Hypergraph regularity and the multidimensional Szemerédi theorem

By W. T. Gowers

Abstract

We prove analogues for hypergraphs of Szemerédi’s regularity lemma and the associated counting lemma for graphs. As an application, we give the first combinatorial proof of the multidimensional Szemerédi theorem of Furstenberg and Katznelson, and the first proof that provides an explicit bound. Similar results with the same consequences have been obtained independently by Nagle, Rödl, Schacht and Skokan.

1. Introduction

Szemerédi’s theorem states that, for every real number $\delta > 0$ and every positive integer k, there exists a positive integer N such that every subset A of the set $\{1, 2, \ldots, N\}$ of size at least δN contains an arithmetic progression of length k. There are now three substantially different proofs of the theorem, Szemerédi’s original combinatorial argument [Sz1], an ergodic-theory proof due to Furstenberg (see for example [FKO]) and a proof by the author using Fourier analysis [G1]. Interestingly, there has for some years been a highly promising programme for yet another proof of the theorem, pioneered by Vojta Rödl (see for example [R]), developing an argument of Ruzsa and Szemerédi [RS] that proves the result for progressions of length three. Let us briefly sketch their argument.

The first step is the famous regularity lemma of Szemerédi [Sz2]. If G is a graph and A and B are sets of vertices in V, then let $e(A, B)$ stand for the number of pairs $(x, y) \in A \times B$ such that xy is an edge of G. Then the density $d(A, B)$ of the pair (A, B) is $e(A, B)/|A||B|$. The pair is ε-regular if $|d(A', B') - d(A, B)| \leq \varepsilon$ for all subsets $A' \subset A$ and $B' \subset B$ such that $|A'| \geq \varepsilon|A|$ and $|B'| \geq \varepsilon|B|$. The basic idea is that a pair is regular with density d if it resembles a random graph with edge-probability d. Very roughly, the regularity lemma asserts that every graph can be decomposed into a few pieces, almost all of which are random-like. The precise statement is as follows.

Theorem 1.1. Let $\varepsilon > 0$. Then there exists a positive integer K_0 such that, given any graph G, the vertices can be partitioned into $K \leq K_0$ sets V_i,
with sizes differing by at most 1, such that all but at most \(\varepsilon K^2 \) of the pairs \((V_i, V_j)\) are \(\varepsilon \)-regular.

A partition is called \(\varepsilon \)-regular if it satisfies the conclusion of Theorem 1.1. (Note that we allow \(i \) to equal \(j \) in the definition of a regular pair, though if \(K \) is large then this does not make too much difference.) The regularity lemma is particularly useful in conjunction with a further result, known as the counting lemma. To state it, it is very convenient to use the notion of a graph homomorphism. If \(G \) and \(H \) are graphs, then a function \(\phi : V(H) \rightarrow V(G) \) is called a homomorphism if \(\phi(x)\phi(y) \) is an edge of \(G \) whenever \(xy \) is an edge of \(H \). It is an isomorphic embedding if in addition \(\phi(x)\phi(y) \) is not an edge of \(G \) whenever \(xy \) is not an edge of \(H \).

Theorem 1.2. For every \(\alpha > 0 \) and every \(k \) there exists \(\varepsilon > 0 \) with the following property. Let \(V_1, \ldots, V_k \) be sets of vertices in a graph \(G \), and suppose that for each pair \((i, j)\) the pair \((V_i, V_j)\) is \(\varepsilon \)-regular with density \(d_{ij} \). Let \(H \) be a graph with vertex set \(\{x_1, \ldots, x_k\} \), let \(v_i \in V_i \) be chosen independently and uniformly at random, and let \(\phi \) be the map that takes \(x_i \) to \(v_i \) for each \(i \). Then the probability that \(\phi \) is an isomorphic embedding differs from
\[
\prod_{x_i, x_j \in H} d_{ij} \prod_{x_i, x_j \notin H} (1 - d_{ij})
\]
by at most \(\alpha \).

Roughly, this result tells us that the \(k \)-partite graph induced by the sets \(V_1, \ldots, V_k \) contains the right number of labelled induced copies of the graph \(H \). Let us briefly see why this result is true when \(H \) is a triangle. Suppose that \(U, V, W \) are three sets of vertices and the pairs \((U, V), (V, W)\) and \((W, U)\) are \(\varepsilon \)-regular with densities \(\zeta, \eta \) and \(\theta \) respectively. Then a typical vertex of \(U \) has about \(\zeta |V| \) neighbours in \(V \) and \(\theta |W| \) neighbours in \(W \). By the regularity of the pair \((V, W)\), these two neighbourhoods span about \(\eta(\zeta |V|)(\theta |W|) \) edges in \(G \), creating that many triangles. Summing over all vertices of \(U \) we obtain the result.

The next step in the chain of reasoning is the following innocent-looking statement about graphs with few triangles. Some of the details of the proof will be sketched rather than given in full.

Theorem 1.3. For every constant \(a > 0 \) there exists a constant \(c > 0 \) with the following property. If \(G \) is any graph with \(n \) vertices that contains at most \(cn^3 \) triangles, then it is possible to remove at most \(an^2 \) edges from \(G \) to make it triangle-free.

Proof. This theorem is a simple consequence of the regularity lemma. Indeed, let \(\varepsilon = \varepsilon(a) > 0 \) be sufficiently small and let \(V_1, \ldots, V_K \) be an \(\varepsilon \)-regular partition of the vertices of \(G \). If there are fewer than \(a|V_i||V_j|/100 \) edges between \(V_i \) and \(V_j \), then remove all those edges, and also remove all edges from \(V_i \) to \(V_j \) if \((V_i, V_j)\) is not an \(\varepsilon \)-regular pair. Since the partition is \(\varepsilon \)-regular,
we have removed fewer than \(an^2\) edges, and the resulting graph must either be triangle-free or contain several triangles. To see why this is, suppose that \((x, y, z)\) is a triangle in \(G\) (after the edges have been removed), and suppose that \((x, y, z) \in V_i \times V_j \times V_k\). Then by our construction the pair \((V_i, V_j)\) must be regular and must span many edges (because we did not remove the edge \((x, y)\)) and similarly for the pairs \((V_j, V_k)\) and \((V_i, V_k)\). But then, by the counting lemma for triangles, the sets \(V_i, V_j, V_k\) span at least \(a^3|V_i||V_j||V_k|/10^6\) triangles. Each \(V_i\) has cardinality at least \(n/2K\), where \(K\) depends on \(\varepsilon\) only (which itself depends on \(a\) only). This proves that the result is true provided that \(c \leq a^3/2^310^6K^3\).

Ruzsa and Szemerédi [RS] observed that Theorem 1.3 implies Szemerédi’s theorem for progressions of length 3. More recently, Solymosi noticed [So1,2] that it also implied the following two-dimensional generalization. (Actually, neither of these statements is quite accurate. There are several closely related graph-theoretic results that have these consequences and can be proved using the regularity lemma, of which Theorem 1.3 is one. Ruzsa and Szemerédi and Solymosi did not use Theorem 1.3 itself but their arguments are not importantly different.)

COROLLARY 1.4. For every \(\delta > 0\) there exists \(N\) such that every subset \(A \subset [N]^2\) of size at least \(\delta N^2\) contains a triple of the form \((x, y), (x + d, y), (x, y + d)\) with \(d > 0\).

Proof. First, note that an easy argument allows us to replace \(A\) by a set \(B\) that is symmetric about some point. Briefly, if the point \((x, y)\) is chosen at random then the intersection of \(A\) with \((x, y) - A\) has expected size \(c\delta^2N^2\) for some absolute constant \(c > 0\), lives inside the grid \([-N, N]^2\), and has the property that \(B = (x, y) - B\). Thus, \(B\) is still reasonably dense, and if it contains a subset \(K\) then it also contains a translate of \(-K\). So we shall not worry about the condition \(d > 0\). (I am grateful to Ben Green for bringing this trick to my attention. As it happens, the resulting improvement to the theorem is something of a side issue, since the positivity of \(d\) does not tend to be used in applications. See for instance Corollary 1.5 below. See also the remark at the beginning of the proof of Theorem 10.3.)

Without loss of generality, the original set \(A\) is symmetric in this sense. Let \(X\) be the set of all vertical lines through \([N]^2\), that is, subsets of the form \(\{(x, y) : x = u\}\) for some \(u \in [N]\). Similarly, let \(Y\) be the set of all horizontal lines. Define a third set, \(Z\), of diagonal lines, that is, lines of constant \(x + y\). These sets form the vertex sets of a tripartite graph, where a line in one set is joined to a line in another if and only if their intersection belongs to \(A\). For example, the line \(x = u\) is joined to the line \(y = v\) if and only if \((u, v) \in A\) and the line \(x = u\) is joined to the line \(x + y = w\) if and only if \((u, w - u) \in A\).
Suppose that the resulting graph G contains a triangle of lines $x = u$, $y = v$, $x + y = w$. Then the points (u, v), $(u, w - u)$ and $(w - v, v)$ all lie in A. Setting $d = w - u - v$, we can rewrite them as (u, v), $(u, v + d)$, $(u + d, v)$, which shows that we are done unless $d = 0$. When $d = 0$, we have $u + v = w$, which corresponds to the degenerate case when the vertices of the triangle in G are three lines that intersect in a single point. Clearly, this can happen in at most $|A| = o(N^3)$ ways.

Therefore, if A contains no configuration of the desired kind, then the hypothesis of Theorem 1.3 holds, and we can remove $o(N^2)$ edges from G to make it triangle-free. But this is a contradiction, because there are at least δN^2 degenerate triangles and they are edge-disjoint. \hfill \Box

An easy consequence of Corollary 1.4 is the case $k = 3$ of Szemerédi's theorem, which was first proved by Roth [R] using Fourier analysis.

Corollary 1.5. For every $\delta > 0$ there exists N such that every subset A of $\{1, 2, \ldots, N\}$ of size at least δN contains an arithmetic progression of length 3.

Proof. Define $B \subset [N]^2$ to be the set of all (x, y) such that $x + 2y \in A$. It is straightforward to show that B has density at least $\eta > 0$ for some η that depends on δ only. Applying Corollary 1.2 to B we obtain inside it three points (x, y), $(x + d, y)$ and $(x, y + d)$. Then the three numbers $x + 2y$, $x + d + 2y$ and $x + 2(y + d)$ belong to A and form an arithmetic progression. \hfill \Box

And now the programme for proving Szemerédi's theorem in general starts to become clear. Suppose, for example, that one would like to prove it for progressions of length 4. After a little thought, one sees that the direction in which one should generalize Theorem 1.3 is the one that takes graphs to 3-uniform hypergraphs, or 3-graphs, for short, which are set systems consisting of subsets of size 3 of a set X (just as a graph consists of pairs). If H is a 3-uniform hypergraph, then a simplex in H is a set of four vertices x, y, z and w of H (that is, elements of the set X) such that the four triples xyz, xyw, xzw and yzw all belong to H. The following theorem of Frankl and Rödl is a direct generalization of Theorem 1.3, but its proof is much harder.

Theorem 1.6. For every constant $a > 0$ there exists a constant $c > 0$ with the following property. If H is any 3-uniform hypergraph with n vertices that contains at most cn^4 simplices, then it is possible to remove at most an^3 edges from H to make it simplex-free.

As observed by Solymosi, it is straightforward to generalize the proof of Theorem 1.4 and show that Theorem 1.6 has the following consequence.
Theorem 1.7. For every $\delta > 0$ there exists N such that every subset $A \subset [N]^3$ of size at least δN^3 contains a quadruple of points of the form
\[\{(x, y, z), (x + d, y, z), (x, y + d, z), (x, y, z + d)\} \]
with $d > 0$.

Similarly, Szemerédi’s theorem for progressions of length four is an easy consequence of Theorem 1.7 (and once again one does not need the positivity of d).

It may look as though this section contains enough hints to enable any sufficiently diligent mathematician to complete a proof of the entire theorem. Indeed, here is a sketch for the 3-uniform case. First, one proves the appropriate 3-graph analogue of Szemerédi’s regularity lemma. Then, given a hypergraph H, one applies this lemma. Next, one removes all sparse triples and all triples that fail to be regular. If the resulting hypergraph contains a simplex, then any three of the four sets in which its vertices lie must form a dense regular triple, and therefore (by regularity) the hypergraph contains many simplices, contradicting the original assumption.

The trouble with the above paragraph is that it leaves unspecified what it means for a triple to be regular. It turns out to be surprisingly hard to come up with an appropriate definition, where “appropriate” means that it must satisfy two conditions. First, it should be weak enough for a regularity lemma to hold: that is, one should always be able to divide a hypergraph up into regular pieces. Second, it should be strong enough to yield the conclusion that four sets of vertices, any three of which form a dense regular triple, should span many simplices. The definition that Frankl and Rödl used for this purpose is complicated and it proved very hard to generalize. In [G2] we gave a different proof which is in some ways more natural. The purpose of this paper is to generalize the results of [G2] from 3-uniform hypergraphs to k-uniform hypergraphs for arbitrary k, thereby proving the full multidimensional version of Szemerédi’s theorem (Theorem 10.3 below), which was first proved by Furstenberg and Katznelson [FK]. This is the first proof of the multidimensional Szemerédi theorem that is not based on Furstenberg’s ergodic-theoretic approach, and also the first proof that gives an explicit bound. The bound, however, is very weak—it gives an Ackermann-type dependence on the initial parameters.

Although this paper is self-contained, we recommend reading [G2] first. The case $k = 3$ contains nearly all the essential ideas, and they are easier to understand when definitions and proofs can be given directly. Here, because we are dealing with a general k, many of the definitions have to be presented inductively. The resulting proofs can be neater, but they may appear less motivated if one has not examined smaller special cases. For this reason, we do indeed discuss a special case in the next section, but not in as complete
a way as can be found in \([G2]\). Furthermore, the bulk of \([G2]\) consists of background material and general discussion (such as, for example, a complete proof of the regularity lemma for graphs and a detailed explanation of how the ideas relate to those of the analytic approach to Szemerédi’s theorem in \([G1]\)). Rather than repeat all the motivating material, we refer the reader to that paper for it.

The main results of this paper have been obtained independently by Nagle, Rödl, Schacht and Skokan \([NRS]\), \([RS]\). They too prove hypergraph generalizations of the regularity and counting lemmas that imply Theorem 10.3 and Szemerédi’s theorem. However, they formulate their generalizations differently and there are substantial differences between their proof and ours. Broadly speaking, they take the proof of Frankl and Rödl as their starting point, whereas we start with the arguments of \([G2]\). This point is discussed in more detail in the introduction to Section 6 of this paper, and also at the end of \([G2]\).

2. A discussion of a small example

The hardest part of this paper will be the proof of a counting lemma, which asserts that, under certain conditions, a certain type of structure “behaves randomly” in the sense that it contains roughly the expected number (asymptotically speaking) of configurations of any fixed size. In order even to state the lemma, we shall have to develop quite a lot of terminology, and the proof will involve a rather convoluted inductive argument with a somewhat strange inductive hypothesis. The purpose of this section is to give some of the argument in a special case. The example we have chosen is small enough that we can discuss it without the help of the terminology we use later: we hope that as a result the terminology will be much easier to remember and understand (since it can be related to the concrete example). Similarly, it should be much clearer why the inductive argument takes the form it does. From a logical point of view this section is not needed: the reader who likes to think formally and abstractly can skip it and move to the next section.\(^1\)

To put all this slightly differently, the argument is of the following kind: there are some simple techniques that can be used quite straightforwardly to prove the counting lemma in any particular case. However, as the case gets larger, the expressions that appear become quite long (as will already be apparent in the example we are about to discuss), even if the method for dealing with them is straightforward. In order to discuss the general case, one

\(^1\)This section was not part of the original submitted draft. One of the referees suggested treating a small case first, and when I reread the paper after a longish interval I could see just how much easier it would be to understand if I followed the suggestion.
is forced to describe in general terms what one is doing, rather than just going ahead and doing it, and for that it is essential to devise a suitably compact notation, as well as an inductive hypothesis that is sufficiently general to cover all intermediate stages in the calculation.

Now we are ready to turn to the example itself. Let X, Y, Z and T be four finite sets. We shall adopt the convention that variables that use a lower-case letter of the alphabet range over the set denoted by the corresponding upper-case letter. So, for example, x' would range over X. Similarly, if we refer to “the function $v(y, z, t)$,” it should be understood that v is a function defined on $Y \times Z \times T$.

For this example, we shall look at three functions, $f(x, y, z)$, $u(x, y, t)$ and $v(y, z, t)$. (The slightly odd choices of letters are deliberate: f plays a different role from the other functions and t plays a different role from the other variables.) We shall also assume that they are supported in a quadrupartite graph G, with vertex sets X, Y, Z and T, in the sense that $f(x, y, z)$ is nonzero only if xy, yz and xz are all edges of G, and similarly for the other three functions. As usual, we shall feel free to identify G with its own characteristic function; another way of stating our assumption is to say that $f(x, y, z) = f(x, y, z)G(x, y)G(y, z)G(x, z)$.

We shall need one useful piece of shorthand as the proof proceeds. Let us write $f_{x, x'}(y, z)$ for $f(x, y, z)f(x', y, z)$, and similarly for the other functions (including G) and variables. We shall even iterate this, so that $f_{x, x', y, y', z, z'}$ means

$$f(x, y, z)f(x', y, z)f(x, y', z)f(x', y', z).$$

Of particular importance to us will be the quantity

$$\text{Oct}(f) = \mathbb{E}_{x, x', y, y', z, z'} f_{x, x', y, y', z, z'},$$

which is a count of octahedra, each one weighted by the product of the values that f takes on its eight faces.

Now let us try to obtain an upper bound for the quantity

$$\mathbb{E}_{x, y, z, t} f(x, y, z)u(x, y, t)v(y, z, t).$$

Our eventual aim will be to show that this is small if $\text{Oct}(f)$ is small and the six parts of G are sufficiently quasirandom. However, an important technical idea of the proof, which simplifies it considerably, is to avoid using the quasirandomness of G for as long as possible. Instead, we make no assumptions about G (though we imagine it as fairly sparse and very quasirandom), and try to obtain an upper bound for our expression in terms of $f_{x, x', y, y', z, z'}$ and G. Only later do we use the fact that we can handle quasirandom graphs. In the more general situation, something similar occurs: now G becomes a hypergraph, but in a certain sense it is less complex than the original hypergraph, which
means that its good behaviour can be assumed as the complicated inductive hypothesis alluded to earlier.

As with many proofs in arithmetic combinatorics, the upper bound we are looking for is obtained by repeated use of the Cauchy-Schwarz inequality, together with even more elementary tricks such as interchanging the order of expectation, expanding out the square of an expectation, or using the inequality \(\mathbb{E}_x f(x)g(x) \leq \|f\|_1 \|g\|_\infty \). The one thing that makes the argument slightly (but only slightly) harder than several other arguments of this type is that it is essential to use the Cauchy-Schwarz inequality efficiently, and easy not to do so if one is careless. In many arguments it is enough to use the inequality \((\mathbb{E}_x f(x))^2 \leq \mathbb{E}_x f(x)^2 \), but for us this will usually be inefficient because it will usually be possible to identify a small set of \(x \) outside which \(f(x) \) is zero. Letting \(A \) be the characteristic function of that set, we can write \(f = Af \), and we then have the stronger inequality \((\mathbb{E}_x f(x))^2 \leq \mathbb{E}_x A(x)\mathbb{E}_x f(x)^2 \).

Here, then, is the first part of the calculation that gives us the desired upper bound. We need one further assumption: that the functions \(f, u \) and \(v \) take values in the interval \([-1, 1]\).
HYPERGRAPH REGULARITY

first, but in some sense simpler, so that we could generalize both statements to one that can be proved inductively.

Certain similarities are immediately clear, as is the fact that the last expression, if we fix \(x \) and \(x' \) rather than taking the first expectation, involves functions of two variables rather than three, and a fourth power instead of an eighth power. The only small difference is that we now have the function \(G \) appearing rather than some arbitrary function supported in \(G \). This we shall have to incorporate into our inductive hypothesis somehow.

However, in this small case, we can simply try to repeat the argument, so let us continue with the calculation:

\[
\left(E_{y,z,t} f_{x,x'}(y, z)u_{x,x'}(y, t)G(z, t) \right)^4
= \left(E_{z,t} E_y f_{x,x'}(y, z)u_{x,x'}(y, t)G(z, t) \right)^4
= \left(E_{z,t} E_y f_{x,x'}(y, z)u_{x,x'}(y, t)G_{x,x'}(z)G_{x,x'}(t)G(z, t) \right)^4
\leq \left(E_{z,t} G_{x,x'}(z)G_{x,x'}(t)G(z, t) \right)^2 \left(E_{z,t} \left(E_y f_{x,x'}(y, z)u_{x,x'}(y, t)G(z, t) \right)^2 \right)^2.
\]

Here, we used the fact that \(f_{x,x'}(y, z) \) is nonzero only if \(G(x, z) \) and \(G(x', z) \) are both equal to 1, with a similar statement for \(u_{x,x'}(y, t) \). We then applied the Cauchy-Schwarz inequality together with the fact that \(G \) squares to itself. Given that \(G \) could be quite sparse, it was important here that we exploited its sparseness to the full: with a lazier use of the Cauchy-Schwarz inequality we would not have obtained the factor in the first bracket, which will in general be small and not something we can afford to forget about.

Now let us continue to manipulate the second bracket in the standard way: expanding the inner square, rearranging, and applying Cauchy-Schwarz. This time, in order not to throw away any sparseness information, we will bear in mind that the expectation over \(y \) and \(y' \) below is zero unless all of \(G(x, y), G(x', y) \) and \(G(x', y') \) are equal to 1.

\[
\left(E_{z,t} \left(E_y f_{x,x'}(y, z)u_{x,x'}(y, t)G(z, t) \right)^2 \right)^2
= \left(E_{y,y'} G_{x,x', y,y'} E_{z,t} f_{x,x', y,y'}(z)u_{x,x', y,y'}(t)G(z, t) \right)^2
\leq \left(E_{y,y'} G_{x,x', y,y'} \right) \left(E_{y,y'} \left(E_{z,t} f_{x,x', y,y'}(z)u_{x,x', y,y'}(t)G(z, t) \right)^2 \right).
\]

We have now come down to functions of one variable, apart from the term \(G(z, t) \). Instead of worrying about this, let us continue the process.

\[
\left(E_{z,t} f_{x,x', y,y'}(z)u_{x,x', y,y'}(t)G(z, t) \right)^2
= \left(E_t E_{z} f_{x,x', y,y'}(z)u_{x,x', y,y'}(t)G(z, t) \right)^2.
\]
Now we shall apply Cauchy-Schwarz once more, and again we must be careful to use the full strength of the inequality by taking account that for most values of \(t \) the expectation over \(z \) is zero. We can do this by noting that

\[
 u_{x,x',y,y'}(t) = u_{x,x',y,y'}(t)G_{x,x'}(t)G_{y,y'}(t)
\]

so that the last expression above is at most

\[
 \left(\mathbb{E} tG_{x,x'}(t)G_{y,y'}(t) \right) \left(\mathbb{E} t \left(\mathbb{E} z f_{x,x',y,y'}(z)u_{x,x',y,y'}(t)G(z,t) \right)^2 \right).
\]

The second term in this product is at most

\[
 \mathbb{E} t \left(\mathbb{E} z f_{x,x',y,y'}(z)G_{x,x'}(t)G_{y,y'}(t)G(z,t) \right)^2,
\]

which equals

\[
 \mathbb{E} t \mathbb{E} z,z' f_{x,x',y,y',z,z'}G_{x,x'}(t)G_{y,y'}(t)G(z,z')(t).
\]

Let us put all this together and see what the upper bound is that we have obtained. It works out to be

\[
 \left(\mathbb{E} y,z,t G(y,z)G(y,t)G(z,t) \right)^4 \mathbb{E} x,x' \left(\mathbb{E} z,t G_{x,x'}(z)G_{x,x'}(t)G(z,t) \right)^2 \left(\mathbb{E} y,y' G_{x,x',y,y'} \right)
\]

\[
 \mathbb{E} y,y' \left(\mathbb{E} t G_{x,x'}(t)G_{y,y'}(t) \right) \mathbb{E} z,z' f_{x,x',y,y',z,z'} \mathbb{E} t G_{x,x'}(t)G_{y,y'}(t)G(z,z')(t).
\]

Here we have been somewhat sloppy with our notation: a more correct way of writing the above expression would be to have different names for the variables in different expectations. If one does that and then expands out the powers of the brackets, then one obtains an expression with several further variables besides \(x, x', y, y', z, z' \) and \(t \). One takes the average, over all these variables, of an expression that includes \(f_{x,x',y,y',z,z'} \) and many terms involving the function \(G \) applied to various pairs of the variables. Recall that this is what we were trying to do.

We can interpret this complicated expression as follows. We allow the variables to represent the vertices of a quadripartite graph \(\Gamma \), with two variables \(q \) and \(r \) joined by an edge if \(G(q,r) \) appears in the product. For example, the \(G_{z,z'}(t) \) that appears at the end of the expression is short for \(G(z,t)G(z',t) \), so it would tell us that \(zt \) and \(z't \) were edges of the graph (assuming that those particular variables had not had their names changed).

When we assign values in \(X, Y, Z \) and \(T \) to the various variables, we are defining a quadripartite map from the vertex set of \(\Gamma \) to the set \(X \cup Y \cup Z \cup T \). And the product of all the terms involving \(G \) is telling us whether a particular assignment to the variables of values in \(X, Y, Z \) and \(T \) results in a graph homomorphism from \(\Gamma \) to \(G \).

Thus, the expression we obtain is an expectation over all such quadripartite maps \(\phi \) of \(f_{x,x',y,y',z,z'} \) multiplied by the characteristic function of the event “\(\phi \) is a homomorphism.”
Notice that in this expression the function \(f \) appears eight times, as it does in the expression with which we started, since that contains a single \(f \) inside the bracket, which is raised to the eighth power. This is important, as we need our inequality to scale up in the right way. But equally important is that this scaling should occur correctly in \(G \) as well. We can think of \(G \) as put together out of six functions (one for each pair of vertex sets). Let us now reflect this in our notation, writing \(G_{XY} \) for the part of \(G \) that joins \(X \) to \(Y \), and so on. If we want to make explicit the fact that \(f \), \(u \) and \(w \) are zero except at triangles in \(G \), then we can rewrite the first expression as

\[
\left(\mathbb{E}_{x,y,z,t} f(x,y,z) u(x,y,t) w(y,z,t) G_{XY}(x,y) G_{XZ}(x,z) G_{XT}(x,t) \right)^8 G_{YZ}(y,z) G_{YT}(y,t) G_{ZT}(z,t)
\]

This makes it clear that each part of \(G \) (such as \(G_{XY} \)) occurs eight times. In order to have a useful inequality we need the same to be true for the final expression that we are using to bound this one. As it is written at the moment, \(G_{XT} \), \(G_{YT} \) and \(G_{ZT} \) are used eight times each, but \(G_{XY} \), \(G_{YZ} \) and \(G_{XZ} \) are used only four times each. However, there are once again some implicit appearances, hidden in our assumptions about when \(f \) can be nonzero. In particular, we can afford to multiply \(f_{x,x',y,y'} z,z' \) by the product over all graph terms, such as \(G_{YZ}(y',z) \), that must equal 1 if \(f_{x,x',y,y'} z,z' \) is nonzero. This gives us four extra occurrences of each of \(G_{XY} \), \(G_{YZ} \) and \(G_{XZ} \).

We eventually want to show that if Oct(\(f \)) is small and all the functions such as \(G_{XY} \) are “sufficiently quasirandom”, then the expression with which we started is small. In order to see what we do next, let us abandon our current example, since it has become quite complicated, and instead look at a simpler example that has the same important features. In order to make this simpler example properly illustrative of the general case, it will help if we no longer assume that \(G \) uses all the vertices in \(X \), \(Y \), \(Z \) and \(T \). Rather, we shall let \(P \), \(Q \), \(R \) and \(S \) be subsets of \(X \), \(Y \), \(Z \) and \(T \), respectively, and \(G \) will be a graph that does not join any vertices outside these subsets. Then we shall consider how to approximate the quantity

\[
\mathbb{E}_{x,y,z,t} f(x,y,z) G(x,t) G(y,t) G(z,t) P(x) Q(y) R(z) S(t)
\]

by the quantity

\[
\mathbb{E}_{x,y,z,t} f(x,y,z) \delta_{XT} G(y,t) G(z,t) P(x) Q(y) R(z) S(t),
\]

where \(\delta_{XT} \) is now the relative density of \(G \) inside the set \(P \times S \) (rather than its absolute density inside \(X \times T \)). The sets \(P \), \(Q \), \(R \) and \(S \) will themselves have densities, which we shall call \(\delta_X \), \(\delta_Y \), \(\delta_Z \) and \(\delta_T \).

To begin with, we define a function \(g \) in the variables \(x \) and \(t \) by taking \(g(x,t) \) to be \(G(x,t) - \delta_{XT} \) when \((x,t) \in P \times S \) and 0 otherwise. The idea
behind this definition is that we want to subtract from $G(x, t)$ a function that
is supported in $P \times S$ and constant there, in such a way that the average
becomes zero. Once we have done that, our task is then to show that
\[
E_{x,y,z,t} f(x, y, z) g(x, t) G(y, t) G(z, t) P(x) Q(y) R(z) S(t)
\]
is small, provided that Oct(g) = $E_{x,x',t,t'} g_{x,x',t,t'}$ is small enough.

The technique of proof is the same as we have already seen: we give the
argument mainly to illustrate what we can afford to ignore and what we must
start with the expression
\[
\left(E_{y,z,t} G(y, t) G(z, t) \right)^4
\]
\[
= \left(E_{y,z,t} E_x g(x, t) f(x, y, z) G(y, t) G(z, t) \right)^4
\]
\[
\leq \left(E_{y,z,t} G(y, t) G(z, t) \right)^2 \left(E_{y,z,t} \left(E_x g(x, t) f(x, y, z) G(y, t) G(z, t) \right)^2 \right)^2.
\]

Now, we shall eventually be assuming that Oct(g) is significantly smaller than
the densities of any of the parts of G, but not necessarily smaller than the
densities of the sets P, Q, R and S. The effect on our calculations is that we
can afford to throw away the G-densities (by replacing them by 1) but must be
careful to keep account of the densities of vertex sets. Thus, we may replace
the expectation $E_{y,z,t} G(y, t) G(z, t)$ in the first bracket by the larger
expectation $E_{y,z,t} Q(y) R(z) S(t)$. (This is of course easily seen to be $\delta_Y \delta_Z \delta_T$,
but in more general situations it will not necessarily be easy to calculate.)

As for the second part of the product, it equals
\[
\left(E_{y,z,t} G(y, t) G(z, t) \left(E_x g(x, t) f(x, y, z) \right)^2 \right)^2,
\]
which we can afford to bound above by
\[
\left(E_{y,z,t} Q(y) R(z) S(t) \left(E_x g(x, t) f(x, y, z) \right)^2 \right)^2
\]
\[
= \left(E_{x,x'} E_{y,z,t} g_{x,x'}(t) f_{x,x'}(y, z) Q(y) R(z) S(t) \right)^2
\]
\[
= \left(E_{x,x'} E_{y,z,t} g_{x,x'}(t) P(x) P(x') f_{x,x'}(y, z) \right)^2
\]
\[
\leq \left(E_{x,x'} P(x) P(x') \left(E_x E_{y,z,t} g_{x,x'}(t) f_{x,x'}(y, z) \right)^2 \right)^2.
\]

Now we concentrate our efforts on the second bracket.
\[
\left(E_{y,z,t} g_{x,x'}(t) f_{x,x'}(y, z) \right)^2
\]
\[
= \left(E_{y,z} Q(y) f_{x,x'}(y, z) E_t g_{x,x'}(t) \right)^2
\]
\[
\leq \left(E_{y,z} Q(y) f_{x,x'}(y, z)^2 \right) \left(E_{y,z} Q(y) R(z) \left(E_t g_{x,x'}(t) \right)^2 \right).
Since f is a function of three variables, we are even more prepared to bound $f_{x,x'}(y,z)^2$ above by 1 than we were with G. That is, we can bound the first bracket above by $E_{y,z}P(x)P(x')Q(y)R(z)$. The second equals $E_{y,z,t,t'}Q(y)R(z)g_{x,x',t,t'}$. Since the second is automatically zero if $P(x)P(x')$ is zero, we can even afford to bound the first one by $E_{y,z}Q(y)R(z)$.

Putting all this together, we find that
\[
\left(E_{x,y,z,t}f(x, y, z)g(x, t)G(y, t)G(z, t) \right)^4
\]
is at most
\[
\left(E_{y,z}Q(y)R(z)S(t) \right)^2 \left(E_{x,x'}P(x)P(x') \right) \left(E_{x,x'} \left(E_{y,z}Q(y)R(z) \right) \left(E_{y,z,t,t'}Q(y)R(z)g_{x,x',t,t'} \right) \right).
\]
It is not hard to check that this equals $\delta_X^2 \delta_Y^2 \delta_Z^2 \delta_T^2 \text{Oct}(g)$. This quantity will count as a small error if $\text{Oct}(g)$ is small compared with $\delta_X^2 \delta_Y^2 \delta_Z^2 \delta_T^2$, since then our upper bound is small compared with its trivial maximum of $\delta_X^4 \delta_Y^4 \delta_Z^4 \delta_T^4$ (which, in the general case, is rather less trivial).

An important point to note about the above argument is that even though the expression we started with included a function of three variables, it did not cause us any difficulty because we were eventually able to bound it above in a simple way. This explains why an inductive argument is possible: when we are dealing with functions of k variables x_1, \ldots, x_k, we do not have any trouble from functions of more variables, provided that at least one of x_1, \ldots, x_k is not included in them.

Of course, once we have replaced $G(x, t)$ by $\delta_X T P(x)S(t)$ we can run similar arguments to replace $G(y, t)$ and $G(z, t)$ by $\delta_Y T Q(y)S(t)$ and $\delta_Z T R(z)S(t)$, respectively. Thus, there will be three nested inductions going on at once: the number of variables k in the function under consideration, the number of functions of k variables still left to consider, and the number of steps taken in the process of replacing a function f by a function of the form $f_{x_1,x_1',\ldots,x_k,x_k'}$.

Section 4 is concerned with the last of these, and the first two are dealt with in Section 5.

3. Some basic definitions

The need for more compact notation should by now be clear. In this section, we shall provide such notation and also explain the terminology that will be needed to state our main results.

3.1. Hypergraphs and chains. An r-partite hypergraph is a sequence X_1, \ldots, X_r of disjoint sets, together with a collection H of subsets A of $X_1 \cup \cdots \cup X_r$ with the property that $|A \cap X_i| \leq 1$ for every i. The sets X_i are called
vertex sets and their elements are vertices. The elements of H are called edges, or sometimes hyperedges if there is a danger of confusing them with edges in the graph-theoretic sense. A hypergraph is k-uniform if all its edges have size k. (Thus, a 2-uniform hypergraph is a graph.)

An r-partite hypergraph H is called an r-partite chain if it has the additional property that B is an edge of H whenever A is an edge of H and $B \subseteq A$. Thus, an r-partite chain is a particular kind of combinatorial simplicial complex, or down-set. Our use of the word “chain” is nonstandard (in particular, it has nothing to do with the notion of a chain complex in algebraic topology). We use it because it is quicker to write than “simplicial complex”.

If the largest size of any edge of H is k, then we shall sometimes say that H is a k-chain.

3.2. Homomorphisms and r-partite functions. Let E_1, \ldots, E_r and X_1, \ldots, X_r be two sequences of disjoint finite sets. If ϕ is a map from $E_1 \cup \cdots \cup E_r$ to $X_1 \cup \cdots \cup X_r$ such that $\phi(E_i) \subset X_i$ for every i, we shall say that ϕ is an r-partite function.

Let J be an r-partite chain with vertex sets E_1, \ldots, E_r and let H be an r-partite chain with vertex sets X_1, \ldots, X_r. Let ϕ be an r-partite function from the vertices of J to the vertices of H. We shall say that ϕ is a homomorphism from J to H if $\phi(A) \subset H$ whenever $A \subset J$. We shall write $\text{Hom}(J, H)$ for the set of all homomorphisms from J to H.

3.3. A-functions and J-functions. Let Φ be the set of all r-partite functions from $E_1 \cup \cdots \cup E_r$ to $X_1 \cup \cdots \cup X_r$. We shall also consider some special classes of functions defined on Φ. If A is a subset of $E_1 \cup \cdots \cup E_r$ such that $|A \cap E_i| \leq 1$ for every i, then a function $f : \Phi \to [-1, 1]$ will be called an A-function if the value of $f(\phi)$ depends only on the image $\phi(A)$. If J is an r-partite chain with vertex sets E_1, \ldots, E_r, then a J-function is a function $f : \Phi \to [-1, 1]$ that can be written as a product $f = \prod_{A \in J} f^A$, where each f^A is an A-function.

The definition of A-functions and J-functions is introduced in order to deal with situations where we have a function of several variables that can be written as a product of other functions each of which depends on only some of those variables. We met various functions of this type in the previous section. Let us clarify the definition with another small example. Suppose that we have three sets X_1, X_2 and X_3 and a function $f : X_1^2 \times X_2 \times X_3 \to [-1, 1]$ of the form

$$f(x_1, x'_1, x_2, x_3) = f_1(x_1, x_2) f_2(x_1, x_3) f_3(x'_1, x_2) f_4(x'_1, x_3) .$$

Let $E_1 = \{1, 1'\}$, $E_2 = \{2\}$ and $E_3 = \{3\}$. There is an obvious one-to-one correspondence between quadruples (x_1, x'_1, x_2, x_3) and tripartite maps from $E_1 \cup E_2 \cup E_3$: given such a sequence one associates with it the map ϕ that takes 1 to x_1, $1'$ to x'_1, 2 to x_2 and 3 to x_3. Therefore, we can if we wish change
to a more opaque notation and write

\[f(\phi) = f_1(\phi)f_2(\phi)f_3(\phi)f_4(\phi). \]

Now \(f_2(\phi) = f_2(\phi(1), \phi(3)) = f_2(\phi(\{1, 3\})) \), so that \(f_2 \) is a \(\{1, 3\} \)-function. Similar remarks can be made about \(f_1 \), \(f_3 \) and \(f_4 \). It follows that \(f \) is a \(J \)-function if we take \(J \) to be the chain consisting of the sets \(\{1, 2\} \), \(\{1, 3\} \), \(\{1', 2\} \) and \(\{1', 3\} \) and all their subsets. The fact that the subsets are not mentioned in the formula does not matter, since if \(C \) is one of these subsets we can take the function that is identically 1 as our \(C \)-function.

An important and more general example is the following. As above, let \(J \) be an \(r \)-partite chain with vertex sets \(E_1, \ldots, E_r \) and let \(H \) be an \(r \)-partite chain with vertex sets \(X_1, \ldots, X_r \). For each \(\phi \) in \(\Phi \) and each \(A \in J \) let \(H^A(\phi) \) equal 1 if \(\phi(A) \in H \) and 0 otherwise. Let \(H(\phi) = \prod_{A \in J} H^A(\phi) \). Then \(H(\phi) \) equals 1 if \(\phi \in \text{Hom}(J, H) \) and 0 otherwise. In other words, the characteristic function of \(\text{Hom}(J, H) \) is a \(J \)-function. We stress that \(H(\phi) \) depends on \(J \); however, it is convenient to suppress this dependence in the notation. Our counting lemma will count homomorphisms from small chains \(J \) to large quasirandom chains \(H \), so we can regard our main aim as being to estimate the sum (or equivalently, expectation) of \(H(\phi) \) over all \(\phi \in \Phi \). However, in order to do so we need to consider more general \(J \)-functions.

The \(J \)-functions we consider will be supported in a chain \(H \) in the following sense. Let us say that an \(A \)-function \(f^A \) is supported in \(H \) if \(f^A(\phi) \) is zero whenever \(\phi(A) \) fails to be an edge of \(H \). Equivalently, \(f^A \) is supported in \(H \) if \(f^A = f^A H^A \), where \(H^A \) is as defined above. We shall say that \(f \) is a \(J \)-function on \(H \) if it can be written as a product \(\prod_{A \in J} f^A \), where each \(f^A \) is an \(A \)-function supported in \(H \). If \(f \) is a \(J \)-function on \(H \), then \(f(\phi) = 0 \) whenever \(\phi \) does not belong to \(\text{Hom}(J, H) \). That is, \(f(\phi) = f(\phi) H(\phi) \). Notice that the product of any \(J \) function with the function \(H \) will be a \(J \)-function on \(H \).

This is another definition that came up in the previous section. In that case, the three functions in the product \(f(x, y, z)u(x, y, t)v(y, z, t) \) were all supported in the chain \(H \) that consisted of the triangles in the graph \(G \), the edges of \(G \), and the vertices of \(G \). If we let \(J \) be the chain consisting of the sets \(\{x, y, z\} \), \(\{x, y, t\} \), \(\{y, z, t\} \) and all their subsets (where we are regarding the letters as names of variables rather than as elements of \(X, Y, Z \) and \(T \)), then this product is a \(J \)-function on \(H \).

3.4. The index of a set, and relative density in a chain. Let \(H \) be an \(r \)-partite chain with vertex sets \(X_1, \ldots, X_r \). Given a set \(F \in H \), define its index \(i(F) \) to be the set of all \(i \) such that \(F \cap X_i \) is nonempty. (Recall that \(F \cap X_i \) is a singleton for each such \(i \).) For any set \(A \) in any \(r \)-partite chain, let \(H(A) \) be the collection of all sets \(E \in H \) of index equal to that of \(A \). If \(A \) has cardinality \(k \), then let \(H_s(A) \) be the collection of all sets \(D \) of index \(i(A) \) such
that $C \in \mathcal{H}$ whenever $C \subset D$ and C has cardinality $k - 1$. (Since \mathcal{H} is a chain, all proper subsets of D belong to \mathcal{H}. Note that we do not require D to belong to \mathcal{H}. Clearly $H(A) \subset H_\ast(A)$. The relative density of $H(A)$ in \mathcal{H} is defined to be $|H(A)|/|H_\ast(A)|$. We will denote it by δ_A.

Once again, the example in the last section illustrates the importance of $H_\ast(A)$. Let us rename the vertex sets X, Y, Z and T as X_1, X_2, X_3 and X_4. If \mathcal{H} is a 3-chain that consists of the edges and vertices of the graph G, and some collection of triangles of G, and if $A = \{1, 2, 3\}$, say, then $H_\ast(A)$ consists of all triangles in G with one vertex in each of X_1, X_2 and X_3, while $H(A)$ consists of all 3-edges of \mathcal{H} with one vertex in each of X_1, X_2 and X_3. Thus, δ_A measures the proportion of the triangles in G that are edges in \mathcal{H}.

It is useful to interpret the relative density δ_A probabilistically: it is the conditional probability that a randomly chosen set $D \subset X_1 \cup \cdots \cup X_r$ of index $i(A)$ belongs to \mathcal{H} (and hence to $H(A)$), given that all its proper subsets belong to \mathcal{H}.

Notational remark. It may help the reader to remember the definitions in this section if we explicitly point out that most of the time we are adopting the following conventions. The symbols \mathcal{J} and \mathcal{K} are used for chains of fixed size that are embedded into a chain \mathcal{H} of size tending to infinity. From these we sometimes form other chains: for instance, \mathcal{J}_1 will be a chain of fixed size derived from a chain \mathcal{J}, and $\mathcal{H}(x)$ will be a chain of size tending to infinity that depends on a point x. The letter H will tend to be reserved for set systems connected with \mathcal{H} where the sets all have the same index. The same goes for functions derived from \mathcal{H}. For example, we write $\mathcal{H}(\phi)$ because we use the full chain \mathcal{H} to define the function, whereas we write $H^A(\phi)$ because for that we just use sets of index $i(A)$, which all have size $|A|$. Similarly, we write $H_\ast(A)$ because all sets in $H_\ast(A)$ have index $i(A)$.

3.5. $\text{Oct}(f^A)$ for an A-function f^A. We are building up to a definition of quasirandomness for $\mathcal{H}(A)$. An important ingredient of the definition is a weighted count of combinatorial octahedra, which generalizes the definition introduced in the last section. When f is a function of three variables x, y and z that range over sets X, Y and Z, respectively, then $\text{Oct}(f)$ is defined to be $\mathbb{E}_{x, x', y, y', z, z'} f(x, x', y, y', z, z')$. In full, this is the expectation over all $x, x' \in X$, $y, y' \in Y$ and $z, z' \in Z$ of

$$f(x, y, z) f(x, y, z') f(x, y', z) f(x, y', z') f(x', y, z) f(x', y, z') f(x', y', z) f(x', y', z').$$

Similarly, if f is a function of k variables x_1, \ldots, x_k, with each x_i taken from a set X_i, then

$$\text{Oct}(f) = \mathbb{E}_{x_1^0, x_1^1} \mathbb{E}_{x_2^0, x_2^1} \cdots \mathbb{E}_{x_k^0, x_k^1} \prod_{\varepsilon \in \{0, 1\}^k} f(x_1^{\varepsilon_1}, \ldots, x_k^{\varepsilon_k}).$$
In the spirit of the previous section, we can (and shall) also write this as $\mathbb{E}_\sigma f_\sigma$, where σ is shorthand for $x_1, x'_1, \ldots, x_k, x'_k$.

To give a formal definition in more general situations it is convenient to use the language of A-functions, though in fact we shall try to avoid this by assuming without loss of generality that the set A we are talking about is the set $\{1, 2, \ldots, k\}$. Nevertheless, here is the definition. As before, let J and H be r-partite chains with vertex sets E_1, \ldots, E_r and X_1, \ldots, X_r, let Φ be the set of all r-partite maps from $E_1 \cup \cdots \cup E_r$ to $X_1 \cup \cdots \cup X_r$ and let $A \in J$. We can think of an A-function as a function defined on the product of those X_i for which $i \in i(A)$. However, we can also think of it as a function f^A defined on Φ such that $f^A(\phi)$ depends only on $\phi(A)$. To define $\text{Oct}(f^A)$ in these terms, we construct a set system B as follows. Let k be the cardinality of the set A. For each $i \in i(A)$ let U_i be a set of cardinality 2, let U be the union of the U_i (which we suppose to be disjoint) and let B consist of the 2^k sets $B \in U$ such that $|B \cap U_i| = 1$ for every i. Let Ω be the set of all k-partite maps ω from $\bigcup_{i \in i(A)} U_i$ to $\bigcup_{i \in i(A)} X_i$ (meaning that $\omega(U_i) \subset X_i$ for every $i \in i(A)$).

We now want to use f^A, which is defined on Φ, to define a B-function f^B on Ω, for each $B \in B$. There is only one natural way to do this. Given $\omega \in \Omega$ and $B \in B$, we would like $f^B(\omega)$ to depend on $\omega(B)$; we know that B and $\omega(B)$ have the same index as A; so we choose some $\phi \in \Phi$ such that $\phi(A) = \omega(B)$ and define $f^B(\omega)$ to be $f^A(\phi)$. This is well-defined, since if $\phi(A) = \phi'(A)$, then $f^A(\phi) = f^A(\phi')$, because f^A is an A-function.

We now define

$$\text{Oct}(f^A) = \mathbb{E}_{\omega \in \Omega} \prod_{B \in B} f^B(\omega).$$

Let us see why this agrees with our earlier definition. There, for simplicity, we took A to be the set $\{1, 2, \ldots, k\}$. Then for each $i \leq k$ we let $U_i = \{x^0_i, x^1_i\}$, and B consist of all sets of the form $B_\varepsilon = \{x^{\varepsilon_1}_1, \ldots, x^{\varepsilon_k}_k\}$, with $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_k) \in \{0, 1\}^k$. The set Ω was the set of all ways of choosing x^0_i and x^1_i in X_i, for each $i \leq k$. (Again there is a deliberate ambiguity in our notation. When we say that $U_i = \{x^0_i, x^1_i\}$ we are thinking of x^0_i and x^1_i as symbols for variables, and when we choose elements of X_i with those names, we are thinking of this choice as a function from the set $\{x^0_i, x^1_i\}$ of symbols to the set X_i.) Given $\omega \in \Omega$ and $B = B_\varepsilon \in B$, we have to define $f^{B_\varepsilon}(\omega)$. In principle a function of ω can depend on all the variables x^0_i and x^1_i, but f^{B_ε} is a B_ε-function, and therefore depends just on the variables $x^{\varepsilon_i}_i$. Now Φ can be thought of as the set of ways of choosing $y_i \in X_i$ for each $i \leq k$. In other words, we regard A as the set of variables $\{y_1, \ldots, y_k\}$ and ϕ as a way of assigning values to these variables. Thus, to define $f^{B_\varepsilon}(\omega)$ we choose ϕ such that $\phi(A) = \omega(B_\varepsilon)$, which means that $\phi(y_i)$ must equal $\omega(x^{\varepsilon_i}_i)$ for each i. (Equivalently, thinking of y_i and $x^{\varepsilon_i}_i$ as the assigned values, it means merely that $x^{\varepsilon_i}_i$ must equal y_i.) But
then \(f(\phi) = f(y_1, \ldots, y_k) = f(x_{k_1}^e, \ldots, x_{k_k}^e) \). And now it is clear that the two expressions for \(\text{Oct}(f) \) denote the same quantity.

3.6. Octahedral quasirandomness. We come now to the first of two definitions that are of great importance for this paper. Let \(\mathcal{H} \) be a chain, let \(f^A \) be an \(A \)-function, for some \(A \) that does not necessarily belong to \(\mathcal{H} \), and suppose that \(f^A \) is supported in \(H_s(A) \), in the sense that \(f^A(\phi) = 0 \) whenever \(\phi(A) \notin H_s(A) \). Equivalently, suppose that whenever \(f^A(\phi) \neq 0 \) we have \(\phi(C) \in \mathcal{H} \) for every proper subset \(C \subset A \). Loosely speaking, we shall say that \(f \) is octahedrally quasirandom relative to \(\mathcal{H} \) if \(\text{Oct}(f^A) \) is significantly smaller than one might expect.

To turn this idea into a precise definition, we need to decide what we expect. Let \(\mathcal{B} \) be the set system defined in the previous subsection. If \(B \in \mathcal{B} \), then \(f^B(\omega) \) is defined to be the value of \(f^A(\phi) \) for any \(\phi \) with \(\phi(A) = \omega(B) \). If \(f^B(\omega) \neq 0 \), then \(f^A(\phi) \neq 0 \) so that \(\phi(A) \in H_s(A) \), by assumption, and hence \(\omega(B) \in H_s(A) \). Therefore, a necessary condition for \(\prod_{B \in \mathcal{B}} f^B(\omega) \) to be nonzero is that \(\omega(D) \in \mathcal{H} \) for every \(D \) that is a proper subset of some \(B \in \mathcal{B} \). Let \(\mathcal{K}' \) be the chain consisting of all such sets. Thus, \(\mathcal{K}' \) consists of all subsets of \(U_1 \cup \cdots \cup U_k \) that intersect each \(U_i \) in at most a singleton and do not intersect every \(U_i \). Then, since \(|f^B(\omega)| \leq 1 \) for every \(B \) and every \(\omega \), a trivial upper bound for \(\text{Oct}(f^A) \) is

\[
E_{\omega \in \Omega} \prod_{D \in \mathcal{K}'} H^D(\omega),
\]

which we shall call \(\text{Oct}(H_s(A)) \), since it counts the number of (labelled, possibly degenerate) combinatorial \(k \)-dimensional octahedra in \(H_s(A) \).

We could if we wanted declare \(\text{Oct}(f^A) \) to be small if it is small compared with \(\text{Oct}(H_s(A)) \). Instead, however, since we shall be working exclusively with quasirandom chains, it turns out to be more convenient to work out how many octahedra we expect \(H(A) \) to have, given the various relative densities, and use that quantity for comparison. (It might seem more natural to use \(H_s(A) \), but, for the particular functions \(f^A \) that we shall need to consider, \(\text{Oct}(f^A) \) will tend to be controlled by the smaller quantity \(\text{Oct}(H(A)) \). But in the end this is not too important because when we are looking at \(\text{Oct}(f^A) \) we think of the density \(\delta_A \) as “large”.)

Let us therefore write \(\mathcal{K} \) for the set of all subsets of sets in \(\mathcal{B} \) (so \(\mathcal{K} = \mathcal{B} \cup \mathcal{K}' \)). It is helpful to recall the interpretation of relative densities as conditional probabilities. Suppose that we choose \(\omega \) randomly from \(\Omega \), and also that \(\mathcal{H} \) behaves in a random way. Then the probability that \(H^D(\omega) = 1 \) given that \(H^C(\omega) = 1 \) for every \(C \subsetneq D \) is the probability that \(\omega(D) \in \mathcal{H} \) given that \(\omega(C) \in \mathcal{H} \) for every \(C \subsetneq D \), which is \(\delta_D \). Because \(\mathcal{H} \) behaves randomly, we expect all these conditional probabilities to be independent, so we expect that \(E_{\omega \in \Omega} \prod_{D \in \mathcal{K}} H^D(\omega) \) will be approximately \(\prod_{D \in \mathcal{K}} \delta_D \). Accordingly, we shall say
that f^A is η-octahedrally quasirandom if
\[\text{Oct}(f^A) \leq \eta \prod_{D \in K} \delta_D. \]
Since octahedral quasirandomness is the only form of quasirandomness that we use in this paper, we shall often omit the word “octahedrally” from this definition.

It is not necessary to do so, but one can rewrite the right-hand side more explicitly. For each subset $C \subset A$, there are $2^{|C|}$ sets $D \in K$ with the same index as C. (We can think of these as $|C|$-dimensional faces of the octahedron with index $i(C)$.) Therefore,
\[\eta \prod_{D \in K} \delta_D = \eta \prod_{C \subset A} \delta^2_{|C|}. \]

The main use of the definition of quasirandomness for A-functions is to give us a precise way of saying what it means for a k-partite k-uniform hypergraph to “sit quasirandomly inside a k-partite $(k-1)$-chain”. Let A and H be as above. The k-uniform hypergraph we would like to discuss is $H(A)$. Associated with this hypergraph is its “characteristic function” H^A and its relative density δ_A. The $(k-1)$-chain is the set of all edges of H with index some proper subset of A. Define an A-function f^A by setting $f^A(\phi)$ to equal $H^A(\phi) - \delta_A$ if $\phi(A) \in H_*(A)$ and zero otherwise. An important fact about f^A is that its average is zero. To see this, note that $f^A(\phi) = H(\phi(A)) - \delta_A$ when $\phi(A) \in H_*(A)$ and $f^A(\phi) = 0$ otherwise. Therefore, the average over all ϕ such that $\phi(A) \notin H_*(A)$ is trivially zero, while the average over all ϕ such that $\phi(A) \in H_*(A)$ is zero because δ_A is the relative density of $H(A)$ in $H_*(A)$.

We shall say that $H(A)$ is η-octahedrally quasirandom, or just η-quasirandom, relative to H, if the function f^A is η-quasirandom according to the definition given earlier. The counting lemma, which we shall prove in Section 5, will show that if H is an r-partite chain and all its different parts of the form $H(A)$ are quasirandom in this sense, then H behaves like a random chain with the same relative densities.

3.7. Quasirandom chains. We are now ready for the main definition in terms of which our counting and regularity lemmas will be stated. Roughly speaking, a chain H is quasirandom if $H(A)$ is highly quasirandom relative to H. However, there is an important subtlety to the definition, which is that when we apply it we do so in situations where the relative densities δ_A tend to be very much smaller when the sets A are smaller, as we saw in the second example of the previous section. For this reason, we need to make much stronger quasirandomness assumptions about $H(A)$ when A is small, and it is also very important which of these assumptions depend on which densities. The full details of the following definition are not too important – they are chosen to make the proof work – but the dependences certainly are.
Additionally, our definition depends on a chain \mathcal{J}. This is useful for an inductive hypothesis later. Roughly, if \mathcal{H} is quasirandom with respect to \mathcal{J} then \mathcal{J} embeds into \mathcal{H} in the expected way. Thus, the bigger \mathcal{J} is, the stronger the statement.

Now let us turn to the precise definition. Suppose that \mathcal{J} and \mathcal{H} are r-partite chains. For each $A \in \mathcal{J}$, let the relative density of \mathcal{H} on A be δ_A and suppose that $H(A)$ is relatively η_A-quasirandom. Define a sequence $\varepsilon, \varepsilon_1, \ldots, \varepsilon_k$ by taking $\varepsilon = \varepsilon$ and

$$
\varepsilon_{k-j} = 2^{-jk-1}|\mathcal{J}|^{-1} \prod_{A \in \mathcal{J}, |A| \geq k-j+1} \delta_A^{2^{jk}}
$$

when $j \geq 1$. Let η_{k-j} be defined by the formula

$$
\eta_{k-j} = (1/2) \left(\varepsilon_{k-j} \prod_{A \in \mathcal{J}, |A| \geq k-j} \delta_A \right)^{2^{k-j+1}}
$$

for each j. Then \mathcal{H} is $(\varepsilon, \mathcal{J}, k)$-quasirandom if, for every $A \in \mathcal{J}$ of size $j \leq k$, we have the inequality $\eta_A \leq \eta_j$, or in other words $H(A)$ is η_j-quasirandom relative to $H_*(A)$.

The parameter k is also there just for convenience in our eventual inductive argument. The counting lemma will imply that if ϕ is a random r-partite map from \mathcal{J} to an $(\varepsilon, \mathcal{J}, k)$-quasirandom chain \mathcal{H}, and if all sets in \mathcal{J} have size at most k, then the probability that ϕ is a homomorphism differs from $\prod_{A \in \mathcal{J}} \delta_A$ by at most $\varepsilon |\mathcal{J}| \prod_{A \in \mathcal{J}} \delta_A$.

4. The main lemma from which all else follows

Before we tackle our main lemma it will help to prepare for it in advance with a small further discussion of terminology. Let \mathcal{H} be an r-partite chain with vertex sets X_1, \ldots, X_r. Let $t \geq r$ and let x_1, \ldots, x_t be variables such that x_i ranges over X_i when $i \leq r$ and over some other X_j if $i > r$. For each $j \leq r$ let E_j be the set of i such that x_i ranges over X_j (so, in particular, $i \in E_i$ when $i \leq r$).

Now let \mathcal{J} be an r-partite chain with vertex sets E_1, \ldots, E_r. Suppose that the set $\{1, 2, \ldots, k\}$ does not belong to \mathcal{J} but that all its proper subsets do.

We shall write τ for the sequence (x_1, \ldots, x_t). Note that there is a one-to-one correspondence between such sequences and r-partite maps from $E_1 \cup \cdots \cup E_r$ to $X_1 \cup \cdots \cup X_r$, so we can also think of τ as such a map.

Our aim will be to find an upper bound for the modulus of a quantity of the form

$$
\mathbb{E}_\tau f(\tau) \prod_{A \in \mathcal{J}} g_A(\tau),
$$
where \(f \) is any function from \(X_1 \times \cdots \times X_r \) to \(\mathbb{R} \), and each \(g^A \) is an \(A \)-function supported in \(\mathcal{H} \) and taking values in \([-1, 1]\). By \(f(\tau) \) we mean \(f(x_1, \ldots, x_r) \), but for convenience we add in the other variables on which \(f \) does not depend.

In order to shorten the statement of the next lemma, let us describe in advance a chain \(\mathcal{K} \) that appears in its conclusion. For each \(i \leq t \) we shall have a set \(W_i \) of the form \(\{i\} \times U_i \), where \(U_i \) is a finite subset of \(\mathbb{N} \). The chain \(\mathcal{K} \) will be an \(r \)-partite chain with vertex sets \(F_1, \ldots, F_r \), where \(F_j = \bigcup_{i \in E} W_i \). We shall use the vertices of \(\mathcal{K} \) to index variables as follows: the element \((i, h) \) of \(W_i \) indexes a variable that we shall call \(x^h_i \). When \(i \leq k \) the sets \(U_i \) will be chosen in such a way that \((i, 0) \) and \((i, 1) \) both belong to \(U_i \); it will sometimes be convenient to use the alternative names \(x_i \) and \(x'_i \) for \(x^0_i \) and \(x^1_i \).

We shall use the letter \(\omega \) to stand for the sequence of all variables \(x^j_i \), enumerated somehow. Equivalently, we can think of \(\omega \) as an \(r \)-partite map from \(F_1 \cup \cdots \cup F_r \) to \(X_1 \cup \cdots \cup X_r \).

Let \(\sigma \) be shorthand for the sequence \(x_1, x'_1, x_2, x'_2, \ldots, x_k, x'_k \). Generalizing the notation from Section 2, if \(f : X_1 \times \cdots \times X_r \to \mathbb{R} \), we shall write \(f_\sigma(\omega) \) for the expression \(\prod_{\varepsilon \in \{0,1\}^k} f(x^{\varepsilon_1}_1, \ldots, x^{\varepsilon_k}_k, x_{k+1}, \ldots, x_r) \). Once again, \(\omega \) contains many more variables than the ones that appear in this expression, but since \(f \) does not depend on them, the notation is unambiguous. (In fact, when we come to apply the lemma, \(f \) will not even depend on \(x_{k+1}, \ldots, x_r \).

Lemma 4.1. Let the chains \(\mathcal{H} \) and \(\mathcal{J} \) be as just described. Then there is a chain \(\mathcal{K} \) of the kind that has also just been described, with the following properties.

(i) Every set in \(\mathcal{K} \) has cardinality less than \(k \).

(ii) Let \(\gamma : F_1 \cup \cdots \cup F_r \to E_1 \cup \cdots \cup E_r \) be the \(r \)-partite map \((i, j) \mapsto i \) (That is, for each \(i \leq t \), \(\gamma \) takes the elements of \(W_i \) to \(i \)). Then \(\gamma \) is a homomorphism from \(\mathcal{K} \) to \(\mathcal{J} \), and for each \(A \in \mathcal{J} \) of cardinality less than \(k \) there are precisely \(2^k \) sets \(B \in \mathcal{K} \) such that \(\gamma(B) = A \).

(iii) If \(f \) is any function from \(X_1 \times \cdots \times X_r \) to \(\mathbb{R} \) and each \(g^A \) is an \(A \)-function supported in \(\mathcal{H} \) and taking values in \([-1, 1]\), then we have the inequality

\[
\left(\mathbb{E}_\tau f(\tau) \prod_{A \in \mathcal{J}} g^A(\tau) \right)^{2^k} \leq \mathbb{E}_\omega f_\sigma(\omega) \prod_{B \in \mathcal{K}} H^B(\omega) .
\]

Proof. We shall prove this result by induction. To do this we shall show that for each \(j \leq k \) the left-hand side can be bounded above by a quantity of the following form, which we shall write first and then interpret:

\[
\mathbb{E}_{\omega_j} \left(\prod_{A \in \mathcal{K}_j} H^A(\omega_j) \right) \left(\mathbb{E}_\tau f_\sigma(\tau_j) \prod_{[j] \subseteq A} (g^A)_{\sigma_j}(\tau_j) \prod_{[j] \subseteq A} (H^A)_{\sigma_j}(\tau_j) \right)^{2^k-j}.
\]
The set system \mathcal{K}_j here is a chain. Each vertex of \mathcal{K}_j belongs to a set V^j_i of the form $\{i\} \times U^j_i$ for some $i \leq t$ and some finite subset U^j_i of \mathbb{N}. The vertices are partitioned into r sets E^j_1, \ldots, E^j_r, where $E^j_i = \bigcup_{h \in E_i} V^j_h$. As before, x^q_h stands for a variable indexed by the pair $(h, q) \in V^j_h$. In the back of our minds, we identify $(i, 0)$ with i when $i \leq r$: in particular, we shall sometimes write x_i instead of x^0_i, and if $j \leq k$ we shall sometimes write $[j]$ for the set $\{(1, 0), (2, 0), \ldots, (j, 0)\}$ rather than the more usual $\{1, 2, \ldots, j\}$. We shall also sometimes write x^j_i for x^j_i.

For the products in the second bracket we have not mentioned the condition $A \in \mathcal{J}$, which always applies. In other words, the products are over all sets $A \in \mathcal{J}$ that satisfy the conditions specified underneath the product signs. We write σ_j as shorthand for $(x_1, x_1', \ldots, x_j, x_j')$. We also write τ_j for the sequence (x_{j+1}, \ldots, x_t). We define the sets V^j_i in such a way that V^0_i is the singleton $\{(i, 0)\}$ and is a subset of each V^j_i: it is only the first bracket that depends on the new variables. Finally, ω_j is an enumeration of all the variables that are not included in τ_j.

We shall not specify what the edges of the chain \mathcal{K}_j are (though in principle it would be possible to specify them exactly), since all that concerns us is that the map γ that takes $(i, 0)$ to i is a homomorphism from \mathcal{K}_j to \mathcal{J} such that, for each $A \in \mathcal{J}$ of cardinality less than k, the number of sets $B \in \mathcal{K}_j$ with $\gamma(B) = A$ is $2^k - 2^{k-j+|A'|}$ if $A \not\subset \tau_j$ and $2^k - 2^{|A|}$ if $A \subset \tau_j$.

Let us explain these last numbers. They are what we need for the inequality to be properly homogeneous in the way that we discussed in Section 2. To see why they are the correct numbers, let us think about a function of the form $(H^A)_{\sigma_j} = (H^A)_{x_1,x_1',\ldots,x_j,x_j'}$. For each $i \leq j$ such that $i \not\in A$, there is no dependence of $(H^A)_{\sigma_j}(\tau_j)$ on x_i or x_i', so in order for $(H^A)_{\sigma_j}(\tau_j)$ not to be zero, the number of distinct sets that are required to belong to \mathcal{H} is $2^{|A'|}$ when we raise to the power 2^{k-j}, this must happen 2^{k-j} times, all independently, except that if $A \subset \tau_j$ then H^A does not depend on any of the variables in τ_j so it needs to happen just once. Thus, the number of sets required to be in \mathcal{H} is $2^{k-|A'|} = 2^{k-j+|A'|}$ when $A \not\subset \tau_j$, and it is $2^{|A'|} = 2^{|A|}$ when $A \subset \tau_j$. This falls short of 2^k and the difference must be made up for in the first bracket.

Now that we have discussed the inductive hypothesis in detail, let us prove it by repeating once again the basic technique: isolate one variable and sum over it last, apply Cauchy-Schwarz carefully, expand out a square, rearrange, and apply Cauchy-Schwarz carefully again.

As we did repeatedly in Section 2, we shall leave the first bracket and concentrate on the second. That is, we shall find an upper bound for

$$\left(\mathbb{E}_{\tau_j} f_{\sigma_j}(\tau_j) \prod_{[j] \subset A} (g^A)_{\sigma_j}(\tau_j) \prod_{[j] \not\subset A} (H^A)_{\sigma_j}(\tau_j)\right)^{2^{k-j}}.$$
Let us write τ_j as (x_{j+1}, τ_{j+1}). The quantity above equals
\[
\left(\mathbb{E}_{\tau_{j+1}} \mathbb{E}_{x_{j+1}} f_{\sigma_j}(x_{j+1}, \tau_{j+1}) \cdot \prod_{[j] \subset A} (g^A)_{\sigma_j}(x_{j+1}, \tau_{j+1}) \prod_{[j] \not\subset A, \vert A \vert < k} (H^A)_{\sigma_j}(x_{j+1}, \tau_{j+1}) \right)^{2^{k-j-1}}.
\]

Applying Cauchy-Schwarz, we find that this is at most the product of
\[
\left(\mathbb{E}_{\tau_{j+1}} \prod_{[j] \subset A} (g^A)_{\sigma_j}(x_{j+1}, \tau_{j+1})^2 \prod_{[j] \not\subset A, \vert A \vert < k} (H^A)_{\sigma_j}(x_{j+1}, \tau_{j+1}) \right)^{2^{k-j-1}}
\]
and
\[
\left(\mathbb{E}_{\tau_{j+1}} \mathbb{E}_{x_{j+1}} f_{\sigma_j}(x_{j+1}, \tau_{j+1}) \cdot \prod_{[j+1] \subset A} (g^A)_{\sigma_j}(x_{j+1}, \tau_{j+1}) \prod_{[j+1] \not\subset A, \vert A \vert < k} (H^A)_{\sigma_j}(x_{j+1}, \tau_{j+1}) \right)^{2^{k-j-1}}.
\]

Before we continue, let us briefly see what principle was used when we decided how to apply Cauchy-Schwarz. The idea was to take all terms that did not depend on x_{j+1} out to the left of x_{j+1}, except that each time we took out a $(g^A)_{\sigma_j}$ or an $(H^A)_{\sigma_j}$, we left an $(H^A)_{\sigma_j}$ behind, exploiting the fact that $(g^A)_{\sigma_j}(H^A)_{\sigma_j} = (g^A)_{\sigma_j}$ and $(H^A)_{\sigma_j}(H^A)_{\sigma_j} = (H^A)_{\sigma_j}$. In this way, we extracted maximum information from the Cauchy-Schwarz inequality.

Since each g^A is an A-function supported in \mathcal{H}, and it maps to $[-1,1]$, and since each H^A takes values 0 or 1, we will not decrease the first term in the product if we replace it by
\[
\left(\mathbb{E}_{\tau_{j+1}} \prod_{[j] \subset A} (H^A)_{\sigma_j}(x_{j+1}, \tau_{j+1}) \prod_{[j] \not\subset A, \vert A \vert < k} (H^A)_{\sigma_j}(x_{j+1}, \tau_{j+1}) \right)^{2^{k-j-1}},
\]
which we can write more succinctly as
\[
\left(\mathbb{E}_{\tau_{j+1}} \prod_{j+1 \not\subset A, \vert A \vert < k} (H^A)_{\sigma_j}(\tau_{j+1}) \right)^{2^{k-j-1}}.
\]

To deal with the second term, we first have to expand out the square, which in our notation is rather simple: we obtain
\[
\left(\mathbb{E}_{x_{j+1}} \mathbb{E}_{\tau_{j+1}} \prod_{[j+1] \subset A} (g^A)_{\sigma_{j+1}}(\tau_{j+1}) \prod_{[j+1] \not\subset A, \vert A \vert < k} (H^A)_{\sigma_{j+1}}(\tau_{j+1}) \right)^{2^{k-j-1}}.
\]

We now apply Hölder’s inequality. This time we take to the left of the expectation over τ_{j+1} all terms that have no dependence on τ_{j+1}, again leaving
behind the corresponding \((H^A)_{j+1}\) terms as we do so. The one exception is that, for convenience only, we do not take the term \((g^A)_{j+1}\) to the left when \(A = [j+1]\), but instead take out \((H^A)_{j+1}\) in this case. The result is that the last quantity is bounded above by the product of

\[
\left(E_{x_{j+1},x'_{j+1}} \prod_{A \subset [j+1]} H_{\sigma_{j+1}}^A \right)^{2^{k-j-1}-1}
\]

and

\[
E_{x_{j+1},x'_{j+1}} \left(E_{\tau_{j+1},f_{\sigma_{j+1}}(\tau_{j+1})} \prod_{[j+1] \subset A} (g^A)_{\sigma_{j+1}}(\tau_{j+1}) \prod_{[j+1] \subset A} (H^A)_{\sigma_{j+1}}(\tau_{j+1}) \right)^{2^{k-j-1}}.
\]

These calculations have given us the expression we started with, inside an expectation, with \(j\) replaced by \(j+1\). We must therefore check that we also have a chain \(K_{j+1}\) with the right properties. Looking back at the various brackets we have discarded, this tells us that we want to rewrite the expression

\[
E_{\omega_{j+1}} \left(\prod_{A \in K_j} H^A(\omega_j) \right) \cdot \left(\prod_{j+1 \in A} (H^A)_{\sigma_j}(\tau_j) \right)^{2^{k-j-1}} \left(E_{x_{j+1},x'_{j+1}} \prod_{A \subset [j+1]} H_{\sigma_{j+1}}^A \right)^{2^{k-j-1}-1}
\]

as

\[
E_{\omega_{j+1}} \left(\prod_{A \in K_{j+1}} H^A(\omega_{j+1}) \right)
\]

for a chain \(K_{j+1}\) with properties analogous to those of \(K_j\).

There is a slight abuse of notation above, because after our applications of the Cauchy-Schwarz and Hölder inequalities we have ended up overusing \(\tau_{j+1}\), \(x_{j+1}\) and \(x'_{j+1}\). But we can cure this by renaming the variables in the expression we wish to rewrite. Indeed, since we are raising the expectation over \(\tau_{j+1} = (x_{j+2}, \ldots, x_t)\) to the power \(2^{k-j-1}\), let us introduce \(2^{k-j-1}\) new variables for each variable included in \(\tau_{j+1}\). More precisely, let us choose a set \(U\) of cardinality \(2^{k-j-1}\) that is disjoint from \(U^*_i\) for every \(i\) between \(j+1\) and \(t\) and replace \(V^*_i = \{i\} \times U^*_i\) by \(\{i\} \times (U^*_i \cup U)\). We can then expand out the second bracket as an expectation over the variables \(x_1, x'_1, \ldots, x_j, x'_{j+1}\) and \(x_i^u\) with \(i \geq j+2\) and \(u \in U\) of the product of all expressions of the form \((H^A)_{\sigma_j}(\tau_j^u)\), where \(\tau_j^u = (x_{j+1}^u, \ldots, x_t^u)\). (In fact, there is no dependence on \(x_{j+1}^u\), but we add the variables anyway so that it looks slightly nicer.)

In a similar way, we can expand out the third bracket and introduce a further \(2(2^{k-j-1} - 1)\) new variables into \(V^*_j\). When we do these expansions, we end up writing the expression in the desired form for some set-system \(K_{j+1}\). It is not hard to see that \(K_{j+1}\) is a chain, so it remains to prove that it contains the right number of sets of each index.
Let γ be the usual projection $(i, h) \mapsto i$. We need to prove that each set $A \in \mathcal{J}$ of cardinality less than k has exactly 2^k preimages under γ in \mathcal{K}_{j+1}.

We consider various cases.

First, if A is a subset of $[j]$, then \mathcal{K}_j (which we can think of as a chain defined on the vertex sets of \mathcal{K}_{j+1}) already contains $2^k - 2^{|A|}$ preimages of A. Since the additional vertices (i, u) do not project into $[j]$, we do not create any new preimages in \mathcal{K}_{j+1}.

Now suppose that $A \not\subset [j]$ and $j + 1 \in A$. Then $A \not\subset [j]$ so the number of preimages of A in \mathcal{K}_j is $2^k - 2^{k-j+|A \cap [j]|}$. No new preimages come from the second bracket, since that involves only sets that do not include $j + 1$, while from the third bracket we obtain $(2^{|A \cap [j+1]|})(2^{k-j-1} - 1)$ preimages. But $2^{k-j-1+|A \cap [j+1]|} = 2^{k-j+|A \cap [j]|}$ in this case, so the total number of preimages is $2^k - 2^{|A \cap [j+1]|} = 2^k - 2^{|A|}$.

Next, suppose that $A \not\subset [j]$ and $j + 1 \not\in A$. Then \mathcal{K}_j contains $2^k - 2^{k-j+|A \cap [j]|}$ preimages of A and the second and third brackets do not contribute any. Since $k - j + |A \cap [j]| = k - j - 1 + |A \cap [j+1]|$, the total number of preimages is $2^k - 2^{k-j-1+|A \cap [j+1]|}$, as we want.

Finally, suppose that $A \not\subset [j + 1]$ and $j + 1 \not\in A$. In that case, \mathcal{K}_j contains $2^k - 2^{k-j+|A \cap [j]|}$ preimages, the third bracket contributes none, and the second bracket contributes $2^{|A \cap [j]|}2^{k-j} = 2^{k-j+|A \cap [j]|}$ preimages. Thus, the total number of preimages is $2^k - 2^{k-j-1+|A \cap [j]|}$, which equals $2^k - 2^{k-j-1+|A \cap [j+1]|}$.

This completes the proof of the inductive step. All that remains is the simple task of checking that the case $j = k$ of the induction is the statement that we wish to prove. But when $j = k$, we have the upper bound

$$\mathbb{E}_{\omega_k}\left(\prod_{A \in \mathcal{K}_k} H^A(\omega_k) \left(\mathbb{E}_{\tau_k} f_{\sigma_k}(\tau_k) \prod_{[k] \subset A} (g^A)_{\sigma_k}(\tau_k) \prod_{|k| \subset A} (H^A)_{\sigma_k}(\tau_k)\right)^{2^{k-k}}\right).$$

The most obvious simplification is 1 for 2^{k-k}. Since \mathcal{J} does not contain the set $[k]$, the first product in the second bracket disappears. This gives us the upper bound

$$\mathbb{E}_{\omega_k, \tau_k} f_{\sigma_k}(\tau_k) \prod_{A \in \mathcal{K}_k} H^A(\omega_k) \prod_{|A| < k} (H^A)_{\sigma_k}(\tau_k).$$

Writing ω for (ω_k, τ_k) and letting \mathcal{K} be the union of the sets in \mathcal{K}_k and the sets implied by the second product (we will say what these are in a moment), we can write this as

$$\mathbb{E}_{\omega} f_{\sigma}(\omega) \prod_{A \in \mathcal{K}} H^A(\omega)$$

as required.

We still need to check that \mathcal{K} contains precisely 2^k preimages of each set $A \in \mathcal{J}$ of cardinality less than k. Let us therefore be slightly more explicit about the “sets implied by the second product”. A function $(H^A)_{\sigma_k}(\tau_k)$ is a
product of functions of the form $H^A(x_1^{\epsilon_1}, \ldots, x_k^{\epsilon_k}, \tau_k)$. But H^A depends only on the variables in A, so that the number of distinct functions in the product is $2^{|A\cap[k]|}$; and thus the number of preimages of A in K that come from the second product is $2^{|A\cap[k]|}$. But when $j = k$, the number of preimages in K_k is $2^k - 2^{|A\cap[k]|}$, whether or not A is a subset of $[k]$. Therefore, for each set $C \subset \{1, 2, \ldots, r\}$ of cardinality less than k, the chain K contains precisely 2^k sets of index C for each set $A \in J$ of index C, as claimed.

As we shall see in the next section, the fact that the sets in K have cardinality at most $k - 1$ allows us to use Lemma 4.1 inside another induction (in fact, a double induction). This corresponds to the second part of Section 2, where we replaced functions such as $G(x, t)$ by constant functions δ_{XT}. This time the functions we shall replace are functions of the form H^A with $A \in K$.

5. A counting lemma for quasirandom chains

Just before we prove our main result, we isolate a simple statement that is needed in the proof and that helps to explain some of our choices in the definition of (ε, J, k)-quasirandom chains. For convenience, we briefly recall the definition here. We constructed a sequence $\varepsilon_k, \varepsilon_{k-1}, \ldots, \varepsilon_1$ by letting $\varepsilon_k = \varepsilon$ and

$$\varepsilon_{k-j} = 2^{-jk-1}|J|^{-1}(\varepsilon_{k-j+1} \prod_{A \in J \atop |A| \geq k-j+1} \delta_A)2^{jk}$$

when $j \geq 1$. We also defined η_{k-j} by the formula

$$\eta_{k-j} = (1/2)(\varepsilon_{k-j} \prod_{A \in J \atop |A| \geq k-j} \delta_A)2^{k(j+1)}$$

for each j. Finally, we declared H to be (ε, J, k)-quasirandom if, for every $A \in J$ of size $j \leq k$, the hypergraph $H(A)$ was η_j-quasirandom relative to $H_s(A)$.

These parameters are chosen in order to satisfy some assumptions required in the inductive step of Theorem 5.2 below. The next lemma establishes that they do indeed satisfy them.

Lemma 5.1. Let J and H be chains and suppose that H is (ε, J, k)-quasirandom. Let K be a chain with the same vertex set as that of J, and suppose that there is a homomorphism from K to J such that each set in J has at most 2^k preimages. Let $\varepsilon_k, \varepsilon_{k-1}, \ldots, \varepsilon_1$ be the sequence defined above. Then H is $(\varepsilon_{k-1}, K, k-1)$-quasirandom.
Proof. Let \(\theta = \varepsilon_{k-1} \) and define a sequence \(\theta_{k-1}, \theta_{k-2}, \ldots \) by taking \(\theta_{k-1} = \theta \) and
\[
\theta_{k-1-j} = 2^{-j(k-1)-1}|\mathcal{K}|^{-1} \left(\theta_{k-j} \prod_{A \in \mathcal{K}} \delta_A \right)^{2^j(k-1)}.
\]
Suppose that \(\theta_{k-j} \geq \varepsilon_{k-j} \). We also know that \(|\mathcal{K}|^{-1} \geq 2^{-k}|\mathcal{J}|^{-1} \) and that
\[
\prod_{A \in \mathcal{K}} |A|^{\delta_A} \geq (\prod_{A \in \mathcal{J}} |A|^{\delta_A})^{2^k}.
\]
It follows that
\[
\theta_{k-1-j} \geq 2^{-j(k-1)}|\mathcal{J}|^{-1} \left(\varepsilon_{k-j} \prod_{A \in \mathcal{J}} \delta_A \right)^{2^j} = \varepsilon_{k-j}.
\]
Therefore by induction \(\theta_j \geq \varepsilon_j \) for every \(j \).

Now let \(j \) be an integer between 0 and \(k-1 \). Then
\[
\eta_{k-1-j} = \eta_{k-(j+1)} = \left(\frac{1}{2} \right) \left(\varepsilon_{k-(j+1)} \prod_{A \in \mathcal{J}} \delta_A \right)^{2^{j+2}}
\]
\[
\leq \left(\frac{1}{2} \right) \left(\theta_{k-(j+1)} \left(\prod_{A \in \mathcal{J}} \delta_A \right)^{2^{j+1}} \right)^{2^{j+1}}
\]
\[
\leq \left(\frac{1}{2} \right) \left(\theta_{k-(j+1)} \prod_{A \in \mathcal{K}} \delta_A \right)^{2^{j+1}}
\]
\[
\leq \left(\frac{1}{2} \right) \left(\theta_{k-1-j} \prod_{A \in \mathcal{K}} \delta_A \right)^{2^{k(j+1)+1}}.
\]
This is the formula for \(\eta_{k-j} \) except that \(k \) has been replaced by \(k-1 \), \(\mathcal{J} \) by \(\mathcal{K} \), and \(\varepsilon_{k-j} \) by \(\theta_{k-1-j} \). It follows that \(\mathcal{H} \) is \((\varepsilon_{k-1}, \mathcal{K}, k-1)\)-quasirandom, as claimed.

In the next theorem and its proof, we shall discuss two chains \(\mathcal{J} \) and \(\mathcal{H} \), and borrow notation from the previous section without redefining it. For example, \(\tau \) is once again a sequence \((x_1, \ldots, x_t) \) that enumerates variables that are indexed by the vertices of \(\mathcal{J} \). Eventually, we will be interested in the case where every function \(g^A \) is just \(f^A \), but this more general statement is needed for an inductive argument to work, and is also of some interest in its own right.

Theorem 5.2. Let \(\mathcal{J} \) and \(\mathcal{H} \) be \(r \)-partite chains as described at the beginning of the previous section. Let \(\mathcal{J}_1 \) be a subchain of \(\mathcal{J} \) and for each \(A \in \mathcal{J}_1 \) let \(g^A \) be an \(A \)-function supported in \(\mathcal{H} \). Suppose that the maximum
cardinality of any set in \(\mathcal{J} \setminus \mathcal{J}_1 \) is \(k \) and that \(\mathcal{H} \) is \((\varepsilon, \mathcal{J}, k)\)-quasirandom. Then

\[
\left| \mathbb{E}_\tau \prod_{A \in \mathcal{J}_1} g^A(\tau) \prod_{A \in \mathcal{J} \setminus \mathcal{J}_1} H^A(\tau) - \mathbb{E}_\tau \prod_{A \in \mathcal{J}} g^A(\tau) \prod_{A \in \mathcal{J} \setminus \mathcal{J}_1} \delta_A \right| \leq \varepsilon |\mathcal{J} \setminus \mathcal{J}_1| \prod_{A \in \mathcal{J}} \delta_A.
\]

Proof. This result tells us that we can replace the functions \(H^A \) in the quantity \(\mathbb{E}_\tau \prod_{A \in \mathcal{J}_1} g^A(\tau) \prod_{A \in \mathcal{J} \setminus \mathcal{J}_1} H^A(\tau) \) by their relative densities \(\delta_A \) without changing the quantity by too much. This is proved by two levels of induction. First of all, we do our replacements one by one, and this leads to an induction on the cardinality of \(\mathcal{J} \setminus \mathcal{J}_1 \). However, in order to establish an upper bound for the error introduced when we make a replacement, we use our main lemma, Lemma 4.1, which results in an expression similar to the one we were initially trying to bound, but with new chains \(\mathcal{K} \) and \(\mathcal{K}_1 \). These chains are considerably bigger than \(\mathcal{J} \) and \(\mathcal{J}_1 \), but the largest set in \(\mathcal{K} \setminus \mathcal{K}_1 \) is smaller than the largest set in \(\mathcal{J} \setminus \mathcal{J}_1 \), so we can use induction on \(k \) to replace the error term itself by a quantity that will turn out to be small as a direct consequence of the quasirandomness of the chain \(\mathcal{H} \).

Let us therefore choose a maximal set \(A_0 \) in \(\mathcal{J} \setminus \mathcal{J}_1 \) and try to replace \(H^{A_0}(\tau) \) by \(\delta_{A_0} \) in the expression \(\mathbb{E}_\tau \prod_{A \in \mathcal{J}} g^A(\tau) \prod_{A \in \mathcal{J} \setminus \mathcal{J}_1} H^A(\tau) \) while introducing only a small error. When \(\mathcal{J}_0 = \mathcal{J} \setminus \{A_0\} \), the difference between the original expression and the new expression is

\[
\mathbb{E}_\tau f(\tau) \prod_{A \in \mathcal{J}_1} g^A(\tau) \prod_{A \in \mathcal{J} \setminus \mathcal{J}_1} H^A(\tau),
\]

where \(f \) is the \(A_0 \)-function defined by \(f(\tau) = (H^{A_0}(\tau) - \delta_{A_0}) \prod_{A \subset A_0} H^A(\tau) \).

(This function was first defined near the end of subsection 3.6: in the notation of this section it equals \(1 - \delta_{A_0} \) if \(\tau(A_0) \in H(A_0) \), \(-\delta_{A_0} \) if \(\tau(A_0) \in H_*(A_0) \setminus H_{A_0} \), and zero otherwise.)

Without loss of generality, we may assume that \(A_0 \) is the set \(\{1, 2, \ldots, k\} \).

Let us therefore apply Lemma 4.1 to this function \(f \) and to the chain \(\mathcal{J}_0 \). It yields for us an \(r \)-partite \((k - 1)\)-chain \(\mathcal{K}' \) and a homomorphism \(\gamma \) from \(\mathcal{K}' \) to \(\mathcal{J}_0 \) such that every set in \(\mathcal{J}_0 \) of cardinality less than \(k \) has \(2^k \) preimages, and such that we have the inequality

\[
\left(\mathbb{E}_\tau f(\tau) \prod_{A \in \mathcal{J}_1} g^A(\tau) \prod_{A \in \mathcal{J} \setminus \mathcal{J}_1} H^A(\tau) \right)^{2^k} \leq \mathbb{E}_\omega f_\sigma(\omega) \prod_{B \in \mathcal{K}'} H^B(\omega).
\]

Recall that \(f(\sigma) \) is the product of \(f(\omega(A)) \) over all sets \(A \) of the form \(\{(1, \varepsilon_1), \ldots, (k, \varepsilon_k)\} \). Let \(\mathcal{K}_1 \) be the chain of all subsets of such sets and let \(\mathcal{K} = \mathcal{K}_1 \cup \mathcal{K}' \). Then the largest set in \(\mathcal{K} \setminus \mathcal{K}_1 \) has size at most \(k - 1 \). Moreover, by Lemma 5.1, \(\mathcal{H} \) is \((\varepsilon_{k-1}, \mathcal{K}, k - 1)\)-quasirandom. Therefore, by induction on \(k \), we know that the right-hand side of the above inequality differs from \(\mathbb{E}_\sigma f_\sigma \prod_{A \in \mathcal{K} \setminus \mathcal{K}_1} \delta_A \) by at most \(\varepsilon_{k-1} |\mathcal{K} \setminus \mathcal{K}_1| \prod_{A \in \mathcal{K}} \delta_A \).
This is at most $\varepsilon_{k-1}|\mathcal{K} \setminus \mathcal{K}_1| \prod_{A \in \mathcal{K} \setminus \mathcal{K}_1} \delta_A$, which is equal to

$$\varepsilon_{k-1}|\mathcal{K} \setminus \mathcal{K}_1| \left(\prod_{A \in \mathcal{J}_0 \setminus \mathcal{J}_1} \delta_A \right)^{2^k}.$$

But $|\mathcal{K} \setminus \mathcal{K}_1| \leq |\mathcal{K}| \leq 2^k|\mathcal{J}|$ and $2^k \varepsilon_{k-1}|\mathcal{J}| \leq \left(\varepsilon_k \prod_{A \in \mathcal{J}} \delta_A \right)^{2^k}$, so this is at most $(1/2) \left(\varepsilon_k \prod_{A \in \mathcal{J}} \delta_A \right)^{2^k}$.

As for $\mathbb{E}_\sigma f \prod_{A \in \mathcal{K} \setminus \mathcal{K}_1} \delta_A$, it is equal (by definition) to $\text{Oct}(f) \prod_{A \in \mathcal{K} \setminus \mathcal{K}_i} \delta_A$. By hypothesis, f is η_k-quasirandom, which means that $\text{Oct}(f) \leq \eta_k \prod_{A \in \mathcal{K}_i} \delta_A$. Since $\eta_k \leq (1/2) \left(\varepsilon_k \prod_{A \in \mathcal{J}} \delta_A \right)^{2^k}$, it follows that

$$\mathbb{E}_\sigma f \prod_{A \in \mathcal{K} \setminus \mathcal{K}_i} \delta_A \leq \varepsilon_k \prod_{A \in \mathcal{K}} \delta_A \leq \varepsilon_k \prod_{A \in \mathcal{K}'} \delta_A \leq (1/2) \left(\varepsilon_k \prod_{A \in \mathcal{J}} \delta_A \right)^{2^k}.$$

Putting these two estimates together, we find that

$$\left| \mathbb{E}_\tau f(\tau) \prod_{A \in \mathcal{J}_i} g^A(\tau) \prod_{A \in \mathcal{J}_0 \setminus \mathcal{J}_i} H^A(\tau) \right| \leq \varepsilon_k \prod_{A \in \mathcal{J}} \delta_A.$$

Thus, returning to the beginning of the proof, we have shown that replacing H^A by δ_A for any maximal element of $\mathcal{J} \setminus \mathcal{J}_1$ results in an error of at most $\varepsilon_k \prod_{A \in \mathcal{J}} \delta_A$. Therefore the result follows by induction on $|\mathcal{J} \setminus \mathcal{J}_1|$ and the triangle inequality (and the fact that $\varepsilon_k = \varepsilon$).

If we now consider the case when \mathcal{J}_1 is empty, then we obtain the following corollary, which is the counting lemma we have been aiming for.

Corollary 5.3. Let \mathcal{J} and \mathcal{H} be r-partite chains with vertex sets $E_1 \cup \cdots \cup E_r$ and $X_1 \cup \cdots \cup X_r$, respectively. Let k be the size of the largest set in \mathcal{J} and suppose that \mathcal{H} is $(\varepsilon/|\mathcal{J}|, \mathcal{J}, k)$-quasirandom. Let τ be a random r-partite map from $E_1 \cup \cdots \cup E_r$ to $X_1 \cup \cdots \cup X_r$. Then

$$\left| \mathbb{P}[\tau \in \text{Hom}(\mathcal{J}, \mathcal{H})] - \prod_{A \in \mathcal{J}} \delta_A \right| \leq \varepsilon \prod_{A \in \mathcal{J}} \delta_A.$$

In less precise terms, this says that if \mathcal{J} is a small r-partite chain and \mathcal{H} is a sufficiently quasirandom r-partite chain, then a random r-partite map from the vertices of \mathcal{J} to the vertices of \mathcal{H} will be a homomorphism with approximately the probability expected if \mathcal{H} was a random chain with the given relative densities.
6. Local increases in mean-square density

All known proofs of Szemerédi’s theorem use (explicitly or implicitly) an approach of the following kind. Given a dense set that fails to be quasirandom in some appropriate sense, one can identify imbalances in the set that allow one to divide it into pieces that “improve” in some way, on average at least, the set itself. One then iterates this argument until one reaches sets that are quasirandom. At that point one uses some kind of counting lemma to prove that they contain an arithmetic progression of length k.

This proof is no exception. We have defined a notion of quasirandomness and proved a counting lemma for it. Now we must see what happens when some parts of a chain are not relatively quasirandom. We shall end up proving a regularity lemma, which says, roughly speaking, that any dense chain can be divided up into a bounded number of pieces, almost all of which are quasirandom. This generalizes Szemerédi’s regularity lemma for graphs (which formed part of his proof of his theorem on arithmetic progressions).

Given a dense graph G and a positive real number ε, Szemerédi’s regularity lemma asserts that the vertices of G can be partitioned into K classes of roughly equal size, with K bounded above by a function of ε only, in such a way that, proportionately speaking, at least $1 - \varepsilon$ of the bipartite graphs spanned by two of these classes are ε-regular. (One can insist that K is much bigger than ε^{-1}, so it is not necessary to worry about the case where the two classes are equal. Or it can be neater to say that two equal classes form a “regular pair” if they span a quasirandom graph.)

Very roughly, the proof is as follows. Suppose you have a graph G and a partition of its vertex set. Then either this partition will do or there are many pairs of cells from the partition that give rise to induced bipartite subgraphs of G that are not ε-quasirandom. If X and Y are two disjoint sets of vertices, write $G(X, Y)$ for the corresponding induced bipartite subgraph of G. Suppose that X and Y are two cells of the partition, for which $G(X, Y)$ is not ε-regular. Then there are large subsets $X(0) \subset X$ and $Y(0) \subset Y$ for which the density of $G(X(0), Y(0))$ is substantially different from that of $G(X, Y)$. Letting $X(1) = X \setminus X(0)$ and $Y(1) = Y \setminus Y(0)$, we have obtained partitions of X and Y into two sets each, in such a way that the densities of the graphs $G(X(i), Y(j))$ are not almost all approximately the same as that of $G(X, Y)$. One can then define an appropriately weighted average of the squares of these four densities and show that this average is greater than the square of the density of $G(X, Y)$. Let us call this stage one of the argument, the stage where we identify a “local” increase in mean-square density.

It remains to turn these local increases into a global increase. This, which we shall call stage two, is quite simple. Denote the cells of the original partition by X_1, \ldots, X_k. For each pair (X_i, X_j) that fails to be ε-regular, use the above
argument to partition X_i into two sets $X_{ij}(0)$ and $X_{ij}(1)$, and to partition X_j into two sets $X_{ji}(0)$ and $X_{ji}(1)$. Then for each i find a partition of X_i that refines all the partitions $\{X_{ij}(0), X_{ij}(1)\}$. The result is a partition into $m \leq k.2^k$ sets Y_1, \ldots, Y_m that refines the partition $\{X_1, \ldots, X_k\}$. It can be shown that the average of the squares of the densities $G(Y_i, Y_j)$, again with appropriate weights, is significantly greater than it was for the partition $\{X_1, \ldots, X_k\}$.

Therefore, if one iterates the procedure, the iteration must terminate after a number of steps that can be bounded in terms of ϵ. It can terminate only if almost all the graphs $G(X_i, X_j)$ are quasirandom, and so the result is proved.

We have given this sketch since our generalized regularity lemma will be proved in a similar way. There are two main differences. First, it is an unfortunate fact of life that, when one is dealing with k-chains rather than graphs, simple arguments have to be expressed in terminology that can obscure their simplicity. For example, even defining the appropriate notion of a “partition” of a chain is somewhat complicated. Thus, stage two of our argument, although it is an “obvious” generalization of stage two of the proof of the usual regularity lemma, is noticeably more complicated to write down.

A more fundamental difference, however, is that our stage one is not completely straightforward, and here the difference is mathematical rather than merely notational. The reason is that we do not generalize Szemerédi’s regularity lemma as it is stated above, but rather a simple variant of it where rather than obtaining ϵ-regular pairs we obtain ϵ-quasirandom pairs. For dense bipartite graphs, these two notions are equivalent (give or take changes in ϵ), but when one generalizes them to hypergraphs that live in sparse chains they diverge in a significant way. Some hint of this can already be seen above. It is true by definition that if a pair $G(X,Y)$ is not ϵ-regular, then there are large subsets $X(0) \subset X$ and $Y(0) \subset Y$ for which the density of $G(X(0),Y(0))$ is substantially different from that of $G(X,Y)$. However, if we assume instead that $G(X,Y)$ is not ϵ-quasirandom, then there is something to prove. The proof is very simple in the dense case, and even in the sparse case, but in the latter it yields sets $X(0)$ and $Y(0)$ that are very small. As a result, we have to work significantly harder in order to obtain a partition with a good enough local increase in mean-square density. Roughly speaking, our approach will be to find many pairs of such sets, and build a partition out of those. For this to work it is important that the pairs are sufficiently spread out: the detailed argument will occupy the rest of the section.

Incidentally, the last paragraph describes the main difference between our approach and that of Nagle, Rödl, Schacht and Skokan. Their definitions generalize that of ϵ-regularity of bipartite graphs, so that stage one of the proof of the regularity lemma is easier for them. However, they have to pay for this when they prove their counting lemma: ϵ-regularity is a weaker property than ϵ-quasirandomness, so if you use it as your basic definition then it is easier
to deduce facts about objects that are not ε-regular but harder to deduce facts about objects that are ε-regular.

We shall now work towards our stage one, which will be Lemma 6.3 below. To begin with, let us say what we mean by the mean-square density of a function with respect to a partition. Let U be a set of size n, let $f : U \to \mathbb{R}$ and let B_1, \ldots, B_r be sets that form a partition of U. Then the mean-square density of f with respect to the partition $\{B_1, \ldots, B_r\}$ is

$$\sum_{i=1}^{r} \frac{|B_i|}{n} \left(\mathbb{E}_{x \in B_i} f(x) \right)^2.$$

If we write β_i for $|B_i|/n$ (which it is helpful to think of as the probability that a random $x \in U$ is an element of B_i) and δ_i for $\mathbb{E}_{x \in B_i} f(x)$ (that is, the expectation, or “density”, of f in B_i) then this sum is $\sum_{i=1}^{r} \beta_i \delta_i^2$, the weighted average of the squared densities δ_i^2, with respect to the obvious system of weights β_i.

The following two simple lemmas are very slight modifications of lemmas in [G2]. The first is our main tool, while the second is more of a technical trick that will be used in Lemma 6.3.

Lemma 6.1. Let U be a finite set and let f and g be functions from U to the interval $[-1, 1]$. Let B_1, \ldots, B_r be a partition of U and suppose that g is constant on each B_i. Then the mean-square density of f with respect to the partition B_1, \ldots, B_r is at least $\langle f, g \rangle^2/\|g\|_2^2$.

Proof. For each j let a_j be the value taken by g on the set B_j. Then, by the Cauchy-Schwarz inequality,

$$\langle f, g \rangle^2 = \left(\sum_j a_j \beta_j \mathbb{E}_{x \in B_i} f(x) \right)^2 \leq \left(\sum_j \beta_j a_j^2 \right) \left(\sum_j \beta_j \left(\mathbb{E}_{x \in B_i} f(x) \right)^2 \right).$$

The first part of the product is $\|g\|_2^2$ and the second is the mean-square density of f, from which the lemma follows. \hfill \Box

In the next lemma, $\mathbb{E}_i v_i$ and $\mathbb{E}_i w_i$ mean the obvious thing: they are $n^{-1} \sum_{i=1}^{n} v_i$ and $n^{-1} \sum_{i=1}^{n} w_i$, respectively.

Lemma 6.2. Let n be a positive integer, let $0 < \delta < 1$ and let r be an integer greater than or equal to δ^{-1}. Let v_1, \ldots, v_n be vectors in a Hilbert space such that $\|v_i\|^2 \leq 1$ for each i and such that $\|\mathbb{E}_i v_i\|^2 \leq \delta$. Let r vectors w_1, \ldots, w_r be chosen uniformly and independently from the v_i. (To be precise, for each w_j an index i is chosen randomly between 1 and n and w_j is set equal to v_i.) Then the expectation of $\|\mathbb{E}_j w_j\|^2$ is at most 2δ.

Proof. The expectation of $\|E_j w_j\|^2$ is the expectation of $E_{i,j} \langle w_i, w_j \rangle$. If $i \neq j$ then the expectation of $\langle w_i, w_j \rangle$ is $\|E_i v_i\|^2$ which, by hypothesis, is at most δ. If $i = j$, then $\langle w_i, w_j \rangle$ is at most 1, again by hypothesis. Therefore, the expectation we are trying to bound is at most $r^{-2}(\delta r(r-1)+r)$. Since $\delta r \geq 1$, this is at most 2δ, as claimed.

Before we state the main result of this section, we need two definitions. The first is of a chain \mathcal{D} that we shall call a double octahedron. We use this name for conciseness even though it is slightly misleading: in fact, \mathcal{D} is the $(k-1)$-skeleton of a chain formed from two k-dimensional octahedra by identifying a face from one with the corresponding face from the other. To put this more formally, take the vertex set of \mathcal{D} to be the set $[k] \times \{0,1,2\}$. For each i between 1 and k let V_i be the set $\{i\} \times \{0,1,2\}$ and for $j = 0,1,2$ let B_j be the set $\{k\} \times \{j\}$. The edges of \mathcal{D} are all sets B of cardinality at most $k-1$ such that $|B \cap V_i| \leq 1$ for every i and at least one of $B \cap V_1$ and $B \cap V_2$ is empty. (The two octahedra in question are O_1 and O_2, where O_j consists of all sets $B \subseteq B_0 \cup B_j$ such that $|B \cap V_i| \leq 1$ for every i.)

Notice that if $A \subseteq [k]$ is a set of size at most $k-1$ then the number of edges in \mathcal{D} of index A is $2^{|A|+1} - 1$, since there are $2^{|A|}$ edges from each octahedron and one, namely $A \times \{0\}$, which is common to both.

For the second definition, suppose we have a k-partite $(k-1)$-chain \mathcal{H} with vertex sets X_1, \ldots, X_k. Recall from Section 2 that $H_s([k])$ is the collection of all sets A such that $|A \cap X_i| = 1$ for every i and such that every proper subset of A belongs to \mathcal{H}. For this second condition to hold it is enough for C to be an edge of \mathcal{H} whenever $C \subseteq A$ and $|C| = k-1$. Let H be the k-partite $(k-1)$-uniform hypergraph consisting of all edges of \mathcal{H} of size $k-1$. For $1 \leq i \leq k$ let H_i be the $(k-1)$-partite subhypergraph of H consisting of all edges of H that have empty intersections with X_i. We shall call the hypergraphs H_i the parts of H. Each set $A \in H_s([k])$ has k subsets of size $k-1$. Each part H_i of H contains exactly one of these subsets, namely $A \setminus X_i$.

Suppose that each H_i is partitioned into subhypergraphs H_{i1}, \ldots, H_{ir_i}. These partitions give rise to an equivalence relation \sim on $H_s([k])$: we say that $A \sim A'$ if, for each $i \leq k$, the sets $A \setminus X_i$ and $A' \setminus X_i$ belong to the same cell H_{ij} of the partition of H_i. The corresponding partition will be called the induced partition of $H_s([k])$.

Lemma 6.3. Let \mathcal{H} be a k-partite $(k-1)$-chain with vertex sets X_1, \ldots, X_k, let \mathcal{D} be the double octahedron, let $\delta = \prod_{A \in \mathcal{D}} \delta_A$ and let $r \geq \delta^{-1}$ be a positive integer. Suppose that $\varepsilon \leq 2|\mathcal{D}|^{-1}$, that \mathcal{H} is $(\varepsilon, \mathcal{D}, k-1)$-quasirandom and that $f : H_s([k]) \rightarrow [-1,1]$ is a function that is not η-quasirandom relative to \mathcal{H}. Let H be the set of all edges of \mathcal{H} of size $k-1$ and let H_1, \ldots, H_k be the k parts of H. Then there are partitions of the H_i into at most $3r$ sets each, such that the mean-square density of f with respect to the induced partition of $H_s([k])$ is at least $\eta^2/32$.

We shall prove Lemma 6.3 in stages, by means of some intermediate lemmas (Lemmas 6.4-6.7 below). Since these lemmas form part of a larger proof, we shall not state each one in full: rather, if we have already introduced notation such as names for various functions we shall feel free to use it again without redefining it.

But before we get on to the subsidiary lemmas, let us examine our main hypothesis, that f is not η-quasirandom relative to \mathcal{H}. For each $i \leq k$ let $U_i = \{i\} \times \{0,1\}$ (so that U_i consists of the “first two” of the three elements of V_i). As in Section 3, let \mathcal{B} be the k-partite k-uniform hypergraph consisting of all sets $B \subseteq U_1 \cup \cdots \cup U_k$ such that $|B \cap U_i| = 1$ for every i, let \mathcal{K} be the chain of all sets C that are proper subsets of some $B \in \mathcal{B}$ and let Ω be the set of all k-partite maps from $U_1 \cup \cdots \cup U_k$ to $X_1 \cup \cdots \cup X_k$. Then to say that f is not η-quasirandom relative to \mathcal{H} is to say that

$$\text{Oct}(f) = E_{\omega \in \Omega} \prod_{B \in \mathcal{B}} f^B(\omega) > \eta \prod_{A \in \mathcal{K}} \delta_A,$$

where by $f^B(\omega)$ we mean $f(\omega(B))$ if $\omega(B) \in H_*(\{k\})$ and 0 otherwise.

Let B_0 and B_1 be as defined earlier, so that $U_1 \cup \cdots \cup U_k = B_0 \cup B_1$. Let Φ and Ψ be the set of all k-partite maps from B_0 and B_1, respectively, to $X_1 \cup \cdots \cup X_k$. There is an obvious one-to-one correspondence between Ω and $\Phi \times \Psi$: given any $\omega \in \Omega$, associate with it the pair (ϕ, ψ) where ϕ and ψ are the restrictions of ω to B_0 and B_1. This procedure is invertible: given a pair (ϕ, ψ), define a k-partite map ω by setting $\omega(x) = \phi(x)$ if $x \in B_0$ and $\omega(x) = \psi(x)$ if $x \in B_1$. From now on we shall identify Ω with $\Phi \times \Psi$ and freely pass from one to the other.

Let us split the product $\prod_{B \in \mathcal{B}} f^B(\omega)$ into two parts. We shall write $F(\omega)$ for $f^{B_0}(\omega)$ and $G(\omega)$ for $\prod_{B \in \mathcal{B}, B \neq B_0} f^B(\omega)$. Now if $\omega = (\phi, \psi)$ then $F(\omega)$ does not depend on ψ (since it depends only on $\omega(B_0) = \phi(B_0)$). To emphasize this, we shall write $G(\phi, \psi)$ for $G(\omega)$ and $F(\phi)$ for $F(\omega)$. Our hypothesis now becomes

\begin{equation}
E_{\phi \in \Phi} E_{\psi \in \Psi} F(\phi) G(\phi, \psi) > \eta \prod_{A \in \mathcal{K}} \delta_A.
\end{equation}

Let us see why this is useful. First, note that there is another obvious one-to-one correspondence, this time between Φ and $X_1 \times \cdots \times X_k$. It associates with a map $\phi \in \Phi$ the k-tuple $(\phi(1), \ldots, \phi(k,0))$, and the inverse associates with a k-tuple $(x_1, \ldots, x_k) \in \prod_{i=1}^k X_i$ the map $\phi : B_0 \to X_1 \cup \cdots \cup X_k$ that takes $(i,0)$ to x_i for each $i \leq k$. Therefore, the function F is basically another way of thinking about f. The inequality above can be regarded as saying that, for an average $\psi \in \Psi$, F has a certain correlation with the function $G_\psi : \phi \mapsto G(\phi, \psi)$. This is significant, because the functions G_ψ have a special form, as the next lemma shows.
Lemma 6.4. Each function $G_{\psi} : \Phi \rightarrow \{-1, 1\}$ defined above can be written as a product of A-functions over sets $A \subset B_0$ of size $k - 1$.

Proof. By definition, $G_{\psi}(\phi) = \prod_{B \in B, B \neq B_0} f^B(\phi, \psi)$. Now $f^B(\phi, \psi)$ depends on $(\phi, \psi)(B) = \phi(B \cap B_0) \cup \psi(B \cap B_1)$ only. Therefore, if ψ is fixed, $f^B(\phi, \psi)$ depends on $\phi(B \cap B_0)$ only. Thus, the function $\phi \mapsto f^B(\phi, \psi)$ is a $(B \cap B_0)$-function defined on Φ. Since $B \neq B_0$, $|B \cap B_0| \leq k - 1$. This proves that G_{ψ} is a product of A-functions over sets A of size at most $k - 1$. However, if $B \subset A$, then the product of a B-function with an A-function is still an A-function. From this simple observation it now follows that G_{ψ} is a product of A-functions over sets A of size equal to $k - 1$. □

Our next task is to construct some new functions E_{ψ} out of the G_{ψ} that have very similar properties but take values 0, 1 and -1 only.

Lemma 6.5. If the inequality (\ast) holds, then there exist functions $E_{\psi} : \Phi \rightarrow \{-1, 0, 1\}$, one for each $\psi \in \Psi$, with the following properties. First, $E_{\psi}(\phi)$ is nonzero only if $(\phi, \psi) \in \text{Hom}(K, \mathcal{H})$. Second, each E_{ψ} can be written as a product of $\{-1, 0, 1\}$-valued A-functions over subsets $A \subset B_0$ of size $k - 1$. Third,

$$E_{\phi \in \Phi} E_{\psi \in \Psi} F(\phi) E_{\psi}(\phi) > \eta \prod_{A \in \mathcal{K}} \delta_A.$$

Proof. Let us fix $\psi \in \Psi$ and consider the function $G = G_{\psi}$. By Lemma 6.4 we can write it as a product of A-functions, where each A in the product is a subset of B_0 of size $k - 1$. There are k such sets, namely A_1, \ldots, A_k, where for each i we set $A_i = B_0 \setminus \{(i, 0)\}$. So we can write $G(\phi) = \prod_{i=1}^{k} g_i(\phi)$ with g_i an A_i-function for each i.

Now define an A_i-function $u_i : \Phi \rightarrow \{-1, 0, 1\}$ randomly in the following natural way. Say that two maps ϕ and ϕ' are equivalent if $\phi(A_i) = \phi'(A_i)$ and choose one map from each equivalence class. Let ϕ be one of these representatives. If $g_i(\phi) \geq 0$ then let $u_i(\phi)$ equal 1 with probability $g_i(\phi)$ and 0 with probability $1 - g_i(\phi)$. If $g_i(\phi) < 0$ then let $u_i(\phi)$ equal -1 with probability $-g_i(\phi)$ and 0 with probability $1 + g_i(\phi)$. Then the expectation of $u_i(\phi)$ is $g_i(\phi)$. If ϕ' is equivalent to ϕ then let $u_i(\phi') = u_i(\phi)$.

Do the same for each equivalence class and make all the random choices independently. Finally, for each $\phi \in \Phi$ let $E_{\psi}(\phi) = \prod_{i=1}^{k} u_i(\phi)$.

Now $E_{\psi}(\phi)$ can be nonzero only if $u_i(\phi) \neq 0$ for every i, and this is the case (with probability 1) only if $g_i(\phi) \neq 0$ for every i, and hence only if $G(\phi) \neq 0$. We defined $G(\phi)$ to be $G_{\psi}(\phi) = \prod_{B \in B, B \neq B_0} f^B(\phi, \psi)$. But $f^B(\phi, \psi) = 0$ unless $(\phi, \psi)(B) \in H_*(\{k\})$, and this is true only if $(\phi, \psi)(C) \in \mathcal{H}$ for every proper subset C of B. Therefore this product is nonzero only if (ϕ, ψ) is a homomorphism from K to \mathcal{H}.
Since the choices of the different functions u_i were made independently and the expectation of $u_i(\phi)$ is $g_i(\phi)$, the expectation of $u_1(\phi) \ldots u_k(\phi)$ is $g_1(\phi) \ldots g_k(\phi) = G_\psi(\phi)$. Therefore, by linearity of expectation, the expectation of $E_\phi E_\psi F(\phi)E_\psi(\phi)$ is $E_\phi E_\psi F(\phi)G_\psi(\phi)$, which we have assumed to be at least $\eta \prod_{A \in K} \delta_A$. It follows that we can choose functions E_ψ with the desired properties.

Lemma 6.6. For each $\psi \in \Psi$ let E_ψ be the function constructed in Lemma 6.5, and let D be the double octahedron chain introduced before the statement of Lemma 6.3. Then

$$E_{\phi \in \Phi} \left(E_{\psi \in \Psi} E_\psi(\phi) \right)^2 \leq 2 \prod_{A \in D} \delta_A.$$

Proof. The left-hand side of the inequality we wish to prove can be rewritten

$$E_{\phi \in \Phi} E_{\psi_1, \psi_2} E_{\psi_1}(\phi) E_{\psi_2}(\phi).$$

By Lemma 6.5, $E_{\psi_1}(\phi) E_{\psi_2}(\phi)$ is nonzero if and only if (ϕ, ψ_1) and (ϕ, ψ_2) belong to $\text{Hom}(K, \mathcal{H})$. Therefore, this sum is at most the probability, for a random triple $(\phi, \psi_1, \psi_2) \in \Phi \times \Psi^2$, that both (ϕ, ψ_1) and (ϕ, ψ_2) belong to $\text{Hom}(K, \mathcal{H})$.

In order to estimate this probability, we shall apply the counting lemma to the chain D. Every edge of D is a proper subset of either $B_0 \cup B_1$ or $B_0 \cup B_2$. Let K_1 be the set of all edges of the first kind and let K_2 be the set of all edges of the second kind. Both K_1 and K_2 are chains and they intersect in a chain that consists of all proper subsets of B_0. Moreover, K_1 is essentially the same chain as K (formally, it has different vertex sets but the edges are the same). As for K_2, it is isomorphic to K in the following sense. Let γ be the bijection from $B_0 \cup B_2$ to $B_0 \cup B_1$ that takes $(i, 0)$ to $(i, 0)$ and $(i, 2)$ to $(i, 1)$. Then A is an edge of K_2 if and only if $\gamma(A)$ is an edge of K.

Let Θ be the set of all k-partite functions from $V_1 \cup \cdots \cup V_k$ (the vertex set of D) to $X_1 \cup \cdots \cup X_k$. There is a one-to-one correspondence between Θ and $\Phi \times \Psi \times \Psi$ that takes $\theta \in \Theta$ to $(\phi, \psi_1, \psi_2 \circ \gamma)$, where ϕ, ψ_1 and ψ_2 are the restrictions of θ to B_0, B_1 and B_2, respectively. Since $D = K_1 \cup K_2$, a map $\theta \in \Theta$ belongs to $\text{Hom}(D, \mathcal{H})$ if and only if (ϕ, ψ_1) belongs to $\text{Hom}(K_1, \mathcal{H})$ and (ϕ, ψ_2) belongs to $\text{Hom}(K_2, \mathcal{H})$. But this is true if and only if (ϕ, ψ_1) and $(\phi, \psi_2 \circ \gamma)$ belong to $\text{Hom}(K, \mathcal{H})$. (Note that $\psi_2 \circ \gamma$ here is the ψ_2 in the sum that we are estimating.)

What this shows is that the probability that we wish to estimate is equal to the probability that a random $\theta \in \Theta$ is a homomorphism from D to \mathcal{H}. Since we are assuming that \mathcal{H} is $(\varepsilon, \delta_D, k-1)$-quasirandom and that $\varepsilon \leq |D|^{-1}$, the counting lemma (Corollary 5.3) implies that this is at most $2 \prod_{A \in D} \delta_A = 2 \prod_{A \in D} \delta_A$, which proves the lemma.
Our next task is to show that we can make a small selection of the functions E_i and keep properties similar to those proved in the last two lemmas. The selection will be done in the obvious way: randomly.

Lemma 6.7. Let $\delta = \prod_{A \in D} \delta_A$, let $\beta = \prod_{A \in \mathcal{K}} \delta_A$ and let $r \geq \delta^{-1}$ be a positive integer. Then there exist functions E_1, \ldots, E_r from Φ to $\{-1, 0, 1\}$ with the following three properties.

(i) Each function E_i is a product of $\{-1, 0, 1\}$-valued A_i-functions over subsets $A \subset B_0$ of size $k - 1$.

(ii) For each i and each $\phi \in \Phi$, $E_i(\phi)$ is nonzero only if $\phi(B_0) \in H_*(|k|)$.

(iii) $E_i(\phi) \geq (\eta/2)\beta$.

(iv) $E_i(\phi) \leq (8\delta/\eta\beta)E_i(\phi)$.

Proof. For each i let E_i be one of the functions E_{ψ}, where ψ is chosen uniformly at random from Ψ. Let the choices be independent (so, in particular, the E_i are not necessarily distinct, though they probably will be). Then it follows from Lemma 6.5 that property (i) holds, and also that the expectation of $E_i(\phi)$ is at least $\eta\beta$.

We now want to estimate the expectation of $E_i(\phi)$, and for this we shall use Lemma 6.2, the technical lemma from the beginning of the section. Set $n = |\Psi| = |\Phi|$ and let the vectors v_1, \ldots, v_n be the functions E_{ψ}, which we regard as elements of $L_2(\Phi)$. Lemma 6.6 tells us that $\|E_i(\phi)\|_2 \leq 2\delta$. Therefore, Lemma 6.2 tells us that the expectation of $E_i(\phi)$ is at least $\eta\beta$. It follows that the expectation of $8\delta E_i(\phi) - E_i(\phi) \leq (8\delta/\eta\beta)E_i(\phi)$ is at least $8\eta\beta - 4\eta\beta = 4\eta\beta$. Therefore there must be some choice of the functions E_1, \ldots, E_r such that the inequalities (iii) and (iv) are satisfied.

Since each E_i is one of the functions E_{ψ}, Lemma 6.5 implies that $E_i(\phi)$ is nonzero only if $(\phi, \psi) \in \text{Hom}(\mathcal{K}, \mathcal{H})$ for some $\psi \in \Psi$. But a necessary condition for this is that $\phi(B_0) \in H_*(|k|)$, and so property (ii) is true as well.

Proof of Lemma 6.3. For each i let us write E_i as a product $\prod_{j=1}^k E_{ij}$, where E_{ij} is a $\{-1, 0, 1\}$-valued A_j-function. (As in the proof of Lemma 6.5, A_j is the set $B_0 \setminus \{(j, 0)\}$.)

For each $j \leq k$ we can partition the part H_j of H into at most 3^r sets, such that on each of these sets the function E_{ij} is constant for every $i \leq r$. Let...
Z_1, \ldots, Z_N be the corresponding induced partition of $H_*([k])$. (This concept was defined just before the statement of Lemma 6.3.) Then every function E_i is constant on every cell Z_j, from which it follows that the function $g(\phi) = \mathbb{E}_{i=1}^r E_i(\phi)$ is constant on every cell Z_j. (Here we are implicitly thinking of g as a function of $\phi(B_0)$ and therefore defined on $H_*([k])$.)

With the help of Lemma 6.7, we are now in a position to apply Lemma 6.1. Property (iii) of Lemma 6.7 tells us that $\langle F, g \rangle \geq (\eta/2)\beta$, and property (iv) tells us that $\langle F, g \rangle / \|g\|_2^2 \geq \eta \beta/8\delta$.

Let U be the set of all $\phi \in \Phi$ such that $\phi(B_0) \in H_*([k])$. Then the map $\phi \mapsto \phi(B_0)$ is a bijection between U and $H_*([k])$, so we can regard Z_1, \ldots, Z_N as a partition of U, and we can also regard F and g as functions defined on U. If we do so, then their L_2-norms and inner products change: now we have $\langle F, g \rangle \geq (\eta/2)\beta$, where ζ is the density of U in Φ, while the ratio $\langle F, g \rangle / \|g\|_2^2$ remains the same at $\geq \eta \beta/8\delta$.

Lemma 6.1 and these estimates tell us that the mean-square density of F with respect to this partition of U is at least $(\eta \beta/2\zeta)(\eta \beta/8\delta) = \eta^2 \beta^2/16\delta \zeta$. By Lemma 5.2 (the counting lemma), $\zeta \leq 2 \prod_{A \subseteq B_0} \delta_A$. Recall that every set $A \subseteq B_0$ is the index of precisely $2^{|A|+1} - 1$ sets in D and $2^{|A|}$ sets in K. It follows that $\beta^2 = \delta \prod_{A \subseteq B_0} \delta_A \geq \delta \zeta/2$. Therefore, the mean-square density of F with respect to the partition Z_1, \ldots, Z_N is at least $\eta^2/32$. Since $F(\phi) = f(\phi(B_0))$, this statement is equivalent to the statement of Lemma 6.3.

Corollary 6.8. Let \mathcal{H} be a k-partite $(k-1)$-chain with vertex sets X_1, \ldots, X_k, let D be the double octahedron, let $\delta = \prod_{A \in D} \delta_A$ and let $r \geq \delta^{-1}$ be a positive integer. Suppose that $\varepsilon \leq |D|^{-1}$ and that \mathcal{H} is $(\varepsilon, D, k-1)$-quasirandom. Let H^k be a k-partite k-uniform hypergraph with vertex sets X_1, \ldots, X_k, let the density of H^k relative to \mathcal{H} (that is, the quantity $|H^k|/|H_*([k])|$) be $\delta_{[k]}$ and suppose that H^k is not η-quasirandom relative to \mathcal{H}. Let H be the set of all edges of \mathcal{H} of size $k-1$ and let H_1, \ldots, H_k be the k parts of H. Then there are partitions of the H_i into at most 3^r sets each such that the mean-square density of the characteristic function of H^k with respect to the induced partition of $H_*([k])$ is at least $\delta_{[k]}^2 + \eta^2/32$.

Proof. Let $f : H_*([k]) \rightarrow [-1, 1]$ be the function $H^k - \delta_{[k]}$. Then the statement that H^k is not η-quasirandom relative to Φ is, by definition, the statement that f is not η-quasirandom relative to \mathcal{H}. Therefore, by Lemma 6.3, we can find partitions of the required kind for which the mean-square density of f with respect to the induced partition of $H_*([k])$ is at least $\eta^2/32$.

Let Z_1, \ldots, Z_N be the induced partition of $H_*([k])$ and for each $(x_1, \ldots, x_k) \in Z_i$, let $G(x_1, \ldots, x_k) = |H^k \cap Z_i|/|Z_i|$. Then the mean of G is the same as the mean of H^k, namely $\delta_{[k]}$. The value that G takes in Z_i can also be written as $\delta_{[k]} + \mathbb{E}_{x \in Z_i} f(x)$, so the expectation of $(G - \delta_{[k]}^2$, which is also the mean-square density of $G - \delta_{[k]}$ (since G is constant on the cells Z_i), is the
mean-square density of \(f \). But it is also the variance of \(G \), so by the usual formula \(\text{var} \, X = \mathbb{E}X^2 - (\mathbb{E}X)^2 \) we find that the mean-square density of \(G \) is \(\delta^2_{[k]} \) plus the mean-square density of \(f \). (Here we have again used the fact that \(G \) is constant on cells, so that the mean-square density of \(G \) is just \(\mathbb{E}G^2 \).) The result follows.

\[\]

7. The statement of a regularity lemma for \(r \)-partite chains

Corollary 6.8 is stage one of the proof of our regularity lemma. In this short section we will introduce some definitions and state the regularity lemma itself. The proof (or rather, stage two of the proof) will be given in Section 9.

Broadly speaking, the result says that we can take a \(k \)-uniform hypergraph \(H \), regard it as a chain (by adding all subsets of edges of \(H \)) and decompose that chain into subchains almost all of which are quasirandom. This is a useful thing to do, because Corollary 5.3 gives us a good understanding of quasirandom chains. Thus, the regularity lemma and counting lemma combine to allow us to decompose any (dense) \(k \)-uniform hypergraph into pieces that we can control. In the final section of the paper we shall exploit this by proving a generalization of Theorems 1.3 and 1.6 to \(k \)-uniform hypergraphs, which implies the multidimensional Szemerédi theorem.

Our principal aim will be to understand a certain \((k+1)\)-partite \(k \)-uniform hypergraph. However, for the purposes of formulating a suitable inductive hypothesis it is helpful to prove a result that is more general in two ways. First of all, we shall look at \(r \)-partite \(k \)-uniform hypergraphs. Secondly, rather than looking at single hypergraphs we shall look at partitions. To be precise, let \(X_1, \ldots, X_r \) be a sequence of finite sets. Given any subset \(A \subset [r] \), \(A = \{i_1, \ldots, i_s\} \), let \(K(A) \) be the complete \(s \)-uniform hypergraph on the sets \(X_{i_1}, \ldots, X_{i_s} \), that is, the hypergraph consisting of all subsets of \(X_1 \cup \cdots \cup X_r \) that intersect \(X_i \) in a singleton if \(i \in A \) and are disjoint from \(X_i \) otherwise. For each \(s \leq r \), the complete \(s \)-uniform hypergraph \(K_s(X_1, \ldots, X_r) \) on the sets \(X_1, \ldots, X_r \) is the union of the hypergraphs \(K(A) \) over all sets \(A \subset [r] \) of size \(s \). Finally, the complete \(k \)-chain on \(X_1, \ldots, X_r \), denoted \(K_k(X_1, \ldots, X_r) \), is the union of all \(K(A) \) such that \(A \) has cardinality at most \(k \); that is, it consists of all subsets of \(X_1 \cup \cdots \cup X_r \) of size at most \(k \) that intersect each \(X_i \) at most once.

To form an arbitrary \(r \)-partite \(s \)-uniform hypergraph \(H \) with vertex sets \(X_1, \ldots, X_r \), one can choose, for each \(A \subset [r] \) of size \(s \), a subset \(H(A) \subset K(A) \) and let \(H \) be the union of these hypergraphs \(H(A) \). If we want to, we can regard each \(H(A) \) as a partition of \(K(A) \) into the two sets \(H(A) \) and \(K(A) \setminus H(A) \). Our regularity lemma will be concerned with more general partitions, but it will imply a result for hypergraphs as an easy corollary.
Suppose now that for every subset $A \subset [r]$ of size at most k we have a partition of the hypergraph $K(A)$. If B and B' are two edges of this hypergraph (that is, if they are two sets of index A), let us write $B \sim_A B'$ if B and B' lie in the same cell of the partition, and say that B and B' are A-equivalent.

One can use these equivalence relations to define finer ones as follows. Given two sets B, B' of index A and given any subset $C \subset A$, there are unique subsets $D \subset B$ and $D' \subset B'$ of index C. Let us say that B and B' are C-equivalent if D and D' are. Then let us say that B and B' are strongly equivalent if they are C-equivalent for every subset $C \subset A$. In other words, we ask not only for B to belong to the same cell B', but also for every subset of B to belong to the same cell as the corresponding subset of B' in the corresponding partition.

Given this system of equivalence relations, we can define a collection of chains as follows. For every r-tuple $x = (x_1, \ldots, x_r) \in X_1 \times \cdots \times X_r$ and every set A of size at most k, let $x(A)$ be the set $\{x_i : i \in A\}$ and let $H(A, x)$ be the hypergraph consisting of all sets B that are strongly equivalent to $x(A)$.

Lemma 7.1. The union $\mathcal{H} = \mathcal{H}(x)$ of the hypergraphs $H(A, x)$ over all sets A of size at most k is an r-partite k-chain.

Proof. Let $B \in H(A, x)$ and let $D \subset B$. Let C be the index of D. Since B is strongly equivalent to $x(A)$, D is strongly equivalent to $x(C)$. Therefore $D \in H(C, x)$ and the lemma is proved. \qed

Lemma 7.2. Let $x = (x_1, \ldots, x_r)$ and $y = (y_1, \ldots, y_r)$ belong to the set $X_1 \times \cdots \times X_r$ and let $\mathcal{H}(x)$ and $\mathcal{H}(y)$ be the two chains constructed as in Lemma 7.1. Then for every set $A \subset [r]$ of size at most k, the hypergraphs $H(A, x)$ and $H(A, y)$ are either equal or disjoint.

Proof. Suppose that B is a set of index A and that $B \in H(A, x) \cap H(A, y)$. Then B is strongly equivalent to both $x(A)$ and $y(A)$, so these two sets are strongly equivalent to each other. It follows that $H(A, x) = H(A, y)$. \qed

Let us call two r-partite k-chains \mathcal{H} and \mathcal{H}', with the same vertex sets X_1, \ldots, X_r, compatible if, for every subset $A \subset [r]$ of size at most k, the hypergraphs $H(A)$ and $H'(A)$ are either equal or disjoint. By a chain decomposition of the complete r-partite k-chain $\mathcal{K}_k(X_1, \ldots, X_r)$ we mean a set $\{\mathcal{H}_1, \ldots, \mathcal{H}_N\}$ of r-partite k-chains with the following two properties:

(i) For every i and j the chains \mathcal{H}_i and \mathcal{H}_j are compatible;

(ii) For every sequence $x = (x_1, \ldots, x_r) \in X_1 \times \cdots \times X_r$ there is precisely one chain from the set $\{\mathcal{H}_1, \ldots, \mathcal{H}_N\}$ that contains every subset of $\{x_1, \ldots, x_r\}$ of size at most k.
Note that a chain decomposition is not a partition of $K_k(X_1, \ldots, X_r)$. There is no interesting way to partition $K_k(X_1, \ldots, X_r)$ into subchains, as a moment’s thought will reveal. Lemmas 7.1 and 7.2 show that the chains $H(x)$ form a chain decomposition of $K_k(X_1, \ldots, X_r)$. (It may be that $H(x) = H(y)$, but this does not contradict (ii) because we have carefully defined a chain decomposition to be a set of chains rather than a sequence of chains.)

We are now ready to state our regularity lemma.

Theorem 7.3. Let J be an r-partite k-chain with vertex sets E_1, \ldots, E_r and let $0 < \varepsilon \leq |J|^{-1}$. Let X_1, \ldots, X_r be a sequence of finite sets and for each subset $A \subseteq [r]$ of size at most k let $\mathcal{P}(A)$ be a partition of the hypergraph $K(A)$ into n_A sets. Then there are refinements $\mathcal{Q}(A)$ of the partitions $\mathcal{P}(A)$ leading to a chain decomposition of $K_k(X_1, \ldots, X_r)$ with the following property: if $x = (x_1, \ldots, x_r)$ is a randomly chosen element of $X_1 \times \cdots \times X_r$ then the probability that the chain $H(x)$ is (ε, J, k)-quasirandom is at least $1 - \varepsilon$. Moreover, $\mathcal{Q}(A) = \mathcal{P}(A)$ when $|A| = k$, and for general A the number of sets m_A in the partition $\mathcal{Q}(A)$ depends only on ε, J, k and the numbers n_C.

Before we start on the proof, let us comment on how we shall actually use Theorem 7.3. We will be presented with an r-partite k-uniform hypergraph H with vertex sets X_1, \ldots, X_r. All the $\binom{r}{k}$ k-partite parts $H(A)$ of H will have density at least a certain fixed $\delta > 0$. We will then apply Theorem 7.3 to the partitions $\mathcal{P}(A)$ defined as follows. If $|A| = k$ then $\mathcal{P}(A)$ will be $\{H(A), K(A) \setminus H(A)\}$. If $|A| < k$ then it will be the trivial partition $\{K(A)\}$. In this case, the result will tell us that we can find partitions $\mathcal{Q}(A)$ such that almost all edges of \mathcal{H} lie in quasirandom chains from the decomposition determined by the partitions $\mathcal{Q}(A)$.

8. Basic facts about partitions and mean-square density

In order to prove a regularity lemma for systems of partitions, we need to generalize the notion of mean-square density as follows. Let $\mathcal{P} = \{X_1, \ldots, X_r\}$ and $\mathcal{Q} = \{Y_1, \ldots, Y_s\}$ be two partitions of a finite set U. Then the mean-square density of \mathcal{P} with respect to \mathcal{Q} is the quantity

$$\sum_{i=1}^{r} \sum_{j=1}^{s} \frac{|Y_j|}{|U|} \left(\frac{|X_i \cap Y_j|}{|Y_j|} \right)^2,$$

that is, the sum of all the mean-square densities of the sets X_i (by which we mean the mean-square densities of their characteristic functions, as defined in Section 6) with respect to \mathcal{Q}.
Since the numbers $|X_i \cap Y_j|/|Y_j|$ are nonnegative and sum to 1, we have the simple upper bound
\[
\sum_{i=1}^{r} \sum_{j=1}^{s} \frac{|Y_j|}{|U|} \left(\frac{|X_i \cap Y_j|}{|Y_j|} \right)^2 \leq \sum_{j=1}^{s} \frac{|Y_j|}{|U|} = 1
\]
for this quantity. An alternative way of seeing this, which will be helpful later, is to notice that each $u \in U$ is contained in a unique X_i and a unique Y_j, and the mean-square density of P with respect to Q is the expected value of $|X_i \cap Y_j|/|Y_j|$.

Lemma 8.1. Let $P = \{X_1, \ldots, X_r\}$ and $Q = \{Y_1, \ldots, Y_s\}$ be two partitions of a finite set U, and let Q' be a refinement of Q. Then the mean-square density of P with respect to Q' is at least as great as the mean-square density of P with respect to Q.

Proof. Let the sets that make up Q' be called Y_{jk}, where $Y_j = \bigcup_k Y_{jk}$. For each j and k define γ_j and γ_{jk} by $|Y_j| = \gamma_j|U|$ and $|Y_{jk}| = \gamma_{jk}|U|$. For each i, j, and k let $d_{ij} = |X_i \cap Y_j|/|Y_j|$ and let $d_{ij} = |X_i \cap Y_{jk}|/|Y_{jk}|$. Then
\[
\sum_k d_{ijk}|Y_{jk}| = \sum_k |X_i \cap Y_{jk}| = |X_i \cap Y_j| = d_{ij}|Y_j|,
\]
from which it follows that $\sum_k \gamma_{jk}d_{ijk} = \gamma_jd_{ij}$ for every i and j.

The mean-square density of P with respect to Q is $\sum_i \sum_j \gamma_jd_{ij}^2$, which is therefore equal to
\[
\sum_i \sum_j \gamma_j^{-1}\left(\sum_k \gamma_{jk}d_{ijk}\right)^2 = \sum_i \sum_j \left(\sum_k \gamma_j^{-1/2}\gamma_{jk}d_{ijk}\right)^2 \leq \sum_i \sum_j \left(\sum_k \gamma_j^{-1}\gamma_{jk}\right)\left(\sum_k \gamma_{jk}d_{ijk}^2\right),
\]
by the Cauchy-Schwarz inequality. Since $\sum_k \gamma_j^{-1}\gamma_{jk} = 1$ for every j, this equals $\sum_i \sum_j \sum_k \gamma_{jk}d_{ijk}^2$, which is the mean-square density of P with respect to Q'.

The next lemma is a simple, but somewhat irritating, technicality.

Lemma 8.2. Let $\varepsilon > 0$, let X_1, \ldots, X_r be a sequence of finite sets, let $K(X_1, \ldots, X_r)$ be the complete r-partite k-chain with vertex sets X_1, \ldots, X_r and for each $A \subset \{1, 2, \ldots, r\}$ of size at most k let $P(A)$ be a partition of $K(A)$ into n_A sets. For each $x = (x_1, \ldots, x_r) \in X_1 \times \cdots \times X_r$ and each A of size at most k let $\delta_{A,x}$ be the relative density of the hypergraph $H(A,x)$ in the chain $\mathcal{H}(x)$ (defined in the previous section). Then if (x_1, \ldots, x_r) is chosen randomly from $X_1 \times \cdots \times X_r$ and $A \subset \{1, 2, \ldots, r\}$ has size at most k, the probability that $\delta_{A,x} < \varepsilon n_A^{-1}$ is at most ε.

Proof. Let B and B' be two sets of index A. Let us call them weakly equivalent, and write $B \sim B'$, if B is C-equivalent to B' for every proper subset C of A. Then B is strongly equivalent to B' if and only if $B \sim B'$ and $B \sim A B'$.

The relative density $\delta_{A,x}$ is simply the probability that a set B of index A is strongly equivalent to $x(A)$ given that it is weakly equivalent to $x(A)$. Since $K(A)$ is partitioned into n_A sets, the number of strong equivalence classes in each weak equivalence class is at most n_A^{-1}. Therefore, for any weak equivalence class T, the probability that $x(A)$ lies in a strong equivalence class of size less than $\epsilon n_A^{-1} |T|$ given that it lies in T is at most ϵ. If $x(A)$ lies in a strong equivalence class of size at least ϵn_A^{-1}, then the probability that B is in the same strong equivalence class given that B is in T is at least ϵn_A^{-1}, which implies that $\delta_{A,x} \geq n_A^{-1}$.

Therefore, for every T the conditional probability that $\delta_{A,x} < \epsilon n_A^{-1}$ given that $x(A) \in T$ is less than ϵ. The result follows.

We now have all the ingredients needed to prove our regularity lemma.

9. The proof of Theorem 7.3

It will be convenient for the proof if for each set $A \subset [r]$ of size at most k, the chain \mathcal{J} contains a copy \mathcal{D}_A of the double octahedron of dimension $|A|$. Since the result for \mathcal{J} follows from the result for any larger chain, we are free to assume that this is the case.

We shall first describe an inductive procedure for producing better and better systems of partitions when the conclusion of Theorem 7.3 does not hold. Then we shall prove that the procedure terminates.

We shall need one piece of notation. Let X_1, \ldots, X_r be a sequence of finite sets and for each subset $C \subset [r]$ of size at most k let $\mathcal{P}(C)$ be a partition of the hypergraph $K(C)$. For each set $A \subset [r]$ of size at most k we shall write $\sigma_A(\mathcal{P})$ for the mean-square density of the partition $\mathcal{P}(A)$ with respect to the partition of $K(A)$ into weak equivalence classes with respect to the partition system \mathcal{P}. (These were defined in the proof of Lemma 8.2 above.)

Lemma 9.1. Let \mathcal{J} be an r-partite k-chain with vertex sets E_1, \ldots, E_r and let $0 < \epsilon \leq |\mathcal{J}|^{-1}$, let X_1, \ldots, X_r be a sequence of finite sets and for each subset $C \subset [r]$ of size at most k let $\mathcal{P}(C)$ be a partition of the hypergraph $K(C)$ into n_C sets. For each $x = (x_1, \ldots, x_r)$, let $\mathcal{H}(x)$ be the chain arising from x and the corresponding chain decomposition of $K_k(X_1, \ldots, X_r)$. Suppose that when x is chosen randomly from $X_1 \times \cdots \times X_r$ the probability that $\mathcal{H}(x)$ fails to be $(\epsilon, \mathcal{J}, k)$-quasirandom is at least ϵ. Then there are a set A of size $s \leq k$ and a system of refinements $\mathcal{Q}(C)$ of the partitions $\mathcal{P}(C)$ with the following properties.
(i) $Q(C) = \mathcal{P}(C)$ and $\sigma_C(Q) \geq \sigma_C(P)$ except if $C \subset A$ and $|C| = s-1$.

(ii) $\sigma_A(Q)$ exceeds $\sigma_A(P)$ by a nonzero amount that depends only on J, ε, k and the numbers of cells in the partitions $\mathcal{P}(B)$ with $|B| \geq s$.

(iii) When $C \subset A$ and $|C| = s-1$, the number of cells in the partition C depends only on ε, k and the numbers of cells in the partitions $\mathcal{P}(B)$ with $B \subset C$.

Proof. For each set C, let t_C be the number of cells in the partition $\mathcal{P}(C)$ of $K(C)$. Let γ be defined by the equation $2\gamma \sum_{i=1}^{k} \binom{|\gamma|}{i} = \varepsilon$. By Lemma 8.2, the probability that there exists a subset $C \subset [r]$ of size at most k such that $\delta_{C,x} < \gamma t_A^{-1}$ is at most $\gamma \sum_{i=1}^{k} \binom{|\gamma|}{i} = \varepsilon/2$. Therefore, with probability at least $\varepsilon/2$, the chain $\mathcal{H}(x)$ fails to be (ε, J, k)-quasirandom but for each C the relative density $\delta_{C,x}$ is at least γt_C^{-1}.

Let η_2, \ldots, η_k and $\varepsilon_2, \ldots, \varepsilon_k$ be the sequences that appear in the definition of quasirandom chains (in subsection 3.7), and note that η_s depends only on ε and the densities $\delta_{B,x}$ with $|B| \geq s$. Since $\delta_{C,x} \geq \gamma t_C^{-1}$ for every C, it follows that η_s is bounded below by a function of ε and all those t_B for which $|B| \geq s$.

If $\mathcal{H}(x)$ fails to be (ε, J, k)-quasirandom, then there must be a minimal s such that it fails to be (ε_s, J, s)-quasirandom, and for that s there must be a set A of size s such that $H(A, x)$ is not η_s-quasirandom relative to $\mathcal{H}(x)$, while $\mathcal{H}(x)$ is $(\varepsilon_{s-1}, J, s-1)$-quasirandom. Since there are at most $\sum_{i=1}^{k} \binom{|\gamma|}{i}$ possibilities for this set A we may deduce from the last paragraph but one that there exists a set A of size $s \leq k$ such that, with probability at least γ, the chain $\mathcal{H}(x)$ is $(\varepsilon_{s-1}, J, s-1)$-quasirandom but $H(A, x)$ is not η_s-quasirandom relative to $\mathcal{H}(x)$ and $\delta_{C,x} \geq \gamma t_C^{-1}$ for every C.

Let us call x irregular if $\mathcal{H}(x)$ has these two properties. Given an irregular x, let $\mathcal{H}_-(A, x)$ be the s-partite $(s-1)$-chain made up of all the hypergraphs $H(C, x)$ with $C \subset A$. We can now apply Corollary 6.8 to the chain $\mathcal{H}_-(A, x)$ and to the s-uniform hypergraph $H(A, x)$. (Thus, the k of Corollary 6.8 is equal to s here.) Since $\varepsilon_{s-1} \leq \varepsilon \leq |J|^{-1}$ and $\mathcal{D}_A \subset J$, the conditions hold for the corollary to be applicable, with k replaced by s. The hypergraphs H_1, \ldots, H_k in the statement of Corollary 6.8 are, in this context, the hypergraphs $H(A', x)$, where A' ranges over all subsets of A of size $s-1$.

For each $C \subset A$ we know that $\delta_{C,x} \geq \gamma t_C^{-1}$. Therefore, if r' is a positive integer that is at least $\prod_{C \in \mathcal{D}_A} \gamma^{-1} t_C$, then for each subset $A' \subset A$ of size $s-1$ we can find a partition of $H(A', x)$ into at most $3^{r'}$ subsets, in such a way that the mean-square density of $H(A, x)$ with respect to the induced partition of $H_s(A, x)$ is at least $\varepsilon_A^2 + \varepsilon_B^2/32$. (Here, $H_s(A, x)$ denotes the hypergraph consisting of all sets Y of index A such that every proper subset of Y belongs to $\mathcal{H}_-(A, x)$.)

Let $\mathcal{H}(A, x)$ be the s-partite s-chain $H(A, x) \cup \mathcal{H}_-(A, x)$. The number of distinct possibilities for $\mathcal{H}(A, x)$ as x varies is at most $\prod_{C \subset A} t_C$. For each
one such that \(x \) is irregular (if \(\mathcal{H}(A, x) = \mathcal{H}(A, y) \) and \(x \) is irregular then \(y \) is irregular) choose a partition of the hypergraphs \(\mathcal{H}(A', x) \) as above. In general, it will often happen that \(\mathcal{H}(A, x) \neq \mathcal{H}(A, y) \) but \(\mathcal{H}(A', x) = \mathcal{H}(A', y) \), so each hypergraph \(\mathcal{H}(A', x) \) may be partitioned many times. However, the number of distinct chains \(\mathcal{H}(A, x) \) is at most \(T_A = \prod_{C \subset A} t_C \), so we can find a common refinement of all the partitions of \(\mathcal{H}(A', x) \) into at most \(3^r T_A \) sets.

For each \(A' \subset A \) of size \(s - 1 \) let \(\mathcal{Q}(A') \) be the union of all these common refinements, over all the different sets \(\mathcal{H}(A', x) \). There are at most \(T_A \) of these sets, each partitioned into at most \(3^r T_A \) sets, so that \(\mathcal{Q}(A') \) is a partition of \(\mathcal{K}(A') \) into at most \(T_A \cdot 3^r T_A \) sets, and it refines the partition \(\mathcal{P}(A') \). For all other sets \(A \), let \(\mathcal{Q}(A) = \mathcal{P}(A) \).

By Lemma 8.1, given any irregular \(x \), the mean-square density of \(\mathcal{H}(A, x) \) with respect to the partition of \(\mathcal{H}_s(A, x) \) that is induced by the refined partitions of the hypergraphs \(\mathcal{H}(A', x) \) is still at least \(\delta_{A, x}^2 + \eta_s^2/32 \). As for a regular \(x \), Lemma 8.1 tells us that the mean-square density of \(\mathcal{H}(A, x) \) with respect to the refined partition of \(\mathcal{H}(x)_s(A) \) is still at least \(\delta_{A, x}^2 \).

Let \(\sigma_A(\mathcal{P}) \) be the mean-square density of the partition \(\mathcal{P}(A) \) with respect to the partition of \(\mathcal{K}(A) \) into weak equivalence classes coming from the partitions \(\mathcal{P}(C) \). Let \(\sigma_A(\mathcal{Q}) \) be the mean-square density of \(\mathcal{P}(A) = \mathcal{Q}(A) \) with respect to the partition of \(\mathcal{K}(A) \) arising from \(\mathcal{Q} \) in the same way. By the remark preceding Lemma 8.1, \(\sigma_A(\mathcal{P}) \) is the expectation of \(\delta_{A, y} \) over all sequences \(y = (y_1, \ldots, y_r) \). Let us write this as \(\delta_{A, y}(\mathcal{P}) \) since it depends on the system of partitions \(\mathcal{P}(C) \). Thus, \(\sigma_A(\mathcal{P}) \) is the expectation of \(\delta_{A, x}(\mathcal{P}) \) and similarly for \(\mathcal{Q} \).

What we have just shown is that if \(x \) is irregular, then \(\mathbb{E}[\delta_{A, y}(\mathcal{Q}) | y \in \mathcal{H}(A, x)] \) is at least \(\delta_{A, y}(\mathcal{P})^2 + \eta_s^2/32 \), which equals \(\mathbb{E}[\delta_{A, y}(\mathcal{Q}) | y \in \mathcal{H}(A, x)] + \eta_s^2/32 \). If \(x \) is regular, then this conditional expectation is at least \(\delta_{A, y}(\mathcal{P})^2 \), or \(\mathbb{E}[\delta_{A, y}(\mathcal{P}) | y \in \mathcal{H}(A, x)] \). Since the probability that \(x \) is irregular is at least \(\gamma \), this shows that \(\mathbb{E}[\delta_{A, y}(\mathcal{Q})] \geq \mathbb{E}[\delta_{A, y}(\mathcal{P})] + \gamma \eta_s^2/32 \). In other words, \(\sigma_A(\mathcal{Q}) \geq \sigma_A(\mathcal{P}) + \gamma \eta_s^2/32 \).

To summarize: if the conclusion of Theorem 7.3 is not true for the partitions \(\mathcal{P}(C) \) then there are a set \(A \) of size \(s \leq k \) and a system of refinements \(\mathcal{Q}(C) \) such that \(\mathcal{Q}(C) = \mathcal{P}(C) \) except when \(C \) is a subset of \(A \) of size \(s - 1 \), and such that \(\sigma_A(\mathcal{Q}) \geq \sigma_A(\mathcal{P}) + \gamma \eta_s^2/32 \). For a general \(C \), we have \(\sigma_C(\mathcal{Q}) \geq \sigma_C(\mathcal{P}) \) except if \(C \subset A \) and \(|C| = s - 1 \). This is because if \(C \) is any other set, then \(\mathcal{Q}(C) = \mathcal{P}(C) \) and all other partitions have either been refined or stayed the same. Thus, the lemma is proved.

To complete the proof of Theorem 7.3, we must argue that this process of successive refinement cannot be iterated forever.

Imagine, then, that we are trying to find an infinite sequence of refinements of the kind we are given by Lemma 9.1. The difficulty we face is that the mean-square densities \(\sigma_C(\mathcal{P}) \) tend to increase, and there is always one set \(A \) for which
σ_A(P) increases fairly substantially. Our only hope is that for the subsets C of A obtained by removing one element, the mean-square densities can drop considerably.

The trouble with that, however, is that the only way of getting the mean-square density σ_C(P) to drop is by getting the mean-square density of some larger set σ_A(P) to increase.

To see why this observation leads to a proof, suppose that we do indeed have an infinite sequence of refinements of the kind given to us by Lemma 9.1. Then there must be a set A of maximal cardinality s that is used infinitely many times. It follows that there must be some point in the sequence after which A is used infinitely many times but no set of larger cardinality is ever used. After that point, the only partitions P(C) that change are for sets B of cardinality less than s, by (i) of Lemma 9.1. It follows from (ii) that after that point the quantity σ_A(Q) increases infinitely often by an amount that does not change as the iteration proceeds. This is a contradiction, since σ_A(Q) is bounded above by 1. The proof of the regularity lemma is complete.

A careful examination of the above argument shows that the bound that arises from it increases by one level in the Ackermann hierarchy each time k increases by 1, except at the jump from the trivial case k = 1 to the first nontrivial case k = 2, when we go from nothing to a bound of tower type. In particular, since we shall need k-uniform hypergraphs to prove the multidimensional Szemerédi theorem for sets of size k + 1, our bound for that theorem is of Ackermann type. The only cases where better bounds are known are the one-dimensional case, which is treated in [G1], and the case of sets of size 3, where a trebly exponential bound was obtained by Shkredov [S].

10. Hypergraphs with few simplices

Now that we have established counting and regularity lemmas we have the tools necessary to prove the generalization of Theorems 1.3 and 1.6 to k-uniform hypergraphs.

Theorem 10.1. Let k be a positive integer. Then for every a > 0 there exists c > 0 with the following property. Let H be a (k + 1)-partite k-uniform hypergraph with vertex sets X_1, . . . , X_{k+1}, and let N_i be the size of X_i. Suppose that H contains at most c ∏_{i=1}^{k+1} N_i simplices. Then for each i ≤ k + 1 one can remove at most a ∏_{j≠i} N_j edges of H from ∏_{j≠i} X_j in such a way that after the removals one is left with a hypergraph that is simplex-free.

Proof. For each subset A ⊆ [k + 1] of size at most k, define a partition P(A) of K(A) as follows. If |A| < k then P(A) consists of the single set K(A). If |A| = k then it consists of the sets H(A) and K(A) \ H(A). Now apply Theorem 7.3 to this system of partitions, with J = [k + 1][≤ k] and
\[\varepsilon = \min\{|J|^{-1}/2, a/2\}, \] obtaining for each \(A \in \mathcal{J} \) a partition \(Q(A) \) of \(K(A) \) into \(m_A \) sets.

If \(x = (x_1, \ldots, x_{k+1}) \in X_1 \times \cdots \times X_{k+1} \) and \(\mathcal{H}(x) \) is not \((\varepsilon, \mathcal{J}, k)\)-quasirandom, then there must be some \(A \) of size \(s \leq k \) such that \(H(A, x) \) is not \(\eta_s \)-quasirandom relative to \(\mathcal{H}(x) \). There must be some \(i \) such that \(i \notin A \), and if \((y_1, \ldots, y_{k+1})\) is another sequence such that \(y_j = x_j \) when \(j \neq i \), then \(H(A, y) \) will also not be \(\eta_s \)-quasirandom relative to \(\mathcal{H}(y) \). Therefore, since \(\mathcal{H}(x) \) is \((\varepsilon, \mathcal{J}, k)\)-quasirandom with probability at least \(1 - \varepsilon \), there are at most \(\varepsilon \prod_{j \neq i} N_j \) elements of \(\prod_{j \neq i} X_j \) that can be extended to sequences \(x \) such that \(\mathcal{H}(x) \) is not \((\varepsilon, \mathcal{J}, k)\)-quasirandom. Remove from \(H \) any such element.

Let \(\gamma \) be defined by \(\gamma \sum_{i=1}^{k} \binom{k+1}{i} = a/2 \). Lemma 8.2 tells us that if \(x = (x_1, \ldots, x_{k+1}) \) is chosen randomly, then with probability at least \(1 - a/2 \), we have \(\delta_{A, x} \geq \gamma m_A^{-1} \) for every \(A \in [k+1]^{(\leq k)} \). Again, the event that this happens for a particular \(A \) does not depend on the \(x_i \) with \(i \notin A \). So for each \(i \) there are at most \(a \prod_{j \neq i} N_j / 2 \) elements of \(\prod_{j \neq i} X_j \) that can be extended to sequences \(x \) for which \(\delta_{A, x} < \gamma m_A^{-1} \) for some \(A \subseteq [k+1] \) with \(i \notin A \). Once again, remove all such elements from \(H \).

For each \(i \) we have removed at most \(a \prod_{j \neq i} N_j \) elements from \(H \cap \prod_{j \neq i} X_j \). It remains to show that in the process we have either removed all simplices from \(H \), or else, for some \(c > 0 \) that depends on \(a \) only, there were at least \(c \prod_{j} N_j \) simplices to start with.

Suppose, then, that after the removals there is still a simplex \(x = (x_1, \ldots, x_{k+1}) \), and consider the chain \(\mathcal{H}(x) \). Then for every \(A \subseteq [k+1] \) of size \(k \) the following statements are true. First, the set \(x(A) \) is an element of \(H \) (or else \(x \) would not be a simplex). Second, the hypergraph \(H(A, x) \) is a subset of \(H \) (since \(x(A) \in H \) and the partition into strong equivalence classes resulting from \(Q \) refines the partition \(P \)). Third, \(\delta_{C, x} \geq \gamma m_C^{-1} \) for every \(C \subseteq A \) (or else we would have removed \(x(A) \) from \(H \)). Finally, the chain \(\mathcal{H}(x) \) is \((\varepsilon, \mathcal{J}, k)\)-quasirandom (or else for some \(A \) of size \(k \) we would have removed \(x(A) \) from \(H \)).

We now apply Corollary 5.3, the counting lemma for quasirandom chains. It implies that the number of simplices in the chain \(\mathcal{H}(x) \), which is the same as the number of homomorphisms from \(\mathcal{J} \) to \(\mathcal{H}(x) \), is at least \(\prod_{j} N_j \prod_{A \in \mathcal{J}} \delta_{A, x} \), which is at least \(\prod_{j} N_j \prod_{A \in \mathcal{J}} \gamma m_A^{-1} \). But \(\gamma \) and the \(m_A \) depend on \(a \) and \(k \) only, so the result is proved.

Finally, let us deduce from this a multidimensional Szemerédi theorem.

Theorem 10.2. Let \(\delta > 0 \) and \(k \in \mathbb{N} \). Then, if \(N \) is sufficiently large, every subset \(A \) of the \(k \)-dimensional grid \(\{1, 2, \ldots, N\}^k \) of size at least \(\delta N^k \) contains a set of points of the form \(\{a\} \cup \{a+de_i : 1 \leq i \leq k\} \), where \(e_1, \ldots, e_k \) is the standard basis of \(\mathbb{R}^k \) and \(d \) is a nonzero integer.
Proof. Suppose that A is a subset of $\{1, 2, \ldots, N\}^k$ of size δN^k, and that A contains no configuration of the kind claimed. Define a $(k+1)$-partite k-graph F_k with vertex sets X_1, \ldots, X_{k+1} as follows. If $j < k$ then the elements of X_j are hyperplanes of the form $P_{j,m} = \{(x_1, \ldots, x_k) : x_j = m\}$ for some integer $m \in \{1, 2, \ldots, N\}$. If $j = k$ then they are hyperplanes of the form $Q_m = \{(x_1, \ldots, x_k) : x_1 + \cdots + x_k = m\}$ where m is an integer between k and kN. The edges of F_k are sets of k hyperplanes from different sets X_j that intersect in a point of A.

If F_k contains a simplex with vertices P_{j,m_j} and Q_m, then the points (m_1, \ldots, m_k) and $(m_1, \ldots, m_k) + (m - \sum_{i=1}^k m_i)e_j$ all belong to A. This gives us a configuration of the desired kind except in the degenerate case where $m = \sum_{i=1}^k m_i$, which is the case where all $k+1$ hyperplanes have a common intersection. By our assumption on A, all the simplices in F_k are therefore degenerate ones of this kind, which implies that there are at most δN^k of them.

Now $|X_i| = N$ if $i < k$ and $|X_{k+1}| = kN$. We can therefore apply (the contrapositive of) Theorem 10.1 with $c = N^{-1}k^{-1}$. If N is sufficiently large, then the resulting a is smaller than $\delta/2k$, which implies that we can remove fewer than δN^k edges from the hypergraph F_k and thereby remove all simplices. However, every edge of a degenerate simplex determines the point of intersection of the $k+1$ hyperplanes and hence the simplex itself. It follows that one must remove at least δN^k edges to get rid of all simplices. This contradiction proves the theorem.

The above result is a special case of the multidimensional Szemerédi theorem, but it is in fact equivalent to the whole theorem. This is a well-known observation. We give a (slightly sketchy) proof below.

Theorem 10.3. For every $\delta > 0$, every positive integer r and every finite subset $X \subset \mathbb{Z}^r$ there is a positive integer N such that every subset A of the grid $\{1, 2, \ldots, N\}^r$ of size at least δN^r has a subset of the form $a + dX$ for some positive integer d.

Proof. It is clearly enough to prove the result for sets X such that $X = -X$, so all we actually need to ensure is that $d \neq 0$. A simple averaging argument shows that we may also assume that X is not contained in any $(r-1)$-dimensional subspace of \mathbb{R}^r. Let the cardinality of X be $k+1$. Let ϕ be an affine map that defines a bijection from the set $\{0, e_1, \ldots, e_k\} \subset \mathbb{R}^k$ to X, regarded as a subset of \mathbb{R}^r. Another simple averaging argument allows us to find a grid $\{1, 2, \ldots, M\}^k$, where M tends to infinity with N, as well as a point $z \in \mathbb{Z}^r$ and a constant $\eta > 0$ depending on δ and X only, such that $z + \phi(x) \in A$ for at least ηM^k points in $\{1, 2, \ldots, M\}^k$. Let B be the set of points with this property. Thus, B has density at least η and Theorem 10.2 shows that B contains a set.
of the form \(w + c\{0, e_1, \ldots, e_k\} \). But then \(z + \phi(w + c\{0, e_1, \ldots, e_k\}) \) is a set of the form \(a + dX \) and is also a subset of \(A \). \(\square \)

Concluding remarks. This paper has a slightly strange history, which may be worth briefly outlining here. The main results were first obtained in 2003, and a preprint circulated. I am very grateful indeed to Yoshiyasu Ishigami, who read this preprint carefully and found an error which, though it did not invalidate the approach, occurred early in the argument and therefore necessitated changes throughout the paper. While thinking about how to go about this rewriting, I discovered a much simpler proof of the counting lemma, and in the end it seemed best, even if depressing, to rewrite the whole paper (including the regularity part) from scratch.

I owe a second debt of gratitude to the two referees, who also read the paper with great care. Not only did they save me from a large number of minor errors, but they also made valuable suggestions about the presentation of the paper. While thinking about how to respond to these suggestions I realized, with a certain sense of déjà vu, that the sections on the counting lemma could still be greatly improved. The argument that now appears is essentially the same, but the notation has been changed and the triple induction slightly reorganized, with the result that the proof is now shorter, clearer, and easier to identify with the arguments presented in the special cases in Section 2. That section, as was mentioned in the footnote at the beginning of it, was not in the original version of the paper. The excellent idea of presenting some small examples was suggested by one of the referees.

In 2005, Tao [T] gave another proof of the main result of this paper (Theorem 10.1), and indeed of a slight generalization. He too proved regularity and counting lemmas. His methods were more closely related to those of Nagle, Rödl, Schacht and Skokan, but he introduced some new ideas and a different language that led to considerably shorter proofs than theirs.

(Received April 25, 2005)