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On the homology of algebras of
Whitney functions over subanalytic sets

By Jean-Paul Brasselet and Markus J. Pflaum

Abstract

In this article we study several homology theories of the algebra E∞(X)
of Whitney functions over a subanalytic set X ⊂ R

n with a view towards
noncommutative geometry. Using a localization method going back to Teleman
we prove a Hochschild-Kostant-Rosenberg type theorem for E∞(X), when X

is a regular subset of R
n having regularly situated diagonals. This includes the

case of subanalytic X. We also compute the Hochschild cohomology of E∞(X)
for a regular set with regularly situated diagonals and derive the cyclic and
periodic cyclic theories. It is shown that the periodic cyclic homology coincides
with the de Rham cohomology, thus generalizing a result of Feigin-Tsygan.
Motivated by the algebraic de Rham theory of Grothendieck we finally prove
that for subanalytic sets the de Rham cohomology of E∞(X) coincides with
the singular cohomology. For the proof of this result we introduce the notion
of a bimeromorphic subanalytic triangulation and show that every bounded
subanalytic set admits such a triangulation.
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Introduction

Methods originating from noncommutative differential geometry have
proved to be very successful not only for the study of noncommutative al-
gebras, but also have given new insight to the geometric analysis of smooth
manifolds, which are the typical objects of commutative differential geometry.
As three particular examples for this we mention the following results:

1. The isomorphism between the de Rham homology of a smooth manifold
and the periodic cyclic cohomology of its algebra of smooth functions
(Connes [9], [10]),

2. The local index formula in noncommutative geometry by Connes-
Moscovici [11],

3. The algebraic index theorem of Nest-Tsygan [40].

It is a common feature of these examples that the underlying space has to be
smooth, so that the natural question arises, whether noncommutative methods
can also be effectively applied to the study of singular spaces. This is exactly
the question we want to address in this work.

In noncommutative geometry, one obtains essential mathematical infor-
mation about a certain (topological) space from “its” algebra of functions. In
the special case, when the underlying space is smooth, i.e. either a smooth com-
plex variety or a smooth manifold, one can recover topological and geometric
properties from the algebra of regular, analytic or smooth functions. In partic-
ular, as a consequence of the classical Hochschild-Kostant-Rosenberg theorem
[28] and Connes’ topological version [9], [10], the complex resp. singular coho-
mology of a smooth space can be obtained as the (periodic) cyclic cohomology
of the algebra of global sections of the natural structure sheaf. However, in the
presence of singularities, the situation is more complicated. For example, if X

is an analytic variety with singularities, the singular cohomology coincides, in
general, neither with the de Rham cohomology of the algebra of analytic func-
tions (see Herrera [24] for a specific counterexample) nor with the (periodic)
cyclic homology (this can be concluded from the last theorem of Burghelea-
Vigué-Poirrier [8]). One can even prove that the vanishing of higher degree
Hochschild homology groups of the algebra of regular resp. analytic functions
is a criterion for smoothness (see Rodicio [45] or Avramov-Vigué-Poirrier [1]).
Computational and structural problems related to singularities appear also,
when one tries to compute the Hochschild or cyclic homology of function alge-
bras over a stratified space. For work in this direction see Brasselet-Legrand
[5] or Brasselet-Legrand-Teleman [6], [7], where the relation to intersection
cohomology [5], [7] and the case of piecewise differentiable functions [7] have
been examined.
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In this work we propose to consider Whitney functions over singular spaces
under a noncommutative point of view. We hope to convince the reader that
this is a reasonable approach by showing among other things that the periodic
cyclic homology of the algebra E∞(X) of Whitney functions on a subanalytic
set X ⊂ R

n, the de Rham cohomology of E∞(X) (which we call the Whitney-de
Rham cohomology of X) and the singular cohomology of X naturally coincide.
Besides the de Rham cohomology and the periodic cyclic homology of algebras
of Whitney functions we also study their Hochschild homology and cohomology.
In fact, we compute these homology theories at first by application of a variant
of the localization method of Teleman [48] and then derive the (periodic) cyclic
homology from the Hochschild homology.

We have been motivated to study algebras of Whitney functions in a
noncommutative setting by two reasons. First, the theory of jets and Whitney
functions has become an indispensable tool in real analytic geometry and the
differential analysis of spaces with singularities [2], [3], [37], [50], [52]. Second,
we have been inspired by the algebraic de Rham theory of Grothendieck [21]
(see also [23], [25]) and by the work of Feigin-Tsygan [15] on the (periodic)
cyclic homology of the formal completion of the coordinate ring of an affine
algebraic variety.

Recall that the formal completion of the coordinate ring of an affine com-
plex algebraic variety X ⊂ C

n is the I-adic completion of the coordinate ring
of C

n with respect to the vanishing ideal of X in C
n. Thus, the formally com-

pleted coordinate ring of X can be interpreted as the algebraic analogue of the
algebra of Whitney functions on X. Now, Grothendieck [21] has proved that
the de Rham cohomology of the formal completion coincides with the complex
cohomology of the variety, and Feigin-Tsygan [15] have shown that the peri-
odic cyclic cohomology of the formal completion coincides with the algebraic
de Rham cohomology, if the affine variety is locally a complete intersection. By
the analogy between algebras of formal completions and algebras of Whitney
functions it was natural to conjecture that these two results should also hold
for Whitney functions over appropriate singular spaces. Theorems 6.4 and 7.1
confirm this conjecture in the case of a subanalytic space.

Our article is set up as follows. In the first section we have collected
some basic material from the theory of jets and Whitney functions. Later
on in this work we also explain necessary results from Hochschild resp. cyclic
homology theory. We have tried to be fairly explicit in the presentation of
the preliminaries, so that a noncommutative geometer will find himself going
easily through the singularity theory used in this article and vice versa. At the
end of Section 1 we also present a short discussion about the dependence of
the algebra E∞(X) on the embedding of X in some Euclidean space and how
to construct a natural category of ringed spaces (X, E∞).
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Since the localization method used in this article provides a general ap-
proach to the computation of the Hochschild (co)homology of quite a large
class of function algebras over singular spaces, we introduce this method in
a separate section, namely Section 2. In Section 3 we treat Peetre-like the-
orems for local operators on spaces of Whitney functions and on spaces of
G-invariant functions. These results will later be used for the computation of
the Hochschild cohomology of Whitney functions, but may be of interest on
their own.

Section 4 is dedicated to the computation of the Hochschild homology
of E∞(X). Using localization methods we first prove that it is given by the
homology of the so-called diagonal complex. This complex is naturally iso-
morphic to the tensor product of E∞(X) with the Hochschild chain complex
of the algebra of formal power series. The homology of the latter complex can
be computed via a Koszul-resolution, so we obtain the Hochschild homology
of E∞(X). In the next section we consider the cohomological case. Interest-
ingly, the Hochschild cohomology of E∞(X) is more difficult to compute, as
several other tools besides localization methods are involved, as for example a
generalized Peetre’s theorem and operations on the Hochschild cochain com-
plex. In Section 6 we derive the cyclic and periodic cyclic homology from the
Hochschild homology by standard arguments of noncommutative geometry.

In Section 7 we prove that the Whitney-de Rham cohomology over a sub-
analytic set coincides with the singular cohomology of the underlying topolog-
ical space. The claim follows essentially from a Poincaré lemma for Whitney
functions over subanalytic sets. This Poincaré lemma is proved with the help
of a so-called bimeromorphic subanalytic triangulation of the underlying sub-
analytic set. The existence of such a triangulation is shown in the last section.

With respect to the above list of (some of) the achievements of noncom-
mutative geometry in geometric analysis we have thus shown that the first
result can be carried over to a wide class of singular spaces with the structure
sheaf given by Whitney functions. It would be interesting and tempting to
examine whether the other two results also have singular analogues involving
Whitney functions.

Acknowledgment. The authors gratefully acknowledge financial support
by the European Research Training Network Geometric Analysis on Singular
Spaces. Moreover, the authors thank André Legrand, Michael Puschnigg and
Nicolae Teleman for helpful discussions on cyclic homology in the singular
setting.

1. Preliminaries on Whitney functions

1.1. Jets. The variables x, x0, x1, . . . , y and so on will always stand for el-
ements of some R

n; the coordinates are denoted by xi, x0 i, . . . , yi, respectively,
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where i = 1, . . . , n. By α = (α1, · · · , αn) and β we will always denote multi-
indices lying in N

n. Moreover, we write |α| = α1 + . . . + αn, α! = α1! · . . . · αn!
and xα = x

α1

1 · . . . · x
αn

n . By |x| we denote the euclidian norm of x, and by
d(x, y) the euclidian distance between two points.

In this article X will always mean a locally closed subset of some R
n and,

if not stated differently, U ⊂ R
n an open subset such that X ⊂ U is relatively

closed. By a jet of order m on X (with m ∈ N∪ {∞}) we understand a family
F = (Fα)|α|≤m of continuous functions on X. The space of jets of order m on
X will be denoted by Jm(X). We write F (x) = F 0(x) for the evaluation of a
jet at some point x ∈ X, and F|x for the restricted family (Fα(x))|α|≤m. More
generally, if Y ⊂ X is locally closed, the restriction of continuous functions
gives rise to a natural map Jm(X) → Jm(Y ), (Fα)|α|≤m �→ (Fα

|Y )|α|≤m. Given

|α| ≤ m, we denote by Dα : Jm(X) → Jm−|α|(X) the linear map, which
associates to every (F β)|β|≤m the jet (F β+α)|β|≤m−|α|. If α = (0, . . . , 1, . . . , 0)
with 1 at the i-th spot, we denote Dα by Di.

For every natural number r ≤ m and every K ⊂ X compact, |F |K
r

=
sup x∈K

|α|≤r

|Fα(x)| is a seminorm on Jm(X). Sometimes, in particular if K con-

sists only of one point, we write only | · |
r
instead of | · |K

r
. The topology defined

by the seminorms | · |K
r

gives Jm(X) the structure of a Fréchet space. Moreover,
Dα and the restriction maps are continuous with respect to these topologies.

The space Jm(X) carries a natural algebra structure where the product
FG of two jets has components (FG)α =

∑
β≤α

(
α
β

)
F β Gα−β. One checks

easily that Jm(X) with this product becomes a unital Fréchet algebra.
For U ⊂ R

n open we denote by Cm(U) the space of Cm-functions on U .
Then Cm(U) is a Fréchet space with topology defined by the seminorms

|f |K
r

= sup
x∈K

|α|≤r

|∂α
x f(x)| ,

where K runs through the compact subsets of U and r through all natural
numbers ≤ m. Note that for X ⊂ U closed there is a continuous linear
map Jm

X : Cm(U) → Jm(X) which associates to every Cm-function f the jet

Jm
X(f) =

(
∂α

x f |X

)
|α|≤m

. Jets of this kind are sometimes called integrable jets.

1.2. Whitney functions. Given y ∈ X and F ∈ Jm(X), the Taylor polyno-
mial (of order m) of F is defined as the polynomial

Tm
y F (x) =

∑
|α|≤m

Fα(y)
α!

(x − y)α, x ∈ U.

Moreover, one sets Rm
y F = F −Jm(Tm

y F ). Then, if m ∈ N, a Whitney function
of class Cm on X is an element F ∈ Jm(X) such that for all |α| ≤ m

(Rm
y F )(x) = o(|y − x|m−|α|) for |x − y| → 0, x, y ∈ X.



6 JEAN-PAUL BRASSELET AND MARKUS J. PFLAUM

The space of all Whitney functions of class Cm on X will be denoted by Em(X).
It is a Fréchet space with topology defined by the seminorms

‖F‖K

m
= |F |K

m
+ sup

x,y∈K
x�=y

|α|≤m

|(Rm
y F )α(x)|

|y − x|m−|α| ,

where K runs through the compact subsets of X. The projective limit lim←−
r

Er(X)

will be denoted by E∞(X); its elements are called Whitney functions of class
C∞ on X. By construction, E∞(X) can be identified with the subspace of all
F ∈ J∞(X) such that JrF ∈ Er(X) for every natural number r. Moreover, the
Fréchet topology of E∞(X) then is given by the seminorms ‖·‖K

r
with K ⊂ X

compact and r ∈ N. It is not very difficult to check that for U ⊂ R
n open,

Em(U) coincides with Cm(U) (even for m = ∞).
Each one of the spaces Em(X) inherits from Jm(X) the associative prod-

uct; thus Em(X) becomes a subalgebra of Jm(X) and a Fréchet algebra. It
is straightforward that the spaces Em(V ) with V running through the open
subsets of X form the sectional spaces of a sheaf Em

X of Fréchet algebras on X

and that this sheaf is fine. We will denote by Em
X,x the stalk of this sheaf at

some point x ∈ X and by [F ]x ∈ Em
X,x the germ (at x) of a Whitney function

F ∈ Em(V ) defined on a neighborhood V of x.
For more details on the theory of jets and Whitney functions the reader

is referred to the monographs of Malgrange [37] and Tougeron [50], where he
or she will also find explicit proofs.

1.3. Regular sets. For an arbitrary compact subset K ⊂ R
n the seminorms

|·|K
m

and ‖·‖K

m
are in general not equivalent. The notion of regularity essentially

singles out those sets for which ‖·‖K

m
can be majorized by a seminorm of the

form C |·|K
m′ with C > 0, m′ ≥ m. Following [50, Def. 3.10], a compact set

K is defined to be p-regular, if it is connected by rectifiable arcs and if the
geodesic distance δ satisfies δ(x, y) ≤ C |x − y|1/p for all x, y ∈ K and some
C > 0 depending only on K. Then, if K is 1-regular, the seminorms |·|K

m
and

‖·‖K

m
have to be equivalent and Em(K) is a closed subspace of Jm(K). More

generally, if K is p-regular for some positive integer p, there exists a constant
Cm > 0 such that ‖F‖K

m
≤ Cm |F |K

pm
for all F ∈ Epm(K) (see [50]).

Generalizing the notion of regularity to not necessarily compact locally
closed subsets one calls a closed subset X ⊂ U regular, if for every point
x ∈ X there exist a positive integer p and a p-regular compact neighborhood
K ⊂ X. For X regular, the Fréchet space E∞(X) is a closed subspace of
J∞(X) which means in other words that the topology given by the seminorms
|·|K

r
is equivalent to the original topology defined by the seminorms ‖·‖K

r
.

1.4. Whitney ’s extension theorem. Let Y ⊂ X be closed and denote by
Jm(Y ;X) the ideal of all Whitney functions F ∈ Em(X) which are flat of order
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m on Y , which means those which satisfy F|Y = 0. The Whitney extension
theorem (Whitney [52], see also [37, Thm. 3.2, Thm. 4.1] and [50, Thm. 2.2,
Thm. 3.1]) then says that for every m ∈ N ∪ {∞} the sequence

0 −→ Jm(Y ;X) −→ Em(X) −→ Em(Y ) −→ 0(1.1)

is exact, where the third arrow is given by restriction. In particular this means
that Em(Y ) coincides with the space of integrable m-jets on Y . For finite m and
compact X such that Y lies in the interior of X there exists a linear splitting of
the above sequence or in other words an extension map W : Em(Y ) → Em(X)
which is continuous in the sense that |W (F )|X

m
≤ C ‖F‖Y

m
for all F ∈ Em(Y ).

If in addition X is 1-regular this means that the sequence (1.1) is split exact.
These complements on the continuity of W are due to Glaeser [18]. Note that
for m = ∞ a continuous linear extension map does in general not exist.

Under the assumption that X is 1-regular, m finite and Y in the interior
of X, the subspace of all Whitney functions of class C∞ on X which vanish in
a neighborhood of Y is dense in Jm(Y ;X) (with respect to the topology of
Em(X)).

Assume to be given two relatively closed subsets X ⊂ U and Y ⊂ V ,
where U ⊂ R

n and V ⊂ R
N are open. Further let g : U → V be a smooth map

such that g(X) ⊂ Y . Then, by Whitney’s extension theorem, there exists for
every F ∈ E∞(Y ) a uniquely determined Whitney function g∗(F ) ∈ E∞(X)
such that for every f ∈ C∞(V ) with J∞Y (f) = F the function f ◦ g ∈ C∞(U)
satisfies J∞X (f ◦ g) = g∗(F ). The Whitney function g∗(F ) will be called the
pull-back of F by g.

1.5. Regularly situated sets. Two closed subsets X, Y of an open subset
U ⊂ R

n are called regularly situated [50, Chap. IV, Def. 4.4], if either X∩Y = ∅
or if for every point x0 ∈ X ∩ Y there exists a neighborhood W ⊂ U of x0 and
a pair of constants C > 0 and λ ≥ 0 such that

d(x, Y ) ≥ C d(x, X ∩ Y )λ for all x ∈ W ∩ X.

It is a well-known result by �Lojasiewicz [33] that X, Y are regularly situated
if and only if the sequence

0 −→ E∞(X ∪ Y ) δ−→ E∞(X) ⊕ E∞(Y ) π−→ E∞(X ∩ Y ) −→ 0

is exact, where the maps δ and π are given by δ(F ) = (F|X , F|Y ) and π(F, G) =
F|X∩Y − G|X∩Y .

1.6. Multipliers. If Y ⊂ U is closed we denote by M∞(Y ;U) the set of
all f ∈ C∞(U \ Y ) which satisfy the following condition: For every compact
K ⊂ U and every α ∈ N

n there exist constants C > 0 and λ > 0 such that

|∂α
x f(x)| ≤ C

(d(x, Y ))λ
for all x ∈ K \ Y .
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The space M∞(Y ;U) is an algebra of multipliers for J∞(Y ;U) which means
that for every f ∈ J∞(Y ;U) and g ∈ M∞(Y ;U) the product gf on U \ Y

has a unique extension to an element of J∞(Y ;U). More generally, if X and
Y are closed subsets of U , then we denote by M∞(Y ;X) the injective limit
lim−→
W

J∞X\Y M∞(Y ;W ), where W runs through all open sets of U which satisfy

X ∪ Y ⊂ W . In case X and Y are regularly situated, then M∞(Y ;X) is an
algebra of multipliers for J∞(X ∩ Y ;X) (see [37, IV.1]).

1.7. Subanalytic sets. A set X ⊂ R
n is called subanalytic [26, Def. 3.1], if

for every point x ∈ X there exist an open neighborhood U of x in R
n, a finite

system of real analytic maps fij : Uij → U (i = 1, . . . , p, j = 1, 2) defined on
open subsets Uij ⊂ R

nij and a family of closed analytic subsets Aij ⊂ Uij such
that every restriction fij |Aij

: Aij → U is proper and

X ∩ U =
p⋃

i=1

fi1(Ai1) \ fi2(Ai2).

The set of all subanalytic sets is closed under the operations of finite intersec-
tion, finite union and complement. Moreover, the image of a subanalytic set
under a proper analytic map is subanalytic. From these properties one can

derive that for every subanalytic X ⊂ R
n the interior

◦
X, the closure X and

the frontier frX = X \ X are subanalytic as well. For details and proofs see
Hironaka [26] or Bierstone-Milman [4].

Note that every subanalytic set X ⊂ R
n is regular [31, Cor. 2], and that

any two relatively closed subanalytic sets X, Y ⊂ U are regularly situated
[4, Cor. 6.7].

1.8. �Lojasiewicz ’s inequality. Under the assumption that X and Y are
closed in U ⊂ R

n, one usually says (cf. [50, §V.4]) that a function f : X \Y →
R

N satisfies �Lojasiewicz ’s inequality or is �Lojasiewicz with respect to Y , if for
every compact K ⊂ X there exist two constants C > 0 and λ ≥ 0 such that

|f(x)| ≥ C d(x, Y )λ for all x ∈ K \ Y .

More generally, we say that f is �Lojasiewicz with respect to the pair (Y, Z),
where Z ⊂ R

N is a closed subset, if for every K as above there exist C > 0
and λ ≥ 0 such that

d(f(x), Z) ≥ C d(x, Y )λ for all x ∈ K \ Y .

In case g1, g2 : X → R are two subanalytic functions with compact graphs such
that g−1

1 (0) ⊂ g−1
2 (0), there exist C > 0 and λ > 0 such that g1 and g2 satisfy

the following relation, also called the �Lojasiewicz inequality:

|g1(x)| ≥ C |g2(x)|λ for all x ∈ X.(1.2)

For a proof of this property see [4, Thm. 6.4].
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1.9. Topological tensor products and nuclearity. Recall that on the tensor
product V ⊗ W of two locally convex real vector spaces V and W one can
consider many different locally convex topologies arising from the topologies on
V and W (see Grothendieck [20] or Trèves [51, Part. III]). For our purposes, the
most natural topology is the π-topology, i.e. the finest locally convex topology
on V ⊗W for which the natural mapping ⊗ : V ×W → V ⊗W is continuous.
With this topology, V ⊗W is denoted by V ⊗π W and its completion by V ⊗̂W .
In fact, the π-topology is the strongest topology compatible with ⊗ in the sense
of Grothendieck [20, I. §3, n◦ 3]. The weakest topology compatible with ⊗ is
usually called the ε-topology; in general it is different from the π-topology. A
locally convex space V is called nuclear, if all the compatible topologies on
V ⊗ W agree for every locally convex spaces W .

1.10. Proposition. The algebra E∞(X) of Whitney functions over a lo-
cally closed subset X ⊂ R

n is nuclear. Moreover, if X ′ ⊂ R
n′

is a further
locally closed subset, then E∞(X)⊗̂E∞(X ′) ∼= E∞(X × X ′).

Proof. For open U ⊂ R
n the Fréchet space C∞(U) is nuclear [20, II. §2,

n◦ 3], [51, Chap. 51]. Choose U such that X is closed in U . Recall that
every Hausdorff quotient of a nuclear space is again nuclear [51, Prop. 50.1].
Moreover, by Whitney’s extension theorem, E∞(X) is the quotient of C∞(U)
by the closed ideal J∞(X;U); hence one concludes that E∞(X) is nuclear.

Now choose an open set U ′ ⊂ R
n′

such that X ′ is closed in U ′. Then we
have the following commutative diagram of continuous linear maps:

C∞(U) ⊗π C∞(U ′) −−−→ E∞(X) ⊗π E∞(X ′)⏐⏐
 ⏐⏐

C∞(U × U ′) −−−→ E∞(X × X ′).

Clearly, the horizontal arrows are surjective and the vertical arrows injective.
Since the completion of C∞(U) ⊗π C∞(U ′) coincides with C∞(U × U ′), the
completion of E∞(X)⊗π E∞(X ′) coincides with E∞(X ×X ′). This proves the
claim.

1.11. Remark. Note that for finite m and nonfinite but compact X the
space Em(X) is not nuclear, since a normed space is nuclear if and only if it is
finite dimensional [51, Cor. 2 to Prop. 50.2].

1.12. The category of Whitney ringed spaces. Given a subanalytic (or
more generally a stratified) set X, the algebra E∞(X) of Whitney functions on
X depends on the embedding X ↪→ R

n. This phenomenon already appears in
the algebraic de Rham theory of Grothendieck, where the formal completion Ô
of the algebra of regular functions on a complex algebraic variety X depends
on the choice of an embedding of X in some affine C

n. The dependence of the
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ringed space (X, E∞) resp. (X, Ô) on such embeddings appears to be unnatural,
since the structure sheaf should be an intrinsic property of X. Following ideas
of Grothendieck [22] on crystalline cohomology we will now briefly sketch an
approach showing how to remedy this situation and how to give Whitney
functions a more intrinsic interpretation. The essential ansatz hereby consists
of regarding the category of all local (smooth or analytic) embeddings of the
underlying subanalytic set X in some Euclidean space R

n instead of just a
global one. Note that the following considerations will not be needed in the
sequel and that they are of a more fundamental nature.

Now assume X to be a stratified space. By a smooth chart on X we
understand a homeomorphism ι : U → Ũ ⊂ R

n from an open subset of X onto
a locally closed subset Ũ in some Euclidean space such that for every stratum
S ⊂ X the restriction ι|U∩S is a diffeomorphism onto a smooth submanifold
of R

n. Such a smooth chart will often be denoted by (ι, U) or (ι, U, Rn).
Given smooth charts (ι, U, Rn) and (κ, V, Rm) such that U ⊂ V and n ≥ m, a
morphism (ι, U) → (κ, V ) is a (vector valued) Whitney function H : ι(U) → R

n

such that the following holds true:

(i ) H is diffeomorphic which means that H can be extended to a diffeomor-
phism from an open neighborhood of ι(U) to an open subset of R

n,

(ii ) H ◦ ι = inm ◦ κ|U , where inm : R
m → R

n is the canonical injection
(x1, · · · , xm) �→ (x1, · · · , xm, 0 · · · , 0).

For convenience, we sometimes denote such a morphism as a pair (H, Rn).
In case (G, Rm) : (κ, V ) → (λ, W ) is a second morphism, the composition
(G, Rm) ◦ (H, Rn) is defined as the morphism ((G × idRn−m) ◦ H, Rn). It is
immediate to check that the smooth charts on X thus form a small category
with pullbacks.

Two charts (κ1, V1) and (κ2, V2) are called compatible, if for every x ∈
V1 ∩ V2 there exists an open neighborhood U ⊂ V1 ∩ V2 and a chart (ι, U)
such that there are morphisms (ι, U) → (κi, Vi) for i = 1, 2. If U ⊂ X is an
open subspace, a covering of U is a family (ιi, Ui) of smooth charts such that
U =

⋃
i Ui. A covering for X will be called an atlas. If an atlas is maximal

with respect to inclusion we call it a smooth structure for X. This notion
has been introduced in [44, §1.3]. Clearly, algebraic varieties, semialgebraic
sets and subanalytic sets carry natural smooth structures inherited from their
canonical embedding in some R

n. In [44] it has been shown also that orbit
spaces of proper Lie group actions and symplectically reduced spaces carry a
natural smooth structure.

Given such a smooth structure A on X we now construct a Grothendieck
topology on X (or better on A), and then the sheaf of Whitney functions.
Observe first that A is a small category with pullbacks. By a covering of a
smooth chart (ι, U) ∈ A we mean a family

(
Hi : (ιi, Ui) → (ι, U)

)
of morphisms
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in A such that U =
⋃

i Ui. It is immediate to check that assigning to every
(ι, U) ∈ A the set Cov(ι, U) of all its coverings gives rise to a (basis of a)
Grothendieck topology on A (see [36] for details on Grothendieck topologies).
To every (ι, U) ∈ A we now associate the algebra E∞(ι, U) := E∞(ι(U)) of
Whitney functions over ι(U) ⊂ R

n. Moreover, every morphism H : (ι, U) →
(κ, V ) gives rise to a generalized restriction map

H∗ : E∞(κ, V ) → E∞(ι, U), F �→ F ◦ H−1 ◦ inm.

It is immediate to check that E∞ thus becomes a separated presheaf on the site
(A,Cov). Let Ê∞ be the associated sheaf. Then (X, Ê∞) is a ringed space in a
generalized sense; we call it a Whitney ringed space and the structure sheaf Ê∞

the sheaf of Whitney functions on X. This sheaf depends only on the smooth
structure on X and not on a particular embedding of X in some R

n. So the
sheaf of Whitney functions Ê∞ is intrinsically defined, and the main results
of this article can be interpreted as propositions about the local homological
properties of Ê∞ (resp. E∞) in case X is subanalytic. Finally let us mention
that one can also define morphisms of Whitney ringed spaces. These are just
morphisms of ringed spaces which in local charts are given by vector-valued
Whitney functions. Thus the Whitney ringed spaces form a category, which
we expect to be quite useful in singular analysis and geometry.

2. Localization techniques

In this section we introduce a localization method for the computation of
the Hochschild homology of a fine commutative algebra. This method works
also for the computation of (co)homology groups with values in a module and
generalizes the approach of Teleman [48] and Brasselet-Legrand-Teleman [7].

2.1. Let X ⊂ R
n be a locally closed subset and d the euclidian metric.

Let A be a sheaf of commutative unital R-algebras on X and denote by A =
A(X) its space of global sections. We assume that A is an E∞

X -module sheaf,
which implies in particular that A is a fine sheaf. Additionally, we assume
that the sectional spaces of A carry the structure of a Fréchet algebra, that
all the restriction maps are continuous and that for every open U ⊂ X the
action of E∞(U) on A(U) is continuous. This implies in particular that A is
a commutative Fréchet algebra. The premises on A are satisfied for example
in the case when A is the sheaf of Whitney functions or the sheaf of smooth
functions on X.

From A one constructs for every k ∈ N
∗ the exterior tensor product sheaf

A�̂k over Xk. Its space of sections over a product of the form U1×. . .×Uk with
Ui ⊂ X open is given by the completed π-tensor product A(U1)⊗̂ . . . ⊗̂A(Uk).
Using the fact that A is a topological E∞

X -module sheaf and that E∞(X) is
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fine one checks immediately that the presheaf defined by these conditions is
in fact a sheaf, hence A�̂k is well-defined. Throughout this article we will
often make silent use of the sheaf A�̂k by writing an element of the topological
tensor product A⊗̂k as a section c(x0, . . . , xk−1), where c ∈ A�̂k(Xk) and
x0, . . . , xk−1 ∈ X.

Next we will introduce a few objects often used in the sequel. First choose
a smooth function � : R → [0, 1] with supp � = (−∞, 3

4 ] and �(s) = 1 for s ≤ 1
2 .

For every t > 0 denote by �t the rescaled function �t(s) = �( s
t ), s ∈ R. By

Δk : R
n → R

kn or briefly Δ we denote the diagonal map x �→ (x, · · · , x) and
by dk : R

kn → R the following distance to the diagonal:

dk(x0, x1, · · · , xk−1) =
√

d2(x0, x1) + d2(x1, x2) + · · · + d2(xk−1, x0).

Finally, let Uk,t = {(x0, · · · , xk−1) ∈ Xk | d2
k(x0, · · · , xk−1) < t} be the so-

called t-neighborhood of the diagonal Δk(X).
In the following we want to show how the computation of the Hochschild

homology of A can be essentially reduced to the computation of the local
Hochschild homology groups of A. Since we consider the topological version
of Hochschild homology theory, we will use in the definition of the Hochschild
(co)chain complex the completed π-tensor product ⊗̂ and the functor HomA

of continuous A-linear maps between A-Fréchet modules.

2.2. Now assume to be given an A-module sheaf M of symmetric Fréchet
modules and denote by M = M(X) the Fréchet space of global sections.
Denote by C•(A, M) the Hochschild chain complex with components M⊗̂A⊗̂k

and by C•(A, M) the Hochschild cochain complex, where Ck(A, M) is given by
HomA(Ck(A, A), M). Denote by bk : Ck(A, M) → Ck−1(A, M) the Hochschild
boundary and by bk : Ck(A, M) → Ck+1(A, M) the Hochschild coboundary.
This means that bk =

∑k
i=0 (−1)i (bk,i)∗ and bk =

∑k+1
i=0 (−1)i b∗k+1,i, where

the bk,i : Ck → Ck−1 with Ck := Ck(A, A) are the face maps which act on an
element c ∈ Ck as follows:

bk,ic(x0, . . . , xk−1) =

⎧⎪⎨⎪⎩
c(x0, x0, . . . , xk−1), if i = 0,
c(x0, . . . , xi, xi, . . . , xk−1), if 1 ≤ i < k,
c(x0, . . . , xk−1, x0), if i = k.

Hereby, x0, . . . , xk−1 are elements of X, and the fact has been used that Ck

can be identified with the space of global sections of the sheaf A�̂(k+1). The
Hochschild homology of A with values in M now is the homology H•(A, M) of
the complex (C•(A, M), b•). Likewise, the Hochschild cohomology H•(A, M)
is given by the cohomology of the cochain complex (C•(A, M), b•). As usual
we will denote the homology space H•(A, A) briefly by HH•(A).

2.3. Remark. In general, the particular choice of the topological tensor
product used in the definition of the Hochschild homology of a topological
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algebra is crucial for the theory to work well (see Taylor [47] for general in-
formation on this topic and Brasselet-Legrand-Teleman [6] for a particular
example of a topological algebra, where the ε-tensor product has to be used in
the definition of the topological Hochschild complex). But since the Fréchet
space E∞(X) is nuclear, this question does not arise in the main application
we are interested in, namely the definition and computation of the Hochschild
homology of E∞(X).

2.4. As Ck(A, M) is the space of global sections of a sheaf, the notion of
support of a chain c ∈ Ck(A, M) makes sense: supp c = {x ∈ Xk+1 | [c]x �= 0}.
To define the support of a cochain note first that Ck inherits from A the
structure of a commutative algebra and secondly that Ck acts on Ck(A, M)
by cf(c′) = f(c c′), where c, c′ ∈ Ck and f ∈ Ck(A, M). The support of
f ∈ Ck(A, M) then is given by the complement of all x ∈ Xk+1 for which
there exists an open neighborhood U such that cf = 0 for all c ∈ Ck with
supp c ⊂ U .

The following two observations are fundamental for localization à la
Teleman.

1. Localization on the first factor: For a ∈ A the chain ak = a ⊗ 1 ⊗
. . . ⊗ 1 ∈ A⊗̂(k+1) acts in a natural way on Ck(A, M) and Ck(A, M).
Since A is commutative and M a symmetric A-module, the resulting
endomorphisms give rise to chain maps a• : C•(A, M) → C•(A, M) and
a• : C•(A, M) → C•(A, M) such that supp a•c ⊂ (supp a × Xk) ∩ supp c

and supp a•f ⊂ (supp a × Xk) ∩ supp f .

2. Localization around the diagonal: For any t > 0 and k ∈ N let Ψk,t :
A⊗̂(k+1) → A⊗̂(k+1) be defined by

Ψk,t(x0, · · · , xk) =
k∏

j=0

�t

(
d2(xj , xj+1)

)
, where xk+1 := x0.(2.1)

Then the action by Ψk,t gives rise to chain maps Ψ•,t : C•(A, M) →
C•(A, M) and Ψ•

t : C•(A, M) → C•(A, M) such that supp (Ψk,tc) ⊂
Uk+1,t and supp (Ψk

t f) ⊂ Uk+1,t.

We now will construct a homotopy operator between the identity and Ψ•,t
resp. Ψ•

t . To this end define A-module maps ηk,i,t : Ck → Ck+1 for every
integer k ≥ −1 and i = 1, · · · , k + 2 by

(2.2) ηk,i,t(c)(x0, · · · , xk+1)

=

⎧⎪⎨⎪⎩
Ψk+1,i,t(x0, · · · , xk+1) c(x0, · · · , xi−1, xi+1, · · · , xk+1) for i < k + 1,

Ψk+1,k+1,t(x0, · · · , xk+1) c(x0, · · · , xk) for i = k + 1,

0 for i = k + 2
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where c ∈ Ck, x0, · · · , xk+1 ∈ X and, since xk+2 := x0, the functions Ψk+1,i,t,
i = 1, · · · , k + 2 are given by Ψk+1,i,t(x0, · · · , xk+1) =

∏i−1
j=0 �t(d2(xj , xj+1)).

For i = 2, · · · , k one then computes(
(bk+1ηk,i,t + ηk−1,i,tbk)c

)
(x0, · · · , xk) = Ψk,i−1,t(−1)i−1c(x0, · · · , xk)(2.3)

+Ψk,i−1,t

i−2∑
j=0

(−1)j c(x0, · · · , xj , xj , · · · , xi−2, xi, · · · , xk)

+(−1)iΨk,i,tc(x0, · · · , xk)

+Ψk,i,t

i−1∑
j=0

(−1)j c(x0, · · · , xj , xj , · · · , xi−1, xi+1, · · · , xk).

For the two remaining cases i = 1 and i = k + 1,(
(bk+1ηk,1,t + ηk−1,1,tbk)c

)
(x0, · · · , xk)(2.4)

= c(x0, · · · , xk) − Ψk,1,tc(x0, · · · , xk) + Ψk,1,tc(x0, x0, x2, · · · , xk),(
(bk+1ηk,k+1,t + ηk−1,k+1,tbkc)

)
(x0, · · · , xk)(2.5)

= Ψk,k,t(−1)kc(x0, · · · , xk)

+Ψk,k,t

k−1∑
j=0

(−1)j c(x0, · · · , xj , xj , · · · , xk−1)

+(−1)k+1Ψk,t c(x0, · · · , xk).

Note that by definition every ηk,i,t is a morphism of A-modules, which means
that one can apply the functors M⊗̂− and HomA(−, M) to these morphisms.
By the computations above we thus obtain our first result.

2.5. Proposition. The map

Hk,t =
k+1∑
i=1

(−1)i+1 (ηk,i,t)∗ : Ck(A, M) → Ck+1(A, M) resp.

Hk
t =

k∑
i=1

(−1)i+1 η∗k−1,i,t : Ck(A, M) → Ck−1(A, M)

gives rise to a homotopy between the identity and the localization morphism
Ψ•,t resp. Ψ•

t . More precisely,(
bk+1Hk,t + Hk−1,tbk

)
c = c − Ψk,t c for all c ∈ Ck(A, M) and(2.6) (

bk−1Hk
t + Hk+1

t bk
)
f = f − Ψk,t f for all f ∈ Ck(A, M).(2.7)

2.6. Remark. The localization morphisms given in Teleman, which form
the analogue of the morphisms ηk,i,t defined above, are not A-linear, hence
can be used only for localization of the complex C•(A, A) but not for the
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localization of Hochschild cohomology or of Hochschild homology with values
in an arbitrary module M .

Following Teleman [48] we denote by Ct
k(A, M)⊂Ck(A, M) resp. Ck

t (A, M)
⊂ Ck(A, M) the space of Hochschild (co)chains with support disjoint from
Uk+1,t and by C0

k(A, M) resp. Ck
0 (A, M) the inductive limit

⋃
t>0 Ct

k(A, M)
resp.

⋃
t>0 Ck

t (A, M). Finally denote by H• the sheaf associated to the presheaf
with sectional spaces H•(A(V ),M(V )), where V runs through the open sub-
sets of X. The proposition then implies the following results.

2.7. Corollary. The complexes C0
• (A, M) and C•

0 (A, M) are acyclic.

2.8. Corollary. The Hochschild homology of A coincides with the global
sections of H• which means that H•(A, M) = H•(X).

3. Peetre-like theorems

In this section we will show that a continuous local operator acting on
Whitney functions of class C∞ and with values in Em, m ∈ N, is locally given
by a differential operator. Thus we obtain a generalization of Peetre’s theorem
[42] which says that every local operator acting on the algebra of smooth
functions on R

n has to be a differential operator, locally.

3.1. Recall that a k-linear operator D : Em(X) × . . . × Em(X) → Er(X)
(with m, r ∈ N ∪ {∞}) is said to be local, if for all F1, . . . , Fk ∈ Em(X) and
every x ∈ X the value D(F1, . . . , Fk)|x ∈ Er({x}) depends only on the germs
[F1]x, . . . , [Fk]x. In other words this means that D can be regarded as a mor-
phism of sheaves Δ∗

|X(Em
X ⊗ . . . ⊗ Em

X ) → Er
X .

The following result forms the basic tool for our proof of a Peetre-like
theorem for Whitney functions.

3.2. Proposition. Let E be a Banach space with norm ‖ · ‖ and W
q→

V → 0 an exact sequence of Fréchet spaces and continuous linear maps such
that the topology of W is given by a countable family of norms ‖ · ‖l, l ∈ N.
Then for every continuous k-linear operator f : V × . . . × V → E there exists
a constant C > 0 and a natural number r such that

‖f(v1, . . . , vk)‖ ≤ C
⎪⎪⎪v1

⎪⎪⎪r · . . . ·
⎪⎪⎪vk

⎪⎪⎪r for all v1, . . . , vk ∈ V ,

where
⎪⎪⎪·⎪⎪⎪r is the seminorm

⎪⎪⎪v
⎪⎪⎪r = infw∈q−1(v) supl≤r ‖w‖l.

Proof. Let us first consider the case, where W = V and q is the identity
map. Assume that in this situation the claim does not hold. Then one can
find sequences (vij)j∈N ⊂ V for i = 1, . . . , k such that

‖f(v1j , . . . , vkj)‖ > j
⎪⎪⎪⎪v1j

⎪⎪⎪⎪j
· . . . ·

⎪⎪⎪⎪vkj

⎪⎪⎪⎪j
for all j ∈ N.
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Let wij = 1
k
√

j
⎪⎪⎪⎪vij

⎪⎪⎪⎪
j

vij . Then limj→∞(w1j , . . . , wkj) = 0, but ‖f(w1j , . . . , wkj)‖
≥ 1 for all j ∈ N, which is a contradiction to the continuity of f . Hence the
claim must be true for W = V and q = id.

Let us now consider the general case of an exact sequence W
q→ V → 0,

where the topology of W is given by a countable family of norms. Define
F : W × . . . × W → E by F (w1, . . . , wk) = f(q(w1), . . . , q(wk)), wi ∈ W . By
the result proven so far one concludes that there exist a C > 0 and a natural
r such that

‖F (w1, . . . , wk)‖ ≤ C sup
l≤r

‖w1‖l · . . . · sup
l≤r

‖wk‖l for all w1, . . . , wk ∈ V .

But this entails

‖f(v1, . . . , vk)‖= inf
w1∈q−1(v1)

· . . . · inf
wk∈q−1(vk)

‖F (w1, . . . , wk)‖

≤C
⎪⎪⎪v1

⎪⎪⎪r · . . . ·
⎪⎪⎪vk

⎪⎪⎪r ;

hence the claim follows.

3.3. Peetre’s theorem for Whitney functions. Let X be a regular locally
closed subset of R

n, m ∈ N and D : E∞(X)×· · ·×E∞(X) → Em(X) a k-linear
continuous and local operator. Then for every compact K ⊂ X there exists
a natural number r such that for all Whitney functions F1, G1, . . . , Fk, Gk ∈
E∞(X) and every point x ∈ K the relation JrFi(x) = JrGi(x) for i = 1, · · · , k
implies D(F1, · · · , Fk)|x = D(G1, · · · , Gk)|x.

Proof. By a straightforward partition of unity argument one can reduce
the claim to the case of compact X. So let us assume that X is compact and
p-regular for some positive integer p. Then Em(X) is a Banach space with
norm ‖ · ‖X

m
, and E∞(X) is Fréchet with topology defined by the seminorms

| · |X
l
, l ∈ N. Choose a compact cube Q such that X lies in the interior of Q.

Then the sequence E∞(Q) → E∞(X) → 0 is exact by Whitney’s extension
theorem and the topology of E∞(Q) is generated by the norms | · |Q

l
, l ∈ N.

Since the sequence E l(Q) → E l(X) → 0 is exact and the topology of E l(Q) is
defined by the norm | · |Q

l
, Proposition 3.2 yields the fact that the operator D

extends to a continuous k-linear map D : Er(X) × · · · × Er(X) → Em(X), if
r is chosen sufficiently large. Now assume that Fi, Gi ∈ E∞(X) are Whitney
functions with JprFi(x) = JprGi(x) for i = 1, · · · , k. According to 1.4 we can
then choose sequences (dij)j∈N ⊂ E∞(X) for i = 1, . . . , k such that dij vanishes
in a neighborhood of x and such that |Fi − Gi − dij |Xpr

< 2−j . But then Gi+dij

converges to Fi in Er(X); hence by continuity

lim
j→∞

D(G1 + d1j , . . . , Gk + dkj)|x = D(F1, . . . , Fk)|x.

On the other hand we have D(G1 +d1j , . . . , Gk +dkj)|x = D(G1, . . . , Gk)|x for
all j by the locality of D. Hence the claim follows.
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3.4. Remark. In case m = ∞, a continuous and local operator D : E∞(X)
→ Em(X) need not be a differential operator, as the following example shows.
Let X be the x1-axis of R

2 and let D be the operator D =
∑

k∈N
δkD

k
2 , where

δk = J∞X xk
2. Then D is continuous and local, but DF depends over every

compact set on infinitely many jets of the argument F .

The following theorem will not be needed in the rest of this work but
appears to be of independent interest. Since the proof goes along the same
lines as the one for Peetre’s theorem for Whitney functions, we leave it to the
reader.

3.5. Peetre’s theorem for G-invariant functions. Let G be a compact Lie
group acting by diffeomorphisms on a smooth manifold M and let E, E1, · · · , Ek

be smooth vector bundles over M with an equivariant G-action. Let D :
Γ∞(E1)G × · · · × Γ∞(Ek)G → Γ∞(E)G be a k-linear continuous and local op-
erator. Then for every compact set K ⊂ M there exists a natural r such that
for all sections s1, t1, . . . , sk, tk ∈ Γ∞(Ei)G and every point x ∈ K the relation
Jrsi(x) = Jrti(x) for i = 1, · · · , k implies D(s1, · · · , sk)(x) = D(t1, · · · , tk)(x).

4. Hochschild homology of Whitney functions

4.1. Our next goal is to apply the localization techniques established
in Section 2 to the computation of the Hochschild homology of the algebra
E∞(X) of Whitney functions on X. Note that this algebra is the space of
global sections of the sheaf E∞

X ; hence the premises of Section 2 are satisfied.
Throughout this section we will assume that X is a regular subset of R

n and
that X has regularly situated diagonals. By the latter we mean that Xk and
Δk(Rn) ∩ Uk are regularly situated subsets of Uk for every k ∈ N

∗, where
U ⊂ R

n open is chosen such that X ⊂ U is closed. Denote by C• the complex
C•(E∞(X), E∞(X)). By Proposition 1.10 we then have Ck = E∞(Xk+1). Now
let J• ⊂ C• be the subspace of chains infinitely flat on the diagonal which
means that Jk = J∞(Δk+1(X);Xk+1). Obviously, every face map bk,i maps
Jk to Jk−1, hence J• is a subcomplex of C•.

4.2. Proposition. Assume that M is a finitely generated projective E∞
X -

module sheaf of symmetric Fréchet modules, M the E∞(X)-module M(X) and
m ∈ N ∪ {∞}. Then the complexes

J•⊗̂E∞(X)M and HomE∞(X)(J•, M⊗̂E∞(X)Em(X))

are acyclic.

Before we can prove the proposition we have to set up a few preliminaries.
First let us denote by ek,i : Ck → Ck+1 for i = 1, . . . , k + 1 the extension
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morphism such that

(ek,ic)(x0, . . . , xk+1) = c(x0, . . . , xi−1, xi+1, . . . , xk+1).

Clearly, ek,i is continuous and satisfies ek,i(Jk) ⊂ Jk+1. Secondly recall the
definition of the functions Ψk,t and Ψk,i,t in 2.4. The following two lemmas
now hold true.

4.3. Lemma. Let ϕk,t ∈ C∞(R(k+1)n) be one of the functions Ψk,t or
Ψk,i,εt ek−1,i(∂tΨk−1,t), where ε > 0, t > 0 and i = 1, . . . , k. Then for ev-
ery compact set K ⊂ R

(k+1)n, T > 0 and α ∈ N
(k+1)n there exist a constant

C > 0 and an m ∈ N such that

|Dαϕk,t(x)| ≤ C
t

(d(x,Δk+1(Rn))m
for all x ∈ K \ Δk+1(Rn) and t ∈ (0, T ].

(4.1)

Proof. If ϕk,t = Ψk,t and α = 0 the estimate (4.1) is obvious since Ψk,t(x)
is bounded as a function of x and t. Now assume |α| ≥ 1 and compute

(DαΨk,t)(x) =
∑

l0,...,lk∈N

1≤
∑

lj≤|α|

k∏
j=0

1
|t|lj �(lj)

(
d2(xj , xj+1)

t

)
dlj ,α(xj , xj+1),(4.2)

where x = (x0, . . . , xk), xk+1 := x0 and the functions dlj ,α are polynomials
in the derivatives of the euclidian distance, and so in particular are bounded
on compact sets. Now, by definition of the function �t we have �′t(s) = 0 for
0 < s ≤ t

2 and �t(s) = 0 for s > t; hence,

(DαΨk,t)(x) = 0 for all x ∈ Uk+1, t

2
and all x ∈ R

(k+1)n \ Uk+1,(k+1)t.(4.3)

On the other hand, there exists by Equation (4.2) a constant C ′ > 0 such that
for all t ∈ (0, T ] and x ∈

(
K ∩ Uk+1,(k+1)t

)
\ Uk+1, t

2

|(DαΨk,t)(x)| ≤ C ′ 1
t|α|

< (k + 1)|α|+1C ′ t

(dk+1(x0, . . . , xk))2|α|+2
.(4.4)

But the estimates (4.3) and (4.4) imply that (4.1) holds true for appropriate
C and m, hence the claim follows for Ψk,t. By a similar argument one shows
the claim for the functions Ψk,i,εt ek−1,i(∂tΨk−1,t).

4.4. Lemma. Each one of the mappings

μk :Jk × [0, 1] → Jk, (c, t) �→
{

Ψk,tc if t > 0,

0, if t = 0,
(4.5)

μk,i :Jk × [0, 1] → Jk, (c, t) �→
{

Ψk,i,εtek−1,i(∂tΨk−1,t)c, if t > 0,

0, if t = 0,
(4.6)

is continuous.
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Proof. Since Xk+1 and Δ(U) := Δk+1(Rn)∩Uk+1 are regularly situated
there exists a smooth function c̃ ∈ J∞(Δ(U);Uk+1) whose image in E∞(Xk+1)
equals c. By Taylor’s expansion one then concludes that for every compact set
K ⊂ Uk+1, α ∈ N

(k+1)n and N ∈ N there exists a second compact set L ⊂ Uk+1

and a constant Cα,N such that

|Dαc̃(x)| ≤ Cα,N

(
d(x,Δ(U))

)N |c̃|L
N+|α| for all x ∈ K.(4.7)

By Leibniz rule and Lemma 4.3 the continuity of μk,i follows immediately.
Analogously, one shows the continuity of μk.

Proof of Proposition 4.2. By the assumptions on M it suffices to show that
the complexes J• and HomE∞(X)(J•, Em(X)) are acyclic. To prove the claim in
the homology case we will construct a (continuous) homotopy Kk : Jk → Jk+1

such that

(bk+1Kk + Kk−1bk)c = Ψk,1c for all c ∈ Jk.(4.8)

By Proposition 2.5 the complex J• then has to be acyclic. Using the homotopy
H•,t of Proposition 2.5 we first define Kk,t : Ck → Ck+1 by

Kk,tc =
∫ 1

t
Hk, s

2(k+1)
(∂sΨk,s c) ds, c ∈ Ck.

Since Ψ•,s is a chain map, we obtain by Equation (2.6)

(bk+1Kk,t + Kk−1,tbk)c(4.9)

=
∫ 1

t
bk+1Hk, s

2(k+1)
(∂sΨk,s c) + Hk−1, s

2(k+1)
bk (∂sΨk,s c)ds

=
∫ 1

t
∂sΨk,sc − Ψk, s

2(k+1)
∂sΨk,sc ds =

∫ 1

t
∂sΨk,sc ds = Ψk,1c − Ψk,tc.

Hereby we have used the relation Ψk, s

2(k+1)
∂sΨk,s = 0 which follows from the

fact that ∂sΨk,s(x) vanishes on Uk+1, s

2
and that supp Ψk, s

2(k+1)
⊂ Uk+1, s

2
. Let

us now assume that c ∈ Jk. Since

Kk,tc =
k+1∑
i=1

(−1)i+1

∫ 1

t
Ψk+1,i, s

2(k+1)
ek,i(∂sΨk,s)ek,i(c) ds

=
k+1∑
i=1

(−1)i+1

∫ 1

t
μk+1,i(ek,i(c), s) ds

and ek+1,i(c) ∈ Jk+1 one concludes by Lemma 4.4 that the map Kk : Jk →
Jk+1, c �→ lim

t↘0
Kk,tc is well-defined and continuous. So we can pass to the limit

t → 0 in Equation (4.9) and obtain (4.8), because lim
t↘0

Ψk,tc = 0 by Lemma 4.4.

Since every Kk is continuous and E∞(X)-linear, the map

Kk : HomE∞(X)(Jk, Em(X)) → HomE∞(X)(Jk−1, Em(X)), f �→ f ◦ Kk−1
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gives rise to a homotopy such that

(bk−1Kk + Kk+1bk)f = Ψk,1f for all f ∈ HomE∞(X)(Jk, Em(X)).(4.10)

Hence the complex HomE∞(X)(J•, Em(X)) is acyclic as well.

Consider now the following short exact sequence of complexes:

0 −→ J• −→ C• −→ E• −→ 0,(4.11)

where Ek = Ck/Jk. As a consequence of the proposition the homology of the
complexes C• and E• have to coincide. Following Teleman [48] we call E•
the diagonal complex. By Whitney’s extension theorem its k-th component
is given by Ek = E∞(Δk+1(X)). Since M is a finitely generated projective
E∞(X)-module, the tensor product of M with the above sequence remains
exact. We thus obtain the following result.

4.5. Corollary. The Hochschild homology H•(E∞(X), M) is naturally
isomorphic to the homology of the tensor product of the diagonal complex and
M , i.e. to the homology of the complex E•⊗̂M .

The following proposition can be interpreted as a kind of Borel lemma
with parameters.

4.6. Proposition. There is a canonical topologically linear isomorphism
of E∞(X)-modules

j∞Δ : E∞(Δk+1(X)) → E∞(X)⊗̂πF∞
kn,

F �→
∑

α1,...,αk∈Nn

Fα1,...,αk
yα1
1 · . . . · yαk

k , Fα1,...,αk
= Δ∗

k+1(D
α1
y1

. . . Dαk
yk

F ),

where F∞
n denotes the formal power series algebra in n (real) indeterminates

and, for every i = 1, . . . , k, the symbols yi = (yi1, . . . , yin) denote indetermi-
nates.

Proof. Clearly, the map j∞Δ is continuous and injective. By an immediate
computation one checks that j∞Δ is a morphism of E∞(X)-modules. So it
remains to prove surjectivity; since E∞(X)⊗π F∞

kn is a Fréchet space the claim
then follows by the open mapping theorem. To prove surjectivity we use an
argument similar to the one used in the proof of Borel’s lemma. For simplicity
we assume that X is compact; the general case can be deduced from that by
a partition of unity argument. Given a series

∑
Fα1,...,αk

yα1
1 · . . . · yαk

k let us
define a Whitney function F ∈ E∞(Δk+1(X)) by

F|(x0,x1,...,xk)

=
∑

α1,...,αk∈Nn

Fα1,...,αk |x0

α1! · . . . · αk!
μ
(
Aα1,...,αk

dk+1(x0, . . . , xk)
)
(x1−x0)α1 ·. . .·(xk−x0)αk ,
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where μ is a C∞-function whose value is 1 in a neighborhood of 0 and whose
support is contained in [−1, 1], dk+1(x0, . . . , xk) is the distance to the diagonal
previously defined and

Aα1,...,αk
= sup

(
1, sup

β1≤α1,... ,βk≤αk,m≤|α1|+...+|αk|
|Fβ1,...,βk

|X
m

)
.

The function μ
(
Aαdk+1(x0, . . . , xk)

)
is C∞, because μ(t) = 1 near t = 0.

It is straightforward to check that the above series converges to an element
F ∈ E∞(Δk+1(X)) which satisfies j∞Δ (F ) =

∑
Fα1,...,αk

yα1
1 · . . . · yαk

k .

4.7. Before we formulate a Hochschild-Kostant-Rosenberg type theorem
for Whitney functions let us briefly explain what we mean by the space of
Whitney differential forms. Recall that the space of Kähler differentials of
E∞(X) is the (up to isomorphism uniquely defined) E∞(X)-module Ω1

E∞(X)
with a derivation d : E∞(X) → Ω1

E∞(X) which is universal with respect to
derivations δ : E∞(X) → M , where M is an E∞(X)-module (see Matsumura
[38, Ch. 10]). Given an open U ⊂ R

n and an X closed in U , the spaces of
smooth differential 1-forms over U and Ω1

E∞(X) are related by the following
second exact sequence for Kähler differentials [38, Thm. 58]:

J∞(X;U)
/(

J∞(X;U)
)2 → E∞(X) ⊗C∞(U) Ω1(U) → Ω1

E∞(X) → 0.

Since J∞(X;U) =
(
J∞(X;U)

)2 this means that there is a canonical isomor-
phism

Ω•
E∞(X) ∼= E∞(X) ⊗C∞(U) Ω•(U).(4.12)

Hereby, Ω•
E∞(X) is the exterior power Λ•Ω1

E∞(X) called the space of Whitney
differential forms over X. The differential d : E∞(X) → Ω1

E∞(X) extends
naturally to Ω•

E∞(X) and gives rise to the Whitney-de Rham complex:

0 −→ E∞(X) d−→ Ω1
E∞(X) d−→ · · · d−→ Ωk

E∞(X) d−→ · · · .

The cohomology H•
WdR(X) of this complex will be called the Whitney-de Rham

cohomology of X and will be computed for subanalytic X later in this work.
Clearly, the spaces Ωk

E∞(V ), where V runs through the open subsets of X,
are the sectional spaces of a fine sheaf over X which we denote by Ωk

E∞
X

. We
thus obtain a sheaf complex and, taking global sections, again the Whitney-
de Rham complex.

4.8. Theorem. Let X ⊂ R
n be a regular subset with regularly situated

diagonals, and m ∈ N∪{∞}. Assume that M is a finitely generated projective
E∞

X -module sheaf of symmetric Fréchet modules and denote by M the E∞(X)-
module M(X). Then the Hochschild homology of E∞(X) with values in M

coincides with the local Hochschild homology H•(E•, M) and is given by

H•(E∞(X), M) = Ω•
E∞(X)⊗̂E∞(X)M ∼= M ⊗ Λ•(T ∗

0 R
n).(4.13)
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4.9. Remark. Since a subanalytic set X ⊂ R
n is always regular and pos-

sesses regularly situated diagonals (the diagonal is obviously subanalytic and
two subanalytic sets are always regularly situated), the statement of the the-
orem holds in particular for subanalytic sets.

Proof. Since the sheaf M is finitely generated projective we can reduce
the claim to the case M = E∞

X . We will present two ways to prove the result
in this case; both of them show that

HHk(E∞(X)) ∼= E∞(X) ⊗C∞(U) Ωk(U).

The first proof follows Teleman’s procedure in [49] (see also [7]). The homology
of the diagonal complex E• coincides with the homology of the nondegener-
ated complex ET

• , i.e. the complex generated by nondegenerated monomials
(non lacunary in the terminology of [49]). The nondegenerated complex ET

•
is itself identified with the direct product of its components Er

• where Er
• is

the subcomplex of ET
• generated by all monomials of (total) degree r. Propo-

sition 4.6 shows that the elements of ET
• can be interpreted as infinite jets

vanishing at the origin, regarding the variables y1, . . . , yk, and with coefficients
in E∞(X). An argument similar to Teleman’s spectral sequence computation
[49], but here with coefficients in E∞(X), proves that the homology of Er

• is
E∞(X) ⊗ Λr(T ∗

0 (Rn)) and we have the desired result.
The second way to prove the result is to consider the isomorphism j∞Δ of

Proposition 4.6 and carry the boundary map bk from Ek to E∞(X) ⊗π F∞
kn

such that bk(j∞Δ F ) = j∞Δ (bkF ) for all F ∈ E∞(Δk+1(X)). Writing an element
σ ∈ E∞(X)⊗π F∞

kn as a section σ(x0, y1, . . . , yk) of the module sheaf E∞
X ⊗F∞

kn

one now computes

bkσ(x0, y1, . . . , yk−1) = σ(x0, 0, y1, . . . , yk−1)

+
k−1∑
i=1

(−1)iσ(x0, y1, . . . , yi, yi, . . . , yk−1)

+ (−1)kσ(x0, y1, . . . , yk−1, 0).

This shows that the homology of the complex (E∞
X ⊗F∞

kn, b) is nothing else but
the Hochschild homology H•(F∞

n , E∞(X)), where E∞(X) is given the F∞
n -

module structure such that yi F = 0 for each of the indeterminates y1, . . . , yn

and for every F ∈ E∞(X). Now, since Hochschild homology can be interpreted
as a derived functor homology (see [32, Prop. 1.1.13] in the algebraic and [44,
§6.3] in the topological case), we can use the Koszul resolution for the com-
putation of H•(F∞

n , E∞(X)); this yields the following topologically projective
resolution:

K• : 0 ←− F∞
n ←− F∞

n ⊗ Λ1(T ∗
0 (Rn)) iY←− · · · iY←− F∞

n ⊗ Λk(T ∗
0 (Rn)) iY←− · · · ,
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where iY denotes the insertion of the radial (formal) vector field Y = y1∂y1 +
. . . + yn∂yn

in an alternating form. Hence

H•(F∞
n , E∞(X)) = H•(K• ⊗F∞

n
E∞(X)) = E∞(X) ⊗ Λ•(T ∗

0 (Rn)).

The result then is a Hochschild-Kostant-Rosenberg type theorem for Whitney
functions.

In the spirit of the last part of the preceding proof we finally show in
this section that there exists a Koszul resolution for Whitney functions in case
the set X ⊂ R

n has the extension property which means that for an open
subset U ⊂ R

n in which X is closed there exists a continuous linear splitting
E∞(X) → C∞(U) of the canonical map C∞(U) → E∞(X) (cf. [2], where it is in
particular shown that a subanalytic subset X ⊂ R

n has the extension property
if and only if it has a dense interior).

4.10. Proposition. Let X ⊂ R
n be a locally closed and regular subset.

Then the complex of topological E∞(X)-bimodules

0 ←− E∞(X) ←− E∞(X × X) iY←− · · · iY←− E∞(X × X) ⊗ Λk(T ∗
0 (Rn)) iY←− · · · ,

where iY denotes the insertion of the radial vector field

Y (x, y) = (x − y)1∂y1 + . . . + (x − y)n∂yn
,

is exact, hence gives rise to a resolution R•(E∞(X)) of E∞(X) by topologically
projective E∞(X × X)-modules Rk(E∞(X)) = E∞(X × X) ⊗ Λk(T ∗

0 (Rn)). In
case X ⊂ R

n satisfies the extension property, then the above exact sequence
even has a contracting homotopy by continuous linear maps which in other
words means that in this case R•(E∞(X)) is a topological projective resolution
of E∞(X).

Proof. Let U ⊂ R
n be an open subset such that X ⊂ U is relatively closed.

By [10] one knows that

0 ←− C∞(U) ←− C∞(U × U) iY←− · · · iY←− C∞(U × U) ⊗ Λk(T ∗
0 (Rn)) iY←− · · ·

is a topological projective resolution of C∞(U) as C∞(U)⊗̂C∞(U)-module.
Since E∞(X) = C∞(U)/J∞(X;U) and

E∞(X × X) = C∞(U × U)/J∞(X × X;U × U),

the complex R•(E∞(X)) has to be acyclic, if one can show exactness for the
complex

0 ←− J∞(X;U) ←− J∞(X × X;U × U)
iY←− · · · iY←− J∞(X × X;U × U) ⊗ Λk(T ∗

0 (Rn)) iY←− · · · .

We first prove that J∞(X;U) ←− J∞(X × X;U × U) is surjective. Let
f ∈ J∞(X;U). Since J∞(X;U)2 = J∞(X;U) there exist f1, f2 ∈ J∞(X;U)
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with f = f1 f2. Put F (x, y) = f1(x) f2(y) for x, y ∈ U . Then one has F ∈
J∞(X×X;U×U), and f is the image of F under the map J∞(X×X;U×U) →
J∞(X;U). Next, we show for k > 0 exactness at J∞(X × X;U × U) ⊗
Λk(T ∗

0 (Rn)). Assume that

F =
∑

1≤i1<···<ik<n

Fi1,··· ,ik
dxi1 ∧ · · · ∧ xik

∈ J∞(X × X;U × U) ⊗ Λk(T ∗
0 (Rn))

with iY (F ) = 0. By [50, V. Lem. 2.4] there exist

G, F̃i1,··· ,ik
∈ J∞(X × X;U × U)

such that
G(x, y) > 0 for (x, y) /∈ X × X

and
F = G F̃ for F̃ :=

∑
1≤i1<···<ik<n

F̃i1,··· ,ik
dxi1 ∧ · · · ∧ xik

.

But then one has iY F̃ = 0; hence by the exactness of R•(C∞(U)) there now
exists a function H ∈ J∞(X × X;U × U) ⊗ Λk+1(T ∗

0 (Rn)) with iY H = F̃ .
Hence iY (GH) = G (iY H) = GF̃ = F , which shows exactness at k > 0.
Likewise, one proves exactness at k = 0. Since, obviously, each of the spaces
E∞(X×X)⊗Λk(T ∗

0 (Rn)) is topologically projective over E∞(X×X), the first
claim now is proven.

For each k ∈ N, denote by Ek (resp. Fk ) the image of the map Rk(E∞(X))
→ Rk−1(E∞(X)) (resp. the quotient space Rk+1(E∞(X))/ ker(iY )). Then for
R•(E∞(X)) to be a topologically projective resolution of E∞(X) it is necessary
and sufficient that for each k ∈ N the short exact sequence

0 −→ Fk −→ E∞(X × X) ⊗ ΛkT ∗
R

n −→ Ek −→ 0,(4.14)

of (nuclear) Fréchet spaces splits topologically (cf. [47, §1]). We prove that
this sequence splits in case X ⊂ R

n has the extension property. For simplic-
ity, we also assume that X is compact, since by an appropriate localization
argument as above one can reduce the claim to the compact case. Hereby, we
will use a splitting theorem for short exact sequences of nuclear Fréchet-spaces
by Vogt (cf. [39, §30]). More precisely, we will show that under the assump-
tions made, Fk has property (Ω) and Ek has property (DN), which will imply
the claim (see again [39, §30] for the necessary functional analytic notation).
Since property (Ω) passes to (complete) quotient spaces by [39, Lem. 29.11],
and since C∞(U × U) has property (Ω) (see [39, Cor. 31.13]), one concludes
that Fk has property (Ω). Since X is compact and has the extension property,
there exists a continuous splitting E∞(X) → S of the canonical restriction
map S → E∞(X), where S denotes the space of rapidly decreasing smooth
functions on R

n. Since S has property (DN) ([39, Thm. 31.5]), and property
(DN) passes to closed subspaces ([39, Lem. 29.2]), Ek satisfies property (DN),
too. Hence (4.14) splits topologically. This finishes the proof.
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5. Hochschild cohomology of Whitney functions

5.1. After having determined the Hochschild homology of E∞(X) we now
consider its Hochschild cohomology. In particular we want to compute the
cohomology of the Hochschild cochain complexes C•(E∞(X), (E∞(X))′) and
C•(E∞(X), E∞(X)), where (E∞(X))′ denotes the strong dual of E∞(X). Note
that (E∞(X))′ is nuclear by [51, Prop. 50.6].

By [47, Prop. 4.5] and Prop. 4.10, the cohomology H•(E∞(X)) of the
cochain complex C•(E∞(X), (E∞(X))′) can be computed as the cohomology
of the cochain complex HomE∞(X×X)(R•(E∞(X), (E∞(X))′). One then obtains
immediately:

5.2. Theorem. For every regular X ⊂ R
n the Hochschild cohomology

Hk(E∞(X)) coincides with (E∞(X) ⊗ ΛkT ∗
0 R

n)′, the space of de Rham
k-currents on R

n with support X.

The computation of the cohomology H•(E∞(X), E∞(X)) is harder. In
the following we briefly denote the cochain complex C•(E∞(X), E∞(X)) by
C•. As in the previous section we assume from now on that X ⊂ R

n is a
regular locally closed subset and that X has regularly situated diagonals. We
then apply the functor HomE∞(X)(−, Em(X)⊗̂E∞(X)M) to (4.11) and obtain
the following sequence

0−→HomE∞(X)(E•, Em(X)⊗̂E∞(X)M)(5.1)

−→HomE∞(X)(C•, Em(X)⊗̂E∞(X)M)

−→HomE∞(X)(J•, Em(X)⊗̂E∞(X)M) −→ 0.

Since the Hom -functor is left exact, this sequence is exact at the first two
(nontrivial) spots. For m = ∞ it is not necessarily exact at the third spot, but
we have the following.

5.3. Proposition. For m ∈ N∪{∞} denote by Q•
m the quotient complex

making the following sequence exact :

0−→HomE∞(X)(E•, Em(X)⊗̂E∞(X)M)(5.2)

−→HomE∞(X)(C•, Em(X)⊗̂E∞(X)M) −→ Q•
m −→ 0.

For finite m, Q•
m then is exact and coincides with

HomE∞(X)(J•, Em(X)⊗̂E∞(X)M).

In case X has the extension property, Q•
∞ is exact as well.

Proof. Note first that one can reduce the claim to compact X by a local-
ization argument involving an appropriate partition of unity. Moreover, we can
reduce the claim to the case where M = E∞(X), since M is finitely generated
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projective. So we assume without loss of generality that X is compact and
that M = E∞(X).

We now consider the case m ∈ N. Under this assumption it suffices by
Proposition 4.2 to show that the sequence (5.1) is exact at the third spot. So
we have to check that for every k the natural map

HomE∞(X)(Ck, Em(X)) → HomE∞(X)(Jk, Em(X))(5.3)

is surjective. Choose a compact cube Q such that X lies in the interior of Q.
Then J∞(Δk+1(X);Qk+1) is a Fréchet space, the topology of which is defined
by the norms |·|Q

r
, r ∈ N. Moreover, the Fréchet topology of Jk is the quotient

topology with respect to the canonical projection J∞(Δk+1(X);Qk+1) → Jk.
Hence, given f ∈ HomE∞(X)(Jk, Em(X)) there exists by Proposition 3.2 a
natural number r ≥ m such that f extends to a continuous Er(X)-linear map
fr : J r(Δk+1(X);Xk+1) → Er(Xk+1).

Using the notion introduced in Proposition 4.6 let us now define a map
jr
Δ : E∞(Δk+1(X)) → E∞(Xk+1) by

jr
Δ(F )|(x0,x1,...,xk) =

∑
|α1|+...+|αk|≤r

Fα1,...,αk |x0

α1! · . . . · αk!
(x1 − x0)α1 · . . . · (xk − x0)αk .

Like j∞Δ the map jr
Δ is continuous, linear and a morphism of E∞(X)-modules.

Moreover, using Taylor’s formula, one checks easily that

F − jr
Δ(Δ∗

k+1(F )) ∈ J r(Δk+1(X);Xk+1) for all F ∈ E∞(Xk+1).(5.4)

Since jr
Δ(Δ∗

k+1(G)) = 0 for G ∈ J r(Δk+1(X);Xk+1), the map f̃ : E∞(Xk+1) →
Em(X), defined by f̃(F ) = fr(F−jr

Δ(Δ∗
k+1(F ))), lies in HomE∞(X)(Ck, Em(X))

and satisfies f̃(G) = f(G) for all G ∈ J r(Δk+1(X);Xk+1). This proves the
claim for m ∈ N.

The proof of the remaining claim will be postponed until the end of this
section; the reader will notice that no circular argument will result.

Propositions 5.3 and 4.2 now result in the following.

5.4. Corollary. If m is finite or X has the extension property, the
Hochschild cohomology H•(E∞(X), Em(X)⊗̂E∞(X)M) is naturally isomorphic
to the corresponding local Hochschild cohomology, i.e. the cohomology of the
cochain complex HomE∞(X)(E•; Em(X)⊗̂E∞(X)M).

5.5. Before we come to the computation of the cohomology of

HomE∞(X)(E•; Em(X)⊗̂E∞(X)M)

we will introduce two operations on the Hochschild cochain complex, namely
the cup product and the Gerstenhaber bracket. The latter was originally de-
fined in [16] and has been used in the deformation theory of algebras [13], [17],
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[29]. For two cochains f1 ∈ Ck1 and f2 ∈ Ck2 one defines f1 ◦ f2 ∈ Ck1+k2−1

by f1 ◦ f2 = 0, if k1 = 0, and otherwise by

f1 ◦ f2(F0, . . . , Fk1+k2−1)

=
k1∑

j=1

(−1)(j−1)(k2−1)f1(F0, . . . , Fj−1, f2(1, Fj , . . . , Fj+k2−1), Fk2+j , . . . , Fk1+k2−1),

where F0, . . . , Fk1+k2−1 ∈ E∞(X). The Gerstenhaber bracket of f1 and f2 then
is defined by

[f1, f2] = f1 ◦ f2 − (−1)(k1−1)(k2−1)f2 ◦ f1.

Moreover, the cup product of f1 and f2 is given by

f1 � f2(F0, . . . , Fk1+k2) = f1(F0, . . . , Fk1) f2(1, Fk1+1, . . . , Fk1+k2).

It is well-known that the complex C•−1 together with the Gerstenhaber bracket
becomes a graded Lie algebra and that C• is a graded algebra with respect to
the cup product. Note that the cup product f1 � f2 is also well-defined
for f1, f2 ∈ C•(E∞(X), Em(X)) and that f ◦ G even makes sense, if f ∈
C•(E∞(X), Em(X)) and G ∈ C0(E∞(X), Em(X)) = E∞(X).

Next recall that the inclusion of the normalized cochain complex C
•

↪→ C•

is a quasi-isomorphism. Thereby, C
k consists of all normalized cochains, that

means of all f ∈ Ck such that f(F0, . . . , Fk) = 0, whenever one of the Whitney
functions Fi, i > 0 is constant. Likewise, the inclusion of the normalized
cochain complex HomE∞(X)(E•; Em(X)⊗̂E∞(X)M) is a quasi isomorphism.

5.6. Let us proceed to the computation of the cohomology of the
cochain complex Em,• := HomE∞(X)(E•; Em(X)) respectively of its normaliza-
tion E

m,•. We denote elements of Em,• as D, D1, . . . , since every D ∈ Em,k can
be regarded as a local and continuous k-linear operator E∞(X)×. . .×E∞(X) →
Em(X) and, at least for finite m, such a D is locally given by a differential
cochain according to Peetre’s Theorem 3.3 for Whitney functions. Recall that
by a differential cochain of degree k and order ≤ d ∈ N (and class Cm) one
understands an element D ∈ Em,k such that

D(F0, . . . , Fk) =
∑

α1,... ,αk∈Nn

|α1|+...+|αk|≤d

dα1,... ,αk
F0 (Dα1F1) . . . (DαkFk),

where the coefficients dα1,... ,αk
are elements of Em(X). A differential cochain

is called homogeneous of order d, if it is a linear combination of monomial
cochains of order d, i.e. of cochains of the form dα1,... ,αk

Dα1 � . . . � Dαk with
d = |α1| + . . . + |αk|.

In a first step we will now determine H•(Em,•
diff ) and then show in a second

step that the cohomology of E
m,•
diff coincides with H•(Em,•). For m finite the

second step follows trivially from the localization results of Section 2, but for
m = ∞ we need some more arguments to prove that.
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Let us denote by X∞ the sheaf of smooth vector fields on R
n and let

V1, . . . , Vk be elements of XEm(X) := Em(X) ⊗C∞(U) X∞(U). Such elements
will be called Whitney vector fields of class Cm on X. Clearly, a Whitney
vector field V (of class Cm) on X defines, for every F ∈ E∞(X), a Whitney
function V F ∈ Em(X) by V F =

∑n
j=1 vjDjF , where the vj are the coefficient

Whitney functions of V with respect to the standard basis of R
n. Hence

the skew symmetric product V1 ∧ . . . ∧ Vk, which we regard as an element
of ΛkXEm(X) := Em(X) ⊗C∞(U) ΛkX∞(U), defines a Hochschild cocycle with
values in Em(X) by

(F0, . . . , Fk) �→
∑
σ∈Sk

sgn(σ)F0 (Vσ(1)F1) · . . . · (Vσ(k)Fk).

In the following we will show that the inclusion Λ•XEm(X) ↪→ E
m,•
diff is a quasi

isomorphism by constructing an appropriate homotopy. As the essential tool
we will use the homotopy operator introduced by deWilde-Lecomte in [14].
The principal idea there is to decrease the order of a differential Hochschild
cocycle while staying in the same cohomology class until one arrives at a skew
symmetric differential Hochschild cocycle of order 1 in each nontrivial argu-
ment, or in other words, at a linear combination of skew symmetric products
of Whitney vector fields. Note that by a nontrivial argument of a cochain
(F0, F1, . . . , Fk) �→ D(F0, F1, . . . , Fk) we understand one of the arguments
F1, . . . , Fk, since D is E∞(X)-linear in F0.

Following deWilde-Lecomte [14] we first define two maps on E
m,k
diff , where

k ≥ 1. Put

QkD(F0, . . . , Fk−1) =
n∑

l=1

∑
0<i<j<k

(−1)iD(F0, . . . , Fi−1, xl, . . . , DlFj , . . . , Fk−1)

and

P kD =
n∑

l=1

[xl, D] � Dl = (−1)k
n∑

l=1

(D ◦ xl) � Dl.

The proof of Proposition 4.1 in [14] can now be literally transfered to the case
of Whitney functions, so we obtain

5.7. Proposition. Assume that D ∈ E
m,k
diff with k > 0 is a differential

cochain homogeneous of order d. Then

(Qk+1bk + bk−1Qk)D = −(d + P k)D.

Next let us define for every l ∈ N a homogeneous map P •
l : E

m,•
diff → E

m,•
diff

of degree 0 as follows:
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P k
l D =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
D, if l = 0,

n∑
j1,...,jl=1

(adxj1 · · · adxjl
(D)) � Dj1 � . . . � Djl

, if 1 ≤ l ≤ k,

0, if l > k.

Hereby, adG is the adjoint action Em,k � D �→ [G, D] = (−1)kD ◦G ∈ Em,k−1

of some element G ∈ E∞(X). Since we have

adG1 adG2 = − adG2 adG1 for all G1, G2 ∈ E∞(X),

the cochain P k
k D is skew symmetric in the nontrivial arguments, hence a linear

combination of skew symmetric products of Whitney vector fields.

5.8. Proposition.The operators P k
l satisfy the recursive relations P k

l+1 =

P k P k
l + lP k

l . Moreover, (−1)k

k! P k
k : E

m,k
diff → E

m,k
diff is a projection onto the

space of normalized differential cochains which are homogeneous of order k

and skew symmetric in the nontrivial arguments. P k
k vanishes on every mono-

mial cochain which is of order > 1 in some argument or which is symmetric
with respect to at least two of its nontrivial arguments. Finally, P •

l is a chain
map.

Proof. Repeating the proof of [14, Prop. 4.2] immediately gives the claim.

Using the maps P k and Qk, deWilde-Lecomte define iteratively operators
Qk

l : E
m,k → E

m,k−1, 0 ≤ l ≤ k, by

Qk
0D = D, Qk

1D = −1
d

QkD, Qk
l+1D = − 1

d − l
((P k−1 + d)Qk

l + Qk)D,

where D ∈ E
m,k is homogeneous of order d. Note that d ≥ k, since D is

normalized.
The operators Qk

k will turn out to comprise a homotopy between the iden-
tity and the antisymmetrization. Let us show this by induction as in [14, §4].
By Proposition 5.7 the formula

D − λk,l,dP
k
l D = (bk−1Qk

l + Qk+1
l bk)D(5.5)

holds true for l = 1 and λk,1,d = −1
d . Assume that it is true for some l with

1 ≤ l < k and apply P k to both sides. By Proposition 5.8 and the definition
of the Qk

j one concludes that it holds for l + 1 with λk,l+1,d = − 1
d−lλk,l. Hence

the formula is true for l = k and λk,k,d = (−1)k (d−k)!
d! . Note that P k

k D = 0, if
d > k, and that λk,k,k = (−1)k 1

k! , so we finally obtain

5.9. Proposition. Let A• : E
m,•
diff → Λ•XEm(X) with Ak = (−1)k

k! P k
k be

the skew symmetrization operator. Then

(bk−1Qk
k − Qk+1

k bk) = D − AkD for all D ∈ E
m,k
diff .(5.6)

Thus, the inclusion Λ•XEm(X) ↪→ E
m,•
diff is a quasi isomorphism.
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Since the subcomplex Λ•XEm(X) has coboundary 0, the proposition gives
the cohomology of the complex E

m,•
diff . Let us show that it coincides with the

cohomology of E
m,•. By Peetre’s Theorem 3.3 for Whitney functions one

concludes that every element D ∈ Em,k has a representation of the form

D =
∑

α1,...,αk∈Nn

dα1,...,αk
Dα1 � . . . � Dαk ,

where the dα1,...,αk
are uniquely determined elements of Em(X) and where the

differential operators Dj , j ∈ N, with

Dj =
∑

α1,...,αk∈Nn,

|α1|+...+|αk|≤j

dα1,...,αk
Dα1 � . . . � Dαk

converge to the operator D in such a way that for every natural r ≤ m and ev-
ery compact K ⊂ X there exists a number jr,K such that ‖DiF − DjF‖K

r
= 0

for all i, j ≥ jr,K . Thus, the sequence of differential operators Dj converges
uniformly on its domain to D. If now D ∈ E

m,k, the construction of the opera-
tors P k

l and Qk
l shows that the operator sequences (P k

l Dj)j∈N and (Qk
l Dj)j∈N

converge uniformly to P k
l D, respectively to an operator Qk

l D ∈ E
m,k−1. But

this entails that Equation (5.6) holds for all D ∈ E
m,k, so that the inclusion

Λ•XEm(X) ↪→ E
m,• is a quasi isomorphism as well. This proves the first part

of the following main result of this section.

5.10. Theorem. Let X ⊂ R
n be a regular subset with regularly situated

diagonals, and m ∈ N∪{∞}. Assume that M is a finitely generated projective
E∞

X -module sheaf of symmetric Fréchet modules and that M is the E∞(X)-
module M(X). Then the local Hochschild cohomology of E∞(X) with values
in Em(X)⊗̂E∞(X)M is given by

H•(E•, Em(X)⊗̂E∞(X)M) = Λ•XEm(X)⊗̂E∞(X)M ∼= Em(X)⊗̂E∞(X)M ⊗ Λ•
R

n.

(5.7)

If m is finite or X has the extension property, then the local Hochschild coho-
mology H•(E•, Em(X)⊗̂E∞(X)M) coincides naturally with the Hochschild co-
homology H•(E∞(X), Em(X)⊗̂E∞(X)M).

Proof. The second claim follows immediately from Corollary 5.4, if m

is finite. Assume now that X has the extension property, and assume for
simplicity that M = E∞(X). Using the resolution from Proposition 4.10 one
infers then that H•(E∞(X), E∞(X)) is naturally isomorphic to E∞(X)⊗Λ•

R
n,

hence coincides naturally with H•(E•, E∞(X)). This also implies that the
cochain complex Q∞ in Proposition 5.3 has to be exact, if X has the extension
property.
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6. Cyclic homology of Whitney functions

6.1. Following the presentation by Loday [32, Chap. 2] let us recall the
classical operators defining cyclic homology: the usual cyclic group action
on the module (E∞(X))⊗̂k+1 is denoted by t, the classical norm operator by
N = 1 + t + · · · + tk and the extra degeneracy operator by s. More precisely:

t(F0 ⊗ F1 ⊗ . . . ⊗ Fk) = (−1)kFk ⊗ F0 ⊗ . . . ⊗ Fk−1 and
s(F0 ⊗ F1 ⊗ . . . ⊗ Fk) = 1 ⊗ F0 ⊗ F1 ⊗ . . . ⊗ Fk for all F0, . . . , Fk ∈ E∞(X).

Moreover, there is a canonical map

πk : Ck = (E∞(X))⊗̂k+1 → Ωk
E∞(X), F0 ⊗ F1 ⊗ . . . ⊗ Fk �→ F0 dF1 ∧ . . . ∧ Fk,

which, as a consequence of Theorem 4.8 and under the assumptions made
there, induces an isomorphism HHk(E∞(X)) → Ωk

E∞(X), still denoted by πk.
On the one hand, the Connes boundary map B = (1− t)sN : Ck → Ck+1

induces a boundary map B : Ek → Ek+1. This map gives rise to a map
B∗ : HHk(E∞(X)) → HHk+1(E∞(X)) and, by [32, Prop. 2.3.4], there is a
commutative diagram:

HHk(E∞(X)) B∗−−−→ HHk+1(E∞(X))

πk

⏐⏐
∼= πk+1

⏐⏐
∼=

Ωk
E∞(X)

(k+1)d−−−−→ Ωk+1
E∞ (X),

(6.1)

where d : Ωk
E∞(X) → Ωk+1

E∞ (X) is the differential of the Whitney-de Rham
complex. The factor (k + 1) appears in the same way as in [32].

On the other hand, we have two mixed complexes (see [32, 2.5.13] for the
definition of a mixed complex). The first one, (C•, b, B), defines the (topolog-
ical) bicomplex B(E∞(X)) (cf. [32, 2.1.7])

⏐⏐
 ⏐⏐
 ⏐⏐

(E∞(X))⊗̂3 B←−−− (E∞(X))⊗̂2 B←−−− E∞(X)

b

⏐⏐
 ⏐⏐
b

(E∞(X))⊗̂2 B←−−− E∞(X)

b

⏐⏐

E∞(X),
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the second one (Ω•
E∞(X), 0, d) determines the bicomplex

0

⏐⏐
 0

⏐⏐
 0

⏐⏐

Ω2
E∞(X) d←−−− Ω1

E∞(X) d←−−− Ω0
E∞(X)

0

⏐⏐
 ⏐⏐
0

Ω1
E∞(X) d←−−− Ω0

E∞(X)

0

⏐⏐

Ω0
E∞(X).

Note that all spaces involved in these bicomplexes are Fréchet spaces and all
maps are continuous. The (topological) cyclic homology of E∞(X) is defined
as the homology of the total complex of B(E∞(X)), in signs HC•(E∞(X)) :=
H•(Tot• B(E∞(X))). Now, the map (1/k!)πk gives rise to a map of mixed com-
plexes (C•, b, B) → (Ω•

E∞(X), 0, d), hence by [32, Prop. 2.3.7] to a morphism

HCk(E∞(X)) → Ωk
E∞(X)/dΩk−1

E∞ (X) ⊕ Hk−2
WdR(X) ⊕ Hk−4

WdR(X) ⊕ · · · .

Since the maps π• in the diagram (6.1) are isomorphisms, this morphism has
to be an isomorphism. In the homological setting we thus obtain an equivalent
of Connes’ result [10, III.2α] for Whitney functions.

6.2. Theorem. For every regular subset X ⊂ R
n having regularly situated

diagonals the cyclic homology HC•(E∞(X)) coincides with

Ω•
E∞(X)/dΩ•−1

E∞ (X) ⊕ H•−2
WdR(X) ⊕ H•−4

WdR(X) ⊕ · · · .

Arguing as in [32, 2.5.13] one obtains as a corollary a Connes’ periodicity
exact sequence:

· · · −→ HHk(E∞(X)) I−→ HCk(E∞(X)) S−→HCk−2(E∞(X))
B−→HHk−1(E∞(X)) I−→ · · · .

6.3. We finally determine the periodic cyclic homology of E∞(X). It is
given by the homology H•(Tot

∏
(CC per)) of the (product) total complex of the

periodic bicomplex B(E∞(X))per below and will be denoted by HP•(E∞(X))
(cf. [32, 5.1.7]).
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⏐⏐
 ⏐⏐
 ⏐⏐
 ⏐⏐

· · · B←−−− (E∞(X))⊗̂3 B←−−− (E∞(X))⊗̂2 B←−−− E∞(X)

b

⏐⏐
 ⏐⏐
b

⏐⏐
b

· · · B←−−− (E∞(X))⊗̂2 B←−−− E∞(X)

b

⏐⏐
 ⏐⏐
b

· · · B←−−− E∞(X)

b

⏐⏐

From the exact sequence [32, 5.1.9],

0 −→ lim←−
r

1HCk+2r+1 −→ HPk(E∞(X)) −→ lim←−
r

HCk+2r −→ 0

and the fact that the periodicity map S : HCk(E∞(X)) → HCk−2(E∞(X)) is
surjective one can conclude by [32, 5.1.10] that HPk(E∞(X)) = lim←−

r

HCk+2r.

This proves the last result of this section.

6.4. Theorem. For every regular set X ⊂ R
n having regularly situated

diagonals the periodic cyclic homology of E∞(X) is given by HP0 = Hev
WdR(X)

and HP1 = Hodd
WdR(X), where H

ev/odd
WdR (X) denotes the Whitney-de Rham coho-

mology in even, resp. odd, degree.

6.5. Remark. The reader might ask whether it is possible to use the exci-
sion result in periodic cyclic homology due to Cuntz-Quillen [12] for the com-
putation, since according to Whitney’s extension theorem there is an exact
sequence

0 −→ J∞(X;U) −→ C∞(U) −→ E∞(X) −→ 0,(6.2)

and the periodic cyclic homology of C∞(U) is well-known. But unfortunately
one cannot apply excision to compute HP•(E∞(X)), since, in general, the
sequence (6.2) does not possess a continuous splitting.

7. Whitney-de Rham cohomology of subanalytic spaces

In this section we will compute the cohomology of the Whitney-de Rham
complex over a subanalytic set by proving the following.

7.1. Theorem. For every subanalytic X ⊂ R
n the sequence

0 −→ RX −→ E∞
X

d−→ Ω1
E∞

X

d−→ · · · d−→ Ωk
E∞

X

d−→ · · ·(7.1)

comprises a fine resolution of the sheaf RX of locally constant real-valued func-
tions on X.
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Before we prepare the proof of the theorem let us remark that a subanalytic
X is a locally path-connected and locally contractible locally compact topo-
logical Hausdorff space (this can be concluded for example from the fact that
a subanalytic set is regular [31, Cor. 2] and possesses a Whitney stratification
[26, Thm. 4.8]). Hence, if Sk

X denotes the sheaf associated to the presheaf of
singular k-cochains on X, the complex of sheaves

0 −→ RX −→ S0
X −→ S1

X −→ · · · −→ Sk
X −→ · · · ,

is a soft resolution of RX (cf. Godement [19, Ex. 3.9.1]). By the theorem it thus
follows that the Whitney-de Rham cohomology coincides with the cohomology
of the complex of global sections of S•

X , i.e. the singular cohomology of X (with
values in R). So we obtain:

7.2. Corollary. The Whitney-de Rham cohomology

H•
WdR(X) = H•(Ω•

E∞(X))

coincides with the singular cohomology H•
sing(X; R).

The nontrivial part in the proof of the theorem is to show that the se-
quence (7.1) is exact or in other words that Poincaré’s lemma holds true
for Whitney functions. The essential tool for proving Poincaré’s lemma for
Whitney functions will be a so-called bimeromorphic subanalytic triangula-
tion of X together with a particular system of tubular neighborhoods for the
strata defined by the triangulation. From 7.3 to 7.8 we set up the material
needed for the proof of the theorem. The proof will then be given in 7.9. Let us
finally mention that a de Rham theorem for Whitney functions over a strati-
fied space with a so-called curvature moderate control datum has already been
proved in [44, §5.4]. Moreover, it has been claimed in [44, Rem. 5.4.6] that the
assumptions of this de Rham theorem are satisfied by subanalytic sets, but an
explicit proof of this claim could not have been given. Thus a complete proof
of the statement in Corollary 7.2 appears here for the first time.

7.3 . Recall that by a finite (resp. locally finite) subanalytic triangulation
of a closed subanalytic set X one understands a pair T = (h,K), where K is a
finite (resp. locally finite) simplicial complex in some R

n and h : |K| → X is a
subanalytic homeomorphism such that for every simplex Δ ∈ K the following
holds true:
(TRG1) The image Δ̃ := h(Δ) is a subanalytic leaf that means a subanalytic,

connected and locally closed smooth real-analytic submanifold of R
n.

(TRG2) The homeomorphism h induces a real-analytic isomorphism hΔ :
Δ → Δ̃.

Note that we always assume a simplex to be open, if it is not stated otherwise.
If X1, . . . , Xk ⊂ X are subanalytic subsets, one calls the triangulation T

compatible with the Xj , if every one of the sets Xj is a union of simplices h(Δ),
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Δ ∈ K. The following result is well-known (see �Lojasiewicz [35] and Hironaka
[27]).

7.4. Theorem. For every family X1, . . . , Xl ⊂ R
n of bounded subanalytic

sets there exists a compact parallelotope Q ⊂ R
n containing the Xj in its inte-

rior and a finite subanalytic triangulation (h : Q → Q,K) which is compatible
with the Xj.

A subanalytic triangulation has the following further property which fol-
lows immediately from the lemma below.
(TRG3) The triangulation map h is bi-Hölder, i.e. h and its inverse are Hölder

continuous.
Recall that a map f : X → R

N is said to be Hölder continuous, if there exist
C > 0 and λ > 0 such that

|f(x) − f(y)| ≤ C |x − y|λ for all x, y ∈ X.

In case Y ⊂ X is a closed subset, this estimate implies that for f Hölder,
Z = f(Y ) and K ⊂ X compact we have

d(f(x), Z) ≤ C d(x, Y )λ for all x ∈ K \ Y .(7.2)

Let us assume more generally that Z ⊂ R
N is an arbitrary closed subset. Then,

if one can find for every compact K ⊂ X constants C > 0 and λ > 0 such that
(7.2) holds true, we say that f is Hölder with respect to the pair (Y, Z).

7.5. Lemma. Every subanalytic function f : X → R
N with compact graph

is Hölder continuous. Moreover, if f is continuous and Y ⊂ X is a closed
subanalytic subset such that f(Y ) ∩ f(X \ Y ) = ∅, then f is �Lojasiewicz with
respect to the pair (Y, f(Y )).

Proof. Let g1(x, y) = |x − y| and g2(x, y) = |f(x) − f(y)| for x, y ∈
X. Since these functions are subanalytic and g−1

1 (0) ⊂ g−1
2 (0), �Lojasiewicz’s

inequality (1.2) immediately yields the first claim.
To prove the second claim we observe that the function X � x �→ d(f(x),

f(Y )) ∈ R is subanalytic and, by assumption, vanishes only on Y . �Lojasiewicz’s
inequality then also yields the second claim.

7.6. Proposition. Let U ⊂ R
n and V ⊂ R

N be open, X, Y ⊂ U be
closed and regularly situated and let Z ⊂ V be closed. Furthermore, assume
that F ∈ M∞(Y ;X) is a (vector-valued) Whitney function and f : X \Y → V

a continuous map such that f = F 0. Then the following hold true:

(1) If f is �Lojasiewicz with respect to the pair (Y, Z ′), where Z ′ = Z ∪
(RN \ V ), f(K \ Y ) ⊂ V is relatively compact for every compact K ⊂ X

and if f satisfies f(X \ Y ) ⊂ V \ Z, then F ∗M∞(Z;V ) ⊂ M∞(Y ;X).
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(2) If f is Hölder with respect to the pair (Y, Z), then F ∗J∞(Z;V ) ⊂ J∞(X∩
Y ;X).

We call a Whitney function F ∈ M∞(Y ;X) meromorphic from (X, Y ) to
(V, Z), if f = F 0 satisfies all the conditions stated in (1) and (2). By abuse of
language, we sometimes call a continuous function f : X\Y → V meromorphic,
if there is a meromorphic F with f = F 0 and if it is clear by the context which
F is meant. A Whitney function F is said to be bimeromorphic from (X, Y ) to
(I, Z), where I is the set f(X \ Y )∩V , if f is a homeomorphism onto its image
and if there exists a Whitney function G ∈ M∞(I;Z) which is meromorphic
from (I, Z) to (U, Y ) and which satisfies f−1 = G0.

Proof. We will only show (1), since the proof of (2) is similar. As the
claim is essentially a local statement, we can assume without loss of generality
that X is compact. Let us choose an open neighborhood W of X \ Y and an
element f̃ ∈ M∞(Y ;W ) such that F = J∞X\Y f̃ . We will show first that the

restriction of f̃ to an appropriate neighborhood of X \ Y is �Lojasiewicz with
respect to (Y, Z ′). To this end we need several estimates which will be proved
in the following. Since f is �Lojasiewicz with respect to (Y, Z ′), there exist
C�L, λ�L > 0 such that

d(f(x), Z ′) ≥ C�L d(x, Y )λ�L for all x ∈ X \ Y .(7.3)

By assumption, X and Y are regularly situated. Hence there exist Cr, λr > 0
such that

d(x, Y ) ≥ Cr d(x, X ∩ Y )λr for all x ∈ X.(7.4)

Moreover, one can find a compact neighborhood K ⊂ W of X \ Y such that

K ∩ Y = X ∩ Y and such that W \
◦

K and X are regularly situated. Finally,
the fact that X and Y are regularly situated, implies that there are CK > 0
and λK > 0 such that

d(x, X) + d(x, Y ) ≥ CK d(x, X ∩ Y )λK for all x ∈ K.(7.5)

As f̃ ∈ M∞(Y ;W ), there exist C > 0 and λ > 0 such that

‖Df̃(x)‖ ≤ C
1

d(x, X ∩ Y )λ
for all x ∈ K \ Y .(7.6)

By possibly shrinking K we can now achieve that for all x ∈ K \ Y

(7.7) d(x, X) < min
{1

4
C�L Cλ�L

r

C

(3
4

)λ+λ�L λr

d(x, X ∩ Y )λ+λ�L λr ,

1
4
d(x, X ∩ Y ),

1
4

CK d(x, X ∩ Y )λK

}
.
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For every x ∈ R
n let xd be an element of X such that d(x, X) = d(x, xd). By

(7.7) we then have for every s ∈ [0, 1]

d(x + s(xd − x), X ∩ Y ) ≥ d(x, X ∩ Y ) − d(x, x + s(xd − x))

≥ d(x, X ∩ Y ) − d(x, xd) ≥
3
4
d(x, X ∩ Y )

(7.8)

for all x ∈ K \ Y . One then concludes for x ∈ K \ Y

d(f̃(x), Z ′) ≥ d(f(xd), Z ′) − d(f̃(x), f(xd))

≥ d(f(xd), Z ′) − d(x, xd) sup
s∈[0,1]

‖Df̃(x + s(xd − x))‖

≥ C�L d(xd, Y )λ�L − C d(x, xd)
1

d(x + s(xd − x), X ∩ Y )λ

≥ C�L d(xd, Y )λ�L − C
(4

3

)λ
d(x, xd)

1
d(x, X ∩ Y )λ

≥ C�L d(xd, Y )λ�L − 1
4
C�L Cλ�L

r

(3
4

)λ�L λr

d(x, X ∩ Y )λ�L λr

≥ 3
4

C�L d(xd, Y )λ�L .

(7.9)

Here, we have used Taylor’s formula for the second inequality, (7.3) and (7.6)
for the third, and (7.8) for the fourth inequality. The fifth inequality follows
from (7.7), the last one is a consequence of (7.8) and (7.4). Now, (7.7) and
(7.5) imply that

d(x, X) ≤ 1
4

CK d(x, X ∩ Y )λK ≤ 1
4
(d(x, X) + d(x, Y )) for all x ∈ K.

(7.10)

Hence,

d(xd, Y ) ≥ d(x, Y ) − d(xd, x) ≥ 2
3
d(x, Y ) for all x ∈ K \ Y .(7.11)

After redefining C�L and λ�L we thus obtain from (7.9)

d(f̃(x), Z ′) ≥ C�L d(x, Y )λ�L for all x ∈ K \ Y ;(7.12)

hence f̃ is �Lojasiewicz with respect to (Y, Z ′).
In the second part we will show that for every g ∈ M∞(Z;V ) the map

ψ (g ◦ f̃) lies in M∞(Y ;W ), where ψ ∈ M∞(X ∩ Y ;W ) is a function which is
identical to 1 on a neighborhood of X \ Y and vanishes on W \K. Obviously,
this then proves the claim. The existence of a function ψ with the stated

properties is provided by the fact that X and W \
◦

K are regularly situated
and by Chapter IV, Lemma 4.5 in [50]. Let us now estimate the growth of the
derivatives of g◦f̃ near X∩Y . By the above consideration on f̃ , the composition

g◦ f̃ is well-defined over
◦

K and smooth. Moreover, by the assumption on f and
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since f̃ ∈ M∞(Y ;W ), one can shrink K in such a way that the set f̃(K \Y ) is

relatively compact in V and such that X and W \
◦

K are still regularly situated.
Given r ∈ N there thus exist C1, C2 > 0 and λ1, λ2 > 0 such that

|∂β
y g(y)| ≤ C1

d(y, Z ′)λ1
for all y ∈ f(K \ Y ) and |β| ≤ r, β ∈ N

N ,(7.13)

|∂γ
x f̃(x)| ≤ C2

d(x, Y )λ2
for all x ∈ K \ Y and |γ| ≤ r, γ ∈ N

n.(7.14)

By virtue of the chain and Leibniz rule these estimates together with (7.12)
entail that there are constants C ′ > 0 and C > 0 such that for all α ∈ N

n with
|α| ≤ r and all x ∈ K \ Y

|∂α
x (g ◦ f̃) (x)| ≤C ′ sup

|β|,|γ|≤r
|∂β

y g(f̃(x))|
(
1 + |∂γ

x f̃(x)|
)r(7.15)

≤C
1

d(x, Y )λ1λ�L

(
1 +

1
d(x, Y )λ2

)
.

Hence ψ (g ◦ f̃) ∈ M∞(Y ;W ) and the proof of (1) is finished.

7.7. By a tubular neighborhood of a subanalytic leaf Γ ⊂ R
n we will

understand a triple (E, ε, ϕ) such that the following hold:

(TUB1) πE : E → Γ is a smooth real-analytic subbundle of T|ΓR
n which is

complementary to the tangent bundle TΓ.

(TUB2) ε : Γ → R>0 is a continuous map.

(TUB3) ϕ is a real-analytic open embedding from E2ε into R
n such that

ϕ(x, 0) = x for all x ∈ Γ. Hereby, Eδ denotes for every positive
function δ : Γ → R>0 the open set {(x, v) ∈ E | |v| < 2δ(x)}.

Given a tubular neighborhood for Γ we denote by Uδ for every positive δ : Γ →
R>0 the open set ϕ(Eδ ∩ E2ε) and by πE,Γ or briefly πΓ the projection of the
tubular neighborhood that means the map U2ε � x �→ ϕ(πE(ϕ−1(x)) ∈ Γ.

By shrinking the map ε one can achieve that a tubular neighborhood
(E, ε, ϕ) has the following two further properties:

(TUB4a) The map ϕ extends to a homeomorphism ϕ : E2ε → U2ε, and
Eε \ (fr Γ × {0}) ⊂ E2ε.

(TUB4b) Uε \ fr Γ ⊂ U2ε.

A tubular neighborhood is called subanalytic, if (TUB4a), (TUB4b) and the
following two axioms hold true:

(TUB5a) The bundle E and the maps ε and ϕ are subanalytic.

(TUB5b) The projection πΓ is subanalytic.

Finally, we call a tubular neighborhood bimeromorphic, if it satisfies (TUB4a),
(TUB4b) and the last two axioms:
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(TUB6a) ϕ, or more precisely the map U2ε × R
n � (x, v) �→ ϕ

(
πΓ(x),

v − TπΓ(x)πΓ(v)
)
, restricts to a Whitney function which is bimero-

morphic from (Eε, fr Γ × {0}) to (Uε, fr Γ).

(TUB6b) The projection πΓ is meromorphic from (Uε, fr Γ) to (Rn, fr Γ).

It is straightforward to check that every b-axiom is a consequence of the corre-
sponding a-axiom (under the assumption that (TUB1) to (TUB3) hold true).

The simplices Δ ∈ K of a simplicial complex K have natural subanalytic
tubular neighborhoods (EΔ, εΔ, πΔ), where EΔ is the bundle normal to TΔ
with respect to the euclidian metric and πΔ is the orthogonal projection onto Δ.
Clearly, one can choose the εΔ in such a way that for two different simplices
Δ, Δ′ of the same dimension UεΔ ∩ UεΔ′ = ∅. Moreover, (TUB4b) entails
εΔ(x) < d(x, fr Δ) for all x ∈ Δ sufficiently close to fr Δ or in other words
sufficiently close to the faces of Δ.

7.8. By a bimeromorphic triangulation of a closed subanalytic X ⊂ R
n

we now understand a subanalytic triangulation (h,K) of X together with a
system of bimeromorphic subanalytic tubular neighborhoods (EΔ̃, εΔ̃, πΔ̃) for
the leaves Δ̃ = h(Δ) such that the conditions (BMT1) to (BMT4) below are
fulfilled for every simplex Δ ∈ K:

(BMT1) The tubular neighborhoods satisfy UεΔ̃
∩UεΔ̃′ = ∅ for every Δ̃′ of the

same dimension as Δ̃ but disjoint from Δ̃.

(BMT2) For a sufficiently small neighborhood U of UεΔ the map hΔ ◦ πΔ :
UεΔ \ fr Δ → Δ̃ can be extended to a continuous map hπΔ : U → R

n

which lies in the multiplier algebra M∞(fr Δ;U) and is meromorphic
from (U, fr Δ) to (Rn, fr Δ̃).

(BMT3) For a sufficiently small neighborhood Ũ of UεΔ̃
the map h−1

Δ ◦ πΔ̃ :
UεΔ̃

\ fr Δ̃ → Δ can be extended to a continuous map h−
πΔ̃

: Ũ → R
n

which lies in the multiplier algebra M∞(fr Δ̃; Ũ) and is meromorphic
from (Ũ , fr Δ̃) to (Rn, fr Δ).

(BMT4) For a sufficiently small neighborhood Ũ of UεΔ̃
the map

(UεΔ̃
\ fr Δ̃) × [0, 1] → R

n, (x, t) �→ ϕΔ̃(t ϕ−1

Δ̃
(x))

can be extended to a continuous homotopy HΔ̃ : Ũ × [0, 1] → R
n

which lies in the multiplier algebra M∞(fr Δ̃ × [0, 1]; Ũ × [0, 1]), sat-
isfies HΔ̃,1 = id and is meromorphic from (Ũ × [0, 1], fr Δ̃ × [0, 1]) to

(Rn, f̃rΔ). Hereby, HΔ̃,t denotes the map HΔ̃(·, t) for every t ∈ [0, 1].

The second and third axiom imply that for every Δ ∈ K the restriction h|Δ
(or more precisely the Whitney function J∞Δ (h ◦ πΔ))is bimeromorphic from

(Δ, fr Δ) to (Δ̃, fr Δ̃).
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7.9. Proof of Theorem 7.1. As already mentioned we only have to show
that for every x0 ∈ X there exists a basis of contractible neighborhoods V ⊂ X

of x0 such that for all ω ∈ Ωk
E∞(V ) with dω = 0 there exists a form η ∈ Ωk−1

E∞ (V )
satisfying dη = ω.

We can assume that x0 is not an element of the interior
◦

X, because oth-
erwise the classical Poincaré lemma could be applied. Since the claim is es-
sentially a local statement, we can even assume furthermore without loss of
generality that X is a compact and connected subanalytic set. Now choose a
bimeromorphic subanalytic triangulation (h : Q → Q,K) compatible with X

and the one-point set {x0}; in the following section we will show that this is
possible indeed. Clearly, we can choose the triangulation in such a way that
0 is a simplex of K and h(0) = x0. As a further tool for our construction we
need a particular integral operator KM : Ωk+1(M) × [0, 1] → Ωk(M), where
M is an arbitrary smooth manifold. This operator is defined by

KMω =
∫ 1

0
ι∗s(∂s� ω)ds, for all ω ∈ Ωk+1(M),

where s denotes the last coordinate of an element of M × [0, 1], ∂s� means the
insertion of the vector field ∂s in a differential form at the first position and
ιs : M → M × [0, 1] is the map y �→ (y, s). By Cartan’s magic formula

d KM + KM d = ι∗1 − ι∗0.(7.16)

Now let B ⊂ R
n be an open ball around the origin such that B does not

contain any other 0-simplex of K besides the origin and let Kj for j = 0, . . . , n

be the set of all j-simplices of K which meet B and h−1(X). Let H : B×[0, 1] →
B be the radial homotopy (x, t) �→ tx. Then, H((Δ∩B)×[0, 1]) ⊂ (Δ∩B)∪{0}
for all Δ meeting B. Next let B̃ = h(B), V = B̃ ∩ X and let ω ∈ Ωk

E∞(V )
be closed. Choose a smooth differential form ω̃ ∈ Ωk(B̃) which induces ω over
V in the sense of Whitney’s extension theorem. We will construct inductively
smooth differential forms η̃0, . . . , η̃n ∈ Ωk−1(B̃) such that

ω̃ − d(η̃0 + . . . + η̃j) ∈ J∞(K0 ∪ . . . ∪ Kj ; B̃) Ωk(B̃) for j = 1, . . . , n,

(7.17)

where Kj =
⋃

Δ∈Kj
h(Δ). Clearly, this proves the claim, since the element

η ∈ Ωk−1
E∞ (V ) induced by η̃0 + . . . + η̃n satisfies ω = dη.

For the construction of the η̃j we mention first that π−1
Δ (Δ∩B) ⊂ B and

π−1

Δ̃
(Δ̃ ∩ B̃) ⊂ B̃ after possibly passing to smaller εΔ and εΔ̃. Secondly,

we simplify notation by writing, respectively, Δ, Δ̃, ∂Δ, UεΔ , . . . instead of
Δ∩B, Δ̃∩ B̃, ∂Δ∩B, UεΔ ∩B, . . . . Let us now come to the construction of η̃0.
Since B̃ is contractible, there exists a smooth homotopy G : B̃×[0, 1] → B̃ such
that G(x0, t) = x0, G(x, 0) = x0 and G(x, 1) = x for all x ∈ B̃ and t ∈ [0, 1].
Let η̃0 = KB̃G∗ω̃. By Equation (7.16) we then have dη̃0+KB̃G∗dω̃ = ω̃. Using
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the assumption on G and dω = 0 one concludes that KB̃G∗dω̃ ∈ J∞({x0}, B̃);
hence η̃0 has the desired property. Now assume that we have constructed
η̃0, . . . , η̃j for 0 ≤ j < n. If Kj+1 = ∅ we are done, since we can then put
η̃j+1 = . . . = η̃n = 0. So assume Kj+1 �= ∅. Let ω̃′ = ω̃ − d(η̃0 + . . . + η̃j).
The following constructions can be performed separately for every Δ ∈ Kj+1

and so we assume for simplicity that there is only one simplex Δ ∈ Kj+1. We
proceed in three steps.

1. Step. Consider the homotopy HΔ̃ : Ũ × [0, 1] → R
n of (BMT4).

After possibly changing HΔ̃ outside a sufficiently small neighborhood of UεΔ̃

and extending the homotopy appropriately we see that HΔ̃ is a homotopy
which is defined on B̃ × [0, 1], has values in B̃ and has the properties stated in
(BMT4). Let η̃′ = KB̃H∗

Δ̃
ω̃′. Since ω̃′ ∈ J∞(fr Δ̃; B̃) Ωk(B̃) and HΔ̃(x, t) = x

for all x in the closure of Δ̃ and all t ∈ [0, 1], (BMT4) and Proposition 7.6
entail that η̃′ is well-defined and lies in J∞(fr Δ̃; B̃) Ωk−1(B̃). Moreover, we
have dω̃′ ∈ J∞(X; B̃) ⊗ Ωk(B̃). By virtue of (7.16) and Proposition 7.6 one
concludes that

ω̃′ − H∗
Δ̃,0

ω̃′ − dη̃′ = KB̃H∗
Δ̃

d̃ω′ ∈ J∞(Δ̃; B̃) Ωk−1(B̃),(7.18)

where HΔ̃,0 = HΔ̃(·, 0). Note that the restriction of HΔ̃,0 to UεΔ̃
coincides

with πΔ̃.

2. Step. Next consider the map hπΔ of (BMT2). Clearly, hπΔ(UεΔ ∩B) ⊂
B̃, so after possibly redefining hπΔ outside a sufficiently small neighborhood of
UεΔ and appropriate extension we can assume that hπΔ is defined on B and has
image in B̃, while the properties of (BMT2) remain valid. We have hπΔ(fr Δ) ⊂
fr Δ̃ and ω̃′ ∈ J∞(fr Δ̃; B̃) Ωk(B̃), hence by Proposition 7.6 the pull-back h∗

πΔ
ω̃′

has to be in J∞(fr Δ;B) Ωk(B). Moreover, dh∗
πΔ

ω̃′ ∈ J∞(Δ; B) Ωk+1(B). Let
ν̃ = KBH∗h∗

πΔ
ω̃′. Observe that ν̃ ∈ J∞(fr Δ;B) Ωk−1(B) and KBH∗dh∗

πΔ
ω̃′ ∈

J∞(Δ; B) Ωk(B). Hence by (7.16)

h∗
πΔ

ω̃′ − dν̃ ∈ J∞(Δ; B) Ωk(B).(7.19)

3. Step. Analogously to the second step let us now consider the map
h−

πΔ̃
of (BMT3). We can assume after appropriate alteration that h−

πΔ̃
is de-

fined on B̃, has image in B and still has the properties stated in (BMT3).
Let η̃′′ = (h−

πΔ̃
)∗ν̃. Similarly, as in the second step one checks that η̃′′ ∈

J∞(fr Δ̃; B) Ωk−1(B̃). Since (h−
πΔ̃

)∗h∗
πΔ

ω̃′ = π∗
Δ̃

ω̃′ = H∗
Δ̃,0

ω̃′ over UεΔ̃
, Equa-

tions (7.18) and (7.19) yield

ω̃′ − dη̃′′ − dη̃′ ∈ J∞(Δ̃; B̃) Ωk−1(B̃).(7.20)

So, if we now put η̃j+1 := η̃′+η̃′′, the induction step is finished and the theorem
is proven.
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8. Bimeromorphic triangulations

In the following we will show that for every subanalytic X ⊂ R
n there

exists a compatible bimeromorphic triangulation. But before we come to the
details of the existence proof we have to introduce many preliminaries.

8.1. Throughout this section Γ will always denote a subanalytic leaf
of R

n and (E, ε, ϕ) a tubular neighborhood of Γ in R
n. Moreover, for every

k ≤ n we will denote by πn
k : R

n → R
k the canonical projection (x1, . . . , xn) �→

(x1, . . . , xk). In the particular case k = n− 1 we will briefly write π instead of
πn

(n−1).
Let us assume that the tubular neighborhood (E, ε, ϕ) is bimeromorphic

and subanalytic. Moreover, let N ⊂ Γ×Γ be a subanalytic neighborhood of the
diagonal Δ2(Γ) such that d(x, y) < 1

2 min{d(x, fr Γ), d(y, fr Γ)} and (x, y) ∈ N

for all (y, x) ∈ N . Finally, let p : N → R
n be the projection (y, x) �→ x. By a

bimeromorphic subanalytic parallel transport for (E, ε, ϕ) (defined over N) we
then understand a smooth map // : p∗E → E having the following properties:

(PT1) the restriction //yx := //|{y}×Ex
: {y}×Ex → E is a linear isomorphism

onto Ey for (y, x) ∈ N and satisfies //xy ◦ //yx = idEx
,

(PT2) //|p∗E2ε
: p∗E2ε → E ⊂ R

2n is subanalytic,

(PT3) //|p∗Eε
is bimeromorphic from (p∗Eε,Δ2(fr Γ)×{0}) to (R2n, fr Γ×{0}).

8.2. Lemma.Let Γ⊂R
n be a bounded subanalytic leaf of dimension k < n

such that the restriction πn
k |Γ : Γ → R

k is an analytic isomorphism onto an
open subanalytic set G ⊂ R

k. Then the map � : G → Γ ⊂ R
n inverse to πn

k |Γ
is meromorphic from (G, frG) to (Rn, fr Γ).

Clearly, πn
k |Γ is meromorphic from (Γ, fr Γ) to (Rk, frG), and so the lemma

shows that πn
k |Γ is in fact bimeromorphic.

Proof. We first show that � ∈ M∞(frG;G). Let P : Γ → End(Rn) be the
smooth map which associates to every x ∈ Γ the orthogonal projection Px onto
the tangent space TxΓ. Let e1, . . . , en be the standard basis of R

n and set for
x ∈ Γ and 1 ≤ i ≤ k, fi(x) = Pxei. Then the maps fi : Γ → R

n are subanalytic;
this follows for example by the proof of (II.1.5), p. 99 in Shiota [46]. Hence,
by the assumptions on Γ and �Lojasiewicz’s inequality, the following estimate
holds for appropriate C > 0 and λ ≥ 1:

C d(x, fr Γ)λ < ‖fi(x)‖ ≤ 1 for all x ∈ Γ.(8.1)

Next let A : Γ → R
k×k be the matrix valued function such that

Aij(x) = 〈ei, fj(x)〉 for 1 ≤ i, j ≤ k and x ∈ Γ.



THE HOMOLOGY OF ALGEBRAS OF WHITNEY FUNCTIONS 43

Then, A is subanalytic and, since πn
k |Γ is an analytic isomorphism, fulfills 0 <

detA(x) ≤ 1. Let A−1 be the matrix-valued function such that A−1(x)A(x) =
A(x)A−1(x) = 1. By Cramer’s rule, the estimate (8.1) and �Lojasiewicz’s in-
equality for detA(x) entail that there are constants C > 0 and λ > 0 such
that

0 < ‖A−1(x)‖ ≤ C
1

d(x, fr Γ)λ
for all x ∈ Γ.(8.2)

With the help of the equality πn
k fj(x) =

k∑
l=1

Aljel one then computes for x ∈ Γ

and y = π(x)

Ty�(ei) =
k∑

j=1

A−1
ji (x)Ty�(πn

k fi(x)) =
k∑

j=1

A−1
ji (x) Tx(� ◦ πn

k )(fi(x))

=
k∑

j=1

A−1
ji (x) fi(x).

By (8.2) and since πn
k |Γ is Hölder according to Lemma 7.5, one can find con-

stants C1 > 0 and λ1 > 0 such that

‖Ty�‖ ≤ C
1

d(�(y), fr Γ)λ
≤ C1

1
d(y, frG)λ1

for all y ∈ G.(8.3)

Let us now consider the bounded subanalytic leaf Γ1 := TΓ ∩ (Γ × B) ⊂ R
2n,

where B ⊂ R
n is the open unit ball. The restricted projection π2n

2k |Γ1
: Γ1 →

R
2k then is an analytic isomorphism onto its image G1, and G1 is open and

subanalytic in R
2k. Note also, that frG1 and frG × {0} are both subanalytic

subsets of R
2k, hence regularly situated. From this and the arguments above

one concludes that there are C2 > 0 and λ2 > 0 such that

|∂α
y �(y)| ≤ C2

1
d(y, frG)λ2

for all y ∈ G and α ∈ R
2k with |α| ≤ 2.

Iteratively one thus obtains for every r ∈ N constants Cr > 0 and λr > 0 such
that

|∂α
y �(y)| ≤ Cr

1
d(y, frG)λr

for all y ∈ G and α ∈ R
2k with |α| ≤ r.(8.4)

This proves that � ∈ M∞(frG;G).
By definition, � satisfies �(G) ⊂ Γ ⊂ R

n \ fr Γ. Moreover, since πn
k |Γ is

subanalytic with compact graph, the map � has to be �Lojasiewicz and Hölder
with respect to the pair (frG, fr Γ). Hence � is meromorphic from (G, frG) to
(Rn, fr Γ).

The following result is a straightforward consequence of the lemma.
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8.3. Corollary. There exists a bimeromorphic subanalytic tubular neigh-
borhood (E, ε, ϕ) of Γ in R

n and a bimeromorphic subanalytic parallel transport
// for (E, ε, ϕ). More precisely, the triple (E, ε, ϕ) with

E = {(x, v) ∈ Γ × R
n | πn

k (v) = 0},

ε(x) =
1
4
d(x, fr Γ) for all x ∈ Γ, and

ϕ(x, v) = x + v for all (x, v) ∈ E

(8.5)

has these properties and satisfies

πΓ(x) = �(πn
k (x)) and ϕ−1(x) = (πΓ(x), x − πΓ(x)) for all x ∈ U2ε.

The parallel transport // is defined over

N =
{
(x, y) ∈ Γ × Γ | d(x, y) <

1
2

min{d(x, fr Γ), d(y, fr Γ)}
}

and is given by //yxv = v for all (y, x) ∈ N and all v ∈ R
n with πn

k (v) = 0.

8.4. Lemma. Let Γ ⊂ R
n be bounded and (E, ε, ϕ) a bimeromorphic sub-

analytic tubular neighborhood of Γ. Then, after possibly passing to a smaller
subanalytic ε there exists a continuous homotopy H : R

n× [0, 1] → R
n with the

following properties:

(1) H(x, t) = ϕ(tϕ−1(x)) for all x ∈ Uε and t ∈ [0, 1],

(2) H(x, 1) = x for all x ∈ U , and

(3) H is meromorphic from (Rn × [0, 1], fr Γ × [0, 1]) to (Rn, fr Γ).

Proof. Consider the subanalytic map Eε � (x, v) �→ d(ϕ(x, v), x). Since
d(ϕ(x, 0), x) = 0 for all x ∈ Γ, one can find by �Lojasiewicz’s inequality a
constant C > 0 and a rational number λ > 0 such that

d(ϕ(x, v), x) ≤ C |v|λ for all (x, v) ∈ Eε.(8.6)

Let ε′ :Γ→R>0 be the subanalytic function x �→min
{

1
2ε(x), 1

8( 1
C d(x, fr Γ))1/λ

}
.

Then

d(ϕ(x, v), x) ≤ 1
4

d(x, fr Γ) for all (x, v) ∈ E2ε′ .(8.7)

This entails that for every t ∈ [0, 1]

d(ϕ(x, tv), fr Γ) ≥ d(x, fr Γ) − d(ϕ(x, tv), x) ≥ 3
4

d(x, fr Γ)(8.8)

and

d(ϕ(x, v), ϕ(x, tv)) ≤ 1
2

d(x, fr Γ).(8.9)
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Consequently

sϕ(x, v) + (1 − s)ϕ(x, tv) /∈ fr Γ for all (x, v) ∈ E2ε′ and s, t ∈ [0, 1].(8.10)

Now, the sets Uε′ and R
n\U2ε′ are subanalytic, hence regularly situated. Thus,

by Chap. IV, Lemma 4.5 of [50] there exists a function ψ ∈ M∞(fr Γ; Rn) with
values in [0, 1] such that ψ = 1 over Uε′ \ fr Γ and ψ = 0 over R

n \ U2ε′ . With
the help of the function ψ we define:

H(x, t) =

{
x for x ∈ fr Γ,

ψ(x) ϕ(tϕ−1(x)) + (1 − ψ(x))x for x ∈ R
n \ fr Γ.

By construction we then have H ∈ M∞(fr Γ × [0, 1], Rn × [0, 1]), H(fr Γ ×
[0, 1]) ⊂ fr Γ and H(x, 1) = x for all x ∈ R

n. Moreover, (8.10) entails that
H(Rn × [0, 1] \ frG) ⊂ R

n \ fr Γ. Finally, using the fact that ϕ is subanalytic,
one concludes that H is a meromorphic map from (Rn × [0, 1], fr Γ × [0, 1]) to
(Rn, fr Γ). Hence H satisfies the claim.

8.5. Let us consider the following situation which will appear in the
construction of a bimeromorphic triangulation. Let Δ ⊂ R

n be an open affine
simplex of dimension n and h : Δ → R

N a subanalytic homeomorphism onto
its image with the following properties:

(1) h|Δ : Δ → Δ̃ = h(Δ) is an analytic isomorphism onto a subanalytic leaf
of R

N ,

(2) h is bimeromorphic from (Δ, fr Δ) to (Δ̃, fr Δ̃).

Additionally we assume that Δ̃ has a bimeromorphic subanalytic tubular
neighborhood (EΔ̃, εΔ̃, ϕΔ̃) in R

N with a bimeromorphic subanalytic paral-
lel transport //Δ̃. Now let Λ ⊂ R

n be an affine simplex of dimension < n

with total space lying in Δ. Clearly, Λ has a natural bimeromorphic subana-
lytic tubular neighborhood (EΛ, εΛ, ϕΛ) in R

n given by orthogonal projection.
After possibly shrinking εΛ we can assume that U2εΛ lies in Δ as well. The
image of Λ under the map h is a subanalytic leaf Γ in R

N . Moreover, Γ has a
tubular neighborhood (E, ε, ϕ) induced by (EΔ̃, εΔ̃, ϕΔ̃), (EΛ, εΛ, ϕΛ) and h.
Its components are given as follows:

(1) E = EΔ̃|Γ ⊕ h∗EΛ,

(2) ε : Γ → R>0 is a subanalytic map such that for all (x, v, w) ∈ E2ε

|Txh−1(w)| < εΛ

(
h−1(x)

)
,

(y, x) ∈ NΔ̃ with y = h(ϕΛ(Txh−1(w)),
|//Δ̃,yxv| < εΔ̃(y),

(3) ϕ(x, v, w)=ϕΔ̃(y, //Δ̃,yxv) for all (x, v, w)∈E2ε and y=h(ϕΛ(Txh−1(w))).
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Finally, if N = NΔ̃ ∩ (Γ × Γ), then

//yx(x, v, w)

=
(
y, //Δ̃,yxv, Th−1(y)h(Txh−1(w))

)
with (y, x) ∈ N and (x, v, w) ∈ Ex,

defines a parallel transport for (E, ε, ϕ) over N . By a tedious but straightfor-
ward argument involving Proposition 7.6 and well-known properties of suban-
alytic maps one derives the following result.

8.6. Lemma. The tubular neighborhood (E, ε, ϕ) of Γ induced by

(EΔ̃, εΔ̃, ϕΔ̃), (EΛ, εΛ, ϕΛ)

and h is bimeromorphic and subanalytic. Moreover, the parallel transport //

is bimeromorphic subanalytic.

8.7. For the construction of a bimeromorphic triangulation we repeat es-
sentially the argument of �Lojasiewicz [35, §2] (cf. also Hironaka [27]), which
shows that a bounded subanalytic set in R

n has a subanalytic triangulation,
and we add the necessary details which prove that the triangulation can be
chosen to be bimeromorphic. One of the key ingredients in the proof is the
following subanalytic version of a lemma due to Koopman-Brown [30] (see also
[34] and [27]).

8.8. Lemma. Let X ⊂ R
n be a bounded and nowhere dense subanalytic

set. Then there exists an open and dense subset O ⊂ P
n−1 such that for every

direction ξ ∈ O and every v ∈ R
n the intersection X∩ (v+ξ) has finitely many

points.

As in [35, §2] we say that a subset X ⊂ R
n has property (f), if every

one of the fibers π−1(y) with y ∈ R
n−1 has only finitely many elements. The

following two results correspond to Lemma 2 and Lemma 3 in [35, §2].

8.9. Lemma. Let X ⊂ R
n be a compact subanalytic set having property

(f). Then there exists a closed subanalytic set Y ⊃ X with property (f) such
that the projection π|Y : Y → R

n−1 is open.

8.10. Lemma. Let X ⊂ R
n be a bounded subanalytic set having property

(f). Then there exists a partition of X into finitely many subanalytic leaves
Γ such that every image π(Γ) is a subanalytic leaf of R

n−1 and such that the
restriction π|Γ : Γ → π(Γ) is an analytic isomorphism.

8.11. Remark. Concerning the notation of projections restricted to a leaf
Γ we depart somewhat from the presentation in [35]. In our work, the symbol
πΓ always denotes the projection of a tubular neighborhood of Γ, and not as
in [35], the restriction of the projection π = πn

(n−1) to Γ.



THE HOMOLOGY OF ALGEBRAS OF WHITNEY FUNCTIONS 47

8.12. Theorem. For every family X1, . . . , Xl ⊂ R
n of bounded subana-

lytic sets there exists a compact parallelotope Q ⊂ R
n containing the Xj in its

interior and a finite bimeromorphic subanalytic triangulation T = (h : Q →
Q,K) which is compatible with the Xj.

Proof. The claim is proved by induction on the dimension n. For n = 1
it is trivial, since every bounded subanalytic set in R is the union of finitely
many points and bounded open intervals. Assume that the claim holds for
all R

k with k < n and that for finitely many bounded subanalytic sets in
R

k one can always find a compatible bimeromorphic subanalytic triangula-
tion of a large enough parallelotope such that the tubular neighborhoods of
the simplices of the triangulation all have a bimeromorphic subanalytic par-
allel transport. It will be shown that then one can also find a bimeromor-
phic subanalytic triangulation with this property for X1, . . . , Xl ⊂ R

n. As in
[35, §2] one argues that it suffices to assume that the Xj are pairwise disjoint
and nowhere dense in R

n. By Lemma 8.8 the compact subanalytic set
⋃

j Xj

has property (f) after an appropriate coordinate transformation. Moreover,
by Lemma 8.9 there exists a closed subanalytic F0 ⊃ ⋃

j Xj such that F0 has
property (f) and such that the restricted projection π|F0

: F0 → R
n−1 is open.

Following �Lojasiewicz [35] let us put u = (x1, . . . , xn−1) and choose C > R > 0
in such a way that the truncated cone D = {x ∈ R

n | |u| < C−|xn|, |xn| < R}
contains

⋃
j Xj . Let

Γ1 = {x ∈ R
n | xn = R}, Γ2 = −Y1 Γ3 = {x ∈ R

n | |u| > C, xn = 0} and
Y = {x ∈ R

n | |u| = C − |xn|, |xn| < R}.

Then F = (F0 ∩ D) ∪ Γ1 ∪ Γ2 ∪ Γ3 ∪ Y is a closed subanalytic set, has prop-
erty (f) and the projection π|F : F → R

n−1 is open. By Lemmas 8.8 and
8.10 one can now find (after an appropriate orthogonal transformation of the
coordinates x1, . . . , xn−1) a partition of each one of the sets X1, . . . , Xl, Y and
(F0 ∩D)\⋃

j Xj into finitely many subanalytic leaves Γ such that every one of
the projections πn

k |Γ with k = dim Γ is an analytic isomorphism onto an open
subanalytic set of R

k. Let Γ4,Γ5, . . . ,Γr be all these leaves. Thus one obtains
a finite partition F =

⋃r
i=1 Γi which is compatible with the Xj . Note that by

Corollary 8.3 every leaf Γi has a bimeromorphic subanalytic tubular neighbor-
hood in R

n together with a bimeromorphic subanalytic parallel transport.
According to the induction hypothesis one can choose a sufficiently large

parallelotope Q̃ ⊂ R
n−1 containing the ball of radius 2C and a bimeromor-

phic subanalytic triangulation T̃ = (h̃ : Q̃ → Q̃, K̃) which is compatible with
the sets π(Γ4), π(Γ5), . . . , π(Γr). Obviously, the triangulation T̃ then is com-
patible with all the leaves π(Γi), i = 1, . . . , r. The Γi are graphs of analytic
functions (denoted by the same symbol); hence for every simplex Λ of T̃ the
non-empty restrictions Γi|Λ are pairwise disjoint and give rise to a finite and
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strictly increasing sequence of analytic functions

−R = ΨΛ,i < . . . < ΨΛ,rΛ = R over Λ.

Each of the functions ΨΛ,i is subanalytic, and the Whitney function J∞Λ (ΨΛ,i ◦
πΛ) lies in M∞(Λ, fr Λ) by Corollary 8.3, the assumption on T̃ and Proposition
7.6. Since F is closed, the closure ΨΛ,i is the graph of a subanalytic function.
Moreover, given a face Λ′ of Λ, the restriction of ΨΛ,i to Λ′ equals one of
the functions ΨΛ′,j . Vice versa, every ΨΛ′,j is the restriction of some ΨΛ,i,
since π|F is open. After replacing K̃ by its barycentric subdivision, one has
ΨΛ,i(v) < ΨΛ,i+1(v) for at least one vertex v of Λ. Thus the sets

ΨΛ,i and {x ∈ R
n | u ∈ Λ, ΨΛ,i(u) < xn < ΨΛ,i+1(u)}

form a subanalytic stratification N of the parallelotope Q = Q̃× [−R, R], and
this stratification is compatible with the Xj (see [44, Chap. 1] for details on
stratification theory).

�Lojasiewicz [34] then uses the subanalytic homeomorphism h̃−1 × e : Q

→ Q, where e is the identity on [−R, R], to map N to a stratification M of Q

into the following subanalytic leaves:

ΦΔ,i = Ψ
h̃(Δ),i

◦ h̃|Δ and {x ∈ Q | u ∈ Δ, ΦΔ,i(u) < xn < ΦΔ,i+1(u)},

where Δ ∈ K̃. The stratification M inherits the following properties from N :

(1) for every face Δ′ of Δ the map ΦΔ′,j is the restriction of some ΦΔ,i to
Δ′,

(2) ΦΔ,i(v) < ΦΔ,i+1(v) for at least one vertex v of Δ,

(3) J∞Δ (ΦΔ,i ◦ πΔ) ∈ M∞(Δ, fr Δ).

By the assumption on T̃ it is clear that the restriction of h̃ × e to a leaf Γ of
M is an analytic isomorphism onto a leaf Γ̃ of N . Moreover, by (3) and also
since for every Δ the Whitney function J∞Δ (h̃ ◦ π|Δ) is bimeromorphic from

(Δ, fr Δ) to
(
h̃(Δ), fr h̃(Δ)

)
, one concludes that (h̃× e) ◦ π|Γ is bimeromorphic

from (Γ, fr Γ) to (Γ̃, fr Γ̃). Hereby, for Γ = ΦΔ,i, the projection πΓ is given
by πΓ(u, xn) = ΦΔ,i(πΔ(u)) with (u, xn) in a sufficiently small subanalytic
neighborhood of Γ.

Next denote by ΞΔ,i : Δ → R the subanalytic map which coincides with
the restriction of the affine function having value ΦΔ,i(v) at a vertex v ∈ Δ.
Then (2) shows

(4) ΞΔ,i < ΞΔ,i+1 over Δ.
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Hence the subanalytic leaves

ΞΔ,i and {x ∈ Q | u ∈ Δ, ΞΔ,i(u) < xn < ΞΔ,i+1(u)}

form a stratification of Q and a finite cellular complex L in R
n. By virtue

of properties (1), (2) and (4) above �Lojasiewicz [34] obtains a subanalytic
homeomorphism

h∗ : Q → Q, (u, t) �→ (u, a(u, t)),

where for every u ∈ Δ the map [−R, R] � t �→ a(u, t) ∈ [−R, R] is de-
fined over each interval [ΞΔ,i(u),ΞΔ,i+1(u)] as the affine function such that
a(ΞΔ,i(u)) = ΦΔ,i(u). According to [34, §2] the image of L under h∗ coincides
with the stratification M and the restriction of h∗ to a cell Γ of L is an an-
alytic isomorphism onto its image Γ̃. Additionally, h∗ is bimeromorphic from
(Γ, fr Γ) to (Γ̃, fr Γ̃) by construction and (3). If now K denotes the barycentric
subdivision of L and h the composition (h̃ × e) ◦ h∗, then T = (h,K) is a
subanalytic triangulation of Q which is compatible with the Xi.

It remains to prove that the simplices of T have bimeromorphic tubular
neighborhoods with bimeromorphic parallel transport and that T satisfies the
axioms (BMT1) to (BMT4). To this end check first (using Proposition 7.6 and
the corresponding property of h̃×e and h∗) that for every Δ ∈ K the Whitney
function J∞Δ (h ◦ π|Δ) is bimeromorphic from (Δ, fr Δ) to (Δ̃, fr Δ̃), where Δ̃ =
h(Δ). Then recall that the leaves Γi (even Γ1,Γ2 and Γ3 after passing to the
intersection with a sufficiently large open ball) satisfy the hypothesis of Lemma
8.2. Hence Corollary 8.3 and Lemma 8.6 entail the fact that every simplex of T

possesses a bimeromorphic subanalytic tubular neighborhood together with a
bimeromorphic subanalytic parallel transport. By passing to possibly smaller
functions εΔ̃ one can achieve that (BMT1) is fulfilled. (BMT4) is an immediate
consequence of Lemma 8.4. The remaining two axioms are consequences of the
following facts:

– J∞Δ (h ◦ π|Δ) is bimeromorphic,

– the projections πΔ and πΔ̃ of the tubular neighborhoods of Δ resp. Δ̃
are meromorphic,

– R
n \ UεΔ and Δ are regularly situated,

– R
n \ UεΔ̃

and Δ̃ are regularly situated.

The details of the argument leading to (BMT2) and (BMT3) are similar to
the proof of Lemma 8.4, and so we leave them to the reader. This finishes the
proof of the bimeromorphic triangulation theorem.
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