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Derived equivalences for symmetric groups
and sl,-categorification

By JosEPH CHUANG* and RAPHAEL ROUQUIER

Abstract

We define and study sls-categorifications on abelian categories. We show
in particular that there is a self-derived (even homotopy) equivalence cate-
gorifying the adjoint action of the simple reflection. We construct categorifica-
tions for blocks of symmetric groups and deduce that two blocks are splendidly
Rickard equivalent whenever they have isomorphic defect groups and we show
that this implies Broué’s abelian defect group conjecture for symmetric groups.
We give similar results for general linear groups over finite fields. The construc-
tions extend to cyclotomic Hecke algebras. We also construct categorifications
for category O of gl,(C) and for rational representations of general linear
groups over f‘p, where we deduce that two blocks corresponding to weights
with the same stabilizer under the dot action of the affine Weyl group have
equivalent derived (and homotopy) categories, as conjectured by Rickard.
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1. Introduction

The aim of this paper is to show that two blocks of symmetric groups
with isomorphic defect groups have equivalent derived categories. We deduce
in particular that Broué’s abelian defect group conjecture holds for symmetric
groups. We prove similar results for general linear groups over finite fields and
cyclotomic Hecke algebras.

Recall that there is an action of f:[p on the sum of Grothendieck groups of
categories of k&,-modules, for n > 0, where k& is a field of characteristic p. The
action of the generators e; and f; come from exact functors between modules
(“i-induction” and “i-restriction”). The adjoint action of the simple reflections
of the affine Weyl group can be categorified as functors between derived cat-
egories, following Rickard. The key point is to show that these functors are
invertible, since two blocks have isomorphic defect groups if and only if they
are in the same affine Weyl group orbit. This involves only an sls-action and
we solve the problem in a more general framework.

We develop a notion of sls-categorification on an abelian category. This
involves the data of adjoint exact functors £ and F' inducing an sly-action on
the Grothendieck group and the data of endomorphisms X of E and T of E?
satisfying the defining relations of (degenerate) affine Hecke algebras.

Our main theorem is a proof that the categorification © of the simple
reflection is a self-equivalence at the level of derived (and homotopy) cate-
gories. We achieve this in two steps. First, we show that there is a minimal
categorification of string (=simple) modules coming from certain quotients of
(degenerate) affine Hecke algebras: this reduces the proof of invertibility of ©
to the case of the minimal categorification. There, ©® becomes (up to shift) a
self-equivalence of the abelian category.



DERIVED EQUIVALENCES FOR SYMMETRIC GROUPS 247

Let us now describe in more detail the structure of this article. The
first part (§3) is devoted to the study of (degenerate) affine Hecke algebras
of type A completed at a maximal ideal corresponding to a totally ramified
central character. We construct (in §3.2) explicit decompositions of tensor
products of ideals which we later translate into isomorphisms of functors. In
§3.3, we introduce certain quotients, that turn out to be Morita equivalent to
cohomology rings of Grassmannians. Section 4 recalls elementary results on
adjunctions and on representations of sls.

Section 5 is devoted to the definition and study of sls-categorifications.
We first define a weak version (§5.1), with functors E and F' satisfying slo-
relations in the Grothendieck group. This is enough to get filtrations of the
category and to introduce a class of objects that control the abelian category.
Then, in §5.2, we introduce the extra data of X and T which give the gen-
uine sly-categorifications. This provides actions of (degenerate) affine Hecke
algebras on powers of E and F'. This leads immediately to two constructions
of divided powers of E and F. In order to study sls-categorifications, we in-
troduce in §5.3 “minimal” categorifications of the simple sls-representations,
based on the quotients introduced in §3.3. A key construction (§5.4.2) is a
functor from such a minimal categorification to a given categorification, that
allows us to reduce part of the study of an arbitrary sls-categorification to
this minimal case, where explicit computations can be carried out. This corre-
sponds to the decomposition of the sls-representation on Ky into a direct sum
of irreducible representations. We use this in §5.5 to prove a categorified ver-
sion of the relation [e, f] = h and deduce a construction of categorifications on
the module category of the endomorphism ring of “stable” objects in a given
categorification.

Section 6 is devoted to the categorification of the simple reflection of the
Weyl group. In §6.1, we construct a complex of functors categorifying this
reflection, following Rickard. The main result is Theorem 6.4 in part §6.2,
which shows that this complex induces a self-equivalence of the homotopy and
of the derived category. The key step in the proof for the derived category
is the case of a minimal categorification, where we show that the complex
has homology concentrated in one degree (§6.3). The case of the homotopy
category is reduced to the derived category thanks to the constructions of §5.5.

In Section 7, we study various examples. We define (in §7.1) sly-categorifi-
cations on representations of symmetric groups and deduce derived and even
splendid Rickard equivalences. We deduce a proof of Broué’s abelian defect
group conjecture for blocks of symmetric groups. We give similar construc-
tions for cyclotomic Hecke algebras (§7.2) and for general linear groups over a
finite field in the nondefining characteristic case (§7.3) for which we also de-
duce the validity of Broué’s abelian defect group conjecture. We also construct
slg-categorifications on category O for gl,, (§7.4) and on rational representa-
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tions of GL,, over an algebraically closed field of characteristic p > 0 (§7.5).
This answers in particular the GL case of a conjecture of Rickard on blocks
corresponding to weights with the same stabilizers under the dot action of
the affine Weyl group. We also explain similar constructions for ¢-Schur al-
gebras (§7.6) and provide morphisms of categorifications relating the previous
constructions. A special role is played by the endomorphism X, which takes
various incarnations: the Casimir in the rational representation case and the
Jucys-Murphy elements in the Hecke algebra case. In the case of the general
linear groups over a finite field, our construction seems to be new. Our last sec-
tion (§7.7) provides various realizations of minimal categorifications, including
one coming from the geometry of Grassmannian varieties.

Our general approach is inspired by [LLT], [Arl], [Gr], [GrVa], and
[BeFreKho| (cf. [Rou3, §3.3]), and our strategy for proving the invertibility
of © is reminiscent of [DeLu], [CaRi].

In a work in progress, we study the braid relations between the categori-
fications of the simple reflections, in the more general framework of categori-
fications of Kac-Moody algebras and in relation to Nakajima’s quiver variety
constructions.

2. Notation

Given an algebra A, we denote by A°PP the opposite algebra. We denote
by A-mod the category of finitely generated A-modules. Given an abelian
category A, we denote by A-proj the category of projective objects of A.

Let C be an additive category. We denote by Comp(C) the category of
complexes of objects of C and by K (C) the corresponding homotopy category.

Given an object M in an abelian category, we denote by soc(M) (resp.
hd(M)) the socle (resp. the head) of M, i.e., the largest semi-simple subobject
(resp. quotient) of M, when this exists.

We denote by K¢(.A) the Grothendieck group of an exact category .A.

Given a functor F', we sometimes write F' for the identity endomorphism
1 F of F.

3. Affine Hecke algebras

3.1. Definitions. Let k be a field and ¢ € k*. We define a k-algebra as
H, = H,(q).

3.1.1. The nondegenerate case. Assume q # 1. The affine Hecke algebra
H,(q) is the k-algebra with generators

+1 +1
Ti,... Ty, X34 X2



DERIVED EQUIVALENCES FOR SYMMETRIC GROUPS 249

subject to the relations

(Ti + 1)(T; —q) = 0,
TT; =TT (when [i— 5l > 1),
LT\ T = T Ti T4,
XiX; = X; X,
XX '=X71X, =1,
XiT; =T;X; (wheni—j#0,1),
T;XiT; = qXiq1-

We denote by Hg(q) the subalgebra of H,(q) generated by T1,... ,T,—1.
It is the Hecke algebra of the symmetric group &,.

Let P, = k[X!,... , X;F1], a subalgebra of H,(q) of Laurent polynomials.
We put also P = k(X

3.1.2. The degenerate case. Assume q¢ = 1. The degenerate affine Hecke
algebra H,(1) is the k-algebra with generators

Ty, ..., Tho1, X1, , Xn
subject to the relations

TP =1,
T,T; = T;T;  (when [i —j| > 1),
LT T = Ty 1T,
XiX; = X;X;,
X;T; =T;X; (wheni—j#0,1),
Xin Ty =X + 1.

Note that the degenerate affine Hecke algebra is not the specialization of
the affine Hecke algebra.

We put P, = k[X1,...,X,], a polynomial subalgebra of H,(1). We also
put P = k[X;]. The subalgebra Hrf(l) of H,(1) generated by T1,...,T,—1 is
the group algebra kS,, of the symmetric group.

3.1.3.  We put H,, = H,(q) and H} = H}(q). There is an isomorphism
H, = HP T, — T;, X; — X;. It allows us to switch between right and left
H,-modules. There is an automorphism of H,, defined by T; — T,,_;, X; —
Xy—it1, where X; = X; Vif ¢ # 1 and X; = - X; if ¢ = 1.

We denote by [ : &,, — N the length function and put s; = (i,i+1) € &,,.
Given w = s;, ---s; a reduced decomposition of an element w € &, (i.e.,

r

r=1(w)), we put T, =Ty, - T, .
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Now, H, = H#j QRP, =P, ® Hﬂ; We have an action of &,, on P, by
permutation of the variables. Given p € P,, [Lu, Prop. 3.6],

(- D= XX ) Hp—si(p) ifqg#1
(Xit1 — Xi) " Hp — si(p)) if ¢g=1.

Note that (P,)®" C Z(H,,) (this is actually an equality, a result of Bernstein).

(1) Tip—si(p)Ti = {

3.1.4. Let 1 (resp. sgn) be the one-dimensional representation of H}
given by T, — q (resp. Ts, — —1). Let 7 € {1,sgn}. Now,

= ¢""r(Ty)Ty
wes,

and ¢& € Z(HY). We have ¢} = >wee, Tw and " = Zween(—q)*l(w)Tw,
and c}lcqslgn = C%gncrll =0 forn>2.
More generally, given 1 < i < j < n, we denote by &; ; the symmetric

group on [i,j] = {i,i + 1,...,j}, we define similarly H[J;j],
i) = Lweey, 4T (Tw) T

Given I a subset of &,, we put ¢ =, ; q*l(w)T(Tw)Tw. We have

Hy; ;) and we put

n = Co,/6]0 = i e,\6.]
where [&,,/6;] (resp. [6; \ &,]) is the set of minimal length representatives of
right (resp. left) cosets.

As M is a projective Hj-module, T M = {m € M | hm = r(h)m for all
he H } and the multiplication map cﬁHﬂ; Qs M = ¢l M is an isomorphism.
Given N an H,-module, then the canonical map chﬂf Qur N S H,®y, N
is an isomorphism.

3.2. Totally ramified central character. We gather here a number of prop-
erties of (degenerate) affine Hecke algebras after completion at a maximally
ramified central character. Compared to classical results, some extra compli-
cations arise from the possibility of n! being 0 in k.

3.2.1. Wefixa €k, witha#0if ¢g#1. We put z; = X; —a. Let m,, be

the maximal ideal of P, generated by x1,... ,z, and let n, = (m,)®".
Let em (1, s @n) = Y. 1<iconci, <n Tiy -+ T3, € PY" be the m-th ele-
mentary symmetric function. Then, 27 = """ N (=1)"HH gle, i(zy, ..., @y).

Thus, z!, € @?;01 xin, for | > n. Via Galois theory, we deduce that Pn6 ES

@?:_01 x¢ PS». Using that the multiplication map PJ-G’ ® Pljt1n X Py is an
isomorphism, we deduce by induction that

S, _ a an—r pGy
(2) Pn - @ :I"r—li-l"'xn Pn .
0<a;<r+1i
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3.2.2.  We denote by PS5 the completion of Pf" at n,, and put P, =

P, ®pen P,?” and FIn =H, ®psn PnG". The canonical map PnG 5 PnG" is an
isomorphism, since PY" is flat over PSn,

We denote by N,, the category of locally nilpotent H,-modules, i.e., the
category of H,-modules on which n, acts locally nilpotently: an H,-module
M is in N, if for every m € M, there is i > 0 such that n{,m = 0.

We put H, = H,/(H,n,) and P, = P,/(P,n,). Then multiplication
gives an isomorphism P, ® H; 2 H,,. The canonical map

@ kit - af = P,
0<a;<i
is an isomorphism; hence dimy H,, = (n!)2.
The unique simple object of N,, is (see [Ka, Th. 2.2])

K, =H, ®p, P,/m, ~ H,cl.

This has dimension n! over k. It follows that the canonical surjective map
H,, — End(K,) is an isomorphism; hence H,, is a simple split k-algebra.

Since K, is a free module over H,J: , it follows that any object of N, is
free by restriction to Hﬂf From §3.1.4, we deduce that for any M € N, the
canonical map ¢ H,, @, M — ¢] M is an isomorphism.

Remark 3.1. We have excluded the case of the affine Weyl group algebra
(the affine Hecke algebra at ¢ = 1). Indeed, in that case K, is not simple
(when n > 2) and H, is not a simple algebra. When n = 2, we have H,, ~
(k[x]/(2?)) » pa, where the group pup = {+1} acts on = by multiplication.

3.2.3. Let f: M — N be a morphism of finitely generated Pf"—modules.
Then, f is surjective if and only if f ®pe. PS» /1, is surjective.

LEMMA 3.2. There exist isomorphisms

n n—1-
~

n—1
A ; can 7 ~ mult 7
Hyc, ®y @xﬁlk — Hyc], ® pen PSS I T
=0

Proof. The first isomorphism follows from the decomposition of por
in (2).
Let us now study the second map. Note that both terms are free PSn-

modules of rank n - n!, since ﬁnc;_l ~ B, ® H c;_1- Consequently, it suffices

to show that the map is surjective. Thanks to the remark above, it is enough
to check surjectivity after applying — ® pe., PS» /f,.

Note that the canonical surjective map k[z,] — pon ® pen PS» /n,,
factors through k[z,]/(z)) (cf. §3.2.1). So, we have to show that the mul-

n —
tiplication map f : Hy,c], ® k[z,]/(z]) — Hpc],_ is surjective. This is a

n
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morphism of (H,, k[z,]/(z"))-bimodules. The elements 7, c 2y, .. ,cra"~!
of H, are linearly independent, hence the image of f is a faithful (k[z,]/(z"))-
module. It follows that f is injective, since H,c], is a simple H,-module. Now,

dimy, ﬁnc;_l = n-n!; hence f is an isomorphism. O

Let M be a k&,-module. We put AS*M = M/(} g ., M*). If nl €
k>, then AS»M is the largest quotient of M on which &,, acts via the sign
character. Note that given a vector space V, then A®»(VE") = A"V,

PROPOSITION 3.3. Let {7,7'} = {1,sgn} and r < n. There exist isomor-
phisms

r T ay a.1, can_ 7y r 560, n—r mult 2 7
an’l’b ®k @ xn_r+1 e xn k T> ann ®Pf’" PTL T) an[l,nfr]'

0<a;<n—r-+i

There is a commutative diagram

7T T a; ar
ann Rk @ m’ﬂ—?”-i—]_ SRR ot k

0<a1<-<a,<n

canlfv

2 5S(1,n—r] can 2 HOS(1,n—r]

Sin_nr
an;—z ®P"Gn A®B=rtin Py

; -~
TRY—TYCT, i1 ) v

A~

T T’
an[l,nfr}c[nfr+1,n] )

Proof. The multiplication map H, ®pg, , H,—ic,_, — Hpc]_; is an

isomorphism (cf. §3.1.4). It follows from Lemma 3.2 that multiplication is an
isomorphism

n—r

HnC:LfrJrl ® @ x2177"+1k - HnC:Lfr

i=0

and the first statement follows by descending induction on r.
The surjectivity of the diagonal map follows from the first statement of

the proposition.

Let p € Pﬁ Then, c[li’iﬂ]p = pc It follows that C[Ti,1;+1]pCT'I‘ 0;

1 _
[i,541]" [t,54+1] —

hence ¢} pc = 0 whenever ¢ > n — r + 1. This shows the factorization

‘[rnfrJrl,n}
property (existence of the dotted arrow).

HGn—r -
Note that ASt=r+1.2 P~ is generated by @< g, c...cq,cn Ta'piq * Tork

n

as a P -module (cf. (2)). It follows that we have surjective maps

T T a a T T Sinritn DGn_r
Hoh@r P a2k — Hy) @pe, ASrrin poe
0<a:1<-+<ar<n

!

T T
— ann—rc[n—r—f—l,n} .
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Now the first and last terms above are free P,-modules of rank (:f), hence the
maps are isomorphisms. O

LEMMA 3.4. Letr <n. We have cTI:I c PGTC TH c = cTPGT and
the multiplication maps cj Hy, @ g an = er Hycl and cl TH, Qg an 5

TEr T : :
cT Hycl are isomorphisms.

Proof. We have an 1somorphlsm P, & H,c" T, p— pc. Let h € H,.
We have c] he], = pcl for some p € P,. Since Ticl = 7(T;)c], it follows that
Tipcy, = 7(Ti)pey,. So, (Tip—si(p)Ti)cy, —T(T)(p si(p))cy; hence p—si(p) = 0,
by formula (1 ) It follows that ¢ H,cT C PSncT

By Proposition 3.3, the multiplication map H e, ® Ben B, = H, is an
isomorphism. So, the multiplication map c¢ an ® Pcn b, = ¢ Hn is an
isomorphism, hence the canonical map cTH Cn @pen B, = PG“C @ pen P, is
an isomorphism. We deduce that c;ann = PS“ .

Similarly (replacing n by r above), we have ¢l PSr¢T = 7 PS. Since
PSr = PG'fP[T+1 n) (cf. §3.2.1), we deduce that

THC —CTPC =c, TPl P[T_HR}—CP P[r+1n]_c PG.

By Proposition 3.3, clen Qg anz is a free Pfhmodule of rank 1. So,
the multiplication map cflﬁn Qg ﬁncf, — cl Ancf, is a surjective morphism
between free p,?"—modules of rank 1, hence it is an isomorphism.

The cases where c] is on the left are similar. O

PROPOSITION 3.5. The functors Hyc,®pe. — and ¢;, Hy®p, — are inverse
equivalences of categories between the category of PS-modules that are locally
nilpotent for n, and N,,.

Proof. By Proposition 3.3, the multiplication map ﬁncg ® pen P, = H,

is an isomorphism. It follows that the morphism of (H,,, H,)-bimodules

fIncTTL ®pen c;f]n 5 fIn, he ® ch' — heh’/
is an isomorphism.
Since PS" is commutative, it follows from Lemma 3.4 that the (PS~, PSn)-
bimodules PY" and ¢ H, ®; Hyc}, are isomorphic. O

3.3. Quotients.

3.3.1.  We denote by H’in the image of H; in H, for 0 < i < n and

mult

Pi’n = P;/(P;N (Pyny,)). Now there is an isomorphism H ® P n— FIz "

Since Pyl = Po<a,<cny 21 - P (cf. (2)), we deduce that P; =
Gaogalgn—l it -zl k & (n, P N P;) and n, P, N P; = n, P, N P;; hence the
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canonical map

(3) P a2k S Py,

0<a;<n—l1
is an isomorphism. We will identify such a monomial z{" - - - 7" with its image
in P, ;. Note that dimy, Py = 5%

The kernel of the action of PF" by right multiplication on H; ,,c] is Piei N
n,P,. By Proposition 3.5, we have a Morita equivalence between H;, and
Zin = PZ6 / (Piei N n,P,). Note that H;,c] is the unique indecomposable
projective ﬁivn—module and dimy E[i,n = ¢! dimy, ﬁmc[. Thus,

1 _ n
’ (a1) ’ i
and Zi,n = Z(Hz,n)

We denote by P(r,s) the set of partitions p = (u; > -+ > p, > 0) with
p1 < s. Given p € P(r,s), we denote by m, the corresponding monomial
symmetric function

_ fho (1) )
mu(x1,..., %) = E 7
g

where o runs over left coset representatives of &, modulo the stabilizer of

(:u’lv s ,,LLT).
The isomorphism (3) shows that the canonical map from

EB Emy (1. .. 2)
neP(i,n—i)
to E,n is injective, with image contained in Z;,. Comparing dimensions, we
see that the canonical map

@ kmu(xl,... ,.ZL‘Z') :> Zi,n
weP(i,n—1i)

is an isomorphism.
Also, comparing dimensions, one sees that the canonical surjective maps

P; ®P"6i Zi,n - F’z‘,n and H; ®P_‘5i Zi,n - Hi,n
are isomorphisms.

3.3.2. Let G;, be the Grassmannian variety of i-dimensional subspaces
of C™ and G, be the variety of complete flags in C”. The canonical morphism
p : G, — G,y induces an injective morphism of algebras p* : H*(G;,) —
H*(G),) (cohomology is taken with coefficients in k). We identify G, with
GL, /B, where B is the stabilizer of the standard flag (C(1,0,...,0) C --- C
C"). Let L; be the line bundle associated to the character of B given by the
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j-th diagonal coefficient. We have an isomorphism P, — H*(G,,) sending z;
to the first Chern class of Lj;. It multiplies degrees by 2. Now, p*H*(Gj )
coincides with the image of Pf’i in P,. So, we have obtained an isomorphism

Zin = H*(Gip).

Since G, is projective, smooth and connected, of dimension i(n — i),
Poincaré duality says that the cup product H’(G;,) X Hgi(”_i)_j(Giyn) —
H?("=)(G, ) is a perfect pairing. Via the isomorphism H*("=)(G;,) = k
given by the fundamental class, this provides H*(G; ;) with the structure of a
symmetric algebra.

Note that the algebra H ,, is isomorphic to the ring of 4! x 4! matrices over
H*(G;p) and it is a symmetric algebra. Up to isomorphism, it is independent
of a and q.

3.3.3. Letting ¢ < j, we have

7 7 a; a;
Hjn=Hin® @ k- ;7 ® KTy;
we([&;\&;]
0<a;<n—l1

hence Hj, is a free H;,,-module of rank g” Z)),jl,

LEMMA 3.6. The H;-module c .

fi+1 n]Kn has a simple socle and head.

Proof. By Proposition 3.3, multiplication gives an isomorphism

@ SRR C[Ti+1,n]H[i+1,n] = Hiiv1m),

OSCLL <l

hence gives an isomorphism of H; ,-modules

@ x2+1 . alilk@c[lﬁ’l n]g HTL'
0<a; <l

M it follows that hence cf;. 1] H,
is a free Hm—module of rank ” . We have HZ n 1M as H n-modules, where
M has a simple socle and head. Since in addition H,, ~ n!- Kn as H,-modules,

we deduce that c[ K,, ~ M has a simple socle and head. O

Since H, is a free H; ,-module of rank

i+1,n]

LEMMA 3.7. Letr <1 <n. We have isomorphisms

ai aj—r [
@ zitx) Tk ® @ My (L1, - ’ml)k—~>0[71_r+1 nHincl
0<a;<n—i HeP(rn=1) abrabel 7
~la®b>—>ac;®b mult | ~
H,_. . cT @ my, (x;— oo,k 7 ]
I—rmnCl_p @ w(Tirgrs o) GrrrnHin ®m, ,, Hinel-

neEP(rn—1)
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Proof. Let L =@ e p(rn—1) 0<a,<n—i Mu(@iorir, - 22t a5k
We have L Nn,P, = 0 (cf. (3)); hence the canonical map f : L —

Su_rt1, e . . . Su_r .
P @ e, Zyy is injective.  Since dimy Zp, = (}) and P77 s a
l
free Pl@l—module of rank %7 it follows that f is an isomorphism. Now, we have

an isomorphism (Lemma 3.4)

ASO—ry1yy ~ 2
P, = iy g Hic, a— acf.

Consequently, the horizontal map of the lemma is an isomorphism.
As seen in §3.3.1, the left vertical map is an isomorphism. By Lemma 3.4,
the right vertical map is also an isomorphism. O

4. Reminders
4.1. Adjunctions.

4.1.1. Let C and C’ be two categories. Let (G,G") be an adjoint pair of
functors, G : C — C" and GV : C’ — C: these are the data of two morphisms
n : Ide — GVG (the unit) and ¢ : GGY — Ide (the co-unit), such that
(elg)o(1gn) = 1g and (1gve) o (nlgv) = 1lgv. Here, we have denoted by 1
the identity map G — G. We have then a canonical isomorphism functorial in
X eCand X' e

v6(X, X") : Hom(GX, X') = Hom(X,GYX'),
fr=GY(f)on(X), e(X)oG(f) — f.

Note that the data of such a functorial isomorphism provide a structure of an
adjoint pair.

4.1.2. Let (H, HY) be an adjoint pair of functors, with H : C — C’. Let
¢ € Hom(G, H). Then, we define ¢V : HY — G" as the composition
¢¥ : HY el qvgpY ety qv gy teven, g,
This is the unique map making the following diagram commutative, for any
X eCand X' e

Hom(H X, X') —on@0-D

Hom(GX, X')
VH(va,)lN Nl’yc(va,)

Hom(X, HYX") Hom(X, GV X").

Hom(X,¢"(X"))

We have an isomorphism Hom(G, H) = Hom(H",GV), ¢ — ¢'. We obtain
in particular an isomorphism of monoids End(G) = End(GV)°PP. Given f €
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End(G), then, the following diagrams commute

4.1.3. Let now (G1,GY) and (G2, GY) be two pairs of adjoint functors,
with G1 : ¢’ — C"” and G2 : C — C’. The composite morphisms

1G§/7711G2 1(;1521(;}/

Ide 2 GYGa GYGYG1Gy and G1G2GyGY G1GY =5 1de

give an adjoint pair (G1G2, GYGY).

414, Lt F=0— Fr 2 pr+l ... L FS 5 0bea complex of
functors from C to C’ (with F? in degree i). This defines a functor Comp(C) —
Comp(C’) by taking total complexes.

Let (F%, F*V) be adjoint pairs for » < i < s. Let

WV

FV:0—>F5V&---—>FTV—>O

with F* in degree —i. This complex of functors defines a functor Comp(C’) —
Comp(C).

There is an adjunction (F,F") between functors on categories of com-
plexes, uniquely determined by the property that given X € C and X’ € (',
then yp(X, X’) : Homcompe)(FX, X') = Homgomp(c)(X, FYX') is the re-
striction of

> (X, X') : @ Home (F' X, X') 5 @D Home (X, FYX).

This extends to the case where F' is unbounded, under the assumption
that for any X € C, then F"(X) = 0 for |r| > 0 and for any X’ € (', then
F™(X") =0 for |r| > 0.

4.1.5. Assume C and C’ are abelian categories.

Let ¢ € End(G). We put ¢G = im(c). We assume the canonical surjection
G — G splits (i.e., ¢cG = eG for some idempotent e € End(G)). Then, the
canonical injection ¢VGY — GV splits as well (indeed, cVGY = e"GY).
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Let X € C, X' € C' and ¢ € Hom(cGX, X'). There is v € Hom(GX, X')
such that ¢ = ¢.gx. We have a commutative diagram

v GY
X 1o ovax Ce ovax S qvx

v v
G'GX oG X'.
It follows that there is a (unique) map
Yec (X, X') : Hom(cGX, X') — Hom(X, c'GY X)

making the following diagram commutative

Hom(GX, X') — %) fom(x, VX"
Horrl(cG)(7 X/) ............... I > HOIH(X, CVG\/X/).
Yoo (X,X')

The vertical maps come from the canonical projection G — ¢G and injection
GV — GY.

Similarly, there is a (unique) map ~.,(X,X’) : Hom(X,c'G'X')
— Hom(cGX, X') making the following diagram commutative

Hom(GX, X') <7 fom(x, VX'
HOI‘Il(CG‘X‘7 X/) ............. N ........... HOII](’X‘7 C\/G\/X,)
Yo (X.X)

The maps v.q(X, X’) and 7.(X, X’) are inverse to each other and they
provide (cG, ¢¥G") with the structure of an adjoint pair. If p : G — ¢G denotes
the canonical surjection, then p¥ : ¢VGY — GV is the canonical injection.

4.1.6. Let C,C’, D and D' be four categories, G : C — C', GV : C' — C,
H:D — D and HY : D' — D, and (G,GY) and (H,H") be two adjoint
pairs. Let F : C — D and F’' : (' — D’ be two fully faithful functors and
¢ : F'G = HF be an isomorphism.

We have isomorphisms

Hom(¢~11gv ,F")
ome T tevet )l

Hom(GGY,1d¢) -5 Hom(F'GGY, F') Hom(HFG, F)

PG, Hom(FGY, HY F')

and let ¢ : FGY — HYF' denote the image of ¢ under this sequence of
isomorphisms.
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Then, 1) is an isomorphism and we have a commutative diagram

FIGG\/ & F/

¢1G\/l TEH].F/

HFGVWHHVF'.

4.2. Representations of slo. We put

e:<8 (1]>,f:<(1) 8) andh:ef—fe:<(1) _01>

We have
o= (©) ) —eneeen(-1)

o= ((j }f) — exp(f) exp(—e) exp(f).

We put e = e and e_ = f.

Let V' be a locally finite representation of sl3(Q) (i.e., a direct sum of
finite dimensional representations). Given A € Z, we denote by V) the weight
space of V for the weight A (i.e., the A-eigenspace of h).

For v € V, let hy(v) = max{ilel.v # 0} and d(v) = hy(v) + h_(v) + 1.

LEMMA 4.1. Assume V is a direct sum of isomorphic simple sla(Q)-
modules of dimension d.
Let v € V. Then,

e dlv)=d=1+2hy(v) £
. eg)e(ﬁ)u = (h*(;f)ﬂ) : (hij(”))v for 0 < j < hi(v).

LEMMA 4.2. Let A € Z and v € V_y. Then,

h_(v)
(_1)T A7 oer
s(v) = Iy L€ f (W)
r=max(0,—\) T<)\ + T).
and
hy(v)
—1 _ (_1)T r p—X+r
s ()= B Z(OA) T RO

In the following lemma, we investigate bases of weight vectors with posi-
tivity properties.
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LEMMA 4.3. LetV be a locally finite slo(Q)-module. Let B be a basis of V
consisting of weight vectors such that @,z Q>ob is stable under the actions of
er ande_. Let Lo = {b € Blezb =0} and givenr >0, let V=" = D)< Qb-

Then,

(1) With r > 0, then V=" is a submodule of V isomorphic to a sum of
modules of dimension < r.

(2) With b € B, there is eff(b)b € Q>0L+.

3) With b e Ly, there is ap € Qsq such that ot Oy ¢ £ and the map
b “% +

b ab_lelf(b)b is a bijection Ly = L.

The following assertions are equivalent:

(i) With r > 0, then V=" is the sum of all the simple submodules of V of
dimension < r.

(ii) {el;tb}bez’jnogighi(b) is a basis of V.

(i) {e’Lb}per. o<i<n.(v) generates V.

Proof. Let b € B. We have eb = ) _gucc with u. > 0. Also, 0 =
e+ ®Oeh = 3 uce+ e and eh+ e € @, 5 Qxob'; hence eh+®e = 0 for all
¢ € B such that u. # 0. So, hy(c) < hy(b) for all ¢ € B such that u. # 0.
Hence, (1) holds.

We have e}f(b)b = Y e VeC With v > 0. Since ) zveerc = 0 and
etrc € Gab’els Q>ol, it follows that erc = 0 for all ¢ such that v, # 0; hence
(2) holds.

Let b € £L4+. We have elf(b)b = > e VeC With v. > 0 and e];i(b)e}f(b)b =
pb for some B > 0. So, Y .. vce}f(b)c = (b. Tt follows that given ¢ € B
with v, # 0, there is 8. > 0 with e;&(b)c = [cb. Since hi(c) = hg(b), then
e}f (b)e’f(b)c = ﬁce’f(b)b is a nonzero multiple of ¢, and it follows that there is
a unique c such that v, # 0. This shows (3).

Assume (i). We prove by induction on r that {eiib}beﬁiyogighi(b)<r is a
basis of V=" (this is obvious for r = 0). Assume it holds for » = d. The image
of {b € Bld(b) = d+ 1} in V=4+1/V=d is a basis. This module is a multiple
of the simple module of dimension d + 1 and {b € £L4|d(b) = d + 1} maps to a
basis of the lowest (resp. highest) weight space of V<41 /V/<4 if 4+ = + (resp.
+ = —). It follows that {e’itb}beﬁi’(]gigd:hi(b) maps to a basis of V=4+1/y7=4,
By induction, then, {eib}beﬁi,ogighi(b)gd is a basis of V=4*1, This proves (ii).

Assuming, (ii), let v be a weight vector with weight \. We have v =
Zbeﬁi,%:)\ﬂ:hi(b) ub,ieitb for some uy,; € Q. Take s maximal such that there is

be Ly with hy(b) = s+iand up; # 0. Then, elv = Zbeﬁi,i:hib—s ubyie}f(b)b.

hy (b)
+

Since the e b for b € L4 are linearly independent, it follows that e3v # 0,
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hence s < hy(v). So, if d(v) < r, then hi(b) < r for all b such that u,; # 0.
We deduce that (i) holds.

The equivalence of (ii) and (iii) is an elementary fact of representation
theory of sla(Q). O

5. slp-categorification
5.1. Weak categorifications.

5.1.1. Let A be an artinian and noetherian k-linear abelian category
with the property that the endomorphism ring of any simple object is k (i.e.,
every object of A is a successive extension of finitely many simple objects and
the endomorphism ring of a simple object is k).

A weak sla-categorification gives the data of an adjoint pair (E, F') of exact
endo-functors of A such that

e the action of e = [E] and f = [F] on V = Q ® Ky(A) gives a locally
finite sls-representation

e the classes of the simple objects of A are weight vectors

e F'is isomorphic to a left adjoint of F.

We denote by € : EF' — Id and n : Id — FE the (fixed) co-unit and unit
of the pair (E, F'). We do not fix an adjunction between F' and E.

Remark 5.1. Assume A = A-mod for a finite dimensional k-algebra A.
The requirement that £ and F induce an sly-action on Ky(A) is equiva-
lent to the same condition for Ky(A-proj). Furthermore, the perfect pairing
Ky(A-proj) x Ko(A) — Z, ([P],[S]) — dimy Hom4(P, S) induces an isomor-
phism of slp-modules between K¢(.A) and the dual of Ky(A-proj).

Remark 5.2. A crucial application will be A = A-mod, where A is a
symmetric algebra. In that case, the choice of an adjunction (E, F') determines
an adjunction (F, E).

We put £, = F and F_ = F. By the weight space of an object of A, we
will mean the weight space of its class (whenever this is meaningful).

Note that the opposite category A°PP also carries a weak slo-categorification.

Fixing an isomorphism between F' and a left adjoint to E gives another
weak categorification, obtained by swapping £ and F'. We call it the dual weak
categorification.

The trivial weak sla-categorification on A is the one given by F = F = 0.

5.1.2. Let A and A’ be two weak sly-categorifications. A morphism of
weak sla-categorifications from A’ to A gives the data of a functor R: A" — A
and of isomorphisms of functors (+ : RE, = FE+R such that the following
diagram commutes
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c

(4) RF' FR
nRF'l TFRE’
! / /
FERF' — =T FRE'F'.

Note that (4 determines (_, and conversely (using a commutative diagram
equivalent to the one above).

LEMMA 5.3. The commutativity of diagram (4) is equivalent to the com-
mutativity of either of the following two diagrams:

R R
2N N

1o ™ . [} R/ r_~
RF'E WFRE P FER, RE'F P ERF Be. EFR.

Proof.  Let us assume diagram (4) is commutative. Now, we have a
commutative diagram

R F¢Ct
R . FER hi FRE'
Rﬂ'l FERn’l FRE/T?'\L \
'p ———— 54 1A nlAnli ’
RE'E — = FERF'E — = FRE'F'E' > FRE,
¢-E

This shows the commutativity of the first diagram of the lemma. The proof of
commutativity of the second diagram is similar.

Let us now assume the first diagram of the lemma is commutative. Thus,
we have a commutative diagram

id ¢—

RF' RF' FR
nRF’ RF'E'F' FRe'
C_E'F’
FERF' P FRE'F'.
+

So, diagram (4) is commutative. The case of the second diagram is similar. O

Note that R induces a morphism of slp-modules Ko (A'-proj) — Koy(A).
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Remark 5.4. Let A’ be a full abelian subcategory of A stable under sub-
objects, quotients, and stable under F and F. Then, the canonical functor
A" — A is a morphism of weak sly-categorifications.

5.1.3.  We fix now a weak sls-categorification on A and we investigate
the structure of A.

PROPOSITION 5.5. Let V) be a weight space of V. Let Ay be the full
subcategory of A of objects whose class is in V\. Then, A =&, Ax. So, the
class of an indecomposable object of A is a weight vector.

Proof.  Let M be an object of A with exactly two composition factors
S1 and So. Assume S7 and Sy are in different weight spaces. Then, there are
e € {£} and {i,j} = {1,2} such that ho(S;) > ho(S;). Let r = h.(S;). We
have ETM = ETS; # 0; hence all the composition factors of E” _ETM are in
the same weight space as 5;. Now,

Hom(E" _E" M, M) ~ Hom(E! M, E'M) ~ Hom(M, E" _E" M)

—E¢€ —E€E
and these spaces are not zero. It follows that M has a nonzero simple quotient
and a nonzero simple submodule in the same weight space as S;. Thus, S; is
both a submodule and a quotient of M; hence M ~ S; @ Ss.
We have shown that Ext!(S,T) = 0 whenever S and T are simple objects
in different weight spaces. The proposition follows. O

Let B be the set of classes of simple objects of A. This gives a basis of V
and we can apply Lemma 4.3.

We have a categorification of the fact that a locally finite slo-module is an
increasing union of finite dimensional slo-modules:

PROPOSITION 5.6. Let M be an object of A. Then, there is a Serre sub-
category A" of A stable under E and F, containing M and such that Ky(A)
is finite dimensional.

Proof. Let I be the set of isomorphism classes of simple objects of A
that arise as composition factors of E‘FIM for some 4,j. Since Ko(A) is a
locally finite slo-module, E*FIM = 0 for i, j > 0; hence I is finite. Now, the
Serre subcategory A’ generated by the objects of I satisfies the requirement.

Il

We have a (weak) generation result for D°(A):

LEMMA 5.7. Let C € DP(A) such that Hompe(4)(E'T,C[j]) = 0 for all
1>0,j€Z and T a simple object of A such that FT =0. Then, C = 0.

Proof.  Assume C' # 0. Take n minimal such that H"(C') # 0 and S
simple such that Hom(S, H"C) # 0. Let i = h_(S) and let T' be a simple
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submodule of FS. Then,
Hom(E'T, S) ~ Hom(T, F'S) # 0.
So, Homp(4)(E'T, C[n]) # 0 and we are done, since FT = 0. O

There is an obvious analog of Lemma 5.7 using Hom(C[j], F'T) with
ET = 0. Since FE is also a right adjoint of F, there are similar statements
with £ and F' swapped.

PROPOSITION 5.8. Let A’ be an abelian category and G be a complex of
exact functors from A to A’ that have exact right adjoints. We assume that for
any M € A (resp. N € A'), then G{(M) =0 (resp. GV (N) = 0) for |i| > 0.

Assume G(E'T) is acyclic for alli > 0 and T a simple object of A such
that FT = 0. Then, G(C) is acyclic for all C € Comp®(A).

Proof. Consider the right adjoint complex GV to G (cf. §4.1.4). We have
an isomorphism

HOInDb(A)(C, G\/G(D)) ~ HOHIDb(A/)(G(C), G(D))

for any C, D € D®(A). These spaces vanish for C = E'T as in the proposition.
By Lemma 5.7, they vanish for all C. The case C' = D shows that G(D) is 0
in Db(A). O

Remark 5.9. Let F be the smallest full subcategory of A closed under
extensions and direct summands and containing E*T for all i > 0 and T a
simple object of A such that F'T' = 0. Then, in general, not every projective
object of A is in F (cf. the case of &3 and p = 3 in §7.1). On the other hand,
if the representation Ky(.A) is isotypic, then every object of A is a quotient of
an object of F and in particular the projective objects of A are in F.

Let V=4 = ZbeB,d(b)gd Qb. Let A=? be the full Serre subcategory of A of
objects whose class is in V=4
Lemma 4.3(1) gives the following proposition.

PROPOSITION 5.10. The weak slo-structure on A restricts to one on A9
and induces one on AJ A,

So, we have a filtration of A as 0 C AS! C ... C A is compatible with
the weak slap-structure. It induces the filtration 0 C V<! C ... C V. Some
aspects of the study of A can be reduced to the study of AS"/AS""1. This
is particularly interesting when V<" /V<""1 is a multiple of the r-dimensional
simple module.

5.1.4. We now investigate simple objects and the effect of 1+ on them.
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LEMMA 5.11. Let M be an object of A. Assume that d(S) > r whenever
S is a simple subobject (resp. quotient) of M. Then, d(T) > r whenever T is
a simple subobject (resp. quotient) of E%. M.

Proof. 1t is enough to consider the case where M lies in a weight space by
Proposition 5.5. Let T be a simple subobject of E{. M. Since Hom(E;T7 M) ~
Hom(T, E'. M) # 0, there is S a simple subobject of M that is a composition
factor of ELT. Hence, d(S) < d(ELT) < d(T). The proof for quotients is
similar. O

Let C, be the full subcategory of AS" with objects M such that whenever
S is a simple submodule or a simple quotient of M, then d(S) = r.

LEMMA 5.12. The subcategory C, is stable under E4.

Proof. It is enough to consider the case where M lies in a single weight
space by Proposition 5.5. Let M € C, lie in a single weight space. Let T be a
simple submodule of F4 M. By Lemma 5.11, we have d(T") > r. On the other
hand, d(T) < d(E+M) < d(M). Hence, d(T') = r. Similarly, one proves the
required property for simple quotients. O

5.2. Categorifications.

5.2.1. An sly-categorification is a weak slo-categorification with the extra
data of ¢ € k* and a € k with a # 0 if ¢ # 1 and of X € End(E) and
T € End(E?) such that

e (1gT) o (T1g)o (1gT) = (T1g)o (1gT) o (T1g) in End(E®)
e (T+1g:2)o(T —qlg:) =0 in End(E?)

qgX1g if g#1

in End(E?)
X1p—-T ifqg=1

o To(lEX)oT:{

e X — a is locally nilpotent.

Let A and A’ be two slo-categorifications. A morphism of sla-categorifications
from A’ to A is a morphism of weak sly-categorifications (R, (4, () such that
a’' = a, ¢ = q and the following diagrams commute:

E’ E
(5) RE %~ ER rE'E S ErE Z - BER
RX/l lXR RT’\L lTR

(A Il =
RE'—~ER, RE'E' 5 ERE' .~ EER.

5.2.2. We define a morphism +, : H, — End(E") by
Ti— 1gn-i-1T1gi-r and X; — 1pan—i X1pgi-1.
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With our assumptions, the H,-module End(E™) (given by left multiplication)
is in V,,.

Let 7 € {1,sgn}. We put E™ = E"c7, the image of ¢}, : E"* — E™
Note that the canonical map E" @p, H,c, = E(™" is an isomorphism (cf.
§3.2.2).

In the context of symmetric groups, the following lemma is due to Puig.
It is an immediate consequence of Proposition 3.5.

LEMMA 5.13. The canonical map E(™) ®pen CpHp = E™ is an isomor-

phism. In particular, E™ ~ nl-E™™) and the functor E(™1) i g direct summand
of E™.

We denote by E(™ one of the two isomorphic functors E(1:m) | Esenn),

Using the adjoint pair (E, F'), we obtain a morphism H,, — End(F™)°PP.
The definitions and results above have counterparts for E replaced by F (cf.
§4.1.2).

We obtain a structure of sls-categorification on the dual as follows. Put
X = X! when ¢ # 1 (resp. X = —X when ¢ = 1). We choose an adjoint pair
(F, E). Using this adjoint pair, the endomorphisms X of E and T of E? provide
endomorphisms of F' and F2. We take these as the defining endomorphisms
for the dual categorification. We define “a” for the dual categorification as the
inverse (resp. the opposite) of a for the original categorification.

Remark 5.14. The scalar a can be shifted: given @ € k* when q # 1
(resp. a € k when ¢ = 1), we can define a new categorification by replacing
X by aX (resp. by X + alg). This changes a into aa (resp. o + a). So, the
scalar a can always be adjusted to 1 (resp. to 0).

Remark 5.15. Assume V is a multiple of the simple 2-dimensional slo-
module. Then, a weak slo-categorification consists in the data of A_; and A;
together with inverse equivalences E: A_1 = A; and F : A = A_;. An slo-
categorification results in the additional data of ¢,a and X € End(F) ~ Z(A;)
with X — a nilpotent.

Remark 5.16. As soon as V contains a copy of a simple slo-module of
dimension 3 or more, then a and ¢ are determined by X and T

Ezxample 5.17. Take for V the three dimensional irreducible representa-
tion of sly. Let A 5 = Ay = k and Ag = k[z]/2%. We put A; = A;-mod. On
A_5, define E to be induction A_5 — Ay. On Ay, E is restriction Ag — Ao
and F' is restriction Ay — A_o. On As, then F'is induction Ay — Ag.

Ind k[ ]/ 9 Res
Res e Ind
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Let g =1 and a = 0. Let X be multiplication by = on Res : 49 — A and
multiplication by —x on Ind : A_3 — Ag. Let T € Endg(k[z]/2?) be the
automorphism swapping 1 and z. This is an sls-categorification of the adjoint
representation of sly. The corresponding weak categorification was constructed
in [HueKho].

Remark 5.18. Take for V the three dimensional irreducible representation
of sly. Let A_g = Ay = k[z]/2? and Ag = k. We put A; = A;-mod. On A_o,
then E is restriction A_5 — Ag. On Ag, F is induction Ay — Ay and F' is
induction Ag — A_s. On Ay, then F' is restriction As — Aj.
Res Ind

k[z]/x? i~ k = k[z]/x2.

This is a weak sly-categorification but not an sle-categorification, since
E?: A 5 — Ay is (k[x]/2?) ® —, which is an indecomposable functor.

Remark 5.19. Let A_g =k, Ag =k x k and A_s = k. We define E and
F' as the restriction and induction functors in the same way as in Example
5.17. Then, V is the direct sum of a 3-dimensional simple representation and a
I-dimensional representation. Assume there is X € End(E) and T € End(E?)
giving an slp-categorification. We have End(E?) = Endi(k?) and X1p =
1 X = alg:. But the quotient of Hy(q) by the relation X; = X5 = a is zero!
So, we have a contradiction (it is crucial to exclude the affine Hecke algebra
at ¢ = 1). So, this is a weak sly-categorification but not an sly-categorification
(note that we still have E? ~ E @ E).

5.3. Minimal categorification. We introduce here a categorification of the
(finite dimensional) simple slp-modules.

We fix ¢ € k™ and a € k with a # 0 if ¢ # 1. LethOandBi:Hmfor
0<?<n.

We put A(n)x = B(xjn)2-mod and A(n) = @, Bi-mod, E = P, _,, Indgz+1
and F' = @, Resngil. The functors I]ndg:+1 = B;11 ®p, — and Resgj“ =
Bii1 ®p,,, — are left and right adjoint.

We have EF(B;) ~ B;®p, ,B; ~i(n—i+1)B; and FE(B;) ~ Bj11 ~ (i+
1)(n—1)B; as left B;-modules (cf. §3.3.3). Thus, (ef — fe)([Bi]) = (2i —n)[B;].
Now, Q ® Ko(A(n)x) = Q[B(xn)/2]; hence ef — fe acts on Ko(A(n)x) by A.
It follows that e and f induce an action of sly on Ky(.A(n)), hence we have a
weak slo-categorification.

The image of X;11 in B;+1 gives an endomorphism of Indgz+1 by right
multiplication on B;1;. Taking the sum over all i, we get an endomorphism X
of E. Similarly, the image of T;y; in B;;2 gives an endomorphism of Imdgj+2
and taking the sum over all 4, we get an endomorphism 7' of E2.
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This provides an sly-categorification. The representation on Ko(A(n)) is
the simple (n 4 1)-dimensional sly-module.

5.4. Link with affine Hecke algebras.

5.4.1.  The following proposition generalizes and strengthens results of
Kleshchev [K11, K12] in the symmetric-group setting and of Grojnowski and
Vazirani [GrVa] in the context of cyclotomic Hecke algebras (cf. §7.1 and §7.2).

PROPOSITION 5.20. Let S be a simple object of A, let n = hy(S) and
1 < n.

(a) EMS is simple.

(b) The socle and head of EMWS are isomorphic to a simple object S" of A. We
have isomorphisms of (A, H;)-bimodules: soc E'S ~hd E'S ~ §' ® K.

(c) The morphism ~;(S) : H; — End(E'S) factors through H;,, and induces
an isomorphism H;, — End(E'S).

/\

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv > End( B 9).
(d) We have [E®S] — (7) (8] € V=d(S)-1,

The corresponding statements with E replaced by F' and h4(S) by h_(S) hold
as well.

Proof. e Let us assume (a) holds. We will show that (b), (c), and (d)
follow.

We have E™S ~ n!-S” for some S” simple. So, we have E"S ~ S” ® R

s (A, Hy)-bimodules, where R is a right H,-module in A,,. Since dim R =
dim K, it follows that R ~ K,,.

We have E"“soc EWS c E"'EWS ~ §"® K,c}. Since S” ® K,c} has a
simple socle (Lemma 3.6), it follows that E"~¢soc E(l)S is an 1ndec0mposable
(A, H,_;)-bimodule. If § is a nonzero summand of soc E®) S, then E"*S’ # 0
(Lemma 5.12). So, S’ = soc E®)S is simple. We have soc E'S ~ S’ ® R for
some H;-module R in Nj;. Since dim R = i!, it follows that R ~ K;. The proof
for the head is similar.

The dimension of End(E(i)S) is at most the multiplicity p of S’ as a
composition factor of E®S. Since EM~18’ £ 0, it follows that the dimension
of End(E®S) is at most the number of composition factors of E®~9 £ 5. We
have EM9E®S ~ (7). §”. So, dimEnd(E®S) < (%) and dim End(E*S) <
(i12(") = dim .
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Since ker v, (S) is a proper ideal of H,,, we have kerv,(S) C n,H,. We
have kerv;(S) C H; Nker~,(S) C H; N (n,Hy,). So, the canonical map H; —
H; ,, factors through a surjective map: im~;(S) — H; . We deduce that v;(.9)
is surjective and H;, = End(E'S). So, (c) holds. We deduce also that p = (7})
and that if L is a composition factor of E)S with EM~9 [ #£ 0, then L ~ 5’
So, (d) holds. Since the simple object hd E()S is not killed by E(*~% (Lemma
5.12), we deduce that hd E().S ~ §’. We have now shown (b).

e Let us show that (a) (hence (b), (¢), and (d)) holds when F'S = 0. By
Lemma 4.3 (3), we have [E(™S] = r[S’] for some simple object S’ and r > 1
integer. Since [F(™ E(™ 8] = [S], we have = 1, so (a) holds.

e Let us now show (a) in general. Let L be a simple quotient of F g,
where 7 = h_(S). Since Hom(S, E") L) ~ Hom(F(" S, L) # 0, we deduce that
S is isomorphic to a submodule of E("L. Since FL = 0, we know by (a)
that EMEM L ~ (":fr)S’ for some simple object S’. So, EMS ~ mS' for
some positive integer m. We have Hom(E™ S, S") ~ Hom(S, F(™§’). Since
ES’ =0, we deduce that soc F(™ S is simple (we use (b) in its “F” version).
So, dim Hom(S, F(™S’) < 1, hence mm = 1 and (a) holds. O

COROLLARY 5.21. The sla(Q)-module V=9 is the sum of the simple sub-
modules of V' of dimension < d.

Proof. Let S be a simple object of A with » = h_(S). By Proposition
5.20 (a), S’ = F(")S is simple. We deduce that S ~ soc E(") S’ by adjunction.
Now, Proposition 5.20 (d) shows that [E()S"] — (d(f))[S] € V=d§)-1,

We deduce by induction on r that {[E"S’]} generates V, where S’ runs
over the isomorphism classes of simple objects killed by F and 0 < r < h(57).
The corollary follows from Lemma 4.3, (iii)==-(i). O

Remark 5.22. Let S be a simple object of A and ¢ < hy(S). The action
of Zin = Z(H;,) on E'S restricts to an action on E®S. Since E'S is a faith-
ful right H; ,-module, it follows from Proposition 3.5 that EWS is a faithful
Zip-module. Now, dimEndA(E(i)S) = (i!l)z dimf[m = dim Z; ,; hence the
morphism Z; ,, — End 4(E®S) is an isomorphism.

Let us now continue with the following crucial lemma whose proof uses
some of the ideas of the proof of Proposition 5.20.

LEMMA 5.23. Let U be a simple object of A such that FU = 0. Let
n = hy(U), i <n, and B; = H;,. The composition of n(E'U) ® 1 : E'U ®p,
By — FEHU ®pB, Bit1 with the action map FETU ®pB, Bi+1 — FEHU
s an isomorphism

E'U ®p, Biy1 = FEU.
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Proof. By Proposition 3.5, it is enough to prove that the map becomes
an isomorphism after applying — ®p,,, Bisic; 41+ By (3), we have Bitic; =
@it " Pinalqcl,,. Consider the composition

n—i—1
p=go(f®l): EU® @ ka* — FEMIU
a=0
. n(EWU) . 1Fc[16'i\6'i+1]U - "
where f: EOy 22— FEEOU FE@ DU and g : FE(HDU®

@Z;é_l kx® — FEHDU are given by the action on F. We have to prove that
¢ is an isomorphism. We have [FE(TDU] = (n —i)[EWU]; hence it suffices to
prove that ¢ is injective. In order to do that, one may restrict ¢ to a map be-
tween the socles of the objects (viewed in A). Let ¢, : soc EOU — FECDT
be the restriction of ¢ to the socle of EWU ® kz®. Since soc(E@U) is simple
(Proposition 5.20), the problem is to prove that the maps ¢, for 0 < a < n—i—1
are linearly independent. By adjunction, it is equivalent to prove that the maps

c1

) aq ; )
Vo : Esoc EOU L e, proe EOU

57:\67;+1]U

E(i-i—l)U

are linearly independent.

We have soc E'T'U ~ S ® K11 as (A, Hi 1)-bimodules, where S =
soc EUHDU is simple (Proposition 5.20). Consider the right (k[z;y1] ® H;)-
submodule L' = Hom 4(S,soc(E soc E'U))) of L = Hom4(S,soc E*F1U). We
have H;11 = (H; ® P[i+1])Hf+1, hence L = L’Hif_s_1 since L is a simple right
Hiyi-module. So, L'cl,; = Lck , hence soc(Esoc E'U))ct,; = soc ECTVU.

1
C[(51'+1/<51']U

In particular, the map Esoc EOU EUDU is injective, since
Esoc EDU has a simple socle by Proposition 5.20.
Now, we are left with proving that the maps

Xl .
Esoc EOy 2 =29, pooe EOU

are linearly independent; i.e., that the restriction of 41 (S’) : H; — End4(ES")
to @Z;é_l EX¢ is injective, where S’ = soc EOU. Let I be the kernel of
Yrn—i(S") : Hy_; — End4(E™'S"). Then, as in the proof of Proposition 5.20,
we have I C n,_;H,, ;. So, kervy; C Hy Nn,_;H,_;; hence the canonical map

@I EXE — End4(E"1S) is injective (cf. (3)) and we are done. O

5.4.2. We fix U a simple object of A such that FU = 0. Let n = h4(U).
We put B; = ﬁi,n for 0 <i<n.
The canonical isomorphisms of functors

E(E'U ®p, —) = E""'U ®@p, — = E"M'U ®p,,, Bit1 ®p, —
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make the following diagram commutative

EH»I U®B

Bi+1—m0d ke A
Bi11®B,— T TE

B;-mod , .

’ E'U®p, — A

The canonical isomorphism of functors from Lemma 5.23
E'U X B, Bit+1 @By — = F(EiJrlU OB, —)

makes the following diagram commutative:

EH»] U®Bi+1 _
B;11-mod A
Bi+1®Bi+1_l lF
B;-mod ; .
! EU®g, — A

THEOREM 5.24. The construction above is a morphism of sly-categorifi-
cations Ry : A(n) — A.

Proof. The commutativity of diagram (4) (see §5.1.2) follows from the
very definition of {_ given by Lemma 5.23. The commutativity of the diagram
(5) (see §5.2.1) is obvious. O

Remark 5.25. Let I, be the set of isomorphism classes of simple objects
U of A such that FU = 0 and hy(U) = n. We have a morphism of sla-

categorifications
Z Ry : @ An) — A

n,Uel, n,Uel,
that is not an equivalence in general but that induces an isomorphism
P Q@ Ko(A(n)-proj) = Q @ Ko(A)
n,UEI,

giving a canonical decomposition of Q® K((.A) into simple summands. In that
sense, the categorifications A(n) are minimal.

The following proposition is clear.

PROPOSITION 5.26. Assume Q® Ko(A) is a simple sla-module of dimen-
sion n + 1. Let U be the unique simple object of A with FU = 0. Then,
Ry : A(n) — A is an equivalence of categories if and only if U is projective.

Note that a categorification corresponding to an isotypic representation
need not be isomorphic to a sum of minimal categorifications (take for example
a trivial slp-representation).



272 JOSEPH CHUANG AND RAPHAEL ROUQUIER

5.5. Decomposition of [E, F].
5.5.1. Let o: EF — FFE be given as the composition

EF e pppp 2T pppp Ares pp.

The following gives the categorification of the relation [e, f] = h.
THEOREM 5.27. Let A > 0. Then, there are isomorphisms
A—1

o+ (1pXi)on : EFldy, @1d¥* 5 FEId,
§=0

and
A—1 A
o+ co(X1p) : EFlds, = FEIdg, ®1d97.

§=0

Proof. By Proposition 5.8, it is enough to check that the maps are iso-
morphisms after evaluating the functors at E‘U, where i > 0 and U is a simple
object of A_»_g; (resp. of Ay_9;) such that FU = 0. Thanks to Lemma 5.3 and

Theorem 5.24, we can do this with A replaced by a minimal categorification
A(n) and this is the content of Proposition 5.31 below. O

In the case of cyclotomic Hecke algebras, Vazirani [Va] had shown that
the values of the functors on simple objects are isomorphic.

COROLLARY 5.28. The functors E and F induce an action of sla on the
Grothendieck group of A, viewed as an additive category.

ifqg#1

-1
5.5.2. We put v = (¢=1a
1 ifg=1

Zj§d1<---<di_j_(,§i71 Ty, Ty, fe<i—j
and m;j(c) =<1 ifc=i—j

0 ife>i—j.
LEMMA 5.29. Let j <1 and ¢ > 0. We have
TjTjsr -+ Ticawf = 7"mij(c)  (mod m;H;).
In particular, T;Tj11 ---Ti125 € myH; if ¢ >4 — j.
Proof. By (1) (see §3.1.3), we have

q— 1) (x;+a) (@5 + a5 2w+ +afh) ifg#l

7
c—1 c—2 c—1 :
T SR T SR S ifg=1.

C C
Tifl%' - 5131'_1Tifl = {
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Hence
= TjTjs1 - Tiowi_ Ti1 +YTTjy1 -+ Tioa{~{  (mod m;H;).

Since my;(c) = mi—1,j(c — 1) + mi—1 j(c)Ti—1, the lemma follows by induction.
O

LEMMA 5.30. Let j <i,c>1 and e =inf(c—1,i — j). Then,
TjTj1 - Tyxs — TjTjqy - Tj—1a§, T

e—1,_.c—e

= a (vl ] "my;(e) + Ty ymile — 1)+ + :cf_?llm”(O)) (mod m;H;41)

) _{(1—Q)(~’Ci+1+a) ifa#1
wnere o =
-1 ifg=1.

Proof. We have
TiTjn - Tiaf = TTjga - Tiaaf o Ti= o Tia (a0 4+ 2g)

and the result follows from Lemma 5.29. O
The following is a Mackey decomposition for the algebras B; = FIm

PROPOSITION 5.31. Let i < n/2. Then, there is an isomorphism of
(B, B;)-bimodules
B; ®B; . B, & Bi@n_% = Bi+1

n—21

(b®b/7b1a"~ bn 27, ’—)bTb/ ZbX,‘L_f

Let now i > n/2. Then, there is an isomorphism of (Bi, B;)-bimodules
B; ®p, , Bi = Biy1 @ B "
b s (BT, 00, X0, ... bX2 " MY).

Proof. Let us consider the first map. We know already that both sides
are free B;-modules of the same rank (cf. §5.3), hence it is enough to show
surjectivity.

Let M = (P;/m;) ®p, Bi11. This is a right B;-module quotient of B; 1.
Let L be the rlght Bj-submodule of M generated by B;T; + > -, 2i-1 Xfﬂk
The first isomorphism will follow from the proof that M = L. From now on,
all elements are viewed in M.

We have

n—i—1
P = Y (D) e (@i ).
j=0

X

Given r > 2 and j <n —1i— 1, we have
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enfifj(l‘rv cee D) = enfifj(fola Typyeoo , Tp) — xrflenfifjfl(xra e s T
Since ep—i—j(21,... ,2,) = 0, it follows that e,—;—j(xit1,... ,2n) = 0. So, we
n—i _
have 2’| = 0.

Take 1 <r <. Then, r <n —+¢ and by Lemma 5.30,
TirirTipio- - Tiad ' = al Ty - T
o (Y T A TR T e (r = 2) - 2 T M eg1(0))
Thus,

— —1 n—i— n—i—r+147
Tiri1liri2-- sz? ‘+ay” x?_HZ "e Z Livq H;.
j=0

Since x2+1 = 0, we deduce by induction on r that a?”+1i_r e Lforl<r<u.
Hence, x{, | € L for alla > 0. We deduce from Lemma 5.30 that zf T;---T; €
Lforalllgjgzandazo. Since
0<a<n—i—1,we[S;41/6;]

(cf. §3.3.1), we finally obtain M = L and we are done.

Let us now consider the second isomorphism. We fix an adjunction (F, E)
with unit 7’ and co-unit ¢ and consider the dual categorification A’ of A(n).
We denote by X’ and 7" its defining endomorphisms. Define o’ : FE - e

EFFE ZTE, prrp 2X Bp.

Let G = FE and H = EF. There is an adjoint pair (EF, EF) with
co-unit 5H EFEF £ZE EF £.1d and an adjoint pair (FE, FFE) with unit
ng : 1d 2 pp P PERE. Consider the canonical isomorphism

¢ : Hom(FE, EF) = Hom(G, H) = Hom(H",G") = Hom(EF, FE)

corresponding to these adjunctions. The commutativity of the following dia-
gram shows that ((¢’) = o.

EF

nEFl
Fn'EEF FEn' FEEF
FEEF ——— > FEFEEF —— > FEEFFEEF

Fn'EEF EET'EEF
FEn'FEEF FTFFEEF

FEFEEF —— > FEEFFEEF — X > FEEFFEEF
FEEF

lFEHEF lFEEFHEF FEEFe'EF
FEn'EF
FEEF —— > FEEFEF FEEFEF
\\\\\\\\\\\\s lFEEaF FEEe'F
FEEF
FEEF FEEF

FTF

FEe

FE.
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Similarly, using the canonical adjoint pair (Id,Id), we get a canonical isomor-
phism
¢’ : Hom(Id, EF) = Hom(Id, H) = Hom(H",Id) = Hom(EF,1d).
Now, ¢'(1g(X')?) on/) =0 (XI1p).
We have shown that the adjoint to
A—1
o+ o (X1p) © EFlda, > FEIdy, @1d$*
j=0
is

A—1
o+ Ap(X) Yoy« B'F'ldy, 0ld$ — FE'Tdu .
7=0

One checks easily that the first map of the proposition remains an isomorphism
if X; 1 is replaced by X;11. Since the categorification A’ is isomorphic to A(n),

this shows that the map o’ + Z;‘;& (17 (X")7) o7 is an isomorphism; hence
o+ Z?;Ol £ o (X71p) is an isomorphism as well. O

5.5.3. We fix a family { M), € Ay}, and let M be the full subcategory of
A whose objects are finite direct sums of direct summands of M. We assume
that M = @, M, is stable under E and F.

Let A\, =Enda(M)), A\ = A\-mod and A’ = @, A} and put

E' = (PHoma(Myyo, EM)) @4, — : A/ — A
A

and F' = @HomA(MA,g, FM) @4 —: A — A.
A

Now, Homg(My12, EM)) ~ Homg(FMyy9, M) and FMy,o € M. It
follows that Hom 4 (M2, EM)) is a projective right A)\-module, so that E’ is
an exact functor. Similarly, F’ is an exact functor. Also, they send projectives
to projectives.

Consider the functor R = @y My ®a; — : A" — A. Its restriction to
A’-proj is an equivalence A’-proj = M. So, the functor G — RG from the
category of exact functors A" — A’ sending projectives to projectives to the
category of functors A" — A is fully faithful.

The canonical map

Myyo ®A’>\+2 Hom 4 (M) 2, EM)\> = EMy, m® f— f(m)
is an isomorphism, since EM) € M ys. The induced map

Myi2 @4, Homa(My o, EMy) @4, U = E(My ®4; U),

m® f@us E(m' — m' @u)(f(m))

for U € A\-mod is an isomorphism, since it is an isomorphism for U = A .
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We obtain an isomorphism RE’ = ER and construct similarly an isomor-
phism RF' = FR.

Let X' (resp. T') be the inverse image of X idg (resp. T'idgr) via the
canonical isomorphisms End(E’) = End(RE’) = End(ER) (resp. End(E'?) &
End(RE?) = End(ERE') = End(E?R)).

Proceeding similarly, the adjoint pair (F, F') gives an adjoint pair (E’, F")
and the functor F’ is isomorphic to a left adjoint of E’.

THEOREM 5.32. The data above define an sly-categorification on A’ and
a morphism of sla-categorifications A" — A.

Proof. The sly-relations in Ky(A'-proj) hold thanks to Theorem 5.27 ap-
plied to the restriction of functors to M. The local finiteness follows from the
case of A. The commutativity of the diagrams of Lemma 5.3 follows immedi-
ately from the construction of the adjoint pair (E’, F’). This shows that A’ is a
weak categorification and that R defines a morphism of weak categorifications.

By construction, this weak categorification is a categorification and the
morphism of weak categorifications is actually a morphism of categorifications.

O

COROLLARY 5.33. Let M € A. Then, there exist a finite dimensional
algebra A, an slo-categorification on A-mod and a morphism of sls-categorifi-
cations R : A-mod — A such that M is a direct summand of R(A).

Proof. Let N = @i,jZO E'FiM, a finite sum. Let Ny be the projection of
N on Ay. Now, we can apply the constructions and results above, the stability
being provided by Corollary 5.28. O

6. Categorification of the reflection

6.1. Rickard’s complexes. Let A € Z. We construct a complex of functors
O, : Comp(A_») — Comp(A)),

following Rickard [Ril] (originally, for blocks of symmetric groups).

We denote by (©,)~" the restriction of EE& A1) () o A_ ) for r, A+
> 0 and we put (©,)”" = 0 otherwise.

Consider the map

patr—1ELlpr_1

f . E)\—H"Fr — E)\—H‘—IEFFT—I 1 E>\+T_IFT_1.
We have E(sgnA+r) — E)\JFTCTé:T/Gp,HT]]CE@;\M] C EGenAr=1 B and similarly
FOr) ¢ pEAr=1: hence f restricts to a map

d-r - E(sgn,A-&-r)F(Lr) N E(Sgn’/\'i_r_l)F(l’T_l).

We put _
Oy = — (0,7 L5 (0, — ...
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LEMMA 6.1. Oy is a complez. The map [©,] : Vo) = Ko(A_)) — V) =
Ko(Ay) coincides with the action of s.

Proof. The map d'~"d™" is the restriction of 1gr+r—2691pr—2, where e :
1E 1F . .
EEFF 25 EF 5 1d. Since A = c?glw/&]c;gn and ¢} = 656[162\6,‘]’ it
follows that
E(sgn,)\Jrr)F(l,T) C EA+T72E(sgn,2)F(1,2)Fr72.

So, in order to prove that d'~"d™" = 0, it is enough to show that the compo-
sition
22 GG 22 e
E‘F* —= E*F* —=1d

vanishes, where ¢3®" acts on E? and c% acts on F2. This composition is equal

(c2*e3)1p
-

e 2 &
to the composition E2F? E?F? =% 1d, where ¢®"c} acts now on

E?%. We are done, since c"'c} = 0.
The last statement is given by Lemma 4.2. O

Remark 6.2. Let M € A_y. Let | = max{r > 0|F"M # 0}, be a finite
integer. Then, (0,)~ (M) = 0 when i ¢ [max(0, —\), [].

6.2. Derived equivalence from the simple reflection. Let © = @@, ©,. The
following lemma follows easily from Lemma 5.3.

LEMMA 6.3. Let R : A — A be a morphism of sla-categorifications.
Then, there is an isomorphism of complexes of functors O R = RO'.

We can now state our main theorem (whose proof will be deduced from
Theorem 6.6 below).

THEOREM 6.4. The complex of functors © induces a self-equivalence of

KY(A) and of D°(A) and induces by restriction equivalences K°(A_y) =
KY(Ay) and D*(A_y) = DY(Ay). Furthermore, [©] = s.

Remark 6.5. In the context of symmetric groups, the invertibility of ©)
when the complex has only one (resp. two) nonzero term is due to Scopes [Sco]
(resp. Rickard [Ril]).

Proof of Theorem 6.4. Since E and F have right adjoints, there is a
complex of functors ©Y that gives a right adjoint to ©y (cf. §4.1.4). Let
£ : ©)0) — Id be the co-unit of adjunction and Z its cone. Thus, Z is a
complex of exact functors A_) — A,.

Pick U € A with FU =0 and E'U € A_) and put n = h,(U). The fully
faithful functor Ry : K°(A(n)-proj) — K°(A) commutes with ©, (Lemma
6.3), hence commutes with ©) and with Z (cf. §4.1.6). By Theorem 6.6, we
have Z(E'U) = 0. Now, Proposition 5.8 shows that Z(M) = 0 in D*(A_)) for
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all M € D*(A_,). So, ¢ is an isomorphism in D°(A_)). One shows similarly
that ©, has a left inverse in D*(A_)).

Let us now prove that ¢ is still an isomorphism in K°(A_)). Let M €
Comp®(A_,). By Corollary 5.33, there are a finite dimensional k-algebra A, an
sly-categorification on A" = A-mod and a morphism of sly-categorifications R :
A" — A such that the terms of M are direct summands of R(A). The functor
R induces a fully faithful triangulated functor R’ : K°(A’-proj) — K°(A).
The derived category case of the theorem shows that ¢’ is an isomorphism in
KY(A” \-proj) = Db(A” \)- As above, we deduce that ¢ is an isomorphism in
the image of R’; hence (M) is an isomorphism in K?(A_)). One proceeds
similarly to show that ©, has a left inverse in K?(A_)). O

6.3. Equivalences for the minimal categorification.

THEOREM 6.6. Let n > 0 and A = A(n) be the minimal categorification.
Fix A >0 and let | = ”%)‘ The homology of the complex of functors ©) is

concentrated in degree —l and H™'Oy : A_y = Ay is an equivalence.

Proof. In order to show that the homology of ©), is concentrated in
degree —I, it suffices to show that @,\(Blcll) is homotopy equivalent to a
complex concentrated in degree —I, since Blcl1 is a progenerator for Bj-mod.
This is equivalent to the property that H*(C') = 0 for * # —I, where C' =
S H,— @p, , Ox(Bic}), since ¢*"H,_; is the unique simple right B,_-
module and C™" =0 for r > [.

We have

—r __ Sgn 1y sgn 1 1
" =, Hn1 ®B,_, Bn*lc[lfrJrl,nfl] BB, —r+1, 81 ®B Bicy -
Lemma 3.7 gives an isomorphism
—p ~ Sgn i3 sgn 1
07 5 5, B gthi® D Mk
pEP(r,n—1)
Proposition 3.3 and Lemma 3.4 give isomorphisms

ay ., p0t-r ~ Si—r( DOl—r+1,n-1 -
@ 1 Tier K can A (Pn_l ®Pffz4 k)’

0<a;<-<a;_.<n—l
ASI-- P6[17T+1,n4] A 7 B sgn
( ®P6"l’l ) — ¢ Hn-1®B,_, Dp-IC

Cl
n—l [l—r+1n—1"[1l=]

s Sen

and these induce isomorphisms E~" % D" % C~", where

_ a ar—r
E77 = @ ot x) Tk ® @ mu(T1—rg1,- - 271)

0<a1 <+ <ap—r<n—I neP(r,n—1)
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and

=AS(PI T e K ® D mu(@ieega,. . @)k
neEP(rn—1)
Let p € P(r,n—Il)and 0 < a; < --- < a;—, < n—I[. Given a positive integer
b, we write b < p when b appears in u and we denote then by 1\ b the partition
obtained from y by removing one instance of b. We have my,(z;—y41,... ,2;) =
ZMu m?_r+1mu\b(:pl_,«+2, ..., xp). It follows that

—r, | —=7(, a1 ap—r r—+1
Aoy (21t - LT @ my) = ¢ E:x ez gy @y
b=<pu

Assume b = n—I. Since :Ul":TlH € 0y, Py, it follows that z{* - - 3:;“ [:1:5’ 1

. . S . 6[l77‘+2,n7l] _
is 0 in A=+ (P ®Pfj§*’
be{ai,...,a—}. Thus,

dg" "7 (@ @ my)

k). One gets the same conclusion when

_yorigoH Y sl emy
b=<u,b¢{as,... ,a;—r,n—1}
where o, € G;_,4+1 is the permutation such that, putting a;—,+1 = b and

2 / / /
a; =a we have a) <ag < <ap_,. .

j ab(4)
Let L = k™!, with canonical basis {ei}1<i<n—i- The Koszul complex K of
L is a bigraded k-vector space given by KP4 = APL ® S?L, with a differential

of bidegree (—1,1) given by
(eal . ® €T — Z 74+p+1 eal . eari—leai+1 e eap) ® eail"

Its dual Homy (K, k) is isomorphic to J defined as follows. We put JP =
AP(L*) @ SU(L*). Let {f;} be the dual basis of L* and f,, = fua): - fu(g) €
S4(L*) for p € P(q,n —1). Then, the differential d; : JP9 — JPH"I is given
by

(fal T fap) ® fu
— > ()P (fay - faiSofacer = fa,) © Furp:

b<p,a1 < <a;<b<a; 1< <ap

The homology of J is concentrated in bidegree (0,0) and isomorphic to k.
Note that J*? is a graded right A(L*)-module, with action given by right multi-
plication. This provides J with the structure of a complex of free graded A(L*)-
modules (the degree —q term is J*9), hence of free graded k[fn—i]/(f>_,)-
modules by restriction. So, the (—¢)-th homology group of J ®yy, _,j/(s2_,) k is
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a one-dimensional graded k-vector space which is in degree q. The complexes
of vector spaces J @[y, _j/(r2_,) k and Jf,—; are isomorphic, with a shift by
one in the grading. The complex J f,,_; decomposes as the direct sum (over 7)
of the complexes P, A9(L*) f,_; ® S9(L*) and the cohomology of such a
complex is concentrated in degree —i.

We have an isomorphism

-~ (AZ—TL*)fn_l ® STL* C Jl—r—}—l,r’ xtlzl . xlai;«r ® m,
= (fal e fllz—rfn*l) ® f,u'

This induces an isomorphism between E and the the subcomplex

@(AZ—TL*)J@”_Z ® S"L*
o

of JH*+L=* Tt follows that the homology of E is concentrated in degree —I.

The complex of functors ©_) is given by tensor product by a bounded
complex of (B,,_;, B;)-bimodules which are projective as B, _;-modules and
as Bi-modules. The homology of that complex is concentrated in the lowest
degree where the complex has a nonzero component, hence the homology M is
still projective as a B,,_;-module and as a B;-module. Lemma 6.1 shows that
M ®p, — sends the unique simple B;-module to the unique simple B,,_;-module.
By Morita theory, M induces an equivalence. O

7. Examples

In this section, the field k will always be assumed to be big enough so that
the simple modules considered are absolutely simple.

In most of our examples, sls-categorifications are constructed in families,
using the following recipe. We start with left and right adjoint functors E and
F on an abelian category A, together with X € End(E) and T € End(E?)
satisfying the defining relations of (possibly degenerate) affine Hecke algebras.
We obtain for each a € k (with a # 0 if ¢ # 1) an sly-categorification on A
given by ' = E, and F = F,, the generalised a-eigenspaces of X acting on E
and F'. While we need to check in each example that £ and F' do indeed give an
action of sly on K¢(A), it is automatic that X and 7T restrict to endomorphisms
of E and E? with the desired properties. That T restricts is a consequence of
the identity (a special case of (1))

Tl(XQ - a)N - (Xl - a)NT1

- DXl(X - N+ (X — N —a) 4+ (- @)N ] g £
(X1 —a)VN P+ ( Xy —a)V 22Xy —a)+ -+ ( Xy —a)NV ! if g =1.

in Ha(q).
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7.1. Symmetric groups.

7.1.1. Let p be a prime number and k = F,. The quotient of H, (1) by
the ideal generated by X is the group algebra kG&,,. The images of T; and X;
in kS,, are s; = (i,¢ + 1) and the Jucys-Murphy element L; = (1,7) + (2,7) +
st (10— 1,4).

Let a € k. Given M a kGS,-module, we denote by Fp, (M) the gen-
eralized a-eigenspace of X,. This is a k&,_1-module. We have a decom-
position Reszgzil = @,ci Fan- There is a corresponding decomposition
Indigzil = @D, ci, Ean, where B, is left and right adjoint to Fg,. We put

E, = @nZI Eqn and F, = @nZl Fon.
Recall the following classical result [LLT].

THEOREM 7.1. The functors E, and F, for a € F), give rise to an action
of the affine Lie algebra 5:\[1, on @,,~¢ Ko(kS,-mod).

The decomposition of Ko(k&,-mod) in blocks coincides with its decompo-
sition in weight spaces.

Two blocks of symmetric groups have the same weight if and only if they
are in the same orbit under the adjoint action of the affine Weyl group.

In particular for each a € F, the functors F, and F, give a weak
slp-categorification on A = @, k&,-mod.

We denote by X the endomorphism of E, given on E, » by right multipli-
cation by L, (on the (k&,,k&,_1)-bimodule £&,,). We denote by T the en-
domorphism of Eg given on E, ,, E, ,—1 by right multiplication by s,—; (on the
(kGp, kS, —2)-bimodule £S,,). This gives an sly-categorification on A (here,
q=1).

7.1.2.  Let G and H be two finite groups. Let R = k or Z,. Let A
(resp. B) be a block of RG (resp. RH). We say that A and B are splendidly
Rickard equivalent if there is a bounded complex C' of finitely generated (A ®
B°PP)-modules which are direct summands of permutation modules such that
C®pC* ~ Ain K°(A® A°°P) and C* ®4 C ~ B in K°(B ® B°P) (one
usually puts some condition on the vertices of the modules involved, but this
is actually automatic, as explained in [Rou5]).

THEOREM 7.2. Let R =k or Z,. Let A and B be two blocks of symmet-
ric groups over R with isomorphic defect groups. Then, A and B are splendidly
Rickard equivalent (in particular, they are derived equivalent).

Proof. Two blocks of symmetric groups over k have isomorphic defect
groups if and only if they have equal weights (cf. §7.1.3 below). By Theorem
7.1, there is a sequence of blocks Ag = A, Ay,... A, = B such that A; is
the image of A; 1 by some simple reflection o, of the affine Weyl group.
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By Theorem 6.4, the complex of functors © associated with a = a; induces
a self-equivalence of K b(A). It restricts to a splendid Rickard equivalence
between A; and Aj;1. By composing these equivalences, we obtain a splendid
Rickard equivalence between A and B (note that the composition of splendid
equivalences can easily be seen to be splendid; cf. e.g. [R0u2 Lemma 2.6]).

The constructions of E and F lift uniquely to Z: Indzigez = @aek -
Z(p)Gn

Resz(p)en = = @ocr F,, where E, ®z,, k = Eq, where F, ®z,, k = F, and E,
and F, are left and right adjoint. We denote by T the endomorphism of E2
given on E’a nEa n—1 by the action of s,,_1. . .
The construction of © in §6.1 lifts to a complex © of functors on A =
@D,.>0 Z(p)Sn-mod. By [Ri3, end of proof of Theorem 5.2], the lift © of © is a

splendid self Rickard equivalence of D?(A) and we conclude as before. O

Remark 7.3. The equivalence depends on the choice of a sequence of sim-
ple reflections whose product sends one block to the other. If, as expected,
the categorifications of the simple reflections give rise to a braid group action
on the derived category of €, -, kS,-mod, then one can choose the canonical
lifting of the affine Weyl group element in the braid group to get a canonical
equivalence.

Remark 7.4. Theorem 7.2 gives isomorphisms between Grothendieck
groups of the blocks (taken over Q) satisfying certain arithmetical proper-
ties (perfect isometries or even isotypes). These arithmetical properties were
shown by Enguehard [En, 1990].

Remark 7.5. Two blocks of symmetric groups over k have isomorphic de-
fect groups if and only if they have the same number of simple modules, up to
the exception of blocks of weights 0 and 1 for p = 2 — note that a block of
weight 0 is simple whereas a block of weight 1 is not simple, so two such blocks
are not derived equivalent. Now, one can restate Theorem 7.2 as follows:

Let A and B be two blocks of symmetric groups over k. Then, A and B are
derived equivalent if and only if they have isomorphic defect groups. Assume
A and B are not simple if p = 2. Then, A and B are derived equivalent if and
only if rank Ky(A) = rank Ky(B).

We can now deduce a proof of Broué’s abelian defect group conjecture for
blocks of symmetric groups:

THEOREM 7.6. Let A be a block of a symmetric group G over Z,, D a
defect group and B the corresponding block of Ng(D). If D is abelian, then A
and B are splendidly Rickard equivalent.

Proof. By [ChKe], there is a block A’ of a symmetric group which is
splendidly Morita equivalent to the principal block of Z(p)(Gp ! 6y), where
w is the weight of A. We have a splendid Rickard equivalence between the
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principal block of Z,)&, and Z, N, where N is the normalizer of a Sylow
p-subgroup of &, by [Rou2, Th. 1.1]. By [Ma, Th. 4.3] (cf. also [Rou2, Lemma
2.8] for the Rickard/derived equivalence part), we deduce a splendid Rickard
equivalence between the principal blocks of Z,) (&, &) and Z,) (N 1 &,).
Now, we have an isomorphism B =~ Z, (N1 &,,) ® By, where By is a matrix
algebra over Z,); hence there is a splendid Morita equivalence between B and
Z(p)(N 1Sy)- So, we obtain a splendid Rickard equivalence between B and A’.

By Theorem 7.2, we have a splendid Rickard equivalence between A and
A’ and the theorem follows. O

Remark 7.7. The existence of an isotype between A and B in Theorem 7.6
was known by [Roul].

7.1.3.  Let us analyze more precisely the categorification. Given A a
partition of m, we denote by |A| = m the size of A. Let k be a p-core and n an
integer such that p|(n — |k|) and n > |k|. We denote by b, , the corresponding
block of kS,, (the irreducible characters of that block are associated to the
partitions having x as their p-core). The integer "_TW is the weight of the
block (this notion of weight is not to be confused with the weights relative to
Lie algebra actions).

Let X be a partition with p-core x and X' a partition obtained from \ by
adding an a-node. Then, the p-core of X depends only on x and a and we
denote it by e, (k). Similarly, we define f,(x) by removing an a-node.

We will freely identify a functor M ® — with the bimodule M. We have

(6) Ea,n+1 = @ bea(fi),n+1k6n+1bn,n

where k runs over the p-cores such that |k| < n, |k] =n (mod p) and |e, (k)| <
n+ 1.

Let by, 1,0, 00415+ s bx, i+r be a chain of blocks with | f,(k—,)| > -1,
leqa(kr)| > 1+ 7+ 1 and fo(k;) = Kj—2.

Put n; =14 (i —r)/2 and B; = k&b, p, for —r < i < randi =r
(mod 2).

Let A = @, Bi-mod. The action of E = E, and F' = F, on K(A) gives
a representation of sly. This gives an sly-categorification (here, ¢ = 1).

The complex of functors © restricts to a splendid Rickard equivalence
between B; and B_;.

Let us recall some results of the local block theory of symmetric groups
(cf. [Pul] or [Br, §2]).

Let P be a p-subgroup of &,,. Up to conjugacy, we can assume [1,n
[np+1,n] for some integer np (we call such a P a standard p-subgroup). Then,
Ce,(P)=H x G, 41, where H = Cg, (P). The algebra kH has a unique
block.

)P =
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Given G a finite group and P a p-subgroup of GG, we denote by brp :
(kG) — kCg(P) the Brauer morphism (restriction of the morphism of
k-vector spaces kG — kCqg(P) which is the identity on Cg(P) and 0 on
G — Cg(P)). We denote by Brp : kG-mod — kCg(P)-mod the Brauer functor
given by M — MP/(ZQ<P Trg M®), where Trg(x) = _gep/q 9(2).

We will use the following result of Puig and Marichal

THEOREM 7.8.

1@ benn, if 220 € 75

0 otherwise.

brp(ben) = {

Note in particular that a standard p-subgroup P is a defect group of b,
if and only if P is a Sylow p-subgroup of &,,_. . In particular, two blocks of
symmetric groups have isomorphic defect groups if and only if they have equal
weights.

So, we deduce from (6) and Theorem 7.8:

LEMMA 7.9. There is an isomorphism of ((kH ® kGSn_pn.+i),
(kH ®@ k&),_p,—1))-bimodules

BrAP(Ea,n+i te Ea,n+1Ea,n) — kH ® Ea,nfanri e Ea,nfanrlEa,nfnp-

For i =1, it is compatible with the action of T'.
Let P be a nontrivial standard p-subgroup of &,,_,. If brp(by, n,) is not 0,
then
Bra,(bs ;n .Obu;n,) 2 kH @by ;5 ,—npOby, ni—np-

Note that this lemma permits us to deduce a proof of the Rickard equiv-
alence in Theorem 7.2 from that of the derived equivalence, by induction on
the size of the defect group: By induction, bs ;. ,—n,©Obk, n,—n, induces a
Rickard equivalence. Now, © induces a derived equivalence; so, it follows from
Theorem 7.10 below that © induces a Rickard equivalence between B; and
B_;.

If a splendid complex induces local derived equivalences, then it induces
a Rickard equivalence [Roud, Th. 5.6] (in a more general version, but whose
proof extends with no modification):

THEOREM 7.10. Let G be a finite group, b a block of kG and D a defect
group of b. Asssume b is of principal type, i.e., brp(b) is a block of kCq (D). Let
H be a subgroup of G containing D and controlling the fusion of p-subgroups
of D. Let c be the block of kH corresponding to b.

Let C be a bounded complex of (kGb,kHc)-bimodules. We assume C
is splendid, i.e., the components M of C are direct summands of modules
InngHo N, where N is a permutation AD-module.
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Assume

e Brap(C) induces a Rickard equivalence between kCq(P)brp(b) and
ECu(P)brp(c) for P a nontrivial p-subgroup of D and

e C induces a derived equivalence between kGb and kHc.

Then, C induces a Rickard equivalence between kGb and kHc.

7.2. Cyclotomic Hecke algebras.

7.2.1. We consider here the nondegenerate case ¢ # 1. We fix v,... ,v4
€ k.

We denote by H,, = Hy (v, ¢) the quotient of H,(q) by the ideal generated
by (X1 —wv1) -+ (X1 —vg). This is the Hecke algebra of the complex reflection
group G(d,1,n) (cf. e.g. [Ar2, §13.1]).

The algebra H,, is free over k with basis {X{" - X" Ty }o<a,<dwes,
[ArKo]. In particular H,_; embeds as a subalgebra of H,, and H, is free
as a left and as a right H,,_1-module, for the multiplication action. The alge-
bra H,, is symmetric [MalMat].

7.2.2. Let a € k*. Given M an H,-module, we denote by F,,M
the generalized a-eigenspace of X,. This is an H,_i-module. We have a de-

composition Res%fl1 = @, cix Fan- There is a corresponding decomposition

Imd;l{:_1 = @,cix Ean, where Eq;, is left and right adjoint to F, ,. We put
E, = @HZI Eqn and F, = @nZl Fon.

Now fix a € k*. The functors E = FE, and F = F, give an action of sly on
D,,~0 Ko(Hp-mod) in which the classes of simple modules are weight vectors
[Ar2, Th. 12.5] (only the case where each parameter if a power of ¢ is considered
there, but the proof extends immediately to our more general setting). We
obtain an sly-categorification on €, ., H,-mod, where the endomorphism X
of F is given on E, , by right multiplication by X,,, and the endomorphism 7'
of E? is given on EynFEqn—1 by right multiplication by 75, _.

Remark 7.11. Let e be the multiplicative order of ¢ in k*. Fix ag € k*
and let I = {¢™agp | m € Z}. Then the functors E, and F, for a € I define an
action of sle on P, Ko(Hn-mod).

7.2.3. Consider here the case d = 1. Then, H,, = H,(1,q) is the Hecke
algebra of G,,. Let e be the multiplicative order of ¢ in k. We have a notion
of weight of a block as in §7.1.1, replacing p by e in the definitions.

We obtain a g-analog of Theorem 7.2:

THEOREM 7.12. Assume d = 1. Let A be a block of H,, and B a block
of Hm. Then, A and B are derived equivalent if and only if they are Rickard
equivalent if and only if they have the same weight.
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Remark 7.13. All of the constructions and results of §7.2 hold for degen-
erate cyclotomic Hecke algebras as well, under the assumption that they are
symmetric algebras (which should be provable along the lines of [MalMat]).
Note that these algebras are known to be self-injective [K13, Cor. 7.7.4].

7.3. General linear groups over a finite field.

7.3.1. Let g be a prime power, n > 0 and G,, = GL,(q). We assume that
k has characteristic £ > 0 and ¢fq(q — 1). Let A,, = kGpb, be the sum of the
unipotent blocks of kG,,.

Given H a finite group, we put ey = ﬁ > her h- We denote by tg the
transpose of a matrix g.

We denote by V,, the subgroup of upper triangular matrices of G, with
diagonal coefficients 1 whose off-diagonal coefficients vanish outside the n-th
column. We denote by D,, the subgroup of G, of diagonal matrices with
diagonal entries 1 except the (n,n)-th one.

1 * 1
Vn = B : ; Dn =
1 % 1
1 *
Let ¢ <n. We view G; as a subgroup of G, via the first ¢ coordinates.
We put
Ein = kGre, x..uVi)x(Dir x-xD,) Ok, —  Ai-mod — A,-mod

and F; n = €, x-xVii1)%(Digax-x D) KGn @k, — ¢ Ap-mod — A;-mod.

These functors are canonically left and right adjoint. Furthermore, there are
canonical isomorphisms Ej, o F; ; 5 E;, and F; ;o Fj, 5 F;p for i <j <n.

Let A = ®n20 A,-mod, E = ®n20 Epny1 and F = @nzo Foni1-

We denote by T the endomorphism of E? given on E,_3, by right mul-
tiplication by

Tn-1 = qev,v,_,p,_,p,(n — 1,n)ev,v,_,D, D,

We denote by X the endomorphism of E given on E,_1, by right multiplica-
tion by

XTZ - qnileVnDnethnernDn‘

LEMMA 7.14.
(1gT) o (T1g)o (1gT) = (T1g) o (1gT) o (T1g),
(T+1g2)o (T —qlg2)=0and To(1gX)oT =¢X1g.

Proof. The first statements involving only 7T’s are the classical results of
Iwahori.
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Let U be the subgroup of G, with diagonal coefficients 1 and whose off-
diagonal coefficients except the (n,n — 1)-th vanish. We have

~ % a n
Th-1Xn-1Th-1=q"ev,v, D, .p,ev(n—1,n)ey,  (n—1,n)eyev, \v.p, .D,

n
=q €V, V,_,D,_1D, €V, €V, V, 1D, 1D, = €V, 1D, Xn€V,_,D,_,

and this induces the same endomorphism of E,_s,, as an. O

Lemma 7.14 shows that we have a morphism H,(¢) — End(Ep,) =
Endig, (kG /B,) which sends T; to the endomorphism given by right multi-
plication by gep, (i —1,i)ep, and X; to the identity, where B,, is the subgroup
of G,, of upper triangular matrices (cf. § 5.2.2). The classical result of Iwahori
states that the restriction of this morphism to Hj is an isomorphism. This
gives us a surjective morphism p : H, — Hﬂ: whose restriction to H,{ is the
identity. Since X; maps to 1 in End(Ep,) and the quotient of H, by X; —1
is isomorphic to H,éf , it follows that p is the canonical map H, — Hif . In
particular, the image of X; is (up to an affine transformation) a Jucys-Murphy
element:

p(Xi))=q¢" Ty Ty - Ty
=1+q¢""(q¢—1) (Tpy + qTap + -+ qi72T(i71,i)) .
We put R, = Homyg, (kGrep,,—) = ep,kGn ®ra, — @ Ap-mod —
H,];—mod. The multiplication maps
e, kGi @ra, ev, ..V, Dn--Dy kG — B, kGy
and
eB, kGnep, ey kGies, €8,kGi — ep, kGrev,..v.,,D, D, ,

are isomorphisms. They induce isomorphisms of functors
~ HSf HS ~
R F;, — ReSHT} R, and IndHf}- R; — R, E; .

Remark 7.15. The constructions carried out here make sense more gen-
erally for finite groups with a BN-pair and for arbitrary standard parabolic
subgroups, the transpose operation corresponding to passing from the unipo-
tent radical of a parabolic subgroup to the unipotent radical of the opposite
parabolic subgroup. This produces a very general kind of “Jucys-Murphy el-
ement” in Hecke algebras of finite Weyl groups. In type B or C, we should
recover the usual Jucys-Murphy elements.

Given a € k%, let F, be the generalized a-eigenspace of X acting on E.

LEMMA 7.16. The action of [E,] and [Fy] on B,>¢ Ko(Ap-mod) gives
a representation of sla. Furthermore, the classes of simple objects are weight
vectors.
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Proof. Let O be a complete discrete valuation ring with field of fractions
K and residue field k. We consider the setting above where k is replaced
by K. The functor Homgg, (KGrep,,—) induces an isomorphism from the
Grothendieck group L, of the category of unipotent representations of KG,, to
the Grothendieck group of the category of representations of the Hecke algebra
of type &,, with parameter ¢ over K. This isomorphism is compatible with the

n?

actions of F, and F,. It follows from §7.2.2 that E, and F} give a representation
of sly on @, - L, and the class of a simple unipotent representation of KG,, is
a weight vector. Now, the decomposition map L, — K 0(Ay) is an isomorphism
[Jam, Th. 16.7] and the result follows. O

So, we have constructed an sly-categorification on ,~,A,-mod and a

morphism of sly-categorifications P,,~y An-mod — P, > Hj-mod.

Remark 7.17. Note that we deduce from this that the blocks of A,, cor-
respond to the blocks of an .

7.3.2.  We assume here only that £fq. Let O be the ring of integers of a
finite extension of Q; and k be the residue field of O.

Let us recall [FoSri] that the ¢-blocks of GL,(q) are parametrized by pairs
((s),(B1,...,B;)) where s is a conjugacy class of semi-simple ¢'-elements of
GL,(g) and B; is a block of H,,(¢%), where Car,(q(s) = GL,, (¢%) x -+ x
GL, (¢%). Let w; be the e;-weight of the block B;, where e; is the multi-
plicative order of ¢% in k*. We define the weight of the block as the family

{(wi, di) h<i<r

THEOREM 7.18. Let R =k or O. Two R-blocks of general linear groups
(defined over the same field Fy) with same weights are splendidly Rickard equiv-
alent.

Proof. The results on the local block theory of symmetric groups generalize
to unipotent blocks of general linear groups [Br, §3] and we conclude as in the
proof of Theorem 7.2 that the theorem holds for unipotent blocks.

By [BoRou2], a block of a general linear group is splendidly Rickard equiv-
alent to a unipotent block of a product GLy, (¢*) x - - - x GL,, (¢*) ([BoRoul,
Théoréeme B| already provides a complex with homology only in one degree
inducing a Morita equivalence). Such a block is splendidly Rickard equivalent
to the principal block of GLe, 4, (¢%) X - - X GLe, 4, (¢%) by the unipotent case
of the theorem. O

Remark 7.19. Assume [|(¢ — 1). Then, k£ GLy(¢) has a unique unipotent
block, the principal block. The number of simple modules for such a block is
the number of partitions of n. Consequently, a unipotent block of GL,(q) is
not derived equivalent to a unipotent block of GL,,(q) when n # m.
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THEOREM 7.20. Let A be a block of a general linear group G over R =k
or O, let D be a defect group and B be the corresponding block of Ng(D). If
D is abelian, then A and B are splendidly Rickard equivalent.

Proof. By the result of [BoRou2| stated above, we may assume that A is
a unipotent block. Then we proceed as in the proof of Theorem 7.6, using the
fact that there is a unipotent block of a general linear group with defect group
isomorphic to D that is splendidly Morita equivalent to the principal block of
R(GL(q) 1 64) for some w > 0, where e is the order of ¢ in k* [Pu2], [Mi],
[Tu]. O

7.4. Category O.

7.4.1.  We construct here sla-categorifications on category O of gl,. In
particular we show that the weak sls-categorification on singular blocks given
by Bernstein, Frenkel and Khovanov [BeFreKho] is an sly-categorification.

We denote by h the Cartan subalgebra of diagonal matrices and n the
nilpotent algebra of strictly upper triangular matrices of the complex Lie al-
gebra g = gl,,. We denote by O the BGG category of finitely generated U(g)-
modules that are diagonalisable for h and locally nilpotent for U(n).

Let {e;;} be the standard basis of g, and let €1,... ,&, be the basis of h*
dual to eiq,...,en,. For each A € h* we denote by Aq,..., )\, the coefficients
of XA with respect to €1,...,&,. We write A —, u if there exists j such that
ANi—j+1l=a—-1 pj—j+1=aand \; = p; for i # j. For each A € h*
let M(A) be the Verma module with highest weight A and let L(\) be its
unique irreducible quotient. Recall that M(\) = U(g) ®yp) Cnx, where b is
the subalgebra of upper-triangular matrices and C, is the one-dimensional
b-module on which e;; acts as multiplication by ;.

Let © be the set of maximal ideals of the center Z of U(g). For each § € ©
denote by Oy the full subcategory of O consisting of modules annihilated by
some power of . The category O splits as a direct sum of the subcategories Oy.
Let pry : O — O denote the projection onto Oy. Each Verma module belongs
to some Oy, and M (A) and M (u) belong to the same subcategory if and only
if A and p are in the same orbit in the dot action of the Weyl group of g on h*,
ie., if and only if (A1, e —1,... , Ay —n+1)and (u,p2—1,... ,pupn —n+1)
are in the same &,-orbit. We write § —, 6’ if there exist A, u € h* such that
M()\) € Oy, M(,U,) € Oy and X\ —, .

Let V be the natural n-dimensional representation of g. The functor
V ® —: 0O — O decomposes as a direct sum @, Fq, where

E,= @B proo(Ve—)opry.
0,0'cO
0—,0’
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Each summand E, has a left and right adjoint

F,= @ prgo(V* ® —) opry .
60,0'cO
0— .0’

Let A € h*. Now, V@ M(\) =V ® (U(g) ®u(p) Cx) = U(g) Qup) (V@
C.), and therefore V @ M () has a filtration with quotients isomorphic to the
modules M(A +¢;), i = 1,... ,n. Similarly V* @ M(\) has a filtration with
quotients isomorphic to the modules M (A —¢;), i = 1,... ,n. It follows that

(BN = Y MW, [FaMW]= ) [M(w)]

pnebh* nep*
A=t U= A

in Ko(O). Hence
[EaFaM(A)] = [FaEaM(N)] = cxa[M(N)],

where cyq = #{i | i —i+1 =a} —#{i | s —i+1 = a — 1}. Because
the classes of Verma modules are a basis for Ky(Q), we deduce that for each
a € C the functors E, and F, give a weak sla-categorification on O in which
the simple module L(\) has weight c) 4.

7.4.2. Given M a g-module, we have an action map g ® M — M.
Let Xy € Endg(V ® M) be the corresponding adjoint map. This defines an
endomorphism X of the functor V@ —. Also, Xj/(v ® m) = Q(v ® m) where
Q= ZZj:l e; Qe €gRg.

Define Ths € Endg(V @V @ M) by Th(v ® v/ ® m) = v ® v @ m. This
defines an endomorphism 1" of the functor VoV ® —.

LEMMA 7.21. The following equality in Endg(V @ V ® M) gives
Trvro (v @ Xu) = Xvem o Tv — lvgvem-

Proof. We have
n
XveuTyu(v@v @m) = Z eijv’ ® eji(v @m)
ij=1

n n
= Z eijv' ®6]’ﬂ} @m + Z eijv' XV €4
ij=1 ij=1
=00 @m~+Ty(ly @ Xp)(v@v @m). [

The lemma implies that for each | we can define a morphism H;(1) —
Endg(V®l®M) by T; +— lgl_i_l@)TV@i—l@M and X; — lgl_i@)XV@i—l@M. Jon
Brundan has pointed out to us that this coincides up to shift (cf. Remark 5.14)
with an action described by Arakawa and Suzuki [ArSu, §2.2].
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7.4.3. We shall now show that X and T are restricted to give endomor-
phisms of the functors E, and E? which define sla-categorifications on O. In
view of Lemma 7.21, it suffices to identify F, as the generalised a-eigenspace
of X actingon V ® —.

To this end we observe that = 2(6(C) —C® 1 —1® C), where C =
> ij—1€ijeji € Z is the Casimir element and ¢ : U(g) — U(g) @ U(g) is
the co-multiplication. Furthermore C = Y I, e% + D i<icj<nl€i — €j5) +
> 1<i<j<n €ji€ij acts on the Verma module M(A) as multiplication by by =
SN+ > i<icj<n(Ai — Aj). It follows that  stabilizes any g-submodule of
V® M(\) = L(e1) ® M(X) and that the induced action on any subquotient
isomorphic to M (A+¢;) is as multiplication by 3(baye, —be, —by) = A —i+ 1.
Since V @ M()\) = @ cc EaM(N), this identifies E,M(X) as the generalised
a-eigenspace of Xys(y). We deduce that for any M € O, the generalized a-
eigenspace of Xy is B, M.

Remark 7.22. The canonical adjunction between V ® — and V* ® — is
given by the canonical maps n : C - V* @V ande : VV* - Cv®
£ — &(v). Let Xpr € Endg(V* ®@ M) and Ty € Endg(V* @ V* @ M) be the
induced endomorphisms (cf. §4.1.2). Then Xj(p @ m) = (—Q — n)(¢ ® m)
and Ty (p @ ¢’ @m) = ¢’ @ ¢ @ m.

7.5. Rational representations.

7.5.1.  The construction of sly-categorifications in §7.4 works, more or
less in the same way, on the category G-mod of finite-dimensional rational
representations of G = GL,(k), where k is an algebraically closed field of
characteristic p > 0.

Denote by X the character group of the subgroup of diagonal matrices
in G. We identify X with Z" via the isomorphism sending (\1,... ,\,) € Z"
to A = >, \ig; € X, where ¢; is defined by ¢;(diag(t1,... ,t,)) = t;. This
identifies the set Xy of dominant weights with {(A1,... ,A,) €Z" | A1 > ... >
An}. For each A € X, let L(\) be the unique simple G-module with highest
weight A.

Let B be the Borel subgroup of upper triangular matrices in G. For each
A € X, the cohomology groups H'()) of the associated line bundle on G/B are
objects of G-mod. The alternating sums x(\) = 3., ch(H*(\)) € Z[X] span
the image of the embedding ch : Ko(G-mod) — Z[X].

The Weyl group W = &,, of G acts on X = Z" by place permutations.
This extends to an action of the affine Weyl group W), generated by W together
with the translations by pe; — pei11,1 < i < n — 1. Let Y be the group of
permutations of Z generated by d, 09, ... ,0p—1, where md = m + 1 and

m+1 ifm=a-1 (modp)
mo,=4m—1 ifm=a (mod p)
m otherwise.
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The action of W), on X = Z" commutes with the diagonal action of Y.

LEMMA 7.23. Two elements A\, € X have the same stabilizer in W, if
and only if they are in the same Y -orbit.

Proof. Both conditions are equivalent to the following: for all ¢, j, and
r, we have \; — \; = pr if and only if u; — p; = pr. O

We shall use the corresponding ‘dot actions’ obtained by conjugating by
the translation by p = (0,—-1,...,—n+1) € X:

w-A=wA+p)—p,  Ay=QA+py—p.

Let © be the set of orbits of the dot action of W), on X'. For each 6 € O, let
My be the full subcategory of G-mod consisting of modules whose composition
factors are all of the form L(\) for A € #. The Linkage Principle [CaLu]
implies that G-mod decomposes as a direct sum G-mod = @,.q My. Let
prg : G-mod — G-mod denote the projection onto My. Given A\, u € X and
a€0,...,p—1, we write A —, p if there exists j such that (A\; —j+1)+1=
i —j+1=a (mod p) and A\; = p; for ¢ # j. Note that A\ —, p implies that
w- X —q w-pforall we W, For 6,0 € O, we write 0 —, ¢ if there exist
A €6 and pu € 0 such that A —, p.

Let V be the natural n-dimensional representation of G. The left and right
adjoint functors V ® — : G-mod — G-mod and V* ® — : G-mod — G-mod
decompose as direct sums @Ogagpfl E, and ®0§a§p71 F,, where E, and F,
are sums of translation functors, defined in the same way as in §7.4. The
functors E, and F, have been studied extensively by Brundan and Kleshchev
[BrKl].

Let e, and f, be the maps on characters induced by E, and F,. For each
A € X, we have (e.g. using [Jan, Prop. 7.8])

(7) exN =3 xw), N =3 x(w)

neX nex
A= U—rq A

in Z[X]. Hence

eafaX()\) - faeaX<)\) = C)\,aX()\>7
where cy g = #{i | Mi—i+1=a (mod p)} —#{i| \i—i+1=a—1 (mod p)}.
We deduce that for each a € {0,... ,p— 1} the functors E, and F, give a weak
slp-categorification in which the simple module L(\) has weight ¢ q.

7.5.2. These weak sly-categorifications can be improved to sly-categorifi-
cations using the same procedure as in the characteristic zero case §7.4. We
first define endomorphisms X of V@ — and T of V ® V ® —. Note that to
define X, we first pass from G-modules to modules over Lie(G) = gl,, (k). One
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small modification to the argument is required when p = 2: in order to identify
E, with the generalized a-eigenspace of X, we write
n(n+1)
5
Where Z1 = Zlﬁiﬁn (7 and Z2 = Zl§i<j§n(eii — i)(ejj —]) — Zl§i<j§n ejieij
are central elements of Dist(G) (cf. [CaLu, §2.2]).

By composing the derived (and homotopy) equivalences arising from these

Q:—5(ZQ)+1®ZQ+ZQ®1+21®Z1—

slo-categorifications on G-mod, we obtain many equivalences.

THEOREM 7.24. Let A\ and p be any two weights in X with the same
stabilizer under the dot action of Wy,. Then there are equivalences

Kb(MWp‘)\) :> Kb(MWp'H) and Db(MWp‘)\) :> Db(MWp'ﬂ)
that induce the map
X(w - A) = x(w - p)

on characters.

Remark 7.25. Rickard conjectured the existence of such equivalences for
any connected reductive group having a simply connected derived subgroup
whose root system has Coxeter number h < p [Ri2, Conj. 4.1]. He proved
the truth of his conjecture in the case of trivial stabilizers (under the weaker
assumption h < p). We do not place any restriction on p in Theorem 7.24.

Proof. By Lemma 7.23 we may assume that g = A -y where y €
{d,o0,... ,0p—1}. If p = A-d, then we have an equivalence L(1,...,1) ® —:
My, A = Mw, .., given by tensoring with the determinant representation,
that induces the desired map on characters.

Suppose that = A-g,. Using the slp-categorification on G-mod provided
by E = E, and F = F,, we obtain a self-equivalence © of K’(G-mod) and
of D(G-mod) such that [@] = s (Theorem 6.4). We define an sly-module
U = @,cz Zu; by eu; = u;y1 fori = a—1 (mod p) and eu; = 0 otherwise, and
fui = u;—q for i = a (mod p) and fu; = 0 otherwise. Then su; = u;q1 if i =
a—1 (mod p), su; = —u;—1 if i = a (mod p), and su; = u; otherwise. Thus on
the tensor power U®" we have su, = (=1)"®u,, , where u, = u,, @ - ®u,,
and h_(v) = #{i | v; = a (mod p)}.

By (7) we have a homomorphism of sly-modules U®" — Ky(G-mod),
Uytp — X(v). Tt follows that sy(v) = (—1)"-*+P)x(v - 0,). Hence sx(w - \)
= (=1)"x(w - p), where h_ = h_(w- X+ p) = h_(A + p). We conclude that
©[—h_] restricts to equivalences K*(Myy,.n) = K*(Mw,.,) and D°(Myy, .\) =
DP(My,.,.) that induce the desired map on characters. O

7.6. q-Schur algebras. We explain in this part how to obtain sly-categorifi-
cations, and hence derived equivalences, for ¢-Schur algebras.
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Let ¢ € k*. Let Y, = @, Indfé k, where A = (A; > --- > \,) runs over

the partitions of n and H [ = b ] Tk is the corresponding

WES[ A1 X XS [n—xpt1,n
parabolic subalgebra of Hﬂ: and k corresponds to the representation 1. We
define the g-Schur algebra S,, = End s (Y7).

Let V), be the full subcategory of H{-mod whose ob jects are direct sums of
direct summands of Y, (“g-Young modules”) and let Y = @,,~(, V. Mackey’s
formula shows that ) is stable under E and F. For each of the sly-categorifi-
cations on @, - Hj-mod constructed in §7.2 we deduce from Theorem 5.32 an
sly-categorification on D, Sn-mod and a morphism of sly-categorifications

D50 Sn-mod — B> Hj-mod. This provides a version of Theorem 7.12 for
g-Schur algebras.

Remark 7.26. We go back to the setting of §7.3 (in particular, ¢ is a prime
power). The canonical map A, — Endp e (kGrep, )°PP is surjective and its
image S), is Morita equivalent to .S,, (“double centralizer theorem”, cf. [Ta]).
This gives by restriction a fully faithful functor S,-mod = S’-mod — A,-mod.
Since E(kGpep,) ~ kGpniiep,,,, the fact that €, -, Sy-mod is stable un-
der E. Mackey’s formula shows that it is also stable under F. This gives a
morphism of weak slp-categorifications @, - Sn-mod — @, An-mod and

the composition with the morphism €P,,5o An-mod — B,,5 H}-mod of §7.3.1

is isomorphic to the morphism @, -, Sp-mod — €, <, Hj-mod constructed
above. One deduces that @, - S,-mod — @, -, An-mod is actually a mor-
phism of sly-categorifications. -

Note also that we get another proof of Lemma 7.16 using the fact that
the canonical map Ko(S,-mod) = Ko(A,-mod) is an isomorphism.

Remark 7.27. The interested reader will extend the results of §7.5 to the
quantum case and show that the categorification of ¢-Schur algebras can be
realized as a subcategorification of the quantum group case.

7.7. Realizations of minimal categorifications.

7.7.1. 'We now show that the minimal categorification of §5.3 is a special
case of the categorification on representations of blocks of cyclotomic Hecke
algebras.

Fix a € k* and put v = (v1,...,v,) = (a,... ,a). Then H; = H;(q,v)
is the quotient of H; by the ideal generated by z} (where 1 = X; — a). The
kernel of the action of H; on the simple module K; = H; ®p, P;/m; contains
x if and only if i < n (cf. §3.2.1); let A; be the block of H; containing K;
for 0 < i < m. A finitely generated H;-module M is in A; if and only if n;
acts nilpotently on M (equivalently m; acts nilpotently on M), and K is the
unique simple module in A;.
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We have FM = 0 for M € Ap-mod and FFM = Res%i_l M € A;_1-mod
for M € A;-mod and 0 < i < n.

Likewise EM = 0 for M € A,-mod. Let M € A;-mod with 0 < ¢
< n. Consider N a simple H,;i-quotient of EM. We have Hom(EM, N) ~
Hom(M,FN) # 0. In particular, FN has a nonzero H;-submodule M’ on
which @1, ..., z; act nilpotently. Let M” be the (k[z;11] ® H;)-submodule of
FN generated by M'. Then, x1,...,x;11 act nilpotently on M”. Now, N is a
simple H;1-module, hence it is generated by M"” as an H;.1-module, so that
T1,...,%i+1 act nilpotently on N. We deduce that they act nilpotently on
EM as well. Thus, EM € A;;1-mod.

Now A = €, A;-mod is an sly-categorification and Q ® Ko(.A) is a simple
slp-module of dimension n + 1. Let U = Ky = k, the simple (projective)
module for Ag = k. The morphism of sly-categorifications Ry : A(n) — A is
an equivalence (Proposition 5.26). In particular H;, and A; are isomorphic,
as each has an i!-dimensional simple module.

7.7.2. We explained in §3.3.2 that I:Im is Morita equivalent to its center,
which is isomorphic to the cohomology of certain Grasmmannian varieties.
We sketch here a realization of the minimal categorification in that setting.
We consider only the case ¢ = 1; the case ¢ # 1 can be dealt with similarly,
replacing cohomology by G,,-equivariant K-theory.

Let G ; be the variety of pairs (V1, V) of subspaces of C™ with Vi C V5,
dimV; =i and dimV, = j. We put A; = H*(G;). The (A;41, A;)-bimodule
H*(Gj,i+1) defines by tensor product a functor E; : A;-mod — A;4;-mod and
switching sides, a left and right adjoint F; : A;11-mod — A;-mod. Let E =
P E; and F = @ F;. This gives a weak sly-categorification that has been con-
sidered by Khovanov as a way of categorifying irreducible sls-representations.
It is a special case of the construction of irreducible finite dimensional repre-
sentations of sl,, due to Ginzburg [Gi].

We denote by X the endomorphism of E given on H*(G;;41) by cup
product by ¢1(Liy1). We have a P!-fibration 7 : Gi,it1 XGiyr Gig,iv2 — Gijigo
given by first and last projection. It induces a structure of H*(G} ;12)-module
on H*(Gm'_;,_l X Gt Gi+1,i+2) = H*(Gi,i—I—l) ®H*(Gi+1) H*(Gz‘+17i+2). There is
a unique endomorphism 7' of H*(G} ;42)-module on H*(G; i+1 Xa,,, Git1,i+2)
satisfying T'(¢1(Li+1)) = ¢1(Liy2) — 1. This provides us with an endomorphism
of E;;1FE; and taking the sum over all 4, we get an endomorphism T of EZ.
One checks easily that this gives an sls-categorification (with a = 0) that is
isomorphic to the minimal categorification.

The functor EA7) : A;-mod — A;4r-mod is isomorphic to the functor
given by the bimodule H*(G; iy ).

Take i < n/2 and let us now consider ©[—i], restricted to a functor
DY(H*(G;)-mod) = DP(H*(G,_;)-mod). It is probably isomorphic to the
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functor given by the cohomology of the subvariety {(V,V')|[V NV’ = 0} of
G; X Gp—;, the usual kernel for the Grassmannian duality (cf. e.g. [KaScha,
Ex. IT1.15]).
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