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Derived equivalences for symmetric groups
and sl2-categorification

By Joseph Chuang* and Raphaël Rouquier

Abstract

We define and study sl2-categorifications on abelian categories. We show
in particular that there is a self-derived (even homotopy) equivalence cate-
gorifying the adjoint action of the simple reflection. We construct categorifica-
tions for blocks of symmetric groups and deduce that two blocks are splendidly
Rickard equivalent whenever they have isomorphic defect groups and we show
that this implies Broué’s abelian defect group conjecture for symmetric groups.
We give similar results for general linear groups over finite fields. The construc-
tions extend to cyclotomic Hecke algebras. We also construct categorifications
for category O of gln(C) and for rational representations of general linear
groups over F̄p, where we deduce that two blocks corresponding to weights
with the same stabilizer under the dot action of the affine Weyl group have
equivalent derived (and homotopy) categories, as conjectured by Rickard.
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6. Categorification of the reflection
6.1. Rickard’s complexes
6.2. Derived equivalence from the simple reflection
6.3. Equivalences for the minimal categorification

7. Examples
7.1. Symmetric groups
7.2. Cyclotomic Hecke algebras
7.3. General linear groups over a finite field
7.4. Category O
7.5. Rational representations
7.6. q-Schur algebras
7.7. Realizations of minimal categorifications

References

1. Introduction

The aim of this paper is to show that two blocks of symmetric groups
with isomorphic defect groups have equivalent derived categories. We deduce
in particular that Broué’s abelian defect group conjecture holds for symmetric
groups. We prove similar results for general linear groups over finite fields and
cyclotomic Hecke algebras.

Recall that there is an action of ŝlp on the sum of Grothendieck groups of
categories of kSn-modules, for n ≥ 0, where k is a field of characteristic p. The
action of the generators ei and fi come from exact functors between modules
(“i-induction” and “i-restriction”). The adjoint action of the simple reflections
of the affine Weyl group can be categorified as functors between derived cat-
egories, following Rickard. The key point is to show that these functors are
invertible, since two blocks have isomorphic defect groups if and only if they
are in the same affine Weyl group orbit. This involves only an sl2-action and
we solve the problem in a more general framework.

We develop a notion of sl2-categorification on an abelian category. This
involves the data of adjoint exact functors E and F inducing an sl2-action on
the Grothendieck group and the data of endomorphisms X of E and T of E2

satisfying the defining relations of (degenerate) affine Hecke algebras.
Our main theorem is a proof that the categorification Θ of the simple

reflection is a self-equivalence at the level of derived (and homotopy) cate-
gories. We achieve this in two steps. First, we show that there is a minimal
categorification of string (=simple) modules coming from certain quotients of
(degenerate) affine Hecke algebras: this reduces the proof of invertibility of Θ
to the case of the minimal categorification. There, Θ becomes (up to shift) a
self-equivalence of the abelian category.
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Let us now describe in more detail the structure of this article. The
first part (§3) is devoted to the study of (degenerate) affine Hecke algebras
of type A completed at a maximal ideal corresponding to a totally ramified
central character. We construct (in §3.2) explicit decompositions of tensor
products of ideals which we later translate into isomorphisms of functors. In
§3.3, we introduce certain quotients, that turn out to be Morita equivalent to
cohomology rings of Grassmannians. Section 4 recalls elementary results on
adjunctions and on representations of sl2.

Section 5 is devoted to the definition and study of sl2-categorifications.
We first define a weak version (§5.1), with functors E and F satisfying sl2-
relations in the Grothendieck group. This is enough to get filtrations of the
category and to introduce a class of objects that control the abelian category.
Then, in §5.2, we introduce the extra data of X and T which give the gen-
uine sl2-categorifications. This provides actions of (degenerate) affine Hecke
algebras on powers of E and F . This leads immediately to two constructions
of divided powers of E and F . In order to study sl2-categorifications, we in-
troduce in §5.3 “minimal” categorifications of the simple sl2-representations,
based on the quotients introduced in §3.3. A key construction (§5.4.2) is a
functor from such a minimal categorification to a given categorification, that
allows us to reduce part of the study of an arbitrary sl2-categorification to
this minimal case, where explicit computations can be carried out. This corre-
sponds to the decomposition of the sl2-representation on K0 into a direct sum
of irreducible representations. We use this in §5.5 to prove a categorified ver-
sion of the relation [e, f ] = h and deduce a construction of categorifications on
the module category of the endomorphism ring of “stable” objects in a given
categorification.

Section 6 is devoted to the categorification of the simple reflection of the
Weyl group. In §6.1, we construct a complex of functors categorifying this
reflection, following Rickard. The main result is Theorem 6.4 in part §6.2,
which shows that this complex induces a self-equivalence of the homotopy and
of the derived category. The key step in the proof for the derived category
is the case of a minimal categorification, where we show that the complex
has homology concentrated in one degree (§6.3). The case of the homotopy
category is reduced to the derived category thanks to the constructions of §5.5.

In Section 7, we study various examples. We define (in §7.1) sl2-categorifi-
cations on representations of symmetric groups and deduce derived and even
splendid Rickard equivalences. We deduce a proof of Broué’s abelian defect
group conjecture for blocks of symmetric groups. We give similar construc-
tions for cyclotomic Hecke algebras (§7.2) and for general linear groups over a
finite field in the nondefining characteristic case (§7.3) for which we also de-
duce the validity of Broué’s abelian defect group conjecture. We also construct
sl2-categorifications on category O for gln (§7.4) and on rational representa-
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tions of GLn over an algebraically closed field of characteristic p > 0 (§7.5).
This answers in particular the GL case of a conjecture of Rickard on blocks
corresponding to weights with the same stabilizers under the dot action of
the affine Weyl group. We also explain similar constructions for q-Schur al-
gebras (§7.6) and provide morphisms of categorifications relating the previous
constructions. A special role is played by the endomorphism X, which takes
various incarnations: the Casimir in the rational representation case and the
Jucys-Murphy elements in the Hecke algebra case. In the case of the general
linear groups over a finite field, our construction seems to be new. Our last sec-
tion (§7.7) provides various realizations of minimal categorifications, including
one coming from the geometry of Grassmannian varieties.

Our general approach is inspired by [LLT], [Ar1], [Gr], [GrVa], and
[BeFreKho] (cf. [Rou3, §3.3]), and our strategy for proving the invertibility
of Θ is reminiscent of [DeLu], [CaRi].

In a work in progress, we study the braid relations between the categori-
fications of the simple reflections, in the more general framework of categori-
fications of Kac-Moody algebras and in relation to Nakajima’s quiver variety
constructions.

2. Notation

Given an algebra A, we denote by Aopp the opposite algebra. We denote
by A-mod the category of finitely generated A-modules. Given an abelian
category A, we denote by A-proj the category of projective objects of A.

Let C be an additive category. We denote by Comp(C) the category of
complexes of objects of C and by K(C) the corresponding homotopy category.

Given an object M in an abelian category, we denote by soc(M) (resp.
hd(M)) the socle (resp. the head) of M , i.e., the largest semi-simple subobject
(resp. quotient) of M , when this exists.

We denote by K0(A) the Grothendieck group of an exact category A.
Given a functor F , we sometimes write F for the identity endomorphism

1F of F .

3. Affine Hecke algebras

3.1. Definitions. Let k be a field and q ∈ k×. We define a k-algebra as
Hn = Hn(q).

3.1.1. The nondegenerate case. Assume q �= 1. The affine Hecke algebra
Hn(q) is the k-algebra with generators

T1, . . . , Tn−1, X
±1
1 , . . . , X±1

n
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subject to the relations

(Ti + 1)(Ti − q) = 0,

TiTj = TjTi (when |i − j| > 1),

TiTi+1Ti = Ti+1TiTi+1,

XiXj = XjXi,

XiX
−1
i = X−1

i Xi = 1,

XiTj = TjXi (when i − j �= 0, 1),

TiXiTi = qXi+1.

We denote by Hf
n(q) the subalgebra of Hn(q) generated by T1, . . . , Tn−1.

It is the Hecke algebra of the symmetric group Sn.
Let Pn = k[X±1

1 , . . . , X±1
n ], a subalgebra of Hn(q) of Laurent polynomials.

We put also P[i] = k[X±1
i ].

3.1.2. The degenerate case. Assume q = 1. The degenerate affine Hecke
algebra Hn(1) is the k-algebra with generators

T1, . . . , Tn−1, X1, . . . , Xn

subject to the relations

T 2
i = 1,

TiTj = TjTi (when |i − j| > 1),

TiTi+1Ti = Ti+1TiTi+1,

XiXj = XjXi,

XiTj = TjXi (when i − j �= 0, 1),

Xi+1Ti = TiXi + 1.

Note that the degenerate affine Hecke algebra is not the specialization of
the affine Hecke algebra.

We put Pn = k[X1, . . . , Xn], a polynomial subalgebra of Hn(1). We also
put P[i] = k[Xi]. The subalgebra Hf

n(1) of Hn(1) generated by T1, . . . , Tn−1 is
the group algebra kSn of the symmetric group.

3.1.3. We put Hn = Hn(q) and Hf
n = Hf

n(q). There is an isomorphism
Hn

∼→ Hopp
n , Ti �→ Ti, Xi �→ Xi. It allows us to switch between right and left

Hn-modules. There is an automorphism of Hn defined by Ti �→ Tn−i, Xi �→
X̃n−i+1, where X̃i = X−1

i if q �= 1 and X̃i = −Xi if q = 1.
We denote by l : Sn → N the length function and put si = (i, i+1) ∈ Sn.

Given w = si1 · · · sir
a reduced decomposition of an element w ∈ Sn (i.e.,

r = l(w)), we put Tw = Tsi1
· · ·Tsir

.
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Now, Hn = Hf
n ⊗ Pn = Pn ⊗ Hf

n . We have an action of Sn on Pn by
permutation of the variables. Given p ∈ Pn, [Lu, Prop. 3.6],

Tip − si(p)Ti =

{
(q − 1)(1 − XiX

−1
i+1)

−1(p − si(p)) if q �= 1
(Xi+1 − Xi)−1(p − si(p)) if q = 1.

(1)

Note that (Pn)Sn ⊂ Z(Hn) (this is actually an equality, a result of Bernstein).

3.1.4. Let 1 (resp. sgn) be the one-dimensional representation of Hf
n

given by Tsi
�→ q (resp. Tsi

�→ −1). Let τ ∈ {1, sgn}. Now,

cτ
n =

∑
w∈Sn

q−l(w)τ(Tw)Tw

and cτ
n ∈ Z(Hf

n). We have c1
n =

∑
w∈Sn

Tw and csgn
n =

∑
w∈Sn

(−q)−l(w)Tw,
and c1

ncsgn
n = csgn

n c1
n = 0 for n ≥ 2.

More generally, given 1 ≤ i ≤ j ≤ n, we denote by S[i,j] the symmetric
group on [i, j] = {i, i + 1, . . . , j}, we define similarly Hf

[i,j], H[i,j] and we put

cτ
[i,j] =

∑
w∈S[i,j]

q−l(w)τ(Tw)Tw.

Given I a subset of Sn we put cτ
I =

∑
w∈I q−l(w)τ(Tw)Tw. We have

cτ
n = cτ

[Sn/Si]
cτ
i = cτ

i c
τ
[Si\Sn]

where [Sn/Si] (resp. [Si \Sn]) is the set of minimal length representatives of
right (resp. left) cosets.

As M is a projective Hf
n -module, cτ

nM = {m ∈ M | hm = τ(h)m for all
h ∈ Hf

n} and the multiplication map cτ
nHf

n ⊗Hf
n

M
∼→ cτ

nM is an isomorphism.
Given N an Hn-module, then the canonical map cτ

nHf
n ⊗Hf

n
N

∼→ cτ
nHn ⊗Hn

N

is an isomorphism.

3.2. Totally ramified central character. We gather here a number of prop-
erties of (degenerate) affine Hecke algebras after completion at a maximally
ramified central character. Compared to classical results, some extra compli-
cations arise from the possibility of n! being 0 in k.

3.2.1. We fix a ∈ k, with a �= 0 if q �= 1. We put xi = Xi − a. Let mn be
the maximal ideal of Pn generated by x1, . . . , xn and let nn = (mn)Sn .

Let em(x1, . . . , xn) =
∑

1≤i1<···<im≤n xi1 · · ·xim
∈ PSn

n be the m-th ele-
mentary symmetric function. Then, xn

n =
∑n−1

i=0 (−1)n+i+1xi
nen−i(x1, . . . , xn).

Thus, xl
n ∈ ⊕n−1

i=0 xi
nnn for l ≥ n. Via Galois theory, we deduce that P

Sn−1
n =⊕n−1

i=0 xi
nPSn

n . Using that the multiplication map P
Sj

j ⊗ P[j+1,n]
∼→ P

Sj
n is an

isomorphism, we deduce by induction that

PSr
n =

⊕
0≤ai<r+i

xa1
r+1 · · ·xan−r

n PSn
n .(2)
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3.2.2. We denote by P̂Sn
n the completion of PSn

n at nn, and put P̂n =

Pn ⊗P Sn
n

P̂Sn
n and Ĥn = Hn ⊗P Sn

n
P̂Sn

n . The canonical map P̂Sn
n

∼→ P̂Sn
n is an

isomorphism, since P̂Sn
n is flat over PSn

n .
We denote by Nn the category of locally nilpotent Ĥn-modules, i.e., the

category of Hn-modules on which nn acts locally nilpotently: an Hn-module
M is in Nn if for every m ∈ M , there is i > 0 such that ni

nm = 0.
We put H̄n = Hn/(Hnnn) and P̄n = Pn/(Pnnn). Then multiplication

gives an isomorphism P̄n ⊗ Hf
n

∼→ H̄n. The canonical map⊕
0≤ai<i

kxa1
1 · · ·xan

n
∼→ P̄n

is an isomorphism; hence dimk H̄n = (n!)2.
The unique simple object of Nn is (see [Ka, Th. 2.2])

Kn = Hn ⊗Pn
Pn/mn 
 H̄ncτ

n.

This has dimension n! over k. It follows that the canonical surjective map
H̄n → Endk(Kn) is an isomorphism; hence H̄n is a simple split k-algebra.

Since Kn is a free module over Hf
n , it follows that any object of Nn is

free by restriction to Hf
n . From §3.1.4, we deduce that for any M ∈ Nn, the

canonical map cτ
nHn ⊗Hn

M
∼→ cτ

nM is an isomorphism.

Remark 3.1. We have excluded the case of the affine Weyl group algebra
(the affine Hecke algebra at q = 1). Indeed, in that case Kn is not simple
(when n ≥ 2) and H̄n is not a simple algebra. When n = 2, we have H̄n 
(
k[x]/(x2)

)
� μ2, where the group μ2 = {±1} acts on x by multiplication.

3.2.3. Let f : M → N be a morphism of finitely generated P̂Sn
n -modules.

Then, f is surjective if and only if f ⊗P̂ Sn
n

P̂Sn
n /n̂n is surjective.

Lemma 3.2. There exist isomorphisms

Ĥncτ
n ⊗k

n−1⊕
i=0

xi
nk

can−−→
∼

Ĥncτ
n ⊗P̂ Sn

n
P̂Sn−1

n
mult−−→
∼

Ĥncτ
n−1.

Proof. The first isomorphism follows from the decomposition of P̂
Sn−1
n

in (2).
Let us now study the second map. Note that both terms are free P̂Sn

n -
modules of rank n · n!, since Ĥncτ

n−1 
 P̂n ⊗Hf
ncτ

n−1. Consequently, it suffices
to show that the map is surjective. Thanks to the remark above, it is enough
to check surjectivity after applying −⊗P̂ Sn

n
P̂Sn

n /n̂n.

Note that the canonical surjective map k[xn] → P
Sn−1
n ⊗P Sn

n
PSn

n /nn

factors through k[xn]/(xn
n) (cf. §3.2.1). So, we have to show that the mul-

tiplication map f : H̄ncτ
n ⊗ k[xn]/(xn

n) → H̄ncτ
n−1 is surjective. This is a
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morphism of (H̄n, k[xn]/(xn
n))-bimodules. The elements cτ

n, cτ
nxn, . . . , cτ

nxn−1
n

of H̄n are linearly independent, hence the image of f is a faithful (k[xn]/(xn
n))-

module. It follows that f is injective, since H̄ncτ
n is a simple H̄n-module. Now,

dimk H̄ncτ
n−1 = n · n!; hence f is an isomorphism.

Let M be a kSn-module. We put ΛSnM = M/(
∑

0<i<n M si). If n! ∈
k×, then ΛSnM is the largest quotient of M on which Sn acts via the sign
character. Note that given a vector space V , then ΛSn(V ⊗n) = ΛnV .

Proposition 3.3. Let {τ, τ ′} = {1, sgn} and r ≤ n. There exist isomor-
phisms

Ĥncτ
n ⊗k

⊕
0≤ai<n−r+i

xa1
n−r+1 · · ·xar

n k
can−−→
∼

Ĥncτ
n ⊗P̂ Sn

n
P̂

S[1,n−r]
n

mult−−→
∼

Ĥncτ
[1,n−r].

There is a commutative diagram

Ĥncτ
n ⊗k

⊕
0≤a1<···<ar<n

xa1
n−r+1 · · ·xar

n k

∼can

��

Ĥncτ
n ⊗P̂ Sn

n
P̂

S[1,n−r]
n

x⊗y �→xycτ′
[n−r+1,n] �� ��������������������

can �� �� Ĥncτ
n ⊗P̂ Sn

n
ΛS[n−r+1,n]P̂

S[1,n−r]
n

∼
��

Ĥncτ
[1,n−r]c

τ ′

[n−r+1,n].

Proof. The multiplication map Hn ⊗Hn−i
Hn−ic

τ
n−i → Hncτ

n−i is an
isomorphism (cf. §3.1.4). It follows from Lemma 3.2 that multiplication is an
isomorphism

Ĥncτ
n−r+1 ⊗

n−r⊕
i=0

xi
n−r+1k

∼→ Ĥncτ
n−r

and the first statement follows by descending induction on r.
The surjectivity of the diagonal map follows from the first statement of

the proposition.
Let p ∈ P̂ si

n . Then, c1
[i,i+1]p = pc1

[i,i+1]. It follows that cτ
[i,i+1]pcτ ′

[i,i+1] = 0;
hence cτ

npcτ ′

[n−r+1,n] = 0 whenever i ≥ n − r + 1. This shows the factorization
property (existence of the dotted arrow).

Note that ΛS[n−r+1,n]P̂
Sn−r
n is generated by

⊕
0≤a1<···<ar<n xa1

n−r+1 · · ·xar
n k

as a P̂Sn
n -module (cf. (2)). It follows that we have surjective maps

Ĥncτ
n ⊗k

⊕
0≤a1<···<ar<n

xa1
n−r+1 · · ·xar

n k � Ĥncτ
n ⊗P̂ Sn

n
ΛS[n−r+1,n]P̂Sn−r

n

� Ĥncτ
n−rc

τ ′

[n−r+1,n].
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Now the first and last terms above are free P̂n-modules of rank
(
n
r

)
, hence the

maps are isomorphisms.

Lemma 3.4. Let r ≤ n. We have cτ
rĤncτ

n = P̂Sr
n cτ

n, cτ
nĤncτ

r = cτ
nP̂Sr

n and
the multiplication maps cτ

nĤn ⊗Ĥn
Ĥncτ

r
∼→ cτ

nĤncτ
r and cτ

rĤn ⊗Ĥn
Ĥncτ

n
∼→

cτ
rĤncτ

n are isomorphisms.

Proof. We have an isomorphism P̂n
∼→ Ĥncτ

n, p �→ pcτ
n. Let h ∈ Ĥn.

We have cτ
nhcτ

n = pcτ
n for some p ∈ P̂n. Since Tic

τ
n = τ(Ti)cτ

n, it follows that
Tipcτ

n = τ(Ti)pcτ
n. So, (Tip−si(p)Ti)cτ

n = τ(Ti)(p−si(p))cτ
n; hence p−si(p) = 0,

by formula (1). It follows that cτ
nĤncτ

n ⊆ P̂Sn
n cτ

n.
By Proposition 3.3, the multiplication map Ĥncτ

n ⊗P̂ Sn
n

P̂n
∼→ Ĥn is an

isomorphism. So, the multiplication map cτ
nĤncτ

n ⊗P̂ Sn
n

P̂n
∼→ cτ

nĤn is an
isomorphism, hence the canonical map cτ

nĤncτ
n ⊗P̂ Sn

n
P̂n

∼→ P̂Sn
n cτ

n ⊗P̂ Sn
n

P̂n is
an isomorphism. We deduce that cτ

nĤncτ
n = P̂Sn

n cτ
n.

Similarly (replacing n by r above), we have cτ
nP̂Sr

r cτ
r = cτ

nP̂Sr
r . Since

PSr
n = PSr

r P[r+1,n] (cf. §3.2.1), we deduce that

cτ
nĤncτ

r = cτ
nP̂ncτ

r = cτ
nP̂rc

τ
r P̂[r+1,n] = cτ

nP̂Sr
r P̂[r+1,n] = cτ

nP̂Sr
n .

By Proposition 3.3, cτ
nĤn ⊗Ĥn

Ĥncτ
r is a free P̂Sr

n -module of rank 1. So,
the multiplication map cτ

nĤn ⊗Ĥn
Ĥncτ

r → cτ
nĤncτ

r is a surjective morphism
between free P̂Sr

n -modules of rank 1, hence it is an isomorphism.
The cases where cτ

r is on the left are similar.

Proposition 3.5. The functors Hncτ
n⊗P Sn

n
− and cτ

nHn⊗Hn
− are inverse

equivalences of categories between the category of PSn
n -modules that are locally

nilpotent for nn and Nn.

Proof. By Proposition 3.3, the multiplication map Ĥncτ
n ⊗P̂ Sn

n
P̂n

∼→ Ĥn

is an isomorphism. It follows that the morphism of (Ĥn, Ĥn)-bimodules

Ĥncτ
n ⊗P̂ Sn

n
cτ
nĤn

∼→ Ĥn, hc ⊗ ch′ �→ hch′

is an isomorphism.
Since P̂Sn

n is commutative, it follows from Lemma 3.4 that the (P̂Sn
n , P̂Sn

n )-
bimodules P̂Sn

n and cτ
nĤn ⊗Ĥn

Ĥncτ
n are isomorphic.

3.3. Quotients.

3.3.1. We denote by H̄i,n the image of Hi in H̄n for 0 ≤ i ≤ n and

P̄i,n = Pi/(Pi ∩ (Pnnn)). Now there is an isomorphism Hf
i ⊗ P̄i,n

mult−−→
∼

H̄i,n.

Since P
S[i+1,n]
n =

⊕
0≤al≤n−l x

a1
1 · · ·xai

i PSn
n (cf. (2)), we deduce that Pi =⊕

0≤al≤n−l x
a1
1 · · ·xan

n k ⊕ (nnPi ∩ Pi) and nnPi ∩ Pi = nnPn ∩ Pi; hence the
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canonical map ⊕
0≤al≤n−l

xa1
1 · · ·xan

n k
∼→ P̄i,n(3)

is an isomorphism. We will identify such a monomial xa1
1 · · ·xai

i with its image
in P̄i,n. Note that dimk P̄i,n = n!

(n−i)! .

The kernel of the action of PSi

i by right multiplication on H̄i,ncτ
i is PSi

i ∩
nnPn. By Proposition 3.5, we have a Morita equivalence between H̄i,n and
Zi,n = PSi

i /(PSi

i ∩ nnPn). Note that H̄i,ncτ
i is the unique indecomposable

projective H̄i,n-module and dimk H̄i,n = i! dimk H̄i,ncτ
i . Thus,

dimk Zi,n =
1

(i!)2
dimk H̄i,n =

(
n

i

)
and Zi,n = Z(H̄i,n).

We denote by P (r, s) the set of partitions μ = (μ1 ≥ · · · ≥ μr ≥ 0) with
μ1 ≤ s. Given μ ∈ P (r, s), we denote by mμ the corresponding monomial
symmetric function

mμ(x1, . . . , xr) =
∑

σ

x
μσ(1)

1 · · ·xμσ(r)
r

where σ runs over left coset representatives of Sr modulo the stabilizer of
(μ1, . . . , μr).

The isomorphism (3) shows that the canonical map from⊕
μ∈P (i,n−i)

kmμ(x1, . . . , xi)

to P̄i,n is injective, with image contained in Zi,n. Comparing dimensions, we
see that the canonical map⊕

μ∈P (i,n−i)

kmμ(x1, . . . , xi)
∼→ Zi,n

is an isomorphism.
Also, comparing dimensions, one sees that the canonical surjective maps

Pi ⊗P
Si
i

Zi,n
∼→ P̄i,n and Hi ⊗P

Si
i

Zi,n
∼→ H̄i,n

are isomorphisms.

3.3.2. Let Gi,n be the Grassmannian variety of i-dimensional subspaces
of Cn and Gn be the variety of complete flags in Cn. The canonical morphism
p : Gn → Gi,n induces an injective morphism of algebras p∗ : H∗(Gi,n) →
H∗(Gn) (cohomology is taken with coefficients in k). We identify Gn with
GLn/B, where B is the stabilizer of the standard flag (C(1, 0, . . . , 0) ⊂ · · · ⊂
Cn). Let Lj be the line bundle associated to the character of B given by the
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j-th diagonal coefficient. We have an isomorphism P̄n
∼→ H∗(Gn) sending xj

to the first Chern class of Lj . It multiplies degrees by 2. Now, p∗H∗(Gi,n)
coincides with the image of PSi

i in P̄n. So, we have obtained an isomorphism

Zi,n
∼→ H∗(Gi,n).

Since Gi,n is projective, smooth and connected, of dimension i(n − i),
Poincaré duality says that the cup product Hj(Gi,n) × H2i(n−i)−j(Gi,n) →
H2i(n−i)(Gi,n) is a perfect pairing. Via the isomorphism H2i(n−i)(Gi,n) ∼→ k

given by the fundamental class, this provides H∗(Gi,n) with the structure of a
symmetric algebra.

Note that the algebra H̄i,n is isomorphic to the ring of i!× i! matrices over
H∗(Gi,n) and it is a symmetric algebra. Up to isomorphism, it is independent
of a and q.

3.3.3. Letting i ≤ j, we have

H̄j,n = H̄i,n ⊗
⊕

w∈[Si\Sj ]
0≤al≤n−l

kx
ai+1

i+1 · · ·xaj

j ⊗ kTw;

hence H̄j,n is a free H̄i,n-module of rank (n−i)!j!
(n−j)!i! .

Lemma 3.6. The Hi-module cτ
[i+1,n]Kn has a simple socle and head.

Proof. By Proposition 3.3, multiplication gives an isomorphism⊕
0≤al<l

xa1
i+1 · · ·xan−i

n k ⊗ cτ
[i+1,n]H[i+1,n]

∼→ H[i+1,n],

hence gives an isomorphism of H̄i,n-modules⊕
0≤al<l

xa1
i+1 · · ·xan−i

n k ⊗ cτ
[i+1,n]H̄n

∼→ H̄n.

Since H̄n is a free H̄i,n-module of rank (n−i)!n!
i! , it follows that hence cτ

[i+1,n]H̄n

is a free H̄i,n-module of rank n!
i! . We have H̄i,n 
 i! ·M as H̄i,n-modules, where

M has a simple socle and head. Since in addition H̄n 
 n! ·Kn as H̄n-modules,
we deduce that cτ

[i+1,n]Kn 
 M has a simple socle and head.

Lemma 3.7. Let r ≤ l ≤ n. We have isomorphisms⊕
0≤ai≤n−i

xa1
1 · · ·xal−r

l−r k ⊗
⊕

μ∈P (r,n−l)

mμ(xl−r+1, . . . , xl)k ∼
a⊗b �→abcτ

l

��

∼ a⊗b �→acτ
n⊗b

��

cτ
[l−r+1,l]H̄l,ncτ

l

H̄l−r,ncτ
l−r ⊗

⊕
μ∈P (r,n−l)

mμ(xl−r+1, . . . , xl)k cτ
[l−r+1,l]H̄l,n ⊗H̄l,n

H̄l,ncτ
l .

∼mult

��
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Proof. Let L =
⊕

μ∈P (r,n−l),0≤ai≤n−i mμ(xl−r+1, . . . , xl)xa1
1 · · ·xal−r

l−r k.
We have L ∩ nnPn = 0 (cf. (3)); hence the canonical map f : L →

P
S[l−r+1,l]

l ⊗
P

Sl
l

Zl,n is injective. Since dimk Zl,n =
(
n
l

)
and P

S[l−r+1,l]

l is a

free PSl

l -module of rank l!
r! , it follows that f is an isomorphism. Now, we have

an isomorphism (Lemma 3.4)

P̂
S[l−r+1,l]

l
∼→ cτ

[l−r+1,l]Ĥlc
τ
l , a �→ acτ

l .

Consequently, the horizontal map of the lemma is an isomorphism.
As seen in §3.3.1, the left vertical map is an isomorphism. By Lemma 3.4,

the right vertical map is also an isomorphism.

4. Reminders

4.1. Adjunctions.

4.1.1. Let C and C′ be two categories. Let (G, G∨) be an adjoint pair of
functors, G : C → C′ and G∨ : C′ → C: these are the data of two morphisms
η : IdC → G∨G (the unit) and ε : GG∨ → IdC′ (the co-unit), such that
(ε1G) ◦ (1Gη) = 1G and (1G∨ε) ◦ (η1G∨) = 1G∨ . Here, we have denoted by 1G

the identity map G → G. We have then a canonical isomorphism functorial in
X ∈ C and X ′ ∈ C′:

γG(X, X ′) : Hom(GX, X ′) ∼→ Hom(X, G∨X ′),

f �→ G∨(f) ◦ η(X), ε(X ′) ◦ G(f ′) ←� f ′.

Note that the data of such a functorial isomorphism provide a structure of an
adjoint pair.

4.1.2. Let (H, H∨) be an adjoint pair of functors, with H : C → C′. Let
φ ∈ Hom(G, H). Then, we define φ∨ : H∨ → G∨ as the composition

φ∨ : H∨ ηG1H∨−−−−→ G∨GH∨ 1G∨φ1H∨−−−−−−→ G∨HH∨ 1G∨εH−−−−→ G∨.

This is the unique map making the following diagram commutative, for any
X ∈ C and X ′ ∈ C′:

Hom(HX, X ′)
Hom(φ(X),X′) ��

∼γH(X,X′)
��

Hom(GX, X ′)

∼ γG(X,X′)
��

Hom(X, H∨X ′)
Hom(X,φ∨(X′))

�� Hom(X, G∨X ′).

We have an isomorphism Hom(G, H) ∼→ Hom(H∨, G∨), φ �→ φ∨. We obtain
in particular an isomorphism of monoids End(G) ∼→ End(G∨)opp. Given f ∈
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End(G), then, the following diagrams commute

G∨G
1G∨f

����
��

��
��

�

IdC

η
����������

η
���������� G∨G

G∨G

f∨1G

		���������

GG∨

ε

����
��

��
��

�

GG∨

f1G∨
		���������

1Gf∨
����

��
��

��
� IdC′ .

GG∨
ε

		���������

4.1.3. Let now (G1, G
∨
1 ) and (G2, G

∨
2 ) be two pairs of adjoint functors,

with G1 : C′ → C′′ and G2 : C → C′. The composite morphisms

IdC
η2−→ G∨

2 G2

1G∨
2

η11G2−−−−−−→ G∨
2 G∨

1 G1G2 and G1G2G
∨
2 G∨

1

1G1ε21G∨
1−−−−−−→ G1G

∨
1

ε1−→ IdC

give an adjoint pair (G1G2, G
∨
2 G∨

1 ).

4.1.4. Let F = 0 → F r dr

−→ F r+1 → · · · → F s → 0 be a complex of
functors from C to C′ (with F i in degree i). This defines a functor Comp(C) →
Comp(C′) by taking total complexes.

Let (F i, F i∨) be adjoint pairs for r ≤ i ≤ s. Let

F∨ = 0 → F s∨ (ds−1)∨−−−−→ · · · → F r∨ → 0

with F i∨ in degree −i. This complex of functors defines a functor Comp(C′) →
Comp(C).

There is an adjunction (F, F∨) between functors on categories of com-
plexes, uniquely determined by the property that given X ∈ C and X ′ ∈ C′,
then γF (X, X ′) : HomComp(C′)(FX, X ′) ∼→ HomComp(C)(X, F∨X ′) is the re-
striction of∑

i

γF i(X, X ′) :
⊕

i

HomC′(F iX, X ′) ∼→
⊕

i

HomC(X, F i∨X ′).

This extends to the case where F is unbounded, under the assumption
that for any X ∈ C, then F r(X) = 0 for |r| � 0 and for any X ′ ∈ C′, then
F r∨(X ′) = 0 for |r| � 0.

4.1.5. Assume C and C′ are abelian categories.
Let c ∈ End(G). We put cG = im(c). We assume the canonical surjection

G → cG splits (i.e., cG = eG for some idempotent e ∈ End(G)). Then, the
canonical injection c∨G∨ → G∨ splits as well (indeed, c∨G∨ = e∨G∨).
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Let X ∈ C, X ′ ∈ C′ and φ ∈ Hom(cGX, X ′). There is ψ ∈ Hom(GX, X ′)
such that φ = ψ|cGX . We have a commutative diagram

X
η ��

η
����

��
��

��
� G∨GX

G∨c �� G∨GX
G∨ψ �� G∨X ′

G∨GX

c∨G



����������

G∨ψ
�� G∨X ′.

c∨



									

It follows that there is a (unique) map

γcG(X, X ′) : Hom(cGX, X ′) → Hom(X, c∨G∨X ′)

making the following diagram commutative

Hom(GX, X ′) ∼
γG(X,X′) �� Hom(X, G∨X ′)

Hom(cGX, X ′) ∼
γcG(X,X′)

��
��

��

Hom(X, c∨G∨X ′).
��

��

The vertical maps come from the canonical projection G → cG and injection
c∨G∨ → G∨.

Similarly, there is a (unique) map γ′
cG(X, X ′) : Hom(X, c∨G∨X ′)

→ Hom(cGX, X ′) making the following diagram commutative

Hom(GX, X ′) Hom(X, G∨X ′)∼
γG(X,X′)−1

��

Hom(cGX, X ′)
��

��

Hom(X, c∨G∨X ′).∼
γ′

cG(X,X′)
��

��

��

The maps γcG(X, X ′) and γ′
cG(X, X ′) are inverse to each other and they

provide (cG, c∨G∨) with the structure of an adjoint pair. If p : G → cG denotes
the canonical surjection, then p∨ : c∨G∨ → G∨ is the canonical injection.

4.1.6. Let C, C′, D and D′ be four categories, G : C → C′, G∨ : C′ → C,
H : D → D′ and H∨ : D′ → D, and (G, G∨) and (H, H∨) be two adjoint
pairs. Let F : C → D and F ′ : C′ → D′ be two fully faithful functors and
φ : F ′G

∼→ HF be an isomorphism.
We have isomorphisms

Hom(GG∨, IdC′) F ′
−→
∼

Hom(F ′GG∨, F ′)
Hom(φ−11G∨ ,F ′)−−−−−−−−−−−→

∼
Hom(HFG∨, F ′)

γH(FG∨,F ′)−−−−−−−→
∼

Hom(FG∨, H∨F ′)

and let ψ : FG∨ → H∨F ′ denote the image of εG under this sequence of
isomorphisms.
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Then, ψ is an isomorphism and we have a commutative diagram

F ′GG∨ 1F εG ��

φ1G∨

��

F ′

HFG∨
1Hψ

�� HH∨F ′.

εH1F ′

��

4.2. Representations of sl2. We put

e =
(

0 1
0 0

)
, f =

(
0 0
1 0

)
and h = ef − fe =

(
1 0
0 −1

)
.

We have

s =
(

0 1
−1 0

)
= exp(−f) exp(e) exp(−f)

s−1 =
(

0 −1
1 0

)
= exp(f) exp(−e) exp(f).

We put e+ = e and e− = f .
Let V be a locally finite representation of sl2(Q) (i.e., a direct sum of

finite dimensional representations). Given λ ∈ Z, we denote by Vλ the weight
space of V for the weight λ (i.e., the λ-eigenspace of h).

For v ∈ V , let h±(v) = max{i|ei
±v �= 0} and d(v) = h+(v) + h−(v) + 1.

Lemma 4.1. Assume V is a direct sum of isomorphic simple sl2(Q)-
modules of dimension d.

Let v ∈ Vλ. Then,

• d(v) = d = 1 + 2h±(v) ± λ

• e
(j)
∓ e

(j)
± v =

(
h∓(v)+j

j

)
·
(
h±(v)

j

)
v for 0 ≤ j ≤ h±(v).

Lemma 4.2. Let λ ∈ Z and v ∈ V−λ. Then,

s(v) =
h−(v)∑

r=max(0,−λ)

(−1)r

r!(λ + r)!
eλ+rf r(v)

and

s−1(v) =
h+(v)∑

r=max(0,λ)

(−1)r

r!(−λ + r)!
erf−λ+r(v).

In the following lemma, we investigate bases of weight vectors with posi-
tivity properties.
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Lemma 4.3. Let V be a locally finite sl2(Q)-module. Let B be a basis of V

consisting of weight vectors such that
⊕

b∈B Q≥0b is stable under the actions of
e+ and e−. Let L± = {b ∈ B|e∓b = 0} and given r ≥ 0, let V ≤r =

⊕
d(b)≤r Qb.

Then,

(1) With r ≥ 0, then V ≤r is a submodule of V isomorphic to a sum of
modules of dimension ≤ r.

(2) With b ∈ B, there is e
h±(b)
± b ∈ Q≥0L∓.

(3) With b ∈ L±, there is αb ∈ Q>0 such that α−1
b e

h±(b)
± b ∈ L∓ and the map

b �→ α−1
b e

h±(b)
± b is a bijection L±

∼→ L∓.
The following assertions are equivalent :

(i) With r ≥ 0, then V ≤r is the sum of all the simple submodules of V of
dimension ≤ r.

(ii) {ei
±b}b∈L±,0≤i≤h±(b) is a basis of V .

(iii) {ei
±b}b∈L±,0≤i≤h±(b) generates V .

Proof. Let b ∈ B. We have eb =
∑

c∈B ucc with uc ≥ 0. Also, 0 =
eh+(b)eb =

∑
c uce

h+(b)c and eh+(b)c ∈ ⊕
b′∈B Q≥0b

′; hence eh+(b)c = 0 for all
c ∈ B such that uc �= 0. So, h+(c) ≤ h+(b) for all c ∈ B such that uc �= 0.
Hence, (1) holds.

We have e
h±(b)
± b =

∑
c∈B vcc with vc ≥ 0. Since

∑
c∈B vce±c = 0 and

e±c ∈ ⊕
b′∈B Q≥0b

′, it follows that e±c = 0 for all c such that vc �= 0; hence
(2) holds.

Let b ∈ L±. We have e
h±(b)
± b =

∑
c∈B vcc with vc ≥ 0 and e

h±(b)
∓ e

h±(b)
± b =

βb for some β > 0. So,
∑

c∈B vce
h±(b)
∓ c = βb. It follows that given c ∈ B

with vc �= 0, there is βc ≥ 0 with e
h±(b)
∓ c = βcb. Since h±(c) = h∓(b), then

e
h±(b)
± e

h±(b)
∓ c = βce

h±(b)
± b is a nonzero multiple of c, and it follows that there is

a unique c such that vc �= 0. This shows (3).
Assume (i). We prove by induction on r that {ei

±b}b∈L±,0≤i≤h±(b)<r is a
basis of V ≤r (this is obvious for r = 0). Assume it holds for r = d. The image
of {b ∈ B|d(b) = d + 1} in V ≤d+1/V ≤d is a basis. This module is a multiple
of the simple module of dimension d + 1 and {b ∈ L±|d(b) = d + 1} maps to a
basis of the lowest (resp. highest) weight space of V ≤d+1/V ≤d if ± = + (resp.
± = −). It follows that {ei

±b}b∈L±,0≤i≤d=h±(b) maps to a basis of V ≤d+1/V ≤d.
By induction, then, {ei

±b}b∈L±,0≤i≤h±(b)≤d is a basis of V ≤d+1. This proves (ii).
Assuming, (ii), let v be a weight vector with weight λ. We have v =∑

b∈L±,2i=λ±h±(b) ub,ie
i
±b for some ub,i ∈ Q. Take s maximal such that there is

b ∈ L± with h±(b) = s+i and ub,i �= 0. Then, es
±v =

∑
b∈L±,i=h±b−s ub,ie

h±(b)
± b.

Since the e
h±(b)
± b for b ∈ L± are linearly independent, it follows that es

±v �= 0,
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hence s ≤ h+(v). So, if d(v) < r, then h±(b) < r for all b such that ub,i �= 0.
We deduce that (i) holds.

The equivalence of (ii) and (iii) is an elementary fact of representation
theory of sl2(Q).

5. sl2-categorification
5.1. Weak categorifications.

5.1.1. Let A be an artinian and noetherian k-linear abelian category
with the property that the endomorphism ring of any simple object is k (i.e.,
every object of A is a successive extension of finitely many simple objects and
the endomorphism ring of a simple object is k).

A weak sl2-categorification gives the data of an adjoint pair (E, F ) of exact
endo-functors of A such that

• the action of e = [E] and f = [F ] on V = Q ⊗ K0(A) gives a locally
finite sl2-representation

• the classes of the simple objects of A are weight vectors

• F is isomorphic to a left adjoint of E.

We denote by ε : EF → Id and η : Id → FE the (fixed) co-unit and unit
of the pair (E, F ). We do not fix an adjunction between F and E.

Remark 5.1. Assume A = A-mod for a finite dimensional k-algebra A.
The requirement that E and F induce an sl2-action on K0(A) is equiva-
lent to the same condition for K0(A-proj). Furthermore, the perfect pairing
K0(A-proj) × K0(A) → Z, ([P ], [S]) �→ dimk HomA(P, S) induces an isomor-
phism of sl2-modules between K0(A) and the dual of K0(A-proj).

Remark 5.2. A crucial application will be A = A-mod, where A is a
symmetric algebra. In that case, the choice of an adjunction (E, F ) determines
an adjunction (F, E).

We put E+ = E and E− = F . By the weight space of an object of A, we
will mean the weight space of its class (whenever this is meaningful).

Note that the opposite category Aopp also carries a weak sl2-categorification.
Fixing an isomorphism between F and a left adjoint to E gives another

weak categorification, obtained by swapping E and F . We call it the dual weak
categorification.

The trivial weak sl2-categorification on A is the one given by E = F = 0.

5.1.2. Let A and A′ be two weak sl2-categorifications. A morphism of
weak sl2-categorifications from A′ to A gives the data of a functor R : A′ → A
and of isomorphisms of functors ζ± : RE′

±
∼→ E±R such that the following

diagram commutes
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RF ′ ζ− ��

ηRF ′

��

FR

FERF ′
Fζ−1

+ F ′
�� FRE′F ′.

FRε′

��(4)

Note that ζ+ determines ζ−, and conversely (using a commutative diagram
equivalent to the one above).

Lemma 5.3. The commutativity of diagram (4) is equivalent to the com-
mutativity of either of the following two diagrams:

R
Rη′

��










ηR



����������

RF ′E′
ζ−E′
∼ �� FRE′

Fζ+

∼ �� FER,

R

RE′F ′

Rε′


										

ζ+F ′
∼ �� ERF ′

Eζ−

∼ �� EFR.

εR

������������

Proof. Let us assume diagram (4) is commutative. Now, we have a
commutative diagram

R
ηR ��

Rη′

��

FER
Fζ−1

+ ��

FERη′

��

FRE′

id

����������������

FRE′η′

��
RF ′E′

ηRF ′E′
��

ζ−E′

��FERF ′E′
Fζ−1

+ F ′E′
�� FRE′F ′E′

FRε′E′
�� FRE′.

This shows the commutativity of the first diagram of the lemma. The proof of
commutativity of the second diagram is similar.

Let us now assume the first diagram of the lemma is commutative. Thus,
we have a commutative diagram

RF ′ id ��

Rη′F ′
��












ηRF ′

��

RF ′ ζ− �� FR

RF ′E′F ′

RF ′ε′

��

ζ−E′F ′
�������������

FERF ′
Fζ−1

+ F ′
�� FRE′F ′.

FRε′

��

So, diagram (4) is commutative. The case of the second diagram is similar.

Note that R induces a morphism of sl2-modules K0(A′-proj) → K0(A).
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Remark 5.4. Let A′ be a full abelian subcategory of A stable under sub-
objects, quotients, and stable under E and F . Then, the canonical functor
A′ → A is a morphism of weak sl2-categorifications.

5.1.3. We fix now a weak sl2-categorification on A and we investigate
the structure of A.

Proposition 5.5. Let Vλ be a weight space of V . Let Aλ be the full
subcategory of A of objects whose class is in Vλ. Then, A =

⊕
λ Aλ. So, the

class of an indecomposable object of A is a weight vector.

Proof. Let M be an object of A with exactly two composition factors
S1 and S2. Assume S1 and S2 are in different weight spaces. Then, there are
ε ∈ {±} and {i, j} = {1, 2} such that hε(Si) > hε(Sj). Let r = hε(Si). We
have Er

εM
∼→ Er

εSi �= 0; hence all the composition factors of Er
−εE

r
εM are in

the same weight space as Si. Now,

Hom(Er
−εE

r
εM, M) 
 Hom(Er

εM, Er
εM) 
 Hom(M, Er

−εE
r
εM)

and these spaces are not zero. It follows that M has a nonzero simple quotient
and a nonzero simple submodule in the same weight space as Si. Thus, Si is
both a submodule and a quotient of M ; hence M 
 S1 ⊕ S2.

We have shown that Ext1(S, T ) = 0 whenever S and T are simple objects
in different weight spaces. The proposition follows.

Let B be the set of classes of simple objects of A. This gives a basis of V

and we can apply Lemma 4.3.
We have a categorification of the fact that a locally finite sl2-module is an

increasing union of finite dimensional sl2-modules:

Proposition 5.6. Let M be an object of A. Then, there is a Serre sub-
category A′ of A stable under E and F , containing M and such that K0(A′)
is finite dimensional.

Proof. Let I be the set of isomorphism classes of simple objects of A
that arise as composition factors of EiF jM for some i, j. Since K0(A) is a
locally finite sl2-module, EiF jM = 0 for i, j � 0; hence I is finite. Now, the
Serre subcategory A′ generated by the objects of I satisfies the requirement.

We have a (weak) generation result for Db(A):

Lemma 5.7. Let C ∈ Db(A) such that HomDb(A)(EiT, C[j]) = 0 for all
i ≥ 0, j ∈ Z and T a simple object of A such that FT = 0. Then, C = 0.

Proof. Assume C �= 0. Take n minimal such that Hn(C) �= 0 and S

simple such that Hom(S, HnC) �= 0. Let i = h−(S) and let T be a simple
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submodule of F iS. Then,

Hom(EiT, S) 
 Hom(T, F iS) �= 0.

So, HomD(A)(EiT, C[n]) �= 0 and we are done, since FT = 0.

There is an obvious analog of Lemma 5.7 using Hom(C[j], F iT ) with
ET = 0. Since E is also a right adjoint of F , there are similar statements
with E and F swapped.

Proposition 5.8. Let A′ be an abelian category and G be a complex of
exact functors from A to A′ that have exact right adjoints. We assume that for
any M ∈ A (resp. N ∈ A′), then Gi(M) = 0 (resp. Gi∨(N) = 0) for |i| � 0.

Assume G(EiT ) is acyclic for all i ≥ 0 and T a simple object of A such
that FT = 0. Then, G(C) is acyclic for all C ∈ Compb(A).

Proof. Consider the right adjoint complex G∨ to G (cf. §4.1.4). We have
an isomorphism

HomDb(A)(C, G∨G(D)) 
 HomDb(A′)(G(C), G(D))

for any C, D ∈ Db(A). These spaces vanish for C = EiT as in the proposition.
By Lemma 5.7, they vanish for all C. The case C = D shows that G(D) is 0
in Db(A′).

Remark 5.9. Let F be the smallest full subcategory of A closed under
extensions and direct summands and containing EiT for all i ≥ 0 and T a
simple object of A such that FT = 0. Then, in general, not every projective
object of A is in F (cf. the case of S3 and p = 3 in §7.1). On the other hand,
if the representation K0(A) is isotypic, then every object of A is a quotient of
an object of F and in particular the projective objects of A are in F .

Let V ≤d =
∑

b∈B,d(b)≤d Qb. Let A≤d be the full Serre subcategory of A of
objects whose class is in V ≤d.

Lemma 4.3(1) gives the following proposition.

Proposition 5.10. The weak sl2-structure on A restricts to one on A≤d

and induces one on A/A≤d.

So, we have a filtration of A as 0 ⊆ A≤1 ⊆ · · · ⊆ A is compatible with
the weak sl2-structure. It induces the filtration 0 ⊆ V ≤1 ⊆ · · · ⊆ V . Some
aspects of the study of A can be reduced to the study of A≤r/A≤r−1. This
is particularly interesting when V ≤r/V ≤r−1 is a multiple of the r-dimensional
simple module.

5.1.4. We now investigate simple objects and the effect of E± on them.
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Lemma 5.11. Let M be an object of A. Assume that d(S) ≥ r whenever
S is a simple subobject (resp. quotient) of M . Then, d(T ) ≥ r whenever T is
a simple subobject (resp. quotient) of Ei

±M .

Proof. It is enough to consider the case where M lies in a weight space by
Proposition 5.5. Let T be a simple subobject of Ei

±M . Since Hom(Ei
∓T, M) 


Hom(T, Ei
±M) �= 0, there is S a simple subobject of M that is a composition

factor of Ei
∓T . Hence, d(S) ≤ d(Ei

∓T ) ≤ d(T ). The proof for quotients is
similar.

Let Cr be the full subcategory of A≤r with objects M such that whenever
S is a simple submodule or a simple quotient of M , then d(S) = r.

Lemma 5.12. The subcategory Cr is stable under E±.

Proof. It is enough to consider the case where M lies in a single weight
space by Proposition 5.5. Let M ∈ Cr lie in a single weight space. Let T be a
simple submodule of E±M . By Lemma 5.11, we have d(T ) ≥ r. On the other
hand, d(T ) ≤ d(E±M) ≤ d(M). Hence, d(T ) = r. Similarly, one proves the
required property for simple quotients.

5.2. Categorifications.

5.2.1. An sl2-categorification is a weak sl2-categorification with the extra
data of q ∈ k× and a ∈ k with a �= 0 if q �= 1 and of X ∈ End(E) and
T ∈ End(E2) such that

• (1ET ) ◦ (T1E) ◦ (1ET ) = (T1E) ◦ (1ET ) ◦ (T1E) in End(E3)

• (T + 1E2) ◦ (T − q1E2) = 0 in End(E2)

• T ◦ (1EX) ◦ T =

{
qX1E if q �= 1
X1E − T if q = 1

in End(E2)

• X − a is locally nilpotent.

Let A and A′ be two sl2-categorifications. A morphism of sl2-categorifications
from A′ to A is a morphism of weak sl2-categorifications (R, ζ+, ζ−) such that
a′ = a, q′ = q and the following diagrams commute:

RE′ ζ+

∼ ��

RX′

��

ER

XR
��

RE′
ζ+

∼ �� ER,

RE′E′ ζ+E′

∼ ��

RT ′

��

ERE′ Eζ+

∼ �� EER

TR
��

RE′E′
ζ+E′
∼ �� ERE′

Eζ+

∼ �� EER.

(5)

5.2.2. We define a morphism γn : Hn → End(En) by

Ti �→ 1En−i−1T1Ei−1 and Xi �→ 1En−iX1Ei−1 .
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With our assumptions, the Hn-module End(En) (given by left multiplication)
is in Nn.

Let τ ∈ {1, sgn}. We put E(τ,n) = Encτ
n, the image of cτ

n : En → En.
Note that the canonical map En ⊗Hn

Hncτ
n

∼→ E(τ,n) is an isomorphism (cf.
§3.2.2).

In the context of symmetric groups, the following lemma is due to Puig.
It is an immediate consequence of Proposition 3.5.

Lemma 5.13. The canonical map E(τ,n) ⊗P Sn
n

cτ
nHn

∼→ En is an isomor-
phism. In particular, En 
 n!·E(τ,n) and the functor E(τ,n) is a direct summand
of En.

We denote by E(n) one of the two isomorphic functors E(1,n), E(sgn,n).
Using the adjoint pair (E, F ), we obtain a morphism Hn → End(Fn)opp.

The definitions and results above have counterparts for E replaced by F (cf.
§4.1.2).

We obtain a structure of sl2-categorification on the dual as follows. Put
X̃ = X−1 when q �= 1 (resp. X̃ = −X when q = 1). We choose an adjoint pair
(F, E). Using this adjoint pair, the endomorphisms X̃ of E and T of E2 provide
endomorphisms of F and F 2. We take these as the defining endomorphisms
for the dual categorification. We define “a” for the dual categorification as the
inverse (resp. the opposite) of a for the original categorification.

Remark 5.14. The scalar a can be shifted: given α ∈ k× when q �= 1
(resp. α ∈ k when q = 1), we can define a new categorification by replacing
X by αX (resp. by X + α1E). This changes a into αa (resp. α + a). So, the
scalar a can always be adjusted to 1 (resp. to 0).

Remark 5.15. Assume V is a multiple of the simple 2-dimensional sl2-
module. Then, a weak sl2-categorification consists in the data of A−1 and A1

together with inverse equivalences E : A−1
∼→ A1 and F : A1

∼→ A−1. An sl2-
categorification results in the additional data of q, a and X ∈ End(E) 
 Z(A1)
with X − a nilpotent.

Remark 5.16. As soon as V contains a copy of a simple sl2-module of
dimension 3 or more, then a and q are determined by X and T .

Example 5.17. Take for V the three dimensional irreducible representa-
tion of sl2. Let A−2 = A2 = k and A0 = k[x]/x2. We put Ai = Ai-mod. On
A−2, define E to be induction A−2 → A0. On A0, E is restriction A0 → A2

and F is restriction A0 → A−2. On A2, then F is induction A2 → A0.

k
Ind ��

k[x]/x2

Res
��

Res ��
k.

Ind
��
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Let q = 1 and a = 0. Let X be multiplication by x on Res : A0 → A2 and
multiplication by −x on Ind : A−2 → A0. Let T ∈ Endk(k[x]/x2) be the
automorphism swapping 1 and x. This is an sl2-categorification of the adjoint
representation of sl2. The corresponding weak categorification was constructed
in [HueKho].

Remark 5.18. Take for V the three dimensional irreducible representation
of sl2. Let A−2 = A2 = k[x]/x2 and A0 = k. We put Ai = Ai-mod. On A−2,
then E is restriction A−2 → A0. On A0, E is induction A0 → A2 and F is
induction A0 → A−2. On A2, then F is restriction A2 → A0.

k[x]/x2
Res ��

k
Ind

��
Ind ��

k[x]/x2.
Res

��

This is a weak sl2-categorification but not an sl2-categorification, since
E2 : A−2 → A2 is (k[x]/x2) ⊗k −, which is an indecomposable functor.

Remark 5.19. Let A−2 = k, A0 = k × k and A−2 = k. We define E and
F as the restriction and induction functors in the same way as in Example
5.17. Then, V is the direct sum of a 3-dimensional simple representation and a
1-dimensional representation. Assume there is X ∈ End(E) and T ∈ End(E2)
giving an sl2-categorification. We have End(E2) = Endk(k2) and X1E =
1EX = a1E2 . But the quotient of H2(q) by the relation X1 = X2 = a is zero!
So, we have a contradiction (it is crucial to exclude the affine Hecke algebra
at q = 1). So, this is a weak sl2-categorification but not an sl2-categorification
(note that we still have E2 
 E ⊕ E).

5.3. Minimal categorification. We introduce here a categorification of the
(finite dimensional) simple sl2-modules.

We fix q ∈ k× and a ∈ k with a �= 0 if q �= 1. Let n ≥ 0 and Bi = H̄i,n for
0 ≤ i ≤ n.

We put A(n)λ = B(λ+n)/2-mod and A(n) =
⊕

i Bi-mod, E =
⊕

i<n IndBi+1

Bi

and F =
⊕

i>0 ResBi

Bi−1
. The functors IndBi+1

Bi
= Bi+1 ⊗Bi

− and ResBi+1

Bi
=

Bi+1 ⊗Bi+1 − are left and right adjoint.
We have EF (Bi) 
 Bi⊗Bi−1 Bi 
 i(n−i+1)Bi and FE(Bi) 
 Bi+1 
 (i+

1)(n− i)Bi as left Bi-modules (cf. §3.3.3). Thus, (ef −fe)([Bi]) = (2i−n)[Bi].
Now, Q ⊗ K0(A(n)λ) = Q[B(λ+n)/2]; hence ef − fe acts on K0(A(n)λ) by λ.
It follows that e and f induce an action of sl2 on K0(A(n)), hence we have a
weak sl2-categorification.

The image of Xi+1 in Bi+1 gives an endomorphism of IndBi+1

Bi
by right

multiplication on Bi+1. Taking the sum over all i, we get an endomorphism X

of E. Similarly, the image of Ti+1 in Bi+2 gives an endomorphism of IndBi+2

Bi

and taking the sum over all i, we get an endomorphism T of E2.
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This provides an sl2-categorification. The representation on K0(A(n)) is
the simple (n + 1)-dimensional sl2-module.

5.4. Link with affine Hecke algebras.

5.4.1. The following proposition generalizes and strengthens results of
Kleshchev [Kl1, Kl2] in the symmetric-group setting and of Grojnowski and
Vazirani [GrVa] in the context of cyclotomic Hecke algebras (cf. §7.1 and §7.2).

Proposition 5.20. Let S be a simple object of A, let n = h+(S) and
i ≤ n.

(a) E(n)S is simple.

(b) The socle and head of E(i)S are isomorphic to a simple object S′ of A. We
have isomorphisms of (A, Hi)-bimodules: soc EiS 
 hdEiS 
 S′ ⊗ Ki.

(c) The morphism γi(S) : Hi → End(EiS) factors through H̄i,n and induces
an isomorphism H̄i,n

∼→ End(EiS).

Hi

can

����
��

��
�� γi(S)



����������

H̄i,n ∼ �� End(EiS).

(d) We have [E(i)S] −
(
n
i

)
[S′] ∈ V ≤d(S′)−1.

The corresponding statements with E replaced by F and h+(S) by h−(S) hold
as well.

Proof. • Let us assume (a) holds. We will show that (b), (c), and (d)
follow.

We have EnS 
 n! · S′′ for some S′′ simple. So, we have EnS 
 S′′ ⊗ R

as (A, Hn)-bimodules, where R is a right Hn-module in Nn. Since dimR =
dimKn, it follows that R 
 Kn.

We have En−i soc E(i)S ⊂ En−iE(i)S 
 S′′⊗Knc1
i . Since S′′⊗Knc1

i has a
simple socle (Lemma 3.6), it follows that En−i soc E(i)S is an indecomposable
(A, Hn−i)-bimodule. If S′ is a nonzero summand of soc E(i)S, then En−iS′ �= 0
(Lemma 5.12). So, S′ = soc E(i)S is simple. We have soc EiS 
 S′ ⊗ R for
some Hi-module R in Ni. Since dimR = i!, it follows that R 
 Ki. The proof
for the head is similar.

The dimension of End(E(i)S) is at most the multiplicity p of S′ as a
composition factor of E(i)S. Since E(n−i)S′ �= 0, it follows that the dimension
of End(E(i)S) is at most the number of composition factors of E(n−i)E(i)S. We
have E(n−i)E(i)S 


(
n
i

)
· S′′. So, dim End(E(i)S) ≤

(
n
i

)
and dim End(EiS) ≤

(i!)2
(
n
i

)
= dim H̄i,n.
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Since ker γn(S) is a proper ideal of Hn, we have ker γn(S) ⊂ nnHn. We
have ker γi(S) ⊂ Hi ∩ ker γn(S) ⊂ Hi ∩ (nnHn). So, the canonical map Hi →
H̄i,n factors through a surjective map: im γi(S) � H̄i,n. We deduce that γi(S)
is surjective and H̄i,n

∼→ End(EiS). So, (c) holds. We deduce also that p =
(
n
i

)
and that if L is a composition factor of E(i)S with E(n−i)L �= 0, then L 
 S′.
So, (d) holds. Since the simple object hdE(i)S is not killed by E(n−i) (Lemma
5.12), we deduce that hdE(i)S 
 S′. We have now shown (b).

• Let us show that (a) (hence (b), (c), and (d)) holds when FS = 0. By
Lemma 4.3 (3), we have [E(n)S] = r[S′] for some simple object S′ and r ≥ 1
integer. Since [F (n)E(n)S] = [S], we have r = 1, so (a) holds.

• Let us now show (a) in general. Let L be a simple quotient of F (r)S,
where r = h−(S). Since Hom(S, E(r)L) 
 Hom(F (r)S, L) �= 0, we deduce that
S is isomorphic to a submodule of E(r)L. Since FL = 0, we know by (a)
that E(n)E(r)L 


(
n+r

r

)
S′ for some simple object S′. So, E(n)S 
 mS′ for

some positive integer m. We have Hom(E(n)S, S′) 
 Hom(S, F (n)S′). Since
ES′ = 0, we deduce that soc F (n)S′ is simple (we use (b) in its “F” version).
So, dim Hom(S, F (n)S′) ≤ 1, hence m = 1 and (a) holds.

Corollary 5.21. The sl2(Q)-module V ≤d is the sum of the simple sub-
modules of V of dimension ≤ d.

Proof. Let S be a simple object of A with r = h−(S). By Proposition
5.20 (a), S′ = F (r)S is simple. We deduce that S 
 soc E(r)S′ by adjunction.
Now, Proposition 5.20 (d) shows that [E(r)S′] −

(
d(S)

r

)
[S] ∈ V ≤d(S)−1.

We deduce by induction on r that {[ErS′]} generates V , where S′ runs
over the isomorphism classes of simple objects killed by F and 0 ≤ r ≤ h+(S′).
The corollary follows from Lemma 4.3, (iii)=⇒(i).

Remark 5.22. Let S be a simple object of A and i ≤ h+(S). The action
of Zi,n = Z(H̄i,n) on EiS restricts to an action on E(i)S. Since EiS is a faith-
ful right H̄i,n-module, it follows from Proposition 3.5 that E(i)S is a faithful
Zi,n-module. Now, dim EndA(E(i)S) = 1

(i!)2 dim H̄i,n = dimZi,n; hence the

morphism Zi,n → EndA(E(i)S) is an isomorphism.

Let us now continue with the following crucial lemma whose proof uses
some of the ideas of the proof of Proposition 5.20.

Lemma 5.23. Let U be a simple object of A such that FU = 0. Let
n = h+(U), i < n, and Bi = H̄i,n. The composition of η(EiU) ⊗ 1 : EiU ⊗Bi

Bi+1 → FEi+1U ⊗Bi
Bi+1 with the action map FEi+1U ⊗Bi

Bi+1 → FEi+1U

is an isomorphism

EiU ⊗Bi
Bi+1

∼→ FEi+1U.
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Proof. By Proposition 3.5, it is enough to prove that the map becomes
an isomorphism after applying −⊗Bi+1 Bi+1c

1
i+1. By (3), we have Bi+1c

1
i+1 =⊕n−i−1

a=0 P̄i,nxa
i+1c

1
i+1. Consider the composition

φ = g ◦ (f ⊗ 1) : E(i)U ⊗
n−i−1⊕
a=0

kxa → FE(i+1)U

where f : E(i)U
η(E(i)U)−−−−−→ FEE(i)U

1F c1
[Si\Si+1]U−−−−−−−−−→ FE(i+1)U and g : FE(i+1)U⊗⊕n−i−1

a=0 kxa → FE(i+1)U are given by the action on F . We have to prove that
φ is an isomorphism. We have [FE(i+1)U ] = (n− i)[E(i)U ]; hence it suffices to
prove that φ is injective. In order to do that, one may restrict φ to a map be-
tween the socles of the objects (viewed in A). Let φa : soc E(i)U → FE(i+1)U

be the restriction of φ to the socle of E(i)U ⊗ kxa. Since soc(E(i)U) is simple
(Proposition 5.20), the problem is to prove that the maps φa for 0 ≤ a ≤ n−i−1
are linearly independent. By adjunction, it is equivalent to prove that the maps

ψa : E soc E(i)U
xa1soc E(i)U−−−−−−−→ E soc E(i)U

c1
[Si\Si+1]U−−−−−−−→ E(i+1)U

are linearly independent.
We have soc Ei+1U 
 S ⊗ Ki+1 as (A, Hi+1)-bimodules, where S =

soc E(i+1)U is simple (Proposition 5.20). Consider the right (k[xi+1] ⊗ Hi)-
submodule L′ = HomA(S, soc(E soc EiU))) of L = HomA(S, soc Ei+1U). We
have Hi+1 = (Hi ⊗ P[i+1])H

f
i+1, hence L = L′Hf

i+1 since L is a simple right
Hi+1-module. So, L′c1

i+1 = Lc1
i+1, hence soc(E soc EiU))c1

i+1 = soc E(i+1)U .

In particular, the map E soc E(i)U
c1
[Si+1/Si]

U

−−−−−−−→ E(i+1)U is injective, since
E soc E(i)U has a simple socle by Proposition 5.20.

Now, we are left with proving that the maps

E soc E(i)U
Xa1soc E(i)U−−−−−−−→ E soc E(i)U

are linearly independent; i.e., that the restriction of γ1(S′) : H1 → EndA(ES′)
to

⊕n−i−1
a=0 kXa

1 is injective, where S′ = soc E(i)U . Let I be the kernel of
γn−i(S′) : Hn−i → EndA(En−iS′). Then, as in the proof of Proposition 5.20,
we have I ⊂ nn−iHn−i. So, ker γ1 ⊂ H1 ∩ nn−iHn−i; hence the canonical map⊕n−i−1

a=0 kXa
1 → EndA(En−iS′) is injective (cf. (3)) and we are done.

5.4.2. We fix U a simple object of A such that FU = 0. Let n = h+(U).
We put Bi = H̄i,n for 0 ≤ i ≤ n.

The canonical isomorphisms of functors

E(EiU ⊗Bi
−) ∼→ Ei+1U ⊗Bi

− ∼→ Ei+1U ⊗Bi+1 Bi+1 ⊗Bi
−
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make the following diagram commutative

Bi+1-mod
Ei+1U⊗Bi+1− �� A

Bi-mod
EiU⊗Bi

−
��

Bi+1⊗Bi
−

��

A.

E

��

The canonical isomorphism of functors from Lemma 5.23

EiU ⊗Bi
Bi+1 ⊗Bi+1 −

∼→ F (Ei+1U ⊗Bi+1 −)

makes the following diagram commutative:

Bi+1-mod
Ei+1U⊗Bi+1− ��

Bi+1⊗Bi+1−
��

A
F

��
Bi-mod

EiU⊗Bi
−

�� A.

Theorem 5.24. The construction above is a morphism of sl2-categorifi-
cations RU : A(n) → A.

Proof. The commutativity of diagram (4) (see §5.1.2) follows from the
very definition of ζ− given by Lemma 5.23. The commutativity of the diagram
(5) (see §5.2.1) is obvious.

Remark 5.25. Let In be the set of isomorphism classes of simple objects
U of A such that FU = 0 and h+(U) = n. We have a morphism of sl2-
categorifications ∑

n,U∈In

RU :
⊕

n,U∈In

A(n) → A

that is not an equivalence in general but that induces an isomorphism⊕
n,U∈In

Q ⊗ K0(A(n)-proj) ∼→ Q ⊗ K0(A)

giving a canonical decomposition of Q⊗K0(A) into simple summands. In that
sense, the categorifications A(n) are minimal.

The following proposition is clear.

Proposition 5.26. Assume Q⊗K0(A) is a simple sl2-module of dimen-
sion n + 1. Let U be the unique simple object of A with FU = 0. Then,
RU : A(n) → A is an equivalence of categories if and only if U is projective.

Note that a categorification corresponding to an isotypic representation
need not be isomorphic to a sum of minimal categorifications (take for example
a trivial sl2-representation).
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5.5. Decomposition of [E, F ].

5.5.1. Let σ : EF → FE be given as the composition

EF
η1EF−−−→ FEEF

1F T1F−−−−→ FEEF
1F Eε−−−→ FE.

The following gives the categorification of the relation [e, f ] = h.

Theorem 5.27. Let λ ≥ 0. Then, there are isomorphisms

σ +
λ−1∑
j=0

(1F Xj) ◦ η : EF IdA−λ
⊕ Id

⊕
λ

A−λ

∼→ FE IdA−λ

and

σ +
λ−1∑
j=0

ε ◦ (Xj1F ) : EF IdAλ

∼→ FE IdAλ
⊕ Id

⊕
λ

Aλ
.

Proof. By Proposition 5.8, it is enough to check that the maps are iso-
morphisms after evaluating the functors at EiU , where i ≥ 0 and U is a simple
object of A−λ−2i (resp. of Aλ−2i) such that FU = 0. Thanks to Lemma 5.3 and
Theorem 5.24, we can do this with A replaced by a minimal categorification
A(n) and this is the content of Proposition 5.31 below.

In the case of cyclotomic Hecke algebras, Vazirani [Va] had shown that
the values of the functors on simple objects are isomorphic.

Corollary 5.28. The functors E and F induce an action of sl2 on the
Grothendieck group of A, viewed as an additive category.

5.5.2. We put γ =

{
(q − 1)a if q �= 1
1 if q = 1

and mij(c) =

⎧⎪⎨⎪⎩
∑

j≤d1<···<di−j−c≤i−1 Td1 · · ·Tdi−j−c
if c < i − j

1 if c = i − j

0 if c > i − j.

Lemma 5.29. Let j < i and c ≥ 0. We have

TjTj+1 · · ·Ti−1x
c
i = γcmij(c) (mod miHi).

In particular, TjTj+1 · · ·Ti−1x
c
i ∈ miHi if c > i − j.

Proof. By (1) (see §3.1.3), we have

Ti−1x
c
i − xc

i−1Ti−1 =

{
(q − 1)(xi + a)(xc−1

i−1 + xc−2
i−1xi + · · · + xc−1

i ) if q �= 1
xc−1

i−1 + xc−2
i−1xi + · · · + xc−1

i if q = 1.
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Hence

TjTj+1 · · ·Ti−1x
c
i

= TjTj+1 · · ·Ti−2x
c
i−1Ti−1 + γTjTj+1 · · ·Ti−2x

c−1
i−1 (mod miHi).

Since mij(c) = mi−1,j(c− 1) + mi−1,j(c)Ti−1, the lemma follows by induction.

Lemma 5.30. Let j ≤ i, c ≥ 1 and e = inf(c − 1, i − j). Then,

TjTj+1 · · ·Tix
c
i − TjTj+1 · · ·Ti−1x

c
i+1Ti

= α
(
γexc−e−1

i+1 mij(e) + γe−1xc−e
i+1mij(e − 1) + · · · + xc−1

i+1mij(0)
)

(mod miHi+1)

where α =

{
(1 − q)(xi+1 + a) if q �= 1
−1 if q = 1.

Proof. We have

TjTj+1 · · ·Tix
c
i − TjTj+1 · · ·Ti−1x

c
i+1Ti = αTj · · ·Ti−1(xc−1

i + · · · + xc−1
i+1 )

and the result follows from Lemma 5.29.

The following is a Mackey decomposition for the algebras Bi = H̄i,n.

Proposition 5.31. Let i ≤ n/2. Then, there is an isomorphism of
(Bi, Bi)-bimodules

Bi ⊗Bi−1 Bi ⊕ B⊕n−2i
i

∼→ Bi+1

(b ⊗ b′, b1, . . . , bn−2i) �→ bTib
′ +

n−2i∑
j=1

bjX
j−1
i+1 .

Let now i ≥ n/2. Then, there is an isomorphism of (Bi, Bi)-bimodules

Bi ⊗Bi−1 Bi
∼→ Bi+1 ⊕ B⊕2i−n

i

b ⊗ b′ �→ (bTib
′, bb′, bXib

′, . . . , bX2i−n−1
i b′).

Proof. Let us consider the first map. We know already that both sides
are free Bi-modules of the same rank (cf. §5.3), hence it is enough to show
surjectivity.

Let M = (Pi/mi) ⊗Pi
Bi+1. This is a right Bi-module quotient of Bi+1.

Let L be the right Bi-submodule of M generated by BiTi +
∑n−2i−1

j=0 Xj
i+1k.

The first isomorphism will follow from the proof that M = L. From now on,
all elements are viewed in M .

We have

xn−i
i+1 =

n−i−1∑
j=0

(−1)n−i−1+jxj
i+1en−i−j(xi+1, . . . , xn).

Given r ≥ 2 and j ≤ n − i − 1, we have
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en−i−j(xr, . . . , xn) = en−i−j(xr−1, xr, . . . , xn) − xr−1en−i−j−1(xr, . . . , xn).

Since en−i−j(x1, . . . , xn) = 0, it follows that en−i−j(xi+1, . . . , xn) = 0. So, we
have xn−i

i+1 = 0.
Take 1 ≤ r ≤ i. Then, r ≤ n − i and by Lemma 5.30,

Ti−r+1Ti−r+2 · · ·Tix
n−i
i = xn−i

i+1Ti−r+1 · · ·Ti

+α
(
γr−1xn−i−r

i+1 + γr−2xn−i−r+1
i+1 mi,i−r+1(r − 2) + · · · + xn−i−1

i+1 mi,i−r+1(0)
)
.

Thus,

Ti−r+1Ti−r+2 · · ·Tix
n−i
i + αγr−1xn−i−r

i+1 ∈
∑
j≥0

xn−i−r+1+j
i+1 Hi.

Since xn−i
i+1 = 0, we deduce by induction on r that xn−i−r

i+1 ∈ L for 1 ≤ r ≤ i.
Hence, xa

i+1 ∈ L for all a ≥ 0. We deduce from Lemma 5.30 that xa
i+1Tj · · ·Ti ∈

L for all 1 ≤ j ≤ i and a ≥ 0. Since

Bi+1 =
⊕

0≤a≤n−i−1,w∈[Si+1/Si]

P̄i,nxa
i+1TwHf

i

(cf. §3.3.1), we finally obtain M = L and we are done.
Let us now consider the second isomorphism. We fix an adjunction (F, E)

with unit η′ and co-unit ε′ and consider the dual categorification A′ of A(n).

We denote by X ′ and T ′ its defining endomorphisms. Define σ′ : FE
η′FE−−−→

EFFE
ET ′E−−−→ EFFE

EFε′
−−−→ EF .

Let G = FE and H = EF . There is an adjoint pair (EF, EF ) with
co-unit εH : EFEF

Eε′F−−−→ EF
ε−→ Id and an adjoint pair (FE, FE) with unit

ηG : Id
η−→ FE

Fη′E−−−→ FEFE. Consider the canonical isomorphism

ζ : Hom(FE, EF ) = Hom(G, H) ∼→ Hom(H∨, G∨) ∼→ Hom(EF, FE)
corresponding to these adjunctions. The commutativity of the following dia-
gram shows that ζ(σ′) = σ.

EF

ηEF

��
FEEF

F η′EEF ��
F η′EEF

����������������

F EEF

���������������������� FEFEEF
F Eη′F EEF �� FEEFFEEF

F EET ′EEF

������������������

FEFEEF
F Eη′F EEF ��

F Eε′EF

��

FEEFFEEF
F T F F EEF ��

F EEF ε′EF

��

FEEFFEEF

F EEF ε′EF

��
FEEF

F Eη′EF ��

F EEF
������������������ FEEFEF

F EEε′F

��

FEEFEF

F EEε′F

��
FEEF

F T F

�� FEEF

F Eε

��
FE.
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Similarly, using the canonical adjoint pair (Id, Id), we get a canonical isomor-
phism

ζ ′ : Hom(Id, EF ) = Hom(Id, H) ∼→ Hom(H∨, Id) ∼→ Hom(EF, Id).

Now, ζ ′((1E(X̃ ′)j) ◦ η′) = ε ◦ (Xj1F ).
We have shown that the adjoint to

σ +
λ−1∑
j=0

ε ◦ (Xj1F ) : EF IdAλ

∼→ FE IdAλ
⊕ Id

⊕
λ

Aλ

is

σ′ +
λ−1∑
j=0

(1F ′(X̃ ′)j) ◦ η′ : E′F ′ IdA′
−λ

⊕ Id
⊕

λ
A′

−λ
→ F ′E′ IdA′

−λ
.

One checks easily that the first map of the proposition remains an isomorphism
if Xi+1 is replaced by X̃i+1. Since the categorification A′ is isomorphic to A(n),
this shows that the map σ′ +

∑λ−1
j=0 (1F ′(X̃ ′)j) ◦ η′ is an isomorphism; hence

σ +
∑λ−1

j=0 ε ◦ (Xj1F ) is an isomorphism as well.

5.5.3. We fix a family {Mλ ∈ Aλ}λ and let Mλ be the full subcategory of
Aλ whose objects are finite direct sums of direct summands of Mλ. We assume
that M =

⊕
λ Mλ is stable under E and F .

Let A′
λ = EndA(Mλ), A′

λ = A′
λ-mod and A′ =

⊕
λ A′

λ and put

E′ =
⊕

λ

HomA(Mλ+2, EMλ) ⊗A′
λ
− : A′ → A′

and F ′ =
⊕

λ

HomA(Mλ−2, FMλ) ⊗A′
λ
− : A′ → A′.

Now, HomA(Mλ+2, EMλ) 
 HomA(FMλ+2, Mλ) and FMλ+2 ∈ Mλ. It
follows that HomA(Mλ+2, EMλ) is a projective right A′

λ-module, so that E′ is
an exact functor. Similarly, F ′ is an exact functor. Also, they send projectives
to projectives.

Consider the functor R =
⊕

λ Mλ ⊗A′
λ
− : A′ → A. Its restriction to

A′-proj is an equivalence A′-proj ∼→ M. So, the functor G �→ RG from the
category of exact functors A′ → A′ sending projectives to projectives to the
category of functors A′ → A is fully faithful.

The canonical map

Mλ+2 ⊗A′
λ+2

HomA(Mλ+2, EMλ) ∼→ EMλ, m ⊗ f �→ f(m)

is an isomorphism, since EMλ ∈ Mλ+2. The induced map

Mλ+2 ⊗A′
λ+2

HomA(Mλ+2, EMλ) ⊗A′
λ

U
∼→ E(Mλ ⊗A′

λ
U),

m ⊗ f ⊗ u �→ E(m′ �→ m′ ⊗ u)(f(m))

for U ∈ A′
λ-mod is an isomorphism, since it is an isomorphism for U = A′

λ.
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We obtain an isomorphism RE′ ∼→ ER and construct similarly an isomor-
phism RF ′ ∼→ FR.

Let X ′ (resp. T ′) be the inverse image of X idR (resp. T idR) via the
canonical isomorphisms End(E′) ∼→ End(RE′) ∼→ End(ER) (resp. End(E

′2) ∼→
End(RE

′2) ∼→ End(ERE′) ∼→ End(E2R)).
Proceeding similarly, the adjoint pair (E, F ) gives an adjoint pair (E′, F ′)

and the functor F ′ is isomorphic to a left adjoint of E′.

Theorem 5.32. The data above define an sl2-categorification on A′ and
a morphism of sl2-categorifications A′ → A.

Proof. The sl2-relations in K0(A′-proj) hold thanks to Theorem 5.27 ap-
plied to the restriction of functors to M. The local finiteness follows from the
case of A. The commutativity of the diagrams of Lemma 5.3 follows immedi-
ately from the construction of the adjoint pair (E′, F ′). This shows that A′ is a
weak categorification and that R defines a morphism of weak categorifications.

By construction, this weak categorification is a categorification and the
morphism of weak categorifications is actually a morphism of categorifications.

Corollary 5.33. Let M ∈ A. Then, there exist a finite dimensional
algebra A, an sl2-categorification on A-mod and a morphism of sl2-categorifi-
cations R : A-mod → A such that M is a direct summand of R(A).

Proof. Let N =
⊕

i,j≥0 EiF jM , a finite sum. Let Nλ be the projection of
N on Aλ. Now, we can apply the constructions and results above, the stability
being provided by Corollary 5.28.

6. Categorification of the reflection

6.1. Rickard ’s complexes. Let λ ∈ Z. We construct a complex of functors

Θλ : Comp(A−λ) → Comp(Aλ),

following Rickard [Ri1] (originally, for blocks of symmetric groups).
We denote by (Θλ)−r the restriction of E(sgn,λ+r)F (1,r) to A−λ for r, λ+ r

≥ 0 and we put (Θλ)−r = 0 otherwise.
Consider the map

f : Eλ+rF r = Eλ+r−1EFF r−1 1Eλ+r−1ε1F r−1−−−−−−−−−−→ Eλ+r−1F r−1.

We have E(sgn,λ+r) = Eλ+rcsgn
[Sλ+r/S[2,λ+r]]

csgn
[2,λ+r] ⊆ E(sgn,λ+r−1)E and similarly

F (1,r) ⊆ FF (1,r−1); hence f restricts to a map

d−r : E(sgn,λ+r)F (1,r) → E(sgn,λ+r−1)F (1,r−1).

We put
Θλ = · · · → (Θλ)−i d−i

−−→ (Θλ)−i+1 → · · · .
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Lemma 6.1. Θλ is a complex. The map [Θλ] : V−λ = K0(A−λ) → Vλ =
K0(Aλ) coincides with the action of s.

Proof. The map d1−rd−r is the restriction of 1Eλ+r−2ε21F r−2 , where ε2 :
EEFF

1Eε1F−−−−→ EF
ε−→ Id. Since csgn

λ+r = csgn
[Sλ+r/S2]

csgn
2 and c1

r = c1
2c

1
[S2\Sr], it

follows that
E(sgn,λ+r)F (1,r) ⊆ Eλ+r−2E(sgn,2)F (1,2)F r−2.

So, in order to prove that d1−rd−r = 0, it is enough to show that the compo-
sition

E2F 2 csgn
2 c1

2−−−→ E2F 2 ε2−→ Id

vanishes, where csgn
2 acts on E2 and c1

2 acts on F 2. This composition is equal

to the composition E2F 2 (csgn
2 c1

2)1F2−−−−−−−→ E2F 2 ε2−→ Id, where csgn
2 c1

2 acts now on
E2. We are done, since csgn

2 c1
2 = 0.

The last statement is given by Lemma 4.2.

Remark 6.2. Let M ∈ A−λ. Let l = max{r ≥ 0|F rM �= 0}, be a finite
integer. Then, (Θλ)−i(M) = 0 when i �∈ [max(0,−λ), l].

6.2. Derived equivalence from the simple reflection. Let Θ =
⊕

λ Θλ. The
following lemma follows easily from Lemma 5.3.

Lemma 6.3. Let R : A′ → A be a morphism of sl2-categorifications.
Then, there is an isomorphism of complexes of functors ΘR

∼→ RΘ′.

We can now state our main theorem (whose proof will be deduced from
Theorem 6.6 below).

Theorem 6.4. The complex of functors Θ induces a self-equivalence of
Kb(A) and of Db(A) and induces by restriction equivalences Kb(A−λ) ∼→
Kb(Aλ) and Db(A−λ) ∼→ Db(Aλ). Furthermore, [Θ] = s.

Remark 6.5. In the context of symmetric groups, the invertibility of Θλ

when the complex has only one (resp. two) nonzero term is due to Scopes [Sco]
(resp. Rickard [Ri1]).

Proof of Theorem 6.4. Since E and F have right adjoints, there is a
complex of functors Θ∨

λ that gives a right adjoint to Θλ (cf. §4.1.4). Let
ε : ΘλΘ∨

λ → Id be the co-unit of adjunction and Z its cone. Thus, Z is a
complex of exact functors A−λ → Aλ.

Pick U ∈ A with FU = 0 and EiU ∈ A−λ and put n = h+(U). The fully
faithful functor RU : Kb(A(n)-proj) → Kb(A) commutes with Θλ (Lemma
6.3), hence commutes with Θ∨

λ and with Z (cf. §4.1.6). By Theorem 6.6, we
have Z(EiU) = 0. Now, Proposition 5.8 shows that Z(M) = 0 in Db(A−λ) for
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all M ∈ Db(A−λ). So, ε is an isomorphism in Db(A−λ). One shows similarly
that Θλ has a left inverse in Db(A−λ).

Let us now prove that ε is still an isomorphism in Kb(A−λ). Let M ∈
Compb(A−λ). By Corollary 5.33, there are a finite dimensional k-algebra A, an
sl2-categorification on A′ = A-mod and a morphism of sl2-categorifications R :
A′ → A such that the terms of M are direct summands of R(A). The functor
R induces a fully faithful triangulated functor R′ : Kb(A′-proj) → Kb(A).
The derived category case of the theorem shows that ε′ is an isomorphism in
Kb(A′

−λ-proj) ∼→ Db(A′
−λ). As above, we deduce that ε is an isomorphism in

the image of R′; hence ε(M) is an isomorphism in Kb(A−λ). One proceeds
similarly to show that Θλ has a left inverse in Kb(A−λ).

6.3. Equivalences for the minimal categorification.

Theorem 6.6. Let n ≥ 0 and A = A(n) be the minimal categorification.
Fix λ ≥ 0 and let l = n−λ

2 . The homology of the complex of functors Θλ is
concentrated in degree −l and H−lΘλ : A−λ

∼→ Aλ is an equivalence.

Proof. In order to show that the homology of Θλ is concentrated in
degree −l, it suffices to show that Θλ(Blc

1
l ) is homotopy equivalent to a

complex concentrated in degree −l, since Blc
1
l is a progenerator for Bl-mod.

This is equivalent to the property that H∗(C) = 0 for ∗ �= −l, where C =
csgn
n−lH̄n−l ⊗Bn−l

Θλ(Blc
1
l ), since csgn

n−lH̄n−l is the unique simple right Bn−l-
module and C−r = 0 for r > l.

We have

C−r = csgn
n−lH̄n−l ⊗Bn−l

Bn−lc
sgn
[l−r+1,n−l] ⊗Bl−r

c1
[l−r+1,l]Bl ⊗Bl

Blc
1
l .

Lemma 3.7 gives an isomorphism

C−r ∼→ csgn
n−lH̄n−l⊗Bn−l

Bn−lc
sgn
[l−r+1,n−l]c

1
[1,l−r]⊗k

⊕
μ∈P (r,n−l)

mμ(xl−r+1, . . . , xl)k.

Proposition 3.3 and Lemma 3.4 give isomorphisms⊕
0≤a1<···<al−r<n−l

xa1
1 · · ·xal−r

l−r k
∼−−→

can
ΛSl−r(PS[l−r+1,n−l]

n−l ⊗
P

Sn−l
n−l

k),

ΛSl−r(PS[l−r+1,n−l]

n−l ⊗
P

Sn−l
n−l

k) ∼→ csgn
n−lH̄n−l ⊗Bn−l

Bn−lc
sgn
[l−r+1,n−l]c

1
[1,l−r],

y �→ csgn
n−ly

and these induce isomorphisms E−r ∼−−→
φ−r

D−r ∼−−→
ψ−r

C−r, where

E−r =
⊕

0≤a1<···<al−r<n−l

xa1
1 · · ·xal−r

l−r k ⊗
⊕

μ∈P (r,n−l)

mμ(xl−r+1, . . . , xl)
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and

D−r = ΛSl−r(PS[l−r+1,n−l]

n−l ⊗
P

Sn−l
n−l

k) ⊗
⊕

μ∈P (r,n−l)

mμ(xl−r+1, . . . , xl)k.

Let μ ∈ P (r, n−l) and 0 ≤ a1 < · · · < al−r < n−l. Given a positive integer
b, we write b ≺ μ when b appears in μ and we denote then by μ\b the partition
obtained from μ by removing one instance of b. We have mμ(xl−r+1, . . . , xl) =∑

b≺μ xb
l−r+1mμ\b(xl−r+2, . . . , xl). It follows that

d−r
C ψ−r(xa1

1 · · ·xal−r

l−r ⊗ mμ) = ψ−r+1

⎛⎝∑
b≺μ

xa1
1 · · ·xal−r

l−r xb
l−r+1 ⊗ mμ\b

⎞⎠ .

Assume b = n−l. Since xn−l
l−r+1 ∈ nn−lPn−l, it follows that xa1

1 · · ·xal−r

l−r xb
l−r+1

is 0 in ΛSl−r+1(PS[l−r+2,n−l]

n−l ⊗
P

Sn−l
n−l

k). One gets the same conclusion when

b ∈ {a1, . . . , al−r}. Thus,

d−r
C ψ−rφ−r(xa1

1 · · ·xal−r

l−r ⊗ mμ)

= ψ−r+1φ−r+1

⎛⎝ ∑
b≺μ,b�∈{a1,... ,al−r,n−l}

sgn(σb)x
a′
1

1 · · ·xa′
l−r+1

l−r+1 ⊗ mμ\b

⎞⎠
where σb ∈ Sl−r+1 is the permutation such that, putting al−r+1 = b and
a′j = aσb(j), we have a′1 < a′2 < · · · < a′l−r+1.

Let L = kn−l, with canonical basis {ei}1≤i≤n−l. The Koszul complex K of
L is a bigraded k-vector space given by Kp,q = ΛpL ⊗ SqL, with a differential
of bidegree (−1, 1) given by

(ea1 · · · eap
) ⊗ x �→

p∑
i=1

(−1)i+p+1(ea1 · · · eai−1eai+1 · · · eap
) ⊗ eai

x.

Its dual Homk(K, k) is isomorphic to J defined as follows. We put Jp,q =
Λp(L∗) ⊗ Sq(L∗). Let {fi} be the dual basis of L∗ and fμ = fμ(1) · · · fμ(q) ∈
Sq(L∗) for μ ∈ P (q, n − l). Then, the differential dJ : Jp,q → Jp+1,q−1 is given
by

(fa1 · · · fap
) ⊗ fμ

�→
∑

b≺μ,a1<···<ai<b<ai+1<···<ap

(−1)i+p(fa1 · · · fai
fbfai+1 · · · fap

) ⊗ fμ\b.

The homology of J is concentrated in bidegree (0, 0) and isomorphic to k.
Note that J•,q is a graded right Λ(L∗)-module, with action given by right multi-
plication. This provides J with the structure of a complex of free graded Λ(L∗)-
modules (the degree −q term is J•,q), hence of free graded k[fn−l]/(f2

n−l)-
modules by restriction. So, the (−q)-th homology group of J ⊗k[fn−l]/(f2

n−l)
k is
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a one-dimensional graded k-vector space which is in degree q. The complexes
of vector spaces J ⊗k[fn−l]/(f2

n−l)
k and Jfn−l are isomorphic, with a shift by

one in the grading. The complex Jfn−l decomposes as the direct sum (over i)
of the complexes

⊕
q Λi−q(L∗)fn−l ⊗ Sq(L∗) and the cohomology of such a

complex is concentrated in degree −i.
We have an isomorphism

E−r ∼→ (Λl−rL∗)fn−l ⊗ SrL∗ ⊆ J l−r+1,r, xa1
1 · · ·xal−r

l−r ⊗ mμ

�→ (fa1 · · · fal−r
fn−l) ⊗ fμ.

This induces an isomorphism between E and the the subcomplex⊕
r

(Λl−rL∗)fn−l ⊗ SrL∗

of J l+∗+1,−∗. It follows that the homology of E is concentrated in degree −l.
The complex of functors Θ−λ is given by tensor product by a bounded

complex of (Bn−l, Bl)-bimodules which are projective as Bn−l-modules and
as Bl-modules. The homology of that complex is concentrated in the lowest
degree where the complex has a nonzero component, hence the homology M is
still projective as a Bn−l-module and as a Bl-module. Lemma 6.1 shows that
M⊗Bl

− sends the unique simple Bl-module to the unique simple Bn−l-module.
By Morita theory, M induces an equivalence.

7. Examples

In this section, the field k will always be assumed to be big enough so that
the simple modules considered are absolutely simple.

In most of our examples, sl2-categorifications are constructed in families,
using the following recipe. We start with left and right adjoint functors Ê and
F̂ on an abelian category A, together with X ∈ End(Ê) and T ∈ End(Ê2)
satisfying the defining relations of (possibly degenerate) affine Hecke algebras.
We obtain for each a ∈ k (with a �= 0 if q �= 1) an sl2-categorification on A
given by E = Ea and F = Fa, the generalised a-eigenspaces of X acting on Ê

and F̂ . While we need to check in each example that E and F do indeed give an
action of sl2 on K0(A), it is automatic that X and T restrict to endomorphisms
of E and E2 with the desired properties. That T restricts is a consequence of
the identity (a special case of (1))

T1(X2 − a)N − (X1 − a)NT1

=

{
(q − 1)X2[(X1 − a)N−1 + (X1 − a)N−2(X2 − a) + · · · + (X2 − a)N−1] if q �= 1
(X1 − a)N−1 + (X1 − a)N−2(X2 − a) + · · · + (X2 − a)N−1 if q = 1.

in H2(q).
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7.1. Symmetric groups.

7.1.1. Let p be a prime number and k = Fp. The quotient of Hn(1) by
the ideal generated by X1 is the group algebra kSn. The images of Ti and Xi

in kSn are si = (i, i + 1) and the Jucys-Murphy element Li = (1, i) + (2, i) +
· · · + (i − 1, i).

Let a ∈ k. Given M a kSn-module, we denote by Fa,n(M) the gen-
eralized a-eigenspace of Xn. This is a kSn−1-module. We have a decom-
position ReskSn

kSn−1
=

⊕
a∈k Fa,n. There is a corresponding decomposition

IndkSn

kSn−1
=

⊕
a∈k Ea,n, where Ea,n is left and right adjoint to Fa,n. We put

Ea =
⊕

n≥1 Ea,n and Fa =
⊕

n≥1 Fa,n.
Recall the following classical result [LLT].

Theorem 7.1. The functors Ea and Fa for a ∈ Fp give rise to an action
of the affine Lie algebra ŝlp on

⊕
n≥0 K0(kSn-mod).

The decomposition of K0(kSn-mod) in blocks coincides with its decompo-
sition in weight spaces.

Two blocks of symmetric groups have the same weight if and only if they
are in the same orbit under the adjoint action of the affine Weyl group.

In particular for each a ∈ Fp the functors Ea and Fa give a weak
sl2-categorification on A =

⊕
n≥0 kSn-mod.

We denote by X the endomorphism of Ea given on Ea,n by right multipli-
cation by Ln (on the (kSn, kSn−1)-bimodule kSn). We denote by T the en-
domorphism of E2

a given on Ea,nEa,n−1 by right multiplication by sn−1 (on the
(kSn, kSn−2)-bimodule kSn). This gives an sl2-categorification on A (here,
q = 1).

7.1.2. Let G and H be two finite groups. Let R = k or Z(p). Let A

(resp. B) be a block of RG (resp. RH). We say that A and B are splendidly
Rickard equivalent if there is a bounded complex C of finitely generated (A ⊗
Bopp)-modules which are direct summands of permutation modules such that
C ⊗B C∗ 
 A in Kb(A ⊗ Aopp) and C∗ ⊗A C 
 B in Kb(B ⊗ Bopp) (one
usually puts some condition on the vertices of the modules involved, but this
is actually automatic, as explained in [Rou5]).

Theorem 7.2. Let R = k or Z(p). Let A and B be two blocks of symmet-
ric groups over R with isomorphic defect groups. Then, A and B are splendidly
Rickard equivalent (in particular, they are derived equivalent).

Proof. Two blocks of symmetric groups over k have isomorphic defect
groups if and only if they have equal weights (cf. §7.1.3 below). By Theorem
7.1, there is a sequence of blocks A0 = A, A1, . . . , Ar = B such that Aj is
the image of Aj−1 by some simple reflection σaj

of the affine Weyl group.



282 JOSEPH CHUANG AND RAPHAËL ROUQUIER

By Theorem 6.4, the complex of functors Θ associated with a = aj induces
a self-equivalence of Kb(A). It restricts to a splendid Rickard equivalence
between Aj and Aj+1. By composing these equivalences, we obtain a splendid
Rickard equivalence between A and B (note that the composition of splendid
equivalences can easily be seen to be splendid; cf. e.g. [Rou2, Lemma 2.6]).

The constructions of E and F lift uniquely to Z(p): IndZ(p)Sn

Z(p)Sn−1
=

⊕
a∈k Ẽa,

ResZ(p)Sn

Z(p)Sn−1
=

⊕
a∈k F̃a, where Ẽa ⊗Z(p) k = Ea, where F̃a ⊗Z(p) k = Fa and Ẽa

and F̃a are left and right adjoint. We denote by T̃ the endomorphism of Ẽ2
a

given on Ẽa,nẼa,n−1 by the action of sn−1.
The construction of Θ in §6.1 lifts to a complex Θ̃ of functors on Ã =⊕

n≥0 Z(p)Sn-mod. By [Ri3, end of proof of Theorem 5.2], the lift Θ̃ of Θ is a
splendid self Rickard equivalence of Db(Ã) and we conclude as before.

Remark 7.3. The equivalence depends on the choice of a sequence of sim-
ple reflections whose product sends one block to the other. If, as expected,
the categorifications of the simple reflections give rise to a braid group action
on the derived category of

⊕
n≥0 kSn-mod, then one can choose the canonical

lifting of the affine Weyl group element in the braid group to get a canonical
equivalence.

Remark 7.4. Theorem 7.2 gives isomorphisms between Grothendieck
groups of the blocks (taken over Q) satisfying certain arithmetical proper-
ties (perfect isometries or even isotypes). These arithmetical properties were
shown by Enguehard [En, 1990].

Remark 7.5. Two blocks of symmetric groups over k have isomorphic de-
fect groups if and only if they have the same number of simple modules, up to
the exception of blocks of weights 0 and 1 for p = 2 — note that a block of
weight 0 is simple whereas a block of weight 1 is not simple, so two such blocks
are not derived equivalent. Now, one can restate Theorem 7.2 as follows:

Let A and B be two blocks of symmetric groups over k. Then, A and B are
derived equivalent if and only if they have isomorphic defect groups. Assume
A and B are not simple if p = 2. Then, A and B are derived equivalent if and
only if rankK0(A) = rankK0(B).

We can now deduce a proof of Broué’s abelian defect group conjecture for
blocks of symmetric groups:

Theorem 7.6. Let A be a block of a symmetric group G over Z(p), D a
defect group and B the corresponding block of NG(D). If D is abelian, then A

and B are splendidly Rickard equivalent.

Proof. By [ChKe], there is a block A′ of a symmetric group which is
splendidly Morita equivalent to the principal block of Z(p)(Sp � Sw), where
w is the weight of A. We have a splendid Rickard equivalence between the
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principal block of Z(p)Sp and Z(p)N , where N is the normalizer of a Sylow
p-subgroup of Sp by [Rou2, Th. 1.1]. By [Ma, Th. 4.3] (cf. also [Rou2, Lemma
2.8] for the Rickard/derived equivalence part), we deduce a splendid Rickard
equivalence between the principal blocks of Z(p)(Sp � Sw) and Z(p)(N � Sw).
Now, we have an isomorphism B 
 Z(p)(N � Sw) ⊗ B0, where B0 is a matrix
algebra over Z(p); hence there is a splendid Morita equivalence between B and
Z(p)(N �Sw). So, we obtain a splendid Rickard equivalence between B and A′.

By Theorem 7.2, we have a splendid Rickard equivalence between A and
A′ and the theorem follows.

Remark 7.7. The existence of an isotype between A and B in Theorem 7.6
was known by [Rou1].

7.1.3. Let us analyze more precisely the categorification. Given λ a
partition of m, we denote by |λ| = m the size of λ. Let κ be a p-core and n an
integer such that p|(n− |κ|) and n ≥ |κ|. We denote by bκ,n the corresponding
block of kSn (the irreducible characters of that block are associated to the
partitions having κ as their p-core). The integer n−|κ|

p is the weight of the
block (this notion of weight is not to be confused with the weights relative to
Lie algebra actions).

Let λ be a partition with p-core κ and λ′ a partition obtained from λ by
adding an a-node. Then, the p-core of λ′ depends only on κ and a and we
denote it by ea(κ). Similarly, we define fa(κ) by removing an a-node.

We will freely identify a functor M ⊗− with the bimodule M . We have

Ea,n+1 =
⊕

κ

bea(κ),n+1kSn+1bκ,n(6)

where κ runs over the p-cores such that |κ| ≤ n, |κ| ≡ n (mod p) and |ea(κ)| ≤
n + 1.

Let bκ−r,l, bκ−r+2,l+1, . . . , bκr,l+r be a chain of blocks with |fa(κ−r)| > l−1,
|ea(κr)| > l + r + 1 and fa(κj) = κj−2.

Put ni = l + (i − r)/2 and Bi = kSni
bκi,ni

for −r ≤ i ≤ r and i ≡ r

(mod 2).
Let A =

⊕
i Bi-mod. The action of E = Ea and F = Fa on K0(A) gives

a representation of sl2. This gives an sl2-categorification (here, q = 1).
The complex of functors Θ restricts to a splendid Rickard equivalence

between Bi and B−i.
Let us recall some results of the local block theory of symmetric groups

(cf. [Pu1] or [Br, §2]).
Let P be a p-subgroup of Sn. Up to conjugacy, we can assume [1, n]P =

[nP +1, n] for some integer nP (we call such a P a standard p-subgroup). Then,
CSn

(P ) = H × S[nP +1,n] where H = CSnP
(P ). The algebra kH has a unique

block.
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Given G a finite group and P a p-subgroup of G, we denote by brP :
(kG)P → kCG(P ) the Brauer morphism (restriction of the morphism of
k-vector spaces kG → kCG(P ) which is the identity on CG(P ) and 0 on
G−CG(P )). We denote by BrP : kG-mod → kCG(P )-mod the Brauer functor
given by M �→ MP /(

∑
Q<P TrP

Q MQ), where TrP
Q(x) =

∑
g∈P/Q g(x).

We will use the following result of Puig and Marichal

Theorem 7.8.

brP (bκ,n) =

{
1 ⊗ bκ,n−nP

if n−nP−|κ|
p ∈ Z≥0

0 otherwise.

Note in particular that a standard p-subgroup P is a defect group of bκ,n

if and only if P is a Sylow p-subgroup of Sn−|κ|. In particular, two blocks of
symmetric groups have isomorphic defect groups if and only if they have equal
weights.

So, we deduce from (6) and Theorem 7.8:

Lemma 7.9. There is an isomorphism of ((kH ⊗ kSn−nP +i),
(kH ⊗ kSn−nP−1))-bimodules

BrΔP (Ea,n+i · · ·Ea,n+1Ea,n) ∼→ kH ⊗ Ea,n−nP +i · · ·Ea,n−nP +1Ea,n−nP
.

For i = 1, it is compatible with the action of T .
Let P be a nontrivial standard p-subgroup of Sn−i

. If brP (bκi,ni
) is not 0,

then
BrΔP

(bκ−i,n−i
Θbκi,ni

) 
 kH ⊗ bκ−i,n−i−nP
Θbκi,ni−nP

.

Note that this lemma permits us to deduce a proof of the Rickard equiv-
alence in Theorem 7.2 from that of the derived equivalence, by induction on
the size of the defect group: By induction, bκ−i,n−i−nP

Θbκi,ni−nP
induces a

Rickard equivalence. Now, Θ induces a derived equivalence; so, it follows from
Theorem 7.10 below that Θ induces a Rickard equivalence between Bi and
B−i.

If a splendid complex induces local derived equivalences, then it induces
a Rickard equivalence [Rou4, Th. 5.6] (in a more general version, but whose
proof extends with no modification):

Theorem 7.10. Let G be a finite group, b a block of kG and D a defect
group of b. Asssume b is of principal type, i.e., brD(b) is a block of kCG(D). Let
H be a subgroup of G containing D and controlling the fusion of p-subgroups
of D. Let c be the block of kH corresponding to b.

Let C be a bounded complex of (kGb, kHc)-bimodules. We assume C

is splendid, i.e., the components M of C are direct summands of modules
IndG×H◦

ΔD N , where N is a permutation ΔD-module.
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Assume

• BrΔP (C) induces a Rickard equivalence between kCG(P ) brP (b) and
kCH(P ) brP (c) for P a nontrivial p-subgroup of D and

• C induces a derived equivalence between kGb and kHc.

Then, C induces a Rickard equivalence between kGb and kHc.

7.2. Cyclotomic Hecke algebras.

7.2.1. We consider here the nondegenerate case q �= 1. We fix v1, . . . , vd

∈ k×.
We denote by Hn = Hn(v, q) the quotient of Hn(q) by the ideal generated

by (X1 − v1) · · · (X1 − vd). This is the Hecke algebra of the complex reflection
group G(d, 1, n) (cf. e.g. [Ar2, §13.1]).

The algebra Hn is free over k with basis {Xa1
1 · · ·Xan

n Tw}0≤ai<d,w∈Sn

[ArKo]. In particular Hn−1 embeds as a subalgebra of Hn, and Hn is free
as a left and as a right Hn−1-module, for the multiplication action. The alge-
bra Hn is symmetric [MalMat].

7.2.2. Let a ∈ k×. Given M an Hn-module, we denote by Fa,nM

the generalized a-eigenspace of Xn. This is an Hn−1-module. We have a de-
composition ResHn

Hn−1
=

⊕
a∈k× Fa,n. There is a corresponding decomposition

IndHn

Hn−1
=

⊕
a∈k× Ea,n, where Ea,n is left and right adjoint to Fa,n. We put

Ea =
⊕

n≥1 Ea,n and Fa =
⊕

n≥1 Fa,n.
Now fix a ∈ k×. The functors E = Ea and F = Fa give an action of sl2 on⊕

n≥0 K0(Hn-mod) in which the classes of simple modules are weight vectors
[Ar2, Th. 12.5] (only the case where each parameter if a power of q is considered
there, but the proof extends immediately to our more general setting). We
obtain an sl2-categorification on

⊕
n≥0 Hn-mod, where the endomorphism X

of E is given on Ea,n by right multiplication by Xn, and the endomorphism T

of E2 is given on Ea,nEa,n−1 by right multiplication by Tn−1.

Remark 7.11. Let e be the multiplicative order of q in k×. Fix a0 ∈ k×

and let I = {qma0 | m ∈ Z}. Then the functors Ea and Fa for a ∈ I define an
action of ŝle on

⊕
n≥0 K0(Hn-mod).

7.2.3. Consider here the case d = 1. Then, Hn = Hn(1, q) is the Hecke
algebra of Sn. Let e be the multiplicative order of q in k. We have a notion
of weight of a block as in §7.1.1, replacing p by e in the definitions.

We obtain a q-analog of Theorem 7.2:

Theorem 7.12. Assume d = 1. Let A be a block of Hn and B a block
of Hm. Then, A and B are derived equivalent if and only if they are Rickard
equivalent if and only if they have the same weight.
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Remark 7.13. All of the constructions and results of §7.2 hold for degen-
erate cyclotomic Hecke algebras as well, under the assumption that they are
symmetric algebras (which should be provable along the lines of [MalMat]).
Note that these algebras are known to be self-injective [Kl3, Cor. 7.7.4].

7.3. General linear groups over a finite field.

7.3.1. Let q be a prime power, n ≥ 0 and Gn = GLn(q). We assume that
k has characteristic � > 0 and �� |q(q − 1). Let An = kGnbn be the sum of the
unipotent blocks of kGn.

Given H a finite group, we put eH = 1
|H|

∑
h∈H h. We denote by tg the

transpose of a matrix g.
We denote by Vn the subgroup of upper triangular matrices of Gn with

diagonal coefficients 1 whose off-diagonal coefficients vanish outside the n-th
column. We denote by Dn the subgroup of Gn of diagonal matrices with
diagonal entries 1 except the (n, n)-th one.

Vn =

⎛⎜⎜⎜⎝
1 ∗

. . .
...

1 ∗
1

⎞⎟⎟⎟⎠ , Dn =

⎛⎜⎜⎜⎝
1

. . .
1

∗

⎞⎟⎟⎟⎠ .

Let i ≤ n. We view Gi as a subgroup of Gn via the first i coordinates.
We put

Ei,n = kGne(Vn�···�Vi+1)�(Di+1×···×Dn) ⊗kGi
− : Ai-mod → An-mod

and Fi,n = e(Vn�···�Vi+1)�(Di+1×···×Dn)kGn ⊗kGn
− : An-mod → Ai-mod .

These functors are canonically left and right adjoint. Furthermore, there are
canonical isomorphisms Ej,n ◦Ei,j

∼→ Ei,n and Fi,j ◦ Fj,n
∼→ Fi,n for i ≤ j ≤ n.

Let A =
⊕

n≥0 An-mod, E =
⊕

n≥0 En,n+1 and F =
⊕

n≥0 Fn,n+1.
We denote by T the endomorphism of E2 given on En−2,n by right mul-

tiplication by

T̂n−1 = qeVnVn−1Dn−1Dn
(n − 1, n)eVnVn−1Dn−1Dn

.

We denote by X the endomorphism of E given on En−1,n by right multiplica-
tion by

X̂n = qn−1eVnDn
etVn

eVnDn
.

Lemma 7.14.

(1ET ) ◦ (T1E) ◦ (1ET ) = (T1E) ◦ (1ET ) ◦ (T1E),

(T + 1E2) ◦ (T − q1E2) = 0 and T ◦ (1EX) ◦ T = qX1E .

Proof. The first statements involving only T ’s are the classical results of
Iwahori.
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Let U be the subgroup of Gn with diagonal coefficients 1 and whose off-
diagonal coefficients except the (n, n − 1)-th vanish. We have

T̂n−1X̂n−1T̂n−1 = qneVnVn−1Dn−1Dn
eU (n − 1, n)etVn−1(n − 1, n)eUeVn−1VnDn−1Dn

= qneVnVn−1Dn−1Dn
etVn

eVnVn−1Dn−1Dn
= qeVn−1Dn−1X̂neVn−1Dn−1

and this induces the same endomorphism of En−2,n as qX̂n.

Lemma 7.14 shows that we have a morphism Hn(q) → End(E0,n) =
EndkGn

(kGn/Bn) which sends Ti to the endomorphism given by right multi-
plication by qeBn

(i−1, i)eBn
and X1 to the identity, where Bn is the subgroup

of Gn of upper triangular matrices (cf. § 5.2.2). The classical result of Iwahori
states that the restriction of this morphism to Hf

n is an isomorphism. This
gives us a surjective morphism p : Hn → Hf

n whose restriction to Hf
n is the

identity. Since X1 maps to 1 in End(E0,n) and the quotient of Hn by X1 − 1
is isomorphic to Hf

n , it follows that p is the canonical map Hn → Hf
n . In

particular, the image of Xi is (up to an affine transformation) a Jucys-Murphy
element:

p(Xi) = q1−iTi−1 · · ·T1T1 · · ·Ti−1

= 1 + q1−i(q − 1)
(
T(1,i) + qT(2,i) + · · · + qi−2T(i−1,i)

)
.

We put Rn = HomkGn
(kGneBn

,−) = eBn
kGn ⊗kGn

− : An-mod →
Hf

n -mod. The multiplication maps

eBi
kGi ⊗kGi

eVn···Vi+1Dn···Di+1kGn → eBn
kGn

and
eBn

kGneBn
⊗eBi

kGieBi
eBi

kGi → eBn
kGneVn···Vi+1Dn···Di+1

are isomorphisms. They induce isomorphisms of functors

RiFi,n
∼→ ResHf

n

Hf
i

Rn and IndHf
n

Hf
i

Ri
∼→ RnEi,n.

Remark 7.15. The constructions carried out here make sense more gen-
erally for finite groups with a BN-pair and for arbitrary standard parabolic
subgroups, the transpose operation corresponding to passing from the unipo-
tent radical of a parabolic subgroup to the unipotent radical of the opposite
parabolic subgroup. This produces a very general kind of “Jucys-Murphy el-
ement” in Hecke algebras of finite Weyl groups. In type B or C, we should
recover the usual Jucys-Murphy elements.

Given a ∈ k×, let Ea be the generalized a-eigenspace of X acting on E.

Lemma 7.16. The action of [Ea] and [Fa] on
⊕

n≥0 K0(An-mod) gives
a representation of sl2. Furthermore, the classes of simple objects are weight
vectors.



288 JOSEPH CHUANG AND RAPHAËL ROUQUIER

Proof. Let O be a complete discrete valuation ring with field of fractions
K and residue field k. We consider the setting above where k is replaced
by K. The functor HomKGn

(KGneBn
,−) induces an isomorphism from the

Grothendieck group Ln of the category of unipotent representations of KGn to
the Grothendieck group of the category of representations of the Hecke algebra
of type Sn with parameter q over K. This isomorphism is compatible with the
actions of Ea and Fa. It follows from §7.2.2 that Ea and Fa give a representation
of sl2 on

⊕
n≥0 Ln and the class of a simple unipotent representation of KGn is

a weight vector. Now, the decomposition map Ln → K0(An) is an isomorphism
[Jam, Th. 16.7] and the result follows.

So, we have constructed an sl2-categorification on
⊕

n≥0 An-mod and a
morphism of sl2-categorifications

⊕
n≥0 An-mod → ⊕

n≥0 Hf
n -mod.

Remark 7.17. Note that we deduce from this that the blocks of An cor-
respond to the blocks of Hf

n .

7.3.2. We assume here only that �� |q. Let O be the ring of integers of a
finite extension of Q� and k be the residue field of O.

Let us recall [FoSri] that the �-blocks of GLn(q) are parametrized by pairs
((s), (B1, . . . , Br)) where s is a conjugacy class of semi-simple �′-elements of
GLn(q) and Bi is a block of Hni

(qdi), where CGLn(q)(s) = GLn1(qd1) × · · · ×
GLnr

(qdr). Let wi be the ei-weight of the block Bi, where ei is the multi-
plicative order of qdi in k×. We define the weight of the block as the family
{(wi, di)}1≤i≤r.

Theorem 7.18. Let R = k or O. Two R-blocks of general linear groups
(defined over the same field Fq) with same weights are splendidly Rickard equiv-
alent.

Proof. The results on the local block theory of symmetric groups generalize
to unipotent blocks of general linear groups [Br, §3] and we conclude as in the
proof of Theorem 7.2 that the theorem holds for unipotent blocks.

By [BoRou2], a block of a general linear group is splendidly Rickard equiv-
alent to a unipotent block of a product GLn1(qd1)×· · ·×GLnr

(qdr) ([BoRou1,
Théorème B] already provides a complex with homology only in one degree
inducing a Morita equivalence). Such a block is splendidly Rickard equivalent
to the principal block of GLe1w1(qd1)×· · ·×GLerwr

(qdr) by the unipotent case
of the theorem.

Remark 7.19. Assume l|(q − 1). Then, k GLn(q) has a unique unipotent
block, the principal block. The number of simple modules for such a block is
the number of partitions of n. Consequently, a unipotent block of GLn(q) is
not derived equivalent to a unipotent block of GLm(q) when n �= m.
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Theorem 7.20. Let A be a block of a general linear group G over R = k

or O, let D be a defect group and B be the corresponding block of NG(D). If
D is abelian, then A and B are splendidly Rickard equivalent.

Proof. By the result of [BoRou2] stated above, we may assume that A is
a unipotent block. Then we proceed as in the proof of Theorem 7.6, using the
fact that there is a unipotent block of a general linear group with defect group
isomorphic to D that is splendidly Morita equivalent to the principal block of
R(GLe(q) � Sw) for some w ≥ 0, where e is the order of q in k× [Pu2], [Mi],
[Tu].

7.4. Category O.

7.4.1. We construct here sl2-categorifications on category O of gln. In
particular we show that the weak sl2-categorification on singular blocks given
by Bernstein, Frenkel and Khovanov [BeFreKho] is an sl2-categorification.

We denote by h the Cartan subalgebra of diagonal matrices and n the
nilpotent algebra of strictly upper triangular matrices of the complex Lie al-
gebra g = gln. We denote by O the BGG category of finitely generated U(g)-
modules that are diagonalisable for h and locally nilpotent for U(n).

Let {eij} be the standard basis of g, and let ε1, . . . , εn be the basis of h∗

dual to e11, . . . , enn. For each λ ∈ h∗ we denote by λ1, . . . , λn the coefficients
of λ with respect to ε1, . . . , εn. We write λ →a μ if there exists j such that
λj − j + 1 = a − 1, μj − j + 1 = a and λi = μi for i �= j. For each λ ∈ h∗

let M(λ) be the Verma module with highest weight λ and let L(λ) be its
unique irreducible quotient. Recall that M(λ) = U(g) ⊗U(b) Cλ, where b is
the subalgebra of upper-triangular matrices and Cλ is the one-dimensional
b-module on which eii acts as multiplication by λi.

Let Θ be the set of maximal ideals of the center Z of U(g). For each θ ∈ Θ
denote by Oθ the full subcategory of O consisting of modules annihilated by
some power of θ. The category O splits as a direct sum of the subcategories Oθ.
Let prθ : O → O denote the projection onto Oθ. Each Verma module belongs
to some Oθ, and M(λ) and M(μ) belong to the same subcategory if and only
if λ and μ are in the same orbit in the dot action of the Weyl group of g on h∗,
i.e., if and only if (λ1, λ2 − 1, . . . , λn − n + 1) and (μ1, μ2 − 1, . . . , μn − n + 1)
are in the same Sn-orbit. We write θ →a θ′ if there exist λ, μ ∈ h∗ such that
M(λ) ∈ Oθ, M(μ) ∈ Oθ′ and λ →a μ.

Let V be the natural n-dimensional representation of g. The functor
V ⊗− : O → O decomposes as a direct sum

⊕
a∈C Ea, where

Ea =
⊕

θ,θ′∈Θ
θ→aθ′

prθ′ ◦(V ⊗−) ◦ prθ .
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Each summand Ea has a left and right adjoint

Fa =
⊕

θ,θ′∈Θ
θ→aθ′

prθ ◦(V ∗ ⊗−) ◦ prθ′ .

Let λ ∈ h∗. Now, V ⊗ M(λ) = V ⊗ (U(g) ⊗U(b) Cλ) 
 U(g) ⊗U(b) (V ⊗
Cλ), and therefore V ⊗M(λ) has a filtration with quotients isomorphic to the
modules M(λ + εi), i = 1, . . . , n. Similarly V ∗ ⊗ M(λ) has a filtration with
quotients isomorphic to the modules M(λ − εi), i = 1, . . . , n. It follows that

[EaM(λ)] =
∑
μ∈h∗

λ→aμ

[M(μ)], [FaM(λ)] =
∑
μ∈h∗

μ→aλ

[M(μ)]

in K0(O). Hence

[EaFaM(λ)] − [FaEaM(λ)] = cλ,a[M(λ)],

where cλ,a = #{i | λi − i + 1 = a} − #{i | λi − i + 1 = a − 1}. Because
the classes of Verma modules are a basis for K0(O), we deduce that for each
a ∈ C the functors Ea and Fa give a weak sl2-categorification on O in which
the simple module L(λ) has weight cλ,a.

7.4.2. Given M a g-module, we have an action map g ⊗ M → M .
Let XM ∈ Endg(V ⊗ M) be the corresponding adjoint map. This defines an
endomorphism X of the functor V ⊗−. Also, XM (v ⊗ m) = Ω(v ⊗ m) where
Ω =

∑n
i,j=1 eij ⊗ eji ∈ g ⊗ g.

Define TM ∈ Endg(V ⊗ V ⊗ M) by TM (v ⊗ v′ ⊗ m) = v′ ⊗ v ⊗ m. This
defines an endomorphism T of the functor V ⊗ V ⊗−.

Lemma 7.21. The following equality in Endg(V ⊗ V ⊗ M) gives

TM ◦ (1V ⊗ XM ) = XV ⊗M ◦ TM − 1V ⊗V ⊗M .

Proof. We have

XV ⊗MTM (v ⊗ v′ ⊗ m) =
n∑

i,j=1

eijv
′ ⊗ eji(v ⊗ m)

=
n∑

i,j=1

eijv
′ ⊗ ejiv ⊗ m +

n∑
i,j=1

eijv
′ ⊗ v ⊗ ejim

= v ⊗ v′ ⊗ m + TM (1V ⊗ XM )(v ⊗ v′ ⊗ m).

The lemma implies that for each l we can define a morphism Hl(1) →
Endg(V ⊗l⊗M) by Ti �→ 1⊗l−i−1

V ⊗TV ⊗i−1⊗M and Xi �→ 1⊗l−i
V ⊗XV ⊗i−1⊗M . Jon

Brundan has pointed out to us that this coincides up to shift (cf. Remark 5.14)
with an action described by Arakawa and Suzuki [ArSu, §2.2].
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7.4.3. We shall now show that X and T are restricted to give endomor-
phisms of the functors Ea and E2

a which define sl2-categorifications on O. In
view of Lemma 7.21, it suffices to identify Ea as the generalised a-eigenspace
of X acting on V ⊗−.

To this end we observe that Ω = 1
2(δ(C) − C ⊗ 1 − 1 ⊗ C), where C =∑n

i,j=1 eijeji ∈ Z is the Casimir element and δ : U(g) → U(g) ⊗ U(g) is
the co-multiplication. Furthermore C =

∑n
i=1 e2

ii +
∑

1≤i<j≤n(eii − ejj) +∑
1≤i<j≤n ejieij acts on the Verma module M(λ) as multiplication by bλ =∑n
i=1 λ2

i +
∑

1≤i<j≤n(λi − λj). It follows that Ω stabilizes any g-submodule of
V ⊗ M(λ) = L(ε1) ⊗ M(λ) and that the induced action on any subquotient
isomorphic to M(λ+ εi) is as multiplication by 1

2(bλ+εi
− bε1 − bλ) = λi − i+1.

Since V ⊗ M(λ) =
⊕

a∈C EaM(λ), this identifies EaM(λ) as the generalised
a-eigenspace of XM(λ). We deduce that for any M ∈ O, the generalized a-
eigenspace of XM is EaM .

Remark 7.22. The canonical adjunction between V ⊗ − and V ∗ ⊗ − is
given by the canonical maps η : C → V ∗ ⊗ V and ε : V ⊗ V ∗ → C, v ⊗
ξ �→ ξ(v). Let XM ∈ Endg(V ∗ ⊗ M) and TM ∈ Endg(V ∗ ⊗ V ∗ ⊗ M) be the
induced endomorphisms (cf. §4.1.2). Then XM (ϕ ⊗ m) = (−Ω − n)(ϕ ⊗ m)
and TM (ϕ ⊗ ϕ′ ⊗ m) = ϕ′ ⊗ ϕ ⊗ m.

7.5. Rational representations.

7.5.1. The construction of sl2-categorifications in §7.4 works, more or
less in the same way, on the category G-mod of finite-dimensional rational
representations of G = GLn(k), where k is an algebraically closed field of
characteristic p > 0.

Denote by X the character group of the subgroup of diagonal matrices
in G. We identify X with Zn via the isomorphism sending (λ1, . . . , λn) ∈ Zn

to λ =
∑

i λiεi ∈ X , where εi is defined by εi(diag(t1, . . . , tn)) = ti. This
identifies the set X+ of dominant weights with {(λ1, . . . , λn) ∈ Zn | λ1 ≥ . . . ≥
λn}. For each λ ∈ X+, let L(λ) be the unique simple G-module with highest
weight λ.

Let B be the Borel subgroup of upper triangular matrices in G. For each
λ ∈ X , the cohomology groups H i(λ) of the associated line bundle on G/B are
objects of G-mod. The alternating sums χ(λ) =

∑
i≥0 ch(H i(λ)) ∈ Z[X ] span

the image of the embedding ch : K0(G-mod) → Z[X ].
The Weyl group W = Sn of G acts on X = Zn by place permutations.

This extends to an action of the affine Weyl group Wp generated by W together
with the translations by pεi − pεi+1, 1 ≤ i ≤ n − 1. Let Y be the group of
permutations of Z generated by d, σ0, . . . , σp−1, where md = m + 1 and

mσa =

⎧⎨⎩m + 1 if m ≡ a − 1 (mod p)
m − 1 if m ≡ a (mod p)
m otherwise.
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The action of Wp on X = Zn commutes with the diagonal action of Y .

Lemma 7.23. Two elements λ, μ ∈ X have the same stabilizer in Wp if
and only if they are in the same Y -orbit.

Proof. Both conditions are equivalent to the following: for all i, j, and
r, we have λi − λj = pr if and only if μi − μj = pr.

We shall use the corresponding ‘dot actions’ obtained by conjugating by
the translation by ρ = (0,−1, . . . ,−n + 1) ∈ X :

w · λ = w(λ + ρ) − ρ, λ · y = (λ + ρ)y − ρ.

Let Θ be the set of orbits of the dot action of Wp on X . For each θ ∈ Θ, let
Mθ be the full subcategory of G-mod consisting of modules whose composition
factors are all of the form L(λ) for λ ∈ θ. The Linkage Principle [CaLu]
implies that G-mod decomposes as a direct sum G-mod =

⊕
θ∈Θ Mθ. Let

prθ : G-mod → G-mod denote the projection onto Mθ. Given λ, μ ∈ X and
a ∈ 0, . . . , p − 1, we write λ →a μ if there exists j such that (λj − j + 1) + 1 =
μj − j + 1 ≡ a (mod p) and λi = μi for i �= j. Note that λ →a μ implies that
w · λ →a w · μ for all w ∈ Wp. For θ, θ′ ∈ Θ, we write θ →a θ′ if there exist
λ ∈ θ and μ ∈ θ′ such that λ →a μ.

Let V be the natural n-dimensional representation of G. The left and right
adjoint functors V ⊗ − : G-mod → G-mod and V ∗ ⊗ − : G-mod → G-mod
decompose as direct sums

⊕
0≤a≤p−1 Ea and

⊕
0≤a≤p−1 Fa, where Ea and Fa

are sums of translation functors, defined in the same way as in §7.4. The
functors Ea and Fa have been studied extensively by Brundan and Kleshchev
[BrKl].

Let ea and fa be the maps on characters induced by Ea and Fa. For each
λ ∈ X , we have (e.g. using [Jan, Prop. 7.8])

eaχ(λ) =
∑
μ∈X
λ→aμ

χ(μ), faχ(λ) =
∑
μ∈X
μ→aλ

χ(μ)(7)

in Z[X ]. Hence
eafaχ(λ) − faeaχ(λ) = cλ,aχ(λ),

where cλ,a = #{i | λi− i+1 ≡ a (mod p)}−#{i | λi− i+1 ≡ a−1 (mod p)}.
We deduce that for each a ∈ {0, . . . , p−1} the functors Ea and Fa give a weak
sl2-categorification in which the simple module L(λ) has weight cλ,a.

7.5.2. These weak sl2-categorifications can be improved to sl2-categorifi-
cations using the same procedure as in the characteristic zero case §7.4. We
first define endomorphisms X of V ⊗ − and T of V ⊗ V ⊗ −. Note that to
define X, we first pass from G-modules to modules over Lie(G) = gln(k). One
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small modification to the argument is required when p = 2: in order to identify
Ea with the generalized a-eigenspace of X, we write

Ω = −δ(Z2) + 1 ⊗ Z2 + Z2 ⊗ 1 + Z1 ⊗ Z1 −
n(n + 1)

2
,

where Z1 =
∑

1≤i≤n eii and Z2 =
∑

1≤i<j≤n(eii − i)(ejj − j)−∑
1≤i<j≤n ejieij

are central elements of Dist(G) (cf. [CaLu, §2.2]).
By composing the derived (and homotopy) equivalences arising from these

sl2-categorifications on G-mod, we obtain many equivalences.

Theorem 7.24. Let λ and μ be any two weights in X with the same
stabilizer under the dot action of Wp. Then there are equivalences

Kb(MWp·λ) ∼→ Kb(MWp·μ) and Db(MWp·λ) ∼→ Db(MWp·μ)

that induce the map
χ(w · λ) �→ χ(w · μ)

on characters.

Remark 7.25. Rickard conjectured the existence of such equivalences for
any connected reductive group having a simply connected derived subgroup
whose root system has Coxeter number h < p [Ri2, Conj. 4.1]. He proved
the truth of his conjecture in the case of trivial stabilizers (under the weaker
assumption h ≤ p). We do not place any restriction on p in Theorem 7.24.

Proof. By Lemma 7.23 we may assume that μ = λ · y where y ∈
{d, σ0, . . . , σp−1}. If μ = λ · d, then we have an equivalence L(1, . . . , 1) ⊗ − :
MWp·λ

∼→ MWp·μ, given by tensoring with the determinant representation,
that induces the desired map on characters.

Suppose that μ = λ ·σa. Using the sl2-categorification on G-mod provided
by E = Ea and F = Fa, we obtain a self-equivalence Θ of Kb(G-mod) and
of Db(G-mod) such that [Θ] = s (Theorem 6.4). We define an sl2-module
U =

⊕
i∈Z Zui by eui = ui+1 for i ≡ a−1 (mod p) and eui = 0 otherwise, and

fui = ui−1 for i ≡ a (mod p) and fui = 0 otherwise. Then sui = ui+1 if i ≡
a−1 (mod p), sui = −ui−1 if i ≡ a (mod p), and sui = ui otherwise. Thus on
the tensor power U⊗n we have suν = (−1)h−(ν)uνσa

, where uν = uν1 ⊗· · ·⊗uνn

and h−(ν) = #{i | νi ≡ a (mod p)}.
By (7) we have a homomorphism of sl2-modules U⊗n → K0(G-mod),

uν+ρ �→ χ(ν). It follows that sχ(ν) = (−1)h−(ν+ρ)χ(ν · σa). Hence sχ(w · λ)
= (−1)h−χ(w · μ), where h− = h−(w · λ + ρ) = h−(λ + ρ). We conclude that
Θ[−h−] restricts to equivalences Kb(MWp·λ) ∼→ Kb(MWp·μ) and Db(MWp·λ) ∼→
Db(MWp·μ) that induce the desired map on characters.

7.6. q-Schur algebras. We explain in this part how to obtain sl2-categorifi-
cations, and hence derived equivalences, for q-Schur algebras.
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Let q ∈ k×. Let Yn =
⊕

λ IndHf
n

Hf
λ

k, where λ = (λ1 ≥ · · · ≥ λr) runs over

the partitions of n and Hf
λ =

⊕
w∈S[1,λ1]×···×S[n−λr+1,n]

Twk is the corresponding

parabolic subalgebra of Hf
n and k corresponds to the representation 1. We

define the q-Schur algebra Sn = EndHf
n
(Yn).

Let Yn be the full subcategory of Hf
n -mod whose objects are direct sums of

direct summands of Yn (“q-Young modules”) and let Y =
⊕

n≥0 Yn. Mackey’s
formula shows that Y is stable under E and F . For each of the sl2-categorifi-
cations on

⊕
n≥0 Hf

n -mod constructed in §7.2 we deduce from Theorem 5.32 an
sl2-categorification on

⊕
n≥0 Sn-mod and a morphism of sl2-categorifications⊕

n≥0 Sn-mod → ⊕
n≥0 Hf

n -mod. This provides a version of Theorem 7.12 for
q-Schur algebras.

Remark 7.26. We go back to the setting of §7.3 (in particular, q is a prime
power). The canonical map An → EndHfopp

n
(kGneBn

)opp is surjective and its
image S′

n is Morita equivalent to Sn (“double centralizer theorem”, cf. [Ta]).
This gives by restriction a fully faithful functor Sn-mod ∼→ S′

n-mod → An-mod.
Since E(kGneBn

) 
 kGn+1eBn+1 , the fact that
⊕

n≥0 Sn-mod is stable un-
der E. Mackey’s formula shows that it is also stable under F . This gives a
morphism of weak sl2-categorifications

⊕
n≥0 Sn-mod → ⊕

n≥0 An-mod and
the composition with the morphism

⊕
n≥0 An-mod → ⊕

n≥0 Hf
n -mod of §7.3.1

is isomorphic to the morphism
⊕

n≥0 Sn-mod → ⊕
n≥0 Hf

n -mod constructed
above. One deduces that

⊕
n≥0 Sn-mod → ⊕

n≥0 An-mod is actually a mor-
phism of sl2-categorifications.

Note also that we get another proof of Lemma 7.16 using the fact that
the canonical map K0(Sn-mod) ∼→ K0(An-mod) is an isomorphism.

Remark 7.27. The interested reader will extend the results of §7.5 to the
quantum case and show that the categorification of q-Schur algebras can be
realized as a subcategorification of the quantum group case.

7.7. Realizations of minimal categorifications.

7.7.1. We now show that the minimal categorification of §5.3 is a special
case of the categorification on representations of blocks of cyclotomic Hecke
algebras.

Fix a ∈ k× and put v = (v1, . . . , vn) = (a, . . . , a). Then Hi = Hi(q, v)
is the quotient of Hi by the ideal generated by xn

1 (where x1 = X1 − a). The
kernel of the action of Hi on the simple module Ki = Hi ⊗Pi

Pi/mi contains
xn

1 if and only if i ≤ n (cf. §3.2.1); let Ai be the block of Hi containing Ki

for 0 ≤ i ≤ n. A finitely generated Hi-module M is in Ai if and only if ni

acts nilpotently on M (equivalently mi acts nilpotently on M), and Ki is the
unique simple module in Ai.
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We have FM = 0 for M ∈ A0-mod and FM = ResHi

Hi−1
M ∈ Ai−1-mod

for M ∈ Ai-mod and 0 < i ≤ n.
Likewise EM = 0 for M ∈ An-mod. Let M ∈ Ai-mod with 0 ≤ i

< n. Consider N a simple Hi+1-quotient of EM . We have Hom(EM, N) 

Hom(M, FN) �= 0. In particular, FN has a nonzero Hi-submodule M ′ on
which x1, . . . , xi act nilpotently. Let M ′′ be the (k[xi+1] ⊗Hi)-submodule of
FN generated by M ′. Then, x1, . . . , xi+1 act nilpotently on M ′′. Now, N is a
simple Hi+1-module, hence it is generated by M ′′ as an Hi+1-module, so that
x1, . . . , xi+1 act nilpotently on N . We deduce that they act nilpotently on
EM as well. Thus, EM ∈ Ai+1-mod.

Now A =
⊕

i Ai-mod is an sl2-categorification and Q⊗K0(A) is a simple
sl2-module of dimension n + 1. Let U = K0 = k, the simple (projective)
module for A0 = k. The morphism of sl2-categorifications RU : A(n) → A is
an equivalence (Proposition 5.26). In particular H̄i,n and Ai are isomorphic,
as each has an i!-dimensional simple module.

7.7.2. We explained in §3.3.2 that H̄i,n is Morita equivalent to its center,
which is isomorphic to the cohomology of certain Grasmmannian varieties.
We sketch here a realization of the minimal categorification in that setting.
We consider only the case q = 1; the case q �= 1 can be dealt with similarly,
replacing cohomology by Gm-equivariant K-theory.

Let Gi,j be the variety of pairs (V1, V2) of subspaces of Cn with V1 ⊂ V2,
dimV1 = i and dimV2 = j. We put Ai = H∗(Gi). The (Ai+1, Ai)-bimodule
H∗(Gi,i+1) defines by tensor product a functor Ei : Ai-mod → Ai+1-mod and
switching sides, a left and right adjoint Fi : Ai+1-mod → Ai-mod. Let E =⊕

Ei and F =
⊕

Fi. This gives a weak sl2-categorification that has been con-
sidered by Khovanov as a way of categorifying irreducible sl2-representations.
It is a special case of the construction of irreducible finite dimensional repre-
sentations of sln due to Ginzburg [Gi].

We denote by X the endomorphism of E given on H∗(Gi,i+1) by cup
product by c1(Li+1). We have a P1-fibration π : Gi,i+1×Gi+1 Gi+1,i+2 → Gi,i+2

given by first and last projection. It induces a structure of H∗(Gi,i+2)-module
on H∗(Gi,i+1 ×Gi+1 Gi+1,i+2) = H∗(Gi,i+1) ⊗H∗(Gi+1) H∗(Gi+1,i+2). There is
a unique endomorphism T of H∗(Gi,i+2)-module on H∗(Gi,i+1 ×Gi+1 Gi+1,i+2)
satisfying T (c1(Li+1)) = c1(Li+2)−1. This provides us with an endomorphism
of Ei+1Ei and taking the sum over all i, we get an endomorphism T of E2.
One checks easily that this gives an sl2-categorification (with a = 0) that is
isomorphic to the minimal categorification.

The functor E(1,r) : Ai-mod → Ai+r-mod is isomorphic to the functor
given by the bimodule H∗(Gi,i+r).

Take i ≤ n/2 and let us now consider Θ[−i], restricted to a functor
Db(H∗(Gi)-mod) ∼→ Db(H∗(Gn−i)-mod). It is probably isomorphic to the
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functor given by the cohomology of the subvariety {(V, V ′)|V ∩ V ′ = 0} of
Gi × Gn−i, the usual kernel for the Grassmannian duality (cf. e.g. [KaScha,
Ex. III.15]).
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