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Higher composition laws IV:
The parametrization of quintic rings

By Manjul Bhargava

1. Introduction

In the first three parts of this series, we considered quadratic, cubic and
quartic rings (i.e., rings free of ranks 2, 3, and 4 over Z) respectively, and found
that various algebraic structures involving these rings could be completely
parametrized by the integer orbits of an appropriate group representation on a
vector space. These orbit results are summarized in Table 1. In particular, the
theories behind the parametrizations of quadratic, cubic, and quartic rings,
noted in items #2, 9, and 13 of Table 1, were seen to closely parallel the
classical developments of the solutions to the quadratic, cubic and quartic
equations respectively.

Despite the quintic having been shown to be unsolvable nearly two cen-
turies ago by Abel, it turns out there still remains much to be said regarding
the integral theory of the quintic. Although a “solution” naturally still is not
possible, we show in this article that it is nevertheless possible to completely
parametrize quintic rings; indeed a theory just as complete as in the quadratic,
cubic, and quartic cases exists also in the case of the quintic. In fact, we present
here a unified theory of ring parametrizations which includes the cases n = 2,
3, 4, and 5 simultaneously.

Our strategy to parametrize rings of rank n is as follows. To any order
R in a number field of degree n, we give a method of attaching to R a set
of n points, XR ⊂ Pn−2(C), which is well-defined up to transformations in
GLn−1(Z). We then seek to understand the hypersurfaces in Pn−2(C), defined
over Z and of smallest possible degree, which vanish on all n points of XR.
We find that the hypersurfaces over Z passing through all n points in XR

correspond in a remarkable way to functions between R and certain resolvent
rings, a notion we introduced in [1] and [4]. We termed them resolvent rings
because they are integral models of the resolvent fields studied in the classical
literature. In particular, we showed in [4] that for cubic and quartic rings,
the resolvent rings turn out to be quadratic and cubic rings respectively. For
quintic rings, we will show that the resolvent rings are sextic rings. (For the
definitions of quadratic and cubic resolvents, see [4].)
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The above program leads to the following results describing how rings
of small rank are parametrized. When n = 3, one finds that cubic rings are
parametrized by integer equivalence classes of binary cubic forms. Specifically,
there is a natural bijection between the GL2(Z)-orbits on the space of binary
cubic forms, and the set of isomorphism classes of pairs (R,S), where R is a
cubic ring and S is a quadratic resolvent of R. We are thus able to recover,
from a geometric viewpoint, the celebrated result of Delone-Faddeev [11] and
Gan-Gross-Savin [12] parametrizing cubic rings (as reformulated in [4]).

When n = 4, analogous geometric and invariant-theoretic principles allow
us to show that quartic rings are essentially parametrized by equivalence classes
of pairs of ternary quadratic forms. Precisely, there is a canonical bijection
between the GL2(Z)× SL3(Z)-orbits on the space of pairs of ternary quadratic
forms, and the set of isomorphism classes of pairs (R,S), where R is a quartic
ring and S is a cubic resolvent of R. This was the main result of [4].

The above parametrization results were attained in [4] through a close
study of the invariant theory of quadratic, cubic, and quartic rings. This
invariant theory involved, in particular, many of the central ingredients in the
solutions to the quadratic, cubic, and quartic equations. In this article, we
reconcile these various invariant-theoretic elements with our new geometric
perspective.

The primary focus of this article is, of course, on the theory of quintic
rings, and it is here that the interplay between the geometry and invariant
theory becomes particularly beautiful. Even though the quintic equation is
not solvable, the analogous geometry and invariant theory from the cubic and
quartic cases can in fact be completely worked out for the quintic, and one
finds that the correct objects parametrizing quintic rings are quadruples of
quinary alternating 2-forms. More precisely, our main result is the following:

Theorem 1. There is a canonical bijection between the GL4(Z)×SL5(Z)-
orbits on the space Z4 ⊗∧2Z5 of quadruples of 5× 5 skew-symmetric matrices
and the set of isomorphism classes of pairs (R,S), where R is a quintic ring
and S is a sextic resolvent ring of R.

Notice that the enunciation of Theorem 1 is remarkably similar to the
cubic and quartic cases cited above. The similarities in fact run much deeper.

A first similarity that must be mentioned regards the justification for the
term “parametrization”. What made the above results for n = 3 and n = 4
genuine parametrizations is that every cubic ring and quartic ring actually
arises in those correspondences: there exists a binary cubic form corresponding
to any given cubic ring, and a pair of ternary quadratic forms to any given
quartic ring. Moreover, up to integer equivalence each maximal ring arises
exactly once in both bijective correspondences.



HIGHER COMPOSITION LAWS IV 55

The identical situation holds for the parametrization of quintic rings in
Theorem 1. Given an element A ∈ Z4⊗∧2Z5, let us write R(A) for the quintic
ring corresponding to A as in Theorem 1, and write Γ = GL4(Z) × SL5(Z).
Then we will prove:

Theorem 2. Every quintic ring R is of the form R(A) for some element
A ∈ Z4 ⊗∧2Z5. If R is a maximal ring, then the element A ∈ Z4 ⊗∧2Z5 with
R = R(A) is unique up to Γ-equivalence.

The implication for sextic resolvents (to be defined) of a quintic ring is
that they always exist. This is analogous to the situation with quadratic and
cubic resolvents of cubic and quartic rings respectively (cf. [4, Cor. 5]).

Corollary 3. Every quintic ring has at least one sextic resolvent ring.
A maximal quintic ring has a unique sextic resolvent ring up to isomorphism.

A second important similarity among these parametrizations is the method
via which they are computed. The forms corresponding to cubic, quartic, or
quintic rings in these parametrizations are obtained by determining the most
fundamental polynomial mappings relating these rings to their respective re-
solvent rings. In the cubic and quartic cases, these fundamental mappings
are none other than the classical resolvent maps used in the literature in the
solutions to the cubic and quartic equations.

More precisely, given a cubic ring R let S denote a quadratic resolvent of
R as defined in [4], i.e., a quadratic ring having the same discriminant as R.
In the case where R and S are orders in a cubic and quadratic number field
respectively, the binary cubic form corresponding to (R,S) in the parametriza-
tion is obtained as follows. When R and S lie in a fixed algebraic closure of Q,
there is a natural, discriminant-preserving map from R to S given by

φ3,2(α) =
Disc(α) +

√
Disc(α)

2
;

this may be viewed as an integral model of the classical resolvent map

δ(α) =
√

Disc(α) = (α(1) − α(2))(α(2) − α(3))(α(3) − α(1))

representing the most fundamental polynomial mapping from a cubic field to
its quadratic resolvent field; here α(1), α(2), α(3) denote the conjugates of α
in Q̄. The map φ3,2 : R → S evidently descends to a map φ̄3,2 : R/Z → S/Z,
and this resulting φ̄3,2 is precisely the binary cubic form associated to the
pair (R,S). The remarkable aspect of this parametrization of cubic rings is
that a pair (R,S) is completely determined by the binary cubic form φ̄3,2, and
conversely, every binary cubic form arises as a φ̄3,2 for some pair of rings (R,S).
In sum, φ̄3,2 is the essential map through which the parametrization of cubic
rings is computed (entry #9 in Table 1).
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Table 1: Summary of Higher Composition Laws

# Lattice (VZ) Group acting (GZ) Parametrizes (C) (k) (n) (H)

1. {0} - Linear rings 0 0 A0

2. Z̃ SL1(Z) Quadratic rings 1 1 A1

3. (Sym2Z2)∗ SL2(Z) Ideal classes in 2 3 B2

(gauss’s law) quadratic rings
4. Sym3Z2 SL2(Z) Order 3 ideal classes 4 4 G2

in quadratic rings
5. Z2 ⊗ Sym2Z2 SL2(Z)2 Ideal classes in 4 6 B3

quadratic rings
6. Z2 ⊗ Z2 ⊗ Z2 SL2(Z)3 Pairs of ideal classes 4 8 D4

in quadratic rings
7. Z2 ⊗ ∧2Z4 SL2(Z)× SL4(Z) Ideal classes in 4 12 D5

quadratic rings
8. ∧3Z6 SL6(Z) Quadratic rings 4 20 E6

9. (Sym3Z2)∗ GL2(Z) Cubic rings 4 4 G2

10. Z2 ⊗ Sym2Z3 GL2(Z)× SL3(Z) Order 2 ideal classes 12 12 F4

in cubic rings
11. Z2 ⊗ Z3 ⊗ Z3 GL2(Z)× SL3(Z)2 Ideal classes 12 18 E6

in cubic rings
12. Z2 ⊗ ∧2Z6 GL2(Z)× SL6(Z) Cubic rings 12 30 E7

13. (Z2 ⊗ Sym2Z3)∗ GL2(Z)× SL3(Z) Quartic rings 12 12 F4

14. Z4 ⊗ ∧2Z5 GL4(Z)× SL5(Z) Quintic rings 40 40 E8

Notation on Table 1. The symbol Z̃ in #2 denotes the set of elements in Z
congruent to 0 or 1 (mod 4). We use (Sym2Z2)∗ to denote the set of binary quadratic
forms with integral coefficients, while Sym2Z2 denotes the sublattice of integral binary
quadratic forms whose middle coefficients are even. Similarly, (Sym3Z2)∗ denotes the
space of binary cubic forms with integer coefficients, while Sym3Z2 denotes the subset
of forms whose middle two coefficients are multiples of 3. The symbol ⊗ is used for the
usual tensor product; thus, for example, Z2⊗Z2⊗Z2 is the space of 2× 2× 2 cubical
integer matrices, (Z2⊗Sym2Z3)∗ is the space of pairs of ternary quadratic forms with
integer coefficients, and Z2⊗Sym2Z3 is the space of pairs of integral ternary quadratic
forms whose cross terms have even coefficients.

The fourth column of Table 1 gives approximate descriptions of the classes C
of algebraic objects parametrized by the orbit spaces VZ/GZ. In most cases, the
algebraic objects listed in the fourth column come equipped with additional structure,
such as “resolvent rings” or “balance” conditions; for the precise descriptions of these
correspondences, see [2]–[4] and the current article.

The fifth column gives the degree k of the discriminant invariant as a polynomial
on VZ, while the sixth column of Table 1 gives the Z-rank n of the lattice VZ.

Finally, it turns out that each of the correspondences listed in Table 1 is related
in a special way to some exceptional Lie group H (see [2, §4] and [3, §4]). These
exceptional groups have been listed in the last column of Table 1.
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In a similar vein, a cubic resolvent of a quartic ring R is a cubic ring
S having the same discriminant as R, and which is equipped with a certain
natural, discriminant-preserving quadratic map φ4,3 : R→ S (see [4, Sec. 2.3]).
In the case where R and S are in fact orders in quartic and cubic number fields
respectively (lying in a fixed algebraic closure of Q), this map is none other
than the fundamental resolvent map

φ4,3(α) = α(1)α(2) + α(3)α(4)

used in the classical literature in the solution to the quartic equation; here α(1),
α(2), α(3), α(4) denote the conjugates of α in Q̄. Just as in the cubic case, the
map φ4,3 : R→ S descends to a map φ̄4,3 : R/Z→ S/Z, and this resulting φ̄4,3

is precisely the pair of ternary quadratic forms that corresponds to the pair
(R,S) in the parametrization of quartic rings. Again, the remarkable aspect
of this parametrization is that the pair (R,S) is completely determined by the
corresponding pair of ternary quadratic forms φ̄4,3, and conversely, every pair
of ternary quadratic forms arises as a φ̄4,3 for some pair (R,S) consisting of a
quartic ring and a cubic resolvent ring. Thus φ̄4,3 forms the fundamental map
through which the parametrization of quartic rings is computed, and indeed
detailed knowledge of this mapping is what the proof of the parametrization
of quartic rings relied on (entry #13 in Table 1).

In the quintic case, the most fundamental map relating a quintic ring
(or field) and its sextic resolvent seems to have been missed in the literature.
Although various maps relating a quintic field and its sextic resolvent field
have been considered in the past, it turns out that all such maps may be
realized as higher degree covariants of one special fundamental map φ5,6. This
beautiful map is discussed in Section 5, and forms a most crucial ingredient
in the proof of Theorem 1 and its corollaries. One reason why the map φ5,6

may have been missed in the past is that it sends a quintic ring R not to its
sextic resolvent S, but instead to ∧2S. (We actually work more with the dual
map g = φ∗5,6 : ∧2S∗ → R∗, where R∗ and S∗ denote the Z-duals of R and S

respectively, which turns out to be more convenient.) In perfect analogy with
the cubic and quartic cases, this fundamental map φ5,6 is found to descend
to a mapping φ̄5,6 : R/Z → ∧2(S/Z), and this φ̄5,6 may thus be viewed as a
quadruple of alternating 2-forms in five variables. Theorem 1 then amounts
to the remarkable fact that the pair (R,S) is completely determined by φ̄5,6,
and conversely every quadruple of quinary alternating 2-forms arises as the
map φ̄5,6 for some pair (R,S) consisting of a quintic ring and a sextic resolvent
ring. Thus—analogous to the mappings φ3,2 and φ4,3 in the cubic and quartic
cases—φ5,6 (or, equivalently, g = φ∗5,6) is the fundamental mapping through
which the parametrization of quintic rings is computed (entry #14 in Table 1).

Finally, the multiplication tables of the rings and resolvent rings corre-
sponding to points in the above spaces—namely the spaces of integral binary
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cubic forms, pairs of integral ternary quadratic forms, and quadruples of inte-
gral 5 × 5 skew-symmetric matrices (i.e., items #9, 13, and 14 in Table 1)—
may be worked out directly from the point of view of studying sets of n points
in Pn−2 for n = 3, 4 and 5 respectively. We illustrate the case n = 5 in this
article. The corresponding multiplication tables for n ≤ 4 were given in [2]–[4].

We observe that each of the group representations given in Table 1 is a Z-
form of what is known as a prehomogeneous vector space, i.e., a representation
having just one Zariski-open orbit over C. This work completes the analysis
of orbits over Z in those prehomogeneous vector spaces corresponding to field
extensions, as classified by Wright-Yukie in their important work [15].

The organization of this paper is as follows. In Section 2, we examine
the parametrizations of cubic and quartic rings from the geometric point of
view described above for general n. We then concentrate strictly on the case
of quintic rings, and explain how the space VZ = Z4 ⊗ ∧2Z5 of quadruples
of quinary alternating 2-forms arises in this context. The space VZ has a
unique invariant for the action of Γ = GL4(Z) × SL5(Z), which we call the
discriminant; this invariant is defined in Section 3. In Section 4, given an
element A ∈ Z4 ⊗ ∧2Z5, we use our new geometric perspective to construct a
multiplication table for a quintic ring R = R(A) which is found to be naturally
associated to A.

In Section 5, we then introduce the notion of a sextic resolvent S for a
nondegenerate quintic ring R, and we construct the fundamental mapping g

between them alluded to above. We describe the multiplication table for this
sextic resolvent ring S in Section 6. The main result, Theorem 1, is then proved
in Section 7 in the case of nondegenerate rings. In Section 8, we explain the
precise relation between g and Cayley’s classical resolvent map Φ : R→ S⊗Q
defined by

Φ(α) = ( α(1)α(2) + α(2)α(3) + α(3)α(4) + α(4)α(5) + α(5)α(1)

−α(1)α(3) − α(3)α(5) − α(5)α(2) − α(2)α(4) − α(4)α(1))2,

which has played a major role in the literature in the solution to the quintic
equation whenever it is soluble. Cayley’s map is found to be a degree 4 covari-
ant of the map g. In Section 9, we describe an alternative approach to sextic
resolvent rings which, in particular, allows for a proof of Theorem 1 in all cases
(including those of zero discriminant). In Sections 10 and 11, we study more
closely the invariant theory of the space Z4 ⊗ ∧2Z5, and as a consequence, we
prove Theorem 2 and Corollary 3. In Section 12, we examine how conditions
such as maximality and prime splitting for quintic rings R(A) manifest them-
selves as congruence conditions on elements A of Z4 ⊗ ∧2Z5. This may be
useful in future computational applications (see e.g. [6]), and will also play a
crucial role for us in obtaining results on the density of discriminants of quintic
fields (to appear in [5]).
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2. The geometry of ring parametrizations

We begin by recalling some basic terminology. First, let us define a ring
of rank n to be any commutative ring with unit that is free of rank n as a
Z-module. For n = 2, 3, 4, 5, and 6, such rings are called quadratic, cubic,
quartic, quintic, and sextic rings respectively. An order in a degree n number
field is the prototypical ring of rank n. To any such ring R of rank n we may
attach the trace function Tr : R → Z, which assigns to any element α ∈ R

the trace of the endomorphism R
×α−→R. The discriminant Disc(R) of such a

ring R is then defined as the determinant det(Tr(αiαj)) ∈ Z, where {αi}ni=1 is
any Z-basis of R. Finally, we say that a ring of rank n is nondegenerate if its
discriminant is nonzero.

In this section, we wish to understand the parametrization of rings of
small rank via a natural mapping that associates, to any nondegenerate ring
R of rank n, a set XR of n points in an appropriate projective space.

To this end, let R be any nondegenerate ring of rank n, and fix a Z-basis
〈α0 = 1, α1, . . . , αn−1〉 of R. Since R is nondegenerate, K = R ⊗ Q is an
étale Q-algebra of dimension n, i.e., K is a direct sum of number fields the
sum of whose degrees is n. Let ρ(1), . . . , ρ(n) denote the distinct Q-algebra
homomorphisms from K to C, and for any element α ∈ K, let α(1), α(2), . . .,
α(n) ∈ C denote the images of α under the n homomorphisms ρ(1), . . . , ρ(n)

respectively. For example, in the case that K ⊂ C is a field, α(1), . . . , α(n) ∈ C
are simply the conjugates of α over Q.

Let 〈α∗0, α∗1, . . . , α∗n−1〉 be the dual basis of 〈α0, α1, . . . , αn−1〉 with respect
to the trace pairing on K, i.e., we have TrKQ (αiα∗j ) = δij for all 0 ≤ i, j ≤ n−1.
For m ∈ {1, 2, . . . , n}, set

x
(m)
R =

[
α∗1

(m) : · · · : α∗n−1
(m)] ∈ Pn−2(C).

(Note that α∗0 is not used here.) We thus obtain n points, conjugate to each
other over Q when K is a field, and a set

XR =
{
x

(1)
R , . . . , x

(n)
R

}
in Pn−2(C) which is now independent of the numbering of the homomorphisms
ρ(m).

Alternatively, if D denotes the n× n matrix

D =



1 1 · · · 1
α

(1)
1 α

(2)
1 · · · α

(n)
1

α
(1)
2 α

(2)
2 · · · α

(n)
2

...
...

. . .
...

α
(1)
n−1 α

(2)
n−1 · · · α

(n)
n−1

(1)

and Di,m denotes its (i,m)-th minor, i.e., (−1)i+m times the determinant of
the matrix obtained from D by omitting its ith row and mth column, then we
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have α∗i
(m) = Di+1,m/det(D). Hence we can also write

(2) x
(m)
R = [D2,m : · · · : Dn,m].

Note that the elements α∗i ∈ K (i > 0), and hence the points x(m)
R , depend

only on the basis 〈ᾱ1, . . . , ᾱn−1〉 of R/Z; i.e., changing each αi to αi + mi for
mi ∈ Z does not affect α∗i for i > 0. In fact, if we denote by K0 the traceless
elements of K, then the trace gives a nondegenerate pairing K0 ×K/Q → Q
so that 〈α∗1, . . . , α∗n−1〉 is the basis of K0 dual to the Q-basis 〈ᾱ1, . . . , ᾱn−1〉 of
K/Q.

We observe that the points of XR are in general position in the sense that
no n−1 of them lie on a hyperplane. Indeed, if say x(1), x(2), . . ., x(n−1) were
on a single hyperplane, then we would have det(x(1), x(2), . . . , x(n−1)) = 0; but
a calculation shows that, with the coordinates of the x(i) defined as in (2),
det(x(1), x(2), . . . , x(n−1)) = ±(detD)n−2 6= 0, since (detD)2 = Disc(R) 6= 0.

However, we observe that for any 1 ≤ i < j ≤ n, the hyperplane defined
by

Hi,j(t) =
(
α

(i)
1 − α

(j)
1

)
t1 + · · · +

(
α

(i)
n−1 − α

(j)
n−1

)
tn−1 = 0,(3)

where [t1 : · · · : tn−1] are the homogeneous coordinates on Pn−2, is seen to pass
through n− 2 of the n points in XR, namely through all x(k) such that k 6= i

and k 6= j. This can be seen by replacing the kth column of D by the difference
of its ith and jth columns; this new matrix Di,j,k evidently has determinant
zero. Expanding the determinant of Di,j,k by minors of the kth column shows
that x(k) lies on Hi,j .

There is a natural family of n × n skew-symmetric matrices attached to
any element α ∈ R that can be used to describe these hyperplanes as well as
certain higher degree hypersurfaces vanishing on various points of XR. Given
any n×n symmetric matrix Λ = (λij), define the n×n skew-symmetric matrix
MΛ = MΛ(α) by

MΛ = (mij) =
(
λij
(
α(i) − α(j)

))
.(4)

If we write α = t1α1+· · ·+tn−1αn−1, then we may view MΛ = MΛ(t1, . . . , tn−1)
as an n×n skew-symmetric matrix of linear forms in t1, . . . , tn−1. If we now al-
low the variables t1, . . . , tn−1 to take values in C, then the various sub-Pfaffians1

of MΛ give interesting functions on Pn−2
C that vanish on some or all points in

{x(1), . . . , x(n)}.
For example, the 2 × 2 sub-Pfaffians of MΛ are simply multiples of the

linear functionals (3), and they vanish on the n − 2-sized subsets of X =

1Recall that the Pfaffian is a canonical square root of the determinant of a skew-symmetric
matrix of even size. By sub-Pfaffians, we mean the Pfaffians of principal submatrices of even
size.



HIGHER COMPOSITION LAWS IV 61

{x(1), . . . , x(n)}. (Note that
(
n
2

)
, the number of 2 × 2 sub-Pfaffians of MΛ,

equals
(
n
n−2

)
, the number of n− 2-sized subsets of X.)

Similarly, the 4× 4 sub-Pfaffians (when n ≥ 4) are seen to yield quadrics
that vanish on all of X. In general, the 2m× 2m sub-Pfaffians of MΛ (m ≥ 2)
yield degree m forms vanishing on X.

The special cases n = 2, 3, 4, and 5 give hints as to how orders in small
degree number fields—and, more generally, rings of small rank—should be
parametrized:

n = 2: Write R = 〈1, α1〉. Then

(5) MΛ =

[
0 λ12

(
α

(1)
1 − α

(2)
1

)
λ12

(
α

(2)
1 − α

(1)
1

)
0

]
.

The determinant of MΛ (the square of its Pfaffian) is λ 2
12

(
α

(1)
1 − α

(2)
1

)2 =
λ 2

12Disc(R). Setting λ12 = 1 gives Disc(R), and the correspondence R ↔
Disc(R) is precisely how quadratic rings are parametrized. (See [2] for a full
treatment.)

n = 3: Write R = 〈1, α1, α2〉. The only relevant sub-Pfaffians of MΛ are
again all 2× 2, and are given by the linear forms

Lij(t1, t2) = λij
[(
α

(i)
1 − α

(j)
1

)
t1 +

(
α

(i)
2 − α

(j)
2

)
t2
]

(6)

for (i, j) = (1, 2), (1, 3), and (2, 3). This information can be put together by
forming their product cubic form

f(t1, t2) = L12L13L23,(7)

and indeed this is the smallest degree form vanishing on all points of X. Choos-
ing Λ so that λ12λ13λ23 = 1/

√
Disc(R), we obtain precisely the binary cu-

bic form fR corresponding to R under the Delone-Faddeev parametrization.
One checks that fR(t1, t2) is an integral cubic form, and Disc(fR) = Disc(R).
(See [3] for a full treatment.)

n = 4: Let R = 〈1, α1, α2, α3〉. We now must consider both the 2×2 and
4× 4 sub-Pfaffians of MΛ. The 2× 2 sub-Pfaffians are linear forms that corre-
spond to lines in P2 passing through pairs of points ofX = {x(1), x(2), x(3), x(4)}.
The smallest degree form vanishing on all points of X has degree 2, and one
such quadratic form is given by the 4× 4 Pfaffian of MΛ, for any fixed choice
of Λ. However, for any four points in P2 in general position, there is a two-
dimensional space of quadrics passing through them. Thus to obtain a span-
ning set for the quadratic forms vanishing on X, we must choose two different
Λ’s, say Λ and Λ′.
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Let S = 〈1, ω, θ〉 be a cubic resolvent of R in the sense of [4]. Choose Λ
so that

λ12λ34 = ω(1)/
√

Disc(R), λ13λ24 = ω(2)/
√

Disc(R), and

λ14λ23 = ω(3)/
√

Disc(R),

and Λ′ so that

λ′12λ
′
34 = θ(1)/

√
Disc(R), λ13λ24 = θ(2)/

√
Disc(R), and

λ′14λ
′
23 = θ(3)/

√
Disc(R).

Let A and B denote the quadratic forms Pfaff(MΛ) and Pfaff(MΛ′) respectively.
Then (A,B) is precisely the pair of ternary quadratic forms corresponding to
R (and S) in the parametrization of quartic rings laid down in [4]. One may
check directly that these choices of Λ and Λ′ yield integral A and B such that
Disc(A,B) = Disc(Det(Ax−By)) = Disc(R). (For the full theory behind this
case, see [4].)

n = 5: Finally, let R = 〈1, α1, α2, α3, α4〉. We again examine first the
2× 2 sub-Pfaffians of MΛ. There are ten of them, and they correspond to the
planes in P3 going through the various 3-point subsets of X = {x(1), . . . , x(5)}.
Next, there are five 4 × 4 sub-Pfaffians, which for generic2 choices of Λ are
linearly independent; we fix such a Λ. Then the five 4× 4 sub-Pfaffians of MΛ

cut out quadric surfaces passing through all five points of X. In fact, for any
five points in P3 in general position, a counting argument shows that there is
exactly a five-dimensional family of quaternary quadratic forms vanishing at
the five points. Moreover, one finds that the set of common zeros of this five-
dimensional family of quadratic forms consists only of these five points. Since
all sets of five points in general position in P3

C are projectively equivalent, it
suffices to check the latter assertion at any desired set of five points in general
position in P3

C.
Now consider the natural left action of the group GL4(C) × GL5(C) on

the space V = C 4 ⊗ ∧2C 5 of 5 × 5 skew-symmetric matrices of quaternary
linear forms. It is known that this representation is a prehomogeneous vector
space (see Sato-Kimura [14]), i.e., it posseses a single Zariski-open orbit. This
may be seen in an elementary manner as follows. First, note that the action
of GL4(C) on the orbit of MΛ in V results in an action of PGL4(C) on P3

C,
thereby moving around the set X of five points x(1), . . . , x(5) ∈ P3

C where the
five 4 × 4 sub-Pfaffians vanish. Meanwhile, the group GL5(C) acts on the
vector consisting of the five 4 × 4 signed sub-Pfaffians by essentially the dual
of the standard representation. More precisely, for v ∈ V define the ith 4× 4

2More precisely, Λ is “generic” if F (Λ) 6= 0 for a certain fixed polynomial F in the entries
of Λ; see Section 4 for an explicit expression for F .
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signed sub-Pfaffian Qi of v to be (−1)i+1 times the Pfaffian of the 4×4 principal
submatrix obtained from v by removing its ith row and column. If g ∈ GL5(C),
v ∈ V , and Q1, . . ., Q5 and Q′1, . . ., Q′5 denote the 4 × 4 signed sub-Pfaffians
of v and g · v respectively, then we have

(8)

 Q′1
...
Q′5

 = (det g)(g−1)t

 Q1
...
Q5

 .
Now PGL4(C) acts simply transitively on (ordered) sequences x(1), . . . ,

x(5) of five points in general position in P3, while SL5(C) acts simply transi-
tively on bases 〈Q1, Q2, . . . , Q5〉 (up to scaling) of the five-dimensional space
of quaternary quadratic forms vanishing on X = {x(1), . . . , x(5)}. We conclude
that the stabilizer of MΛ in GL4(C) × SL5(C) is contained in the symmet-
ric group S5 = Perm(X), the permutation group of X. Indeed, the only
way to send MΛ to itself via an element of GL4(C) × SL5(C) is to permute
the five points in X via an element γ4 ∈ SL4(C); then to apply the unique
element γ5 ∈ SL5(C) that returns the basis of 4 × 4 signed sub-Pfaffians
Q1, . . . , Q5 to what it was at the outset, up to a possible scaling factor; and
finally to multiply by the unique scalar γ1 ∈ C∗ that returns the quadruple
of 5 × 5 skew-symmetric matrices to its original value MΛ. Thus the ele-
ment (γ1γ4, γ5) ∈ GL4(C) × SL5(C), if it exists, is uniquely determined by
the chosen permutation in Perm(X). It follows that the stabilizer of MΛ

is contained in S5 = Perm(X), and a calculation shows that the stabilizer
is in fact the full symmetric group S5. Since the dimension of the group
G(C) = GL4(C) × SL5(C) is 16 + 24 = 40, as is the dimension of its repre-
sentation V = C 4 ⊗ ∧2C 5, and since the stabilizer is finite, we conclude that
there must be an open orbit for the group action. We call an element A ∈ V
nondegenerate if it lies in this open orbit.

In particular, we see now that any element v in V = C 4 ⊗ ∧2C 5 in this
open orbit possesses 4× 4 sub-Pfaffians that intersect in five points in general
position in P3. Conversely, since any five points in P3 in general position are
projectively equivalent, a five-dimensional family of quadrics in P3 will intersect
in five points in general position if and only if the family arises as the span
of the five 4× 4 sub-Pfaffians of a 5× 5 skew-symmetric matrix of quaternary
linear forms lying in this open orbit in V . Hence the open orbit of the space
V = C 4 ⊗ ∧2C 5 of 5 × 5 skew-symmetric matrices of linear forms in four
variables parametrizes the smallest degree hypersurfaces passing through sets
X of five points in general position in P3

C, together with a chosen basis of the
(five-dimensional) space of quaternary quadratic forms vanishing on X.

Thus the situation is completely analogous to the previous parametriza-
tions of n points in Pn−2 with n ≤ 4, and so we may expect that the integral
points of this space, VZ = Z4 ⊗ ∧2Z5, should parametrize quintic rings.
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Therefore our goal, following the previous cases, is to find for any nonde-
generate quintic ring R an integral element A ∈ VZ = Z4 ⊗ ∧2Z5 whose 4× 4
sub-Pfaffians vanish on x

(1)
R , . . . , x

(5)
R , and whose discriminant Disc(A) (to be

defined) is equal to Disc(R). Conversely, we wish to show that the 4× 4 sub-
Pfaffians of any nondegenerate element A ∈ VZ vanish at the five points x(1)

R ,
. . ., x(5)

R ∈ P3
C for some quintic ring R satisfying Disc(R) = Disc(A).

This is precisely what is accomplished in the sections that follow. We
begin by examining more closely the invariant theory of the action of Γ =
GL4(Z)× SL5(Z) on VZ = Z4 ⊗ ∧2Z5.

3. The fundamental Γ-invariant Disc(A1, A2, A3, A4)

Let us write elements A ∈ VZ as quadruples A = (A1, A2, A3, A4) of 5× 5
skew-symmetric matrices over the integers, with the understanding that when
we speak of the 4×4 sub-Pfaffians of A, we are referring to the five sub-Pfaffians
Q1, . . . , Q5 of the single 5×5 skew-symmetric matrix A1t1 +A2t2 +A3t3 +A4t4.

It is known (see Sato-Kimura [14]) that the action of Γ on VZ has a sin-
gle polynomial invariant, which we call the discriminant in analogy with our
previous terminology in [2]–[4]. This discriminant function has degree 40. As
always, we scale the discriminant polynomial Disc( · ) on VZ so that it has rela-
tively prime integral coefficients. This only determines Disc( · ) up to sign, but
our choice of sign (and the fact that such a scaling exists) will become clear in
the next section, where we construct the discriminant polynomial explicitly. It
follows from Sato and Kimura’s analysis (and will also follow from our work in
Section 4) that an element A ∈ VZ is nondegenerate precisely when its discrimi-
nant is nonzero. We will be primarily interested in the nongedenerate elements
of VZ, as they will turn out to correspond to the nondegenerate quintic rings,
i.e., those that embed as orders in étale quintic extensions of Q.

4. The multiplication table for quintic rings

Let R be any nondegenerate quintic ring, and let x(1), . . . , x(5) be the
corresponding points in P3 as constructed in Section 2. Since up to scaling
there is only a single SL5(C)-orbit of points A ∈ V = C 4 ⊗ ∧2C 5 whose five
independent 4 × 4 sub-Pfaffians vanish on the five points x(1), . . . , x(5), the
structure coefficients of multiplication in R should also depend, at least up to
scaling, only on the SL5-invariants of the points in this orbit. We therefore
wish to construct, and understand the meaning of, the various invariants for
the action of SL5(C) on V .

First, let us turn to the construction of all the SL5-invariants, which is
quite pretty. Given a point A = (A1, A2, A3, A4) ∈ V , let M1, M2, and M3
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be any three fixed linear combinations of the skew-symmetric 5 × 5 matrices
A1, A2, A3, A4. Then the Pfaffian of the 10× 10 skew-symmetric matrix

(9)
[
M1 M2

M2 M3

]
is clearly an SL5-invariant of A, for the action of an element g ∈ SL5(C) on A

results in the action of
(
g
g

)
on the 10× 10 skew-symmetric form

[
M1

M2

M2

M3

]
, and

hence the value of its Pfaffian does not change. The Pfaffians

(10) Pfaff
[
M1 M2

M2 M3

]
are our prototypical SL5-invariants. In fact, it is not too difficult to show that,
over C, all polynomial invariants for SL5(C) must be polynomials in these
degree 5 Pfaffians! However, we shall not need this fact in what follows, and
so we omit the proof.

Next, we would like to understand the meaning of these SL5-invariants
in terms of an appropriate quintic ring R. Let R again be a nondegenerate
quintic ring having Z-basis 〈1, α1, . . . , α4〉, let x(1), . . . , x(5) be the associated
points in P3 as in Section 2, and denote by A = (A1, A2, A3, A4) an element
of V whose independent 4 × 4 sub-Pfaffians vanish on X = {x(1), . . . , x(5)}.
As remarked earlier, in studying the above SL5-invariants of A, it suffices to
consider the SL5-invariants of any element M ∈ V in the same SL5(C)-orbit
of A, or any scalar multiple of such an element. In particular, we may assume
that A takes the form MΛ ∈ V as constructed in Section 2, where Λ = (λij) is
any generic 5× 5 symmetric matrix, to be chosen later.

More precisely, given α ∈ R = 〈1, α1, . . . , α4〉, denote by M(α) the 5 × 5
skew-symmetric matrix

(
λij(α(i) − α(j))

)
. Then we have noted in Section 2

that the 4 × 4 sub-Pfaffians of MΛ = (M(α1), . . . ,M(α4)) ∈ V vanish at the
desired points x(1)

R , . . . , x
(5)
R . Thus we may consider the SL5-invariants of MΛ,

which are generated by the Pfaffians Pfaff
[
M(x)
M(y)

M(y)
M(z)

]
for x, y, z ∈ R.

For any 5×5 skew-symmetric matrices X,Y, Z, let us write Pf(X,Y, Z) =
Pfaff

[
X
Y
Y
Z

]
, and set

P+(X,Y, Z) =
Pf(X,Y, Z) + Pf(X,Y,−Z)

2
,(11)

P−(X,Y, Z) =
Pf(X,Y, Z)− Pf(X,Y,−Z)

−2
.(12)

Then one checks that P+(X,Y, Z) and P−(X,Y, Z) are primitive integer poly-
nomials in the entries of X,Y, Z having homogeneous degrees 2,1,2 and 1,3,1
respectively. By construction, the integer polynomials P±(M(x),M(y),M(z))
for x, y, z ∈ R are SL5-invariants of MΛ.
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There is an alternative description of these invariants P+ and P− which
is also quite appealing. Given a 5 × 5 skew-symmetric matrix X, let Q(X)
denote as before the column vector [Q1, . . . , Q5]t of (signed) 4×4 sub-Pfaffians
of X. Then Q is evidently a quadratic form on the vector space of 5 × 5
skew-symmetric matrices. Let Q(X,Y ) denote the corresponding symmetric
bilinear form such that Q(X,X) = 2Q(X). Then we have

P+(X,Y, Z) = Q(X)t · Y · Q(Z),(13)

P−(X,Y, Z) =Q(X,Y )t · Y ·Q(Y,Z).(14)

More generally, for any 5× 5 skew-symmetric matrices U,W,X, Y, Z, we have
the SL5-invariants P (U,W,X, Y, Z) = Q(U,W )t · X · Q(Y,Z), although it is
easy to see that these invariants may also be expressed purely in terms of P+

(or P−).
Finally, let F (Λ) denote the following integral degree five polynomial in

the entries of Λ:

(15) F (Λ) =
−1
10

∑
i,j,k,`,m

σ(ijk`m)·λijλjkλk`λ`mλmi,

where we have used σ(ijk`m) to denote the sign of the permutation (i, j, k, `,m)
of (1, 2, 3, 4, 5). The polynomial F has a rather natural interpretation in terms
of Figure 1 (p. 72), which will play a critical role in the sequel. We observe
that Figure 1 shows six of the twelve ways of connecting five points 1, . . . , 5 by
a 5-cycle, the other six being the complements of these graphs in the complete
graph on five vertices. The negation of the polynomial F (Λ) can be expressed
as the sum of twelve terms: six terms of the form λijλjkλk`λ`mλmi, where
(ijklm) ranges over the six cycles occurring in Figure 1; and six terms of the
form −λijλjkλk`λ`mλmi, where (ijklm) ranges over the complements of these
six cycles. (For further details on Figures 1 and 2, see Section 5.2.)

We have the following beautiful identities:

Lemma 4. For x, y, z ∈ R, we have

(a) P+(M(x),M(y),M(z))

= F (Λ) ·

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 1
x(1) x(2) x(3) x(4) x(5)

y(1) y(2) y(3) y(4) y(5)

z(1) z(2) z(3) z(4) z(5)

x(1)z(1) x(2)z(2) x(3)z(3) x(4)z(4) x(5)z(5)

∣∣∣∣∣∣∣∣∣∣∣
;
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(b) P−(M(x),M(y),M(z))

= F (Λ) ·

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 1
x(1) x(2) x(3) x(4) x(5)

y(1) y(2) y(3) y(4) y(5)

z(1) z(2) z(3) z(4) z(5)

(y(1))2 (y(2))2 (y(3))2 (y(4))2 (y(5))2

∣∣∣∣∣∣∣∣∣∣∣
.

Proof. Direct multiplication.

Lemma 4 may be viewed as the quintic analogue of the identities we
presented for the quartic case in [4, Lemma 9]. In particular, the lemma
allows us to completely regain the multiplicative structure of R from the SL5-
invariants P+ and P− of A.

First, we may assume that 〈1, α1, . . . , α4〉 is a normal basis for R, by
which we mean that α1, . . . , α4 have been translated by integers so that the
coefficients of α1 and α2 in α1α2 and the coefficients of α3 and α4 in α3α4 are
each equal to zero. Now let us write

(16) αiαj = c 0
ij +

4∑
k=1

c kijαk

for 1 ≤ i ≤ j ≤ 4. Our normal basis assumption implies that

(17) c 1
12 = c 2

12 = c 3
34 = c 4

34 = 0.

We choose to normalize bases because bases of R/Z then lift uniquely to nor-
malized bases of R.

We wish to express the structure coefficients c kij in terms of the various
SL5-invariants of the quadruple (M(α1), . . . ,M(α4)) of skew-symmetric 5× 5
matrices. For simplicity let us write Aj = M(αj). Also, for i, j, k, `,m ∈
{1, 2, 3, 4}, let us use the shorthand

{ijk`m} = Q(Ai, Aj)t ·Ak ·Q(A`, Am)(18)

for the various SL5-invariants of A = (A1, A2, A3, A4) ∈ V . Note that if i = j

or ` = m then the integral polynomial invariant {ijk`m} is a multiple of 2;
moreover, if both i = j and ` = m then {ijk`m} is a multiple of 4.

With this notation, it is easy to see using Lemma 4 that

(19) c 4
13 =

{11233}
4 · F (Λ)

√
Disc(R)

while

(20) c 4
22 =

{12223}
F (Λ)

√
Disc(R)

;
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here
√

Disc(R) denotes the square root detD of Disc(R), where D is given as
in (1). Thus we see that these c kij are defined, as expected, up to an overall
scaling factor depending on Λ. In order to render the c kij primitive integer
polynomials purely in the entries of A ∈ V (analogous to the cubic and quartic
cases), we choose Λ so that F (Λ) = 1/

√
Disc(R). This gives c 4

13 = {11233}
4 and

c 4
22 = {12223}, both now primitive integer polynomials in the entries of A.

In general, we now find that for any permutation (i, j, k, `) of (1, 2, 3, 4),
we have

(21)

c kij = ±{ii`jj}/4,
c jii = ±{`iiik},

c jij − c kik = ±{jk`ii}/2,
c iii − c

j
ij − c kik = ±{ij`ki},

where we have used ± to denote the sign of the permutation (i, j, k, `) of
(1, 2, 3, 4). The normalizing conditions (17) then determine all c kij (for k 6= 0)
as primitive integer polynomials in the entries of A.

The remaining constant coefficients c 0
ij can also now be uniquely expressed

as polynomials in the entries of A, using the associative law in R. Indeed, com-
puting the expressions (αiαj)αk and αi(αjαk) using (16), and then equating
the coefficients of αk, yields the equality

(22) c 0
ij =

4∑
r=1

(
c rjkc

k
ri − c rijc krk

)
for any k ∈ {1, 2, 3, 4} \ {i}. One checks using the explicit expressions in (21)
that the right-hand side of (22) is a polynomial expression in the entries of A
that is independent of k. We have thus recovered all structure coefficients of R
in terms of the SL5-invariants {ijklm} of the quadruple (A1, . . . , A4) of 5× 5
skew-symmetric matrices.

Now suppose A ∈ VZ is any element. Then we may naturally attach to
A the set {c kij} of SL5-invariants of A, where the c kij = c kij(A) are defined by
(17), (21) and (22). With these values of c kij , we may then naturally form
a ring with Z-basis 〈1, α1, . . . , α4〉 and multiplicative structure given by (16);
one checks that all relations among the ckij implied by the associative law are
satisfied. Hence given any A ∈ VZ we obtain in a natural way a corresponding
quintic ring with a Z-basis. We denote the resulting ring, whose (normalized)
multiplicative structure coefficients c kij are given as in (17), (21), and (22), by
R(A) = RZ(A). 3

3More generally, given an element A ∈ VT = T 4 ⊗ ∧2T 5 for any base ring T , we may
analogously attach to A a quintic T -algebra RT (A) via the same relations, since there is a
unique ring homomorphism Z → T for any ring T . Although our main case of interest here
is of course T = Z, we will also have occasions to consider T = Q, Fp, Qp, R, and C.
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It is easy to determine the multiplication structure of R(A) for A ∈ VZ
also in terms of nonnormalized bases. If each basis element αi ∈ R(A) is
translated by some integer mi, then the structure constants of the form c jij
(j 6= i) will be translated by mi, while c iii will be translated by 2mi. Thus
the expressions on the left side of (21) will remain unchanged. Conversely,
it is immediately seen that any integer values assigned to the constants c kij
satisfying the system (21) must arise by translations of the basis elements αi
by some integers mi. Therefore, the multiplication table of R(A) in terms
of a general basis 〈1, α1, α2, α3〉 is given by (16), where the set {c kij} denotes
any integer solution to the system of equations (21) and (22). Thus we have
obtained a general description of the multiplication table of R(A) in terms of
any Z-basis 〈1, α1, α2, α3, α4〉 of R(A) (not necessarily normalized).

Since the values of the structure constants of the ring R(A) are given in
terms of integer polynomials in the entries of A, the discriminant of the ring
R(A) also then becomes a polynomial with integer coefficients in the entries
of A. As Disc(Z5) = 1, Theorem 17 in Section 11 (with R = Z5) implies that
the polynomial Disc(R(A)) takes the value 1 at some element in VZ, and so in
particular this polynomial must have relatively prime coefficients. In addition,
the polynomial Disc(R(A)) is evidently Γ-invariant and of degree 40; therefore,
we must in fact have Disc(A) = Disc(R(A)), at least up to sign. We define
Disc(A) = Disc(R(A)). (This naturally fixes the sign of Disc(A) which was
left ambiguous in Section 3.)

We have remarked earlier that the vector space of SL5-invariants of degree
5 on V is spanned by the various expressions P+ or P−. This can be proved,
e.g., by computing, via the theory of weights, the number of copies of the
trivial representation inside the representation Sym5((∧2C5)⊕4) of SL5(C); this
number turns out to be 36. Meanwhile, one can also check that the vector
space of polynomials spanned by the invariants P+ (or P−) is 36-dimensional.
It follows that the invariants P± span all SL5-invariants of degree 5 on V .
On the other hand, a glance at (16) and (17) shows that there are 36 nonzero
values among the c kij (after normalization) with k > 0, and, as these are seen to
be linearly independent, they must also span the same 36-dimensional space.
Consequently, we may also express the SL5-invariants of A entirely in terms of
the expressions c kij = c kij(A), whose values are given by (17) and (21).

Now suppose two nondegenerate elements A,A′ in VZ (or even in VC)
have the identical SL5-invariants, i.e., c kij(A) = c kij(A

′) for all i, j, k. We claim
that A and A′ must then in fact be SL5(C)-equivalent. In other words, for
nondegenerate elements of V , the SL5-invariants determine the SL5(C)-orbit.
To see this, note that an element γ4 ∈ GL4(C) acts on the SL5-invariants
of an element A ∈ V simply by re-expressing the structure constants c kij of
the quintic C-algebra RC(A) with respect to the new γ4-transformed basis.
If such a change-of-basis of RC(A) preserves the structure constants c kij(A),
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then it corresponds to a C-algebra automorphism of RC(A). Since RC(A)
is an étale C-algebra, as Disc(RC(A)) 6= 0, we have RC(A) ∼= C5, and it
follows that the group of GL4(C)-transformations of A preserving all SL5-
invariants is isomorphic to S5 = AutC(C5). Now we already know that the
stabilizer of A in GL4(C)× SL5(C) is isomorphic to S5. We conclude that for
each γ4 ∈ GL4(C) preserving the SL5-invariants of A, there must be a unique
corresponding element γ5 ∈ SL5(C) such that (γ4, γ5) · A = A. In particular,
any element A′ that is GL4(C)×SL5(C)-equivalent to A and also has the same
SL5-invariants as A must in fact lie in the same SL5(C)-orbit as A, proving the
claim.

This has some important geometric consequences for nondegenerate ele-
ments A ∈ VZ. First, if R = R(A), then the five 4 × 4 sub-Pfaffians of A
must vanish at the five associated points x(1)

R , . . . , x
(5)
R ∈ P3 as constructed

in Section 2. Indeed, we have seen that if A is nondegenerate then the SL5-
invariants of A uniquely determine its SL5(C)-orbit. Hence A is in the same
GL5(C)-orbit as MΛ (as constructed in Section 2) where R = R(A) and Λ is
any 5 × 5 symmetric matrix satisfying F (Λ) 6= 0, and the stated vanishing
property follows.

Second, we may also now see that the nondegenerate points A ∈ V (i.e.,
those points lying in the open orbit of the representation of G = GL4(C) ×
SL5(C) on V ) are precisely the elements A ∈ V satisfying Disc(A) 6= 0. Indeed,
if A ∈ V has nonzero discriminant, then the quintic C-algebra RC(A) also has
nonzero discriminant so that the five points x(1)

R , . . . , x
(n)
R where the 4× 4 sub-

Pfaffians of A vanish lie in general position in P3
C. Hence A is in the open orbit

of V .
In summary, to any element A = (A1, A2, A3, A4) ∈ VZ we have associated

a quintic ring R = R(A) over Z, given by (16), (17), (21), and (22), such that
Disc(A) = Disc(R). Furthermore, in the case that A (equivalently, R) is
nondegenerate, we also have the geometric property that the five 4 × 4 sub-
Pfaffians of A vanish at the five associated points x(1)

R , . . . , x
(5)
R ∈ P3.

In Section 11, we will prove that every nondegenerate quintic ring R in
fact arises as R(A) for some A ∈ Z4 ⊗ ∧2Z5. But what is the meaning of the
integers that occur as the entries of the matrices A1, . . . , A4? And what is the
meaning of the five quadratic mappings that arise as the five 4×4 sub-Pfaffians
of A? A theory of the space VZ could not be complete without understanding
what the very entries of the Ai mean in terms of the corresponding quintic ring
R(A). In [4] we answered the analogous questions for cubic and quartic rings
by developing a theory of resolvent rings (quadratic resolvent rings in the case
of cubic rings, and cubic resolvent rings in the case of quartic rings). Carrying
out the analogous program for quintic rings yields the notion of sextic resolvent
rings, to which we turn next.
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5. Sextic resolvents of a quintic ring

The theory of sextic resolvents is very beautiful, and involves heavily the
combinatorics of the numbers 5 and 6.

5.1. The S5-closure of a ring of rank 5. To begin, we recall briefly the
notion of Sk-closure of a ring. Let R be a ring of rank k with nonzero discrim-
inant. Then the Sk-closure of R, denoted R̄, is defined to be R⊗k/IR, where
IR is the Z-closure of the ideal in R⊗k generated by all elements in R⊗k of the
form

(x⊗ 1⊗ · · · ⊗ 1) + (1⊗ x⊗ · · · ⊗ 1) + · · ·+ (1⊗ 1⊗ · · · ⊗ x)

− TrRZ (x)(1⊗ 1⊗ · · · ⊗ 1)

for x ∈ R. (The Z-closure of an ideal J in a ring R′ is the set of all elements
x ∈ R′ such that nx ∈ J for some n ∈ Z.)

When R is a quintic ring of nonzero discriminant, the Sk-closure con-
struction yields a ring R̄ of rank 120, and the group S5 acts naturally as a
group of automorphisms of R̄ via permutation of the tensor factors. Thus
the ring R̄ may be viewed as an integral model of “Galois closure”. The ring
R embeds naturally into R̄ in five different (conjugate) ways, via the maps
x→ x⊗1⊗· · ·⊗1, . . ., x→ 1⊗1⊗· · ·⊗x respectively. We denote the images
of these maps by R(1), . . ., R(5) respectively, and identify R with R(1). The
group S5 acts on the five rings R(i) in the standard way, and the stabilizer of
R(i) in S5 is denoted by S(i)

4 .
The notion of sextic resolvent arises due to the existence of six funda-

mental index 6 subgroups M (1), . . . ,M (6) in S5, called the metacyclic sub-
groups. Each of these subgroups is generated by a 5-cycle and a 4-cycle. For
consistency with the sections that follow, we set M (1) = 〈(12345), (2354)〉,
M (2) = 〈(13254), (3245)〉, while M (2+i) (1 ≤ i ≤ 4) is obtained by conjugat-
ing M (2) by the 5-cycle (12345)i. These six metacyclic groups form a set of
conjugate subgroups.

For simplicity, we shall write M = M (1). The ring R̄M fixed pointwise by
the action of M is evidently a ring of rank 6 (i.e., a sextic ring), which we call
the sextic invariant ring and denote Sinv(R). We will be looking for the sextic
resolvent ring of R inside the sextic Q-algebra Sinv(R)⊗Q. In order to define
it more precisely, we need to understand the combinatorics of M more closely.

5.2. Six pentagons and a hexagon. The complete graph on five vertices
contains twelve 5-cycles. The symmetric group S5 acts naturally on this set of
twelve 5-cycles, and under this action, the unique S5-orbit of twelve elements
splits up into two A5-orbits consisting of six elements each. One such A5-orbit
of 5-cycles is illustrated in Figure 1, while the other A5-orbit can be obtained
simply by taking the graph complements of the 5-cycles shown in Figure 1.
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Together these two A5-orbits, viewed as six pairs of complementary graphs,
yield the six ways of partitioning the complete graph on five vertices into pairs
of 5-cycles. The subgroup M (i) of Section 5.1 may be viewed as the set of
all elements in S5 which map the 5-cycle in Figure 1 i© to either itself or its
complement.

We observe that any two 5-cycles in Figure 1 share exactly two common
edges; moreover, these two edges always involve four distinct vertices, so that
there is exactly one vertex that neither edge passes through. For example,
the 5-cycles labelled 1© and 2© in Figure 1 share precisely the edges · ·

2 3 and
· ·
4 5 and thus involve the four distinct vertices 2, 3, 4 and 5. Vertex 1 does
not arise. Hence in Figure 2, we label the edge connecting 1© and 2© by the
number “1”. In general, the edge connecting i© and j© in Figure 2 is labelled
by the number of the unique vertex that does not lie on a common edge of
the cycles labelled i© and j© in Figure 1. In this way, we obtain in Figure 2
a complete graph on six vertices whose 15 edges are labelled by numbers in
the set {1, 2, . . . , 5}, and where each of the 5 numbers occurs as the label of an
edge exactly 3 times. Thus, for example, “1” occurs as the label on the three
disjoint edges ( 1©, 2©), ( 3©, 6©), and ( 4©, 5©). It is interesting to note that the
process of obtaining Figure 2 from Figure 1 is completely reversible; i.e., up to
taking the graph complements of 1©, . . ., 6©, the 5-cycles labelled 1©, . . ., 6© in
Figure 1 are completely determined by the labellings in Figure 2. In particular,
the natural action of S5 on the six elements 1©,. . . , 6© is completely determined
by Figure 2.

In sum, the elements of { 1©, 2©, 3©, 4©, 5©, 6©} correspond to certain 5-
cycles on the set {1, 2, 3, 4, 5} (Fig. 1), while the elements of {1, 2, 3, 4, 5} cor-
respond to certain disjoint triples of pairs of elements in { 1©, 2©, 3©, 4©, 5©, 6©}
(Fig. 2). These “dual” correspondences between the sets {1, 2, 3, 4, 5} and
{ 1©, 2©, 3©, 4©, 5©, 6©} will play a central role in understanding the relationship
between quintic rings and their sextic resolvents.

5.3. The fundamental resolvent maps. As indicated in [4], to develop the
notion of a resolvent ring it is first necessary to have the correct notion of
resolvent map. Although it turns out that many direct polynomial/tensorial
maps exist between a quintic ring R and its sextic resolvent S ⊂ Sinv(R)⊗Q
(to be defined), they are all of relatively high degree and considering them
can give rise to unnecessary complications. The key insight is to note that the
most basic and fundamental maps in fact involve the Z-duals R∗ and S∗ of R
and S respectively.

If R is a nondegenerate quintic ring, then we may explicitly realize R∗ as a
sublattice of R⊗Q via the trace pairing 〈x, y〉R = TrRZ (xy). Let 〈α∗0, α∗1, . . . , α∗4〉
denote the dual basis of 〈α0 = 1, α1, . . . , α4〉 with respect to this pairing. As
noted in Section 2, we have the formula α∗i = Di+1,1/(detD). Similarly, we may
embed S∗ as a lattice in (R̄⊗Q)M via the pairing 〈x, y〉S = TrSZ(xy). Expres-
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sions for the basis 〈β∗0 , β∗1 , . . . , β∗5〉 of S∗ dual to the basis 〈β0 = 1, β1, . . . , β5〉
of S may be given in an analogous manner.

The fundamental resolvent map is then a trilinear alternating mapping
f : S × S × S → R∗, given as follows. For s ∈ S, let s(1), s(2), . . . , s(6) de-
note the conjugates of s in R̄ ⊗ Q, labelled so that they are stabilized by
M (1),M (2), . . . ,M (6) respectively; then for any x, y, z ∈ S, define f(x, y, z) ∈
R∗ by

(23) f(x, y, z) =
1

16 ·Disc(R)

∣∣∣∣∣∣∣
x(1) − x(2) x(3) − x(6) x(4) − x(5)

y(1) − y(2) y(3) − y(6) y(4) − y(5)

z(1) − z(2) z(3) − z(6) z(4) − z(5)

∣∣∣∣∣∣∣ .
(The reasons behind the scaling factor 1/(16 ·Disc(R)) will become evident
shortly.) One checks using Figures 1 and 2 that the value of the determinant
in (23) does not change under the action of S(1)

4 ⊂ S5. Hence f(x, y, z) lies in
R∗ ⊗ Q ⊂ R̄ ⊗ Q. Our first requirement for S to be a sextic resolvent ring is
that the image of f on S×S×S lies not just in R∗⊗Q, but in R∗ itself. That
is, f is an alternating trilinear mapping from S × S × S to R∗. (Note that f
also naturally descends to a mapping f̄ : S/Z× S/Z× S/Z→ R∗.)

Being fixed by S
(1)
4 , the map f(x, y, z) has five S5-conjugate mappings

f (1)(x, y, z) = f(x, y, z), f (2)(x, y, z), . . . , f (5)(x, y, z) whose images lie in
R(1)∗ = R∗, R(2)∗, . . . , R(5)∗ respectively. The mapping f (k)(x, y, z) can be
obtained by applying the cycle (23456) k − 1 times to the superscript indices
occurring in (23); for example, we have

(24) f (2)(x, y, z) =
1

16 ·Disc(R)

∣∣∣∣∣∣∣
x(1) − x(3) x(4) − x(2) x(5) − x(6)

y(1) − y(3) y(4) − y(2) y(5) − y(6)

z(1) − z(3) z(4) − z(2) z(5) − z(6)

∣∣∣∣∣∣∣ .
Note that the pairs of superscripts occurring in the entries of the latter deter-
minant correspond precisely to the edges labelled “2” in Figure 2.

An important observation regarding f is that, since

f (1)(x, y, z) + f (2)(x, y, z) + · · ·+ f (5)(x, y, z) = 0,

the image of f lies not only in R∗, but in fact lies in the distinguished four-
dimensional sublattice R̃ ⊂ R∗ defined by

R̃ = {x ∈ R∗ : 〈1, x〉R = 0} = Zα∗1 + Zα∗2 + Zα∗3 + Zα∗4.(25)

Indeed, R̃ is canonically dual to the Z-module R/Z via the trace pairing 〈 , 〉R.
It follows that we may write

f(βk, β`, βm) = a∗1k`mα
∗
1 + a∗2k`mα

∗
2 + a∗3k`mα

∗
3 + a∗4k`mα

∗
4(26)

for some set of forty integers {a∗rk`m} 1≤r≤4
1≤k<`<m≤5

.
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These forty integers naturally comprise a quadruple of quinary alternating
3-forms, i.e., an element of Z4 ⊗ ∧3Z5. To obtain instead an element of Z4 ⊗
∧2Z5, as considered in Sections 2–4, we observe that a trilinear alternating
mapping f̄ : S/Z×S/Z×S/Z→ R̃ is equivalent to a bilinear alternating map
g : S̃ × S̃ → R̃, where

S̃ = {x ∈ S∗ : 〈1, x〉S = 0} = Zβ∗1 + Zβ∗2 + . . .+ Zβ∗5(27)

is the Z-module canonically dual to S/Z via the pairing 〈 , 〉S . It is possible to
determine an explicit expression for g. For w ∈ S̃, let w(1), w(2), . . . , w(6) denote
the S5-conjugates of w in R̄⊗Q, labelled again so that they are stabilized by
M (1),M (2), . . . ,M (6) respectively. Then we find

g(u, v) =

√
Disc(S)

48 ·Disc(R)
·

∣∣∣∣∣∣∣
1 1 1

u(1) + u(2) u(3) + u(6) u(4) + u(5)

v(1) + v(2) v(3) + v(6) v(4) + v(5)

∣∣∣∣∣∣∣(28)

where
√

Disc(S) is defined analogously to
√

Disc(R), namely, as det[(β(m)
i ) 0≤i≤5

1≤m≤6
].

If we now write

g(β∗i , β
∗
j ) = a1ijα

∗
1 + a2ijα

∗
2 + a3ijα

∗
3 + a4ijα

∗
4 ,(29)

then the set of forty integers A = {arij} 1≤r≤4
1≤i<j≤5

gives the element of Z4⊗∧2Z5

we desired.
Now recall that in Section 4, we described a natural method of creating

a quintic ring R(A) from any element A ∈ Z4 ⊗ ∧2Z5. Our second and final
requirement for S to be a sextic resolvent of R is that, for the element A =
{arij} ∈ Z4⊗∧2Z5 defined by (28) and (29), we should have R(A) = R; i.e., if
R has structure coefficients {c kij} with respect to its basis 1, α1, . . . , α4, then we
should have c kij(A) = c kij for all i, j, k.

Given S and A as above, to see that the equality R(A) = R holds it suffices
to prove that A satisfies the following two conditions: 1) Disc(A) = Disc(R),
and 2) the 4 × 4 sub-Pfaffians of A vanish on x

(1)
R , x

(2)
R , . . . x

(5)
R . Indeed, if

condition 2) is satisfied, then by the work in Section 4, we see that c kij(A) =
λc kij for all i, j, k, for some nonzero constant λ ∈ Q. Condition 1) then gives
Disc(A) = Disc(R(A)) = λ8Disc(R), and thus λ = ±1. A calculation using the
explicit expressions (29) and (21) for A and c kij(A), respectively, shows that λ is
positive or negative in accordance with whether the chosen bases of R and S are
similarly or oppositely oriented, i.e., whether the ratio

√
Disc(S)/

√
Disc(R) is

positive or negative. We henceforth always choose our bases of R and S to be
similarly oriented. Provided that A is expressed in terms of similarly oriented
bases for R and S, then conditions 1) and 2) imply λ = 1 and thus R(A) = R.

It remains now to check conditions 1) and 2). The second condition is
satisfied delightfully automatically. Since A is defined over Q, it suffices to
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check only that the 4 × 4 sub-Pfaffians of A vanish on x
(1)
R . Noting that

x
(1)
R = [α∗1 : α∗2: α∗3: α∗4], we see from (29) that this is equivalent to the

vanishing of the 4 × 4 sub-Pfaffians of the 5 × 5 skew-symmetric matrix G =
(g(β∗i , β

∗
j ))1≤i,j≤5. Using the expression (28) for g(u, v), one verifies easily that

g(u, v)g(x, y) − g(u, x)g(v, y) + g(u, y)g(v, x) = 0, and this gives the desired
conclusion.

Condition 1) above amounts to a discriminant condition on S. Let us first
determine how the discriminants of A,R, and S are related. If we solve for the
coefficients arij in (29), we see that

arij = 〈αr, g(β∗i , β
∗
j )〉R = Tr

(
αr · g(β∗i , β

∗
j )
)

(30)

for all r, i, j, where we have used “Tr” to denote the trace from R ⊗ Q to Q;
i.e., we have

arij = α(1)
r g(1)(β∗i , β

∗
j ) + · · ·+ α(5)

r g(5)(β∗i , β
∗
j )(31)

where g(1), . . . , g(5) denote the S5-conjugates of g = g(1) respectively. Using
formula (31) for the entries of A, we may work out the beautiful relation

(32) Disc(A) =
Disc(S)12

1636 ·Disc(R)35
.

Condition 1) above is thus equivalent to the condition that

Disc(S) =
(
16 ·Disc(R)

)3
.(33)

We have at last arrived at the definition of a sextic resolvent of a quintic ring.

Definition 5. Let R be a quintic ring of nonzero discriminant, and let R̄
denote its S5–closure. A sextic resolvent of R is a rank 6 sublattice S ⊂ R̄M⊗Q
such that Disc(S) = (16 · Disc(R))3, and such that any one of the following
(equivalent) conditions holds:

• f(x, y, z) ∈ R̃ ∀x, y, z ∈ S;

• g(u, v) ∈ R̃ ∀u, v ∈ S̃;

• Tr(α·f(x, y, z)) ∈ Z ∀α ∈ R and x, y, z ∈ S.

• Tr(α·g(u, v)) ∈ Z ∀α ∈ R and u, v ∈ S̃.

It is evident from (23)–(30) that the four conditions are equivalent to each
other. Note that Definition 5 only insists that the sextic resolvent S is a
sublattice in R̄M

(1)
with the desired properties; it does not insist on any ring

structure!
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However, just as in the quadratic and cubic cases we find that a ring
structure on S in fact follows automatically from its other properties! We have
the following:

Proposition 6. Any sextic resolvent lattice of a quintic ring is also a
ring.

Hence we may refer to a sextic resolvent of a quintic ring R as a sextic
resolvent ring of R. Proposition 6 is proved in the next section.

6. The multiplication table for sextic resolvent rings

Just as the multiplication table for the quintic ring R(A) was given in
terms of the SL5-invariants of the element A ∈ VZ, the structure constants for
a putative ring structure on the sextic resolvent lattice S(A) of R(A) must
similarly be given in terms of the SL4-invariants of A ∈ VZ. This is because
the group SL4(Z) acts only on the basis of the quintic ring R(A) and does not
affect the sextic resolvent lattice S(A) nor the chosen basis of S(A).

The prototypical SL4-invariants on the space VZ = Z4 ⊗ ∧2Z5 are the
degree 4 polynomials in the entries of A = (arij) ∈ V given by

δ(i1, j1; i2, j2; i3, j3; i4, j4) =

∣∣∣∣∣∣∣∣∣∣

a1i1j1 a2i1j1 a3i1j1 a4i1j1

a1i2j2 a2i2j2 a3i2j2 a4i2j2

a1i3j3 a2i3j3 a3i3j3 a4i3j3

a1i4j4 a2i4j4 a3i4j4 a4i4j4

∣∣∣∣∣∣∣∣∣∣
.

By the fundamental theorem of invariant theory, these polynomials generate
all polynomial SL4-invariants on V .

Now let us write the potential ring structure on S = S(A) = 〈1, β1, . . . , β5〉
in the form

(34) βiβj = d 0
ij +

5∑
k=1

d kijβk

for some constants d kij ∈ Z. Then from the equality Disc(S) = (16 ·Disc(A))3,
we see that if the structure constants d kij (k 6= 0) are polynomials in the entries
of A, then they must be of degree 12. Thus the polynomials d kij (k 6= 0), if
they exist, must be degree 3 polynomials in the fundamental SL4-invariants δ.
Furthermore, the putative polynomials d kij must transform appropriately under
the action of SL5, i.e., precisely as the structure coefficients of a sextic ring
would.
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Keeping these constraints in mind, we define invariants D k
ij = D k

ij(A) for
A ∈ VZ by

(35)

D k
ij =

1

2304

X
kn (n=2,3,4)

`n,k′n,`′n,k′′n,`′′n (n=1,...,4)

h
σ(i`′1`

′
2k

′
3`

′
3)σ(j`′′1 `

′′
2k

′′
3 `

′′
3 )σ(k′

1`1`2k3`3)σ(k′′
1 k

′
2k

′
4`

′
4`

′′
4 )σ(k2k

′′
2 k4k

′′
4 `4)

· δ(k, `1; k2, `2; k3, `3; k4, `4) · δ(k′
1, `

′
1; k′

2, `
′
2; k′

3, `
′
3; k′

4, `
′
4) · δ(k′′

1, `
′′
1 ; k′′

2 , `
′′
2 ; k′′

3 , `
′′
3 ; k′′

4 , `
′′
4 )

i
,

where we have again used σ(n1 . . . n5) to denote the sign of the permutation
(n1, . . . , n5) of (1, . . . , 5). As in the case of quintic rings, to specify the ring
structure on S it suffices to specify the values of d kij , d

j
ii, d

j
ij − d kik, and d iii −

d jij − d kik. Let

(36)

d kij = D k
ij ,

d jii = D j
ii,

d jij − d kik = D j
ij −D k

ik,

d iii − d
j
ij − d kik = D i

ii −D
j
ij −D k

ik.

One checks that although the D k
ij are not necessarily all integer polynomials,

the expressions on the right-hand side of (36) are in fact integer polynomials!
Now let R be any nondegenerate quintic ring with Z-basis 〈1, α1, . . . , α4〉,

let S be a sextic resolvent of R having (similarly oriented) Z-basis 〈1, β1, . . . β5〉,
and let A = (arij) ∈ VZ be defined as in (30). For x1, . . . , x6 ∈ S, let
IndS(x1, x2, x3, x4, x5, x6) denote the (signed) index of the lattice spanned by
x1, x2, . . . , x6 inside that spanned by 1, β1, . . . , β5; i.e., IndS(x1, x2, x3, x4, x5, x6)
denotes the determinant of the linear transformation taking 1, β1, . . . , β5 to
x1, x2, . . . , x6. Then we have the following analogue of Lemma 4 for the sextic
resolvent lattice S, stated in terms of its chosen basis:

Lemma 7. For any permutation (i, j, k, `,m) of (1, 2, 3, 4, 5), we have

D k
ij = ±IndS(1, βi, βj , βiβj , β`, βm),

D j
ii = ±IndS(1, βi, β2

i , βk, β`, βm),

D j
ij −D

k
ik = ±

[
IndS(1, βi, βiβj , βk, β`, βm)

−IndS(1, βi, βj , βiβk, β`, βm)
]
,

D i
ii −D

j
ij −D

k
ik = ±

[
IndS(1, β2

i , βj , βk, β`, βm)

−IndS(1, βi, βiβj , βk, β`, βm)

−IndS(1, βi, βj , βiβk, β`, βm)
]
,

where we use ± to denote the sign of the permutation (i, j, k, `,m) of (1, 2, 3, 4, 5).
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Proof. We simply expand both sides using (31) and (35).

The identities of Lemma 7 immediately imply that the multiplicative
structure of S is indeed given as in (34), where the values of the structure
constants d kij (k 6= 0) are as in (36). To insure a unique integer solution for
the d kij (for k > 0), we can choose to normalize bases as in the quintic case;
e.g., we may translate the βi by integers so that the coefficients of β1 and β2

in β1β2 are zero, as are the coefficients of β3 and β4 in β3β4 and the coefficient
of β4 in β4β5. That is, we may assume

(37) d 1
12 = d 2

12 = d 3
34 = d 4

34 = d 4
45 = 0.

The remaining constant coefficients d 0
ij are then determined by the associative

law, just as in the cubic, quartic, and quintic cases. Namely, by computing the
expressions (βiβj)βk and βi(βjβk) using (34), and then equating the coefficients
of βk, we obtain

(38) d 0
ij =

5∑
r=1

(
d rjkd

k
ri − d rijd krk

)
for any k ∈ {1, 2, 3, 4, 5} \ {i}. One checks using the explicit expressions given
in (36) and (37) that the above expression is independent of k, and that with
these values of d 0

ij all relations among the d kij implied by the associative law
are satisfied. We denote the resulting ring, whose multiplicative structure
coefficients d kij = d kij(A) are given as in (35), (36), (37), and (38), by S(A).

In particular, we have proven Proposition 6.

7. The main theorem

Given a nondegenerate quintic ring R and a sextic resolvent ring S of
R, with similarly oriented Z-bases for R and S, we have shown in Section 5
how to create an element A ∈ VZ such that the following three properties
hold: 1) Disc(A) = Disc(R); 2) the 4× 4 sub-Pfaffians of A vanish on the five
points associated to R in P3; and 3) A describes the fundamental resolvent
map g : ∧2S̃ → R̃.

Conversely, suppose we are given a nondegenerate element A ∈ VZ. Then
we may create a quintic ring R = R(A) with properties 1) and 2) explicitly
using formulas (16), (17), (21), and (22). Furthermore, as R = R(A) is nonde-
generate, the algebra R̄M ⊗Q has dimension 6 over Q. Let S′ be any lattice in
R̄M ⊗Q such that Q∩S′ = Z and Disc(S′) = (16 ·Disc(R))3. Let 1, α1, . . . , α4

and 1, β1, . . . , β5 be similarly oriented Z-bases for R and S′ respectively. Then
we have seen that the element A′ ∈ VQ defined by (30) describes the map
g : ∧2S̃′ → R̃⊗Q.

Now by construction, A is SL5(C)-equivalent to A′, since A and A′ possess
the same SL5-invariants. They must in fact be SL5(Q)-equivalent, for if γ ∈
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SL5(C) takes A′ to A, then (γ−1)t must take Q′ to Q, where Q′ = [Q′1, . . . , Q
′
5]t

and Q = [Q1, . . . , Q5]t denote the vectors of 4×4 signed sub-Pfaffians of A′ and
A respectively. Now the Qi and the Q′i each span the same five-dimensional
rational vector space of quaternary quadratic forms, namely those rational
quaternary quadratic forms that vanish on the set XR = {x(1), . . . , x(5)}. We
conclude that γ ∈ SL5(Q). Let S be the lattice in R̄M ⊗Q spanned by 1 and
(γ−1)tβ1, . . . , (γ−1)tβ5. Then A describes the map g : ∧2S̃ → R̃; it follows that
S is the desired sextic resolvent ring of R = R(A) corresponding to A. The
multiplication structure of S can be recovered from (34), (35), (36), (37), and
(38).

Finally, it is clear from the above constructions that the maps (R,S) 7→ A

and A 7→ (R,S) are inverse to each other. We have thus completed the proof
of the following theorem.

Theorem 8. There is a natural bijection between the set of nondegenerate
GL4(Z) × SL5(Z)-equivalence classes of elements A ∈ Z4 ⊗ ∧2Z5 and the set
of isomorphism classes of pairs (R,S), where R is a nondegenerate quintic
ring and S is a sextic resolvent ring of R. Under this bijection, we have
Disc(A) = Disc(R) = 1

16Disc(S)1/3.

Of course, the theorem remains true if Z4⊗∧2Z5 is replaced by Z4⊗∧3Z5;
in this case, the element A∗ = (a∗rk`m) ∈ Z4 ⊗ ∧3Z5 corresponding to a pair
(R,S) is given by (26) or via the more direct formula

a∗rk`m = Tr
(
αr · f(βk, β`, βm)

)
(39)

= α(1)
r f (1)(βk, β`, βm) + · · ·+ α(5)

r f (5)(βk, β`, βm).

8. Pfaffians and the classical resolvent map

In the previous section, we have proven that an element A ∈ Z4 ⊗ ∧2Z5

corresponds to the most fundamental mapping

g : S̃ ⊗ S̃ → R̃

relating the quintic ring R = R(A) and its sextic resolvent S. However, there
are many other beautiful polynomial mappings relating the rings R and S, and
any such mapping may be understood in terms of higher covariants of A.

In particular, we may consider the classical resolvent map

ψ : R→ S̃ ⊗Q
defined by

(40) ψ(α) =
1√

Disc(R)

(
α(1)α(2) + α(2)α(3) + α(3)α(4) + α(4)α(5) + α(5)α(1)

− α(1)α(3) − α(3)α(5) − α(5)α(2) − α(2)α(4) − α(4)α(1)
)
.
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This map was first introduced by Cayley [9], and has since served as one of
the primary tools in the solution of the quintic equation (whenever soluble)
and in the study of icosahedral and S5-extensions of Q; see for example [8].
The relation between ψ and the graph 1© in Figure 1 is evident: the rule for
the determination of the sign of α(i)α(j) in ψ(α) is that terms associated with
adjacent edges take a positive sign, while those with nonadjacent edges take a
negative sign.

To see that the image of ψ is in S∗ ⊗ Q, we need only observe that ψ is
fixed by the elements of M (1). Since in addition Tr(ψ(α)) = 0, it follows that
the image of ψ lies in S̃⊗Q. We show below that, remarkably, the image of ψ
lies not only in S̃ ⊗Q, but in S̃ itself. Moreover, we have ψ(x+ c) = ψ(x) for
any c ∈ Z; hence ψ actually descends to a map

ψ̄ : R/Z→ S̃.

Thus we may view ψ̄ as a quadratic function from Z4 to Z5, or, equivalently,
as a quintuple Q′ = (Q′1, Q

′
2, . . . , Q

′
5) of quaternary quadratic forms. Now as

A represents the “fundamental” map g relating R and S, the quintuple Q′

should be some natural SL4 × SL5-covariant function of A. Which covariant?
We find that, up to a constant factor, Q′ is none other than the degree 2
covariant Q = (Q1, Q2, . . . , Q5) consisting of the five 4× 4 sub-Pfaffians of A!
More precisely, we have:

Theorem 9. Let A be any nondegenerate element of VZ, and let (R,S)
denote the pair of quintic and sextic rings corresponding to A via Theorem 8.
Then the classical resolvent map ψ of Cayley maps R to S̃, and this mapping
ψ : R → S̃ is exactly given, in terms of the associated bases for R and S̃, by
four times the quintuple (Q1, Q2, . . . , Q5) of 4× 4 sub-Pfaffians of A.

Proof. To prove Theorem 9, we appeal directly to the formula (30) for
the entries arij of A in terms of the bases 〈1, α1, . . . , α4〉 and 〈1, β1, . . . , β5〉 for
R and S respectively. In terms of these expressions for arij and the expression
(28) for g, we compute the k-th 4× 4 sub-Pfaffian Qk of A to be
(41)

Qk(t1, t2, t3, t4) =
1
4

(
ψ(1)

(
4∑
i=1

tiαi

)
· β(1)

k + · · ·+ ψ(6)

(
4∑
i=1

tiαi

)
· β(6)

k

)
,

where ψ(1), . . . , ψ(6) denote the six A5-conjguate mappings of ψ = ψ(1) taking
R to S̃(1) ⊗ Q, . . ., S̃(6) ⊗ Q respectively. It follows from (41) that for t =
(t1, t2, t3, t4) ∈ Z4 and α(t) = t1α1 + · · ·+ t4α4 ∈ R/Z, we have

(42) ψ(α(t)) = 4Q1(t)β̃1 + · · ·+ 4Q5(t)β̃5.

Therefore the quintuple 4Q of quaternary quadratic forms represents the clas-
sical resolvent map ψ, and ψ maps R into S̃.
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Thus for all n = 2, 3, 4, 5, the spaces of smallest degree hypersurfaces
passing through the points XR correspond to the natural maps between R and
S used in the classical solutions to the n-tic equation! However, in the case
n = 5, we see that there is an additional subtlety in that this classical resolvent
map is not the most fundamental map relating R and S. In the cases of n = 3
and n = 4, it was the most fundamental map, but in the case n = 5 the smallest
polynomial map relating R and S is the map g : S̃ ⊗ S̃ → R̃. Indeed, ψ is a
degree 2 covariant polynomial in g. The more basic map g seems to have been
missed in the classical literature, perhaps because it is an alternating map, and
because it is most naturally defined as a map between the dual rings.

Finally, we remark that other higher degree maps involving R, S, R̃, and
S̃ also exist, and they can similarly be understood by examining the higher
degree tensor covariants of g ∈ Z4 ⊗ ∧2Z5.

9. An alternative description of sextic resolvents

We have seen that a sextic resolvent ring S of a nondegenerate quintic
ring R, and its associated resolvent map φ5,6 : R → ∧2S, possess, and indeed
are characterized by, a number of remarkable geometric, Galois-theoretic, and
invariant-theoretic properties. The purpose of this section is to give an alter-
native, more minimalist definition of a sextic resolvent ring that in particular
does not use the notion of Sk-closure. Such a definition—though at the surface
less informative—is especially useful for rings of zero discriminant, and allows
for an immediate proof of Theorem 1 in all cases. It also allows one to use
base rings other than Z, such as Zp or Fp. In the case of Fp, rings having zero
discriminant are particularly important as they frequently arise as reductions
modulo p of orders in a number field.

The idea is to view a sextic resolvent ring of a quintic ring R as a sextic
ring S together with a special Z-linear map φ : R/Z → ∧2(S/Z) (called a
sextic resolvent map) which satisfies all properties of the φ5,6 map that were
crucial for us in Sections 2–8. Of these, the truly essential properties were the
identities (21) and (35)–(36) which were needed to recover the multiplicative
structures on the rings R and S respectively.

More precisely, for any map φ : L4 → ∧2L5, where L4 and L5 are free
Z-modules of rank 4 and 5 respectively, we have given in Sections 4 and 6
a method of attaching to φ a quintic ring R(φ) and a sextic ring S(φ), with
natural Z-module isomorphisms R(φ)/Z ∼= L4 and S(φ)/Z ∼= L5. In particular,
if φ5,6 : R/Z → ∧2(S/Z) is the Z-linear map induced by the fundamental
Galois-theoretic map g : ∧2S∗ → R∗, where R is a nondegenerate quintic ring
and S is a sextic resolvent of R, then we obtain natural ring identifications
“R(φ5,6) = R” and “S(φ5,6) = S”. That is, if Z-bases are chosen for R/Z and
S/Z, then with respect to these bases we have c kij(φ5,6) = c kij and d kij(φ5,6) = d kij
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for all i, j, k, where c kij and d kij denote the normalized multiplicative structure
constants of R and S respectively. It is clear from construction that these
conditions R(φ5,6) = R and S(φ5,6) = S are independent of the choice of
Z-bases.

For any quintic ring R and sextic ring S, we define a Z-linear map φ :
R/Z → ∧2(S/Z) to be a sextic resolvent map if R(φ) = R and S(φ) = S. A
sextic resolvent of a quintic ring R is then any sextic ring S equipped with a
sextic resolvent map φ : R/Z→ ∧2(S/Z).

Definition 10. Let R be a quintic ring and S a sextic ring. We call a
Z-linear map φ : R/Z→ ∧2(S/Z) a sextic resolvent mapping if R(φ) = R and
S(φ) = S.

Definition 11. Let R be a quintic ring. A sextic resolvent ring of R is a
sextic ring S equipped with a sextic resolvent mapping φ : R/Z→ ∧2(S/Z).

It follows from the work in Sections 2–8 that, in the nondegenerate case,
the above definitions agree with those given in more Galois-theoretic language
in Section 5. With these definitions, Theorem 8 immediately extends also to
cases where the discriminant is zero.

It would be interesting to formulate the conditions R(φ) = R and S(φ) =
S in a more coordinate-free manner, as was described for the parametrizations
of cubic and quartic rings in [4]. In particular, such a formulation would likely
be useful in extending Theorem 1 to locally free quintic and sextic algebras
over an arbitrary base. We hope that this possibility will be considered in
future work.

10. More on the invariant theory of quadruples of alternating
2-forms, and the existence of sextic resolvents

In this section, we examine more closely the SL5-invariant theory of the
space of quadruples of alternating 2-forms of rank 5. As noted in Section 4,
the smallest degree SL5-invariants on VZ are in degree 5, and these invariants
are linearly spanned by the polynomials P±, or equivalently, by the 36 linearly
independent polynomials c kij(A) (k ≥ 1) as given in (17) and (21).

The associative law, which allowed us to solve unambiguously for the
constant coefficients c 0

ij(A) of the ring R(A), implies that these 36 invariants
c kij(A) for A ∈ Z4⊗∧2Z5 are not algebraically independent, but satisfy certain
syzygies. Indeed, the associative law on R(A) is equivalent to
(43)

4∑
r=1

c rikc
`
rj =

4∑
r=1

c rjkc
`
ri for all i, j, k, ` ∈ {1, 2, 3, 4} with i 6= ` and j 6= `; and
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(44)
4∑
r=1

(c rikc
k
rj − c rijc krk)

=
4∑
r=1

(c ri`c
`
rj − c rijc `r`) for all i, j, k, ` ∈ {1, 2, 3, 4} with j 6= k and j 6= `.

Do the 36 SL5-invariants satisfy any other relations, besides those obtainable
from (43) and (44) via algebraic operations? The answer is no. The reason for
this is that, up to isomorphism, there are only finitely many quintic algebras
over C and it is easy to check that every such algebra arises as R(A) for
some A ∈ VZ. Hence there can be no other polynomial relations among the
SL5-invariants c kij(A) other than those contained in the radical of the ideal
generated by the associative law relations (43) and (44). In particular, the
possible values of the SL5-invariants {c kij(A)} for A ∈ V coincide precisely with
the possible values {c kij} of (normalized) multiplicative structure coefficients of
quintic algebras over C.

Our next question concerns fields of definition. Suppose we have a quintic
algebra R = 〈1, α1, . . . , α4〉 over Q, with structure coefficients given by the set
of rational numbers {c kij}. We know then that there exists a complex point
A ∈ V with c kij(A) = c kij for all i, j, k. Does there actually exist a rational point
A ∈ VQ with this property?

The answer is yes. If R is étale over Q, then we may construct such an
A as follows. Let R̄ denote the S5-closure of R, and let S denote the sextic
algebra over Q fixed by the metacyclic group M (1). Let 〈1, β1, . . . , β5〉 be a
Q-basis of S such that Disc(1, β1, . . . , β5) = (16 · Disc(1, α1, . . . , α4))3. Then
the element A = (arij) ∈ Q4 ⊗ ∧2Q5 defined by (30) satisfies c kij(A) = c kij for
all r, i, j, as desired.

The case of nonétale quintic algebras R over Q can also be handled in a
similar manner, via a case-by-case analysis of the various (but finitely many)
types of quintic algebras over Q; we omit the proof.

Finally, we would like to consider the analogous question over Z. This is
answered by the following theorem.

Theorem 12. Suppose the constants {c kij} arise as the SL5-invariants of
some element in V = C 4⊗∧2C 5, where all the values of c kij are integers. Then
there exists an integer point A ∈ VZ such that c kij(A) = c kij for all i, j, k.

We prove the theorem in three steps. Our first lemma shows that it suffices
to prove the theorem in the case where the c kij are relatively prime.

Lemma 13. If the set of constants {c kij} arises as the system of SL5-
invariants of an element in VZ, then so does the set of constants {nc kij}, where
n is any integer.
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Proof. Let A = (A1, A2, A3, A4) ∈ VZ be an element with c kij(A) = c kij
for all i, j, k. Furthermore, suppose there exist linearly independent integral
column vectors v, w ∈ Z5 such that vtArw = 0 for all r ∈ {1, 2, 3, 4}. By a
change of basis in SL5(Z), then, we may assume that the (1, 2) entry (say) of
Ar is zero for all r ∈ {1, 2, 3, 4}.

Let A′ = (A′1, A
′
2, A

′
3, A

′
4) ∈ VZ be the element A with all entries multiplied

by n. Since the SL5-invariants c kij(A) are of degree 5, it is clear that c kij(A
′) =

n5c kij(A) for all i, j, k. Now since the (1,2) entry of A′r vanishes for all r ∈
{1, 2, 3, 4}, it is in particular divisible by n2. We may therefore divide the first
and second rows and columns of A′r by n, for all r = 1, 2, 3, 4, to obtain an
integral element A′′ ∈ VZ. From the Pfaffian description (11) of the invariants
P±, it is evident that c kij(A

′′) = n−4c kij(A
′) (since the relevant 10×10 Pfaffians

have four rows and four columns divided by n). The quadruple A′′ therefore
satisfies c kij(A

′′) = nc kij(A) as required by the lemma.
To complete the proof of the lemma we must show only that there exists a

pair v, w of linearly independent integral column vectors as above with vtArw =
0 for all r ∈ {1, 2, 3, 4}. Such a pair v, w may be constructed as follows. Let
vt be an arbitrary integral nonzero row vector in the left kernel of A1. Such a
vector exists because A1 is a 5× 5 skew-symmetric matrix and hence has rank
at most 4. Now for each r ∈ {2, 3, 4}, the row vector vtAr, being of rank at
most 1, has a right kernel of dimension at least 4. The intersection W of the
right kernels of vtAr, for r ∈ {1, 2, 3}, therefore has dimension at least 2. In
particular, there exists an integral vector w ∈W that is independent of v, and
such a w will evidently satisfy vtArw = 0 for all r ∈ {1, 2, 3, 4}. This is the
desired conclusion.

Lemma 14. Suppose the constants {c kij} arise as the SL5-invariants of
some element in V = C 4 ⊗ ∧2C 5, where all the values of c kij are integers.
Then there exists an integer point A ∈ VZ and a positive integer n such that
c kij(A) = nc kij for all i, j, k.

Proof. As noted earlier, there exists some element A′ ∈ VQ with c kij(A
′) =

c kij for all i, j, k. Furthermore, there exists an integer s > 0 such that A = sA′ ∈
VZ. This value of A, with n = s5, satisfies the requirements of the lemma.

Theorem 12 will be proved once the following lemma is established. The
lemma states that the value of n in Lemma 14 can always be lowered. In
particular, it may be lowered until it reaches 1; together with Lemma 13, this
implies the theorem.

Lemma 15. Let A ∈ VZ = Z4 ⊗ ∧2Z5 be an element with c kij(A) = nc kij ,
for some integers c kij and n with n > 1. Then there exists an integer point
A′ ∈ VZ and a positive integer n′ < n satisfying c kij(A

′) = n′c kij for all i, j, k.
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Proof. We begin by observing that, to prove the lemma for one A ∈
Z4⊗∧2Z5, it suffices to prove the lemma for any A0 in the same Γ-orbit as A.
More precisely, if A0 ∈ Z4 ⊗ ∧2Z5 is an element for which A0 = γA for some
γ ∈ Γ, and if we locate an A′0 ∈ Z4 ⊗ ∧2Z5 with c kij(A

′
0) = (n′/n)c kij(A0) for

all i, j, k, then γ−1A′0 will be an A′ satisfying c kij(A
′) = n′c kij for all i, j, k, as

desired. Below, this observation will allow us to mold A into more convenient
shapes in Z4 ⊗ ∧2Z5, thereby simplifying calculations.

The key to our proof is the quintuple of quaternary quadratic forms Q =
(Q1, Q2, . . . , Q5) given by the five signed 4× 4 sub-Pfaffians of A. As observed
in Section 2, the action of SL5(Z) on A results in an action of SL5(Z) on Q

as in (8). We may use the resulting action on Q to produce some handy SL5-
invariant polynomials as follows. Notice that each quadratic form Qi consists
of 10 coefficients. Taking any subset of 5 such coefficients from Q1, and the
corresponding coefficients from each of the other Qi, yields a 5 × 5 matrix
whose determinant is clearly an SL5-invariant. This construction evidently
yields

(
10
5

)
= 252 such invariants. Being invariant under the action of SL5,

these determinantal expressions must be algebraically dependent on the c kij
(which form a complete set of SL5-invariants), and indeed one finds that each
of these 252 invariants is a degree 2 integer polynomial in the c kij .

Now let p be any prime dividing n. Since all the c kij are multiples of p, the
252 determinantal invariants must actually be multiples of p2. It follows, by
the theory of elementary divisors, that we may apply a transformation SL5(Z)
to A so that either 1) both Q1 and Q5 become multiples of p, or 2) Q5 becomes
a multiple of p2.

Having applied such a transformation, we may assume that at least one of
the conditions 1) or 2) holds. Either way, we have that Q5 is a multiple of p;
i.e., the top left 4× 4 sub-Pfaffian of M is a multiple of p for any 5× 5 matrix
in the Z-linear span of A1, A2, A3, A4.

Observe that the condition that Q5 be a multiple of p remains true even
if we apply an element of SL4(Z) = SL4(Z)×{e} (considered as a subgroup of
SL5(Z)) to the element A; we are therefore free to apply elements of SL4(Z)×
SL4(Z) ⊂ Γ to further transform A. Let us write SL4(Z) × SL4(Z) ⊂ Γ =
SL4(Z)× SL5(Z) as SL(1)

4 (Z)× SL(2)
4 (Z) to distinguish the two factors of SL4.

Let B1, B2, B3, B4 denote the top left 4× 4 submatrices of A1, A2, A3, A4

respectively, considered modulo p so that the entries of Bi lie in Fp. The
above-mentioned action of SL(1)

4 (Z)× SL(2)
4 (Z) ⊂ Γ on A reduces to an action

of SL4(Fp)× SL4(Fp) on B = (B1, B2, B3, B4). We use this action to simplify
B, with the understanding that any such transformation of B will be lifted to
a transformation γ of A with γ ∈ SL(1)

4 (Z) × SL(2)
4 (Z). This will enable us to

mold A into a particularly simple shape modulo p.
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First, since det(Bi) = 0 in Fp, the rank of each Bi is either 0 or 2. If
each Bi is the zero matrix, then we are done: we simply multiply the last row
and column of each Ai by p, and then divide each Ai by p. The resulting
A′ ∈ Z4 ⊗ ∧2Z5 evidently satisfies c kij(A

′) = (n/p3)c kij , and so we may let
n′ = n/p3.

Thus we may assume some Bi has rank 2, and without loss of generality
i = 1. By an appropriate transformation in SL(2)

4 (Z), we may further assume

that B1 =
[

0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

]
. Using transformations in SL(1)

4 (Z), we can then clear out

the (1,2) entries of B2, B3, B4. Moreover, with this value of B1, the expression
Pfaff(B1 + Bi) − Pfaff(Bi), for i > 1, is computed to be equal to simply the
(3,4) entry of Bi. Therefore, the (3,4) entry of every Bi is equal to 0 too, and
hence B = (B1, B2, B3, B4) takes the form
(45)


0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 ,


0 0
0 0

R

−R
0 0
0 0

 ,


0 0
0 0

S

−S
0 0
0 0

 ,


0 0
0 0

T

−T
0 0
0 0




for some triple of 2× 2 matrices (R,S, T ). Now since the Pfaffians of B2, B3,
and B4 are the determinants of R, S, and T respectively, we see that each
of R, S, T must have rank ≤ 1. In fact, since any linear combination of B2,
B3, B4 has vanishing Pfaffian, the linear span of R, S, T must contain only
matrices of rank ≤ 1. It follows that, by an appropriate change of basis, the
entries of R, S, T either lie all in the first row or all in the first column, and
hence B is either of the form
(46)


0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 ,


0 0 c1 0
0 0 0 0
−c1 0 0 0

0 0 0 0

 ,


0 0 0 c2

0 0 0 0
0 0 0 0
−c2 0 0 0

 ,


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




for some c1, c2 ∈ {0, 1}, or of the form

(47)




0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 ,


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 ,


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

 ,


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 .

If B is of the form (46), then the central 3× 3 matrix of every Ai is a multiple
of p. Thus, we may multiply the first and last rows and columns of each Ai by
p, and then divide each Ai by p. The resulting A′ ∈ Z4⊗∧2Z5 is integral, and
satisfies c kij(A

′) = (n/p)c kij ; we may let n′ = n/p.
It remains to consider the case where B is of the form (47). Thus, we

assume that the top left 4 × 4 submatrix of Ai is congruent to Bi modulo p,
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with Bi as in (47), and let xi denote the (4, 5) entry of Ai for i = 1, 2, 3, 4.
Then a calculation modulo p shows that we have P−(A1, A2, A3) ≡ −x2

2. As
the latter SL5-invariant must be a multiple of p, we conclude that x2 is a
multiple of p. Similarly, P−(A1, A2, A3 + A4) ≡ −(x2 + x4)2, so that x4 is a
multiple of p. Examining similarly P−(A3, A1, A2) and P−(A2, A3, A1), we see
that x1 and x3 are also multiples of p. Thus the fourth rows and columns of Ai
vanish modulo p for i = 1, 2, 3, 4. We may therefore divide the fourth row and
column of each Ai by p to obtain an integral A′ ∈ Z4⊗∧2Z5. It is evident that
c kij(A

′) = (n/p2)c kij , and so we may let n′ = n/p2. This completes the proof.

Lemmas 13, 14, and 15 together prove Theorem 12. Next, let us return
to the main case of interest in Theorem 12, namely when the constants c kij(A)
give the structure coefficients of a maximal quintic ring, i.e., a quintic ring that
is not a subring of any other quintic ring. In that case, we have the following
stronger result:

Lemma 16. Suppose the constants {c kij} form the structure coefficients of
a maximal quintic ring R. Then the element A ∈ Z4 ⊗ ∧2Z5 with c kij(A) = c kij
for all i, j, k, as constructed in Theorem 12, is unique up to SL5(Z)-equivalence.

Proof. Let A,A′ ∈ Z4⊗∧2Z5 be any elements with c kij(A) = c kij(A
′) = c kij

for all i, j, k; such A,A′ are guaranteed to exist by Theorem 12. We wish to
show that A and A′ must in fact be SL5(Z)-equivalent. To this end, let Q =
(Q1, . . . , Q5) and Q′ = (Q′1, . . . , Q

′
5) be the associated quintuples of quaternary

quadratic forms given by the 4×4 signed sub-Pfaffians of A and A′ respectively.
The proof of Theorem 12 implies that for any p, if the 252 determinantal
SL5-invariants of Q are all multiples of p, then either a) gcd{c kij} ≥ p, or b)
there is a transformation γ ∈ Γ such that the vector consisting of the top left
4 × 4 submatrices of A1, A2, A3, A4 takes the form (47) modulo p. Condition
(a) evidently contradicts the maximality of R, since if all structure constants
c kij are multiples of p then there is a ring R′ ⊃ R such that R = Z + pR′.
Similarly, condition (b) contradicts the maximality of R: if some Ai, say A1,
has a nonzero (4,5) entry, then by subtracting multiples of A1 from the other
Aj we can clear out, modulo p, the (4,5) entries of all the Aj (j 6= 1); now
multiply A1 by p, and then divide the fourth row and column of each Aj
(j = 1, 2, 3, 4) by p. We obtain an element A′ ∈ VZ in the same Q-orbit as
A with Disc(A′) = Disc(A)/p6, and so R(A) cannot be maximal. (In fact, by
examining the structure coefficients of R(A) and R(A′), we see that if we write
R(A) = Z + Zα1 + Zα2 + Zα3 + Zα4 and R(A′) = Z + Zα′1 + Zα′2 + Zα′3 + Zα′4,
then α1 = α′1 and αj = pα′j for j = 2, 3, 4, implying R′/R ∼= (Z/pZ)3.)

We conclude that the 252 determinantal invariants of Q must be rela-
tively prime. That is, if XZ denotes the Z-module of quaternary quadratic
forms spanned by Q1, . . . , Q5, then XZ must be the maximal integral lattice
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in the five-dimensional complex vector space XC = XZ ⊗ C of quaternary
quadratic forms. By the identical reasoning, if X ′Z is the Z-module of quater-
nary quadratic forms spanned by Q′1, . . . , Q

′
5, then X ′Z must be the maximal

integral lattice inside the five-dimensional C-vector space X ′C = X ′Z ⊗ C.
Now since A and A′ share the same SL5-invariants, A′ = γA for some

γ ∈ SL5(C). It follows that Q′ = Qγ−1, which implies XC = X ′C. Moreover,
since XZ and X ′Z are maximal integral lattices in the same C-vector space XC
of quaternary quadratic forms, we conclude that XZ = X ′Z. Finally, because
γ acts as a transformation of XC which preserves the integral lattice XZ, we
have γ ∈ SL5(Z). This is the desired conclusion.

Note that, by Theorem 12, R(A) is a maximal quintic ring for an element
A ∈ VZ precisely when A is a minimal integral model, that is, when A has
the smallest (nonzero) discriminant among all integral elements in its Q-orbit.
Lemma 16 thus states that any nondegenerate element A ∈ VQ has a unique
minimal integral model up to Γ-equivalence.

11. Isolating R

We may rephrase the preceding invariant theory in terms of quintic rings:

Theorem 17. Every quintic ring R is of the form R(A) for some A ∈
Z4 ⊗ ∧2Z5. Moreover, if R is maximal then the element A ∈ Z4 ⊗ ∧2Z5 with
R = R(A) is unique up to Γ-equivalence.

Corollary 18. Every quintic ring has at least one sextic resolvent ring.

Corollary 19. The sextic resolvent ring of a maximal quintic ring is
unique up to isomorphism.

Thus the situation is in complete parallel with the cubic and quartic
cases [4].

Corollary 19 states that a maximal quintic ring always has a unique,
canonically associated sextic resolvent ring. In fact, the proof of Lemma 16
shows that this property holds for an even larger class of quintic rings: if R is
any nondegenerate quintic ring contained in a maximal ring R′ such that the
finite abelian group R′/R has p-rank less than 3 for all primes p, then R has a
unique sextic resolvent ring up to isomorphism.

Analogous to Corollary 4 of [4], which gives the precise number of cubic
resolvents of any given quartic ring, it would be interesting to have an exact
counting formula for the number of sextic resolvents of an arbitrary quintic
ring. We are not sure on which invariants of the quintic ring this number
depends. (In the quartic case, it depended only on the content of the ring;
see [4, §3.7].)
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12. Maximality, prime splitting, and local densities

As remarked in the previous section, an important class of rings on which
Theorem 1 (or Theorem 8) yields a one-to-one correspondence are the maxi-
mal quintic rings. These, of course, are the quintic rings of greatest interest
to algebraic number theorists. We therefore wish to understand how maximal-
ity of quintic rings, and prime splitting and ramification in maximal quintic
rings, manifest themselves in terms of the corresponding quadruples of integral
quinary alternating 2-forms. An understanding of these phenomena will, e.g.,
be very useful in [5] (see also [6]).

Noting that maximality and prime splitting are local conditions, in this
section we consider elements in the spaces of quadruples of quinary alternating
2-forms over the integers Z, the p-adic ring Zp, and over the residue field
Z/pZ. We denote these spaces by VZ = Z4 ⊗ ∧2Z5, VZp

= Z4
p ⊗ ∧2Z5

p, and
VFp

= F4
p ⊗ ∧2F5

p.
Let A be an element of VZ (resp. of VZp

, VFp
). Then over the residue field

Fp, the element A determines a quintic Fp-algebra R(A)/(p) = RFp
(A) given

by the multiplication recipe in (16), (21), and (22) taken modulo p. Let us
define the splitting symbol (A, p) by

(A, p) = (fe11 fe22 · · · )

whenever R(A)/(p) ∼= Fpf1 [t1]/(te11 ) ⊕ Fpf2 [t2]/(te22 ) ⊕ · · · . There are thus 17
possible values for the symbol (A, p), namely, (11111), (1112), (122), (113),
(23), (14), (5), (12111), (1212), (123), (12121), (221), (1311), (132), (1312),
(141), and (15). (As is customary, we suppress exponents that are equal to
one, and omit all factors for which the exponent is zero.)

The symbol (A, p) has a natural geometric interpretation. Namely, sup-
pose (A, p) = (fe11 fe22 · · · ) for some A ∈ VFp

. Then one can show that the
sub-Pfaffians of A intersect in exactly five points (counting multiplicities) in
P3

Fp
. Moreover, the residue field degrees over Fp at the points of intersection

are given by the fi, while their respective multiplicities are given by the ei.
Let G = GL4 × SL5. It is clear that if two elements A,A′ in VZ (resp.

VZp
, VFp

) are equivalent under a transformation in G(Z) (resp. G(Zp), G(Fp)),
then (A, p) = (A′, p). For any of the seventeen values σ of the splitting symbol,
let Tp(σ) denote the set of A such that (A, p) = σ. We observe that such an
element A has nonzero discriminant modulo p if and only if it is in Tp(11111),
Tp(1112), Tp(122), Tp(113), Tp(23), Tp(14), or Tp(5) (i.e., if and only if the five
quadrics in P3 determined by A intersect in five distinct points over Fp).

A nondegenerate quintic ring is said to be maximal if it is not a subring
of any other quintic ring. By the theory of algebraic numbers, a maximal ring
R of nonzero discriminant is a direct sum of Dedekind domains. In particular,
a prime p factorizes uniquely in R as a product of prime ideals of R. If p =
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P e11 P e22 · · · is the factorization of p into prime ideals of R(A), where R/Pi ∼=
Fpfi , define the symbol (R, p) by setting

(R, p) = (fe11 fe22 · · · ).
Suppose nowA ∈ VZ is such thatR(A) is maximal. If (R, p) = (fe11 fe22 · · · ),

then clearly R(A)/(p) ∼= Fpf1 [t1]/(te11 ) ⊕ Fpf2 [t2]/(te22 ) ⊕ · · · , so that A ∈
Tp(fe11 fe22 · · · ). Therefore, if the ring R(A) is maximal for an element A ∈ VZ,
then A is contained in one of the Tp(·)’s, and

(A, p) = (R(A), p).

A quintic ring R is maximal if and only if the Zp-algebra Rp = R⊗ Zp is
maximal for every p, in the sense that Rp is not contained in any other quintic
Zp-algebra over Zp. For each splitting symbol σ, denote by Up(σ) ⊂ VZ the
subset of elements in Tp(σ) corresponding to quintic rings that are maximal
at p. Then since a quintic ring R with discriminant prime to p is necessarily
maximal at p, R(A) is automatically maximal at p for any A in Tp(11111),
Tp(1112), Tp(122), Tp(113), Tp(23), Tp(14), or Tp(5), and hence Tp(σ) = Up(σ)
for any of these seven values of σ. For other values of σ, the set Up(σ) is
not simply defined by conditions modulo p, though it is defined as a set via
conditions modulo a sufficiently high power of p.

For any set S in VZ (resp. VZp
, VFp

) that is definable by congruence con-
ditions, denote by µ(S) = µp(S) the p-adic density of S in VZp

, where we
normalize the additive measure µ on V so that µ(VZp

) = 1. The following
lemma determines the p-adic densities of the sets Up(·), and is the analogue of
Lemma 23 of [4].

Lemma 20. We have
µ(Up(11111)) = 1

120 (p− 1)8 p16 (p+ 1)4 (p2 + 1)2 (p2 + p+ 1)2 (p4 + p3 + p2 + p+ 1) / p40

µ(Up(1112)) = 1
12 (p− 1)8 p16 (p+ 1)4 (p2 + 1)2 (p2 + p+ 1)2 (p4 + p3 + p2 + p+ 1) / p40

µ(Up(122)) = 1
8 (p− 1)8 p16 (p+ 1)4 (p2 + 1)2 (p2 + p+ 1)2 (p4 + p3 + p2 + p+ 1) / p40

µ(Up(113)) = 1
6 (p− 1)8 p16 (p+ 1)4 (p2 + 1)2 (p2 + p+ 1)2 (p4 + p3 + p2 + p+ 1) / p40

µ(Up(23)) = 1
6 (p− 1)8 p16 (p+ 1)4 (p2 + 1)2 (p2 + p+ 1)2 (p4 + p3 + p2 + p+ 1) / p40

µ(Up(14)) = 1
4 (p− 1)8 p16 (p+ 1)4 (p2 + 1)2 (p2 + p+ 1)2 (p4 + p3 + p2 + p+ 1) / p40

µ(Up(5)) = 1
5 (p− 1)8 p16 (p+ 1)4 (p2 + 1)2 (p2 + p+ 1)2 (p4 + p3 + p2 + p+ 1) / p40

µ(Up(12111)) = 1
6 (p− 1)8 p15 (p+ 1)4 (p2 + 1)2 (p2 + p+ 1)2 (p4 + p3 + p2 + p+ 1) / p40

µ(Up(1212)) = 1
2 (p− 1)8 p15 (p+ 1)4 (p2 + 1)2 (p2 + p+ 1)2 (p4 + p3 + p2 + p+ 1) / p40

µ(Up(123)) = 1
3 (p− 1)8 p15 (p+ 1)4 (p2 + 1)2 (p2 + p+ 1)2 (p4 + p3 + p2 + p+ 1) / p40

µ(Up(12121)) = 1
2 (p− 1)8 p14 (p+ 1)4 (p2 + 1)2 (p2 + p+ 1)2 (p4 + p3 + p2 + p+ 1) / p40

µ(Up(221)) = 1
2 (p− 1)8 p14 (p+ 1)4 (p2 + 1)2 (p2 + p+ 1)2 (p4 + p3 + p2 + p+ 1) / p40

µ(Up(1311)) = 1
2 (p− 1)8 p14 (p+ 1)4 (p2 + 1)2 (p2 + p+ 1)2 (p4 + p3 + p2 + p+ 1) / p40

µ(Up(132)) = 1
2 (p− 1)8 p14 (p+ 1)4 (p2 + 1)2 (p2 + p+ 1)2 (p4 + p3 + p2 + p+ 1) / p40

µ(Up(1312)) = (p− 1)8 p13 (p+ 1)4 (p2 + 1)2 (p2 + p+ 1)2 (p4 + p3 + p2 + p+ 1) / p40

µ(Up(141)) = (p− 1)8 p13 (p+ 1)4 (p2 + 1)2 (p2 + p+ 1)2 (p4 + p3 + p2 + p+ 1) / p40

µ(Up(15)) = (p− 1)8 p12 (p+ 1)4 (p2 + 1)2 (p2 + p+ 1)2 (p4 + p3 + p2 + p+ 1) / p40
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Proof. The proof of Theorem 17, with Zp in place of Z, shows that for
any maximal quintic Zp-algebra R there is a unique element A ∈ VZp

up to
G(Zp)-equivalence satisfying RZp

(A) = R. Moreover, the automorphism group
of such a maximal quintic Zp-algebra R is simply the size of the stabilizer in
G(Zp) of the corresponding element A ∈ VZp

.
We normalize Haar measure dg on the p-adic group G(Zp) so that∫

g∈G(Zp) dg = #G(Fp). Since |Disc(x)|−1
p · dx is a G(Qp)-invariant measure

on VZp
, we must have for any maximal quintic Zp-algebra R = R(A0) that∫

x∈VZp
R(x)=R

dx = c ·
∫
g∈G(Zp)/Stab(A0)

|Disc(gA0)|p · dg = c · |Disc(R)|p ·#G(Fp)
#AutZp

(R)
,

for some constant c. A Jacobian calculation using an indeterminate A0 satis-
fying Disc(A0) 6= 0 shows that c = 1, independent of A0.

We thus obtain, for any splitting symbol σ, that

µ(Up(σ)) =
∫
x∈Up(σ)

dx = #G(Fp) ·
∑

{R : (R,p)=σ}

|Disc(R)|p
#AutZp

(R)
,

where the sum is over isomorphism classes of maximal Zp-algebras R satisfying
(R, p) = σ. The latter sum can be computed using a “mass formula” for étale
Qp-extensions having a given splitting type σ (see [7, Prop. 1]), and we obtain

µ(Up(σ)) =
∫
x∈Up(σ)

dx = #G(Fp) ·
|Disc(σ)|p
#Aut(σ)

,

where Discp(σ) for σ = (fe11 fe22 · · · ) is defined to be p
P

i fi(ei−1), and #Aut(σ)
is defined to be the product of all the fi times the number of permutations of
the factors fei

i that preserve the symbol σ. For example, for σ = (12121), we
have Discp(σ) = p2 and Aut(σ) = (1 · 1 · 1) · 2 = 2.

Computing #Aut(σ) for each of the 17 values of σ, and noting that

#G(Fp) = (p−1)8 p16 (p+1)4 (p2 +1)2 (p2 +p+1)2 (p4 +p3 +p2 +p+1) / p40,

yields the lemma.

Let Up denote the union of the seventeen Up(·)’s in VZ. Then Lemma 20
implies that

(48) µ(Up) = (p− 1)8 p12 (p+ 1)4 (p2 + 1)2 (p2 + p+ 1)2

· (p4 + p3 + p2 + p+ 1) (p4 + p3 + 2p2 + 2p+ 1) / p40

Regarding maximality, we have shown:

Theorem 21. Let A ∈ VZ. Then R(A) is a maximal ring if and only if
A ∈ Up for all primes p. The p-adic density of Up in VZ is given by (48).
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The preceding density results will play a critical role in understanding the
density of discriminants of quintic rings and fields (see [5]).
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