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The classification of p-compact groups
for p odd

By K. K. S. Andersen, J. Grodal, J. M. Møller, and A. Viruel*

Abstract

A p-compact group, as defined by Dwyer and Wilkerson, is a purely ho-
motopically defined p-local analog of a compact Lie group. It has long been
the hope, and later the conjecture, that these objects should have a classifi-
cation similar to the classification of compact Lie groups. In this paper we
finish the proof of this conjecture, for p an odd prime, proving that there is
a one-to-one correspondence between connected p-compact groups and finite
reflection groups over the p-adic integers. We do this by providing the last,
and rather intricate, piece, namely that the exceptional compact Lie groups
are uniquely determined as p-compact groups by their Weyl groups seen as
finite reflection groups over the p-adic integers. Our approach in fact gives a
largely self-contained proof of the entire classification theorem for p odd.
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1. Introduction

It has been a central goal in homotopy theory for about half a century
to single out the homotopy theoretical properties characterizing compact Lie
groups, and obtain a corresponding classification, starting with the work of
Hopf [75] and Serre [123, Ch. IV] on H-spaces and loop spaces. Materi-
alizing old dreams of Sullivan [134] and Rector [121], Dwyer and Wilker-
son, in their seminal paper [56], introduced the notion of a p-compact group,
as a p-complete loop space with finite mod p cohomology, and proved that
p-compact groups have many Lie-like properties. Even before their introduc-
tion it has been the hope [120], and later the conjecture [59], [89], [48], that
these objects should admit a classification much like the classification of com-
pact connected Lie groups, and the work toward this has been carried out by
many authors. The goal of this paper is to complete the proof of the classifica-
tion theorem for p an odd prime, showing that there is a one-to-one correspon-
dence between connected p-compact groups and finite reflection groups over the
p-adic integers Zp. We do this by providing the last—and rather intricate—
piece, namely that the p-completions of the exceptional compact connected Lie
groups are uniquely determined as p-compact groups by their Weyl groups,
seen as Zp-reflection groups. In fact our method of proof gives an essentially
self-contained proof of the entire classification theorem for p odd.
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We start by very briefly introducing p-compact groups and some objects
associated to them, necessary to state the classification theorem—we will later
in the introduction return to the history behind the various steps of the proof.
We refer the reader to [56] for more details on p-compact groups and also
recommend the overview articles [48], [89], and [95]. We point out that it is
the technical advances on homotopy fixed points by Miller [94], Lannes [88],
and others which make this theory possible.

A space X with a loop space structure, for short a loop space, is a triple
(X, BX, e) where BX is a pointed connected space, called the classifying space
of X, and e : X → ΩBX is a homotopy equivalence. A p-compact group is a
loop space with the two additional properties that H∗(X;Fp) is finite dimen-
sional over Fp (to be thought of as ‘compactness’) and that BX is Fp-local [21],
[56, §11] (or, in this context, equivalently Fp-complete [22, Def. I.5.1]). Often
we refer to a loop space simply as X. When working with a loop space we shall
only be concerned with its classifying space BX, since this determines the rest
of the structure—indeed, we could instead have defined a p-compact group
to be a space BX with the above properties. The loop space (Gp̂, BGp̂, e),
corresponding to a pair (G, p) (where p is a prime, G a compact Lie group
with component group a finite p-group, and (·)p̂ denotes Fp-completion [22,
Def. I.4.2], [56, §11]) is a p-compact group. (Note however that a compact Lie
group G is not uniquely determined by BGp̂, since we are only focusing on the
structure ‘visible at the prime p’; e.g., B SO(2n + 1)p̂ � B Sp(n)p̂ if p �= 2, as
originally proved by Friedlander [66]; see Theorem 11.5 for a complete analy-
sis.)

A morphism X → Y between loop spaces is a pointed map of spaces
BX → BY . We say that two morphisms are conjugate if the corresponding
maps of classifying spaces are freely homotopic. A morphism X → Y is called
an isomorphism (or equivalence) if it has an inverse up to conjugation, or in
other words if BX → BY is a homotopy equivalence. If X and Y are p-
compact groups, we call a morphism a monomorphism if the homotopy fiber
Y/X of the map BX → BY is Fp-finite.

The loop space corresponding to the Fp-completed classifying space BT =
(BU(1)r)p̂ is called a p-compact torus of rank r. A maximal torus in X is a
monomorphism i : T → X such that the homotopy fiber of BT → BX has
nonzero Euler characteristic. (We define the Euler characteristic as the alter-
nating sum of the Fp-dimensions of the Fp-homology groups.) Fundamental
to the theory of p-compact groups is the theorem of Dwyer-Wilkerson [56,
Thm. 8.13] that, analogously to the classical situation, any p-compact group
admits a maximal torus. It is unique in the sense that for any other maximal
torus i′ : T ′ → X, there exists an isomorphism ϕ : T → T ′ such that i′ϕ and i

are conjugate. Note the slight difference from the classical formulation due to
the fact that a maximal torus is defined to be a map and not a subgroup.
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Fix a p-compact group X with maximal torus i : T → X of rank r. Replace
the map Bi : BT → BX by an equivalent fibration, and define the Weyl space
WX(T ) as the topological monoid of self-maps BT → BT over BX. The Weyl
group is defined as WX(T ) = π0(WX(T )) [56, Def. 9.6]. By [56, Prop. 9.5]
WX(T ) is a finite group of order χ(X/T ). Furthermore, by [56, Pf. of Thm. 9.7],
if X is connected then WX(T ) identifies with the set of conjugacy classes of
self-equivalences ϕ of T such that i and iϕ are conjugate. In other words, the
canonical homomorphism WX(T ) → Aut(π1(T )) is injective, so we can view
WX(T ) as a subgroup of GLr(Zp), and this subgroup is independent of T up
to conjugation in GLr(Zp). We will therefore suppress T from the notation.

Now, by [56, Thm. 9.7] this exhibits (WX , π1(T )) as a finite reflection
group over Zp. Finite reflection groups over Zp have been classified for p odd
by Notbohm [107] extending the classification over Qp by Clark-Ewing [34] and
Dwyer-Miller-Wilkerson [52] (which again builds on the classification over C
by Shephard-Todd [126]); we recall this classification in Section 11 and extend
Notbohm’s result to all primes. Recall that a finite Zp-reflection group is a
pair (W, L) where L is a finitely generated free Zp-module, and W is a finite
subgroup of Aut(L) generated by elements α such that 1−α has rank one. We
say that two finite Zp-reflection groups (W, L) and (W ′, L′) are isomorphic, if
we can find a Zp-linear isomorphism ϕ : L → L′ such that the group ϕWϕ−1

equals W ′.
Given any self-homotopy equivalence Bf : BX → BX, there exists, by

the uniqueness of maximal tori, a map Bf̃ : BT → BT such that Bf ◦ Bi is
homotopy equivalent to Bi ◦ Bf̃ . Furthermore, the homotopy class of Bf̃ is
unique up to the action of the Weyl group, as is easily seen from the defini-
tions (cf. Lemma 4.1). This sets up a homomorphism Φ : π0(Aut(BX)) →
NGL(LX)(WX)/WX , where Aut(BX) is the space of self-homotopy equiva-
lences of BX. (This map has precursors going back to Adams-Mahmud [2];
see Lemma 4.1 and Theorem 1.4 for a more elaborate version.) The group
NGL(LX)(WX)/WX can be completely calculated; see Section 13.

The main classification theorem which we complete in this paper, is the
following.

Theorem 1.1. Let p be an odd prime. The assignment that to each con-
nected p-compact group X associates the pair (WX , LX) via the canonical ac-
tion of WX on LX = π1(T ) defines a bijection between the set of isomorphism
classes of connected p-compact groups and the set of isomorphism classes of
finite Zp-reflection groups.

Furthermore, for each connected p-compact group X the map

Φ : π0(Aut(BX)) → NGL(LX)(WX)/WX

is an isomorphism, i.e., the group of outer automorphisms of X is canonically
isomorphic to the group of outer automorphisms of (WX , LX).
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In particular this proves, for p odd, Conjecture 5.3 in [48] (see Theo-
rem 1.4). The self-map part of the statement can be viewed as an extension to
p-compact groups, p odd, of the main result of Jackowski-McClure-Oliver [82],
[83]. Our method of proof via centralizers is ‘dual’, but logically independent,
of the one in [82], [83] (see e.g. [47], [72]).

By [57] the identity component of Aut(BX) is the classifying space of
a p-compact group ZX, which is defined to be the center of X. We call X

center-free if ZX is trivial. For p odd this is equivalent to (WX , LX) being
center-free, i.e., (LX ⊗ Z/p∞)WX = 0, by [57, Thm. 7.5]. Furthermore recall
that a connected p-compact group X is called simple if LX⊗Q is an irreducible
W -representation and X is called exotic if it is simple and (WX , LX) does
not come from a Z-reflection group (see Section 11). By inspection of the
classification of finite Zp-reflection groups, Theorem 1.1 has as a corollary that
the theory of p-compact groups on the level of objects splits in two parts, as
has been conjectured (Conjectures 5.1 and 5.2 in [48]).

Theorem 1.2. Let X be a connected p-compact group, p odd. Then X

can be written as a product of p-compact groups

X ∼= Gp̂ × X ′

where G is a compact connected Lie group, and X ′ is a direct product of exotic
p-compact groups. Any exotic p-compact group is simply connected, center-free,
and has torsion-free Zp-cohomology.

Theorem 1.1 has both an existence and a uniqueness part to it, the exis-
tence part being that all finite Zp-reflection groups are realized as Weyl groups
of a connected p-compact group. The finite Zp-reflection groups which come
from compact connected Lie groups are of course realizable, and the finite
Zp-reflection groups where p does not divide the order of the group can also
relatively easily be dealt with, as done by Sullivan [134, p. 166–167] and Clark-
Ewing [34] long before p-compact groups were officially defined. The remaining
cases were realized by Quillen [118, §10], Zabrodsky [146, 4.3], Aguadé [4], and
Notbohm-Oliver [108], [110, Thm. 1.4]. The classification of finite Zp-reflection
groups, Theorem 11.1, guarantees that the construction of these examples ac-
tually enables one to realize all finite Zp-reflection groups as Weyl groups of
connected p-compact groups.

The work toward the uniqueness part, to show that a connected p-compact
group is uniquely determined by its Weyl group, also predates the introduc-
tion of p-compact groups. The quest was initiated by Dwyer-Miller-Wilkerson
[51], [52] (building on [3]) who proved the statement, using slightly different
language, in the case where p is prime to the order of WX as well as for SU(2)2̂
and SO(3)2̂. Notbohm [105] and Møller-Notbohm [101, Thm. 1.9] extended
this to a uniqueness statement for all p-compact groups X where Zp[LX ]WX
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(the ring of WX -invariant polynomial functions on LX) is a polynomial algebra
and (WX , LX) comes from a finite Z-reflection group. Notbohm [108], [110]
subsequently also handled the cases where (WX , LX) does not come from a
finite Z-reflection group. It is worth mentioning that if X has torsion-free
Zp-cohomology (or equivalently, if H∗(BX;Zp) is a polynomial algebra), then
it is straightforward to see that Zp[LX ]WX is a polynomial algebra (see The-
orem 12.1). The reverse implication is also true, but the argument is more
elaborate (see Remark 10.11 and also Theorem 1.8 and Remark 10.9); some
of the papers quoted above in fact operate with the a priori more restrictive
assumption on X.

To get general statements beyond the case where Zp[LX ]WX is a poly-
nomial algebra, i.e., to attack the cases where there exists p-torsion in the
cohomology ring, the first step is to reduce the classification to the case of
simple, center-free p-compact groups. The results necessary to obtain this re-
duction were achieved by the splitting theorem of Dwyer-Wilkerson [58] and
Notbohm [111] along with properties of the center of a p-compact group estab-
lished by Dwyer-Wilkerson [57] and Møller-Notbohm [100]. We explain this
reduction in Section 6; most of this reduction was already explained by the
third-named author in [98] via different arguments.

An analysis of the classification of finite Zp-reflection groups together with
explicit calculations (see [109] and Theorem 12.2) shows that, for p odd, Zp[L]W

is a polynomial algebra for all irreducible finite Zp-reflection groups (W, L)
that are center-free, except the reflection groups coming from the p-compact
groups PU(n)p̂, (E8)5̂, (F4)3̂, (E6)3̂, (E7)3̂, and (E8)3̂. For exceptional compact
connected Lie groups the notation E6 etc. denotes their adjoint form.

The case PU(n)p̂ was handled by Broto-Viruel [25], using a Bockstein
spectral sequence argument to deduce it from the result for SU(n), generalizing
earlier partial results of Broto-Viruel [24] and Møller [97]. The remaining step
in the classification is therefore to handle the exceptional compact connected
Lie groups, in particular the problematic E-family at the prime 3, and this is
what is carried out in this paper. (The fourth named author has also given
alternative proofs for (F4)3̂ and (E8)5̂ in [137] and [136].)

Theorem 1.3. Let X be a connected p-compact group, for p odd, with
Weyl group equal to (WG, LG⊗Zp) for (G, p) = (F4, 3), (E8, 5), (E6, 3), (E7, 3),
or (E8, 3). Then X is isomorphic, as a p-compact group, to the Fp-completion
of the corresponding exceptional group G.

We will in fact give an essentially self-contained proof of the entire clas-
sification Theorem 1.1, since this comes rather naturally out of our inductive
approach to the exceptional cases. We however still rely on the classification
of finite Zp-reflection groups (see [107], [109] and Sections 11 and 12) as well
as the above mentioned structural results from [56], [57], [100], [58], and [111].
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We remark that we also need not assume known a priori that ‘unstable Adams
operations’ [134], [141], [66] exist.

The main ingredient in handling the exceptional groups, once the right
inductive setup is in place, is to get sufficiently detailed information about
their many conjugacy classes of elementary abelian p-subgroups, and then to
use this information to show that the relevant obstruction groups are trivial,
using properties of Steinberg modules combined with formulas of Oliver [113]
(see also [72]); we elaborate on this at the end of this introduction and in
Section 2.

It is possible to formulate a more topological version of the uniqueness part
of Theorem 1.1 which holds for all p-compact groups (p odd), not necessarily
connected, which is however easily seen to be equivalent to the first one using
[6, Thm. 1.2]. It should be viewed as a topological analog of Chevalley’s
isomorphism theorem for linear algebraic groups (see [76, §32], [133, Thm. 1.5]
and [42], [116], [106]). To state it, we define the maximal torus normalizer
NX(T ) to be the loop space such that BNX(T ) is the Borel construction of
the canonical action of WX(T ) on BT . Note that by construction NX(T )
comes with a morphism NX(T ) → X. By [56, Prop. 9.5], WX(T ) is a discrete
space, so BNX(T ) has only two nontrivial homotopy groups and fits into a
fibration sequence BT → BNX(T ) → BWX . (Beware that in general NX(T )
will not be a p-compact group since its group of components WX need not be
a p-group.)

Theorem 1.4 (Topological isomorphism theorem for p-compact groups,
p odd). Let p be an odd prime and let X and X ′ be p-compact groups with
maximal torus normalizers NX and NX′. Then X ∼= X ′ if and only if BNX �
BNX′.

Furthermore the spaces of self-homotopy equivalences Aut(BX) and
Aut(BNX) are equivalent as group-like topological monoids. Explicitly, turn
i : BNX → BX into a fibration which we will again denote by i, and let Aut(i)
denote the group-like topological monoid of self-homotopy equivalences of the
map i. Then the following canonical zig-zag, given by restrictions, is a zig-zag
of homotopy equivalences:

B Aut(BX) �←− B Aut(i) �−→ B Aut(BNX).

In the above theorem, the fact that the evaluation map Aut(i) → Aut(BX)
is an equivalence follows by a short general argument (Lemma 4.1), which gives
a canonical homomorphism Φ : Aut(BX)

∼=−→ Aut(i) → Aut(BNX), whereas
the equivalence Aut(i) → Aut(BNX) requires a detailed case-by-case analysis.

We point out that the classification of course gives easy, although some-
what unsatisfactory, proofs that many theorems from Lie theory extend to
p-compact groups, by using the fact that the theorem is known to be true
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in the Lie group case, and then checking the exotic cases. Since the classify-
ing spaces of the exotic p-compact groups have cohomology ring a polynomial
algebra, this can turn out to be rather straightforward. In this way one for
instance sees that Bott’s celebrated result about the structure of G/T [17] still
holds true for p-compact groups, at least on cohomology.

Theorem 1.5 (Bott’s theorem for p-compact groups). Let X be a con-
nected p-compact group, p odd, with maximal torus T and Weyl group WX .
Then H∗(X/T ;Zp) is a free Zp-module of rank |WX |, concentrated in even
degrees.

Likewise combining the classification with a case-by-case verification for
the exotic p-compact groups by Castellana [29], [30], we obtain that the Peter-
Weyl theorem holds for connected p-compact groups, p odd:

Theorem 1.6 (Peter-Weyl theorem for connected p-compact groups).
Let X be a connected p-compact group, p odd. Then there exists a monomor-
phism X → U(n)p̂ for some n.

We also still have the ‘standard’ formula for the fundamental group (the
subscript denotes coinvariants).

Theorem 1.7. Let X be a connected p-compact group, p odd. Then

π1(X) = (LX)WX
.

The classification also gives a verification that results of Borel, Steinberg,
Demazure, and Notbohm [110, Prop. 1.11] extend to p-compact groups, p odd.
Recall that an elementary abelian p-subgroup of X is just a monomorphism
ν : E → X, where E ∼= (Z/p)r for some r.

Theorem 1.8. Let X be a connected p-compact group, p odd. The fol-
lowing conditions are equivalent :

(1) X has torsion-free Zp-cohomology.

(2) BX has torsion-free Zp-cohomology.

(3) Zp[LX ]WX is a polynomial algebra over Zp.

(4) All elementary abelian p-subgroups of X factor through a maximal torus.

(See also Theorem 12.1 for equivalent formulations of condition (1).) Even
in the Lie group case, the proof of the above theorem is still not entirely
satisfactory despite much effort—see the comments surrounding our proof in
Section 10 as well as Borel’s comments [13, p. 775] and the references [11],
[43], and [132]. The centralizer CX(ν) of an elementary abelian p-subgroup
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ν : E → X is defined as CX(ν) = Ω map(BE, BX)Bν ; cf. Section 2. The
following related result from Lie theory also holds true.

Theorem 1.9. Let X be a connected p-compact group, p odd. Then the
following conditions are equivalent :

(1) π1(X) is torsion-free.

(2) Every rank one elementary abelian p-subgroup ν : Z/p → X has con-
nected centralizer CX(ν).

(3) Every rank two elementary abelian p-subgroup factors through a maximal
torus.

Results about p-compact groups can in general, via Sullivan’s arithmetic
square, be translated into results about finite loop spaces, and the last theorem
in this introduction is an example of such a translation. (For another instance
see [7].) Recall that a finite loop space is a loop space (X, BX, e), where X

is a finite CW-complex. A maximal torus of a finite loop space is simply a
map BU(1)r → BX for some r, such that the homotopy fiber is homotopy
equivalent to a finite CW-complex of nonzero Euler characteristic. The clas-
sical maximal torus conjecture (stated in 1974 by Wilkerson [140, Conj. 1]
as “a popular conjecture toward which the author is biased”), asserts that
compact connected Lie groups are the only connected finite loop spaces which
admit maximal tori. A slightly more elaborate version states that the classi-
fying space functor should set up a bijection between isomorphism classes of
compact connected Lie groups and isomorphism classes of connected finite loop
spaces admitting a maximal torus, under which the outer automorphism group
of the Lie group G equals the outer automorphism group of the corresponding
loop space (G, BG, e). (The last part is known to be true by [83, Cor. 3.7].) It
is well known that a proof of the conjectured classification of p-compact groups
for all primes p would imply the maximal torus conjecture. Our results at least
imply that the conjecture is true after inverting the single prime 2.

Theorem 1.10. Let X be a connected finite loop space with a maximal
torus. Then there exists a compact connected Lie group G such that BX[12 ] and
BG[12 ] are homotopy equivalent spaces, where [12 ] indicates Z[12 ]-localization.

Relationship to the Lie group case and the conjectural picture for p = 2.
We now state a common formulation of both the classification of compact con-
nected Lie groups and the classification of connected p-compact groups for p

odd, which conjecturally should also hold for p = 2. We have not encoun-
tered this—in our opinion quite natural—description before in the literature
(compare [48] and [89]).
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Let R be an integral domain and W a finite R-reflection group. For an
RW -lattice L (i.e., an RW -module which is finitely generated and free as an
R-module) define SL to be the sublattice of L generated by (1 − w)x where
w ∈ W and x ∈ L. Define an R-reflection datum to be a triple (W, L, L0)
where (W, L) is a finite R-reflection group and L0 is an RW -lattice such that
SL ⊆ L0 ⊆ L and L0 is isomorphic to SL′ for some RW -lattice L′. (If R = Zp,
p odd, then ‘S’ is idempotent and L0 = SL, since W is generated by elements
of order prime to p so H1(W ;LW ) = 0.) Two reflection data (W, L, L0) and
(W ′, L′, L′

0) are said to be isomorphic if there exists an R-linear isomorphism
ϕ : L → L′ such that ϕWϕ−1 = W ′ and ϕ(L0) = L′

0.
If D is either the category of compact connected Lie groups or connected

p-compact groups, then we can consider the assignment which to each object
X in D associates the triple (W, L, L0), where W is the Weyl group, L = π1(T )
is the integral lattice, and L0 = ker(π1(T ) → π1(X)) is the coroot lattice.

Theorems 1.1 and 1.7 as well as the classification of compact connected
Lie groups [20, §4, no. 9] can now be reformulated as follows:

Theorem 1.11. Let D be the category of compact connected Lie groups,
R = Z, or connected p-compact groups for p odd, R = Zp. For X in D the
associated triple (W, L, L0) is an R-reflection datum and this assignment sets
up a bijection between the objects of D up to isomorphism and R-reflection
data up to isomorphism. Furthermore the group of outer automorphisms of
X equals the group of outer automorphisms of the corresponding R-reflection
datum.

Conjecture 1.12. Theorem 1.11 is also true if D is the category of con-
nected 2-compact groups.

One can check that the conjecture on objects is equivalent to the conjec-
ture given in [48] and [89], and the self-map statement would then follow from
[83, Cor. 3.5] and [112, Thm. 3.5]. The role of the coroot lattice L0 in the
above theorem and conjecture is in fact only to be able to distinguish direct
factors isomorphic to SO(2n + 1) from direct factors isomorphic to Sp(n); cf.
Theorem 11.5. Alternatively one can use the extension class γ ∈ H3(W ;L) of
the maximal torus normalizer (see Section 5) rather than L0 but in that pic-
ture it is not a priori clear which triples (W, L, γ) are realizable. It would be
desirable to have a ‘topological’ version of Theorem 1.11 and Conjecture 1.12,
i.e., statements on the level of automorphism spaces like Theorem 1.4, but we
do not know a general formulation which incorporates this feature.

Organization of the paper. The paper is organized around Section 2 which
sets up the framework of the proof and gives an inductive proof of the main
theorems, referring to the later sections of the paper for many key statements.
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The remaining sections can be read in an almost arbitrary order. We now
briefly sketch how these sections are used.

We first say a few words about Section 4–7, before describing Section 2 and
the later sections in a little more detail. The short Sections 4 and 5 construct
the map Φ : Aut(BX) → Aut(BNX) and give an algebraic description of the
automorphisms of BNX . Section 6 contains the reduction to the case of simple,
center-free, connected p-compact groups. In Section 7 we prove an integral
version of a theorem of Nakajima, and show how this leads to an easy criterion
for inductively constructing certain p-compact groups; this criterion will, in the
setup of the induction, lead to a construction of the exotic p-compact groups
and show that they have torsion-free Zp-cohomology.

Armed with this information let us now summarize Section 2. In the in-
ductive framework of the main theorem the results in Section 7 guarantee that
we have concrete models for conjecturally all p-compact groups, and that those
coming from exotic finite Zp-reflection groups have torsion-free Zp-cohomology.
Likewise, by the reduction theorems in Section 6, we are furthermore reduced
to showing that if X ′ is an unknown connected center-free simple p-compact
group with associated Zp-reflection group (W, L) then it agrees with our known
model X realizing (W, L). We want, using the inductive assumption, to con-
struct a map from the centralizers in X to X ′, and show that these maps glue
together to give an isomorphism X → X ′. To be able to glue the maps to-
gether, we need to have a preferred choice on each centralizer and know that
these agree on the intersection—this is why we also have to keep track of the
automorphisms of p-compact groups in our inductive hypothesis.

If X has torsion-free Zp-cohomology, then every elementary abelian
p-subgroup factors through the maximal torus, and it follows from our con-
struction that our maps on the different centralizers of elementary abelian
p-subgroups in X to X ′ match up, as maps in the homotopy category. This
is not obvious in the case where X has torsion in its Zp-cohomology, and we
develop tools in Section 3 which suffice to handle all the torsion cases, on a
case-by-case basis. This step should be thought of as inductively showing that
X and X ′ have the same (centralizer) fusion.

We now have to rigidify our maps on the centralizers from a consistent
collection of maps in the homotopy category to a consistent collection map in
the category of spaces. There is an obstruction theory for dealing with this
issue. Again, in the case where X does not have torsion there is a general
argument for showing that these obstruction groups vanish, whereas we in
the case where X has torsion have to show this on a case-by-case basis. To
deal with this we give in the purely algebraic Section 8 complete information
about all nontoral elementary abelian p-subgroups of the projective unitary
groups and the exceptional compact connected Lie groups, along with their
Weyl groups and centralizers. This information is needed as input in Section 9
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for showing that the obstruction groups vanish. Hence we get a map in the
category of spaces from the centralizers in X to X ′, which then glues together
to produce a map X → X ′ which then by our construction is easily seen to be
an isomorphism. As a by-product of the analysis we also conclude that X has
the right automorphism group. This proves the main theorems. Section 10
establishes the consequences of the main theorem, listed in the introduction.

There are three appendices: In Section 11 we give a concise classifica-
tion of finite Zp-reflection groups generalizing Notbohm’s classification to all
primes. In Section 12 we recall Notbohm’s results on invariant rings of finite
Zp-reflection groups. These facts are all used multiple times in the proof. Fi-
nally in Section 13 we briefly calculate the outer automorphism groups of the
finite Zp-reflection groups to make the automorphism statement in the main
result more explicit.

Notation. We have tried to introduce the definitions relating to p-compact
groups as they are used, but it is nevertheless probably helpful for the reader
unfamiliar with p-compact groups to keep copies of the excellent papers [56]
and [57] of Dwyer-Wilkerson (whose terminology we follow) within reach. As
a technical term we say that a p-compact group X is determined by NX if any
p-compact group X ′ with the same maximal torus normalizer is isomorphic to
X (which will be true for all p-compact groups, p odd, by Theorem 1.4).

We tacitly assume that any space in this paper has the homotopy type of
a CW-complex, if necessary replacing a given space by the realization of its
singular complex [93].

Acknowledgments. We would like to thank H. H. Andersen, D. Benson,
G. Kemper, A. Kleschev, G. Malle, and J-P. Serre for helpful correspondence.
We also thank J. P. May, H. Miller, and the referee for their comments and
suggestions. We would in particular like to thank W. Dwyer, D. Notbohm,
and C. Wilkerson for several useful tutorials on their beautiful work, which
this paper builds upon.

2. Skeleton of the proof of the main Theorems 1.1 and 1.4

The purpose of this section is to give the skeleton of the proof of the main
Theorems 1.1 and 1.4, but in the proofs referring forward to the remaining
sections in the paper for the proof of many key statements, as explained in the
organizational remarks in the introduction.

We start by explaining the proof in general terms, which is carried out via
a grand induction—for simplicity we focus first on the uniqueness statement.
Suppose that X is a known p-compact group and X ′ is another p-compact
group with the same maximal torus normalizer. We want to construct an iso-
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morphism X → X ′, by decomposing X in terms of centralizers of its nontrivial
elementary abelian p-subgroups, as we will explain below. Using an inductive
assumption we can construct a homomorphism from each of these centralizers
to X ′, and we want to see that we can do this in a coherent way, so that they
glue together to give the desired map X → X ′.

We first explain the centralizer decomposition. It is a theorem of Lannes
[88, Thm. 3.1.5.1] and Dwyer-Zabrodsky [46] (see also [82, Thm. 3.2]), that for
an elementary abelian p-group E and a compact Lie group G with component
group a p-group, we have a homotopy equivalence∐

ν∈Rep(E,G)

BCG(ν(E))p̂
�−→ map(BE, BGp̂)

induced by the adjoint of the canonical map BE × BCG(ν(E)) → BG. Here
Rep(E, G) denotes the set of homomorphisms E → G, modulo conjugacy in G.

Generalizing this, one defines, for a p-compact group X, an elementary
abelian p-subgroup of X to be a monomorphism ν : E → X, and its cen-
tralizer to be the p-compact group CX(ν) with classifying space BCX(ν) =
map(BE, BX)Bν . By a theorem of Dwyer-Wilkerson [56, Props. 5.1 and 5.2]
this actually is a p-compact group and the evaluation map to X is a monomor-
phism. Note however that CX(ν) is not defined as a subobject of X, i.e., the
map to X is defined in terms of ν, unlike the Lie group case.

For a p-compact group X, let A(X) denote the Quillen category of X.
The objects of A(X) are conjugacy classes of monomorphisms ν : E → X of
nontrivial elementary abelian p-groups E into X. The morphisms (ν : E →
X) → (ν ′ : E′ → X) of A(X) consists of all group monomorphisms ρ : E → E′

such that ν and ν ′ρ are conjugate.
The centralizer construction gives a functor

BCX : A(X)op → Spaces

that takes the monomorphism (ν : E → X) ∈ Ob(A(X)) to its centralizer
BCX(ν) = map(BE, BX)Bν and a morphism ρ to composition with Bρ :
BE → BE′.

The centralizer decomposition theorem of Dwyer-Wilkerson [57, Thm. 8.1],
generalizing a theorem for compact Lie groups by Jackowski-McClure [81,
Thm. 1.3], says that the evaluation map

hocolimA(X) BCX → BX

induces an isomorphism on mod p homology. If X is connected and center-
free, then for all ν, the centralizer CX(ν) is a p-compact group with smaller
cohomological dimension, hence setting the stage for a proof by induction; cf.
[57, §9]. (The cohomological dimension of a p-compact group X is defined as
cd(X) = max{n|Hn(X;Fp) �= 0}; see [56, Def. 6.14] and [58, Lem. 3.8].)
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To make use of this we need a way to construct a map from centralizers of
elementary abelian p-subgroups in X to any other p-compact group X ′ with the
same maximal torus normalizer N . Let N be embedded via homomorphisms
j : N → X and j′ : N → X ′ respectively. If ν : E → X can be factored
through a maximal torus i : T → X, i.e., if there exists μ : E → T such that
iμ = ν, then μ is unique up to conjugation as a map to N by [58, Prop. 3.4].
Furthermore by [57, Pf. of Thm. 7.6(1)], CN (μ) is a maximal torus normalizer
in CX(ν), where centralizers in N are defined in the same way as in a p-compact
group. In this case j′μ will be an elementary abelian p-subgroup of X ′, which
we have assigned without making any choices, and CX′(j′μ) will have maximal
torus normalizer CN (μ). Suppose that CX(ν) is determined by NCX(ν) (i.e.,
any p-compact group with maximal torus normalizer isomorphic to NCX(ν)

is isomorphic to CX(ν)) and that the homomorphism Φ : Aut(BCX(ν)) →
Aut(BNCX(ν)), defined after Theorem 1.4, is an equivalence. Since CX(ν) is
determined by its maximal torus normalizer, surjectivity of π0(Φ) implies that
there exists an isomorphism hν making the diagram

CN (μ)
j′

�����������
j

�����������

CX(ν)
hν

∼=
�� CX′(j′μ)

(2.1)

commute, and hν is unique up to conjugacy, by the injectivity of π0(Φ). (In
fact the space of such hν is contractible, since Φ is an equivalence.) This con-
structs the desired map ϕν : CX(ν) hν−→ CX′(j′μ) → X ′ for elementary abelian
p-subgroups ν : E → X which factor through the maximal torus. An elemen-
tary abelian p-subgroup is called toral if it has this property, and nontoral if
not.

We want to construct maps also for nontoral elementary abelian p-sub-
groups, by utilizing the centralizers of rank one elementary abelian p-subgroups,
which are always toral by [56, Prop. 5.6] if X is connected. For this we need
to recall the construction of adjoint maps.

Construction 2.1 (Adjoint maps). Let A be an abelian p-compact group
(i.e., a p-compact group such that ZA → A is an isomorphism), X a p-compact
group, and ν : A → X a homomorphism. Suppose that E is an elementary
abelian p-subgroup of A and note that we have a canonical map

BA × BE
mult−−→ BA → BX

whose homotopy class only depends on the conjugacy class of ν. Since further-
more

π0(map(BA × BE, BX)) ∼=
∐

ξ∈[BE,BX]

π0(map(BA,map(BE, BX)ξ))



THE CLASSIFICATION OF p-COMPACT GROUPS FOR p ODD 109

every homomorphism ν : A → X gives rise to a homomorphism ν̃ : A →
CX(ν|E) making the diagram

CX(ν|E)

ev

��
A

ν̃
����������� ν �� X

commutative. Here ν̃ is well-defined up to conjugacy in terms of the conjugacy

class of ν. We will always use the notation (̃·) for this construction.

Let ν : E → X be an arbitrary nontrivial elementary abelian p-subgroup
of a connected p-compact group X and let V be a rank one subgroup of E.
Then ν|V is toral by [56, Prop. 5.6]; i.e., it factors through T and the map
μ : V → T → N is unique up to conjugation in N . Furthermore if CX(ν|V ) is
determined by CN (μ) and Φ : Aut(BCX(ν|V ))

∼=−→ Aut(BNCX(ν|V )) then hν|V is
defined as before, and we can look at the composite

ϕν,V : CX(ν) −→ CX(ν|V )
hν|V−−−→∼= CX′(j′μ) −→ X ′.

This is the definition we will use in general. It is easy to see using adjoint maps
that this construction generalizes the previous one in the case where ν is toral,
under suitable inductive assumptions (cf. the proof of Theorem 2.2 below).
However if ν is nontoral it is not obvious that this map is independent of the
choice of subgroup V of E, which is needed in order to get a map (in the ho-
motopy category) from the centralizer diagram of BX to BX ′. Checking that
this is the case basically amounts to inductively establishing that elementary
abelian p-subgroups and their centralizers are conjugate in the same way in X

and X ′, i.e., that they have the same fusion. Furthermore we want see that
this diagram can be rigidified to a diagram in the category of spaces, to get an
induced map from the homotopy colimit of the centralizer diagram. The next
theorem states precisely what needs to be checked—the calculations to verify
that these conditions are indeed satisfied for all simple center-free p-compact
groups is essentially the content of the rest of the paper.

Theorem 2.2. Let X and X ′ be two connected p-compact groups with the
same maximal torus normalizer N embedded via j and j′ respectively. Assume
that X satisfies the following inductive assumption:

(	) For all rank one elementary abelian p-subgroups ν : E → X of X the
centralizer CX(ν) is determined by NCX(ν) and Φ : Aut(BCX(ν))

∼=−→
Aut(BNCX(ν)) when ν is of rank one or two.

Then:
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(1) Assume that for every rank two nontoral elementary abelian p-subgroup
ν : E → X the induced map ϕν,V is independent of the choice of the
rank one subgroup V of E. Then there exists a map in the homotopy
category of spaces from the centralizer diagram of BX to BX ′ (seen as
a constant diagram), i.e., an element in lim0

ν∈A(X)[BCX(ν), BX ′], given
via the maps ϕν,V described above.

(2) Assume furthermore that limi
ν∈A(X) πj(BZCX(ν)) = 0 for j = 1, 2 and

i = j, j + 1. Then there is a lift of this element in lim0 to a map in the
(diagram) category of spaces. This produces an isomorphism f : X → X ′

under N , unique up to conjugacy, and Φ : Aut(BX)
∼=−→ Aut(BN ).

Proof. As explained before the theorem, if ν : E → X has rank one then
ν factors through T to give a map μ : E → N , unique up to conjugation in
N ; so the inductive assumption (	) guarantees that we can construct a map
CX(ν) → X ′, under CN (μ), and this map is well-defined up to conjugation
in X ′.

We now want to see that in the case where E has rank two, the map ϕν,V

is in fact independent of the choice of the rank one subgroup V . Assume first
that ν : E → X is toral and let μ : E → N be a factorization of ν through T .
By adjointness we have the following commutative diagram

CN (μ)

j

�������������������������������

j′

����������������������������������

CCN (μ|V )(μ̃)

∼=
		

�������������

��������������

CX(ν) CCX(ν|V )(ν̃)
∼=

 ∼=

h̃ν|V �� CCX′ (j′μ|V )(j̃′μ)
∼= �� CX′(j′μ)

(2.2)

where h̃ν|V is the map induced from hν|V on the centralizers. The rank two
uniqueness assumption in (	) now guarantees that the bottom left-to-right
composite ψ is independent of the choice of V .

However, for any particular choice of V we have a commutative diagram

CX(ν)
ψ

∼=
��

��

CX′(j′μ)

�� ��										

CX(ν|V )
hν|V
∼=

�� CX′(j′μ|V ) �� X ′

and since ψ is independent of V this shows that ϕν,V is independent of V as
wanted. This handles the rank two toral case. For the rank two nontoral case
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we are simply assuming that ϕν,V is independent of V . (Note that the problem
which prevents the toral argument to carry over to the nontoral case is that
we cannot choose a uniform μ : E → N such that μ|V factors through T for
all V , since this would imply that E itself was toral.)

The fact that ϕν,V is independent of V when E is of rank two implies the
statement in general: Let ν : E → X be an elementary abelian p-subgroup of
rank at least three. If V1 and V2 are two different rank one subgroups of E,
we set U = V1 ⊕ V2 and consider the following diagram

CX(ν|V1)
ϕν|V1

��










CX(ν)

�����������
��

�����������
CX(ν|U )

		

��

X ′.

CX(ν|V2)

ϕν|V2

���������

Here the left-hand side of the diagram is constructed by adjointness and hence
commutes, and the right-hand side of the diagram commutes up to conjugation
by the rank two assumption. This shows that the top left-to-right composite
ϕν,V1 is conjugate to the bottom left-to-right composite ϕν,V2 , i.e., the map
ϕν,V is independent of the choice of rank one subgroup V in general. We hence
drop the subscript V and denote this map by ϕν .

With these preparations we can now easily finish the proof of part (1) of
the theorem. We need to see that for an arbitrary morphism ρ : (ν : E →
X) → (ν ′ : E′ → X) in A(X) the diagram

CX(ν ′)
CX(ρ) ��

ϕν′
����������

CX(ν)

ϕν��

X ′

commutes. Suppose first that E′ has rank one, and let μ : E′ → T → N be the
factorization of ν ′ through T . The statement follows here since the diagram

CX(ν ′) ∼=
hν′ ��

∼=CX(ρ)
��

CX′(j′μ)

∼=CX′ (ρ)
��

�� X ′

CX(ν ′ρ)
hν′ρ

∼=
�� CX′(j′μρ)

����������

commutes up to conjugation, by the uniqueness in the rank one case, since we
can view the diagram of isomorphisms as taking place under CN (μ) → CN (μρ).
The general case follows from the rank one case, by the independence of choice
of rank one subgroup: If V is a rank one subgroup of E set V ′ = ρ(V ) and
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observe that by adjointness the diagram

CX(ν ′) ��

CX(ρ)
��

CX(ν ′|V ′)

CX(ρ|V )
��

CX(ν) �� CX(ν|V )

commutes. Hence we have constructed a map up to conjugacy from the cen-
tralizer diagram of X to X ′ (seen as a constant diagram), or in other words
we have defined an element

[ϑ] ∈ lim
ν∈A(X)

0π0(map(BCX(ν), BX ′)).

This concludes the proof of part (1).
Using [59, Rem. after Def. 6.3], [57, Lem. 11.15] (which say that the cen-

tralizer diagram of a p-compact group is ‘centric’) it is easy to see that the
map ϕν : CX(ν) → X ′ induces a homotopy equivalence

map(BCX(ν), BCX(ν))1
�−→ map(BCX(ν), BX ′)ϕν

where the first term equals the classifying space of the center BZCX(ν) by
definition [57]. Since this is natural it gives a canonical identification of the
functor ν �→ πi(map(BCX(ν), BX ′)[ϑ]) with ν �→ πi(BZCX(ν)).

By obstruction theory (see [143, Prop. 3], [84, Prop. 1.4]) the existence ob-
structions for lifting [ϑ] to an element in π0(holimA(X) map(BCX(ν), BX ′)) ∼=
π0(map(BX, BX ′)) lie in

lim
ν∈A(X)

i+1πi(map(BCX(ν), BX ′)[ϑ]) ∼= lim
ν∈A(X)

i+1πi(BZCX(ν)), i ≥ 1.

But by assumption all these groups are identically zero, so our element [ϑ] lifts
to a map Bf : BX → BX ′.

We now want to see that the construction of f forces it to be an isomor-
phism. Let Np denote a p-normalizer of T , i.e., the union of components in
N corresponding to a Sylow p-subgroup of W . Since Np has nontrivial center
(by standard facts about p-groups), we can find a central rank one elementary
abelian p-subgroup μ : V → T → Np, and so we can view Np as sitting inside
CN (μ). Hence by construction the diagram

Np

j

����
��

��
�� j′

���
��

��
��

�

X
f �� X ′

commutes up to conjugation, and in particular fj : Np → X ′ is a monomor-
phism. This implies that f is a monomorphism as well: H∗(BNp;Fp) is finitely
generated over H∗(BX ′;Fp) via H∗(Bf ◦Bj;Fp) by [56, Prop. 9.11]. By an ap-
plication of the transfer [56, Thm. 9.13] the map H∗(Bj;Fp) : H∗(BX;Fp) →
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H∗(BNp;Fp) is a monomorphism, and since H∗(BX ′;Fp) is noetherian by [56,
Thm. 2.4] we conclude that H∗(BX;Fp) is finitely generated over H∗(BX ′;Fp)
as well. Hence f : X → X ′ is a monomorphism by another application of [56,
Prop. 9.11]. Since we can identify the maximal tori of X ′ and X, the definition
of the Weyl group produces a map between the Weyl groups WX → WX′ , which
has to be injective since the Weyl groups act faithfully on T (by [56, Thm. 9.7]).
But since we know that X and X ′ have the same maximal torus normalizer,
the above map of Weyl groups is an isomorphism. By [57, Thm. 4.7] (or [100,
Prop. 3.7] and [56, Thm. 9.7]) this means that f is indeed an isomorphism.

We now want to argue that f is a map under N . By Lemma 4.1 we know
that there exists Bg ∈ Aut(BN ), unique up to conjugation, such that

N g ��

j

��

N
j′

��
X

f �� X ′

commutes up to conjugation. By covering space theory and Sylow’s theorem
we can restrict g to a self-map g′ making the diagram

Np
g′

��

j

��

Np

j′

��
X

f �� X ′

commute. Furthermore any other map Np → Np fitting in this diagram will be
conjugate to g′ in N , by the proof of Lemma 4.1. However, by construction, f

is a map under Np, so g′ is conjugate in N to the identity map on Np. It follows
from Propositions 5.1 and 5.2 that automorphisms of N , up to conjugacy, are
detected by their restriction to a maximal torus p-normalizer Np, so also g

is conjugate to the identity, i.e., f is a map under N . This also shows that
Φ : π0(Aut(BX)) → π0(Aut(BN )) is surjective, since for any automorphism
g : N → N , jg is also a maximal torus normalizer in X by [99, Thm. 1.2(3)].

Note that if the component of Aut(BN ) of the identity map, Aut1(BN ), is
not contractible we can find a rank one elementary abelian p-subgroup ν : V →
T such that CN (ν)

∼=−→ N which by assumption means that Φ : Aut(BX)
∼=−→

Aut(BN ). So we can assume that Aut1(BN ) is contractible in which case
Aut1(BX) is as well by [57, Thms. 1.3 and 7.5].

The only remaining claim in the theorem is that the map Φ : π0(Aut(BX))
→ π0(Aut(BN )) is injective under the additional assumption that

lim
ν∈A(X)

iπi(BZCX(ν)) = 0, i ≥ 1.

In other words we have to see that any self-equivalence f of X which, up to
conjugacy, induces the identity on N is in fact conjugate to the identity. But if
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we examine the above argument with X ′ = X, the map on centralizers of rank
one objects induced by f has to be the identity by the rank one uniqueness
assumption. The maps for higher rank are centralizers of maps of rank one,
so they as well have to be the identity. Hence f maps to the same element as
the identity in lim0

ν∈A(X) π0(map(BCX(ν), BX)), which means that f actually
is the identity by the vanishing of the obstruction groups (again, e.g., by [143,
Prop. 4] or [84, Prop. 1.4]).

Remark 2.3. Note how the assumption of the theorem fails (as it should)
for the group SO(3) at the prime 2, which is not determined by its maximal
torus normalizer. In this case the element diag(−1,−1, 1) in the maximal torus
SO(2) × 1 is fixed under the Weyl group action and has centralizer equal to
the maximal torus normalizer O(2).

Define the cohomological dimension cd(W, L) of a finite Zp-reflection group
(W, L) to be 2 · (the number of reflections in W ) + rkL, and note that it fol-
lows easily from [58, Lem. 3.8] and [10, Thm. 7.2.1] that for X a connected
p-compact group cd(X) = cd(WX , LX). We are now ready to give the proof of
the main Theorems 1.1 and 1.4, referring forward to the rest of the paper—the
statements we refer to can however easily be taken at face value and returned
to later.

Proof of Theorems 1.1, and 1.4 using Sections 3–9, 11, and 12. We
simultaneously show that Theorems 1.1 and 1.4 hold by an induction on the
cohomological dimension of X and (W, L). We will furthermore add to the
induction hypothesis the statement that if X is connected and Zp[LX ]WX is a
polynomial ring, then H∗(BX;Zp) ∼= H∗(BT ;Zp)WX .

By the Component Reduction Lemma 6.6, Theorem 1.4 holds for a
p-compact group X if it holds for its identity component X1, so we can assume
that X is connected.

By a result of the first-named author [6, Thm. 1.2], if (W, L) is realized
as the Weyl group of a p-compact group X, then NX will be split, i.e., the
unique possible k-invariant of BNX is zero and BNX � (BT )hW . (See also
[135], [63], and [103] for the Lie group case.) Furthermore, by the Component
Group Formula (Lemma 6.4) we can read off the component group of X from
NX . So, to prove Theorems 1.1 and 1.4 we have to show that given any finite
Zp-reflection group (W, L) there exists a unique connected p-compact group X

realizing (W, L), with self-maps satisfying Φ : Aut(BX)
∼=−→ Aut(BNX), since

this implies Φ : π0(Aut(BX))
∼=−→ NGL(L)(W )/W by Propositions 5.1 and 5.2.

We first deal with the existence part. By the classification of finite
Zp-reflection groups (Theorem 11.1), (W, L) can be written as a product of ex-
otic finite Zp-reflection groups and a finite Zp-reflection group of the
form (WG, LG ⊗ Zp) for some compact connected Lie group G. The factor
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(WG, LG⊗Zp) can of course be realized by Gp̂, and in this case H∗(BGp̂;Zp) ∼=
H∗(BT ;Zp)WG if and only if Zp[LG ⊗ Zp]WG is a polynomial algebra by the
invariant theory appendix (Theorems 12.2 and 12.1). If (W, L) is an exotic fi-
nite Zp-reflection group then Zp[L]W is a polynomial algebra by Theorem 12.2
and (W, L) satisfies T̆W = 0 by the classification of finite Zp-reflection groups
Theorem 11.1, where T̆ ∼= L ⊗ Z/p∞ is a discrete approximation to T . By
our integral version of a theorem of Nakajima (Theorem 7.1), the subgroup
WV of W fixing a nontrivial elementary abelian p-subgroup V in T̆ is again a
Zp-reflection group, and since reflections in WV are also reflections in W (and
WV is a proper subgroup of W ), we see that (WV , L) has smaller cohomological
dimension than (W, L). Hence by the induction hypothesis, the assumptions
of the Inductive Polynomial Realization Theorem 7.3 are satisfied. So, by this
theorem there exists a (unique) connected p-compact group X with Weyl group
(W, L) and this satisfies H∗(BX;Zp) ∼= H∗(BT ;Zp)WX .

We now want to show that X is uniquely determined by (W, L) = (WX , LX)
and that X satisfies Φ : Aut(BX)

∼=−→ Aut(BN ), i.e., that X satisfies the
conclusion of Theorem 1.4 (and hence that of Theorem 1.1). By the Center
Reduction Lemma 6.8 we can assume that X is center-free. Likewise by the
splitting theorem [58, Thms. 1.4 and 1.5] together with the Product Automor-
phism Lemma 6.1 we can assume that X is simple. By the classification of
finite Zp-reflection groups (Theorem 11.1) and the invariant theory appendix
(Theorem 12.2) either (W, L) has the property that Zp[L]W is a polynomial
algebra, or (W, L) is one of the reflection groups (WPU(n), LPU(n) ⊗ Zp) (with
p |n), (WE8 , LE8 ⊗Z5), (WF4 , LF4 ⊗Z3), (WE6 , LE6 ⊗Z3), (WE7 , LE7 ⊗Z3), or
(WE8 , LE8 ⊗ Z3).

We will go through these cases individually. We can assume that X

is either constructed via the Inductive Polynomial Realization Theorem, or
X = Gp̂ for the relevant compact connected Lie group G. Let X ′ be a connected
p-compact group with Weyl group (W, L). We want to see that the assumptions
of Theorem 2.2 are satisfied. For this we use the calculation of the elementary
abelian p-subgroups in Section 8 sometimes together with a specialized lemma
from Section 3 to see that the assumption of Theorem 2.2(1) is satisfied. The
assumption of Theorem 2.2(2) follows from the Obstruction Vanishing Theo-
rem 9.1.

If Zp[L]W is a polynomial algebra, then by the Inductive Polynomial Re-
alization Theorem, X satisfies H∗(BX;Zp) ∼= H∗(B2L;Zp)W . Hence all el-
ementary abelian p-subgroups of X are toral by an application of Lannes’
T -functor (cf. Lemma 10.8). In particular X has no rank two nontoral elemen-
tary abelian p-subgroups, so the assumption of Theorem 2.2(1) is satisfied.
By the Obstruction Vanishing Theorem 9.1 the assumption of Theorem 2.2(2)
also holds, and hence Theorem 2.2 implies that there exists an isomorphism of
p-compact groups X → X ′, and that X satisfies the conclusion of Theorem 1.4.
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Now consider (W, L) = (WPU(n), LPU(n) ⊗ Zp) where p | n. Theorem 8.5
says that PU(n) has exactly one conjugacy class of rank two nontoral ele-
mentary abelian p-subgroups E and gives its Weyl group and centralizer. We
divide into two cases. If n �= p, Lemma 3.3 implies that the assumption of The-
orem 2.2(1) is satisfied. If n = p, Lemma 3.2 implies that again the assumption
of Theorem 2.2(1) is satisfied. In both cases the assumption of Theorem 2.2(2)
is satisfied by the Obstruction Vanishing Theorem 9.1, so Theorem 1.4 holds
for X.

If (W, L) = (WG, LG⊗Zp) for (G, p) = (E8, 5), (F4, 3), (2E7, 3), or (E8, 3)
then G (and hence X) does not have any rank two nontoral elementary abelian
p-subgroups by Theorem 8.2(3), so the assumption of Theorem 2.2(1) is vac-
uously satisfied. The assumption of Theorem 2.2(2) holds by the Obstruction
Vanishing Theorem 9.1, so Theorem 1.4 holds also in these cases.

Finally, if (W, L) = (WG, LG ⊗Zp) for (G, p) = (E6, 3) there are by Theo-
rem 8.10 two isomorphism classes of rank two nontoral elementary abelian 3-
subgroups E2a

E6
and E2b

E6
in A(X), X = Gp̂. These both satisfy the assumption

of Theorem 2.2(1) by Lemma 3.3 and the information about the centralizers
in Theorem 8.10. Since the assumption of Theorem 2.2(2) as usual is satis-
fied by the Obstruction Vanishing Theorem 9.1 we conclude by Theorem 2.2
that Theorem 1.4 holds for X as well. This concludes the proof of the main
theorems.

Remark 2.4. Note that taking the case (WE6 , LE6 ⊗Z3) last in the above
theorem is a bit misleading, since groups with adjoint form E6 appear as
centralizers in E7 and E8, so a separate inductive proof of uniqueness in those
cases would require knowing uniqueness of E6.

Remark 2.5. The very careful reader might have noticed that the proof
of the splitting result in [6], which we use in the above proof, refers to a
uniqueness result in [24] in the case of (WPU(3), LPU(3) ⊗Z3). We now quickly
sketch a more direct way to get the splitting in this case, which we were told
by Dwyer-Wilkerson: We need to see that a 3-compact group with Weyl group
(WPU(3), LPU(3) ⊗ Z3) has to have split maximal torus normalizer N . So,
suppose that X is a hypothetical 3-compact group as above but with nonsplit
maximal torus normalizer. By a transfer argument (cf. [56, Thm. 9.13]), N3

has to be nonsplit as well. Since every elementary abelian 3-subgroup in X

can be conjugated into N3 (since χ(X/Np) is prime to p), this means that all
elementary abelian 3-subgroups in X are toral. Furthermore by [58, Prop. 3.4]
conjugation between toral elementary abelian p-subgroups is controlled by the
Weyl group, so the Quillen category of X in fact agrees with the Quillen
category of N . The category has up to isomorphism one object of rank two
and two objects of rank one. The centralizers CN (V ) of these are respectively
T , T : Z/2, and T · Z/3. The unique 3-compact groups corresponding to
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these centralizers are in fact given by BCN (V )3̂. Hence the map BN → BX

is an equivalence by the centralizer cohomology decomposition theorem [57,
Thm. 8.1]. But since N is nonsplit, we can find a map Z/9 → N , which is
not conjugate in N to a map into T . Hence the corresponding map Z/9 → X

cannot be conjugated into T either, contradicting [56, Prop. 5.6].

3. Two lemmas used in Section 2

In this section we prove two lemmas which are used to verify the assump-
tion in Theorem 2.2(1) for a nontoral elementary abelian p-subgroup of rank
two—see the text preceding Theorem 2.2 for an explanation of this assump-
tion; we continue with the notation of Section 2. We first need a proposition
which establishes a bound on the Weyl group of a self-centralizing rank two
nontoral elementary abelian p-subgroup of a connected p-compact group. (The
Weyl group of an elementary abelian p-subgroup ν : E → X of a p-compact
group X is the subgroup of GL(E) consisting of elements α such that να is
homotopic to ν.) Let N̆X and T̆ denote discrete approximations to NX and
T respectively; i.e., T̆ ∼= L ⊗ Z/p∞ and N̆X is an extension of WX by T̆ such
that BN̆X → BNX is an Fp-equivalence—we refer to [57, §3] for facts about
discrete approximations.

Proposition 3.1. Let X be a connected p-compact group, and let ν :
E → X be a rank two elementary abelian p-subgroup with CX(ν) ∼= E. Then
SL(E) ⊆ W (ν), where W (ν) denotes the Weyl group of ν.

Proof. Let V be an arbitrary rank one subgroup of E and consider the
adjoint map ν̃ : E → CX(ν|V ). Let N̆p denote a discrete approximation to
the p-normalizer Np of a maximal torus in CX(ν|V ), which has positive rank
since X is assumed connected. Since χ(CX(ν|V )/Np) is not divisible by p

we can factor ν̃ through N̆p (see [57, Prop. 2.14(1)]), and by an elementary
result about p-groups NN̆p

(E) contains a p-group strictly larger than E. By
assumption CX(ν) ∼= E so CCX(ν|V )(ν̃) ∼= E, and hence CN̆ (E) = E. Thus
NN̆ (E)/CN̆ (E) ⊆ W (ν) ⊆ GL(E) contains a subgroup of order p stabilizing
V . Since V was arbitrary, this shows that W (ν) contains all Sylow p-subgroups
in SL(E), and hence SL(E) itself; cf. [80, Satz II.6.7].

Lemma 3.2. Let X and X ′ be two connected p-compact groups with the
same maximal torus normalizer N embedded via j and j′ respectively. As-
sume that for all elementary abelian p-subgroups η : E → X of X of rank
one the centralizer CX(η) is determined by NCX(η) and Φ : Aut(BCX(η))

∼=−→
Aut(BNCX(η)).

If ν : E → X is a rank two nontoral elementary abelian p-subgroup of X

such that CX(ν) ∼= E then the map ϕν,V : CX(ν) → X ′ is independent of the
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choice of the rank one subgroup V of E (i.e., the assumption of Theorem 2.2(1)
is satisfied for ν).

Proof. Fix a rank one subgroup V ⊆ E and let μ : V → T → N be the
factorization of the toral elementary abelian p-subgroup ν|V : V → X through
T , unique as a map to N . Then ϕν,V : E ∼= CX(ν) → X ′ is an elementary
abelian p-subgroup of X ′ and since we have an isomorphism hν|V : CX(ν|V )

∼=−→
CX′(j′μ) by assumption, it follows by adjointness that CX′(ϕν,V ) ∼= E. By
Proposition 3.1 we get SL(E) ⊆ WX(ν) and SL(E) ⊆ WX′(ϕν,V ).

Now let α ∈ SL(E) ⊆ WX(ν). Then α(V ) α−1

−−→ V
μ−→ N is the factoriza-

tion of (ν ◦α−1)|α(V )
∼= ν|α(V ) through T , unique as a map to N . Now consider

the diagram

E
∼= ��

α

��

CX(ν) �� CX(ν|V )

−◦Bα−1

��

hν|V
∼=

�� CX′(j′μ)

−◦Bα−1

��

�� X ′

E
∼= �� CX(ν) �� CX(ν|α(V ))

hν|α(V )

∼=
�� CX′(j′μ ◦ (α−1|α(V ))) �� X ′.

The left-hand and right-hand squares obviously commute and the middle square
commutes by our assumption on rank one subgroups. We thus conclude that
ϕν,α(V ) ◦ α is conjugate to ϕν,V for all α ∈ SL(E). Since WX′(ϕν,V ) contains
SL(E) and SL(E) acts transitively on the rank one subgroups of E it follows
that ϕν,V is independent of the choice of the rank one subgroup V of E as
desired.

Lemma 3.3. Let X and X ′ be two connected p-compact groups with the
same maximal torus normalizer N embedded via j and j′ respectively. Assume
the inductive hypothesis (	) of Theorem 2.2, i.e., that for all elementary abelian
p-subgroups η : E → X of X the centralizer CX(η) is determined by NCX(η)

when η has rank one and that Φ : Aut(BCX(η))
∼=−→ Aut(BNCX(η)) when η has

rank one or two.
If ν : E → X is a rank two nontoral elementary abelian p-subgroup of X

such that CX(ν)1 is nontrivial then the map ϕν,V : CX(ν) → X ′ is indepen-
dent of the choice of the rank one subgroup V of E (i.e., the assumption of
Theorem 2.2(1) is satisfied for ν).

Proof. Choose a rank one elementary abelian p-subgroup ξ : U = Z/p →
CX(ν)1 in the center of the p-normalizer of a maximal torus in CX(ν), which
is always possible since the action of a finite p-group on a nontrivial p-discrete
torus has a nontrivial fixed point. Let ξ × ν : U × E → X be the map
defined by adjointness. For any rank one subgroup V of E, consider the map
ξ × ν|V : U × V → X obtained by restriction. By construction ξ × ν|V is the

adjoint of the composite U
ξ−→CX(ν)1

res−→ CX(ν|V )1, so ξ × ν|V : U × V → X
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factors through a maximal torus in X, since every rank one elementary abelian
p-subgroup in a connected p-compact group factors through a maximal torus
by [56, Prop. 5.6]. We want to see that ξ × ν is a monomorphism, using the
theory of kernels [56, §7]: If ξ×ν was not a monomorphism then it would have
a rank one kernel K, which by the choice of ξ cannot be equal to U . But this
would mean that, for some rank one subgroup V ′ of E, both ν and ξ × ν|V ′

would be monomorphisms of rank two and factor through the monomorphism
(ξ × ν) : (U×E)/K → X of rank two. But this is a contradiction since ξ×ν|V ′

is toral and ν is not.
Now consider the following diagram

CX(ν|V )
ϕν|V

������������

U × E ��

�������������

������������� CX(ξ × ν|V )

		

��

X ′.

CX(ξ)

ϕξ

������������

Here the left-hand side of the diagram is constructed by taking adjoints of
ξ × ν and hence it commutes. The right-hand side is also forced to commute
by our inductive assumption, as explained in the beginning of the proof of
Theorem 2.2, since ξ×ν|V is toral of rank two. We can hence without ambiguity
define (ξ × ν)′ as either the top left-to-right composite (for some rank one
subgroup V ⊆ E) or the bottom left-to-right composite. We let ν ′ denote the
restriction of (ξ × ν)′ to E.

Finally consider the diagram

CX(ξ × ν)
˜h(ξ×ν)|V
∼=

��

��

CX′((ξ × ν)′)

��
CX(ν)

h̃ν|V
∼=

�� CX′(ν ′)

and note that as before the inductive assumption guarantees that ˜h(ξ×ν)|V =
˜h(ξ×ν)|U , since ξ × ν|V is toral, and in particular ˜h(ξ×ν)|V is independent of the

choice of V .
We want to see that this forces the same to be true for the bottom map

h̃ν|V . By our induction hypothesis, an automorphism of CX(ν) is determined
by the induced map on a maximal torus normalizer. Furthermore, in general,
for a p-compact group Y , an automorphism ϕ : NY → NY is determined
up to conjugacy by the restriction Np,Y → NY

ϕ−→ NY to a p-normalizer
Np,Y : For Y connected this follows directly from Propositions 5.1 and 5.2,
since elements in H1(WY ; T̆Y ) are determined by their restriction to a Sylow
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p-subgroup of WY ; for general Y the same argument works, once we note that
WY is generated by WY1 and the image of N̆p,Y in WY . Now, by our choice
of ξ, the centralizer CX(ξ × ν) contains a p-normalizer of a maximal torus in
CX(ν), so the above shows that h̃ν|V is independent of V as wanted. Hence

ϕν,V : CX(ν)
h̃ν|V−−−→ CX′(ν ′) ev−→ X ′ is independent of V .

4. The map Φ : Aut(BX) → Aut(BNX)

The purpose of this very short section is to construct the map Φ : Aut(BX)
→ Aut(BNX) which we will prove is an equivalence. We have been unable to
find this description in the literature.

For a fibration f : E → B we let Aut(f) denote the space of commutative
diagrams

E
f

��

�� E
f

��
B �� B

such that the horizontal maps are homotopy equivalences. (This is a subspace
of Aut(E) × Aut(B).)

Lemma 4.1 (Adams-Mahmud lifting). Let X be a p-compact group with
maximal torus normalizer NX . Turn the inclusion of the maximal torus nor-
malizer into a fibration i : BNX → BX. Then the restriction map Aut(i) →
Aut(BX) is an equivalence of group-like topological monoids.

In particular any self-homotopy equivalence of BX lifts to a self-homotopy
equivalence of BNX , which is unique in the strong sense that the space of
lifts is contractible. Choosing a homotopy inverse to the homotopy equivalence
B Aut(i) → B Aut(BX), we get a canonical map

Φ : B Aut(BX) �−→ B Aut(i) → B Aut(BNX).

Proof. For any ϕ ∈ Aut(BX), there exists, e.g. by [99, Thm. 1.2(3)], a
map ψ ∈ Aut(BNX) such that ϕi is homotopic to iψ. Since i is assumed
to be a fibration, ψ can furthermore be modified such that the equality is
strict. This shows that the evaluation map Aut(i) → Aut(BX) is surjective
on components. This map of group-like topological monoids is furthermore
easily seen to have the homotopy lifting property. To see that it is a homotopy
equivalence we hence just have to verify that the fiber AutBX(BNX) over the
identity map is contractible. First observe that, by [56, Prop. 8.11] and the
definitions, there is a unique map BT → BNX over BX, up to homotopy. This
shows that the homotopy fixed point space (X/NX)hT is at least connected.
(We refer to [56, §10] for basic facts and definitions about homotopy actions.)
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Consider the following diagram in which the rows and columns are fibrations

WX
�� X/T ��

��

X/NX

��
WX

��

��

BT ��

��

BNX

��
∗ �� BX BX.

Take homotopy T -fixed points of the top row, which by definition equals taking
spaces of liftings of the map from BT to the bottom row to the correspond-
ing term in the middle row. This produces an induced fibration sequence
WX → (X/T )hT → (X/NX)hT since (X/NX)hT is connected. However the
map WX → (X/T )hT is the identity, so (X/NX)hT is in fact contractible. By
[56, Lem. 10.5 and Rem. 10.9] we can rewrite (X/NX)hNX � ((X/NX)hT )hWX ,
which shows that (X/NX)hNX is contractible as well. Hence any self-map of
BNX over BX is an equivalence, and AutBX(BNX) is contractible as wanted.

5. Automorphisms of maximal torus normalizers

The aim of this short section is to establish some easy facts about auto-
morphisms of maximal torus normalizers which are needed to carry out the
reduction to connected, center-free simple p-compact groups in Section 6. At
the same time the section serves to make the automorphism statement of The-
orem 1.1 more explicit.

Recall that an extended p-compact torus is a loop space N such that
W = π0(N ) is a finite group and the identity component N1 of N is a p-
compact torus T . Let N̆ be the discrete approximation to N (see [57, 3.12]),
and recall that N̆ will have a unique largest p-divisible subgroup T̆ , which will
be a discrete approximation to T .

Proposition 5.1. For an extended p-compact torus N , the obvious map
associating to a self-homotopy equivalence of BN̆ a self-homotopy equivalence
of BN via fiber-wise Fp-completion [22, Ch. I, §8] induces an equivalence of
aspherical group-like topological monoids

Aut(BN̆ )p̂
∼=−→ Aut(BN ).

If π0(N ) acts faithfully on π1(N1) then Aut1(BN̆ ), the component of Aut(BN̆ )
of the identity map, has the homotopy type of B(T̆W ) where T̆ is a discrete
approximation to T .
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Sketch of proof. The statement on the level of component groups follows
directly from [57, Prop. 3.1]. (The point is that the homotopy fiber of BN̆ →
BN will have homotopy type K(V, 1) for a Qp-vector space V , and hence the
existence and uniqueness obstructions to lifting a map BN̆ → BN̆ to BN lie
in Hn(N̆ ;V ) where n = 2, 1 which are easily seen to be zero.) It is likewise easy
to see that both spaces are aspherical and that we get a homotopy equivalence
of the identity components. The last statement is also obvious.

Let L be a finitely generated free Zp-module and suppose that W ⊆
Aut(T̆ ), where we set T̆ = L ⊗Z/p∞. Consider the second cohomology group
H2(W ; T̆ ) which classifies extensions of W by T̆ with the fixed action of W on
T̆ . Given an isomorphism α : L → L′ sending W ⊆ GL(L) to W ′ ⊆ GL(L′) we
get an isomorphism of cohomology groups H2(W ; T̆ ) → H2(W ′; T̆ ′) by sending

an extension T̆
i−→ N̆ π−→ W to the extension T̆ ′ i◦α−1

−−−→ N̆ cα◦π−−−→ W ′, where cα

denotes conjugation by α. An isomorphism between two triples (W, L, γ) and
(W ′, L′, γ′), where γ and γ′ are extension classes, is an isomorphism L → L′

sending W to W ′ and γ to γ′. The automorphism group of a triple (W, L, γ)
thus identifies with

γNAut(T̆ )(W ) = {α ∈ NAut(T̆ )(W ) |α(γ) = γ ∈ H2(W ; T̆ )}.

It follows directly from the definition (since T̆ is characteristic in N̆ ) that two
triples as above are isomorphic if and only if the associated groups N̆ and N̆ ′

are isomorphic, where N̆ is obtained from the extension 1 → T̆ → N̆ → W → 1
given by γ, and analogously for γ′. However, N̆ and (W, L, γ) in general have
slightly different automorphism groups, as described in the following lemma
(see also [139]):

Proposition 5.2. In the notation above, for any exact sequence 1 →
T̆ → N̆ π−→ W → 1 with extension class γ there is a canonical exact sequence

1 → Der(W, T̆ ) → Aut(N̆ ) → γNAut(T̆ )(W ) → 1(5.1)

where we embed the derivations Der(W, T̆ ) in Aut(N̆ ) by sending a deriva-
tion s to the automorphism given by x �→ s(π(x))x, and the map Aut(N̆ ) →
γNAut(T̆ )(W ) is given by restricting an automorphism ϕ ∈ Aut(N̆ ) to T̆ .

This exact sequence has an exact subsequence 1 → T̆ /T̆W → N̆/ZN̆ →
W → 1 and the quotient exact sequence is

1 → H1(W ; T̆ ) → Out(N̆ ) → γNAut(T̆ )(W )/W → 1.

In particular if (W, L) is a finite Zp-reflection group and p is odd then H1(W ; T̆ )
= 0 by [6, Thm. 3.3], [82, Pf. of Prop. 3.5], so there is an isomorphism
Out(N̆ )

∼=−→ γNAut(T̆ )(W )/W .
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Proof. Let ϕ ∈ Aut(N̆ ), and consider the restriction map ϕ �→ ϕ|T̆ ∈
Aut(T̆ ). Note that for all x ∈ N̆ , l ∈ T̆ we have

(ϕ ◦ cx)(l) = ϕ(xlx−1) = ϕ(x)ϕ(l)ϕ(x)−1 = (cϕ(x) ◦ ϕ)(l),

so ϕ|T̆ ∈ NAut(T̆ )(W ). That the image equals the set of elements which fix the
extension class follows easily from the definitions: The diagram

T̆
i◦ϕ−1

�� N̆
cϕ◦π ��

ϕ

��

W

T̆
i �� N̆ π �� W

shows that ϕ leaves γ invariant. Likewise, to see that the right-hand map in
(5.1) is surjective let ψ ∈ γNAut(T̆ )(W ) and let T̆ → Ñ → W be the extension

obtained by first pushing forward along ψ : T̆ → T̆ and then pulling back along
ψ−1(−)ψ : W → W . Since ψ fixes γ there exists an isomorphism Ñ → N̆
making the following diagram commute:

T̆
ψ ��

��

T̆

��

T̆

��
N̆ ��

��

Ñ ��

��

N̆

��
W

ψ(−)ψ−1

�� W W.

This shows that Aut(N̆ ) → γNAut(T̆ )(W ) is surjective.

Now suppose ϕ ∈ Aut(N̆ ) restricts to the identity on T̆ . For x ∈ N̆ and
l ∈ T̆ we have

ϕ(x)lϕ(x−1) = ϕ(x)ϕ(l)ϕ(x−1) = ϕ(xlx−1) = xlx−1,

so the induced map ϕ : W → W is the identity since W acts faithfully on T̆ .
This means that we can define a map s : W → T̆ by s(w) = ϕ(w̃)w̃−1 where w̃

is a lift of w, and this is easily seen to be a derivation. Furthermore taking the
automorphism of N̆ associated to s gives back ϕ, which establishes exactness
in the middle, and we have proved the existence of the first exact sequence.

The existence of the short exact subsequence is clear, when we note that
ZN̆ = T̆W (since W acts faithfully on T̆ ) and that T̆ /T̆W embeds in Der(W, T̆ )
as the principal derivations by sending l to the derivation w �→ l(w · l)−1. The
last exact sequence is now obvious.

Remark 5.3. See [73, Thm. 1.2] for a related exact sequence for compact
connected Lie groups, fitting with the conjectured classification of connected
p-compact groups for p = 2.
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Proposition 5.4. Suppose {(Wi, Li, γi)}k
i=0 is a collection of pairwise

nonisomorphic triples where Li is a finitely generated free Zp-module, Wi is a
finite subgroup of GL(Li) such that Li ⊗ Q is an irreducible Wi-module, γi ∈
H2(Wi; T̆i) and (W0, L0, γ0) = (1,Zp, 0). Let (W, L, γ) =

∏k
i=0(Wi, Li, γi)mi

denote the product. Then

GLm0(Zp) ×
(

k∏
i=1

(
γiNGL(Li)(Wi)/Wi

)
� Σmi

)
∼=−→ γNGL(L)(W )/W.

Proof. The map of the proposition is injective by definition, and we have
to see that it is surjective. To lessen confusion write

L = (L0,1 ⊕ · · · ⊕ L0,m0) ⊕ (L1,1 ⊕ · · · ⊕ L1,m1) ⊕ · · · ⊕ (Lk,1 ⊕ · · · ⊕ Lk,mk
),

which we consider as a W = 1× (W1,1×· · ·×W1,m1)×· · ·× (Wk,1×· · ·Wk,mk
)-

module, where (Wi,j , Li,j) is isomorphic to (Wi, Li) as Zp-reflection groups.
Consider ϕ ∈ γNGL(L)(W ); we need to see that this has the prescribed

form. First note that for every w ∈ W there exists a unique w̃ ∈ W such that

ϕ(wx) = w̃ϕ(x) for all x ∈ L.

Let α denote the corresponding element in Aut(W ) given by w �→ w̃. Note that
the above splitting of L induces a splitting of αL, where the superscript means
that we consider L as a W -module through α. Let M and N be indecomposable
summands of L. By definition of α the canonical map

ϕMN : M → L
ϕ−→ αL → αN

is W -equivariant. Therefore this map, after tensoring with Q, has to be either
an isomorphism or zero. Since all the nontrivial summands of L⊗Q and αL⊗Q
occur with multiplicity one there is for each nontrivial M at most one N for
which the map can be nonzero, and this N is necessarily nontrivial. Since ϕ is
an isomorphism there is exactly one such N , and the map ϕMN has to be an
isomorphism. Note furthermore that since ϕMN gives an isomorphism between
M = Li,j and αN = αLk,l as Wi,j-modules, (α, ϕ) induces an isomorphism
between the reflection groups (Wi,j , Li,j) and (W ∩ GL(Lk,l), Lk,l), which by
assumption has to send γi to γk, so i = k. This shows that ϕ is of the required
form.

6. Reduction to connected, center-free simple p-compact groups

In this section we prove some lemmas, which, together with the splitting
theorems of Dwyer-Wilkerson [58] and Notbohm [111], reduce the proof of
Theorem 1.4 to the case of connected, center-free simple p-compact groups.
This reduction is known and most of it appears in [98] (relying on earlier work
of that author). We here provide a self-contained and a bit more direct proof
using [57].
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Lemma 6.1 (Product Automorphism Lemma). Let X and X ′ be p-com-
pact groups with maximal torus normalizers N and N ′. Then N × N ′ is a
maximal torus normalizer for X × X ′ and the following statements hold :

(1) Aut1(BX)×Aut1(BX ′)
∼=−→ Aut1(BX×BX ′) and Aut1(BN )×Aut1(BN ′)

∼=−→ Aut1(BN × BN ′), where Aut1 denotes the set of homotopy equiva-
lences homotopic to the identity.

(2) If Φ : Aut(BX) → Aut(BN ) and Φ : Aut(BX ′) → Aut(BN ′) are
injective on π0, then so is Φ : Aut(B(X × X ′)) → Aut(B(N ×N ′)).

(3) Suppose that p is odd and that X is connected with X = X1×· · ·×Xk such
that each Xi is simple and determined by its maximal torus normalizer.
If, for each i, Φ : Aut(BXi) → Aut(BNXi

) is surjective on π0 then so is
Φ : Aut(BX) → Aut(BN ).

Proof. Recall that the map Φ : Aut(BX) → Aut(BN ) was described in
Section 4. To see (1) first note that

(6.1) map(BX × BX ′, BX × BX ′)

� map(BX,map(BX ′, BX)) × map(BX ′,map(BX, BX ′)).

The evaluation map map(BX ′, BX)0 → BX is an equivalence by the
Sullivan conjecture for p-compact groups [57, Thm. 9.3 and Prop. 10.1], where
the subscript 0 denotes the component of the constant map. Since the compo-
nent of the identity map on the left-hand side of (6.1) is sent to the component
of the constant map in map(BX ′, BX) this shows that

map(BX × BX ′, BX × BX ′)1 � map(BX, BX)1 × map(BX ′, BX ′)1

as wanted. (The statement just says that the center of a product of p-compact
groups is the product of the centers, which of course also follows from the
equivalence of the different definitions of the center from [57].)

To see (2) suppose that ϕ is a self-equivalence of BX × BX ′ such that
its restriction to a self-equivalence of B(N × N ′) becomes homotopic to the
identity. The restriction ϕ|BX×∗ composed with the projection onto BX ′ be-
comes null homotopic upon restriction to BN , which, e.g. by [96, Cor. 6.6],
implies that it is null homotopic. Likewise the projection of ϕ|∗×BX′ onto BX ′

becomes homotopic to the identity map upon restriction to BN , which by as-
sumption means that the projection of ϕ|∗×BX′ onto BX ′ is the identity. But
by adjointness, repeating the argument of the first claim, this implies that ϕ

composed with the projection onto BX ′ is homotopic to the projection map
onto BX ′ (this is [57, Lem. 5.3]). By symmetry this holds for the projec-
tion onto BX as well, and we conclude that ϕ is homotopic to the identity as
wanted.
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Finally, to see (3), note that Propositions 5.1, 5.2, and 5.4 give a com-
plete description of π0(Aut(BN )) ∼= Out(N̆ ). The assumption that each Xi is
determined by its maximal torus normalizer means by definition that if NXi

is isomorphic to NXj
then Xi is isomorphic to Xj . It is now clear from the

description of Out(N̆ ) and the assumptions on the Xi’s, that all elements in
Out(N̆ ) can be realized by self-equivalences of BX.

Remark 6.2. Part (3) of the above lemma is in general false for p = 2. For
instance if X = SO(3)2̂ then it is easy to calculate directly (or appeal to [83,
Cor. 3.5]) that for both Y = X and Y = X ×X we have Φ : π0(Aut(BY ))

∼=−→
NGL(LY )(WY )/WY . But for Y = X × X we have H1(WY ; T̆Y ) ∼= Z/2 × Z/2,
so BNY has nontrivial automorphisms which restrict to the identity on BTY

(see Proposition 5.2).

Remark 6.3. Note that the assumption that the factors Xi in (3) are
determined by Ni of course appears for a good reason. The statement that Φ :
π0(Aut(BX)) → π0(Aut(BN )) is surjective for all p-compact groups X implies
that all p-compact groups are determined by their maximal torus normalizer,
as is seen by taking products. Hence the first part of Theorem 1.4 in fact
follows from the second part.

Recall the observation that for p odd the component group of X is deter-
mined by WX :

Lemma 6.4 (Component Group Formula). Let X be a p-compact group
for p odd, with maximal torus normalizer j : N → X. The map π0(j) : WX =
π0(N ) → π0(X) is surjective and the kernel equals Op(WX), the subgroup
generated by elements of order prime to p. The kernel can also be identified
with the Weyl group of the identity component X1 of X, and is the largest
Zp-reflection subgroup of WX .

Proof. By [57, Rem. 2.11] π0(j) is surjective with kernel the Weyl group of
the identity component of X. Since π0(X) is a p-group, Op(π0(N )) is contained
in the kernel. On the other hand the Weyl group of X1 is generated by elements
of order prime to p, since it is a Zp-reflection group and p is odd, so equality
has to hold.

Remark 6.5. For p = 2 the component group of X cannot be read off
from NX , and one would have to remember π0(X) as part of the data. For
instance the 2-compact groups SO(3)2̂ and O(2)2̂ have the same maximal torus
normalizers, namely O(2)2̂. Note however that if X is the centralizer of a toral
abelian subgroup A of a connected p-compact group Y , then the component
group of X can be read off from A and NY (see [57, Thm. 7.6]), a case of
frequent interest.



THE CLASSIFICATION OF p-COMPACT GROUPS FOR p ODD 127

Before proceeding recall that by [50] (see also [57, Prop. 11.9]) we have,

for a fibration F → E f−→ B, a fibration sequence

map(B, B Aut(F))C(f) → B Aut(f) → B Aut(B).

Here C(f) denotes the components corresponding to the orbit of the π0(Aut(B))-
action on the class in [B, B Aut(F)] classifying the fibration.

We are interested in when the map of group-like topological monoids
Aut(f) → Aut(E) is a homotopy equivalence. This will follow if we can see
that Aut1(f) → Aut1(E) and π0(Aut(f)) → π0(Aut(E)) are equivalences. By
an easy general argument given in [57, Prop. 11.10] the statement about the
identity components follows if B → map(F ,B)0 is an equivalence, where the
subscript 0 denotes the component of the constant map.

Lemma 6.6 (Component Reduction Lemma). Let X be a p-compact group
with maximal torus normalizer N , and assume that p is odd (so that π0(X)
can be read off from N ). Let N1 denote the kernel of the map N → π0(X),
which is a maximal torus normalizer for X1.

If Φ : Aut(BX1)
∼=−→ Aut(BN1), then Φ : Aut(BX)

∼=−→ Aut(BN ). If
furthermore BX1 is determined by BN1 then BX is determined by BN .

Proof. First note that by an inspection of Euler characteristics and using
[99, Thm. 1.2(3)], N1 is indeed a maximal torus normalizer in X1. Set π =
π0(X) for short. We want to apply the setup described before the lemma to the
fibrations BX1 → BX → Bπ and BN1 → BN → Bπ and to see that in both
cases the map of monoids Aut(f) → Aut(E) are homotopy equivalences. By the
remarks above this follows if it is an isomorphism on π0 and B → map(F ,B)0
is an equivalence. The statement about π0 is true in both cases since a self-
map of E determines a unique self-map of Bπ. Likewise it is easy to see that
Bπ

�−→ map(BX1, Bπ)0 and that Bπ
�−→ map(BN1, Bπ)0. This means that our

map B Aut(BX) → B Aut(BN ) (from Lemma 4.1) fits in a map of fibration
sequences

map(Bπ, B Aut(BX1))C(f)

��

�� B Aut(BX)

��

�� B Aut(Bπ)

map(Bπ, B Aut(BN1))C(f)
�� B Aut(BN ) �� B Aut(Bπ).

Here the maps between the fibers and base spaces are homotopy equivalences
by assumption, so the map between the total spaces is a homotopy equivalence
as well.

Now assume furthermore that X1 is determined by N1, and let X ′ be
another p-compact group with maximal torus normalizer N . By Lemma 6.4,
π = π0(X) ∼= π0(X ′) and N1 is also a maximal torus normalizer in X ′

1.
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We want to show that the two fibrations BX → Bπ and BX ′ → Bπ

are equivalent as fibrations over Bπ, or equivalently that the π-spaces BX1

and BX ′
1 are hπ-equivalent, i.e., that we can find a zig-zag of π-maps which

are nonequivariant equivalences connecting the two (see e.g., [45] where this
equivalence relation is called equivariant weak homotopy equivalence).

By the assumptions on X1 we can choose a homotopy equivalence Bf :
BX1 → BX ′

1 such that

BN1

Bj′

����������
Bj

����
��

��
��

�

BX1
Bf �� BX ′

1

commutes up to homotopy, and Bf is unique up to homotopy.
We now want to see that we can change Bf so that it becomes a π-map.

For this, consider the π-map given by restriction

map(BX1, BX ′
1) → map(BN1, BX ′

1).

By the assumption on Aut(BX1) this map sends distinct components of
map(BX1, BX ′

1) corresponding to homotopy equivalences to distinct compo-
nents of map(BN1, BX ′

1). Moreover, by the proof of Lemma 4.1, we have a
homotopy equivalence map(BX1, BX ′

1)Bf � map(BN1, BX ′
1)Bf◦Bj . In par-

ticular the component map(BX1, BX ′
1)Bf is preserved under the π-action,

since this obviously is so for map(BN1, BX ′
1)Bj′ . Furthermore since

map(BN1, BX ′
1)

π
Bj′ contains Bj′ we see that

map(BX1, BX ′
1)

hπ
Bf � map(BN1, BX ′

1)
hπ
Bj′

is nonempty, and so there exists a π-map Eπ×BX1 → BX ′
1 which is a homo-

topy equivalence. This shows that BX1 and BX ′
1 are hπ-homotopy equivalent

as wanted.

Remark 6.7. If X is a connected p-compact group, and p is odd, then
it follows from [57, Thm. 7.5] that Z(N̆ ) is a discrete approximation to the
center of X. The proof of the above lemma extends this to X nonconnected
provided we know that self-equivalences of X1 are detected by their restriction
to N1, which will be a consequence of Theorem 1.4. Having to appeal to this
is a bit unfortunate but seems unavoidable. The point is that if there existed a
connected p-compact group X and a self-equivalence σ of finite p-power order
which is not detected by N , then we could form X � 〈σ〉, where σ would be
central in the normalizer but not in the whole group. (See also Lemma 9.2.)

Lemma 6.8 (Center Reduction Lemma). Let X be a connected p-compact
group with center Z. Then:
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(1) If Φ : π0(Aut(BX/Z)) → π0(Aut(BN/Z)) is surjective and X/Z is
determined by N/Z then X is determined by N .

(2) If p is odd and Φ : Aut(BX/Z) → Aut(BN/Z) is a homotopy equiva-
lence then Φ : Aut(BX) → Aut(BN ) is as well.

Proof. To prove the first statement, suppose that X and X ′ have the
same maximal torus normalizer N , choose fixed inclusions j : N → X and
j′ : N → X ′, and let Z be the center of X, which we can view as a subgroup
N via an inclusion i : Z → N . We claim that Z is also central in X ′. It
is central in the identity component X ′

1 by the formula for the center in [57,
Thm. 7.5]. Furthermore, π = π0(X ′) ∼= WX/WX′

1
acts trivially on Z, so the

lift of j′i to a map k : Z → X ′
1 is unique up to conjugacy. Therefore we have

fibration sequences

map(BZ, BX ′
1)k

��

�
��

map(BZ, BX ′)j′i
��

��

map(BZ, Bπ)0

�
��

BX ′
1

�� BX ′ �� Bπ

where the left vertical map is an equivalence since Z is central in X ′
1. Hence

the middle map in the above diagram is an equivalence as well, and Z is
central in X ′ as claimed. Now assume that X/Z is isomorphic to X ′/Z.
If Φ : π0(Aut(BX/Z)) → π0(Aut(BN/Z)) is surjective we can furthermore
choose the homotopy equivalence BX/Z → BX ′/Z in such a way that

BN/Z
j/Z

�����������
j′/Z

�����������

BX/Z �� BX ′/Z

commutes up to homotopy.
We have canonical maps BX/Z → B2Z and BX ′/Z → B2Z classifying

the extensions, and we claim that in fact the bottom triangle in the diagram

BN/Z

�����������

�����������

BX/Z

�����������
�� BX ′/Z

������������

B2Z
commutes up to homotopy. By construction the outer square commutes up
to homotopy (since both composites agree with the classifying map BN/Z →
B2Z since j and j′ are fixed). Since the top triangle also commutes up to
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homotopy, an application of the transfer [56, Thm. 9.13], using that B2Z is a
product of Eilenberg-Mac Lane spaces and that χ((X/Z)/(N/Z)) = 1, shows
that the bottom triangle commutes up to homotopy as well. Since we have
constructed a map BX/Z → BX ′/Z over B2Z we get an induced homotopy
equivalence BX → BX ′. (Note that this construction does not a priori give
this map as a map under BN .)

We now want to get the second statement about automorphism groups.
Consider the homotopy commutative diagram

BN f ′
��

��

BN/Z

��
BX

f �� BX/Z

where we can suppose that the two horizontal maps f ′ and f are fibrations.
We first claim that we can replace B Aut(f) with B Aut(BX) and

B Aut(f ′) with B Aut(BN ). As in the case of the component group (see the
proof of Lemma 6.6) we just have to justify that in the appropriate fibration se-
quences we have equivalences B → map(F ,B)0 and π0(Aut(f)) → π0(Aut(E)).
The map BX/Z → map(BZ, BX/Z)0 is a homotopy equivalence since the
trivial map is central [57, Prop. 10.1]. That BN/Z → map(BZ, BN/Z)0 is
an equivalence follows by a similar (but easier) argument.

By Lemma 4.1 a self-equivalence of BX induces a unique self-equivalence
of BN , and hence a canonical self-equivalence of BZ. Now, by the description
of X/Z as a Borel construction (given in [56, Pf. of Prop. 8.3]) we get a canon-
ical self-equivalence of BX/Z. This self-equivalence is furthermore unique, in
the sense that given a diagram

BX
g ��

��

BX

��
BX/Z g′

�� BX/Z

the homotopy type of g′ is uniquely given by that of g. To see this note that
by Lemma 4.1 the diagram restricts to a unique diagram

BN g̃ ��

��

BN

��
BN/Z g̃′

�� BN/Z.

By looking at discrete approximations we see that the homotopy class of g̃′

is determined by g̃. Since by assumption the homotopy class of g′ is deter-
mined by g̃′, we conclude that a self-equivalence of BX induces a unique self-



THE CLASSIFICATION OF p-COMPACT GROUPS FOR p ODD 131

equivalence of BX/Z, and so π0(Aut(f)) ∼= π0(Aut(BX)). The last part of
the argument furthermore shows that also π0(Aut(f ′)) ∼= π0(Aut(BN )).

We hence have the following diagram where the rows are fibration se-
quences

map(BX/Z, B Aut(BZ))C(f)
��

��

B Aut(BX) ��

��

B Aut(BX/Z)

��
map(BN/Z, B Aut(BZ))C(f ′)

�� B Aut(BN ) �� B Aut(BN/Z).

Examining when the middle vertical arrow is a homotopy equivalence re-
duces to finding out when the restriction map map(BX/Z, B Aut(BZ))C(f) →
map(BN/Z, B Aut(BZ))C(f ′) is a homotopy equivalence, which we now ana-
lyze.

Note that since BZ is a product of Eilenberg-Mac Lane spaces we have a
fibration sequence

B2Z → B Aut(BZ) → B Aut(Z̆)

where Z̆ is the discrete approximation to Z and Aut(Z̆) is the discrete group
of automorphisms. Since our extensions are central this gives a diagram of
fibration sequences

map(BX/Z, B2Z)C(f)
��

��

map(BX/Z, B Aut(BZ))C(f)
��

��

map(BX/Z, B Aut(Z̆))0

��
map(BN/Z, B2Z)C(f ′)

�� map(BN/Z, B Aut(BZ))C(f ′) �� map(BN/Z, B Aut(Z̆))0.

Again, in this diagram the map between the base spaces is obviously an equiv-
alence, so we are reduced to studying

map(BX/Z, B2Z)C(f) → map(BN/Z, B2Z)C(f ′).(6.2)

Since B2Z is a product of Eilenberg-Mac Lane spaces a transfer argument (cf.
[56, Thm. 9.13]) shows that this gives an embedding as a retract. Since we
assume Φ : π0(Aut(BX/Z)) ∼= π0(B Aut(BN/Z)) we furthermore get that
this is an isomorphism on π0 by the definition of C(f) and C(f ′). Let (W, L′)
denote the Weyl group of X/Z. Write BZ � B2A × BA′, where A is a finite
sum of copies of Zp and A′ is finite (cf. [57, Thm. 1.1]). On π1 the map (6.2)
identifies with

H1(BX/Z;A′) ⊕ H2(BX/Z;A) → H1(BN/Z;A′) ⊕ H2(BN/Z;A).

The group H1(BN/Z;A′) is zero since π1(BN/Z) = W is generated by ele-
ments of order prime to p, since p is assumed to be odd.
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Furthermore, H2(BN/Z;A) is related via the Serre spectral sequence to
the groups

H2(BW ;H0(B2L′;A)), H1(BW ;H1(B2L′;A)), and H0(BW ;H2(B2L′;A)).

The first of these groups is zero since W is generated by elements of order
prime to p by the assumption that p is odd. The second is obviously zero,
and the last group is zero since H0(W ; Hom(L′,Zp)) = Hom((L′)W ,Zp) = 0
because (L′)W is finite.

Hence we get an isomorphism on π1, since we already know that the map
is injective. On π2 and π3 the map identifies with

H0(BX/Z;A′) ⊕ H1(BX/Z;A) → H0(BN/Z;A′) ⊕ H1(BN/Z;A)

and H0(BX/Z;A) → H0(BN/Z;A) respectively, and these maps are obvi-
ously isomorphisms. Hence map(BX/Z, B2Z)C(f) → map(BN/Z, B2Z)C(f ′)

is a homotopy equivalence, which via the fibration sequences above implies
that B Aut(BX) → B Aut(BN ) is a homotopy equivalence as wanted.

Remark 6.9. Consider BX = B(SU(3) × S1)2̂. This has center Z =
(S1)2̂ and X/Z = SU(3)2̂. By direct calculation (or appeal to [83, Cor. 3.5])
we have B Aut(BX/Z) �−→ B Aut(BN/Z). However Φ : π0(Aut(BX)) →
π0(Aut(BN )) is not surjective by Proposition 5.2, since Hom(WSU(3),Z/2∞) =
Z/2. This shows that the assumption that p is odd is necessary in the last part
of the above lemma.

Remark 6.10. Suppose that X is a connected p-compact group. Fibration
sequences with base space B2π1(X) and fiber B(X〈1〉) are in one-to-one cor-
respondence with the set of maps [B2π1(X), B Aut(B(X〈1〉))]. Likewise self-
equivalences of BX can be expressed in terms of self-equivalences of B(X〈1〉)
and π1(X), analogously to the lemmas above. Hence if we a priori knew that
Theorem 1.7 held true, i.e., if we could read off π1(X) from NX then the
above methods would reduce the proof of the main theorems to the simply
connected case, which could be used advantageously in the proofs. (See also
Remark 10.3.)

Remark 6.11. The assumption in Lemma 6.8(1) that Φ : π0(Aut(BX/Z))
→ π0(Aut(BN/Z)) is surjective has the following origin. We have a canonical
restriction map H2(BX/Z; Z̆) → H2(BN/Z; Z̆), which is injective by a trans-
fer argument. Two extension classes in H2(BX/Z; Z̆) give rise to isomorphic
total spaces if the extension classes are conjugate via the actions of Aut(BX/Z)
and Aut(Z̆) on H2(BX/Z; Z̆). The total spaces have isomorphic maximal
torus normalizers if the extension classes have images in H2(BN/Z; Z̆) which
are conjugate under the actions of Aut(BN/Z) and Aut(Z̆), which could
a priori be a weaker notion.
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7. An integral version of a theorem of Nakajima and realization of
p-compact groups

The goal of this section is to prove an integral version of an algebraic
result of Nakajima (Theorem 7.1) and use this to prove Theorem 7.3 which,
as part of our inductive proof of Theorem 1.1, will allow us to construct the
center-free p-compact groups corresponding to Zp-reflection groups (W, L) such
that Zp[L]W is a polynomial algebra. This will provide the existence part of
Theorem 1.1. We feel that this way of showing existence, is perhaps more
straightforward than previous approaches; compare for instance [110]. (We
refer to the introduction for the history behind this result.)

Theorem 7.1. Let p be an odd prime and let (W, L) be a finite Zp-re-
flection group. For a subspace V of L⊗Fp let WV denote the pointwise stabilizer
of V in W . Then the following conditions are equivalent :

(1) Zp[L]W is a polynomial algebra.

(2) Zp[L]WV is a polynomial algebra for all nontrivial subspaces V ⊆ L⊗Fp.

(3) (WV , L) is a Zp-reflection group for all nontrivial subspaces V ⊆ L⊗Fp.

Remark 7.2. An analog of the implication (1) ⇒ (2) where the ring Zp

is replaced by a field was proved by Nakajima [102, Lem. 1.4] (in the case of
finite fields see also [61, Thm. 1.4] and [104, Cor. 10.6.1]). For fields of positive
characteristic the implication (3) ⇒ (1) does not hold; see [86, Ex. 2.2] for
more information about this case. Our proof unfortunately involves the clas-
sification of finite Zp-reflection groups and some case-by-case checking. (See
the discussion following the proof of Theorem 1.8 for related information.)

Proof of Theorem 7.1. To start, note that the implication (2) ⇒ (3) follows
from the fact that if Zp[L]WV is a polynomial algebra then Qp[L ⊗ Q]WV is
as well, so (WV , L) is a Zp-reflection group by the Shephard-Todd-Chevalley
theorem ([10, Thm. 7.2.1] or [127, Thm. 7.4.1]).

To go further we want to see that the theorem is well behaved under
products, i.e., that if (W, L) = (W ′, L′)× (W ′′, L′′), then the theorem holds for
(W, L) if it holds for (W ′, L′) and (W ′′, L′′). This follows from the fact that
the stabilizer in W ′ × W ′′ of an arbitrary subgroup of (L′ ⊗ Fp) ⊕ (L′′ ⊗ Fp)
equals the stabilizer of the smallest product subgroup containing it, combined
with the fact that the tensor product of two algebras is a polynomial algebra
if and only if each of the factors is. Hence to prove the remaining implications
it follows from Theorem 11.1 that it suffices to consider separately the cases
where (W, L) comes from a compact connected Lie group and the cases where
(W, L) is one of the exotic Zp-reflection groups.

Assume first that (W, L) = (WG, LG ⊗ Zp) for a compact connected Lie
group G. If Zp[L]W is a polynomial algebra then by Theorem 12.2 (which in-
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volves case-by-case considerations and p odd) BX = BGp̂ satisfies H∗(BX;Zp)
∼= H∗(B2L;Zp)W . We can identify V ⊆ L ⊗ Fp with a toral elementary
abelian p-subgroup in X and by [61, Thm. 1.3] H∗(BCX(V );Zp) is again a
polynomial algebra concentrated in even degrees. In particular CX(V ) is con-
nected and by [57, Thm. 7.6(1)] WCX(V ) = WV . Hence, by Theorem 12.1,
H∗(BCX(V );Zp) ∼= H∗(B2L;Zp)WV , so Zp[L]WV is a polynomial algebra. This
shows that (1) ⇒ (2) when (W, L) comes from a compact connected Lie group.
To prove (3) ⇒ (1) in the Lie group case suppose that (W, L) is a finite
Zp-reflection group corresponding to a p-compact group X = Gp̂ such that
(WV , L) is a Zp-reflection group for all nontrivial V ⊆ L⊗Fp. Since p is odd it
follows by [57, Thm. 7.6] that CX(V ) is connected for all nontrivial V ⊆ L⊗Fp.
Hence, since X is assumed to come from a compact connected Lie group [11,
Thm. B] (or [132, Thm. 2.28]) implies that H∗(BX;Zp) does not have torsion
and hence H∗(BX;Zp) ∼= H∗(B2L;Zp)W (cf. Theorem 12.1). So Zp[L]W is a
polynomial algebra as wanted.

Next we assume that (W, L) is one of the exotic Zp-reflection groups. By
Theorem 12.2, Zp[L]W is a polynomial algebra, so we only need to prove that
Zp[L]WV is a polynomial algebra for any nontrivial V ⊆ L⊗Fp. Furthermore,
by Theorem 12.2(2), Fp[L ⊗ Fp]W is a polynomial algebra. Nakajima’s result
[102, Lem. 1.4] shows that Fp[L⊗Fp]WV is a polynomial algebra as well. Thus
we are done if p � |WV | by Lemma 12.6, which in particular covers the cases
where p � |W |.

If (W, L) belongs to family number 2 on the Clark-Ewing list, then since
p is odd, it is easily seen from the form of the representing matrices (see
Section 11 for a concrete description) that reduction mod p gives a bijec-
tion between reflections in (W, L) and (W, L ⊗ Fp). As Fp[L ⊗ Fp]WV is a
polynomial algebra it follows by the Shephard-Todd-Chevalley theorem [10,
Thm. 7.2.1] that WV ⊆ GL(L ⊗ Fp) is a reflection group. Thus (WV , L) is a
Zp-reflection group. Since the representing matrices are monomial, it follows
by [102, Thm. 2.4] that Zp[L]WV is a polynomial algebra.

By Theorem 11.1 only four cases remain, namely the Zabrodsky-Aguadé
cases (W12, p = 3), (W29, p = 5), (W31, p = 5) and (W34, p = 7). For each
of these a direct computation, for instance easily done with the aid of a com-
puter, shows that if S is a Sylow p-subgroup of W , then U = (L ⊗ Fp)S

is 1-dimensional and (WU , L) is isomorphic to (Σp, LSU(p) ⊗ Zp). (A more
ad hoc construction of this reflection subgroup can also be found in Aguadé
[4].) Hence we see that if V ⊆ L ⊗ Fp is nontrivial then either p � |WV | or V

is W -conjugate to U . But in these cases we already know that Zp[L]WV is a
polynomial algebra.

Theorem 7.3 (Inductive Polynomial Realization Theorem). Let p be an
odd prime and let (W, L) be a finite Zp-reflection group with the property that
Zp[L]W is a polynomial algebra over Zp. Note that for any nontrivial elemen-
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tary abelian p-subgroup V of T̆ = L ⊗ Z/p∞, the subgroup WV of W fixing V

pointwise is again a finite Zp-reflection group by Theorem 7.1.
Assume that for all such V there exists a p-compact group F (V ) with

discrete approximation to its maximal torus normalizer given by T̆ � WV such
that F (V ) is determined by NF (V ), Φ : Aut(BF (V ))

∼=−→ Aut(BNF (V )), and

H∗(BF (V );Zp)
∼=−→ H∗(B2L;Zp)WV . Then there exists a connected p-compact

group X with discrete approximation to its maximal torus normalizer given by
T̆ � W satisfying the same properties as listed for F (V ).

Proof. First note that by Theorem 7.1 (WV , L) is again a Zp-reflection
group and Zp[L]WV is a polynomial algebra, so the assumptions make sense.
Set N̆ = T̆ �W . We want to construct a candidate ‘centralizer decomposition’
diagram. Let A be the category with objects the nontrivial elementary abelian
p-subgroups V of T̆ and morphisms the homomorphisms between them induced
by inclusions of subgroups and conjugation by elements in W . We now define a
functor F from Aop to p-compact groups and conjugation classes of morphisms.
On objects we send V to F (V ). By assumption jV : CN̆ (V ) → F (V ) is a
discrete approximation to the maximal torus normalizer in F (V ). Now let
ϕ : V → V ′ be a morphism in A, induced by conjugation by an element
x ∈ W and consider the diagram

V ′ �� CN̆ (V ′)
cx−1 ��

jV ′

��

CN̆ (V )

jV

��
F (V ′) F (V ).

Taking the centralizer of the composite map x−1 : V ′ → F (V ) we get a
space CF (V )(x−1) = Ω map(BV ′, BF (V ))Bx−1 , which has discrete approxima-
tion to its maximal torus normalizer equal to CN̆ (V ′). By assumption we get
a unique (up to conjugacy) isomorphism F (V ′) → CF (V )(x−1) under CN̆ (V ′).
By composing with the evaluation CF (V )(x−1) → F (V ), we get a morphism
F (ϕ) : F (V ′) → F (V ). We need to check that this gives us a well-defined func-

tor from Aop to the homotopy category of spaces, i.e., that for V
ϕ−→ V ′ ψ−→ V ′′,

F (ψϕ) is conjugate to F (ϕ)F (ψ). To see this suppose that ψ is induced by
conjugation by y ∈ W and consider the following diagram with obvious maps:

F (V ) CF (V )(x−1)ev

 F (V ′)
∼=

 CF (V ′)(y−1)ev



∼=��������������
F (V ′′)

∼=



∼=

����������������������������������

CCF (V )(x−1)(x̃−1y−1)

ev

��������������

∼=
��

CF (V )(x−1y−1).

ev

����������������������������������
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(Here (̃·) denotes the adjoint map which is explained in Construction 2.1.)
Note that the bottom composite from F (V ′′) to F (V ) is F (ψϕ) and the top
composite is F (ϕ)F (ψ). The top triangle is commutative, since the lower iso-
morphism in that triangle is just the map obtained by taking centralizers of
the upper one. The rightmost square is homotopy commutative, since the cor-
responding square of isomorphisms between centralizers in N̆ is commutative,
by our assumption that maps are detected here. Finally, the leftmost square
is homotopy commutative, by definition of the adjoint construction.

We hence get a well-defined functor BF : Aop → Ho(Spaces), where
Ho(Spaces) denotes the homotopy category of spaces, on objects given by
V �→ BF (V ). By construction the functor obtained when taking cohomology
of this diagram, can be identified with the canonical functor which on objects
is given by V �→ H∗(BT̆ ;Zp)WV .

We want to lift this to a diagram in the category of spaces. The obstruction
theory for doing this is described in [49, Thm. 1.1], when we note that by [57,
Lem. 11.15] our diagram is a so-called centric diagram so the assumptions of
that theorem are satisfied.

By looking at their cohomology we see that all the spaces F (V ) are con-
nected and hence by [57, Thm. 7.5] have center given by T̆WV , since p is odd.
In particular (see e.g. Lemma 9.2) the homotopy groups of ZF (V ) are given
by π0(ZF (V )) = H1(WV ;L) and π1(ZF (V )) = LWV . By [55, §8] (for de-
tails see Section 9) lim∗

V ∈A π∗(F (−)) = 0, so by [49, Thm. 1.1] there exists
a (unique) lift of our functor BF to a functor B̃F landing in Spaces. Set
BX = (hocolimA B̃F )p̂.

The spectral sequence for calculating the cohomology of a homotopy col-
imit [22, XII.4.5] has E2-term given by Ei,j

2 = limi
V ∈A Hj(BT̆ ;Zp)WV .

But again by [55, §8] these groups vanish for i > 0 and for i = 0 give
lim0

A H∗(BT̆ ;Zp)WV ∼= H∗(BT̆ ;Zp)W . Hence the spectral sequence collapses
onto the vertical axis, and we get H∗(BX;Zp) ∼= H∗(BT̆ ;Zp)W .

Since H∗(BX;Zp) is a polynomial algebra, H∗(X;Zp) will be an exterior
algebra on odd degree generators (cf. Theorem 12.1), so X is indeed a con-
nected p-compact group. The fact that X is determined by N and satisfies
Φ : Aut(BX)

∼=−→ Aut(BN ), also follows easily from the above—the details are
given in the proof of Theorem 2.2.

Remark 7.4. Note that Theorem 7.3 in itself does not quite give a stand-
alone proof of the realization and uniqueness of all center-free p-compact groups
with Weyl group satisfying that Zp[L]W is a polynomial algebra, since (WV , L)
is not center-free which prevents the obvious induction from working. Compare
to the proof of Theorem 1.1; the main problem is that unitary groups will occur
in most decompositions, but their adjoint forms do not have cohomology rings
which are polynomial algebras.
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8. Nontoral elementary abelian p-subgroups of simple center-free
Lie groups

In this section we determine, for an odd prime p, all conjugacy classes of
nontoral elementary abelian p-subgroups E, of any simple center-free compact
Lie group G, as well as their centralizers CG(E) and Weyl groups W (E) =
NG(E)/CG(E). (Recall that a subgroup of G is called toral if it is contained
in a torus in G and nontoral otherwise.)

Our strategy is as follows. Since p is odd, the groups G we need to con-
sider are the projective unitary groups PU(n) and the exceptional groups. The
groups PU(n) are easy to deal with and we only expand slightly on the work
of Griess [70]. For the exceptional groups the maximal nontoral elementary
abelian p-subgroups are also determined by Griess [70]. We first find these sub-
groups explicitly and then get lower bounds for their Weyl groups by producing
explicit elements in their normalizers. From this we are able to identify the
nonmaximal nontoral elementary abelian p-subgroups and get lower bounds
for their Weyl groups. Finally we get exact results on the Weyl groups by
computing centralizers.

In accordance with the standard literature we will in this section state and
prove all theorems in the context of linear algebraic groups over the complex
numbers C—we state in Proposition 8.4 why this is equivalent to considering
compact Lie groups. (The results for G(C) can furthermore be translated into
results for G(F ) for any algebraically closed field F of characteristic prime to
p; see [71, Thm. 1.22] and [67].)

This section is divided into five subsections. The first recalls some results
from the theory of linear algebraic groups and discusses the relationship with
compact Lie groups. In the second subsection we determine the elementary
abelian p-subgroups of the projective unitary groups and the final subsections
deal with the elementary abelian 3-subgroups of the groups of type E6, E7 and
E8 respectively. (The remaining nontrivial cases E8(C), p = 5 and F4(C), p = 3
are treated completely in [70, Lem. 10.3 and Thm. 7.4].)

For some of our computations for the groups 3E6(C) and E8(C) we have
used the computer algebra system Magma [16], although this reliance on com-
puters could if needed be replaced by some rather tedious hand calculations.

Notation 8.1. We now collect some notation which will be used multiple
times throughout the computations in this section. We use standard names
for the linear algebraic groups considered, e.g. 3E6(C) denotes the simply
connected group of type E6 over C and E6(C) denotes its adjoint version. We
let Tn denote an n-dimensional torus, i.e., Tn = (C×)n.

To describe centralizers we follow standard notation for extensions of
groups, cf. the ATLAS [38, p. xx]. Thus A : B denotes a semidirect prod-
uct, A ·B denotes a nonsplit extension and A ◦C B denotes a central product.
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Whenever E is a concrete elementary abelian p-group of rank n we will
always fix an ordered basis of E, so that GL(E) identifies with GLn(Fp). We
make the standing convention that all matrices acts on columns.

We identify a permutation σ in the symmetric group Σn with its permu-
tation matrix A = [aij ] given by aij = δi,σ(j) where δ is the Kronecker delta.

If K is a field, we let Mn(K) denote the set of n×n-matrices over K. For
a1, . . . , an ∈ K we let diag(a1, . . . , an) ∈ Mn(K) denote the diagonal matrix
with the ai’s in the diagonal. For 1 ≤ i, j ≤ n, eij ∈ Mn(K) denotes the matrix
whose only nonzero entry is 1 in position (i, j). Given matrices A1 ∈ Mn1(K),
. . . , Am ∈ Mnm

(K) we let A1 ⊕ . . . ⊕ Am denote the n × n-block matrix
with the Ai’s in the diagonal, n = n1 + . . . + nm. We also need the ‘blowup’
homomorphism Δn,m : Mn(K) −→ Mmn(K) defined by replacing each entry
aij by aijIm, where Im ∈ Mm(K) is the identity matrix.

As p = 3 for all the exceptional groups we consider, we use some special
notation. An arbitrary element of F3 is denoted by ∗, and ε denotes an element
of the multiplicative group F×

3 . We let ω = e2πi/3 and η = e2πi/9 and define
elements β, γ, τ1, τ2 ∈ SL3(C) by β = diag(1, ω, ω2),

γ = (1, 2, 3) =

⎡⎣0 0 1
1 0 0
0 1 0

⎤⎦ , τ1 =
e−πi/18

√
3

⎡⎣ 1 ω2 1
1 1 ω2

ω2 1 1

⎤⎦
and τ2 = diag(η, η−2, η). Note that βτ1 = βγ, γτ1 = γ, βτ2 = β and γτ2 = βγ.

To distinguish subgroups we use class distributions. As an example the
group 3E6(C) contains seven conjugacy classes of elements of order 3 labeled
3A, 3B, 3B′, 3C, 3D, 3E and 3E′, cf. 8.7. The fact that the subgroup E4

3E6

from Theorem 8.8 below has class distribution 3C783E13E′1 means that it
(apart from the identity) contains 78 elements from the conjugacy class 3C
and one element from each of the conjugacy classes 3E and 3E′.

8.1. Recollection of some results on linear algebraic groups. Recall that
a (not necessarily connected) linear algebraic group G is called reductive if its
unipotent radical, i.e., the largest normal connected unipotent subgroup of G,
is trivial.

Theorem 8.2. Let G be a linear algebraic group over an algebraically
closed field K.

(1) If A is a subgroup of G and S is some subset of A, then A is toral in G

if and only if A is toral in CG(S).

(2) If H is a maximal torus of G, then two subsets of H are conjugate in
G if and only if they are conjugate in NG(H). If A is a toral subgroup
of G, then W (A) = NG(A)/CG(A) is isomorphic to a subquotient of the
Weyl group W = NG(H)/H of G.
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(3) Assume that G is a connected reductive group such that the commutator
subgroup G′ is simply connected. Then the centralizer of any semisimple
element in G is connected. In particular, if A is an abelian subgroup of
G consisting of semisimple elements generated by at most two elements,
then A is toral.

(4) If G is reductive and σ is a semisimple automorphism of G, then the fixed
point subgroup Gσ is reductive and contains a regular element of G.

(5) Assume that G is a connected reductive group, let Z ⊆ G be a central
subgroup, and let π : G → G/Z be the quotient homomorphism. If A is a
subgroup of G, then A is toral in G if and only if π(A) is toral in G/Z.

(6) Assume charK = 0 and let g be the Lie algebra of G. If S ⊆ G is a finite
subset of G, then the Lie algebra of CG(S) is given by

cg(S) = {x ∈ g |Ad(s)(x) = x for all s ∈ S}.

In particular, if S ⊆ G is a finite subgroup, then

dimCG(S) =
1
|S|

∑
s∈S

trg Ad(s).

Proof. (1): Obviously, if A is toral in CG(S) then A is toral in G.
Conversely, if A is toral in G, then A ⊆ H for a torus H in G. Since S ⊆ A

we get H ⊆ CG(S) and thus A is toral in CG(S).
(2): The first part follows by the Frattini argument: Assume that A, Ag ⊆

H are conjugate subsets of H. Then H and Hg−1
are maximal tori of CG(A)

and thus conjugate in CG(A) (cf. [76, Cor. 21.3.A]). Thus we may write H =
Hg−1c for some c ∈ CG(A) and we conclude that n = g−1c ∈ NG(H). Then
An−1

= Ac−1g = Ag, which proves the first part. The second part follows
similarly; cf. [90, Prop. 1.1(i)].

(3): The first part which is due to Steinberg is proved in [28, Thm. 3.5.6].
The second part follows from the first; cf. [130, II.5.1].

(4): We can assume G to be connected. In case G is semisimple and
simply connected the first claim is proved in [131, Thm. 8.1] and the general
case reduces to this one. Indeed we can find a finite cover G̃ of G which is a
direct product of a semisimple simply connected group and a torus, and σ lifts
to a semisimple automorphism of G̃ by [131, 9.16]. For the second claim see
[142, Thms. 2 and 3] or [130, Pf. of Thm. II.5.16] in case G is semisimple; the
general case clearly reduces to this one.

(5): By [76, Cor. 21.3.C] we know that if H is a maximal torus of G,
then π(H) is a maximal torus of G/Z, and all maximal tori of G/Z are of this
form. Thus if A is toral in G, then π(A) is toral in G/Z. Conversely, if H ′ is a
maximal torus of G/Z containing π(A), then by the above we have H ′ = π(H)
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for some maximal torus H of G. Thus we get A ⊆ 〈H, Z〉. However since G is
connected and reductive, we get Z ⊆ H by [76, Cor. 26.2.A(b)]. Thus A ⊆ H

and we are done.
(6): In case S consists of a single element, the first part follows from [76,

Thm. 13.4(a)] (note that the connectivity assumption in [76, Thm. 13.4] is only
used in [76, Thm. 13.4(b)]). The general case follows from this by applying
[76, Thm. 12.5] to the centralizers CG(s), s ∈ S.

Now assume that S ⊆ G is a finite subgroup, and let χ denote the character
of the adjoint representation of G restricted to S. Then the dimension of

cg(S) = {x ∈ g |Ad(s)(x) = x for all s ∈ S}

equals the multiplicity of the trivial character in χ. By the orthogonality
relations this is given by

(χ |1) =
1
|S|

∑
s∈S

χ(s),

and we are done.

We also need the following result whose proof is extracted from [122].

Theorem 8.3. Let G be a reductive linear algebraic group, H a maximal
torus of G and let N = NG(H). Let U ⊆ N be a subgroup consisting of
semisimple elements such that U/(U ∩ H) is cyclic. Let S be the identity
component of HU (the subgroup of H fixed by U), and assume that S is a
maximal torus of CG(U). Then CN (U) = NCG(U)(S) and in particular CN (U)
is a maximal torus normalizer in CG(U).

Proof. As any element of CN (U) normalizes HU and hence also its iden-
tity component S, the inclusion CN (U) ⊆ NCG(U)(S) is clear. Suppose con-
versely that x ∈ NCG(U)(S). Let C = U ∩H. From [15, 2.15(d)] it follows that
GC is reductive. By assumption the cyclic group U/C acts by semisimple au-
tomorphisms on GC . It now follows from Theorem 8.2(4) that GU = (GC)U/C

is reductive and that every maximal torus of GU is contained in a unique max-
imal torus of GC . Since C ⊆ H, we see that H is the maximal torus of GC

containing S. As Hx is also a maximal torus of GC and Hx ⊇ Sx = S we
conclude that Hx = H. Thus x ∈ CN (U) proving the result.

We now explain the relationship between reductive complex linear alge-
braic groups and compact Lie groups. If G is a complex linear algebraic group
then the underlying variety of G is an affine complex variety. By endowing
this variety with the usual Euclidean topology instead of the Zariski topology
we may view G as a complex Lie group since the group operations are given
by polynomial maps.
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Proposition 8.4. Let G be a complex linear algebraic group.

(1) Viewed as a Lie group, G contains a maximal compact subgroup which is
unique up to conjugacy, and for any such subgroup K there is a diffeo-
morphism G ∼= K × Rs for some s.

(2) Let K be a maximal compact subgroup of G, and let S, S′ ⊆ K be two
subsets. If S′ = Sg for some g ∈ G, then there exists k ∈ K such that
xk = xg for all x ∈ S.

(3) Assume that G is reductive. If S is a finite subgroup of G, then CG(S)
is also reductive. If K is a maximal compact subgroup of G containing
S, then CK(S) is a maximal compact subgroup of CG(S).

(4) If G is reductive and K is a maximal compact subgroup of G, then there
is a diffeomorphism Z(G) ∼= Z(K) × Rs for some s.

Proof. Note first that the identity component G1 of G seen as a Lie group
coincides with the identity component of G seen as a linear algebraic group
[115, Ch. 3, §3, no. 1]. Thus G/G1 is finite by [76, Prop. 7.3(a)]. The first
claim is now part of the Cartan-Chevalley-Iwasawa-Malcev-Mostow theorem
[74, Ch. XV, Thm. 3.1] and the second claim also follows from this; cf. [14,
Ch. V, §24.7, Prop. 2].

In case G is reductive it is possible to give a more explicit form of the
decomposition above. By [76, Thm. 8.6] we may assume that G is a closed
subgroup of GL(V ) for some complex vector space V . From [115, Thm. 5.2.8]
it follows that G has a compact real form K and we may thus choose a non-
degenerate Hermitian inner product on V which is invariant under K (e.g. by
[115, Thm. 3.4.2]). Let U(V ) denote the set of operators in GL(V ) which are
unitary with respect to the chosen inner product. Using [115, Problems 5.2.3
and 5.2.4] we see that G ⊆ GL(V ) is self-adjoint and that K = G ∩ U(V ).
The last part now follows by combining [115, Cor. 2 of Thm. 5.2.2] with [115,
Cor. 2 of Thm. 5.2.1].

If S is a subgroup of K, then S is self-adjoint since K consists of unitary
operators. In particular CG(S) is also a self-adjoint subgroup of GL(V ), and so
by [115, Cor. 3 of Thm. 5.2.1], CK(S) = CG(S) ∩ U(V ) is a maximal compact
subgroup of CG(S).

It only remains to prove that CG(S) is reductive for a finite subgroup S

of G. However by [115, Problem 6.11] and [115, Ch. 4, §1, no. 2] we see that
a complex linear algebraic group is reductive if and only if its Lie algebra is
reductive. Thus it suffices to prove that the Lie algebra of CG(S) is reductive.
However by Theorem 8.2(6) this Lie algebra equals

cg(S) = {x ∈ g |Ad(s)(x) = x for all s ∈ S},
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where g denotes the Lie algebra of G. The claim now follows from [33, Ch. V,
§2, no. 2, Prop. 8].

8.2. The projective unitary groups. The purpose of this short subsection is
to describe the nontoral elementary abelian subgroups of PGLn(C), which by
Proposition 8.4 is equivalent to finding them for its maximal compact subgroup
PU(n), as well as to give information about centralizers and Weyl groups. The
subgroups are easily determined and are described in [70, Thm. 3.1]—we here
just add some extra information about centralizers and Weyl groups which we
need in our proof of Theorem 1.1.

We first introduce a useful subgroup. If pr divides n write n = prk and
consider the extra special group p1+2r

+ embedded in GLn(C) by taking k copies
of one of the p − 1 faithful irreducible pr-dimensional representations. (They
all have the same image; see [80, Satz V.16.14].) Note that this embedding
maps the center of p1+2r

+ to the elements of order p in the center of GLn(C).
Let Γr denote the subgroup of GLn(C) generated by the image of p1+2r

+ and
the center of GLn(C). Note that as an abstract group Γr fits into an extension
sequence

1 → C× → Γr → Γ̄r → 1,

where C× identifies with the center of GLn(C) and Γ̄r
∼= (Z/p)2r identifies

with the image of Γr in PGLn(C). (The matrices for Γr are written explicitly
for k = 1 in [114, p. 56–57] where it is denoted ΓU

pr .)

Theorem 8.5. Suppose E is a nontoral elementary abelian p-subgroup of
PGLn(C) for an arbitrary prime p. Then, up to conjugacy, E can be written
as E = Γ̄r × Ā, for some r ≥ 1 with n = prk and some abelian subgroup A of
CGLn(C)(Γr) ∼= GLk(C).

For a given r, the conjugacy classes of such subgroups E are in one-
to-one correspondence with the conjugacy classes of toral elementary abelian
p-subgroups Ā of PGLk(C) ∼= CPGLn(C)(Γ̄r)1 (allowing the trivial subgroup),
and the centralizer of E is given by CPGLn(C)(E) ∼= Γ̄r × CPGLk(C)(Ā).

The Weyl group equals

WPGLn(C)(E) =
[
Sp(Γ̄r) 0

∗ WPGLk(C)(Ā)

]
.

Here Sp(Γ̄r) is the symplectic group relative to the symplectic product coming
from the commutator product [·, ·] : Γ̄r × Γ̄r → Z/p ⊆ C× and the symbol ∗
denotes a rank Ā × 2r matrix with arbitrary entries.

An element α ∈ Sp(Γ̄r) ⊆ WPGLn(C)(E) acts up to conjugacy as α × 1 on
CPGLn(C)(E) ∼= Γ̄r × CPGLk(C)(Ā).

Sketch of proof. The existence of the decomposition E = Γ̄r × Ā follows
from Griess [70, Thm. 3.1] and the statements about uniqueness follow by
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representation theory of the extra special p-groups (cf. [69, Ch. 5.5] or [80,
Satz V.16.14]). Since the image of p1+2r

+ is the sum of k identical irreducible
representations we have CGLn(C)(Γr) ∼= GLk(C) by Schur’s lemma (see also
[114, Prop. 4]). From this the centralizer in PGLn(C) can easily be worked
out.

In the case where Ā is trivial the statement about Weyl groups is given in
[114, Thm. 6] (and just uses elementary character theory). The general case
follows similarly, again using character theory.

For the statement about the Weyl group action, first note that

Out(Γ̄r × PGLk(C)) ∼= Aut(Γ̄r) × Out(PGLk(C)).

An element α ∈ Sp(Γ̄r) = WPGLn(C)(Γ̄r) acts as an inner automorphism on
PGLk(C) since this is true for the action on CGLn(C)(Γr) ∼= GLk(C) by char-
acter theory. Hence we can choose a representative g ∈ NPGLn(C)(Γ̄r) of α

which acts as α × 1 on CPGLn(C)(Γ̄r) ∼= Γ̄r × PGLk(C). Hence g is also a
representative of α ∈ Sp(Γ̄r) ⊆ WPGLn(C)(Γ̄r × Ā). The claim now follows.

8.3. The groups E6(C) and 3E6(C), p = 3. In this subsection we con-
sider the elementary abelian 3-subgroups of the groups of type E6 over C.
The group 3E6(C) has two nonisomorphic faithful irreducible 27-dimensional
representations. These have highest weight λ1 and λ6 respectively and are
dual to each other. An explicit construction of 3E6(C) based on one of these
representations was originally given by Freudenthal [65]. This construction is
described in more detail in [37, §2] from which we take most of our notation.
In particular we let K be the 27-dimensional complex vector space consisting
of triples m = (m1, m2, m3) of complex 3×3-matrices mi, 1 ≤ i ≤ 3, where ad-
dition and scalar multiplication are defined coordinatewise. We define a cubic
form 〈·〉 on K by

〈m〉 = det(m1) + det(m2) + det(m3) − tr(m1m2m3).

Then 3E6(C) is the subgroup of GL(K) preserving the form 〈·〉. Moreover
the stabilizer in 3E6(C) of the element (I3, 0, 0) ∈ K is the group F4(C). For
g1, g2, g3 ∈ SL3(C) we have the element sg1,g2,g3 of 3E6(C) given by

sg1,g2,g3 (m1, m2, m3) =
(
g1m1g

−1
2 , g2m2g

−1
3 , g3m3g

−1
1

)
for m = (m1, m2, m3) ∈ K. This gives a representation of SL3(C)3 which
has kernel C3 generated by (ωI3, ωI3, ωI3), and we thus get an embedding of
SL3(C)3/C3 in 3E6(C). We will denote the element sg1,g2,g3 by [g1, g2, g3].

We let {ei
j,k}, 1 ≤ i, j, k ≤ 3 be the natural basis of K consisting of the

elements ei
j,k whose entries are all 0 except for the (j, k)-entry of the ith matrix

which equals 1. The elements of 3E6(C) which act diagonally with respect to
this basis of K form a maximal torus H in 3E6(C). Let mj,k

i denote the
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(j, k)-entry of the matrix mi. We then have H-invariant subgroups

uα1(t) = [I3, I3 + te1,3, I3] , u−α1(t) = [I3, I3 + te3,1, I3] ,

uα2(t) = [I3 + te2,1, I3, I3] , u−α2(t) = [I3 + te1,2, I3, I3] ,

uα3(t) = [I3, I3 + te2,1, I3] , u−α3(t) = [I3, I3 + te1,2, I3] ,

uα4(t) : (mi)i=1,2,3 �→

⎛⎝mi + t ·

⎡⎣0 −m2,3
i+2 0

0 0 0
0 m2,1

i+2 0

⎤⎦⎞⎠
i=1,2,3

,

u−α4(t) : (mi)i=1,2,3 �→

⎛⎝mi + t ·

⎡⎣ 0 0 0
m3,2

i+1 0 −m1,2
i+1

0 0 0

⎤⎦⎞⎠
i=1,2,3

,

uα5(t) = [I3, I3, I3 + te2,1] , u−α5(t) = [I3, I3, I3 + te1,2] ,

uα6(t) = [I3, I3, I3 + te1,3] , u−α6(t) = [I3, I3, I3 + te3,1] .

Here, in the description of u±α4(t), the mi’s should be counted cyclicly mod 3,
e.g. mi+2 = m1 for i = 2.

The associated roots αi, 1 ≤ i ≤ 6, of these root subgroups form a simple
system in the root system Φ(E6) of 3E6(C) (our numbering agrees with [18,
Planche V]). For this simple system, the highest weight of K is λ1. Furthermore
the root subgroups u±αi

, 1 ≤ i ≤ 6, have been chosen so that they satisfy the
conditions in [129, Prop. 8.1.1(i) and Lem. 8.1.4(i)]; i.e., they form part of a
realization ([129, p. 133]) of Φ(E6) in 3E6(C). For α = ±αi, 1 ≤ i ≤ 6, and
t ∈ C×, we define the elements

nα(t) = uα(t)u−α(−1/t)uα(t), hα(t) = nα(t)nα(1)−1.

Then the maximal torus consists of the elements

h(t1, t2, t3, t4, t5, t6) =
6∏

i=1

hαi
(ti)

and the normalizer N(H) of the maximal torus is generated by H and the ele-
ments ni = nαi

(1), 1 ≤ i ≤ 6. It should be noted that this notation differs from
that used in [37]. More precisely, the element h(α, β, γ, δ, ε, ζ) in [37, p. 109]
equals h(δ, α−1, γ−1, β, ε−1, ζ) in our notation, and the elements n1, n2, n3,
n4, n5 and n6 in [37, p. 109] equal n1hα1(−1)hα3(−1), n2h(−1, 1, 1,−1, 1,−1),
n3hα1(−1), n4, n5hα6(−1) and n6hα5(−1)hα6(−1) respectively in our notation.

From the description of the root system of type E6 in [18, Planche V] we
see that the center Z of 3E6(C) is cyclic of order 3 and is generated by the
element z =

[
I3, ω

2I3, ωI3

]
. We also consider the element a = [ωI3, I3, I3]. A
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straightforward computation shows that the roots of the centralizer C3E6(C)(a)
are

{±α1,±α2,±α3,±α5,±α6,±α̃,±(α1 + α3),±(α5 + α6),±(α2 − α̃)},
where α̃ is the longest root. The Dynkin diagram for this centralizer is the
same as the extended Dynkin diagram for E6 with the node α4 removed.
In particular it has type A2A2A2 and a simple system of roots is given by
{α3, α1, α5, α6, α2,−α̃}. Since 3E6(C) is simply connected, Theorem 8.2(3)
implies that the centralizer C3E6(C)(a) is connected, and thus it is generated by
the maximal torus H and the root subgroups u±α(t) where α runs through the
simple roots {α3, α1, α5, α6, α2,−α̃}. Now note that uα̃(t) = [I3 + te3,1, I3, I3]
and u−α̃(t) = [I3 + te1,3, I3, I3] are root subgroups with associated roots α̃

and −α̃ respectively. Since these along with H and the root subgroups u±α1 ,
u±α2 , u±α3 , u±α5 and u±α6 generate the subgroup SL3(C)3/C3 of 3E6(C) from
above, we conclude that C3E6(C)(a) = SL3(C)3/C3.

To describe the conjugacy classes of elementary abelian 3-subgroups we
introduce the following elements in SL3(C)3/C3 ⊆ 3E6(C):

x1 = [I3, β, β] , x2 = [β, β, β] , y1 =
[
I3, γ, γ2

]
, y2 = [γ, γ, γ] .

We also need the following elements in N(H):

s1 = n1n3n4n2n5n4n3n1n6n5n4n2n3n4n5n6,

s2 = n1n2n3n1n4n2n3n1n4n3n5n4n2n3n1n4n3n5n4n2n6n5n4n2n3n1n4

· n3n5n4n2n6n5n4n3n1.

The actions of these elements are as follows:

s1(m1, m2, m3) = (m3, m1, m2), s2(m1, m2, m3) = (mT
3, m

T
2, m

T
1),

where mT
i denotes the transpose of mi. Thus these elements act by conjugation

on the subgroup SL3(C)3/C3 as follows:

[g1, g2, g3]
s1 = [g2, g3, g1] , [g1, g2, g3]

s2 =
[(

g−1
1

)T
,
(
g−1
3

)T
,
(
g−1
2

)T]
.

Lemma 8.6. We have

z = h(ω, 1, ω2, 1, ω, ω2), a = h(ω, 1, ω2, 1, ω2, ω), x1 = h(ω, 1, ω, 1, ω, ω),

x2 = h(1, ω2, ω2, 1, ω2, 1), y1 = n1n3n5n6 · hα5(−1),

y2 = n1n2n3n4n3n1n5n4n2n3n4n5n6n5n4n2n3n1n4n3n5n4n6n5 · hα2(−1).

Moreover conjugation by the element

n1n4n2n3n1n4n5n4n6n5n4n2n3n1n4 · hα2(−1)hα4(−1)

acts as follows:

a �→ x2, x2 �→ a, y1 �→ s1, y2 �→ y2
2, x2x

−1
1 �→ hα4(ω) = [τ2, τ2, τ2] .
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Proof. Both parts of the lemma may be checked by direct computation.
The second part also follows from the first by using the following relations in
N(H): The element ni has image sαi

in W ([129, Lem. 8.1.4(i)]), we have
n2

i = hαi
(−1) ([129, Lem. 8.1.4(ii)]) and

ninjni . . . = njninj . . .

for 1 ≤ i, j ≤ 6, where the number of factors on both sides equals the order of
sαi

sαj
in W ([129, Prop. 9.3.2]).

Notation 8.7. For our calculations, we need some information on the con-
jugacy classes of elements of order 3 in 3E6(C). These are given in [37, Table 2]:
There are seven such conjugacy classes, which we label 3A, 3B, 3B′, 3C, 3D,
3E and 3E′, where 3B′ and 3E′ denote the inverses of the classes 3B and 3E.
This notation is almost identical to the notation in [37, Table 2], but differs
from [70, Table VI]. We will need the following, which comes quickly from
[37, Table 2] using the action of W on H: We have z ∈ 3E, a, x2, y2 ∈ 3C,
x1, y1 ∈ 3D and x2x

−1
1 ∈ 3A. Multiplication by z acts as follows on the

conjugacy classes:

3A �→ 3B, 3B �→ 3B′, 3B′ �→ 3A, 3C �→ 3C, 3D �→ 3D, 3E �→ 3E′, 3E′ �→ 1,

where 1 denotes the conjugacy class consisting of the identity element.

Theorem 8.8. The conjugacy classes of nontoral elementary abelian
3-subgroups of 3E6(C) are given by the following table:

rank name ordered basis 3E6(C)-class distribution C3E6(C)(E)
3 E3

3E6
{a, x2, y2} 3C26 E4

3E6

4 E4
3E6

{z, a, x2, y2} 3C783E13E′1 E4
3E6

Their Weyl groups with respect to the given ordered bases are:

W (E3
3E6

) = SL3(F3), W (E4
3E6

) =

⎡⎢⎢⎣
1 ∗ ∗ ∗
0
0
0

SL3(F3)

⎤⎥⎥⎦ .

Proof. Nontoral subgroups. By [70, Thm. 11.13], there are two conjugacy
classes of nontoral elementary abelian 3-subgroups in 3E6(C), one nonmaximal
of rank 3 and one maximal of rank 4. We may concretely realize these as
follows. Consider the subgroups

E3
3E6

= 〈a, x2, y2〉 and E4
3E6

= 〈z, a, x2, y2〉 ,

which are readily seen to be elementary abelian 3-subgroups of rank 3 and 4
respectively. Both subgroups are contained in C3E6(C)(a) = SL3(C)3/C3, and
since β, γ ∈ SL3(C) do not commute, we see that the preimages of E3

3E6
and
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E4
3E6

under the projection SL3(C)3 → SL3(C)3/C3 are non-abelian. Thus by
Theorem 8.2(5) E3

3E6
and E4

3E6
are nontoral in SL3(C)3/C3 = C3E6(C)(a) and

hence also nontoral in 3E6(C) by Theorem 8.2(1). Hence these two subgroups
represent the two conjugacy classes of nontoral elementary abelian 3-subgroups
in 3E6(C).

Lower bounds for Weyl groups. By [70, Thm. 7.4] there is a unique
nontoral elementary abelian 3-subgroup E of F4(C) of rank 3 whose Weyl
group in F4(C) equals SL3(F3). Since we have an inclusion F4(C) ⊆ 3E6(C)
this subgroup may also be considered as a subgroup of 3E6(C) and its Weyl
group in 3E6(C) must contain SL3(F3). In particular it has order divisible by
13 and since 13 � |W (E6)|, we conclude by Theorem 8.2(2) that E is nontoral
in 3E6(C) as well. Thus by the above, E must be conjugate to E3

3E6
, and

hence W (E3
3E6

) contains SL3(F3). From this we immediately see that W (E4
3E6

)
contains the group 1 × SL3(F3).

Note that the element
[
I3, β, β2

]
commutes with z, a and x2 and conju-

gates y2 to y2z. Thus it normalizes E4
3E6

and produces the element I4 + e1,4 in
W (E4

3E6
). As a result we see that W (E4

3E6
) contains the group⎡⎢⎢⎣

1 ∗ ∗ ∗
0
0
0

SL3(F3)

⎤⎥⎥⎦ .

Class distributions. Since a ∈ 3C by 8.7 and W (E3
3E6

) contains SL3(F3)
which acts transitively on E3

3E6
− {1}, the class distribution of E3

3E6
follows

immediately. Using this and the information given in 8.7 about multiplication
by z, the class distribution of E4

3E6
follows.

Centralizers. Since C3E6(C)(a) = SL3(C)3/C3 we directly get

C3E6(C)(a, x2) = CSL3(C)3/C3
(x2) = 〈y2, (T2 × T2 × T2) /C3〉 ,

C3E6(C)(a, x2, y2) = 〈x2, y2, (〈ωI3〉 × 〈ωI3〉 × 〈ωI3〉) /C3〉 = E4
3E6

,

proving that C3E6(C)(E3
3E6

) = C3E6(C)(E4
3E6

) = E4
3E6

.

Exact Weyl groups. From the lower bounds above and the fact that z is
central we get SL3(F3) ⊆ W (E3

3E6
) ⊆ GL3(F3) and⎡⎢⎢⎣

1 ∗ ∗ ∗
0
0
0

SL3(F3)

⎤⎥⎥⎦ ⊆ W (E4
3E6

) ⊆

⎡⎢⎢⎣
1 ∗ ∗ ∗
0
0
0

GL3(F3)

⎤⎥⎥⎦ .

As C3E6(C)(a, x2) = 〈y2, (T2 × T2 × T2) /C3〉, we see that no element in
C3E6(C)(a, x2) conjugates y2 to y−1

2 . Hence diag(1, 1, 2) /∈ W (E3
3E6

) and
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diag(1, 1, 1, 2) /∈ W (E4
3E6

) which shows that the Weyl groups are the ones
given in the theorem.

We now turn to the group E6(C). As above, let Z be the center of 3E6(C)
and let π : 3E6(C) → E6(C) = 3E6(C)/Z denote the quotient homomorphism.
For g ∈ 3E6(C) we write g instead of π(g) and similarly we let S = π(S) for a
subset S ⊆ 3E6(C).

Lemma 8.9. Let E be a rank two nontoral elementary abelian 3-subgroup
of E6(C). Then the Weyl group W (E) is a subgroup of SL2(F3).

Proof. Let {g1, g2} be an ordered basis of E. By Theorem 8.2 parts (5)
and (3) the subgroup 〈g1, g2〉 ⊆ 3E6(C) is non-abelian. Thus setting z′ =
[g1, g2] ∈ Z we have z′ �= 1. Assume that σ ∈ W (E) is represented by the ma-

trix
[
a11 a12

a21 a22

]
, i.e., we have σ(g1) = (g1)a11(g2)a21 and σ(g2) = (g1)a12(g2)a22 .

Since σ is given by a conjugation in E6(C), it lifts to a conjugation in 3E6(C).
Now the relation [g1, g2] = z′ ∈ Z shows that (z′)a11·a22−a12·a21 = z′, so
σ ∈ SL2(F3) since z′ �= 1.

Theorem 8.10. The conjugacy classes of nontoral elementary abelian
3-subgroups of E6(C) are given by the following table:

rank name ordered basis 3E6(C)-class distribution CE6(C)(E) Z(CE6(C)(E))

2 E2a
E6

{y1, x2} 3C183D63E13E′1 E2a
E6

× PSL3(C) E2a
E6

2 E2b
E6

{y1, x1} 3D243E13E′1 E2b
E6

× G2(C) E2b
E6

3 E3a
E6

{a, y1, x2} 3C603D183E13E′1 E3a
E6

◦〈a〉 (T2 : 〈y2〉) E3a
E6

3 E3b
E6

{a, x2, y2} 3C783E13E′1 E3b
E6

· (C3)
3

E3b
E6

3 E3c
E6

{a, y1, x1} 3C63D723E13E′1 E3c
E6

◦〈a〉 SL3(C) E3c
E6

3 E3d
E6

{x2x
−1
1 , y1, x1} 3A23B23B′23C483D243E13E′1 E3d

E6
◦〈

x2x−1
1

〉 GL2(C) E3d
E6

◦〈
x2x−1

1

〉 T1

4 E4a
E6

{a, y2, y1, x2} 3C1863D543E13E′1 E4a
E6

E4a
E6

4 E4b
E6

{a, x2x
−1
1 , y1↪ x1} 3A63B63B′63C1503D723E13E′1 E4b

E6
◦〈

a,x2x−1
1

〉 T2 E4b
E6

◦〈
a,x2x−1

1

〉 T2

In particular 3Z(CE6(C)(E)) = E (where pA = ker(A
·p−→ A) for an abelian

group A) for all nontoral elementary abelian 3-subgroups E of E6(C). (In the
table the 3E6(C)-class distribution of E ⊆ E6(C) denotes the class distribution
of π−1(E) ⊆ 3E6(C).) The Weyl groups of these subgroups with respect to the
given ordered bases are as follows:

W (E2a
E6

) =
[
ε1 ∗
0 ε1

]
, W (E2b

E6
) = SL2(F3), W (E3a

E6
) =

⎡⎣ε1 ∗ ∗
0 ε2 ∗
0 0 ε2

⎤⎦ ,

W (E3b
E6

) = SL3(F3), W (E3c
E6

) =

⎡⎣ ε ∗ ∗
0
0

SL2(F3)

⎤⎦ ,
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W (E3d
E6

) = GL1(F3) × SL2(F3), W (E4a
E6

) =

⎡⎢⎢⎣ GL2(F3)
∗
∗

∗
∗

0 0 det ∗
0 0 0 det

⎤⎥⎥⎦ ,

W (E4b
E6

) =

⎡⎢⎢⎣
ε1 ∗ ∗ ∗
0 ε2 0 0
0
0

0
0

SL2(F3)

⎤⎥⎥⎦ ,

where det denotes the determinant of the matrix from GL2(F3) in the descrip-
tion of W (E4a

E6
).

Proof. Maximal nontoral subgroups. By [70, Thm. 11.14], there are
two conjugacy classes of maximal nontoral elementary abelian 3-subgroups in
E6(C), both of rank 4. We may concretely realize these as follows. Consider
the subgroups

Ea = 〈z, a, y1, y2, x2〉 and Eb =
〈
z, a, x2x

−1
1 , y1, x1

〉
of C3E6(C)(a) = SL3(C)3/C3. Since the commutator subgroup of both of these
equals Z, we see that E4a

E6
= π(Ea) and E4b

E6
= π(Eb) are elementary abelian

3-subgroups of rank 4 in E6(C). It follows from Theorem 8.2(5) that both E4a
E6

and E4b
E6

are nontoral in E6(C). We will see below that their class distributions
are the ones given in the table. From this it follows that they are not conjugate
and thus represent the two conjugacy classes of maximal elementary abelian
3-subgroups in E6(C).

Lower bounds for Weyl groups of maximal nontoral subgroups. We
now find lower bounds for the Weyl groups of the maximal nontoral elemen-
tary abelian 3-subgroups by conjugating with elements from the centralizer
C3E6(C)(a) = SL3(C)3/C3 and the normalizer N(H) of the maximal torus.

The elements [β2, I3, I3], [I3, τ1, τ2
1 ], s1 and s2 normalize E4a

E6
and conjuga-

tion by these elements induces the automorphisms on E4a
E6

given by the matrices
I4 + e1,2, I4 + e3,4, I4 + e2,3 and diag(2, 1, 2, 2). Moreover, by Lemma 8.6 we
may conjugate the ordered basis of E4a

E6
into the ordered basis {x2, y2

2, s1, a}.
Noting that the element [τ1, τ1, τ1] commutes with y2, s1 and a and conjugates
x2 into x2y2, we see that W (E4a

E6
) contains the element I4 + e2,1. The above

matrices are easily seen to generate the group

W ′(E4a
E6

) =

⎡⎢⎢⎣ GL2(F3)
∗
∗

∗
∗

0 0 det ∗
0 0 0 det

⎤⎥⎥⎦
and thus W 4a

E6
contains this group.
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Now consider E4b
E6

and let σ = −(2, 3) ∈ SL3(C). We then see that the el-
ements [I3, τ1, τ2

1 ], [I3, τ2β, τ2
2 ], [σ, I3, I3], [γ, I3, I3], [I3, β2, I3] and s2 normalize

E4b
E6

, and conjugation by these elements induces the automorphisms on E4b
E6

given by the matrices I4 + e3,4, I4 + e4,3, diag(1, 2, 1, 1), I4 + e1,2, I4 + e1,3 and
−I4. These matrices generate the group

W ′(E4b
E6

) =

⎡⎢⎢⎣
ε1 ∗ ∗ ∗
0 ε2 0 0
0
0

0
0

SL2(F3)

⎤⎥⎥⎦
and thus W 4b

E6
contains this group.

Orbit computation. Any elementary abelian 3-subgroup of rank one is
toral since E6(C) is connected. Since E4a

E6
and E4b

E6
are representatives of the

maximal nontoral elementary abelian 3-subgroups, we may find the conjugacy
classes of nontoral elementary abelian 3-subgroups of ranks 2 and 3 by studying
subgroups of these.

Under the action of W ′(E4a
E6

), the set of rank 2 subgroups of E4a
E6

has orbit
representatives

E2a
E6

= 〈y1, x2〉 , 〈a, x2〉 , 〈a, y1〉 and 〈a, y2〉 ,

and under the action of W ′(E4b
E6

), the set of rank 2 subgroups of E4b
E6

has orbit
representatives

E2a
E6

= 〈y1, x2〉 , E2b
E6

= 〈y1, x1〉 , 〈a, x2〉 , 〈a, y1〉 ,
〈
a, x2x

−1
1

〉
and

〈
x2x

−1
1 , x1

〉
.

Similarly we find that under the action of W ′(E4a
E6

), the set of rank 3 subgroups
of E4a

E6
has orbit representatives

E3a
E6

= 〈a, y1, x2〉 , E3b
E6

= 〈a, y2, x2〉 and 〈a, y1, y2〉 ,

and that under the action of W ′(E4b
E6

), the set of rank 3 subgroups of E4b
E6

has
orbit representatives

E3a
E6

= 〈a, y1, x2〉 , E3c
E6

= 〈a, y1, x1〉 , E3d
E6

=
〈
x2x

−1
1 , y1, x1

〉
and

〈
a, x2x

−1
1 , x1

〉
.

Other nontoral subgroups. The subgroups 〈a, x2〉,
〈
a, x2x

−1
1

〉
,
〈
x2x

−1
1 , x1

〉
and

〈
a, x2x

−1
1 , x1

〉
are visibly toral. Since the elements β and γ are

conjugate in SL3(C), the subgroup 〈a, y1, y2〉 is conjugate to the subgroup〈
a, [I3, β, β2], x2

〉
which is obviously toral. Thus the subgroups 〈a, y1, y2〉,

〈a, y1〉 and 〈a, y2〉 are also toral. Using the fact that [y1, x1] = [y1, x2] = z we
see from Theorem 8.2(5) that both E2a

E6
and E2b

E6
are nontoral in E6(C). Since
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the subgroups E3a
E6

, E3c
E6

and E3d
E6

all contain either E2a
E6

or E2b
E6

they are also
nontoral. Using Theorem 8.2(5) we see that the subgroup E3b

E6
is nontoral in

E6(C), since π−1(E3b
E6

) = E4
3E6

is nontoral in 3E6(C) by Theorem 8.8.

Class distributions. Using 8.7 and the actions of the groups W ′(E4a
E6

) and
W ′(E4b

E6
) we easily verify the class distributions in the table. As an example

consider the subgroup E4b
E6

. From the action of W ′(E4b
E6

) we see that E4b
E6

−{1}
contains two elements conjugate to a, six elements conjugate to x2x

−1
1 , 24

elements conjugate to x1 and 48 elements conjugate to x2. Thus by 8.7, the
set π−1(E4b

E6
−{1}) contains six elements from each of the classes 3A, 3B and

3B′, 3 · (2 + 48) = 150 elements from the class 3C and 3 · 24 = 72 elements
from the class 3D. Including the elements z and z2 from the classes 3E and
3E′ respectively, we get the class distribution of π−1(E4b

E6
) − {1} given in the

table. Similar computations give the remaining entries in the table. Since
these distributions are different we see that the subgroups in the table are
not conjugate and thus they provide a set of representatives for the conjugacy
classes of nontoral elementary abelian 3-subgroups of E6(C).

Lower bounds for other Weyl groups. We now show that the other matrix
groups in the theorem are all lower bounds for the remaining Weyl groups. To
do this consider one of the nonmaximal subgroups E from the table. We then
have E ⊆ E4a

E6
or E ⊆ E4b

E6
, and we get a lower bound on W (E) by considering

the action on E of the subgroup of W ′(E4a
E6

) or W ′(E4b
E6

) stabilizing E. As an
example we see that E2a

E6
⊆ E4a

E6
and that the stabilizer of E2a

E6
inside W ′(E4a

E6
)

is ⎡⎢⎢⎣ GL2(F3)
0
0

0
0

0 0 det x

0 0 0 det

⎤⎥⎥⎦
where det is the determinant of the matrix from GL2(F3). The action of such
a matrix on E2a

E6
is given by

y1 �→ (y1)det, x2 �→ (y1)x(x2)det.

Thus W (E2a
E6

) contains the group

W ′(E2a
E6

) =
[
ε1 ∗
0 ε1

]
as claimed. Similar computations show that for the subgroups E = E2b

E6
, E3a

E6
,

E3c
E6

and E3d
E6

, the group W ′(E) occurring in the theorem is a lower bound for
the Weyl group W (E).

For the subgroup E3b
E6

= 〈a, x2, y2〉 we know the structure of W (π−1(E3b
E6

))
= W (E4

3E6
) by Theorem 8.8. From this we immediately get W (E3b

E6
) =

SL3(F3).
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Exact Weyl groups. We now prove that the lower bounds on the Weyl
groups established above are in fact equalities. By Lemma 8.9 the Weyl
groups W (E2a

E6
) and W (E2b

E6
) are subgroups of SL2(F3). From this we see that

W (E2b
E6

) = SL2(F3) and that W (E2a
E6

) is equal to either W ′(E2a
E6

) or SL2(F3),
since these are the only subgroups of SL2(F3) containing W ′(E2a

E6
). We have

E2a
E6

= 〈y1, x2〉, and by 8.7 the elements y1 and x2 are not conjugate in E6(C).
In particular W (E2a

E6
) cannot act transitively on the nontrivial elements of E2a

E6
,

and we conclude that W (E2a
E6

) = W ′(E2a
E6

) is the group from above.
For each of the remaining nontoral subgroups we now show that a strictly

larger Weyl group would contradict the Weyl group results already established.
The subgroups E = E3a

E6
, E3d

E6
, and E4b

E6
all contain E2a

E6
. A direct computation

shows that any proper overgroup of W ′(E) in GL(E) contains an element which
normalizes the subgroup E2a

E6
and induces an automorphism which does not lie

in W (E2a
E6

). Hence W (E) = W ′(E). If E = E3c
E6

a similar argument, using the
subgroup E2b

E6
, again shows that W (E) = W ′(E). Consider finally E = E4a

E6
.

Each proper overgroup of W ′(E) contains an element which normalizes one of
the subgroups E2a

E6
or E3b

E6
and induces an automorphism on it not contained

in its Weyl group. Hence W (E) = W ′(E). This concludes the proof that the
Weyl groups listed in the theorem are the correct ones.

Centralizers. Let Θ : SL3(C) −→ SL3(C)3/C3 ⊆ 3E6(C) denote the
homomorphism given by Θ(g) = [g, g, g] for g ∈ SL3(C). By Lemma 8.6 the
subgroup E2a

E6
= 〈x2, y1〉 is conjugate to the subgroup 〈a, s1〉. Since as1 = az2

we obtain CE6(C)(a) = 〈s1,SL3(C)3/C3〉, and hence

CE6(C)(a, s1) = 〈a, s1, z,Θ(SL3(C))〉
= 〈a, s1, z〉 × Θ(SL3(C)) = 〈a, s1〉 × PSL3(C),

proving the claims for E2a
E6

. By a slight abuse of notation, we let g denote the
image of g ∈ SL3(C) in the quotient PSL3(C). From Lemma 8.6 we then see
that the elements a, y2 and x2x

−1
1 in CE6(C)(E2a

E6
) correspond to the elements

β, γ2 and τ2 in the PSL3(C)-component of CE6(C)(E2a
E6

). Thus we immediately
get

CE6(C)(E
3a
E6

) = E2a
E6

×CPSL3(C)(β), CE6(C)(E
3d
E6

) = E2a
E6

×CPSL3(C)(τ2),

CE6(C)(E
4a
E6

) = E2a
E6

×CPSL3(C)(β, γ2), CE6(C)(E
4b
E6

) = E2a
E6

×CPSL3(C)(β, τ2).

Note that CPSL3(C)(β) = T2 : 〈γ〉, giving CPSL3(C)(β, γ2) =
〈
β, γ

〉
and

CPSL3(C)(β, τ2) = T2. From this the results on E3a
E6

, E4a
E6

and E4b
E6

follow
directly. Note also that CPSL3(C)(τ2) ∼= GL2(C) from which we deduce the
claims about E3d

E6
.
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Now consider the subgroup E3b
E6

. Since CE6(C)(a) = 〈s1,SL3(C)3/C3〉 we
get

CE6(C)(a, x2) = 〈s1, y1, y2, (T2 × T2 × T2) /C3〉,
CE6(C)(a, x2, y2) = 〈s1, y1, y2, [I3, β, β2] , x2, (〈ωI3〉 × 〈ωI3〉 × 〈ωI3〉) /C3〉,

and thus CE6(C)(E3b
E6

) =
〈
E3b

E6
, s1, y1, [I3, β, β2]

〉
. It is now easy to check that

CE6(C)(E3b
E6

) has the structure E3b
E6

· (C3)
3 and that Z(CE6(C)(E3b

E6
)) = E3b

E6
.

For the subgroup E3c
E6

we obtain

CE6(C)(a, x1) = 〈y1, (SL3(C) × T2 × T2) /C3〉,
CE6(C)(a, x1, y1) = 〈y1, x1, (SL3(C) × 〈ωI3〉 × 〈ωI3〉) /C3〉.

Thus CE6(C)(E3c
E6

) equals the central product E3c
E6

◦〈a〉 SL3(C) and we obtain
the claims about E3c

E6
.

Finally consider the subgroup E2b
E6

= 〈y1, x1〉. If g ∈ π−1(CE6(C)(E2b
E6

))
then [g, y1] , [g, x2] ∈ Z, and since [y1, x2] = z it follows that g ∈ π−1(E2b

E6
) ◦Z

C3E6(C)(π−1(E2b
E6

)). Thus we have CE6(C)(E2b
E6

) = E2b
E6

× C3E6(C)(π−1(E2b
E6

)).
A direct computation shows that C3E6(C)(x1) has type T2D4 and a system

of simple roots of the centralizer is given by {α1 + α3 + α4, α2, α4 + α5 + α6,

α3 + α4 + α5}. From this we see that the 2-dimensional torus T2 consists
of the elements h(α, 1, γ, 1, α, γ) where α, γ ∈ C×. Moreover we see that
C3E6(C)(x1) = T2 ◦C Spin(8,C), where C = Z(Spin(8,C)) = C2 × C2 consists
of the elements h(α, 1, γ, 1, α, γ), α, γ = ±1.

Let σ denote the automorphism of C3E6(C)(x1) given by conjugation with
y1. A direct check shows that the map from C to C given by x �→ x−1xσ is
surjective. It then follows that

C3E6(C)(π
−1(E2b

E6
)) = (T2 ◦C Spin(8,C))σ = Tσ

2 ◦Cσ Spin(8,C)σ.

We have Tσ
2 = 〈z〉, so C3E6(C)(π−1(E2b

E6
)) = 〈z〉 × Spin(8,C)σ. Using the

class distribution of π−1(E2b
E6

) found above together with [37, Table 2] and
Theorem 8.2(6) we find

dimC3E6(C)(π
−1(E2b

E6
)) =

1
33

·
(
3 · 78 + 24 · (30 + 24ω + 24ω2)

)
= 14.

Thus Spin(8,C)σ has dimension 14 and since Z(Spin(8,C))σ = 1 we also see
that Spin(8,C)σ has rank less than 4. From this it follows that the identity
component of Spin(8,C)σ must have type G2. By [131, Thm. 8.1], Spin(8,C)σ

is connected, so Spin(8,C)σ = G2(C) and hence C3E6(C)(π−1(E2b
E6

)) = 〈z〉 ×
G2(C). Combining this with the computation from above we conclude
CE6(C)(E2b

E6
) = E2b

E6
× G2(C).

8.4. The group E8(C), p = 3. In this section we consider the elementary
abelian 3-subgroups of the group E8(C). By using [19, Table 2, p. 214] we
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see that the smallest faithful representation of E8(C) is the adjoint represen-
tation, i.e., the representation given by the action of E8(C) on its Lie algebra
e8, which has dimension 248. For our computations, we explicitly construct
this representation on a computer by following the recipe in [27, Ch. 4]. As
explained in [27, Ch. 4] there is some ambiguity in choosing a Chevalley basis
of e8; we return to this problem below.

Letting Φ(E8) denote the root system of type E8 (we use the notation of
[18, Planche VII]), we have in particular a maximal torus H generated by the
elements hαi

(t), 1 ≤ i ≤ 8, t ∈ C× ([27, p. 92, p. 97]) and root subgroups uα(t),
α ∈ Φ(E8), t ∈ C. The normalizer N(H) of the maximal torus, is generated
by H and the elements ni = nαi

(1), 1 ≤ i ≤ 8 ([27, p. 93, p. 101]). We let

h(t1, t2, t3, t4, t5, t6, t7, t8) =
8∏

i=1

hαi
(ti).

Note that by [27, p. 100 and Lem. 6.4.4] the root subgroups uα form a re-
alization ([129, p. 133]) of Φ(E8) in E8(C). In particular we have the following
relations: The element ni has image sαi

in W = W (E8) ([129, Lem. 8.1.4(i)]),
n2

i = hαi
(−1) ([129, Lem. 8.1.4(ii)]) and

ninjni . . . = njninj . . .

for 1 ≤ i, j ≤ 8, where the number of factors on both sides equals the order of
sαi

sαj
in W ([129, Prop. 9.3.2]).

Now let a = hα1(ω)hα2(ω)hα3(ω2) ∈ E8(C). Direct computation shows
that for any root α ∈ Φ(E8) we have α(a) = ω2(λ2,α). From this we see that
the Dynkin diagram of the centralizer CE8(C)(a) is the same as the extended
Dynkin diagram of E8 with the node α2 removed. Thus it has type A8 and a
simple system of roots is given by

{α1, α3, α4, α5, α6, α7, α8,−α̃},
where α̃ is the longest root. As in [18, Planche I] we identify Φ(A8) with the
set of elements in R9 of the form ei − ej with i �= j and 1 ≤ i, j ≤ 9, where ei

denotes the ith canonical basis vector in R9. We now consider SL9(C), which
is the simply connected group of type A8 over C. Given a root α′ = ei − ej ∈
Φ(A8) we let u′

α′(t) = I9 + tei,j for t ∈ C. With respect to the maximal torus
consisting of diagonal matrices, this is a root subgroup of SL9(C) corresponding
to the root α′. The roots α′

i = ei − ei+1, 1 ≤ i ≤ 8, form a simple system in
Φ(A8). It now follows that we can choose the Chevalley basis of e8 in such a
way that

u′
±α′

1
(t) �→ u±α1(t), u′

±α′
2
(t) �→ u±α3(t), u′

±α′
3
(t) �→ u±α4(t),

u′
±α′

4
(t) �→ u±α5(t), u′

±α′
5
(t) �→ u±α6(t), u′

±α′
6
(t) �→ u±α7(t),

u′
±α′

7
(t) �→ u±α8(t), u′

±α′
8
(t) �→ u∓α̃(t)
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defines a homomorphism SL9(C) → E8(C) onto the centralizer CE8(C)(a),
and we fix a certain such choice. It is easy to check that this homomorphism
has kernel C3 = 〈ωI9〉 and thus we may make the identification CE8(C)(a) =
SL9(C)/C3. For any g ∈ SL9(C) we denote by g its image in SL9(C)/C3 =
CE8(C)(a) ⊆ E8(C). In particular we see that a = ηI9 corresponds to the
element a from above. Define the following elements in SL9(C):

x1 = diag(1, ω, ω2, 1, ω, ω2, 1, ω, ω2), x2 = diag(1, 1, 1, ω, ω, ω, ω2, ω2, ω2),

x3 = diag(1, 1, 1, 1, 1, 1, ω, ω, ω), y1 = (1, 2, 3)(4, 5, 6)(7, 8, 9),

y2 = (1, 4, 7)(2, 5, 8)(3, 6, 9).

From the explicit homomorphism above we easily find

a = hα1(ω)hα2(ω)hα3(ω
2), x1 = hα1(ω)hα5(ω)hα8(ω),

x2 = hα1(ω)hα3(ω
2)hα5(ω

2)hα6(ω), x3 = hα1(ω
2)hα3(ω)hα5(ω

2)hα6(ω).

With our particular choice of Chevalley basis a direct computation in E8(C)
shows that

n−α̃ = n8n7n6n5n4n2n3n1n4n3n5n4n2n6n5n4n3n1n7n6n5n4n2n3n4n5n6n7n8

· n7n6n5n4n2n3n1n4n3n5n4n2n6n5n4n3n1n7n6n5n4n2n3n4n5n6n7n8.

(A different choice of Chevalley basis may effect this expression by an order
two element in H. If a Chevalley basis is chosen such that the above formula
holds then all further formulas will be independent of the choice.)

From this and the explicit homomorphism above we find, either by direct
computation or by using the relations in N(H), that

y1 = n1n3n5n6n7n6n5n4n2n3n1n4n3n5n4n2n6n5n4n3n1n7n6n5

· n4n2n3n4n5n6n7n8n7n6n5n4n2n3n1n4n3n5n4n2n6n5n4n3

· n1n7n6n5n4n2n3n4n5n6n7n8 · hα1(−1)hα2(−1)hα7(−1),

y2 = n2n3n1n4n2n3n4n5n4n2n3n4n6n5n4n2n3n1n4n7n6n5n4

· n2n3n1n4n3n5n6n7n8n7n6n5n4n2n3n1n4n3n5n4n2n6n5

· n4n3n1n7n6n5n4n2n3n4n5n8n7n6 · hα2(−1)hα5(−1).

Notation 8.11. To distinguish subgroups of E8(C), we need some infor-
mation on the conjugacy classes of elements of order 3. These are given in
[70, Table VI] (which is taken from [36, Table 4]): There are four such con-
jugacy classes, which we label 3A, 3B, 3C and 3D. Moreover these classes
may be distinguished by their traces on e8. Since the trace of the element
h ∈ H is given by 8 +

∑
α∈Φ(E8)

α(h) we get a ∈ 3A, x1, x2, x3, y1, y2 ∈ 3B

and x3a−1 ∈ 3D.
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Notation 8.12. If K is a field and n is a natural number, we define the
group of symplectic similitudes as GSp2n(K) = {X ∈ GL2n(K)|XtBX =
cB, c ∈ K×}, where

B =
[
0 −1
1 0

]
⊕ . . . ⊕

[
0 −1
1 0

]
︸ ︷︷ ︸

n times

.

We define the homomorphism χ : GSp2n(K) → K× by χ(X) = c, where
XtBX = cB. The kernel of χ is the symplectic group Sp2n(K). (The notation
CSp is also used in the literature; cf. e.g. [91].)

Theorem 8.13. The conjugacy classes of nontoral elementary abelian
3-subgroups of E8(C) are given by the following table:

rank name ordered basis E8(C)-class dist. CE8(C)(E) Z(CE8(C)(E))
3 E3a

E8
{x1, y1, a} 3A183B8 E3a

E8
× PSL3(C) E3a

E8

3 E3b
E8

{x1, y1, x3} 3B26 E3b
E8

× G2(C) E3b
E8

4 E4a
E8

{x1, y1, x3, x3a−1} 3A523B263D2 E4a
E8

◦〈x3a−1〉 GL2(C) E4a
E8

◦〈x3a−1〉 T1

4 E4b
E8

{x2, x1, y1, a} 3A543B26 E4b
E8

◦〈x2〉 (T2 : 〈y2〉) E4b
E8

4 E4c
E8

{x2, x1, y1, x3} 3B80 E4c
E8

◦〈x2〉 SL3(C) E4c
E8

5 E5a
E8

{x2, x1, y1, x3, x3a−1} 3A1563B803D6 E5a
E8

◦〈x2 ,x3a−1〉 T2 E5a
E8

◦〈x2 ,x3a−1〉 T2

5 E5b
E8

{x1, y1, x2, y2, a} 3A1623B80 E5b
E8

E5b
E8

In particular 3Z(CE8(C)(E)) = E for all nontoral elementary abelian 3-subgroups
E of E8(C). The Weyl groups of these subgroups with respect to the given or-
dered bases are as follows:

W (E3a
E8

) =

⎡⎣ GL2(F3)
∗
∗

0 0 det

⎤⎦ ,

W (E3b
E8

) = SL3(F3), W (E4a
E8

) = SL3(F3) × GL1(F3),

W (E4b
E8

) =

⎡⎢⎢⎣
ε ∗ ∗ ∗
0
0

GL2(F3)
∗
∗

0 0 0 det

⎤⎥⎥⎦ , W (E4c
E8

) =

⎡⎢⎢⎣
ε ∗ ∗ ∗
0
0
0

SL3(F3)

⎤⎥⎥⎦ ,

W (E5a
E8

) =

⎡⎢⎢⎢⎢⎣
ε1 ∗ ∗ ∗ ∗
0
0
0

SL3(F3)
0
0
0

0 0 0 0 ε2

⎤⎥⎥⎥⎥⎦ , W (E5b
E8

) =

⎡⎢⎢⎢⎢⎣ GSp4(F3)

∗
∗
∗
∗

0 0 0 0 χ

⎤⎥⎥⎥⎥⎦ ,

where det is the determinant of the matrix from GL2(F3) in the description
of W (E3a

E8
) and W (E4b

E8
). In the description of W (E5b

E8
), χ denotes the value

of the homomorphism χ : GSp4(F3) → F×
3 defined in 8.12 evaluated on the

matrix from GSp4(F3).
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Remark 8.14. Our information on the subgroups E5a
E8

and E3b
E8

corrects
[70, Table II and Lem. 11.5] and [70, 13.2] respectively.

Proof of Theorem 8.13. Maximal nontoral subgroups. By [70, Lems. 11.7
and 11.9], any maximal nontoral elementary abelian 3-subgroup of E8(C)
contains an element of type 3A. We may thus find representatives inside
CE8(C)(a) = SL9(C)/C3. From [70, Cor. 11.10], it follows that there are two
conjugacy classes of maximal nontoral elementary abelian 3-subgroups both of
rank 5. Moreover, by [70, Lem. 11.5], their preimages in SL9(C) may be chosen
to have the form (31+2

+ ◦C3 C9)×C3 ×C3 and 31+4
+ ◦C3 C9. Using the represen-

tation theory of extra special p-groups (cf. [69, Ch. 5.5] or [80, Satz V.16.14])
we find that they are represented by E5a

E8
=

〈
x2, x1, y1, x3, x3a−1

〉
and E5b

E8
=

〈x1, y1, x2, y2, a〉.
Lower bounds for Weyl groups of maximal nontoral subgroups. We can

find lower bounds for the Weyl groups of E5a
E8

and E5b
E8

by conjugating with
elements in the centralizer CE8(C)(a) = SL9(C)/C3 and the normalizer N(H)
of the maximal torus. Note that

a = ηI3 ⊕ ηI3 ⊕ ηI3, x1 = β ⊕ β ⊕ β, x2 = I3 ⊕ ωI3 ⊕ ω2I3,

x3 = I3 ⊕ I3 ⊕ ωI3, y1 = γ ⊕ γ ⊕ γ

and (A ⊕ B ⊕ C)y2 = B ⊕ C ⊕ A. Conjugation by τ1 ⊕ τ1 ⊕ τ1, τ2 ⊕ τ2 ⊕ τ2

and I3 ⊕ β2 ⊕ β gives

τ1 ⊕ τ1 ⊕ τ1 : a �→ a, x1 �→x1y1, x2 �→x2, x3 �→x3, y1 �→y1, y2 �→y2.

(8.1)

τ2 ⊕ τ2 ⊕ τ2 : a �→a, x1 �→x1, x2 �→x2, x3 �→x3, y1 �→x1y1, y2 �→y2.

(8.2)

I3 ⊕ β2 ⊕ β : a �→a, x1 �→x1, x2 �→x2, x3 �→x3, y1 �→x2y1, y2 �→x1y2.

(8.3)

Now consider the subgroup E5a
E8

. From (8.1)–(8.3) we see that the elements
τ1 ⊕ τ1 ⊕ τ1, τ2 ⊕ τ2 ⊕ τ2 and I3 ⊕ β2 ⊕ β normalize E5a

E8
and that conjugation

by these elements induces the automorphisms on E5a
E8

given by the matrices
I5 + e3,2, I5 + e2,3 and I5 + e1,3.

Letting σ = −(1, 4)(2, 5)(3, 6) ∈ SL9(C) we have (A ⊕ B ⊕ C)σ =

B ⊕ A ⊕ C. Using this and the above we obtain that σ, y2 and I3 ⊕ I3 ⊕ β2 nor-
malize E5a

E8
and that conjugation by these elements induces the automorphisms

on E5a
E8

given by the matrices diag(2, 1, 1, 1, 1), I5 + e1,4 + e1,5 and I5 + e4,3. By
using the relations in N(H) given above or by direct computation, it may be
checked that conjugation by the element

n1n2n4n2n3n5n4n2n3n1n4n3n5n4n6n5n4n2n3n4n7n6n5n4n8n7n6

· n5n4n2n3n1n4n3n5n4n2n6n5n4n7 · h(1, 1,−1,−1,−1, 1,−1,−1)
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induces the automorphism on E5a
E8

represented by the matrix diag(1, 1, 1, 1, 2)+
e2,4. It is easy to see that the above matrices generate the group

W ′(E5a
E8

) =

⎡⎢⎢⎢⎢⎣
ε1 ∗ ∗ ∗ ∗
0
0
0

SL3(F3)
0
0
0

0 0 0 0 ε2

⎤⎥⎥⎥⎥⎦
and thus W (E5a

E8
) contains this group.

Next consider the subgroup E5b
E8

. From (8.1)–(8.3) we see that the ele-
ments τ1 ⊕ τ1 ⊕ τ1, τ2 ⊕ τ2 ⊕ τ2 and I3 ⊕ β2 ⊕ β normalize E5b

E8
and that con-

jugation by these elements induces the automorphisms of E5b
E8

given by the
matrices I5 + e2,1, I5 + e1,2 and I5 + e1,4 + e3,2. Now note that a = Δ3,3(ηI3),
x2 = Δ3,3(β) and y2 = Δ3,3(γ). Since Δ3,3(A) commutes with B ⊕ B ⊕ B for
any A, B ∈ M3(C), the elements Δ3,3(τ1) and Δ3,3(τ2) normalize E5b

E8
. The

automorphisms induced on E5b
E8

by conjugation with these elements have the
matrices I5 + e4,3 and I5 + e3,4. By using the relations in N(H) given above
or by direct computation, we get that conjugation by the element

n2n8n7n6n5n4n2n3n1n4n3n5n4n2n6n5n4n3n1n7n6

· n5n4n2n3n4n5n6n7n8 · h(1,−1,−1,−1,−1, 1, 1, 1)

induces the automorphism on E5b
E8

represented by the matrix diag(1, 2, 1, 2, 2)+
e3,5. It now follows that W (E5b

E8
) contains the group

W ′(E5b
E8

) =

⎡⎢⎢⎢⎢⎣ GSp4(F3)

∗
∗
∗
∗

0 0 0 0 χ

⎤⎥⎥⎥⎥⎦ .

Lower bounds for other Weyl groups. We now show that the other Weyl
groups in the theorem are all lower bounds. To do this consider one of the
nonmaximal subgroups E from the table. We then have E ⊆ E5a

E8
, and we get

a lower bound on W (E) by considering the action on E of the subgroup of
W ′(E5a

E8
) stabilizing E. As an example we find that the stabilizer of E3a

E8
inside

W ′(E5a
E8

) is ⎡⎢⎢⎢⎢⎣
ε1 0 0 x x

0 a11 a12 a13 0
0 a21 a22 a23 0
0 0 0 det 0
0 0 0 0 det

⎤⎥⎥⎥⎥⎦
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where det = a11 · a22 − a12 · a21 �= 0. The action of such a matrix on E3a
E8

is
given by

x1 �→ (x1)a11(y1)a21 , y1 �→ (x1)a12(y1)a22 , a �→ (x1)a13(y1)a23(a)det.

Thus W (E3a
E8

) contains the group

W ′(E3a
E8

) =

⎡⎣ GL2(F3)
∗
∗

0 0 det

⎤⎦
as claimed. Similar computations show that for the remaining subgroups E =
E3b

E8
, E4a

E8
, E4b

E8
and E4c

E8
, the group W ′(E) occurring in the theorem is a lower

bound for the Weyl group W (E).

Orbit computation. Note first that all elementary abelian 3-subgroups
of rank at most two are toral by Theorem 8.2(3). By using the lower bounds
on the Weyl groups of E5a

E8
and E5b

E8
established above, we may find a set of

representatives for the conjugacy classes of subgroups of E5a
E8

and E5b
E8

of ranks
three and four.

Under the action of W ′(E5a
E8

), the set of rank 3 subgroups of E5a
E8

has orbit
representatives

E3a
E8

= 〈x1, y1, a〉 , E3b
E8

= 〈x1, y1, x3〉 , 〈x1, x2, y1〉 ,

〈a, x1, x2〉 , 〈a, x1, x3〉 and 〈a, x2, x3〉 ,

and under the action of W ′(E5b
E8

), the set of rank 3 subgroups of E5b
E8

has orbit
representatives

E3a
E8

= 〈x1, y1, a〉 , 〈x1, x2, y1〉 and 〈a, x1, x2〉 .

Similarly we find that under the action of W ′(E5a
E8

), the set of rank 4
subgroups of E5a

E8
has orbit representatives

E4a
E8

=
〈
x1, y1, x3, x3a−1

〉
, E4b

E8
= 〈x2, x1, y1, a〉 ,

E4c
E8

= 〈x2, x1, y1, x3〉 and 〈a, x1, x2, x3〉 ,

and that under the action of W ′(E5b
E8

), the set of rank 4 subgroups of E5b
E8

has
orbit representatives

E4b
E8

= 〈x2, x1, y1, a〉 and E0 = 〈x1, x2, y1, y2〉 .

Class distributions. Recall that by 8.11, a is in the conjugacy class 3A,
x1 and x2 are in the class 3B and x3a−1 belongs to the class 3D. Using
the actions of W ′(E5a

E8
) and W ′(E5b

E8
) it is then straightforward to verify the

class distributions given in the table. As an example consider the subgroup
E5a

E8
. Under the action of W ′(E5a

E8
) it contains 156 elements conjugate to a,
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78 elements conjugate to x1, two elements conjugate to x2 and six elements
conjugate to x3a−1, which gives the class distribution in the table. Similar
computations give the results for the remaining subgroups.

We also see that the subgroup E0 = 〈x1, x2, y1, y2〉 has class distribution
3B80 and from the class distribution of E5b

E8
we get E0 = (E5b

E8
∩ 3B)∪ {1}. It

then follows from [70, Lem. 11.5] that E0 is toral.

Other nontoral subgroups. We see directly that the subgroups

〈a, x1, x2, x3〉 , 〈a, x1, x2〉 , 〈a, x1, x3〉 and 〈a, x2, x3〉

are toral. Since the subgroup 〈x1, x2, y1〉 is a subgroup of E0 it is also toral.
Alternatively, from the action of W ′(E5a

E8
) we see that it is conjugate to the

subgroup 〈x1, x2, x3〉, which is visibly toral. Thus any nontoral elementary
abelian 3-subgroup of E8(C) is conjugate to a subgroup in the table. Moreover,
since their class distributions differ, none of these subgroups are conjugate.

To see that the subgroups in the table are nontoral we may proceed as
follows. The subgroup E3a

E8
contains the element a; so by Theorem 8.2(1) it is

toral in E8(C) if and only if it is toral in CE8(C)(a) = SL9(C)/C3. However
this is not the case by Theorem 8.2(5), since its preimage in SL9(C) is non-
abelian. The subgroups E4a

E8
and E4b

E8
are thus also nontoral since they contain

E3a
E8

. We saw above that the Weyl group of E3b
E8

contains SL3(F3), which has
order divisible by 13. Since 13 � |W (E8)| it follows from Theorem 8.2(2) that
E3b

E8
is nontoral. Since E4c

E8
contains E3b

E8
it is also nontoral.

Centralizers. The subgroups E = E3a
E8

, E4a
E8

, E4b
E8

, E5a
E8

and E5b
E8

are
easy to deal with since they all contain a, and hence we have CE8(C)(E) =
CSL9(C)/C3

(E) for these. It is however notationally convenient first to change
the representatives as follows. Define x4 = τ−1

2 ⊕ τ−1
2 ⊕ τ−1

2 ∈ SL9(C), and
note that conjugation by (2, 7, 3, 4)(5, 8, 9, 6) ∈ SL9(C) acts as follows:

a �→ a, x1 �→ x2, x2 �→ x2
1, x3a

−1 �→ x4, y1 �→ y2, y2 �→ y2
1.

In particular we see that E3a
E8

is conjugate to 〈x2, y2, a〉. Moreover we have

CE8(C)(a, x2) = 〈y2, {A ⊕ B ⊕ C | detABC = 1}〉.

From this we directly get

CE8(C)(a, x2, y2) =
〈
x2, y2, {A ⊕ A ⊕ A | (detA)3 = 1}

〉
= 〈x2, y2, a, {A ⊕ A ⊕ A | det A = 1}〉
∼= 〈x2, y2, a〉 × PSL3(C).

Thus CE8(C)(E3a
E8

) = E3a
E8

× PSL3(C) and Z(CE8(C)(E3a
E8

)) = E3a
E8

. From the
above we see that the elements x2, x3a−1 and y2 in CE8(C)(E3a

E8
) correspond to
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the elements β2, τ−1
2 and γ2 in the PSL3(C)-component of CE8(C)(E3a

E8
). From

this we easily compute the structure of CE8(C)(E) for the subgroups E which
contain E3a

E8
; cf. the proof of Theorem 8.10.

For the computation of the centralizers of E3b
E8

and E4c
E8

we consider the
element g = hα1(ω)hα3(ω2) ∈ E8(C). By using [36, Tables 4 and 6] we see that
g belongs to the conjugacy class 3B and that the centralizer CE8(C)(g) has
type E6A2. The precise structure of this centralizer may be found as follows.
Since E8(C) is simply connected, Theorem 8.2(3) implies that CE8(C)(g) is
connected. Setting

α′ = α1 + α2 + 2α3 + 3α4 + 2α5 + α6,

we see that {α5, α8, α6, α7, α
′, α2} ∪ {α1, α3} is a system of simple roots of

CE8(C)(g). (The simple systems of the components of type E6 and A2 have
been ordered so that the numbering is consistent with [18, Planches I and
V].) From this we get an explicit homomorphism 3E6(C) × SL3(C) → E8(C)
onto the centralizer CE8(C)(g). The kernel is given by

〈
(z, ω2I3)

〉
, where z ∈

3E6(C) denotes the central element defined in Section 8.3. Thus CE8(C)(g) =
3E6(C) ◦C3 SL3(C), and we denote elements in this central product by A · B
where A ∈ 3E6(C) and B ∈ SL3(C). In particular we have g = z · I3 = 1 ·ωI3.

Now consider the subgroup E = 〈z · I3, x1 · β, y1 · γ〉 which is seen to be an
elementary abelian 3-subgroup of rank 3 (here the elements x1, y1 ∈ 3E6(C)
from Section 8.3 should not be confused with the elements x1, y1 ∈ SL9(C)
from above). We have

CE8(C)(z · I3, x1 · β) =C3E6(C)◦C3SL3(C)(x1 · β)

=
〈
y1 · γ, C3E6(C)(x1) ◦C3 CSL3(C)(β)

〉
.

We note that y1 · γ is not conjugate to its inverse in CE8(C)(z · I3, x1 · β) since
no element in CSL3(C)(β) conjugates γ into γ−1 times a power of ωI3. Thus
diag(1, 1,−1) /∈ W (E) and W (E) �= GL3(F3). From the above we also get

CE8(C)(E) =
〈
y1 · γ, x1 · β, C3E6(C)(x1, y1) ◦C3 CSL3(C)(β, γ)

〉
=

〈
y1 · γ, x1 · β, C3E6(C)(π

−1(E2b
E6

)) ◦C3 Z(SL3(C))
〉

= 〈y1 · γ, x1 · β, (〈z〉 × G2(C)) ◦C3 Z(SL3(C))〉
= E × G2(C),

using the computation of C3E6(C)(π−1(E2b
E6

)) from the last part of the proof of
Theorem 8.10. Since the preimage of E in 3E6(C) × SL3(C) is non-abelian it
follows from Theorem 8.2(5) that E is nontoral in 3E6(C) ◦C3 SL3(C). Now
Theorem 8.2(1) shows that E is nontoral in E8(C) (alternatively observe that
CE8(C)(E) has rank less than 8). From what we have already proved we then
see that E is conjugate to either E3a

E8
or E3b

E8
in E8(C). Since we have already



162 K. K. S. ANDERSEN, J. GRODAL, J. M. MøLLER, AND A. VIRUEL

calculated CE8(C)(E3a
E8

) we conclude that E must be conjugate to E3b
E8

(alterna-
tively one can also compute the class distribution of E directly). In particular
we have CE8(C)(E3b

E8
) = E3b

E8
× G2(C) and W (E3b

E8
) �= GL3(F3).

Using the inclusion 3E6(C) ⊆ 3E6(C) ◦C3 SL3(C) ⊆ E8(C) we may also
consider the subgroup E4

3E6
⊆ 3E6(C) from Theorem 8.8 as a subgroup of

E8(C). Since E4
3E6

is nontoral in 3E6(C), it is also nontoral in 3E6(C) ◦C3

SL3(C), and hence also in E8(C) by Theorem 8.2(1). Thus E4
3E6

must be
conjugate in E8(C) to one of the subgroups E4a

E8
, E4b

E8
or E4c

E8
. Comparing

the class distributions we can rule out E4a
E8

and E4b
E8

, and so E4
3E6

is con-
jugate to E4c

E8
. From Theorem 8.8 we have C3E6(C)(E4

3E6
) = E4

3E6
. Hence

CE8(C)(E4
3E6

) = E4
3E6

◦C3 SL3(C) and thus CE8(C)(E4c
E8

) = E4c
E8

◦C3 SL3(C). We
determine the precise structure of the central product below after the compu-
tation of W (E4c

E8
).

Exact Weyl groups. Recall from above that E3a
E8

is conjugate to 〈x2, y2, a〉.
If W (E3a

E8
) was strictly larger than the group W ′(E3a

E8
) from above, W (E3a

E8
)

would have to contain one of the groups⎡⎣ GL2(F3)
∗
∗

0 0 ε

⎤⎦ or SL3(F3)

since these are the minimal overgroups of W ′(E3a
E8

) inside GL3(F3). Thus
W (E3a

E8
) would have to contain one of the matrices diag(1, 2, 1) or I3 + e3,2.

This would imply the existence of an element in CE8(C)(x2, a) which conjugates
y2 into either y2

2 or y2a. However we saw above that

CE8(C)(x2, a) = 〈y2, {A ⊕ B ⊕ C | detABC = 1}〉,

and from this it follows that no such element exists. Thus W (E3a
E8

) = W ′(E3a
E8

)
as claimed. For the subgroup E3b

E8
we have SL3(F3) ⊆ W (E3b

E8
) �= GL3(F3)

and hence W (E3b
E8

) = SL3(F3).
As in the proof of Theorem 8.10 we show that the remaining Weyl groups

equal the lower bounds already established, by looking at what a strictly larger
Weyl group would imply for the subgroups E3a

E8
and E3b

E8
. For E = E4a

E8
,

E4b
E8

, E5a
E8

, and E5b
E8

, any proper overgroup of W (E) contains an element which
normalizes E3a

E8
but induces an automorphism on it not contained in its Weyl

group. For E4c
E8

the result follows by considering the subgroup E3b
E8

.
It remains only to determine the precise structure of the central product

CE8(C)(E4c
E8

) = E4c
E8

◦C3 SL3(C). From the structure of W (E4c
E8

) we see that the
subgroup 〈x2〉 is invariant under the action of W (E4c

E8
). Thus a conjugation

which sends E4c
E8

to E4
3E6

must send 〈x2〉 to a W (E4
3E6

)-invariant subgroup of
E4

3E6
of rank one. From the structure of W (E4

3E6
) we see that there is only

one such subgroup, namely 〈z · I3〉 = 〈1 · ωI3〉. As this is exactly the center
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of the SL3(C)-component of CE8(C)(E4
3E6

) = E4
3E6

◦C3 SL3(C), we see that
CE8(C)(E4c

E8
) = E4c

E8
◦〈x2〉 SL3(C).

8.5. The group 2E7(C), p = 3. In this section we consider the elementary
abelian 3-subgroups of 2E7(C). We let H be a maximal torus of 2E7(C),
Φ(E7) be the root system relative to H, and choose a realization ([129, p. 133])
(uα)α∈Φ(E7)

of Φ(E7) in 2E7(C). By [129, Lem. 8.1.4(iv)] we may suppose that
the root subgroups (u′

α)α∈Φ(E6)
in 3E6(C) ⊆ 2E7(C) coming from the choice

of root subgroups for 3E6(C) from Section 8.3 satisfy uα = u′
α for α ∈ Φ(E6).

For α = αi, 1 ≤ i ≤ 7, and t ∈ C× we define the elements

nα(t) = uα(t)u−α(−1/t)uα(t), hα(t) = nα(t)nα(1)−1.

Then the maximal torus consists of the elements
∏7

i=1 hαi
(ti) and the nor-

malizer N(H) of the maximal torus is generated by H and the elements
ni = nαi

(1), 1 ≤ i ≤ 7. As in Section 8.3 we define the following elements in
3E6(C) ⊆ 2E7(C):

z = hα1(ω)hα3(ω
2)hα5(ω)hα6(ω

2), a = hα1(ω)hα3(ω
2)hα5(ω

2)hα6(ω),

x2 = hα2(ω
2)hα3(ω

2)hα5(ω
2),

y2 = n1n2n3n4n3n1n5n4n2n3n4n5n6n5n4n2n3n1n4n3n5n4n6n5 · hα2(−1).

Notation 8.15. The conjugacy classes of elements of order 3 in 2E7(C)
are given in [70, Table VI] and [36, Table 6] from which we take our notation.
There are five such conjugacy classes, which we label 3A, 3B, 3C, 3D and 3E.
(We take this opportunity to note the following corrections to these references:
In [70, Table VI] the eigenvalue multiplicities for the class 3C in 2E7(C) should
be 43, 45, 45; for the class 3E they should be 67, 33, 33; the centralizer type of
the class 3E should be D6T1; in [36, Table 6] the centralizer types for the classes
3A and 3E should be A6T1 and D6T1 respectively.) By direct computation
we easily obtain the inclusions

3C[3E6] ⊆ 3C[2E7], 3E[3E6] ⊆ 3B[2E7], 3E′[3E6] ⊆ 3B[2E7],

corresponding to the inclusion 3E6(C) ⊆ 2E7(C).

Theorem 8.16. The conjugacy classes of nontoral elementary abelian
3-subgroups of 2E7(C) are given by the following table:

rank name ordered basis 2E7(C)-class dist. C2E7(C)(E) Z(C2E7(C)(E))
3 E3

2E7
{a x2, y2} 3C26 E3

2E7
× SL2(C) E3

2E7
× Z(2E7(C))

4 E4
2E7

{z, a x2, y2} 3B23C78 E4
2E7

◦〈z〉 T1 E4
2E7

◦〈z〉 T1

,

,

In particular 3Z(C2E7(C)(E)) = E for all nontoral elementary abelian 3-sub-
groups E of 2E7(C). The Weyl groups of these subgroups with respect to the
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given ordered bases are as follows:

W (E3
2E7

) = SL3(F3), W (E4
2E7

) =

⎡⎢⎢⎣
ε ∗ ∗ ∗
0
0
0

SL3(F3)

⎤⎥⎥⎦ .

Remark 8.17. Our information on the rank 3 subgroup E3
2E7

corrects [70,
Table II and Thm. 11.16].

Proof of Theorem 8.16. Nontoral subgroups. From the way the realization
(uα)α∈Φ(E7)

is chosen above, it follows from Theorem 8.8 that E3
2E7

and E4
2E7

are elementary abelian 3-subgroups of 2E7(C) and that

W (E3
2E7

) ⊇ SL3(F3), W (E4
2E7

) ⊇

⎡⎢⎢⎣
1 ∗ ∗ ∗
0
0
0

SL3(F3)

⎤⎥⎥⎦ .

In particular both W (E3
2E7

) and W (E4
2E7

) have orders divisible by 13 and since
13 � |W (E7)|, we conclude by Theorem 8.2(2) that E3

2E7
and E4

2E7
are nontoral

in 2E7(C). By [70, Thm. 11.16] there are precisely two conjugacy classes of
nontoral elementary abelian 3-subgroups in 2E7(C), and thus E3

2E7
and E4

2E7

represent these two conjugacy classes.

Class distributions. The class distributions follows directly from the class
distributions of the subgroups E3

3E6
and E4

3E6
given in Theorem 8.8 and the

information in 8.15 about the behavior of conjugacy classes in 3E6(C) under
the inclusion 3E6(C) ⊆ 2E7(C).

Weyl groups. Using our realization (uα)α∈Φ(E7)
we define a canonical

map φ : W → N(H) as follows ([129, 9.3.3]): If w = sαi1
. . . sαir

is a reduced
expression for w ∈ W we let φ(w) = ni1 . . . nir

(by [129, Props. 8.3.3 and
9.3.2] this does not depend on the reduced expression for w). Note that the
element φ(w) is a representative of w ∈ W in N(H). Now let w0 ∈ W be the
longest element in W , and let n0 = φ(w0). From [18, Planche VI] it follows
that w0 equals the scalar transformation −1, and so conjugation by n0 acts
as inversion on H. Now let w ∈ W and define w′ by ww′ = w0. Since w0

is central in our case, we have (ww′) w−1 = w−1 (ww′) = w′ so we conclude
that w′w = ww′ = w0. Now let � be the length function on W . By [79, p. 16]
we have �(w) + �(w′) = �(w0). In general the map φ is not a homomorphism,
but we do have φ(w1w2) = φ(w1)φ(w2) if �(w1w2) = �(w1) + �(w2) by [129,
Ex. 9.3.4(1)]. From this it follows that φ(w)φ(w′) = φ(w′)φ(w) = φ(w0) = n0,
and we conclude that n0 commutes with φ(w) for all w ∈ W .
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Now consider the element

w = s1s2s3s4s3s1s5s4s2s3s4s5s6s5s4s2s3s1s4s3s5s4s6s5.

Since the length of an element is given by the number of positive roots it sends
to negative roots ([79, Cor. 1.7]), the above product is a reduced expression for
w. Thus we have y2 = φ(w)hα2(−1). From the above we then conclude that
conjugation by n0 acts as follows:

z �→ z2, a �→ a2, x2 �→ x2
2, y2 �→ y2.

Thus n0 normalizes E4
2E7

and gives the element diag(2, 2, 2, 1) in W (E4
2E7

).
Combined with the above we conclude that

W (E4
2E7

) ⊇

⎡⎢⎢⎣
ε ∗ ∗ ∗
0
0
0

SL3(F3)

⎤⎥⎥⎦ .

From the inclusion Φ(E7) ⊆ Φ(E8) we get the inclusion 2E7(C) ⊆ E8(C), and
so we may consider E3

2E7
and E4

2E7
as subgroups of E8(C) as well. Since the

orders of their Weyl groups in 2E7(C) are divisible by 13 and 13 � |W (E8)|, we
see from Theorem 8.2(2) that E3

2E7
and E4

2E7
remain nontoral in E8(C). Using

Theorem 8.13 and the class distributions from above we conclude that E3
2E7

and E4
2E7

are conjugate to E3b
E8

and E4c
E8

respectively in E8(C). Theorem 8.13
now shows that the lower bounds found above are indeed the Weyl groups of
E3

2E7
and E4

2E7
in 2E7(C).

Centralizers. For the computation of the centralizer of E3
2E7

we consider
the element g = hα1(ω)hα3(ω2) ∈ 2E7(C). By using [36, Table 6] we see that
g belongs to the conjugacy class 3C and that the centralizer C2E7(C)(g) has
type A5A2. The precise structure of this centralizer may be found as follows.
Since 2E7(C) is simply connected, Theorem 8.2(3) implies that C2E7(C)(g) is
connected. Setting

α′ = α1 + α2 + 2α3 + 3α4 + 2α5 + α6,

we see that {α5, α6, α7, α
′, α2}∪{α1, α3} is a system of simple roots of C2E7(C)(g).

(The simple systems of the components of type A5 and A2 have been ordered
so that the numbering is consistent with [18, Planche I].) From this we get
an explicit homomorphism SL6(C) × SL3(C) → 2E7(C) onto the central-
izer C2E7(C)(g). The kernel is given by

〈
(ωI6, ω

2I3)
〉
. Thus C2E7(C)(g) =

SL6(C) ◦C3 SL3(C), and we denote elements in this central product by A · B
where A ∈ SL6(C) and B ∈ SL3(C). In particular we have g = ωI6 · I3 =
I6 · ωI3.

Now consider the subgroup E =
〈
ωI6 · I3, (β ⊕ β) · β, (γ ⊕ γ) · γ2

〉
which

is seen to be an elementary abelian 3-subgroup of rank 3. We have
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C2E7(C)(ωI6 · I3, (β ⊕ β) · β) =CSL6(C)◦C3SL3(C)((β ⊕ β) · β)

=
〈
(γ ⊕ γ) · γ2, CSL6(C)(β ⊕ β) ◦C3 CSL3(C)(β)

〉
.

From this we get

C2E7(C)(E) =
〈
(γ ⊕ γ) · γ2, (β ⊕ β) · β, CSL6(C)(β ⊕ β, γ ⊕ γ) ◦C3 CSL3(C)(β, γ)

〉
=

〈
(γ ⊕ γ) · γ2, (β ⊕ β) · β, CSL6(C)(β ⊕ β, γ ⊕ γ) ◦C3 Z(SL3(C))

〉
.

Here CSL6(C)(β ⊕ β, γ ⊕ γ) = Δ2,3({A ∈ GL2(C)|(detA)3 = 1}) is generated
by Δ2,3(ωI2) = ωI6 and Δ2,3(SL2(C)). From this we get

C2E7(C)(E) = 〈E, Δ2,3(SL2(C))〉 ∼= E × SL2(C).

Since the preimage of E in SL6(C) × SL3(C) is non-abelian it follows from
Theorem 8.2(5) that E is nontoral in SL6(C)◦C3 SL3(C). Now Theorem 8.2(1)
shows that E is nontoral in 2E7(C) (alternatively one could also just observe
that C2E7(C)(E) has rank less than 7). It follows that E is conjugate to E3

2E7
in

2E7(C), and so C2E7(C)(E3
2E7

) = E3
2E7

× SL2(C). Hence Z(C2E7(C)(E3
2E7

)) =
E3

2E7
× Z(2E7(C)) since the center of 2E7(C) has order 2.
To compute the centralizer of E4

2E7
we note that C2E7(C)(z) has centralizer

type E6T1, and that the E6-component corresponds to the subgroup 3E6(C) ⊆
2E7(C). A computation shows that the T1-component is given by T1 =
{h(t2, t3, t4, t6, t5, t4, t3)|t ∈ C×}, and thus we get C2E7(C)(z) = 3E6(C) ◦〈z〉
T1. Theorem 8.8 now shows that C2E7(C)(E4

2E7
) = C3E6(C)(E4

2E7
) ◦〈z〉 T1 =

E4
2E7

◦〈z〉 T1.

9. Calculation of the obstruction groups

In this section we show that the existence and uniqueness obstructions to
lifting our diagram in the homotopy category to a diagram in the category of
spaces identically vanish. More precisely, we will show the following theorem.

Theorem 9.1 (Obstruction Vanishing Theorem). Suppose that X is any
of the following p-compact groups (F4)3̂, (E6)3̂, (E7)3̂, (E8)3̂, (E8)5̂ or PU(n)p̂

(any p), or suppose that p is odd and X is connected with H∗(BX;Zp) a poly-
nomial algebra. Then

lim
A(X)

iπj(BZ(CX(−))) = 0, for all i, j.

(See Theorem 12.2 for an explanation of why exactly these p-compact
groups need attention.) Note that for the purpose of Theorem 1.4 we only
need to calculate the above groups for j = 1, 2 and i = j or i = j + 1.

We prove the theorem by filtering the functor Fj = πj(BZ(CX(−))), and
showing that all filtration quotients vanish (with a small twist for PU(2)2̂).
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First we show that the quotient functor of Fj concentrated on the toral
elementary abelian p-subgroups has vanishing limits, using a Mackey func-
tor argument which first appeared in [55]. This takes care of the case where
H∗(BX;Zp) is a polynomial algebra since in this case all subgroups are toral
by Lemma 10.8. For the exceptional compact connected Lie groups we then
continue and filter the nontoral part of the functor such that the filtration
quotients are concentrated on only one nontoral subgroup, and use a formula
of Oliver [113] to show that the higher limits of these subquotient functors
all vanish. For PU(n) we use a variant of this technique by suitably grouping
the nontoral subgroups and using a combination of Oliver’s formula and the
Mackey functor argument we used for the toral part. We divide the proof up
in three subsections corresponding to the toral part, the nontoral part for the
exceptional groups, and the nontoral part for the projective unitary groups.

The notation StG denotes the Steinberg module over Zp of a finite group
of Lie type G of characteristic p, defined as the top homology group with
Zp coefficients of the Tits building of G (see e.g., [78]). In the special case
G = GL(E) we also write St(E) for the Steinberg module.

9.1. The toral part. Define a quotient functor F tor
j of Fj by setting

F tor
j (V ) = Fj(V ) if V is toral and F tor

j (V ) = 0 if V is nontoral. Let Ator(X)
denote the full subcategory of A(X) consisting of toral subgroups. From the
chain complex defining higher limits (see e.g., [68, App. II, 3.3]), it follows that

lim
A(X)

∗F tor
j

∼= lim
Ator(X)

∗F tor
j .

In order to use a Mackey functor argument on the right-hand side we need to
see that the functor F tor

j is indeed a Mackey functor. This is accomplished by
the following lemma, whose assumption are always satisfied for p odd by [57,
Thm. 7.5].

Lemma 9.2. Fix a connected p-compact group X and let T̆ be the dis-
crete approximation to a maximal torus T in X. Let V ⊆ T̆ be a nontrivial
elementary abelian p-subgroup.

If T̆WCX (V )1 is a discrete approximation to Z(CX(V )1) then T̆WCX (V ) is a
discrete approximation to Z(CX(V )). In particular in this case π1(BZ(CX(V )))
= H1(WCX(V );LX) and π2(BZ(CX(V ))) = (LX)WCX (V ) , where LX = π1(T ).

Remark 9.3. For a connected p-compact group X and p odd, the fixed
point set T̆WX always equals a discrete approximation to the center of X by
[57, Thm. 7.5]. If X is the Fp-completion of a compact connected Lie group
then this is likewise the case for p = 2 unless X contains a direct factor
isomorphic to SO(2n + 1)2̂, by [92, Thm. 1.6].
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Proof of Lemma 9.2. Set Y = CX(V ) and π = π0(Y ) for short. Since V is
toral, T̆ is in a canonical way a discrete approximation to a maximal torus in
Y .

First observe that the center of Y has discrete approximation in T̆ . Indeed,
otherwise there would by [57, Thm. 6.4] exist a central homomorphism f :
Z/pn → N̆p,Y with image not in T̆ , which would produce a homomorphism
f ′ : Z/pn → N̆p,X commuting with T̆ but not in T̆ , which contradicts the fact
that T is self-centralizing in X by [56, Prop. 9.1], since X is connected.

Suppose that T̆WCX (V )1 is a discrete approximation to Z(Y1) and set C =
T̆WCX (V ) . We want to show that C is central in Y . Let f : BC → BY1 be the
natural inclusion. We have an obvious diagram with horizontal maps fibrations

map(BC, BY1){f} ��

��

map(BC, BY )f
��

��

map(BC, Bπ)0

BY1
�� BY �� Bπ

where {f} denotes the set of homotopy classes of maps BC → BY1 generated
by f under the π-action on BY1. If we can show that {f} consists of just f

then it follows from the five-lemma that the middle vertical map is a homotopy
equivalence, since our assumption implies that C is central in Y1.

To see that the action is trivial consider the following diagram:

BNY1

g̃ ��

��

BNY1

��
BC

f ��

f̃
�����������
BY1

g �� BY1

where f̃ is the natural inclusion of BC in BNY1 , g is an element in Aut(BY1)
induced by an element in π and g̃ is the corresponding self-map of BNY1 defined
via Lemma 4.1. However by the definition of C, the composite g̃f̃ is homotopic
to f̃ for all g induced by an element in π, so f is homotopic to gf as well. Hence
we have shown that C is central in Y and since the center of Y has discrete
approximation in T̆ it is obviously the largest subgroup with this property. So
C is a discrete approximation to ZY as wanted.

The last statement about the homotopy groups now follows easily from
the long exact sequence in group cohomology.

Remark 9.4. The above lemma should be compared to Lemma 6.6 and
Remark 6.7 which have slightly different assumptions and conclusions.

We are now ready for the proposition, essentially contained in [55, §8],
which will take care of the toral part. See [57, Def. 7.3] and Remark 9.6 for the
definition of the singular set σ(s) of a reflection s, and note that the assumption
is always satisfied for p odd by [57, Thm. 7.5] and the definition of σ(s).
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Proposition 9.5. Let X be a connected p-compact group, and assume
that for each nontrivial toral elementary abelian p-subgroup V ∈ A(X) the
fixed point set T̆WCX (V )1 is a discrete approximation to Z(CX(V )1). Then

lim
A(X)

iF tor
j =

{
H2−j(WX ;LX) if i = 0 and j = 1, 2,
0 otherwise

where H2−j(WX ;LX) ∼= πj(BZ(X)) if T̆W is a discrete approximation to
Z(X). In particular if for all reflections s ∈ WX the singular set σ(s) equals
the fixed point set T̆ 〈s〉 then the assumption above is satisfied and

lim
A(X)

iF tor
j =

{
πj(BZ(X)) if i = 0,
0 otherwise.

Proof. The first part of the proof consists of a translation of [55, §8] into the
current notation. By [58, Prop. 3.4] all morphisms in A(X) between toral sub-
groups V → X and V ′ → X are induced by inclusions and action by elements
of WX . Hence we can identify Ator(X), up to equivalence of categories with
a category which has objects the nontrivial subgroups of pT̆ ∼= (Z/p)r (where
r is the rank of T ) and morphisms the homomorphisms between subgroups
induced by inclusions and action by WX . Also, by [57, Thm. 7.6(1)], WCX(V )

consists of the elements in WX which pointwise fix V . Hence Lemma 9.2 shows
that the functor F tor

2 on Ator(X) is isomorphic to the functor α0
Γ,M on AΓ from

[55, §8], where Γ = WX and M = LX . Likewise F tor
1 is isomorphic to α1

Γ,M .
(Note that there is the difference in formulation from [55, §8] where M is a
FpΓ-module rather than an ZpΓ-module, but the proof is identical.) Therefore
[55, §8] (which is a Mackey functor argument, which can also be deduced from
[54] or [81]) implies the first part of the lemma about obstruction groups.

To see the last part about the singular set recall that for an abelian sub-
group A ⊆ T̆ , ⋂

reflections s ∈ WX
such that A ⊆ σ(s)

σ(s)

is a discrete approximation to Z(CX(A)1) by [57, Thms. 7.5 and 7.6]. Hence
if σ(s) = T̆ 〈s〉 for all reflections s ∈ WX , then the assumption of the first part
is obviously satisfied.

Remark 9.6. Let G be a compact connected Lie group with maximal torus
T , and let α be a root of G relative to T with corresponding reflection sα. In
this case the singular set σ(sα) is just the discrete approximation of the kernel
Uα of α on T . To see this note that by [20, §4, no. 5] the reflection sα lifts to
an element nα (denoted by ν(θ) in [20]) which satisfies n2

α = exp(α∨/2); the
statement now follows; cf. [92, Pf. of Prop. 3.1(ii)].
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Explicit calculations [92, Prop. 3.1(ii)] (see also [62], [83, Prop. 3.2(vi)],
and [116, §4]) show that for a compact connected Lie group G, σ(s) in fact al-
ways equals T̆ 〈s〉 except when G contains a direct factor isomorphic to
SO(2n+1), p = 2 and s is a reflection corresponding to a short root. Combin-
ing this with Proposition 9.5, now gives the following calculation of the toral
part of the obstruction groups, whose full strength at p = 2 we will however
not use here.

Corollary 9.7. Let G be a compact connected Lie group and p a prime.
Set X = Gp̂ and assume that G contains no direct factor isomorphic to
SO(2n + 1) if p = 2. Then

lim
A(X)

iF tor
j =

{
πj(BZ(X)) if i = 0,
0 otherwise.

Proof of Theorem 9.1 when H∗(BX;Zp) is polynomial, p odd. If
H∗(BX;Zp) is a polynomial algebra concentrated in even degrees then all
elementary abelian p-subgroups are toral by Lemma 10.8, so F = F tor. Since
p is odd the assumption of Proposition 9.5 holds and Theorem 9.1 follows.

9.2. The nontoral part for the exceptional groups. In this subsection
we prove Theorem 9.1 when X is the Fp-completion of one of the exceptional
groups and p is odd. Let FE

j denote the subquotient functor of Fj concentrated
on a nontoral elementary abelian p-subgroup E. By Oliver’s formula [113,
Prop. 4]

lim
A(X)

iFE
j =

{
HomW (St(E), Fj(E)) if i = rkE − 1,
0 otherwise.

We now embark on proving some lemmas which will be used to show that
these obstructions groups identically vanish. (For Theorem 1.4 we actually
only need this when E has rank at most four.)

Since Z(CX(E)) is the Fp-completion of an abelian compact Lie group
(cf. [57, Thm. 1.1]), Fj = 0 unless j = 1, 2. The following lemma reduces
the problem of showing that the obstruction groups vanish to showing that
HomW (E)(St(E), pZ̆(CX(E))) = 0, where pZ̆(CX(E)) is the finite group of
elements of order p in the discrete approximation Z̆(CX(E)).

Lemma 9.8. Let A be an abelian compact Lie group, and let pA and Ap

denote the kernel and the image of the pth power map on A (with multiplicative
notation). Let P be a finitely generated projective ZpW -module for a finite
group W , and assume that A has a module action of W . Then HomW (P, pA)
= 0 if and only if HomW (P, π1(A) ⊗ Zp) = HomW (P, π0(A) ⊗ Zp) = 0.
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Proof. The long exact sequence of homotopy groups associated to the
exact sequence of groups 1 → Ap → A → A/Ap → 1 shows that the inclusion
Ap ↪→ A induces an isomorphism π1(Ap)

∼=−→ π1(A) and an injection π0(Ap) ↪→
π0(A).

Hence the exact sequence 1 → pA → A
p−→Ap → 1 produces the following

diagram, where the row, as well as the sequence going through πi(A) instead
of πi(Ap), is exact:

π1(A)
p ��

p

��









π1(Ap)

∼=
��

�� π0(pA) �� π0(A)
p ��

p

��









π0(Ap)� �

��
π1(A) π0(A).

Apply the exact functor HomW (P,− ⊗ Zp) to this diagram. The lemma now
follows from Nakayama’s lemma, since π0(A) is finite and π1(A) is finitely
generated.

The following elementary observation is so useful that it is worth stating
explicitly.

Lemma 9.9. Suppose that p is odd and that W is a subgroup of GL(E),
with −1 ∈ W . Then HomW (St(E), E) = 0.

Proof. Set Z = 〈−1〉. Since Z acts trivially on St(E) we have

HomW (St(E), E) ⊆ HomZ(St(E), E) = HomZ(St(E), EZ) = 0.

We also need the following lemma, which follows from a theorem of S. D.
Smith [128].

Lemma 9.10. Let G be a finite group of Lie type of characteristic p, and
let P be a parabolic subgroup of G with corresponding unipotent radical U and
Levi subgroup L ∼= P/U . Suppose that W is a subgroup with U ⊆ W ⊆ P , and
let M be an FpW -module.

(1) If U acts trivially on M , then HomW (StG, M) = HomW/U (StL, M).

(2) If StL ⊗Fp is irreducible as an FpW/U -module and if M has a finite
filtration as an FpW -module, with filtration quotients of Fp-dimension
strictly less than rankZp

StL then HomW (StG, M) = 0.

Proof. Since U acts trivially on M ,

HomW (StG, M) = HomW/U ((StG)U , M)

where (−)U denotes coinvariants. But since the Steinberg module is self-dual,
as is clear from its definition as a homology module, (StG)U

∼= (StG)U . Now
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Smith’s theorem [128] says that (StG)U ∼= StL, which proves the first part of
the lemma.

For the second part, we can assume that the filtration quotients are sim-
ple FpW -modules. Since U ⊆ Op(W ), U acts trivially on any irreducible
FpW -module, by elementary representation theory. Hence the second part
follows from the first together with a dimension consideration.

The above lemma is often used in conjunction with the following obvious
observation.

Lemma 9.11. Let E be a nontoral elementary abelian p-subgroup of a
compact Lie group G. Then the Fp-dimension of pZCG(E) is at most equal to
the maximal dimension of a nontoral elementary abelian p-subgroup of G, and
E is a W (E)-submodule of pZCG(E).

The last lemma we shall need is a concrete calculation. First we need the
following.

Lemma 9.12. Let Γ be a subgroup of GLn(Fp) and let M be a Z(p)Γ-
module. Then

HomZ(p)Γ(StGLn(Fp), M) ∼=
∑

I⊆{1,... ,n−1}
(−1)|I|

⊕
g∈Γ\GLn(Fp)/PI

MΓ∩gPIg−1
,

where PI is the parabolic subgroup of GLn(Fp) corresponding to the subset I.

Proof. This follows easily from the fact that StGLn(Fp) is isomorphic

to
∑

I⊆{1,... ,n−1}(−1)|I|1GLn(Fp)
PI

as Z(p) GLn(Fp)-modules [87, Cor. 1.2] com-
bined with Frobenius reciprocity and the double coset formula (see e.g. [9,
Prop. 3.3.1(ii) and Cor. 3.3.5(iv)]).

Lemma 9.13. Let E = (F3)4 and let W = SL3(F3) × 1 ⊆ GL(E). Then
HomW (St(E), E) = 0.

Proof. This is most easily checked by implementing the formula from
Lemma 9.12 on a computer, e.g., using Magma [16]. However in this case the
calculation is sufficiently small to be redone by hand with some effort. Alter-
natively one can use some ad hoc Lie theoretic arguments. (We are grateful to
A. Kleschev and H. H. Andersen for sketching a couple of such arguments to
us—however, since these arguments are rather involved compared to the size
of the calculation at hand we will not provide them here.)

Before we start going through the exceptional groups, we need to introduce
a bit of notation. For an Fp-vector space E = 〈e1, . . . , en〉, we let Eij... denote
the subspace generated by ei, ej , . . . . Likewise we let Pij... (resp. Uij...) denote
the parabolic subgroup (resp. its unipotent radical) of GL(E) corresponding to
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the simple roots αi, αj , . . . in the standard notation. For example in GL3(Fp),
U2 is the subgroup ⎡⎣1 ∗ ∗

0 1 0
0 0 1

⎤⎦ .

Proof of Theorem 9.1 when X = Gp̂, (G, p) = (E8, 5), (F4, 3), (E6, 3),
(E7, 3), or (E8, 3). By Lemma 9.8 it is enough to see that

HomW (E)(St(E), pZCG(E)) = 0

for all nontoral elementary abelian p-subgroups E of G. We proceed case-by-
case.

(E8, 5) and (F4, 3): By [70, Lem. 10.3 and Thm. 7.4] G has, up to con-
jugacy, exactly one nontoral elementary abelian p-subgroup E, which has
rank 3, Weyl group W = SL(E), and (since E is necessarily maximal) E =
pZCG(E). Since St(E) is an irreducible SL(E)-module of dimension p3 we
have HomW (St(E), E) = 0.

(E7, 3): By Theorem 8.16 E7 has, up to conjugacy, two nontoral elemen-
tary abelian 3-subgroups E3

2E7
and E4

2E7
of rank 3 and 4 respectively. Since

W (E3
2E7

) = SL3(F3) a dimension consideration as above gives

HomW (E3
2E7

)(St(E3
2E7

), 3ZCG(E3
2E7

)) = 0.

For E4
2E7

(whose Weyl group is listed in Theorem 8.16) we use Lemma 9.10(2),
taking U = U23, which immediately gives that also

HomW (E4
2E7

)(St(E4
2E7

), 3ZCG(E4
2E7

)) = 0.

(E6, 3): By Theorem 8.10 E6 has, up to conjugacy, eight nontoral elemen-
tary abelian 3-subgroups all of rank at most 4. For E = E2b

E6
, E3b

E6
, E3c

E6
and E4a

E6

we have HomW (St(E), 3ZCG(E)) = 0 by Lemma 9.10(2) taking U = 1, 1, U2,
and U1 respectively (note that we do not need to know 3ZCG(E) exactly since
the rough bound from Lemma 9.11 is sufficient.) For E = E2a

E6
, E3a

E6
, E3d

E6
, and

E4b
E6

we have −1 ∈ W (E) and E = 3ZCG(E) (a fact we did not need above)
by Theorem 8.10, so Lemma 9.9 shows that HomW (St(E), 3ZCG(E)) = 0.

(E8, 3): By Theorem 8.13 E8 has seven conjugacy classes of nontoral ele-
mentary abelian 3-subgroups. If E = E3a

E8
, E3b

E8
, E4b

E8
, or E4c

E8
then

HomW (St(E), 3ZCG(E)) = 0

by Lemma 9.10(2) when U = U1, 1, U2, and U23 respectively (note again that
we do not need to know 3ZCG(E) exactly). Now consider E = E4a

E8
. By The-
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orem 8.13 we have 3ZCG(E) = E, and by Lemma 9.13 HomW (E)(St(E), E)
= 0. Next, suppose that E = E5a

E8
. Then E has the W -invariant subspace

E1 and U = U234 acts trivially on E1 and E/E1. By Lemma 9.10(1) we
get HomW (St(E), E1) = HomW/U (St(E1) ⊗ St(E2345), E1). Since W/U con-
tains GL1(F3) × 1 and HomGL1(F3)(St(E1), E1) = 0 by Lemma 9.9 we get
HomW (St(E), E1) = 0. Lemma 9.10(1) also shows that HomW (St(E), E/E1) =
HomW/U (St(E1)⊗ St(E2345), E/E1), and since W/U contains 1× SL3(F3)× 1
we get HomW (St(E), E/E1) = 0 by Lemma 9.13. Thus HomW (St(E), E) = 0
as desired. Finally, let E = E5b

E8
. The subspace E1234 is W -invariant and

U = U123 acts trivially on E1234 and E/E1234. By Lemma 9.10(1) we have
HomW (St(E), M) = HomW/U (St(E1234) ⊗ St(E5), M) for M = E1234 and
M = E/E1234 and since W/U contains Sp4(F3) × 1 it suffices to prove that
HomSp4(F3)(St(E1234), E1234) = 0 and HomSp4(F3)(St(E1234),F3) = 0. Since
−1 ∈ Sp4(F3), the first claim follows from Lemma 9.9. The second claim
follows from [5] or from a direct computer calculation based on Lemma 9.12.
Thus HomW (St(E), E) = 0 in this case as well. This exhausts the list.

9.3. The nontoral part for the projective unitary groups. We now embark
on proving Theorem 9.1 for X = PU(n)p̂. We will throughout this subsec-
tion use the notation for elementary abelian p-subgroups of X introduced in
Section 8.2. We first treat the toral case directly (see also Corollary 9.7).

Lemma 9.14. Let X = PU(n)p̂. Then

lim
A(X)

iF tor
j =

{
Z/2 if n = p = 2, i = 0 and j = 1,
0 otherwise.

Proof. If n �= 2 then it is immediate to check that T̆ 〈s〉 is p-divisible for
an arbitrary reflection s ∈ WX , and so σ(s) = T̆ 〈s〉 by the definition of σ(s).
Hence if n �= 2 or p odd the lemma follows by Proposition 9.5.

Now suppose that X = PU(2)2̂. Since for the nontrivial elementary
abelian 2-subgroup V ⊆ T̆ we have WX(V )1 = 1 and CX(V )1 ∼= T , the first
part of Proposition 9.5 still applies to finish the proof also in this case.

We next record the following general lemma, which is obvious from the
Künneth formula.

Lemma 9.15. Suppose D1 and D2 are two categories with only finitely
many morphisms. Let CDi be ‘the cone on Di’, i.e., the category constructed
from Di by adding an initial object e to Di, and let D1 	 D2 = CD1 ×CD2 −
{(e, e)}, ‘the join of D1 and D2’ (see [119, §1]). If Fi : CDi → Zp-mod,
i = 1, 2 are functors then

C∗(CD1 × CD2,D1 	 D2;F1 ⊗ F2) ∼= C∗(CD1,D1;F1) ⊗ C∗(CD2,D2;F2).
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In particular if one of the chain complexes has torsion-free homology or if
everything is defined over Fp then

H∗(CD1 × CD2,D1 	 D2;F1 ⊗ F2) ∼= H∗(CD1,D1;F1) ⊗ H∗(CD2,D2;F2).

The following result gives that certain filtration quotients have (almost)
vanishing cohomology.

Theorem 9.16. Set X = PU(n)p̂ and let r > 0 with pr |n. Let F r
j :

A(X)→Zp-mod denote the functor on objects given by F r
j (E)=πj(BZCX(E))

if E is of the form Γ̄r × Ā (in the notation of Section 8.2) and zero otherwise.
Then

lim
A(X)

iF r
j =

{
Z/2 if n = p = 2 and r = i = j = 1,
0 otherwise.

Proof. Define a functor F̃ r
j by F̃ r

j (E) = πj(BZCPU(k)(Ā)p̂), with k = n/pr,
if E = Γ̄r × Ā for a fixed r and zero otherwise. This is a subfunctor of F r

j

via the identification PU(k) ∼= CPU(n)(Γ̄r)1. Set ˜̃F
r

j = F r
j /F̃ r

j and observe that

this is the trivial functor unless j = 1 where it is given by ˜̃F
r

j(E) = Γ̄r if E is
of the form Γ̄r × Ā and zero otherwise. Consider the category

D = Ae(X)⊆Γ̄r
× Ae(PU(k)p̂) − {(e, e)},

where the superscript e means that we do not exclude the trivial subgroup.
We have a natural inclusion of categories ι : D → A(X) on objects given by
(V, Ā) �→ V × Ā.

Step 1. We claim that this map induces an isomorphism

lim
A(X)

∗F r
j → lim

D

∗F r
j .

By filtering the functor and using Nakayama’s lemma it is enough to show this
for F̃ r

j ⊗ Fp and ˜̃F
r

j ⊗ Fp. We can furthermore replace these functors by the
subquotient functors which are only concentrated on one subgroup Γ̄r × Ā.

Consider first such a subquotient of F̃ r
j ⊗ Fp. In this case the formula of

Oliver [113, Prop. 4] together with Lemma 9.15 shows that the higher limits on
both sides are only nonzero in a single degree, where the map identifies with
the restriction map

HomWX(Γ̄r×Ā)(St(Γ̄r × Ā), πj(BZCPU(k)(Ā)) ⊗ Fp)

−→ HomSp(Γ̄r)×WPU(k)(Ā)(St(Γ̄r) ⊗ St(Ā), πj(BZCPU(k)(Ā)) ⊗ Fp).

Let U be the subgroup of elements in WPU(n)(Γ̄r × Ā) which act as the iden-
tity on Ā and (Γ̄r × Ā)/Ā. Then U acts trivially on πj(BZCPU(k)(Ā)) ⊗ Fp.
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Furthermore, by the theorem of Smith [128] (and self-duality of the Steinberg
module) St(Γ̄r × Ā)U

∼= St(Γ̄r × Ā)U ∼= St(Γ̄r) ⊗ St(Ā), where (−)U and (−)U

denote coinvariants and invariants respectively. Hence this map is an isomor-
phism. The case of a subquotient of ˜̃F

r

j ⊗ Fp is completely analogous. This
shows the isomorphism.

Step 2. We now proceed to calculate the higher limits over D, which we
do by calculating the limits of F̃ r

j and ˜̃F
r

j . We first consider ˜̃F
r

j . We have

already remarked that only ˜̃F
r

1 �= 0. Furthermore if k �= 1 then

H∗(CAtor(PU(k)p̂),Ator(PU(k)p̂);Zp) = 0

by [55, §8] so lim∗
D

˜̃F
r

1 = 0 by Lemma 9.15. If k = 1 we get limi
D

˜̃F
r

1
∼=

HomSp(Γ̄r)(St(Γ̄r), Γ̄r) if i = 2r − 1 and zero otherwise, by [113, Prop. 4].
Now consider F̃ r

j . By Lemma 9.15

lim
D

iF̃ r
j = HomSp(Γ̄r)(St(Γ̄r),Zp) ⊗ lim

Ator(PU(k)p̂)

i−2rπj(BZCPU(k)p̂
(Ā)).

By Lemma 9.14 limi−2r
Ator(PU(k)p̂) πj(BZCPU(k)p̂

(Ā)) = 0 unless p = k = 2, j = 1
and i − 2r = 1 where we get lim1

Ator(PU(2)2̂)
πj(BZCPU(2)2̂(Ā)) = Z/2. By an

argument of H. H. Andersen and C. Stroppel [5] we have

HomSp(Γ̄r)(St(Γ̄r),Zp) = 0

for all r and p. To sum up we get

lim
A(X)

iF r
j
∼= lim

D

i ˜̃F
r

j
∼= HomSp(Γ̄r)(St(Γ̄r), Γ̄r)

if j = k = 1 and i = 2r − 1 and zero otherwise. However the same argument
of H. H. Andersen and C. Stroppel [5] shows that

HomSp(Γ̄r)(St(Γ̄r), Γ̄r) = 0

unless r = 1 and p = 2 where it equals Z/2. (Note that this is obvious if p is
odd by Lemma 9.9.) This shows the wanted formula.

Remark 9.17. Note that slightly nontrivial statements from [5] are only
used above for p = 2 and furthermore become trivial when r = 1, where
Sp(Γ̄1) ∼= SL(Γ̄1), and this is in fact the only case which involves obstruction
groups in the range needed for the proof of (the p = 2 version of) Theorem 1.4.

Remark 9.18. It is in fact possible to give a short proof of Smith’s theorem
in the special case used above, from the geometric definition of the Steinberg
module St(E) via flags.
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Proof of Theorem 9.1 for X = PU(n)p̂. Theorem 9.16 and Lemma 9.14
directly show the conclusion unless n = 2 and p = 2, so assume this is the case.
From the definition it follows that lim0

A(X) F1 = 0. Now, consider the exact
sequence of functors 0 → F 1

1 → F1 → F tor
1 → 0. The long exact sequence of

higher limits starts out as

0 → 0 → 0 → lim
A(X)

0F tor
1 → lim

A(X)

1F 1
1 → lim

A(X)

1F1 → 0 → · · · .

So, since lim0
A(X) F tor

1
∼= Z/2 ∼= lim1

A(X) F 1
1 , we get limi

A(X) F1 = 0 for i > 0 as
well. This concludes the proof of the last case of Theorem 9.1.

10. Consequences of the main theorem

In this section we prove the theorems listed in the introduction which are
consequences of the main theorem.

Proof of Theorem 1.2. The theorem follows directly from Theorem 1.1
together with the classification of finite Zp-reflection groups (Theorem 11.1),
since by the proof of Theorem 1.1 (and Theorem 12.1) all exotic
p-compact groups have torsion-free Zp-cohomology.

Proof of Theorem 1.5. By [100, Thm. 1.4] X is isomorphic to a
p-compact group of the form (X ′ × T ′′)/A, where X ′ is a simply connected
p-compact group, T ′′ is a p-compact torus, and A is a finite central subgroup
of the product. Hence we have X/T � X ′/T ′, where T and T ′ are maximal
tori of X and X ′ respectively. So we can without restriction assume that X is
simply connected.

For compact connected Lie groups the statement of this theorem is the
celebrated result of Bott [17, Thm. A]. Hence by Theorem 1.2 it is enough
to prove the theorem when X is an exotic p-compact group. In that case
H∗(BX;Zp) is a polynomial algebra with generators in even degrees, and the
number of generators equals the rank of X (by the proof of Theorem 1.4).
The same is true over Fp, and since H∗(BT ;Fp) is finitely generated over
H∗(BX;Fp) by [56, Prop. 9.11], H∗(BX;Fp) → H∗(BT ;Fp) is injective by a
Krull dimension consideration. But since they are both polynomial algebras
it follows by e.g., [60, §11] that H∗(BT ;Fp) is in fact free over H∗(BX;Fp).
Hence the Eilenberg-Moore spectral sequence of the fibration X/T → BT →
BX collapses and

H∗(X/T ;Fp) ∼= Fp ⊗H∗(BX;Fp) H∗(BT ;Fp).

In particular H∗(X/T ;Fp) is concentrated in even degrees so the rank equals
the Euler characteristic χ(X/T ) which again equals |WX | by [56, Prop. 9.5]. By
the long exact sequence in cohomology and Nakayama’s lemma, H∗(X/T ;Zp)
is a free Zp-module of rank |WX | as wanted.
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Remark 10.1. Let H∗
Qp

(·) = H∗(·;Zp)⊗Q. For any connected p-compact
group X the natural map X/T → BT induces an isomorphism

H∗
Qp

(X/T ) ∼= Qp ⊗H∗
Qp

(BX) H∗
Qp

(BT )

since the Eilenberg-Moore spectral sequence of the fibration X/T → BT →
BX collapses by [56, Prop. 9.7] and [60, §11]. It then follows from [32] that
the natural WX -action on H∗(X/T ;Zp) ⊗ Q = H∗

Qp
(X/T ) is isomorphic to

the regular representation of WX when the grading is ignored. Just as for
compact connected Lie groups this is not true over Zp when p | |WX | (cf. e.g.
[127, p. 221]).

Proof of Theorem 1.6. By Theorem 1.2 it is enough to prove the statement
in the case where X is the Fp-completion of a compact connected Lie group and
the case where X is an exotic p-compact group separately. The case where X is
the Fp-completion of a compact connected Lie group of course follows directly
from the classical Peter-Weyl theorem (cf. e.g. [23, Thm. III.4.1]), and so we
can concentrate on the case where X is exotic. If p does not divide the order of
the Weyl group the statement is also obvious: The inclusion T̆ → U(r) induces
a map T̆ � W → U(r|W |) whose Fp-completion is a monomorphism. The
remaining cases have been shown to have faithful representations by Castellana:
If (W, L) is in family 2a then this is carried out in [30, Thm. E] and if (W, L)
is one of the pairs (G12, p = 3), (G29, p = 5), (G31, p = 5), or (G34, p = 7) this
is carried out in [29].

We now turn to Theorem 1.7 which in fact follows easily from the clas-
sification. But let us first state the part which one can see by elementary
means. (See also [100, Cor. 5.6] and [60, Lem. 9.3].) For a space Y , define
H

Zp
n (Y ) = limk Hn(Y ;Z/pk).

Proposition 10.2 (cf. [58, Lem. 6.11] and [60, Lem. 9.3]). Let X be a
connected p-compact group. Then the natural composite map

(LX)W
∼= H0(W ;HZp

2 (BT )) → H
Zp

2 (BX) ∼= π1(X)

induced by the inclusion T → X is surjective with finite kernel. In particular
if (LX)W is torsion-free then it is an isomorphism.

Proof. By [100, Thm. 1.4] X is isomorphic to a p-compact group of the
form (X ′ × T ′′)/A, where X ′ is a simply connected p-compact group, T ′′ is
a p-compact torus, and A is a finite central subgroup of the product. Since
the center of a connected p-compact group is contained in a maximal torus
by [57, Thm. 7.5] we can assume that A is a subgroup of T ′ × T ′′, where T ′

is a maximal torus for X ′, and hence (T ′ × T ′′)/A is a maximal torus for X.



THE CLASSIFICATION OF p-COMPACT GROUPS FOR p ODD 179

Therefore we get the following diagram of fibration sequences:

BA �� BT ′ × BT ′′

��

�� B((T ′ × T ′′)/A)

��
BA �� BX ′ × BT ′′ �� BX.

The long exact sequence of homotopy groups and the five-lemma now show
that π2(B((T ×T ′′)/A)) → π2(BX) is surjective which is the first statement in
the proposition. To see that the kernel is finite note that by [56, Thm. 9.7(iii)]
H2

Qp
(BX) → H2

Qp
(BT )W is an isomorphism, which by dualizing to homology

shows the claim.
That we get an isomorphism when (LX)W is torsion-free is obvious from

the general statement.

Remark 10.3. One easily shows that the image of the differential d3 :
H3(W ;Zp) → H0(W ;HZp

2 (BT )) in the Serre spectral sequence for the fibra-
tion BT → BNX → BW is always in the kernel of the surjective map of
Proposition 10.2. By standard group cohomology (cf. [31]) the image of this
differential identifies with the image of the map given by capping with the k-
invariant γ ∈ H3(W ;HZp

2 (BT )) of the extension. If one knew that the double
coset formula held for p-compact groups (more precisely that H∗(BN ;Zp)

tr∗−→
H∗(BX;Zp)

res−→ H∗(BT ;Zp) is the restriction map, cf. [64, Ex. VI.4]) then it
would easily follow that this image is in fact equal to the kernel of the map in
Proposition 10.2, which would give a conceptual proof of the formula for the
fundamental group. Note that by a result of Tits [135] (see also [63], [103], [6])
the extension class γ is always of order 2 for compact connected Lie groups.
The next proposition gives the complete answer in the Lie group case.

Proposition 10.4. Let G be a compact connected Lie group. Then the
map π1(T )W → π1(G) is surjective with kernel (Z/2)s, where s is the number
of direct factors of G isomorphic to a symplectic group Sp(n), n ≥ 1.

Proof. That the map is surjective follows as in the p-compact case, so we
just have to identify the kernel. By [92, Thm. 1.6], for any compact connected
Lie group G, TW = Z(G) ⊕ (Z/2)s, where s is the number of direct factors of
G isomorphic to a special orthogonal group SO(2n + 1), n ≥ 1.

Consider the dual group G∨ of G obtained from the dual root diagram (see
[20, §4, no. 8]). Then G∨ has fundamental group isomorphic to Ẑ(G), where
the hat denotes the Poincaré dual group (see [20, §4, no. 9]). Likewise ̂(LG )̌W

is canonically isomorphic to TW . Since duality is an involution on the set of
compact connected Lie groups which sends direct factors to direct factors and
SO(2n + 1) to Sp(n) the claim about the fundamental group follows directly
from the dual result about the center.
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Proof of Theorem 1.7. By Theorem 11.1 (LX)WX
= 0 for all exotic

p-compact groups X, so Proposition 10.2 shows the formula in this case. By
Theorem 1.2 we are hence reduced to showing the formula for X of the form
Gp̂ for some compact connected Lie group G. In this case the formula is
well known and easy. Namely it follows from Remark 10.3 that the kernel of
(LX)WX

→ π1(X) is an elementary abelian 2-group. Alternatively the same
conclusion follows from the formula for the fundamental group of a compact
connected Lie group (see [20, §4, no. 6, Prop. 11] or [1, Thm. 5.47], where in
the notation of [1], (1 − ϕr)γr = 2γr).

We now start to prove Theorems 1.8 and 1.9.

Lemma 10.5. Suppose X and X ′ are two connected p-compact groups
with the same maximal torus normalizer N . Then all elementary abelian
p-subgroups of X are toral if and only if all elementary abelian p-subgroups
of X ′ are toral.

Furthermore, if for all toral elementary abelian p-subgroups V → X the
centralizer CX(V ) is connected then all elementary abelian p-subgroups in X

are toral.

Proof. Suppose that X has a nontoral elementary abelian p-subgroup
V → X. We can assume that it is minimal, in the sense that any elementary
abelian p-subgroup of smaller rank is toral. Write V = V ′ ⊕ V ′′, where V ′ has
rank one. We can assume that V → X factors through N (indeed through Np

by [57, Prop. 2.14]) and that the restriction to V ′′ factors through T (by the
minimality of V ).

We want to show that the resulting map V → N → X ′ is also nontoral,
by proving that the adjoint V ′ → CX′(V ′′) does not factor through the identity
component CX′(V ′′)1, which would be the case if V → X ′ was toral. In detail,
proceed as follows: Let N ′′ denote the maximal torus normalizer in CX(V ′′)1,
which by [57, Thm. 7.6(2)] can be described in terms of V ′′ and N . The adjoint
map V ′ → CN (V ′′) cannot factor through N ′′ since otherwise V ′ → CX(V ′′)
would factor through CX(V ′′)1 and hence be toral in CX(V ′′) by [56, Prop. 5.6],
contradicting that V is assumed to be nontoral. Note that N̆ ′′ is normal in
CN̆ (V ′′) and CN̆ (V ′′)/N̆ ′′ ∼= π0(CX(V ′′)) ∼= π0(CX′(V ′′)) (see [57, Rem. 2.11]).
Hence V ′ → π0(CX′(V ′′)) is nontrivial, so V → N → X ′ is nontoral in X ′ as
desired. The last part of the lemma is clear from the proof of the first part.

Remark 10.6. Despite the above lemma it is not a priori clear how to
determine whether a p-compact group X has the property that all elementary
abelian p-subgroups are toral just by looking at NX (but see [132, Thm. 2.28]
for the Lie group case). However, by a case-by-case analysis (Theorem 1.8),
this is the case if and only if all toral elementary abelian p-subgroups have
connected centralizers.
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Remark 10.7. Note that by Lannes’ theory [88, Thm. 0.4] the property
that every elementary abelian p-subgroup of X is toral is equivalent to
H∗(BX;Fp) → H∗(BT ;Fp)WX being an F -isomorphism. (See also Theo-
rem 12.1 and Remark 12.3.)

We state the following well known lemma for easy reference.

Lemma 10.8. Suppose that X is a connected p-compact group such that
H∗(BX;Zp) is a polynomial algebra with generators concentrated in even de-
grees. Then all elementary abelian p-subgroups of X are toral.

Proof. Let ν : E → X be an elementary abelian p-subgroup. Then
H∗(BCX(ν);Fp) is a polynomial algebra with generators concentrated in even
degrees by [61, Thm. 1.3] (note that Lannes’ T -functor preserves objects con-
centrated in even degrees by [88, Prop. 2.1.3]), so in particular CX(ν) is con-
nected. Lemma 10.5 now shows that all elementary abelian p-subgroups of X

are toral. (Alternatively one can use Remark 12.3.)

Proof of Theorem 1.8. First note that the implications (1) ⇒ (3) and
(1) ⇒ (2) follow from Theorem 12.1. The implication (3) ⇒ (4) follows easily
from Theorem 7.1. Namely, for all toral elementary abelian p-subgroups V →
X, Theorem 7.1 implies that WCX(V ) is a reflection group, so by [57, Thm. 7.6]
CX(V ) is connected, using the assumption that p is odd. But this implies that
all elementary abelian p-subgroups are toral by Lemma 10.5.

We now prove the implication (4) ⇒ (1). First note that by Theorem 11.1
and [58, Thm. 1.4] we can write X ∼= X ′ × X ′′ where X ′ has Weyl group
(WG, LG ⊗ Zp), for some compact connected Lie group G, and (WX′′ , LX′′)
is a product of exotic finite Zp-reflection groups. Furthermore, since the nor-
malizer of a connected p-compact group is split for p odd by [6, Thm. 1.2]
we have NGp̂

∼= NX′ . Since by Lemma 10.5 the property of having all el-
ementary abelian p-subgroups toral is a property which only depends on N
we conclude that G has this property as well. But this implies that G has
torsion-free Zp-cohomology by [11, Thm. B] (see also [132, Thm. 2.28]). In
the exotic case, we know by the proof of Theorem 1.4 that we can find a
p-compact group X̃ ′′ which has the same maximal torus normalizer as X ′′ and
which has torsion-free Zp-cohomology. Hence we have found a p-compact group
Gp̂×X̃ ′′ which has the same maximal torus normalizer as X and has torsion-free
Zp-cohomology. Since by Theorem 1.4 a p-compact group is determined by
its maximal torus normalizer we conclude that X in fact has torsion-free
Zp-cohomology. (Alternatively, one can appeal to Remark 10.11 which shows
that the property of having torsion-free Zp-cohomology only depends on N .)

Finally we prove the implication (2) ⇒ (1), where we seem to need the
full strength of Theorem 1.1. Note that by Theorem 1.2 we can write X ∼=
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Gp̂ × X ′ where G is a compact connected Lie group and X ′ has torsion-free
Zp-cohomology. Likewise if BGp̂ has torsion-free Zp-cohomology then Gp̂ has
torsion-free Zp-cohomology by [12, p. 93].

Remark 10.9. We make some remarks about Theorem 1.8. Since the im-
plication (1) ⇒ (4) follows from Lemma 10.8, we see that the implications
(1) ⇒ (3), (1) ⇒ (2), and (1) ⇒ (4) follow by general arguments. In the
case of compact connected Lie groups the implication (4) ⇒ (3) has a general
proof, by combining [132, Thm. 2.28] with [43], and likewise (2) ⇒ (1) has a
general proof by [12, p. 93]. We do not know non-case-by-case proofs of these
implications for p-compact groups. (The implication (2) ⇒ (1) is stated in
[101, Thm. 4.2] but the proof is incorrect.) The remaining implications do not
seem to have general proofs even for compact connected Lie groups. See also
[132, §4], Remark 10.11 and Theorem 12.1.

Proof of Theorem 1.9. By adjointness (cf. Construction 2.1) it is obvious
that (2) ⇒ (3) since a rank one elementary abelian p-subgroup of a connected
p-compact group is toral by [56, Prop. 5.6]. We prove the implications (3) ⇒
(2) ⇒ (1) by reducing them to theorems for Lie groups via the classification
of finite Zp-reflection groups. For the proof that (1) implies (2) or (3) we also
have to rely on Theorem 1.7.

By Theorem 11.1 and [58, Thm. 1.4] we can write X ∼= X ′ × X ′′ where
X ′ has Weyl group (WG, LG ⊗ Zp), for some compact connected Lie group G,
and the Weyl group (W ′′, L′′) of X ′′ is a product of exotic Zp-reflection groups.
Note that each of the properties (1), (2) and (3) holds for X if and only if it
holds for X ′ and X ′′.

By Theorem 11.1 and Proposition 10.2 we have π1(X ′′) = 0 so X ′′ satisfies
(1). By Theorems 12.2 and 7.1 combined with [57, Thm. 7.6], (2) also holds for
X ′′. So we can without restriction assume that X ∼= X ′. Furthermore we have
NGp̂

∼= NX , by [6, Thm. 1.2] since p is odd. By [57, Thm. 7.6], (2) is a property
which only depends on the maximal torus normalizer. By Lemma 10.5 and its
proof, this is also the case for (3). Since (2) ⇔ (3) for compact connected
Lie groups by [132, Thm. 2.27] we see that (2) and (3) are equivalent for
p-compact groups as well. If X satisfies (2), then so does Gp̂ by the above and
hence π1(Gp̂) is torsion-free by [132, Thm. 2.27]. Combining Propositions 10.4
and 10.2 then shows that π1(X) is torsion-free which proves (2) ⇒ (1). Finally
to see (1) ⇒ (2), observe that by Theorem 1.7, π1(X) = π1(Gp̂), which reduces
the statement to the Lie group case, where the statement again follows from
[132, Thm. 2.27].

Remark 10.10. It is not hard to see that the conjectural classification for
p = 2 implies that Theorem 1.9 and the implications (1) ⇔ (2) ⇔ (4) ⇒ (3)
in Theorem 1.8 also hold true for p = 2. However, in Theorem 1.8, (3) is
not equivalent to the other conditions when p = 2. To see this observe that
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Z2[LSO(2n+1) ⊗ Z2]WSO(2n+1) is a polynomial algebra (because this holds for
Sp(n), which has the same Weyl group) even though SO(2n+1) has 2-torsion.

Remark 10.11. Notbohm states his classification of connected p-compact
groups with Zp[L]W a polynomial algebra in the setup of spaces BX with poly-
nomial cohomology (cf. [108], [110]). This means that his uniqueness state-
ment is a priori only uniqueness among p-compact groups with torsion-free
Zp-cohomology (cf. Theorem 12.1). We will here briefly sketch a direct but
case-by-case way (following a line of argument given in a special case in [101,
Pf. of Thm. 5.3]) to show that for a p-compact group the property of having
torsion-free Zp-cohomology depends only on (W, L), which allows us to remove
the extra assumption.

Assume that X is a connected p-compact group, p odd, such that Zp[LX ]WX

is a polynomial algebra. We want to show that H∗(BX;Zp) is a polynomial
algebra as well. By Theorem 12.2(1), (LX)WX

is torsion-free, and so π1(X) =
(LX)WX

by Proposition 10.2. By the Serre and Eilenberg-Moore spectral se-
quences H∗(BX;Zp) is a polynomial algebra if and only if H∗(B(X〈1〉);Zp)
is a polynomial algebra. Furthermore by construction LX〈1〉 = SLX and by
Theorem 12.2(1) Zp[LX〈1〉]WX is also a polynomial algebra, so we can without
loss of generality assume that X is simply connected. By [58, Thm. 1.4 and
Rem. 1.6] we can furthermore assume that X is a simple p-compact group.

By [6, Thm. 1.2] N̆X = T̆X � WX . Using Theorems 11.1 and 12.2
we first show that the cohomology of N̆X is detected by elementary abelian
p-subgroups. More precisely we show that in each case there is a compact con-
nected Lie group H such that N̆X contains a subgroup isomorphic to N̆H p̂

with
index prime to p having the required property. When p � |W | we take H to be
a torus, and if (WX , LX) is in family 1 or family 2a we take H = SU(n) and
H = U(n) respectively. If (WX , LX) is one of the exotic Zp-reflection groups
(G12, p = 3), (G29, p = 5), (G31, p = 5), or (G34, p = 7) we take H = SU(p);
cf. the proof of Theorem 7.1. The only remaining cases are the ones where
(WX , LX) = (WG, LG ⊗ Zp) for one of the following pairs (G, p): (G2, p = 3),
(3E6, p = 5), (2E7, p = 5), (2E7, p = 7), and (E8, p = 7). In these cases we can
by [82, Prop. 6.11] take H = SU(3), SU(2)×C2 SU(6), SU(8)/C2, SU(8)/C2 and
SU(9)/C3 respectively. Since both N̆U(n)p̂

and N̆SU(n)p̂
have cohomology which

is detected by elementary abelian p-subgroups by [117, Prop. 3.4] (for NU(n)p̂
;

NSU(n)p̂
follows from this, cf. [105, Lem. 12.6]) we see that in all cases the

cohomology of N̆H p̂
is detected by elementary abelian p-subgroups. Hence, by

a transfer argument, the mod p cohomology of BX is detected by elementary
abelian p-subgroups.

Next, we want to show that all elementary abelian p-subgroups of X

factor through a maximal torus. By Lemma 10.5 we just have to show that we
can find some p-compact group X ′ with the same maximal torus normalizer
which has this property. If (WX , LX) is of Lie type this follows by combining
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Theorem 12.2(2) with Borel’s theorem [11, Thm. B]. If (WX , LX) is exotic this
is also true since we know (by Theorem 7.3 or Notbohm’s work [110]) that
there exists a p-compact group with Weyl group (WX , LX) and classifying
space having polynomial Zp-cohomology algebra.

The fact that all elementary abelian p-subgroups of X are toral com-
bined with the fact that the cohomology is detected by elementary abelian
p-subgroups implies that the mod p cohomology of BX is concentrated in even
degrees. Hence H∗(BX;Zp) is torsion-free as wanted.

Proof of Theorem 1.10. Let X be a connected finite loop space with
maximal torus i : T → X. Note that (X/T )p̂ � X p̂/T p̂ by the fiber lemma
[22, II.5.1], and consequently, by the definition of the Euler characteristic,
χ(X/T ) = χ(X p̂/T p̂). Hence T p̂ → X p̂ will be a maximal torus for the p-
compact group X p̂, for all primes p.

For our connected finite loop space X, define WX(T ) to be the set of
conjugacy classes of self-equivalences ϕ of T such that i and iϕ are conjugate.
We obviously have an injective homomorphism WX → WX p̂

for all primes p

and we now want to see that this map is surjective as well, so that we can
naturally identify (WX , π1(T ) ⊗ Zp) with (WX p̂

, LX p̂
).

First note that by [56, Pf. of Thm. 9.7] we can view WX p̂
as the Galois

group of the extension of polynomial algebras H∗
Qp

(BX) → H∗
Qp

(BT ). But,
since BX has finitely many cells in each dimension and since BX is nilpotent,
we can identify

H∗(BX;Q) ⊗Q Qp
��

∼=

H∗(BT ;Q) ⊗Q Qp

∼=

H∗
Qp

(BX) �� H∗
Qp

(BT )

so the extensions H∗(BX;Q) → H∗(BT ;Q) and H∗
Qp

(BX) → H∗
Qp

(BT )
have canonically isomorphic Galois groups. Hence any element in WX p̂

lifts
to a canonical element in the Galois group of the extension H∗(BX;Q) →
H∗(BT ;Q). However, since BXQ and BTQ are products of Eilenberg-Mac Lane
spaces (cf. e.g. [124, Ch. V, §4, Prop. 6]), this Galois group identifies with the
self-equivalences BTQ → BTQ over BiQ : BTQ → BXQ, where as usual BiQ
has been replaced by an equivalent fibration. Hence any element in WX p̂

gives
rise to a compatible family of self-equivalences of BTQ and BT l̂, for all primes
l. Hence, by the arithmetic square [22, VI.8.1], we get a self-equivalence of
BT over BX, i.e., an element in WX . The constructed element is a lift of the
element in WX p̂

we started with, and so the map WX → WX p̂
is surjective as

well.
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Likewise, the argument above showed that WX is the Galois group of the
extension H∗(BX;Q) → H∗(BT ;Q), so we have an isomorphism

H∗(BX;Q)
∼=−→ H∗(BT ;Q)WX .

Since H∗(BX;Q) is a polynomial algebra, (WX , π1(T )) is a Z-reflection group
by the Shephard-Todd-Chevalley theorem (see [10, Thm. 7.2.1]). Hence, by
Theorem 11.1, (WX , π1(T )) is the Weyl group of some compact connected Lie
group G.

For each p we have an extension class γp ∈ H3(WX ;π1(T ) ⊗ Zp)
corresponding to the fibration sequence BT p̂ → BNX p̂

→ BWX . Since
H3(WX ;π1(T )) is a finite abelian group, and hence given as a sum of its
p-primary parts, these extension classes identify with a unique extension class
γ ∈ H3(WX ;π1(T )). We define the loop space NX to be the loop space of the
total space in the fibration sequence BT → BNX → BWX with the canonical
action of WX on BT and extension class γ. Since the fiber-wise Fp-completion
of BNX with respect to this defining fibration identifies with BNX p̂

, the arith-
metic square produces a canonical morphism NX → X. (NX is, quite naturally,
called the maximal torus normalizer of the finite loop space X [101, Def. 1.3].)

By [6] (see also [103], [63]) the extension classes defining T → NX → WX

and T → NG(T ) → WG(T ) are both 2-torsion. Let B̃N denote the fiber-
wise Z[12 ]-localization of the total space of the fibration BT → BNG(T ) →
BWG(T ) or equivalently the corresponding fibration with BNX . We hence
have embeddings

B̃N

����������

����������

BX[12 ] BG[12 ].

By the arithmetic square [22, VI.8.1], the following square is a pullback

BX[12 ] ��

��

∏
p�=2BX p̂

��
BXQ �� (

∏
p�=2 BX p̂)Q

and similarly for BG. By Theorem 1.4 we can construct unique maps between

Fp-completions under B̃N , and we obviously also have a unique map between
the rationalizations. By construction (as maps under B̃N) these maps agree on
the rationalization of the product of the Fp-completions, so by the arithmetic
square we get an induced map BX[12 ] → BG[12 ] which by construction is an Fp-
equivalence for all primes p. Since both spaces are one-connected this implies
that the map is a homotopy equivalence.
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11. Appendix: The classification of finite Zp-reflection groups

The purpose of this appendix is to give a short proof of the classification of
finite Zp-reflection groups (Theorem 11.1), simplifying work of Notbohm [107],
[109], and as a by-product extending his results to all primes. We likewise
explain how this classification relates to the classification of finite Z-reflection
groups and the classification of compact Lie groups (Theorem 11.5). We start
by recalling some definitions. Let R be an integral domain with field of fractions
K. An R-reflection group is a pair (W, L) where L is a finitely generated free R-
module, and W is a subgroup of Aut(L) generated by elements α such that 1−α

has rank one viewed as a matrix over K. Two finite R-reflection groups (W, L)
and (W ′, L′) are called isomorphic, if we can find an R-linear isomorphism
ϕ : L → L′ such that the group ϕWϕ−1 equals W ′. A finite R-reflection group
(W, L) is said to be irreducible if the corresponding representation of W on
L⊗R K is irreducible. If R has characteristic zero we define the character field
of an R-reflection group (W, L) as the field extension of Q generated by the
values of the character of the representation W ↪→ Aut(L). For R = Zp or
Qp we define an exotic R-reflection group to be a finite irreducible R-reflection
group with character field strictly containing Q.

The classification of finite Zp-reflection groups is based on the work of
Clark-Ewing [34] and Dwyer-Miller-Wilkerson [52], which is again based on
the classification of finite C-reflection groups by Shephard-Todd [126] (see also
[35]). The result of Clark-Ewing and Dwyer-Miller-Wilkerson is that there is
a bijection between finite Qp-reflection groups and finite C-reflection groups
whose character field embeds in Qp (for details see [52, Prop. 5.4, Prop. 5.5
and Pf. of Thm. 1.5]). The classification of finite complex reflection groups by
Shephard-Todd [126] is as follows: Up to isomorphism, the irreducible finite
complex reflection groups fall into three infinite families and 34 sporadic cases.
We follow the notation of Shephard-Todd and label the three infinite families
as 1, 2 and 3 and the sporadic cases as Gi, 4 ≤ i ≤ 37. Moreover any finite
complex reflection group can be written as a direct product of irreducible finite
complex reflection groups; cf. [62, Rem. 2.3] (in fact this holds over any field
of characteristic 0).

It is convenient to split family 2 further depending on the character field.
The associated complex reflection group is the group G(m, r, n) (where m,
r and n are integers with m, n ≥ 2, r ≥ 1, r | m and (m, r, n) �= (2, 2, 2))
from [126, p. 277] which consists of monomial n × n-matrices such that the
nonzero entries are mth roots of unity and the product of the nonzero entries
is an (m/r)th root of unity. Thus G(m, r, n) is the semidirect product of its
subgroup A(m, r, n) of diagonal matrices with the subgroup of permutation
matrices. Let ζm = e2πi/m. For n ≥ 3 or n = 2 and r �= m the character field
of G(m, r, n) equals Q(ζm), and for n = 2 and r = m it equals Q(ζm + ζ−1

m )
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(see [34, p. 432–433]). Following [34] these are denoted as family 2a and family
2b respectively.

A complete list of the irreducible finite complex reflection groups, their
character fields and the primes for which these embed in Qp can be found in
[85, p. 165], [10, Table 7.1], or [6, Table 1].

If (W, V ) is a finite Qp-reflection group, then by [40, Prop. 23.16] we can
find a (nonunique) finitely generated ZpW -submodule L ⊆ V with L⊗Q = V .
Thus any finite Qp-reflection group may be obtained from a finite Zp-reflection
group by extension of scalars, but in general there are several nonisomorphic
Zp-reflection groups which give rise to the same Qp-reflection group. The
following result extends [109, Thm. 1.5 and Prop. 1.6] to all primes. (See also
the addendum Theorem 11.5 for an elaboration.)

Theorem 11.1 (The classification of finite Zp-reflection groups). Let
(W, L) be a finite Zp-reflection group. Then there exists a decomposition

(W, L) = (W1 × W2, L1 ⊕ L2)

where (W1, L1) ∼= (WG, LG⊗Zp), for some (nonunique) compact connected Lie
group G with Weyl group WG and integral lattice LG, and (W2, L2) is a (up to
permutation unique) direct product of exotic Zp-reflection groups.

The canonical map (W, L) �→ (W, L⊗Q) gives a one-to-one correspondence
between exotic Zp-reflection groups up to isomorphism and exotic Qp-reflection
groups up to isomorphism.

If (W, L) is an exotic Zp-reflection group, then L ⊗ Fp is an irreducible
FpW -module, and in particular (L ⊗ Z/p∞)W = 0 and H0(W ;L) = 0.

Remark 11.2. For odd primes p the last two statements say that any
exotic Zp-reflection group is respectively center-free and simply connected ; cf.
[107]. Note also that [109, Thm. 1.5] imposes the unnecessarily strong condition
that the invariant ring Zp[L]W is a polynomial algebra, but this condition is
not actually used in [109].

Before the proof of Theorem 11.1 we need two lemmas. First recall the
following elementary fact about elements of finite order in GLn(Zp).

Lemma 11.3. Let G ⊆ GLn(Zp) be a finite subgroup. Then the mod p

reduction G ↪→ GLn(Zp) → GLn(Fp) is injective if p is odd. For p = 2
the kernel of the composition is an elementary abelian 2-subgroup of rank at
most n2. In particular the kernel is contained in O2(G), the largest normal
2-subgroup of G.

Proof. It is easy to see directly that any nontrivial finite order element in
GLn(Zp) has nontrivial reduction mod p if p is odd (cf. [127, Pf. of Lem. 10.7.1]).
For p = 2 the same argument shows that this is true if we reduce mod 4. The
result now follows.
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Lemma 11.4. For any exotic Qp-reflection group (W, V ) there exists a
finitely generated ZpW -submodule L ⊆ V with L ⊗ Q = V , such that L ⊗ Fp

is an irreducible FpW -module.

Proof. Assume first that p � |W |. By [40, Prop. 23.16] we can find a
finitely generated ZpW -submodule L ⊆ V with L ⊗ Q = V . It follows from
[39, 75.6 and 76.15] that L⊗Fp is automatically an irreducible FpW -module.

Assume now that W has order divisible by p. From the Clark-Ewing list
we see that the only exotic Qp-reflection groups satisfying this condition are
the groups G(m, r, n) from family 2a and the groups G12 for p = 3, G24 for
p = 2, G29 and G31 for p = 5 and G34 for p = 7.

In case W = G(m, r, n) from family 2a we get the extra conditions m ≥ 3,
p ≡ 1 (mod m) and p ≤ n. Note in particular that n ≥ 3. The description
above directly gives a representation with entries in Zp since the multiplicative
group of Zp contains the (p − 1)th roots of unity. Let L = (Zp)n be the
natural ZpW -module, i.e., the set of columns with entries in Zp. Assume that
0 �= M ⊆ L ⊗ Fp is an FpW -submodule of L ⊗ Fp. Choose x ∈ M with
x �= 0 and let θ ∈ Fp be a primitive mth root of unity. Since W contains the
permutation matrices and the diagonal matrix diag(θ, θ−1, 1, . . . , 1) we see that
M contains an element of the form x′ = (x1, x2, 0, . . . , 0) with x1 �= 0. Since
n ≥ 3, W also contains the diagonal matrix diag(θ, 1, θ−1, 1, . . . , 1) and hence
M contains ((1 − θ)x1, 0, . . . , 0). As θ �= 1 and W contains all permutation
matrices we conclude that M = L⊗Fp, proving the claim for the groups from
family 2a.

Next consider W = G12 at p = 3. Since W is isomorphic to GL2(F3),
Lemma 11.3 shows that for any finitely generated Z3W -submodule L ⊆ (Q3)2

of rank 2, we may identify L ⊗ F3 with the natural F3 GL2(F3)-module. In
particular L ⊗ F3 is an irreducible F3W -module.

For W = G24 at p = 2 we have W ∼= Z/2 × GL3(F2). Hence Lemma 11.3
shows that for any finitely generated Z2W -submodule L ⊆ (Q2)3 of rank 3,
we may identify L ⊗ F2 with the F2(Z/2 × GL3(F2))-module where Z/2 acts
trivially and GL3(F2) acts naturally. In particular L ⊗ F2 is an irreducible
F2W -module.

Next consider the groups G29 and G31 at p = 5. Since G29 is contained
in G31 it suffices to show the result for W = G29. The representation in
[126, p. 298] is defined over Z[12 , i] and hence we get a representation over Z5

by mapping i to a primitive 4th root of unity in Z5. Let L = (Z5)4 be the
natural Z5W -module. There are 40 reflections in G29: The 24 reflections in
the hyperplanes of the form xj − iαxk = 0, j �= k, and the 16 reflections in
the hyperplanes of the form

∑4
j=1 iαjxj = 0 with

∑4
j=1 αj ≡ 0 (mod 4). In

particular G29 contains the reflections in the hyperplanes xj − xk = 0 and
thus G29 contains all permutation matrices. The product of the reflections
in the hyperplanes x1 − ix2 = 0 and x1 − x2 = 0 equals the diagonal matrix



THE CLASSIFICATION OF p-COMPACT GROUPS FOR p ODD 189

diag(i,−i, 1, 1) and thus this element is also contained in G29. Now the same
argument used in the case of the groups from family 2a shows that L ⊗ F5 is
an irreducible F5W -module.

The argument for the group W = G34 at p = 7 is similar. The represen-
tation given in [126, p. 298] is defined over Z[13 , ω], ω = ζ3 and hence we get a
representation over Z7 by mapping ω to a primitive 3rd root of unity in Z7. Let
L = (Z7)6 be the natural Z7W -module. There are 126 reflections in G34: The
45 reflections in the hyperplanes of the form xj − ωαxk = 0, j �= k, and the 81
reflections in the hyperplanes of the form

∑6
j=1 ωαjxj = 0 with

∑6
j=1 αj ≡ 0

(mod 3). In particular G34 contains all permutation matrices. The product of
the reflections in the hyperplanes x1 − ωx2 = 0 and x1 − x2 = 0 equals the
diagonal matrix diag(ω, ω2, 1, 1, 1, 1) and thus this element is also contained in
G34. As above we then see that L ⊗ F7 is an irreducible F7W -module.

Proof of Theorem 11.1. Assume first that (W, V ) is an exotic Qp-reflection
group. Lemma 11.4 shows that there exists a finitely generated ZpW -submodule
L ⊆ V with L⊗Q = V , such that L⊗Fp is an irreducible FpW -module. It then
follows from [125, 15.2, Ex. 3] that L is unique up to a homothety (i.e. up to
scaling by a unit in Qp). This gives the bijection between exotic Zp-reflection
groups and exotic Qp-reflection groups.

Since L ⊗ Fp is an irreducible FpW -module we also conclude that
(L ⊗ Fp)W = 0 and H0(W ;L ⊗ Fp) = 0. Hence we get (L ⊗ Z/p∞)W = 0
as claimed. We also see that multiplication by p is surjective on H0(W ;L) and
from this we obtain H0(W ;L) = 0 by Nakayama’s lemma. This proves the
part of the theorem pertaining to exotic Zp-reflection groups.

Now consider a finite Zp-reflection group (W, L) such that there is a direct
sum decomposition L ⊗ Q = V1 ⊕ V2 as QpW -modules. Let W1 (resp. W2)
be the subgroup of W which fixes V2 (resp. V1) pointwise. It it easy to see
(cf. [58, Lem. 6.3]) that (Wi, Vi) is a Qp-reflection group and that we get the
decomposition (W, L ⊗ Q) = (W1 × W2, V1 ⊕ V2).

We now claim that if (W2, V2) is an exotic Qp-reflection group, then we
have the decomposition (W, L) = (W1 × W2, L1 ⊕ L2) with Li = L ∩ Vi. Let
α : L1⊕L2 −→ L be the addition map. As in [58, Pf. of Thm. 1.5] it suffices to
prove that α⊗Z/p∞ : (L1 ⊗Z/p∞)⊕ (L2 ⊗Z/p∞) −→ L⊗Z/p∞ is injective.
Assume that (x1, x2) is in the kernel of α ⊗ Z/p∞, xi ∈ Li ⊗ Z/p∞. Thus
x1 + x2 = 0. If s ∈ W2 is a reflection we have s · x1 = x1 by definition,
and hence s also fixes x2 = −x1. Since W2 is generated by reflections we get
x2 ∈ (L2 ⊗Z/p∞)W and hence x2 = 0 by the results already proved for exotic
Zp-reflection groups. Hence x1 = 0 as well, and thus α ⊗ Z/p∞ is injective
proving the claim.

Since any finite Qp-reflection group may be decomposed into a (up to
permutation unique) product of finite irreducible ones, we see by using the
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claim repeatedly that any finite Zp-reflection group (W, L) may be decomposed
as a product (W, L) ∼= (W1 × W2, L1 ⊕ L2) where (W1, L1) is a Zp-reflection
group with character field equal to Q and (W2, L2) is as in the theorem.

To finish the proof we thus need to show that for any finite Zp-reflection
group (W, L) with character field equal to Q we may find a compact connected
Lie group G such that (W, L) is isomorphic to (WG, LG ⊗ Zp). We start by
reducing the problem to finite Z-reflection groups. The representation W →
GL(L ⊗ Q) is a reflection representation and hence has Schur index 1 by [34,
Cor. p. 429]. Thus this representation is equivalent to a representation defined
over Q. Hence [40, Cor. 30.10] applied to R = Z(p) shows that there exists
a (unique) finitely generated Z(p)W -submodule L′ ⊆ L with L′ ⊗Z(p) Zp = L.
Now [40, Cor. 23.14] applied to R = Z shows that L′ contains a (nonunique)
finitely generated ZW -submodule L′′ ⊆ L′ with L′ = L′′ ⊗ Z(p). We conclude
in particular that (W, L) ∼= (W, L′′ ⊗ Zp).

We finish the proof by showing that there exists a (nonunique) com-
pact connected Lie group G whose Weyl group (WG, LG) is isomorphic to
(W, L′′). For each reflection s ∈ W the group {x ∈ L′′ | s(x) = −x} is an
infinite cyclic group with two generators which we label ±αs. Let Φ = {±αs |
s is a reflection in W} and L′′

0 = (L′′)W . It then follows (cf. [116, p. 85])
that (L′′, L′′

0,Φ) is a reduced root diagram whose associated Z-reflection group
equals (W, L′′) (see [20, §4, no. 8] for definitions). From the classification
of compact connected Lie groups ([20, §4, no. 9, Prop. 16]) it then follows
that there exists a compact connected Lie group G whose root diagram equals
(L′′, L′′

0,Φ). In particular (WG, LG) ∼= (W, L′′) and we are done.

We now analyze concretely when two compact connected Lie groups give
rise to the same p-compact group. For a compact connected Lie group G, let
G〈1〉 denote the universal cover of G. Furthermore let H be the direct product
of the identity component of the center, Z(G)1, with the universal cover of the
derived group of G. We have a canonical covering homomorphism ϕ : H → G

with finite kernel (cf. [20, §1, no. 4, Prop. 4]). If p is a prime number, we let
Covp′

(G) denote the covering of G corresponding to the subgroup of π1(G)
given as the preimage of the Sylow p-subgroup of π1(G)/ϕ(π1(H)), and let K

denote the kernel of H → Covp′
(G). Write H = R1 × · · · ×Rn × S × T ′ where

each Ri is a special unitary group, S is a simply connected compact Lie group
which contains no direct factors isomorphic to a special unitary group, and
T ′ is a torus. Suppose that K1 and K2 are finite central p-subgroups of H.
We say that K1 and K2 are p-equivalent subgroups of H if there exist integers
k1, . . . , kn, k prime to p such that the homomorphism

Ψ = ψk1 ×· · ·×ψkn ×1×αk : TR1 ×· · ·TRn
×TS ×T ′ → TR1 ×· · ·TRn

×TS ×T ′

induces an isomorphism from K1 onto K2, where TRi
is a maximal torus of

Ri, ψl is the lth power map, and αk : T ′ → T ′ is a homomorphism which with



THE CLASSIFICATION OF p-COMPACT GROUPS FOR p ODD 191

respect to some splitting T ′ = S1 × · · · × S1 has the form 1 × . . . × 1 × ψk.
More generally we say that H/K and H ′/K ′ are p-equivalent if there exists an
isomorphism between H and H ′ such that the image of K in H ′ is p-equivalent
to K ′. This terminology is justified by the following theorem.

Theorem 11.5 (Addendum to Theorems 1.1 and 11.1). Let G and G′ be
two compact connected Lie groups and p a prime number. Then

(1) (WG, LG) and (WG′ , LG′) are isomorphic if and only if G is isomorphic
to G′ up to the substitution of direct factors isomorphic to Sp(n) with
direct factors isomorphic to SO(2n + 1).

(2) (WG, LG⊗Z2) and (WG′ , LG′⊗Z2) are isomorphic if and only if Cov2′
(G)

and Cov2′
(G′) are 2-equivalent up to the substitution of direct factors iso-

morphic to Sp(n) with direct factors isomorphic to SO(2n+1). Moreover
the following conditions are equivalent :

(a) (WG, LG ⊗ Z2, LG〈1〉 ⊗ Z2) and (WG′ , LG′ ⊗ Z2, LG′〈1〉 ⊗ Z2) are
isomorphic.

(b) Cov2′
(G) is 2-equivalent to Cov2′

(G′).

(c) (BG)2̂ � (BG′)2̂.
(3) For p odd the following conditions are equivalent :

(a) (WG, LG ⊗ Zp) and (WG′ , LG′ ⊗ Zp) are isomorphic.

(b) Covp′
(G) and Covp′

(G′) are p-equivalent up to the substitution of
direct factors isomorphic to Sp(n) with direct factors isomorphic to
Spin(2n + 1).

(c) (BG)p̂ � (BG′)p̂.

Note that two simple compact Lie groups G and G′ of the form Covp′
(·)

are p-equivalent if and only if they are isomorphic. The next two examples
show how this fails in general.

Example 11.6. Let ζ = e2πi/p and G = SU(p) × SU(p), and let Δ1 be
the central subgroup of G generated by (ζI, ζI) and Δ2 the central subgroup
generated by (ζI, ζ2I). Then G/Δ1 and G/Δ2 are nonisomorphic as Lie groups
if p ≥ 5, but they are p-equivalent; similar examples can be constructed for
p = 2, 3.

Example 11.7. Let p ≥ 5, ζ = e2πi/p, and G = SU(p) × SU(p) × SU(p) ×
S1 × S1. Consider the subgroups

Δ1 = 〈(ζI, I, ζI, ζ, 1), (I, ζI, ζI, 1, ζ)〉 , Δ2 = 〈(ζI, I, ζI, ζ, 1), (I, ζI, ζI, 1, ζ2)〉.
The quotients G/Δ1 and G/Δ2 are again p-equivalent but not isomorphic. One
can check that in this example αk cannot be chosen to be the identity. Similar
examples can be constructed for p = 2, 3.
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Before proving Theorem 11.5, we need the following lemma.

Lemma 11.8. Let G be a simple simply connected compact Lie group not
isomorphic to a special unitary group. Suppose that ϕ ∈ NGL(LG⊗Zp)(WG).
Then there exists σ ∈ Aut(G) such that ϕ and σ induces the same automor-
phism of Z̆(G).

Proof. If G = Spin(2n+1), Sp(n), 2E7, E8, F4 or G2, the claim is obvious,
since there are no nontrivial automorphisms of the center. For G = Spin(2n),
n ≥ 4, it follows from Theorem 13.1 that NGL(LG⊗Zp)(WG) is generated by
the scalars Z×

p , W and the automorphisms of the Dynkin diagram. Thus
the only potential problem occurs for p = 2 and n odd where Z̆(G) ∼= Z/4.
However it follows by [18, Planche IV(XI)] that the nontrivial automorphism
of the center is induced by the nontrivial graph automorphism. Finally, by [18,
Planche V(XI)], the same argument works in the case G = 3E6, p = 3 where
Z̆(G) ∼= Z/3.

Proof of Theorem 11.5. By [116, §4] or [83, Prop. 3.2(vi)] we can recover
the root datum of a compact connected Lie group from its integral lattice
up to substitution of direct factors isomorphic to Sp(n) with direct factors
isomorphic to SO(2n + 1). Part (1) now follows.

Suppose that G and G′ are p-equivalent. Then by assumption the associ-
ated covering groups H and H ′ are isomorphic, in such a way that the image
of K in H ′ differs from K ′ by an endomorphism of TH′ of the type Ψ. The map
T̆H → T̆H′ induced by the composite of the isomorphism with the endomor-
phism Ψ is hence an isomorphism sending K to K ′. Hence we get an induced
isomorphism (WG, LG ⊗ Zp) → (WG′ , LG′ ⊗ Zp).

Conversely, suppose that G = H/K and G′ = H ′/K ′ do not contain
any direct factors isomorphic to Sp(n), and that (WG, LG ⊗Zp) is isomorphic
to (WG′ , LG′ ⊗ Zp). By Proposition 10.4 the fundamental group of G equals
the coinvariants (LG)W and hence LH = (LG)W ⊕ SLG. This shows that
(W, LH ⊗ Zp) can be reconstructed from (W, LG ⊗ Zp). By the classification
of simply connected compact Lie groups we can for p = 2 reconstruct H, up
to isomorphism, from (W, LH ⊗ Zp). For p odd the only ambiguity arises
from direct factors isomorphic to Sp(n) or Spin(2n+1), but in this case by the
assumption on G, H cannot contain any direct factors isomorphic to Sp(n), and
we conclude that in all cases we can reconstruct H, up to isomorphism, from
(W, LG ⊗ Zp). Hence we can without loss of generality assume that H = H ′.
Note that K is the cokernel of the inclusion LH ⊗Zp → LG⊗Zp, so we can also
recover the inclusion K ⊆ LH⊗Z/p∞. In other words an isomorphism between
(W, LG ⊗Zp) and (W, LG′ ⊗Zp) induces an automorphism of T̆H taking K to
K ′. We have to see that if there exists such an automorphism then there exists
an automorphism of H, followed by an endomorphism of the type Ψ, which
also takes K to K ′, since this will show that H/K and H/K ′ are p-equivalent.
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Write H = U × T ′, where U = R1 × · · · × Rn × S, in the notation introduced
before the theorem. By Proposition 5.4 any automorphism of (WH , LH ⊗ Zp)
induces an automorphism ϕ of T̆U × T̆ ′ which is of the form ϕ = ϕ1 × ϕ2.
A priori ϕ2 is an element in Aut(T̆ ′) ∼= GL(LT ′ ⊗ Zp), but since K1 and
K2 are finite we can without loss of generality replace it by a matrix with
integer coefficients and determinant prime to p. By the ‘elementary divisor
theorem’ in linear algebra over a Euclidean domain (cf. e.g., [8, Thm. 12.4.3])
we can find a basis for LT ′ in which ϕ2 is given by AD where A is a product
of elementary matrices over Z and D is a diagonal matrix with determinant
prime to p. Since we are only interested in the effect over Z/ps for some fixed
large s and D consists of units modulo ps we can furthermore change ϕ2 and A

such that D can be assumed to be of the form diag(1, . . . , 1, k), with k prime
to p, since if x is a unit in Z/ps then the matrix diag(x, x−1) can be written
as a product of elementary matrices by a straightforward calculation (done in
[41, 40.25]). This shows that we can put ϕ2 on the correct form. For the map
ϕ1 this follows directly from Proposition 5.4 together with Lemma 11.8 and
Theorem 13.1. Hence we have seen that for any ϕ we can find a map of the
stated form which takes K to K ′.

The above analysis directly shows the first claim in (2) as well as (3a) ⇔
(3b). From the first claim in (2), (2a) ⇔ (2b) follows, since Sp(n) and
SO(2n + 1) have different Z2-reflection data (WG, LG ⊗ Z2, LG〈1〉 ⊗ Z2). The
implication (2b) ⇒ (2c) follows from the existence of unstable Adams opera-
tions on SU(n), first constructed by Sullivan [134, p. 142], realizing Ψ on the
level of Fp-completed classifying spaces (or for an overkill, use Theorem 1.1
directly). The implication (3b) ⇒ (3c) also follows from this together with the
fact that B SO(2n+1)p̂ is homotopy equivalent to B Sp(n)p̂ for p > 2, as orig-
inally proved by Friedlander [66, Thm. 2.1] (or again as a very special case of
Theorem 1.1). The remaining implications (2c) ⇒ (2a) and (3c) ⇒ (3a) follow
directly from the fundamental properties of the Weyl group of a p-compact
group.

12. Appendix: Invariant rings of finite Zp-reflection groups, p odd
(following Notbohm)

The purpose of this appendix is to recall Notbohm’s determination [109]
of finite Zp-reflection groups (W, L), p odd, such that the invariant ring Zp[L]W

is a polynomial algebra.
Before stating it let us however for easy reference recall the following

‘classical’ characterizations of a ‘p-torsion-free’ p-compact group, which has a
proof by general arguments which we will sketch below.

Theorem 12.1. Let X be a connected p-compact group with maximal
torus T and Weyl group WX . The following statements are equivalent :
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(1) H∗(X;Zp) is torsion-free.

(2) H∗(X;Zp) is an exterior algebra over Zp with generators in odd degrees
(or equivalently with Fp instead of Zp).

(3) H∗(BX;Zp) is a polynomial algebra over Zp with generators in even
degree (or equivalently with Fp instead of Zp).

(4) H∗(BX;Zp) is a polynomial algebra and H∗(BX;Zp)
∼=−→ H∗(BT ;Zp)WX .

We now give Notbohm’s classification, Theorem 12.2 below. The first
part (which is a reduction to the simply connected case) is [109, Thm. 1.3] and
the second (which is a case-by-case argument in the simply connected case)
is a slight extension of [109, Thm. 1.4]. For the benefit of the reader we give
a streamlined proof of the second part. Recall that for a finite Zp-reflection
group (W, L) we define SL to be the submodule of L generated by elements of
the form (1 − w)x with w ∈ W and x ∈ L. We call (W, L) simply connected
if L ∼= SL′ for some ZpW -lattice L′. (Note that for p odd this is equivalent
to SL = L since S2L′ = SL′; cf. the discussion of Zp-reflection data in the
introduction.)

Theorem 12.2 (Finite Zp-reflection groups with polynomial invariants,
p odd). Let p be an odd prime and (W, L) a finite Zp-reflection group. Then
the following statements hold :

(1) Zp[L]W is a polynomial algebra if and only if Zp[SL]W is a polynomial
algebra and the group of coinvariants LW is torsion-free.

(2) Suppose (W, L) is irreducible and simply connected. The following con-
ditions are equivalent :

(a) Zp[L]W is a polynomial algebra.

(b) Fp[L ⊗ Fp]W is a polynomial algebra.

(c) (W, L) is not isomorphic to (WG, LG ⊗ Zp) for the following pairs
(G, p): (F4, 3), (3E6, 3), (2E7, 3), (E8, 3) and (E8, 5).

In particular, if X is an exotic p-compact group then Zp[LX ]WX is a polynomial
algebra and if (W, L) = (WG, LG ⊗ Zp) for a compact connected Lie group G

then Zp[LG⊗Zp]WG is a polynomial algebra if and only if H∗(G;Zp) is torsion-
free.

Sketch of proof of Theorem 12.1. The equivalence of (1), (2), and (3) is
proved by old H-space and loop space arguments which we first very briefly
sketch. By a Bockstein spectral sequence argument (cf. e.g., [85, §11-2])
H∗(X;Zp) is torsion-free if and only if H∗(X;Zp) is an exterior algebra on
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odd dimensional generators so (1) is equivalent to (2). This is again equivalent
to H∗(BX;Zp) being a polynomial algebra on even dimensional generators (us-
ing the Eilenberg-Moore and the cobar spectral sequence; see e.g., [85, §7-4]);
thus, (2) is equivalent to (3).

That (4) implies (3) is obvious. The fact that (1)–(3) also imply (4)
requires more machinery and is probably first found in [52, Thm. 2.11]—we
quickly sketch an argument. We want to show that the map r : H∗(BX;Zp) →
H∗(BT ;Zp)W is an isomorphism. By [56, Thm. 9.7(iii)]

H∗(BX;Zp) ⊗ Q
∼=−→ H∗(BT ;Zp)W ⊗ Q.(12.1)

This implies by comparison of Krull dimensions that the number of polyno-
mial generators equals the rank of T . Since H∗(BT ;Fp) is finitely generated
over H∗(BX;Fp) by [56, Prop. 9.11] it follows by comparing Krull dimensions
again that H∗(BX;Fp) → H∗(BT ;Fp) is injective. Hence H∗(BX;Zp) →
H∗(BT ;Zp) has to be injective by Nakayama’s lemma. Likewise r has to be
surjective: By (12.1) the cokernel of r has to be p-torsion. Since the reduc-
tion mod p of r is still injective (as seen above) the cokernel of r has to be
p-torsion-free as well (since Tor(coker(r),Fp) = 0).

Remark 12.3. If p is odd then Fp-coefficients can also be used in Theo-
rem 12.1(4) by a Galois theory argument using Lemma 11.3. For p = 2, this is
not true as can be seen by taking X = SU(2)2̂. See [53] for a version for p = 2.

Remark 12.4. If (W, L) is a finite Zp-reflection group then Zp[L]W is a
polynomial algebra if and only if Fp[L⊗Fp]W is a polynomial algebra and the
canonical monomorphism Zp[L]W ⊗ Fp −→ Fp[L ⊗ Fp]W is an isomorphism,
as shown in [109, Lem. 2.3]. Note that this can be reformulated as saying that
Zp[L]W is a polynomial algebra if and only if Fp[L ⊗ Fp]W is a polynomial
algebra with generators in the same degrees as the generators of Qp[L⊗Q]W ,
since dimQp

(Qp[L ⊗ Q]W )n = dimFp
(Zp[L]W ⊗ Fp)n ≤ dimFp

(Fp[L ⊗ Fp]W )n

for any n.

Remark 12.5. The Z3-reflection group (W, L) = (WPU(3), LPU(3) ⊗ Z3)
does not have invariant ring a polynomial ring (e.g., since LW

∼= Z/3 is not
torsion-free). However a short calculation shows that F3[L ⊗ F3]W is a poly-
nomial ring with generators in degrees 1 and 6 (as opposed to the degrees
over Q3 which are 2 and 3). (See also [52, Rem. 5.3].) It turns out that this
example is essentially the only one since it can be proved that if (W, L) is a
finite Zp-reflection group, p odd, such that Fp[L]W is a polynomial algebra,
then Zp[L]W is also a polynomial algebra unless p = 3 and (W, L) contains
(WPU(3), LPU(3) ⊗Z3) as a direct factor. We omit the proof which is an exten-
sion of the technique used in the examples in Section 7 in a preprint version
of [61], which can at the time of writing be found on Wilkerson’s homepage.
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Lemma 12.6. Assume that L is a finitely generated free Zp-module and
that W is a finite subgroup of GL(L). If p � |W | and Fp[L⊗Fp]W is a polyno-
mial algebra, then Zp[L]W is also a polynomial algebra.

Proof. By assumption we have the averaging homomorphisms Zp[L] −→
Zp[L]W and Fp[L⊗Fp] −→ Fp[L⊗Fp]W given by f �→ 1

|W |
∑

w∈W w ·f . These
are obviously surjective and hence the commutative diagram

Zp[L] ��

��

Zp[L]W

��
Fp[L ⊗ Fp] �� Fp[L ⊗ Fp]W

shows that the reduction homomorphism Zp[L]W → Fp[L⊗Fp]W is surjective.
The result now follows easily from Nakayama’s lemma (cf. [109, Lem. 2.3]).

Proof of Theorem 12.2. Part (1) is contained in [109, Thm. 1.3]. To prove
part (2) note that by Notbohm [107] (see also [109, Thm. 1.2(iii)] and Theo-
rem 11.1), there is a unique finite irreducible simply connected Zp-reflection
group for each group on the Clark-Ewing list. We now go through the list,
verifying the result in each case.

If p � |W | the invariant ring Fp[L ⊗ Fp]W is a polynomial algebra by the
Shephard-Todd-Chevalley theorem ([10, Thm. 7.2.1] or [127, Thm. 7.4.1]), and
thus Lemma 12.6 shows that Zp[L]W is a polynomial algebra.

Next, assume that (W, L) is an exotic Zp-reflection group. If (W, L) be-
longs to family 2, the representing matrices with respect to the standard basis
are monomial and so Zp[L]W is a polynomial algebra by [102, Thm. 2.4].

An inspection of the Clark-Ewing list now shows that only four exotic cases
remain, namely (G12, p = 3), (G29, p = 5), (G31, p = 5) and (G34, p = 7). In
the first case we have G12

∼= GL2(F3) and Lemma 11.3 shows that the action on
L⊗F3 = (F3)2 is the canonical one. The invariant ring F3[L⊗F3]GL2(F3) was
computed by Dickson [44]. In the remaining three cases the mod p invariant
ring was calculated by Xu [144], [145] using a computer; see also Kemper-Malle
[86, Prop. 6.1]. The conclusion of these computations is that in all four cases
the invariant ring Fp[L⊗Fp]W is a polynomial algebra with generators in the
same degrees as the generators of Qp[L ⊗ Q]W . By Remark 12.4 we then see
that Zp[L]W is a polynomial algebra in these cases.

The only remaining cases are the finite simply connected Zp-reflection
groups which are not exotic. Since p is odd and π1(G) and (LG)WG

only
differ by an elementary abelian 2-group (cf. the proof of Theorem 1.7 and
Proposition 10.4), we may assume that (W, L) = (WG, LG ⊗ Zp) for some
simply connected compact Lie group G. In this case Demazure [43] shows
that if p is not a torsion prime for the root system associated to G, then the
invariant rings Zp[LG ⊗ Zp]WG and Fp[LG ⊗ Fp]WG are polynomial algebras.



THE CLASSIFICATION OF p-COMPACT GROUPS FOR p ODD 197

By the calculation of torsion primes for the simple root systems, [43, §7],
the excluded pairs (G, p) in the last part of the theorem are exactly the cases
where the root system of G has p-torsion. In these cases Kemper-Malle [86,
Prop. 6.1 and Pf. of Thm. 8.5] shows that Fp[LG ⊗Fp]WG is not a polynomial
algebra. Hence in these cases Zp[LG ⊗ Zp]WG is not a polynomial algebra by
[109, Lem. 2.3(i)]. This proves the second claim.

Finally, let G be a compact connected Lie group with Weyl group W = WG

and integral lattice L = LG. We now prove that Zp[L ⊗ Zp]W is a polynomial
algebra if and only if H∗(G;Zp) is torsion-free. (See also [110, Prop. 1.11].)
One direction follows from Theorem 12.1, so assume now that Zp[L ⊗ Zp]W

is a polynomial algebra. From Theorem 12.2(1) we see that Zp[S(L ⊗ Zp)]W

is a polynomial algebra and that (L ⊗ Zp)W is torsion-free. Since p is odd,
we have (L ⊗ Zp)W = π1(G) ⊗ Zp and S(L ⊗ Zp) = LG〈1〉 ⊗ Zp; cf. the
proofs of Theorem 1.7 and Proposition 10.4. From the above we conclude that
H∗(G〈1〉;Zp) is torsion-free. Since π1(G) has no p-torsion, it now follows easily
from the Serre spectral sequence that H∗(G;Zp) is torsion-free.

Remark 12.7. Let p be an odd prime and (W, L) a finite Zp-reflection
group. We claim that the following conditions are equivalent:

(1) Zp[L]W is a polynomial algebra.

(2) Fp[L ⊗ Fp]W is a polynomial algebra and LW is torsion-free.

(3) Fp[SL ⊗ Fp]W is a polynomial algebra and LW is torsion-free.

Indeed we have (1) ⇔ (3) by Theorem 12.2 since (W, SL) can be decomposed
as a direct product of finite irreducible simply connected Zp-reflection groups
by [107, Thm. 1.4]. The implication (1) ⇒ (2) follows from [109, Thm. 1.3 and
Lem. 2.3]. Finally (2) ⇒ (3) follows from [102, Prop. 4.1] as LW torsion-free
implies that SL ⊗ Fp → L ⊗ Fp is injective.

13. Appendix: Outer automorphisms of finite Zp-reflection groups

Theorem 1.1 states that the outer automorphism group of a connected
p-compact group X, p odd, equals NGL(LX)(WX)/WX , which makes it useful
to have a complete case-by-case calculation of this group. The purpose of
this appendix is to provide such a calculation based on results of Broué-Malle-
Michel [26, Prop. 3.13] over the complex numbers. Calculations in the case
where W is one of the exotic groups from family 2a were given in [108, §6]
(where the nonstandard notation G(q, r;n) for G(q, q/r, n) is used).

Theorem 11.1 and Proposition 5.4 reduce the calculation of NGL(L)(W )/W

to the case where (W, L) is exotic or (W, L) = (WG, LG⊗Zp) for some compact
connected Lie group G. In the second case we can write G = H/K where H
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is a direct product of a torus and a simply connected compact Lie group and
K is a finite central subgroup of H, and it is easy to use coverings to compute
NGL(LG⊗Zp)(WG)/WG from NGL(LH⊗Zp)(WH)/WH . By Proposition 5.4 this
again reduces to the case where H is simple.

We can hence restrict to the case where (W, L) is exotic or (W, L) =
(WG, LG ⊗ Zp) for a simple simply connected compact Lie group G. For the
statement of our result in these cases (which will take place in the theorem
below as well as in the following elaborations), we fix the realizations G(m, r, n)
of the groups from family 2 as described in Section 11. Moreover we also fix
the realizations of the complex reflection groups Gi, 4 ≤ i ≤ 37, to be the ones
described in [126]. Let μn denote the group of nth roots of unity. If G is a
simply connected compact Lie group, its integral lattice LG equals the coroot
lattice. Hence the automorphism group Γ of the Dynkin diagram of G can be
considered as a subgroup of NGL(LG)(WG); cf. [77, §12.2]. For G = Spin(5),
F4 or G2, there is an automorphism ϕl of LG ⊗ Z[1/

√
l] of order 2 (here l = 2

for Spin(5) and F4 and l = 3 for G2); see [26, p. 182–183] or [27, p. 217] for
details.

Theorem 13.1 (Outer automorphisms of finite Zp-reflection groups).
Let (W, L) be a finite irreducible simply connected Zp-reflection group, i.e.,
(W, L) is exotic or of the form (WG, LG ⊗ Zp) for a simple simply connected
compact Lie group G. Let (W, V ) be the associated complex reflection group.
Then NGL(V )(W ) = 〈W,C×〉 and hence NGL(L)(W )/W = Z×

p /Z(W ) and
NGL(L)(W )/Z×

p W = 1 except in the following cases:

(1) W = G(m, r, n) is exotic and belongs to family 2, (m, r, n) �= (4, 2, 2),
(3, 3, 3): NGL(V )(W ) = 〈G(m, 1, n),C×〉 and NGL(L)(W )/Z×

p W =
Cgcd(r,n); cf. 13.4.

(2) W = G(4, 2, 2): NGL(V )(W ) = 〈G8,C×〉 and NGL(L)(W )/Z×
p W = Σ3;

cf. 13.5.

(3) W = G(3, 3, 3): NGL(V )(W ) = 〈G26,C×〉 and NGL(L)(W )/Z×
p W = A4;

cf. 13.6.

(4) W = G5: NGL(V )(W ) = 〈G14,C×〉 and NGL(L)(W )/Z×
p W = C2; cf.

13.7.

(5) W = G7: NGL(V )(W ) = 〈G10,C×〉 and NGL(L)(W )/Z×
p W = C2; cf.

13.8.

(6) (W, L) = (WG, LG ⊗ Zp) for G = Spin(4n), n ≥ 2: NGL(V )(W ) =
〈W,C×,Γ〉 and NGL(L)(W )/Z×

p W ∼= Γ; cf. 13.9.
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(7) (W, L) = (WG, LG ⊗ Zp) for G = Spin(5), F4 or G2: NGL(V )(W ) =
〈W,C×, ϕl〉. Moreover

NGL(L)(W )/Z×
p W =

{
1 for p = l,
C2 for p �= l

cf. 13.10.

Lemma 13.2. Let K ⊆ K ′ be fields of characteristic zero, and W ⊆
GLn(K) an irreducible reflection group. Then

NGLn(K′)(W ) =
〈
NGLn(K)(W ), K ′×

〉
.

Proof. The inclusion ‘⊇’ is clear, so suppose g ∈ NGLn(K′)(W ). Consider
the system of equations Xw = gwg−1X, w ∈ W where X is an n × n-matrix.
Over K ′ this has the solution X = g. By [62, Lem. 2.10], the representation
W → GLn(K ′) is irreducible, so the solution space is the 1-dimensional space
spanned by g. Since the coefficients lie in K, the solution space over K is
1-dimensional as well, so we can write g = λg1 with λ ∈ K ′ and g1 ∈ Mn(K).
As g �= 0 we get λ �= 0 and g1 ∈ NGLn(K)(W ).

We can now start the proof of Theorem 13.1. The results on NGL(V )(W )
follow directly from [26, Prop. 3.13] except when W belongs to family 2 or W =
G28. The structure of NGL(V )(W ) in the cases (1), (2) and (3) also follows from
[26, Prop. 3.13] since 〈G(4, 1, 2), G6,C×〉 = 〈G8,C×〉 and G(3, 1, 3) ⊆ G26.

Now assume that W does not belong to family 2 and W �= G5, G7, G28. Let
n denote the rank of W and K the field extension of Q generated by the entries
of the matrices representing W . Our assumption ensures that NGL(V )(W ) =
〈W,C×〉. Since W is a reflection group it has Schur index 1 and we can
assume that K equals the character field of W ; cf. [34, Cor. p. 429]. Then
NGLn(K)(W ) = 〈W, K×〉 and Lemma 13.2 now shows that NGLn(Qp)(W ) =〈
W,Q×

p

〉
. Hence we get NGL(L)(W ) =

〈
W,Z×

p

〉
and since W is irreducible we

have W ∩ Z×
p = Z(W ); cf. [62, Lem. 2.9].

This proves Theorem 13.1 in case W does not belong to family 2 and
W �= G5, G7, G28. In the cases (1), (2), (3), (4) and (5) we only need to find
the structure of NGL(L)(W ). This is done in Elaborations 13.4, 13.5, 13.6, 13.7
and 13.8 below.

This leaves the cases where (W, L) = (WG, LG ⊗ Zp) for a simple simply
connected compact Lie group G such that WG belongs to family 2 and WG �=
G28, i.e., G = Spin(2n + 1) for n ≥ 2, Sp(n) for n ≥ 3, Spin(2n) for n ≥ 4, G2

and F4. In the first two cases WG equals G(2, 1, n) and hence NGL(V )(WG) =
〈WG,C×〉 when n ≥ 3 by [26, Prop. 3.13]. As above this proves Theorem 13.1
in these cases. The case G = Spin(2n), n ≥ 4 is dealt with in Elaboration 13.9,
and the cases G = Spin(5), G2 and F4 are handled in Elaboration 13.10.
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To treat the dihedral group G(m, m, 2) from family 2 we need the following
auxiliary result.

Lemma 13.3. Let m ≥ 3 and p ≡ ±1 (mod m) so that ζm + ζ−1
m ∈ Zp.

Then 2 + ζm + ζ−1
m is a unit in Zp.

Proof. It suffices to prove that the norm NQ(ζm+ζ−1
m )/Q(2 + ζm + ζ−1

m ) is
not divisible by p. Since its square equals the norm NQ(ζm)/Q(2 + ζm + ζ−1

m )
it is enough to see that this norm is not divisible by p. In Q(ζm) we have
2 + ζm + ζ−1

m = (1 + ζm)2/ζm and since ζm is a unit it is enough to see that
NQ(ζm)/Q(1 + ζm) is not divisible by p. By definition

NQ(ζm)/Q(1+ζm) =
∏

0≤k≤m
gcd(k,m)=1

(1+ζk
m) = (−1)φ(m)

∏
0≤k≤m

gcd(k,m)=1

(−1−ζk
m) = Φm(−1).

The claim now follows from [138, Lem. 2.9].

Elaboration 13.4 (Family 2, generic case). Let W = G(m, r, n) from fam-
ily 2 and let p be a prime number such that W is an exotic Zp-reflection group.
Thus if n ≥ 3 or n = 2 and r < m we have m ≥ 3 and p ≡ 1 (mod m), and
for n = 2 and m = r we have m ≥ 5, m �= 6 and p ≡ ±1 (mod m). Assume
moreover that (m, r, n) �= (4, 2, 2), (3, 3, 3) (these two cases are dealt with in
Elaborations 13.5 and 13.6 below).

Assume first that p ≡ 1 (mod m). The realizations of the groups G(m, r, n)
and G(m, 1, n) from above are both defined over the ring Z[ζm] which embeds
in Zp. Lemma 13.2 shows that NGLn(Zp)(W ) =

〈
G(m, 1, n),Z×

p

〉
whence the

natural homomorphism (A(m, 1, n)/A(m, r, n)) × Z×
p −→ NGLn(Zp)(W )/W is

surjective. The kernel is the cyclic group generated by the element ([ζmIn], ζ−1
m )

(here [ζmIn] ∈ A(m, 1, n)/A(m, r, n) denotes the coset of ζmIn) and thus

NGLn(Zp)(W )/W = (A(m, 1, n)/A(m, r, n)) ◦Cm
Z×

p .

Note that A(m, 1, n)/A(m, r, n) is cyclic of order r generated by the element
x = [diag(1, . . . , 1, ζm)] and that [ζmIn] = xn.

If p �≡ 1 (mod m), then W = G(m, m, 2) is the dihedral group of order
2m with m ≥ 5, m �= 6 and p ≡ −1 (mod m). Conjugation of the realization
of G(m, m, 2) from above with the element

g =
[
1 −ζ−1

m

1 −ζm

]
gives a realization G(m, m, 2)g defined over the character field Q(ζm + ζ−1

m ).
Note that if m is odd, then

NGL2(C)(G(m, m, 2)) =
〈
G(m, 1, 2),C×〉

=
〈
G(m, m, 2),C×〉



THE CLASSIFICATION OF p-COMPACT GROUPS FOR p ODD 201

and hence NGL2(Zp)(G(m, m, 2)g)/G(m, m, 2)g = Z×
p . Thus, we may assume

that m is even. Since G(m, 1, 2) is generated by G(m, m, 2) and diag(1, ζm) we
find

NGL2(Zp)(G(m, m, 2)g) =
〈

G(m, m, 2)g,

[
1 1
−1 1 + ζm + ζ−1

m

]
,Q×

p

〉
∩GL2(Zp)

using Lemma 13.2. From Lemma 13.3 we see that the above matrix is invertible
over Zp and hence

NGL2(Zp)(G(m, m, 2)g) =
〈

G(m, m, 2)g,

[
1 1
−1 1 + ζm + ζ−1

m

]
,Z×

p

〉
.

Thus the homomorphism Z×(Z×
p /μ2) −→ NGL2(Zp)(G(m, m, 2)g)/G(m, m, 2)g

which maps (k, [λ]) to the coset of λ

[
1 1
−1 1 + ζm + ζ−1

m

]k

is surjective. The

kernel is easily seen to be the infinite cyclic group generated by the element
(−2, [1 + ζm + ζ−1

m ]) and thus we get NGL2(Zp)(G(m, m, 2)g)/G(m, m, 2)g ∼=
Z◦Z(Z×

p /μ2). It is easily checked that [2+ζm+ζ−1
m ] has a square root in Z×

p /μ2

if and only if either m ≡ 0 (mod 4) or m ≡ 2 (mod 4) and p ≡ −1 (mod 2m).
In this case we have NGL2(Zp)(G(m, m, 2)g)/G(m, m, 2)g ∼= C2 × (Z×

p /μ2).

Elaboration 13.5 (G(4, 2, 2)). The realization of the group G(4, 2, 2) from
above and the realization of the group G8 from [126, Table II] are both de-
fined over their common character field Q(i). Thus the relevant primes p are
the ones satisfying p ≡ 1 (mod 4). More precisely the representations are
defined over Z[12 , i] and as this ring embeds in Zp for all p as above, we get
NGL2(Zp)(G(4, 2, 2)) =

〈
G8,Z×

p

〉
by Lemma 13.2. It is easily checked that

G8 = 〈G(4, 2, 2), H〉, where H is the group of order 24 generated by the ele-
ments [

0 i

1 0

]
,

1 + i

2

[
1 1
i −i

]
.

Since G(4, 2, 2) ∩
〈
H,Z×

p

〉
= Z(H) = μ4 we conclude that

NGL2(Zp)(G(4, 2, 2))/G(4, 2, 2) ∼= (H/Z(H)) × (Z×
p /μ4) ∼= Σ3 × (Z×

p /μ4).

Elaboration 13.6 (G(3, 3, 3)). The realization of the group G(3, 3, 3) from
above and the realization of the group G26 from [126, p. 297] are both defined
over their common character field Q(ω) where ω = e2πi/3. Thus the relevant
primes p are the ones satisfying p ≡ 1 (mod 3). More precisely the repre-
sentations are defined over Z[13 , ω] and as this ring embeds in Zp for all p as
above, we see that NGL3(Zp)(G(3, 3, 3)) =

〈
G26,Z×

p

〉
using Lemma 13.2. It is

easily checked that G26 is the semidirect product of G(3, 3, 3) with the group
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H ∼= SL2(F3) generated by the elements

R1 =

⎡⎣1 0 0
0 1 0
0 0 ω2

⎤⎦ , R2 =
1√
−3

⎡⎣ ω ω2 ω2

ω2 ω ω2

ω2 ω2 ω

⎤⎦ .

The center of H is generated by the element

z =

⎡⎣ 0 −1 0
−1 0 0
0 0 −1

⎤⎦
and G(3, 3, 3) ∩

〈
H,Z×

p

〉
= 〈−z, μ3〉. Thus

NGL3(Zp)(G(3, 3, 3))/G(3, 3, 3) ∼= H ◦C2 (Z×
p /μ3) ∼= SL2(F3) ◦C2 (Z×

p /μ3)

where the central product is given by identifying z ∈ H with [−1] ∈ Z×
p /μ3.

Elaboration 13.7 (G5). The realization of the group G5 from [126, Ta-
ble I] is defined over the field Q(ζ12), but the character field is Q(ω) and thus
the relevant primes p are the ones satisfying p ≡ 1 (mod 3). Conjugation by
the matrix

g =
[

2
√

3 − 1
(
√

3 − 1)(1 − i) i − 1

]
gives a realization defined over Z[13 , ω] which embeds in Zp for all p as above.
Its easily checked that G14 is generated by G5 and the reflection

S =
1√
2

[
−1 i

−i 1

]
.

By Lemma 13.2 we then get:

NGL2(Zp)(G
g
5) =

〈
Gg

5,

[
0 1

−2ω 0

]
,Z×

p

〉
and thus the homomorphism Z × (Z×

p /μ6) −→ NGL2(Zp)(G
g
5)/Gg

5 which maps

(k, [λ]) to the coset of λ

[
0 1

−2ω 0

]k

is surjective. The kernel is easily seen

to be the infinite cyclic group generated by the element (−2, [2]) and we get
NGL2(Zp)(G

g
5)/Gg

5
∼= Z◦Z (Z×

p /μ6). It is easy to check that the element [2] has a
square root in Z×

p /μ6 if and only if p ≡ 1, 7, 19 (mod 24) (that is unless p ≡ 13
(mod 24)). In this case we get the simpler description NGL2(Zp)(G

g
5)/Gg

5
∼=

C2 × (Z×
p /μ6).

Elaboration 13.8 (G7). The realizations of the groups G7 and G10 given
in [126, Tables I and II] are both defined over their common character field
Q(ζ12). Thus the relevant primes p are the ones satisfying p ≡ 1 (mod 12).
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More precisely the representations are defined over Z[12 , ζ12] and as this ring em-
beds in Zp for all p as above, we get NGL2(Zp)(G7) =

〈
G10,Z×

p

〉
by Lemma 13.2.

It is easily checked that G10 = 〈G7, C4〉, where C4 is the cyclic group generated

by
[
1 0
0 i

]
. Since G7∩(C4×Z×

p ) = C2×μ12 we conclude that NGL2(Zp)(G7)/G7

∼= C2 × (Z×
p /μ12).

Elaboration 13.9 (Spin(2n), n ≥ 4). The group G = Spin(2n), n ≥ 4 has
Weyl group G(2, 2, n) and by [26, Prop. 3.13] NGL(V )(W ) equals 〈G(2, 1, n),C×〉
for n ≥ 5. For n odd we have 〈G(2, 1, n),C×〉 = 〈WG,C×〉, and as above this
proves Theorem 13.1 in these cases.

Now assume that n ≥ 4 is even. The automorphism of the Dynkin diagram
which exchanges αn−1 and αn equals diag(1, . . . , 1,−1) and hence NGL(V )(W )
equals 〈WG,C×,Γ〉 for n ≥ 6. For n = 4 this also holds since

NGL(V )(W ) =
〈
G(2, 1, n), W (F4),C×〉

=
〈
W (F4),C×〉

=
〈
WG,C×,Γ

〉
by [26, Prop. 3.13] and a direct computation. Since Γ ⊆ GL(LG), Lemma 13.2
shows that NGL(LG⊗Zp)(WG) =

〈
WG,Z×

p ,Γ
〉

in all cases and hence

NGL(LG⊗Zp)(WG)/Z×
p WG

∼= Γ

since Γ ∩ Z×
p WG = 1.

Elaboration 13.10 (Spin(5), F4 and G2). For G = F4 the first claim fol-
lows directly from [26, Prop. 3.13]. For G = Spin(5), W (G) is conjugate to
G(4, 4, 2) in GL2(C) and [26, Prop. 3.13] shows that

NGL2(C)(G(4, 4, 2)) =
〈
G(4, 1, 2),C×〉

.

Similarly, for G = G2, W (G) is conjugate to G(6, 6, 2) in GL2(C) and [26,
Prop. 3.13] shows NGL2(C)(G(6, 6, 2)) = 〈G(6, 1, 2),C×〉. From this it is easy

to check the first claim in these cases. Thus NGL(V )(W ) =
〈
W,C×,

√
lϕl

〉
in all cases. By construction

√
lϕl stabilizes LG, so Lemma 13.2 shows that

NGL(L⊗Zp)(W ) =
〈
W,Z×

p ,
√

lϕl

〉
. Since ϕ2

l = 1 and
√

lϕl has determinant a
power of l the remaining claims follow.
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Lie semi-simples déployées, Actualités Scientifiques et Industrielles 1364, Hermann,
Paris, 1975.
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Lie, Hermann & Cie, Paris, 1955.

[34] A. Clark and J. Ewing, The realization of polynomial algebras as cohomology rings,
Pacific J. Math. 50 (1974), 425–434.

[35] A. M. Cohen, Finite complex reflection groups, Ann. Sci. École Norm. Sup. 9 (1976),
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