proof, it suffices to show that m0 ∈ NAj

(O) for sufficiently large j. Since
m0 /∈ E∗, limh→0 diam(SA(P (m0, a − h))) = 0. By the continuity of the
mapping

y

|y| , limh→0 diam(Dh) = 0, where Dh = ρ−1(SA(P (m0, a−h))) is the

radial projection on Sn−1 of SA(P (m0, a − h)). Choose Dh ⊂⊂ O. Let ε > 0
and choose j0 large. If j ≥ j0, then for x ∈ Sn−1 \ Dh,

ρj(x) ≤ (1 + ε)ρ(x) ≤ (1 + ε)
a − h

1 − m0 · x
,

and
ρj(x0) ≥ (1 − ε)ρ(x0) = (1 − ε)

a

1 − m0 · x0
.

Let b0 = (1 + ε)(a − h) > 0 and choose ε small enough such that δ =
(1 − ε)a − b0 > 0. Then Aj is inside P (m0, b0) along directions in Sn−1 \ Dh
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and Aj is outside P (m0, b0 + δ) in the direction x0. For x ∈ Dh, since
a−h ≤ ρ(x)(1−m0 ·x) ≤ a, 2bx � ρj(x)(1−m0 ·x) > 0 for j ≥ j0. This means
that xρj(x) ∈ P (m0, bx). Let b = sup{bx : x ∈ Dh and xρj(x) ∈ P (m0, bx)}.
Without loss of generality, assume that b = bx1 where x1 ∈ Dh. Obvi-
ously, b ≥ b0 + δ. Therefore, P (m0, b) is a supporting paraboloid to Aj at
x1ρj(x1) ∈ O. This completes the proof of the lemma.

Corollary 4.5. The class of admissible antennas satisfying (2.1) and
(3.1) is compact with respect to the Hausdorff metric.

Proof. By Remark 4.3 and Lemma 4.4, to prove the corollary it suffices
to estimate uniformly the Lipschitz constant of the radial function defining the
antennas. Let A be an antenna parametrized by ρ(x) such that (2.1) and (3.1)
hold. Let x0, x1 ∈ Sn−1 and |x0 − x1| ≤ ε0. Let P (m0, a0) be a supporting
paraboloid of A at x0ρ(x0). Obviously

ρ(x1) − ρ(x0) ≤
2a0

1 − m0x0

m0(x1 − x0)
1 − m0x1

.

Since 1−m0x0 = 2a0/ρ(x0) ≥ const, then 1−m0x1 ≥ const, if ε0 is small. We
conclude that ρ(x1) − ρ(x0) ≤ C|x0 − x1|. The corollary is proved.

As a corollary of Theorem 4.2 and Corollary 4.5, we have the following
result on the diameter of sections.

Corollary 4.6. Let A be an admissible antenna satisfying (2.1) and
(3.1). Then there exists an increasing function σ(h) depending only on r1, r2,
λ, Λ, and n with limh→0+ σ(h) = 0 such that diam(SA(P (m, b − h))) ≤ σ(h)
for any supporting paraboloid P (m, b) of A.

5. Legendre transform

Our purpose in this section is to discuss some properties of the Legendre
transform (see Definition 5.1) of weak solutions to the reflector antenna prob-
lem, a notion introduced in [GW98].

Definition 5.1 (Legendre transform). Given an admissible antenna A =
{xρ(x) : x ∈ Sn−1}, the Legendre transform of A, denoted by A∗, is defined
by A∗ = {mρ∗(m) : m ∈ Sn−1}, where

ρ∗(m) = inf
x∈Sn−1,x �=m

1
ρ(x)(1 − m · x)

=
1

supx∈Sn−1 [ρ(x)(1 − m · x)]
.

Lemma 5.2. If A is an admissible antenna satisfying (2.1), then its

Legendre transform A∗ is also an admissible antenna and satisfies
1

2r2
≤
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ρ∗(m) ≤ 1
2r1

for any m ∈ Sn−1. Moreover, if m0 ∈ NA(x0), then x0 ∈
NA∗(m0).

Proof. The proof is similar to that of Lemma 4.1 in [GW98]. For m0 ∈
Sn−1, let 2a = supx∈Sn−1 ρ(x)(1 − m0 · x) and assume that this supremum is
attained at x0 ∈ Sn−1. Then P (m0, a) is a supporting paraboloid to A at x0,

and ρ∗(m0) =
1
2a

. By Remark 2.4, one concludes that
1

2r2
≤ ρ∗(m0) ≤ 1

2r1

and NA(Sn−1) = Sn−1.
Let m0 ∈ NA(x0). We now prove x0 ∈ NA∗(m0). Denote by P (m0, a)

the supporting paraboloid to A at x0ρ(x0) with the axis direction m0. Then

ρ(x)(1−m0·x) attains the maximum 2a at x0 and ρ∗(m0) =
1

ρ(x0)(1 − m0 · x0)
.

Obviously, ρ∗(m) ≤ 1
ρ(x0)(1 − m · x0)

for m ∈ Sn−1. Therefore, P (x0,
1

2ρ(x0)
)

is a supporting paraboloid to A∗ at m0ρ
∗(m0), and x0 ∈ NA∗(m0).

Now, given m0 ∈ Sn−1, there exists x0 ∈ Sn−1 such that m0 ∈ NA(x0).
Hence, x0 ∈ NA∗(m0) and A∗ is an admissible antenna.

Lemma 5.3. Let Ak = {xρk(x) : x ∈ Sn−1}, k ≥ 1, be a sequence of
admissible antennas satisfying (2.1). Assume that Ak converges to the antenna
A = {xρ(x) : x ∈ Sn−1} under the Hausdorff metric as k −→ ∞. Then A∗

k

also converges to A∗ under the Hausdorff metric.

Proof. By Lemma 5.2, 1/(2r2) ≤ ρ∗k ≤ 1/(2r1). So there exists η0 > 0

such that ρ∗k(m) = inf1−m·x≥η0

1
ρk(x)(1 − m · x)

. We obtain that

|ρ∗k(m) − ρ∗(m)| ≤ 1
η0

sup
1−m·x≥η0

∣∣∣∣ 1
ρk(x)

− 1
ρ(x)

∣∣∣∣ .

It follows from Remark 4.3 that ρ∗k converges to ρ∗ uniformly on Sn−1. The
lemma is proved.

We now establish the following important lemma about the Legendre
transform of antennas in the setting of weak solutions.

Lemma 5.4. Let A = {xρ(x) : x ∈ Sn−1} be an admissible antenna such
that (2.1) and (3.1) hold. Then A∗ satisfies

Λ−1|E∗| ≤ |NA∗(E∗)| ≤ λ−1|E∗|,(5.1)

for all Borel subsets E∗ ⊂ Sn−1.

Proof. Let E = N−1
A (E∗) = {x ∈ Sn−1 : ∃m ∈ E∗ such that m ∈

NA(x)}. We first prove
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Claim 1. E∗ ⊂ NA(E) and |NA(E) \ E∗| = 0.
It is easy to see by definition that E∗ ⊂ NA(E). Let

M = {x ∈ Sn−1 : A is not differentiable at xρ(x)}.

We have |M | = 0. We claim that NA(E) \ E∗ ⊂ NA(M), and then from
(3.1) we obtain that |NA(E) \ E∗| = 0. To prove the claim, given y ∈ E, let
m ∈ NA(y) \ E∗. By definition of E, NA(y) ∩ E∗ �= ∅, and therefore there
is m0 ∈ NA(y) ∩ E∗, m0 �= m. Therefore, A has at least two supporting
paraboloids and hence two supporting hyperplanes at yρ(y), and so is not
differentiable at yρ(y), which proves the claim.

Claim 2. E ⊂ NA∗(E∗) and |NA∗(E∗) \ E| = 0.
Given x ∈ E, by definition of E there exists m ∈ E∗ such that m ∈ NA(x).

By Lemma 5.2, x ∈ NA∗(m), and hence E ⊂ NA∗(E∗).
Let y ∈ NA∗(E∗) \ E. Then y ∈ NA∗(m0) for some m0 ∈ E∗. By Claim

1, there exists x0 ∈ E such that m0 ∈ NA(x0). Since y �= x0, by Theorem
4.2, NA(y) ∩ NA(x0) = ∅. If m1 ∈ NA(y), then m1 �= m0. By Lemma 5.2,
y ∈ NA∗(m1). Therefore, y ∈ NA∗(m0) ∩ NA∗(m1). From Lemma 5.2, this
implies that m0, m1 ∈ NA∗∗(y), where A∗∗ is the Legendre transform of A∗. So,
A∗∗ is not differentiable at yρ∗∗(y) where ρ∗∗ is the radial function of A∗∗. We
conclude that NA∗(E∗)\E is a subset of the set where A∗∗ is not differentiable
and which has measure zero. This proves Claim 2.

To finish the proof, from Claims 1 and 2 we get |E∗| = |NA(E)| and
|NA∗(E∗)| = |E|, and so (5.1) follows from (3.1).

6. C1 regularity

We are now ready to prove the C1 regularity for weak solutions of the
antenna problem. First show the following lemma.

Lemma 6.1. If A = {xρ(x) : x ∈ Sn−1} is an admissible antenna satisfy-
ing (2.1) and (3.1), then NA is a homeomorphism from Sn−1 onto Sn−1 with
N−1

A = NA∗. Moreover , {NA} is equicontinuous, i.e., there exists an increas-
ing continuous function σ with limh→0+ σ(h) = 0 such that |NA(x)−NA(y)| ≤
σ(|x − y|), where σ depends only on r1, r2, λ, Λ, and n.

Proof. We first prove that NA is single-valued. Otherwise, if m1, m2 ∈
NA(x0) with m1 �= m2, then by Lemma 5.2, x0 ∈ NA∗(m1)∩NA∗(m2). On the
other hand, by Lemmas 5.2 and 5.4, A∗ satisfies (2.1) and (3.1) with different
constants, and so by applying Theorem 4.2 to A∗ we get NA∗(m1)∩NA∗(m2) =
∅, a contradiction. In light of Theorem 4.2, and since NA(Sn−1) = Sn−1, see
the proof of Lemma 5.2, we obtain that NA is bijective. If m = NA(x), then
x = NA∗(m). This proves N−1

A = NA∗ .
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It remains to show that {NA} is equicontinuous. Assume by contradiction
that there exist Ak, xk, yk, and ε0 > 0 such that |xk−yk| −→ 0 and |NAk

(xk)−
NAk

(yk)| ≥ ε0. By compactness and Corollary 4.5, replaced by a subsequence
if necessary, we may assume that xk −→ z0, yk −→ z0, mk = NAk

(xk) −→ m0,
m′

k = NAk
(yk) −→ m′

0, and Ak −→ A0. It is easy to verify that m0 ∈ NA0(z0)
and m′

0 ∈ NA0(z0). Since NA0 is single-valued, m0 = m′
0 which contradicts the

assumption |m0 − m′
0| ≥ ε0. We thus prove the lemma.

Theorem 6.2. If A = {xρ(x) : x ∈ Sn−1} is an admissible antenna
satisfying (2.1) and (3.1), then A and A∗ are C1, with C1 modulus of continuity
depending only on r1, r2, λ, Λ, and n.

Proof. If P (m, b) is a supporting paraboloid to A at xρ(x), then by the
Snell law A has a supporting hyperplane at xρ(x) with the inward normal
m − x

|m − x| . By Lemma 6.1, this field of inward normals for A is continuous.

It remains to show that A is differentiable and hence has only one sup-
porting hyperplane at each point. Let Y = (y1, · · · , yn) ∈ A and assume that
{zn = yn} is the equation of a supporting hyperplane Π0 to A at Y . For X ∈ A
near Y and without loss of generality we can write X − Y = x1e1 + xnen with
x1, xn > 0. By the continuity of the inward normals mentioned before, there
exists a supporting hyperplane at X with the equation ν(X) · (z − X) = 0,
where the inward normal ν(X) = (ν1(X), · · · , νn(X)) is close to ν(Y ) = en.

From the convexity, ν(X) · (Y − X) ≥ 0, and so xn ≤ − ν1(X)
νn(X)

x1 ≤ εx1, i.e,

dist(X, Π0) ≤ ε|X − Y |. Therefore, Π0 is the tangent plane to A at Y and the
only supporting hyperplane at Y . Since the field of inward normals of tangent
planes to A is continuous, one concludes that A is of class C1. The proof is
complete.

Corollary 6.3. If A is a weak solution in the sense of Definition 2.6 of
the reflector antenna problem with input illumination intensity f(x) and output
illumination intensity g(m) where 0 < λ ≤ f(x) ≤ Λ and λ ≤ g(m) ≤ Λ on
Sn−1, then A is a C1 antenna.
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