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The Hasse principle for
pairs of diagonal cubic forms

By Jörg Brüdern and Trevor D. Wooley*

Abstract

By means of the Hardy-Littlewood method, we apply a new mean value
theorem for exponential sums to confirm the truth, over the rational numbers,
of the Hasse principle for pairs of diagonal cubic forms in thirteen or more
variables.

1. Introduction

Early work of Lewis [14] and Birch [3], [4], now almost a half-century
old, shows that pairs of quite general homogeneous cubic equations possess
non-trivial integral solutions whenever the dimension of the corresponding in-
tersection is suitably large (modern refinements have reduced this permissible
affine dimension to 826; see [13]). When s is a natural number, let aj , bj

(1 ≤ j ≤ s) be fixed rational integers. Then the pioneering work of Davenport
and Lewis [12] employs the circle method to show that the pair of simultaneous
diagonal cubic equations

a1x
3
1 + a2x

3
2 + . . . + asx

3
s = b1x

3
1 + b2x

3
2 + . . . + bsx

3
s = 0,(1.1)

possess a non-trivial solution x ∈ Zs \ {0} provided only that s ≥ 18. Their
analytic work was simplified by Cook [10] and enhanced by Vaughan [16];
these authors showed that the system (1.1) necessarily possesses non-trivial
integral solutions in the cases s = 17 and s = 16, respectively. Subject to a
local solubility hypothesis, a corresponding conclusion was obtained for s = 15
by Baker and Brüdern [2], and for s = 14 by Brüdern [5]. Our purpose in
this paper is the proof of a similar result that realises the sharpest conclusion
attainable by any version of the circle method as currently envisioned, even
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if one were to be equipped with the most powerful mean value estimates for
Weyl sums conjectured to hold.

Theorem 1. Suppose that s ≥ 13, and that aj , bj ∈ Z (1 ≤ j ≤ s). Then
the pair of equations (1.1) has a non-trivial solution in rational integers if and
only if it has a non-trivial solution in the 7-adic field. In particular, the Hasse
principle holds for the system (1.1) provided only that s ≥ 13.

When s ≥ 13, the conclusion of Theorem 1 confirms the Hasse principle
for the system (1.1) in a particularly strong form: any local obstruction to
solubility must necessarily be 7-adic. Similar conclusions follow from the earlier
cited work of Baker and Brüdern [2] and Brüdern [5] under the more stringent
conditions s ≥ 15 and s ≥ 14, respectively.

The conclusion of Theorem 1 is best possible in several respects. First,
when s = 12, there may be arbitrarily many p-adic obstructions to global
solubility. For example, let S denote any finite set of primes p ≡ 1 (mod 3),
and write q for the product of all the primes in S. Choose any number a ∈ Z

that is a cubic non-residue modulo p for all p ∈ S, and consider the form

Ψ(x1, . . . , x6) = (x3
1 − ax3

2) + q(x3
3 − ax3

4) + q2(x3
5 − ax3

6).

For any p ∈ S, the equation Ψ(x1, . . . , x6) = 0 has no solution in Qp other
than the trivial one, and hence the same is true of the pair of equations

Ψ(x1, . . . , x6) = Ψ(x7, . . . , x12) = 0.

In addition, the 7-adic condition in the statement of Theorem 1 cannot be
removed. Davenport and Lewis [12] observed that when

Ξ(x1, . . . , x5) =x3
1 + 2x3

2 + 6x3
3 − 4x3

4,

H(x1, . . . , x5) = x3
2 + 2x3

3 + 4x3
4 + x3

5,

then the pair of equations in 15 variables given by

Ξ(x1, . . . , x5) + 7Ξ(x6, . . . , x10) + 49Ξ(x11, . . . , x15) = 0,

H(x1, . . . , x5) + 7H(x6, . . . , x10) + 49H(x11, . . . , x15) = 0

has no non-trivial solutions in Q7. In view of these examples, the state of
knowledge concerning the local solubility of systems of the type (1.1) may be
regarded as having been satisfactorily resolved in all essentials by Davenport
and Lewis, and by Cook, at least when s ≥ 13. Davenport and Lewis [12]
showed first that whenever s ≥ 16, there are non-trivial solutions of (1.1)
in any p-adic field. Later, Cook [11] confirmed that such remains true for
13 ≤ s ≤ 15 provided only that p �= 7.

Our proof of Theorem 1 uses analytic tools, and in particular employs the
circle method. It is a noteworthy feature of our techniques that the method,
when it succeeds at all, provides a lower bound for the number of integral
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solutions of (1.1) in a large box that is essentially best possible. In order to
be more precise, when P is a positive number, denote by N (P ) the number of
integral solutions (x1 . . . , xs) of (1.1) with |xj | ≤ P (1 ≤ j ≤ s). Then provided
that there are solutions of (1.1) in every p-adic field, the principles underlying
the Hardy-Littlewood method suggest that an asymptotic formula for N (P )
should hold in which the main term is of size P s−6. We are able to confirm
the lower bound N (P ) � P s−6 implicit in the latter prediction whenever the
intersection (1.1) is in general position. This observation is made precise in
the following theorem.

Theorem 2. Let s be a natural number with s ≥ 13. Suppose that
ai, bi ∈ Z (1 ≤ i ≤ s) satisfy the condition that for any pair (c, d) ∈ Z2\{(0, 0)},
at least s−5 of the numbers caj +dbj (1 ≤ j ≤ s) are non-zero. Then provided
that the system (1.1) has a non-trivial 7-adic solution, one has N (P ) � P s−6.

The methods employed by earlier writers, with the exception of Cook [10],
were not of sufficient strength to provide a lower bound for N (P ) attaining
the order of magnitude presumed to reflect the true state of affairs.

The expectation discussed in the preamble to the statement of Theorem 2
explains the presumed impossibility of a successful application of the circle
method to establish analogues of Theorems 1 and 2 with the condition s ≥ 13
relaxed to the weaker constraint s ≥ 12. For it is inherent in applications of
the circle method to problems involving equations of degree exceeding 2 that
error terms arise of size exceeding the square-root of the number of choices for
all of the underlying variables. In the context of Theorem 2, the latter error
term will exceed a quantity of order P s/2, while the anticipated main term in
the asymptotic formula for N (P ) is of order P s−6. It is therefore apparent that
this latter term cannot be expected to majorize the error term when s ≤ 12.

The conclusion of Theorem 2 is susceptible to some improvement. The
hypotheses can be weakened so as to require that only seven of the numbers
caj + dbj (1 ≤ j ≤ s) be non-zero for all pairs (c, d) ∈ Z2 \ {(0, 0)}; however,
the extra cases would involve us in a lengthy additional discussion within the
circle method analysis to follow, and as it stands, Theorem 2 suffices for our
immediate purpose. For a refinement of Theorem 2 along these lines, we refer
the reader to our forthcoming communication [8].

In the opposite direction, we note that the lower bound recorded in the
statement of Theorem 2 is not true without some condition on the coefficients
of the type currently imposed. In order to see this, consider the form Ψ(x)
defined by

Ψ(x1, x2, x3, x4) = 5x3
1 + 9x3

2 + 10x3
3 + 12x3

4.

Cassels and Guy [9] showed that although the equation Ψ(x) = 0 admits non-
trivial solutions in every p-adic field, there are no such solutions in rational
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integers. Consequently, for any choice of coefficients b ∈ (Z\{0})s, the number
of solutions N (P ) associated with the pair of equations

Ψ(x1, x2, x3, x4) = b1x
3
1 + b2x

3
2 + . . . + bsx

3
s = 0(1.2)

is equal to the number of integral solutions (x5, . . . , xs) of the single equation
b5x

3
5+. . .+bsx

3
s = 0, with |xi| ≤ P (5 ≤ i ≤ s). For the system (1.2), therefore,

it follows from the methods underlying [17] that N (P ) � P s−7 whenever s ≥
12. In circumstances in which the system (1.2) possesses non-singular p-adic
solutions in every p-adic field, the latter is of smaller order than the prediction
N (P ) � P s−6, consistent with the conclusion of Theorem 2 that is motivated
by a consideration of the product of local densities. Despite the abundance of
integral solutions of the system (1.2) for s ≥ 12, weak approximation also fails.
In contrast, with some additional work, our proof of Theorem 2 would extend
to establish weak approximation for the system (1.1) without any alteration
of the conditions currently imposed. Perhaps weak approximation holds for
the system (1.1) with the hypotheses of Theorem 2 relaxed so as to require
only that for any (c, d) ∈ Z2 \ {(0, 0)}, at least five of the numbers caj + dbj

(1 ≤ j ≤ s) are non-zero. However, in order to prove such a conclusion, it seems
necessary first to establish that weak approximation holds for diagonal cubic
equations in five or more variables. Swinnerton-Dyer [15] has recently obtained
such a result subject to the as yet unproven finiteness of the Tate-Shafarevich
group for elliptic curves over quadratic fields.

This paper is organised as follows. In the next section, we announce
the two mean value estimates that embody the key innovations of this paper;
these are recorded in Theorems 3 and 4. Next, in Section 3, we introduce
a new method for averaging Fourier coefficients over thin sequences, and we
apply it to establish Theorem 3. Though motivated by recent work of Wooley
[25] and Brüdern, Kawada and Wooley [6], this section contains the most novel
material in this paper. In Section 4, we derive Theorem 4 as well as some other
mean value estimates that all follow from Theorem 3. Then, in Section 5, we
prepare the stage for a performance of the Hardy-Littlewood method that
ultimately establishes Theorem 2. The minor arcs require a rather delicate
pruning argument that depends heavily on two innovations for smooth cubic
Weyl sums from our recent paper [7]. For more detailed comments on this
matter, the reader is directed to Section 6, where the pruning is executed,
and in particular to the comments introducing Section 6. The analysis of the
major arcs is standard, and deserves only the abbreviated discussion presented
in Section 7. In the final section, we derive Theorem 1 from Theorem 2.

Throughout, the letter ε will denote a sufficiently small positive number.
We use 	 and � to denote Vinogradov’s well-known notation, implicit con-
stants depending at most on ε, unless otherwise indicated. In an effort to
simplify our analysis, we adopt the convention that whenever ε appears in a
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statement, then we are implicitly asserting that for each ε > 0 the statement
holds for sufficiently large values of the main parameter. Note that the “value”
of ε may consequently change from statement to statement, and hence also the
dependence of implicit constants on ε. Finally, from time to time we make
use of vector notation in order to save space. Thus, for example, we may
abbreviate (c1, . . . , ct) to c.

2. A twelfth moment of cubic Weyl sums

In this section we describe the new ingredients employed in our application
of the Hardy-Littlewood method to prove Theorem 2. The success of the
method depends to a large extent on a new mean value estimate for cubic
Weyl sums that we now describe. When P and R are real numbers with
1 ≤ R ≤ P , define the set of smooth numbers A(P, R) by

A(P, R) = {n ∈ N ∩ [1, P ] : p|n implies p ≤ R},
where, here and later, the letter p is reserved to denote a prime number. The
smooth Weyl sum h(α) = h(α;P, R) central to our arguments is defined by

h(α;P, R) =
∑

x∈A(P,R)

e(αx3),

where here and hereafter we write e(z) for e2πiz. An upper bound for the
sixth moment of this sum is crucial for the discourse to follow. In order to
make our conclusions amenable to possible future progress, we formulate the
main estimate explicitly in terms of the sixth moment of h(α). It is therefore
convenient to refer to an exponent ξ as admissible if, for each positive number
ε, there exists a positive number η = η(ε) such that, whenever 1 ≤ R ≤ P η,
one has the estimate ∫ 1

0
|h(α;P, R)|6 dα 	 P 3+ξ+ε.(2.1)

Lemma 1. The number ξ = (
√

2833 − 43)/41 is admissible.

This is the main result of [22]. Since (
√

2833 − 43)/41 = 0.2494 . . . ,
it follows that there exist admissible exponents ξ with ξ < 1/4, a fact of
importance to us later. The first admissible exponent smaller than 1/4 was
obtained by Wooley [21].

Next, when a, b, c, d ∈ Z and B is a finite set of integers, we define the
integral

I(a, b, c, d) =
∫ 1

0

∫ 1

0
|h(aα)h(bβ)|5

∣∣∣ ∑
z∈B

e
(
(cα + dβ)z3

)∣∣∣2 dα dβ.(2.2)
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We may now announce our central auxiliary mean value estimate, which we
prove in Section 3.

Theorem 3. Suppose that a, b, c, d are non-zero integers, and that B ⊆
[1, P ]∩Z. Then for each admissible exponent ξ, and for each positive number ε,
there exists a positive number η = η(ε) such that, whenever 1 ≤ R ≤ P η, one
has

I(a, b, c, d) 	 P 6+ξ+ε.

If one takes B = A(P, R), then the conclusion of Theorem 3 yields the
estimate ∫ 1

0

∫ 1

0
|h(aα)5h(bβ)5h(cα + dβ)2| dα dβ 	 P 6+ξ+ε.(2.3)

While this bound suffices for the applications discussed in this paper, the
more general conclusion recorded in Theorem 3 is required in our forthcoming
article [8]. We note that previous writers would apply Hölder’s inequality and
suitable changes of variable so as to bound the left-hand side of (2.3) in terms
of factorisable double integrals of the shape∫ 1

0

∫ 1

0
|h(Aα)h(Bβ)|6 dα dβ,(2.4)

with suitable fixed integers A and B satisfying AB �= 0. The latter integral may
be estimated via the inequality (2.1), and thereby workers hitherto would derive
an upper bound of the shape (2.3), but with the exponent 6+2ξ +ε in place of
6 + ξ + ε. Underpinning these earlier strategies are mean values involving two
linearly independent linear forms in α and β, these being reducible to the shape
(2.4). In contrast, our approach in this paper makes crucial use of the presence
within the mean value (2.3) of three pairwise linearly independent linear forms
in α and β, and we save a factor of P ξ by exploiting the extra structure
inherent in such mean values. It is worth noting that the existence of an upper
bound for the mean value (2.4) of order P 6+2ξ+ε is essentially equivalent to
the validity of the estimate (2.1), and thus the strategy underlying the proof of
Theorem 3 is inherently superior to that applied by previous authors whenever
the sharpest available admissible exponent ξ is non-zero.

As another corollary of Theorem 3, we derive a more symmetric twelfth
moment estimate in Section 4 below.

Theorem 4. Suppose that ci, di (1 ≤ i ≤ 3) are integers satisfying the
condition

(c1d2 − c2d1)(c1d3 − c3d1)(c2d3 − c3d2) �= 0.(2.5)

Write Λj = cjα + djβ (1 ≤ j ≤ s). Then for each admissible exponent ξ, and
for each positive number ε, there exists a positive number η = η(ε) such that,
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whenever 1 ≤ R ≤ P η, one has the estimates∫ 1

0

∫ 1

0
|h(Λ1)5h(Λ2)5h(Λ3)2| dα dβ 	 P 6+ξ+ε(2.6)

and ∫ 1

0

∫ 1

0
|h(Λ1)h(Λ2)h(Λ3)|4 dα dβ 	 P 6+ξ+ε.(2.7)

Note that the integral estimated in (2.7) has a natural interpretation as the
number of solutions of a pair of diophantine equations, an advantageous feature
absent from both (2.3) and (2.6). We remark also that conclusions analogous to
those recorded in Theorems 3 and 4 may be derived with the cubic exponential
sums replaced by sums of higher degree. Indeed, both the conclusions and their
proofs are essentially identical with those presented in this paper, save that
the admissible exponent ξ herein is replaced by one depending on the degree
in question.

3. Averaging Fourier coefficients over thin sequences

Our objective in this section is the proof of Theorem 3. We assume
throughout that the hypotheses of the statement of Theorem 3 are satisfied.
Thus, in particular, we may suppose that ξ is admissible, and that η = η(ε) is a
positive number sufficiently small that the estimate (2.1) holds. When n ∈ Z,
we let r(n) denote the number of representations of n in the form n = x3 − y3,
with x, y ∈ B. It follows that∣∣∣ ∑

z∈B
e(γz3)

∣∣∣2 =
∑

|n|≤P 3

r(n)e(−γn).(3.1)

We apply this formula to achieve a simple preliminary transformation of the
integral I(a, b, c, d) defined in (2.2). In this context, when l ∈ Z we write

ψl(m) =
∫ 1

0
|h(lα)|5e(−αm)dα.(3.2)

Given B ⊆ [1, P ]∩Z, the application of (3.1) within (2.2) leads to the relation

I(a, b, c, d) =
∑

|n|≤P 3

r(n)
∫ 1

0

∫ 1

0
|h(aα)|5|h(bβ)|5e(−cnα)e(−dnβ) dα dβ

=
∑

|n|≤P 3

r(n)ψa(cn)ψb(dn).
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Observe from (3.2) that ψl(m) is real for any pair of integers l and m. Then
by Cauchy’s inequality, we derive the basic estimate

I(a, b, c, d) 	
( ∑

|n|≤P 3

r(n)ψa(cn)2
)1/2( ∑

|n|≤P 3

r(n)ψb(dn)2
)1/2

.(3.3)

Further progress now depends on a new method for counting integers
in thin sequences for which certain arithmetically defined Fourier coefficients
are abnormally large. Recent work of Wooley [25] provides a framework for
providing good estimates for the number of integers having unusually many
representations as the sum of a fixed number of cubes. In a different direction,
the discussion in Brüdern, Kawada and Wooley [6] supplies a strategy for
bounding similar exceptional sets over thin sequences. Motivated by such
arguments, we study the Fourier coefficients ψl(km) for fixed integers l and k,
and in Lemma 2 below we estimate the number of occurrences of large values
of |ψl(kn)| as n varies over the set Z = {n ∈ Z : r(n) > 0}. This information
is then converted, in Lemma 3, into a mean square bound for ψl(kn) averaged
over Z. Suitably positioned to bound the sums on the right-hand side of (3.3),
the proof of Theorem 3 is swiftly completed.

Before advancing to establish Lemma 2, we require some notation. When
l and k are fixed integers and T is a non-negative real number, we define the
set Z(T ) = Zl,k(T ) by

Zl,k(T ) = {n ∈ Z : |ψl(kn)| > T}.

For the remainder of this section we assume that our basic parameter P is a
large positive number, and that l and k are fixed non-zero integers.

Lemma 2. Whenever δ is a positive number and T ≥ P 2+ξ/2+δ, one has
the upper bound card(Z(T )) 	 P 6+ξ+εT−2.

Proof. We define the coefficient σm for each integer m by means of the
relation ψl(m) = σm|ψl(m)| when ψl(m) �= 0, and otherwise by putting σm = 0.
Since Z ⊆ [−P 3, P 3], we can define the finite exponential sum

KT (α) =
∑

n∈Z(T )

σkne(−knα).

In view of (3.2), it follows that∑
n∈Z(T )

|ψl(kn)| =
∫ 1

0
|h(lα)|5KT (α)dα.(3.4)

At this point, in the interest of brevity, we write ZT = card(Z(T )). Then the
left-hand side of (3.4) must exceed TZT , whence Schwarz’s inequality yields
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the bound

TZT ≤
(∫ 1

0
|h(lα)|6dα

)1/2 (∫ 1

0
|h(lα)4KT (α)2|dα

)1/2

.(3.5)

By (2.1) and a transparent change of variable, the first integral on the
right-hand side of (3.5) is O(P 3+ξ+ε). In order to estimate the second inte-
gral, one first applies Weyl’s differencing lemma to |h(lα)|4 (see Lemma 2.3 of
[19]), and then interprets the resulting expression in terms of the underlying
diophantine equation. Thus, one obtains∫ 1

0
|h(lα)4KT (α)2|dα 	 P ε(P 3ZT + PZ2

T ).(3.6)

For full details of this estimation, we refer the reader to Lemma 2.1 of Wooley
[24], where a proof is described in the special case l = 1 that readily extends
to the present situation. As an alternative, we direct the reader to the method
of proof of Lemma 5.1 of [23]. Collecting together (3.5) and (3.6), we conclude
that

TZT 	 P 3/2+ξ/2+ε(P 3ZT + PZ2
T )1/2 = P 3+ξ/2+εZ

1/2
T + P 2+ξ/2+εZT .

The proof of the lemma is completed by recalling our assumption that T >

P 2+ξ/2+δ, where δ is a positive number that we may suppose to exceed 2ε.

Lemma 3. One has
∑

n∈Z
ψl(kn)2 	 P 6+ξ+ε.

Proof. Our discussion is facilitated by a division of the set Z into various
subsets. To this end, we fix a positive number δ and define

Y0 = {n ∈ Z : |ψl(kn)| ≤ P 2+ξ/2+δ}.(3.7)

Also, when T ≥ 1, we put Y(T ) = {n ∈ Z : T < |ψl(kn)| ≤ 2T}. On noting
the trivial upper bound card(Z) ≤ P 2, it is apparent from (3.7) that∑

n∈Y0

ψl(kn)2 ≤ P 2(P 2+ξ/2+δ)2 	 P 6+ξ+2δ.(3.8)

The bound |ψl(kn)| ≤ P 5, on the other hand, valid uniformly for n ∈ Z, follows
from (3.2) via the triangle inequality. A familiar argument involving a dyadic
dissection therefore establishes that for some number T with P 2+ξ/2+δ ≤ T

≤ P 5, one has∑
n∈Z

ψl(kn)2 	
∑
n∈Y0

ψl(kn)2 + (log P )
∑

n∈Y(T )

ψl(kn)2.(3.9)

But Y(T ) ⊆ Z(T ), and so it follows from Lemma 2 that∑
n∈Y(T )

ψl(kn)2 ≤ (2T )2card(Z(T )) 	 P 6+ξ+ε.(3.10)



874 JÖRG BRÜDERN AND TREVOR D. WOOLEY

The conclusion of Lemma 3 is obtained by substituting (3.8) and (3.10) into
(3.9), and then taking δ = ε/2.

Lemma 4. One has
∑

|n|≤P 3

r(n)ψl(kn)2 	 P 6+ξ+ε.

Proof. We begin by noting that a simple divisor argument shows that
whenever m is a non-zero integer, then r(m) = O(P ε). Since also r(0) ≤ P ,
we find that ∑

|n|≤P 3

r(n)ψl(kn)2 	 Pψl(0)2 + P ε
∑
n∈Z

ψl(kn)2.(3.11)

On recalling (3.2), moreover, it follows from a change of variable in combination
with Schwarz’s inequality that

ψl(0) =
∫ 1

0
|h(lα)|5dα ≤

(∫ 1

0
|h(α)|4dα

)1/2 (∫ 1

0
|h(α)|6dα

)1/2

.(3.12)

The first integral on the right-hand side of (3.12) may be estimated by means
of Hua’s Lemma (see [19, Lemma 2.5]), and the second via (2.1). Thus we find
that

ψl(0)2 	 (P 2+ε)(P 3+ξ+ε) = P 5+ξ+2ε.

The proof of the lemma is completed by substituting the latter bound, together
with the estimate provided by Lemma 3, into the relation (3.11).

In order to establish Theorem 3, we have merely to apply Lemma 4 with
(l, k) equal to (a, c) and (b, d) respectively, and then make use of the inequality
(3.3).

4. Some mean value estimates

At this point it is convenient to explore some consequences of Theorem 3
that are relevant for our later proceedings. We suppose throughout this section
that ξ is admissible, and that η = η(ε) is a positive number sufficiently small
that the estimate (2.1) holds. We begin by deriving Theorem 4, and here we
make use of the notation introduced in the statement of this theorem presented
in Section 2.

The proof of Theorem 4. When k is an integer with 1 ≤ k ≤ 3, let i and
j be integers for which {i, j, k} = {1, 2, 3}, and write

Jk =
∫ 1

0

∫ 1

0
|h(Λi)5h(Λj)5h(Λk)2| dα dβ.(4.1)

Then it follows from Hölder’s inequality that∫ 1

0

∫ 1

0
|h(Λ1)h(Λ2)h(Λ3)|4dα dβ ≤ (J1J2J3)1/3.(4.2)
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The conclusion of Theorem 4 is immediate from the estimate Jk = O(P 6+ξ+ε)
(1 ≤ k ≤ 3), which we now seek to establish.

By way of example we estimate J3. Corresponding estimates for J1 and J2

follow by symmetrical arguments. We begin by observing that the hypotheses
of Theorem 4 ensure that any two of the linear forms Λ1, Λ2 and Λ3 are linearly
independent, whence there are non-zero integers A, B and C, depending at
most on c and d, for which CΛ3 = AΛ1 + BΛ2. Making use of the periodicity
(with period 1) of the integrand in (4.1), and changing variables, one therefore
finds that

J3 = C−2

∫ C

0

∫ C

0
|h(Λ1)5h(Λ2)5h(Λ3)2| dα dβ(4.3)

=
∫ 1

0

∫ 1

0
|h(CΛ1)5h(CΛ2)5h(AΛ1 + BΛ2)2| dα dβ.

Now change the variables of integration from (α, β) to (Λ1,Λ2), and observe
that the resulting range of integration becomes a parallelogram contained in
a square with sides of integral length parallel to the coordinate axes of the
(Λ1,Λ2)-plane. Plainly, moreover, the dimensions of this square depend at
most on c and d. Making use again of the periodicity (with period 1) of the
integrand, we thus obtain the estimate

J3 	
∫ 1

0

∫ 1

0
|h(CΛ1)5h(CΛ2)5h(AΛ1 + BΛ2)2| dΛ1 dΛ2.

The upper bound J3 = O(P 6+ξ+ε) now follows from the consequence (2.3) of
Theorem 3, and on making use of the corresponding symmetrical bounds for
J1 and J2, the conclusion of Theorem 4 is immediate from (4.2).

In preparation for the next lemma, we record an elementary estimate of
utility in the arguments to follow that involve some level of combinatorial
complexity.

Lemma 5. Let k and N be natural numbers, and suppose that B ⊆ Rk

is measurable. Let ui(z) (0 ≤ i ≤ N) be complex-valued functions of B. Then
whenever the functions |u0(z)uj(z)N | (1 ≤ j ≤ N) are integrable on B, one
has the upper bound∫

B

|u0(z)u1(z) . . . uN (z)| dz ≤ N max
1≤j≤N

∫
B

|u0(z)uj(z)N |dz.

Proof. The desired conlcusion is immediate from the inequality |ζ1ζ2 . . . ζN |
≤ |ζ1|N + |ζ2|N + · · · + |ζN |N that is valid for any complex numbers ζi (1 ≤ i

≤ N).

The next lemma contains (2.3) and Theorem 4 as special cases, and yet
has a shape sufficiently general that it may be easily applied in what follows.
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In order to describe the conclusion of this lemma, we consider integers cj and
dj with (cj , dj) �= (0, 0) (1 ≤ j ≤ 12). To each pair (cj , dj) we associate the
linear form Λj = cjα+djβ. We describe two such forms Λi and Λj as equivalent
when there exists a non-zero rational number λ with Λi = λΛj . This notion
plainly defines an equivalence relation on the set {Λ1, . . . ,Λ12}, and we refer
to the number of elements in the equivalence class containing the form Λj as
its multiplicity. Finally, in order to promote concision, for each index l we
abbreviate |h(Λl)| simply to hl.

Lemma 6. In the setting described in the preamble to this lemma, suppose
that the multiplicities of the linear forms Λ1, . . . ,Λ12 are at most 5. Then∫ 1

0

∫ 1

0
h1h2 . . . h12 dα dβ 	 P 6+ξ+ε.

Proof. Consider the situation in which the number of equivalence classes
amongst Λ1, . . . ,Λ12 is t. By relabelling indices if necessary, we may suppose
that representatives of these equivalence classes are Λ1, . . . ,Λt. For each in-
dex i, let ri denote the number of linear forms amongst Λ1, . . . ,Λ12 equivalent
to Λi. Then in view of the hypotheses of the lemma, we may relabel indices so
as to ensure that

1 ≤ rt ≤ rt−1 ≤ . . . ≤ r1 ≤ 5 and r1 + r2 + · · · + rt = 12.(4.4)

Next, for a given index i with 1 ≤ i ≤ t, consider the linear forms Λlj (1 ≤
j ≤ ri) equivalent to Λi. Apply Lemma 5 with N = ri, with hlj in place of
uj (1 ≤ j ≤ N), and with u0 replaced by the product of those hl with Λl

not equivalent to Λi. Then it is apparent that there is no loss of generality
in supposing that Λlj = Λi (1 ≤ j ≤ ri). By repeating this argument for
successive equivalence classes, moreover, we find that∫ 1

0

∫ 1

0
h1 . . . h12 dα dβ 	

∫ 1

0

∫ 1

0
hr1

1 . . . hrt

t dα dβ.(4.5)

A further simplification neatly sidesteps combinatorial complications. Let
ν be a non-negative integer, and suppose that rt−1 = rt +ν < 5. Then we may
apply Lemma 5 with N = ν + 2, with ht−1 in place of ui (1 ≤ i ≤ ν + 1) and
ht in place of uN , and with u0 set equal to

hr1
1 hr2

2 . . . h
rt−2

t−2 h
rt−1−ν−1
t−1 hrt−1

t .

Here, and in what follows, we interpret the vanishing of any exponent as in-
dicating that the associated exponential sum is deleted from the product. In
this way we obtain an upper bound of the shape (4.5) in which the exponents
rt−1 and rt = rt−1 − ν are replaced by rt−1 + 1 and rt − 1, respectively, or else
by rt−1 − ν − 1 and rt + ν + 1. By relabelling if necessary, we derive an upper
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bound of the shape (4.5), subject to the constraints (4.4), wherein either the
parameter rt is reduced, or else the parameter t is reduced. By repeating this
process, therefore, we ultimately arrive at a situation in which rt−1 = 5, and
then the constraints (4.4) imply that necessarily (r1, r2, . . . , rt) = (5, 5, 2). The
conclusion of the lemma is now immediate from (4.5) on making use of the
estimate (2.6) of Theorem 4.

As is often the case with applications of the circle method, it is desir-
able to have available a sharp upper bound bought with additional generating
functions. We begin with an auxiliary lemma analogous to Theorem 4. In this
context we take m to be the set of real numbers α ∈ [0, 1) such that, whenever
a ∈ Z and q ∈ N satisfy (a, q) = 1 and |qα−a| ≤ P−9/4, then one has q > P 3/4.
We then put M = [0, 1) \ m.

Lemma 7. Suppose that ci, di (1 ≤ i ≤ 3) are integers satisfying the
condition (2.5). Then, in the notation employed in the statement of Theorem 4,∫ 1

0

∫ 1

0
h6

1h
6
2h

2
3 dα dβ 	 P 8.

Proof. We observe that the argument leading from (4.1) to (4.3) reveals
first that there are non-zero integers A, B and C for which CΛ3 = AΛ1 +BΛ2,
and then via a change of variables that∫ 1

0

∫ 1

0
h6

1h
6
2h

2
3 dα dβ 	 I1(A, B, C),(4.6)

where we write

I1(A, B, C) =
∫ 1

0

∫ 1

0
|h(Cα)6h(Cβ)6h(Aα + Bβ)2| dα dβ.(4.7)

By orthogonality, the mean value I1(A, B, C) is bounded above by the number
of integral solutions of the diophantine system

A−1
3∑

i=1

(x3
2i−1 − x3

2i) = B−1
3∑

i=1

(y3
2i−1 − y3

2i) = C−1(z3
1 − z3

2),

with 1 ≤ x1, y1 ≤ P and xj , yj , zl ∈ A(P, R) (2 ≤ j ≤ 6, 1 ≤ l ≤ 2). We now
introduce the classical Weyl sum

f(α) =
∑

1≤x≤P

e(αx3),

and define the mean value I2(B) = I2(B;A, B, C), for a measurable set B, by

I2(B) =
∫∫

B

|f(Cα)f(Cβ)h(Cα)5h(Cβ)5h(Aα + Bβ)2| dα dβ.(4.8)
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Then on applying orthogonality in combination with the triangle inequality,
we may conclude that

I1 ≤ I2([0, 1)2).(4.9)

We estimate the integral on the right-hand side of (4.8) by a simple version
of the circle method. By an enhanced version of Weyl’s inequality (see [17,
Lemma 1]), one readily confirms that whenever a is a fixed non-zero integer,
then

sup
θ∈m

|f(aθ)| 	 P 3/4+ε.(4.10)

In view of the trivial upper bound |f(θ)| ≤ P , one deduces that when (α, β) ∈
[0, 1)2 and the upper bound |f(Cα)f(Cβ)| 	 P 7/4+ε fails to hold, then neces-
sarily (α, β) ∈ M2. Consequently, it follows from (4.8) and (4.9) that

I1 	 P 7/4+ε

∫ 1

0

∫ 1

0
|h(Cα)5h(Cβ)5h(Aα + Bβ)2| dα dβ + I2(M2).(4.11)

On recalling (4.7) and applying Hölder’s inequality to (4.8), one finds that

I2(M2) ≤ I5/6
1

(∫∫
M2

|f(Cα)6f(Cβ)6h(Aα + Bβ)2| dα dβ
)1/6

.

A standard application of the Hardy-Littlewood method (see Chapter 4 of
[19]), moreover, readily confirms that whenever a is a fixed non-zero integer,
one has ∫

M

|f(aθ)|6 dθ 	 P 3.

Thus, on making use of the trivial bound |h(Aα + Bβ)| ≤ P , we see that

I2(M2) 	 I5/6
1 (P 8)1/6.

On substituting the latter relation into (4.11) and recalling the estimate (2.3),
we deduce that for a suitably small positive number δ, one has

I1 	 P 8−δ + P 4/3I5/6
1 ,

whence I1 	 P 8. The conclusion of the lemma is now immediate fom (4.6).

With greater effort one may establish an asymptotic formula for the mean
value recorded in the statement of Lemma 7, thereby confirming that the
upper bound therein is of the correct order of magnitude. Were our estimate
to be weaker by a factor of P ε, our subsequent deliberations would be greatly
complicated.
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5. Preparing the stage for Hardy and Littlewood

We are now equipped with auxiliary mean value estimates sufficient for
our intended task, and so we return to our main concern and count integral
solutions of the system (1.1) via the Hardy-Littlewood method. We suppose
that the hypotheses of the statement of Theorem 2 are satisfied, so that, in
particular, one has s ≥ 13. With the pairs (aj , bj) ∈ Z2 \ {(0, 0)} (1 ≤ j ≤ s),
we associate both the linear forms

Λj = ajα + bjβ (1 ≤ j ≤ s),(5.1)

and the two linear forms L1(θ) and L2(θ) defined for θ ∈ Rs by

L1(θ) =
s∑

j=1

ajθj and L2(θ) =
s∑

j=1

bjθj .(5.2)

Recall the notions of equivalence and multiplicity of linear forms from the
preamble to Lemma 6, and extend these conventions in the natural way so
as to apply to the set {Λ1, . . . ,Λs}. By the hypotheses of the statement of
Theorem 2, one finds that for any pair (c, d) ∈ Z2 \ {(0, 0)}, the linear form
cL1(θ) + dL2(θ) necessarily posesses at least s − 5 non-zero coefficients. By
choosing an appropriate subset S of {1, . . . , s} with card(S) = 13, we may
therefore ensure that at most five of the forms Λj with j ∈ S belong to the
same equivalence class. Suppose that these 13 forms fall into t equivalence
classes, and that the multiplicities of the representatives of these classes are
r1, . . . , rt. In view of our earlier observations, there is no loss of generality in
supposing that 5 ≥ r1 ≥ r2 ≥ . . . ≥ rt and r1 + · · · + rt = 13, and hence,
in addition, that t ≥ 3. With the aim of simplifying our notation, we now
relabel variables in the system (1.1), and likewise in (5.1) and (5.2), so that
the set S becomes {1, 2, . . . , 13}, and so that Λ1 becomes a linear form in the
first equivalence class counted by r1, and Λ2 becomes a form in the second
equivalence class counted by r2.

Next, on taking suitable integral linear combinations of the equations
(1.1), we may suppose without loss that

b1 = a2 = 0.(5.3)

Since we may suppose that a1b2 �= 0, it is now apparent that the simultaneous
equations

L1(θ) = L2(θ) = 0(5.4)

possess a solution θ with θj �= 0 (1 ≤ j ≤ s). We next apply the substitution
xj → −xj for those indices j with 1 ≤ j ≤ s for which θj < 0. Neither the
solubility of the system (1.1), nor the corresponding counting function N (P ),
are affected by this manoeuvre, and yet the transformed linear system associ-
ated with (5.4) has a solution θ with θj > 0 (1 ≤ j ≤ s). The homogeneity
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of the system (5.4) ensures, moreover, that a solution of the latter type may
be chosen with θ ∈ (0, 1)s. We now fix this solution θ, and fix also ε to be a
sufficiently small positive number, and η to be a positive number sufficiently
small in the context of Theorems 3 and 4 and the associated auxiliary mean
value estimates, and so small that one has also η < θj < 1 (1 ≤ j ≤ s). In this
way, we may suppose that the solution θ of the linear system (5.4) satisfies
θ ∈ (η, 1)s.

We are at last prepared to describe our strategy for proving Theorem 2.
We take P to be a positive number sufficiently large in terms of ε, η, a, b and
θ, and we put R = P η. On defining the exponential sum

g(α) =
∑

ηP<x≤P

e(αx3)

and the generating functions

H0(α, β) =
13∏

j=2

h(Λj) and H(α, β) =
s∏

j=2

h(Λj),(5.5)

it follows from orthogonality that

N (P ) ≥
∫ 1

0

∫ 1

0
g(Λ1)H(α, β) dα dβ.(5.6)

We analyse the double integral in (5.6) by means of the Hardy-Littlewood
method. In this context, we put

Q = (log P )1/100,(5.7)

and when a, b ∈ Z and q ∈ N, we define the boxes

N(q, a, b) = {(α, β) ∈ [0, 1)2 : |α − a/q| ≤ QP−3 and |β − b/q| ≤ QP−3}.
Our Hardy-Littlewood dissection is then defined by taking the set N of major
arcs to be the union of the boxes N(q, a, b) with 0 ≤ a, b ≤ q ≤ Q subject to
(a, b, q) = 1, and the minor arcs n to be the complementary set [0, 1)2 \ N.

The contribution to the integral in (5.6) arising from the major arcs N

satisfies the asymptotic lower bound∫∫
N

g(Λ1)H(α, β) dα dβ � P s−6,(5.8)

a fact whose confirmation is the sole objective of Section 7 below. The corre-
sponding contribution of the minor arcs n is asymptotically smaller. Indeed,
in Section 6 we show that∫∫

n

g(Λ1)H(α, β) dα dβ 	 P s−6(log P )−1/140000.(5.9)

The desired conclusion N (P ) � P s−6 is immediate from (5.8) and (5.9) on
recalling that [0, 1)2 is the disjoint union of N and n.
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6. Pruning to the root

Our goal in this section is the proof of the estimate (5.9). On recalling
the definitions (5.5) and making use of the trivial bound |h(γ)| ≤ P , we see
that the desired estimate follows directly from the following lemma, the proof
of which will occupy us for the remainder of this section.

Lemma 8. Under the hypotheses prevailing in the discourse of Section 5,∫∫
n

|g(Λ1)H0(α, β)| dα dβ 	 P 7(log P )−1/140000.(6.1)

The proof of Lemma 8 involves an unconventional pruning exercise. One
gets started rather easily. Recall the major and minor arcs M and m introduced
in the preamble to Lemma 7, and consider the auxiliary sets

e = {(α, β) ∈ n : α ∈ m} and E = {(α, β) ∈ n : α ∈ M}.(6.2)

Then on recalling that Λ1 = a1α, one finds via two applications of (4.10) that

sup
(α,β)∈e

|g(Λ1)| = sup
α∈m

|g(a1α)| 	 P 3/4+ε.

But in view of the definition (5.5), the mean value of H0(α, β) may be estimated
by means of Lemma 6. Thus we deduce that

∫∫
e

|g(Λ1)H0(α, β)| dα dβ 	 P 3/4+ε

∫ 1

0

∫ 1

0
|H0(α, β)| dα dβ 	 P 27/4+ξ+ε.

(6.3)

The treatment of the complementary set E is much harder. Although one
already has the potentially powerful information that α ∈ M, there is presently
no such control available on β. Furthermore, there is only one classical Weyl
sum within the product of generating functions on which one may hope to
exercise useful control. Nonetheless, we are able to set up machinery with
which to prune straight down to the set of narrow arcs N by using two different
devices from our recent work [7] on cubic smooth Weyl sums. We are very
fortunate to be able to borrow from this work, for we have not been successful
in constructing an argument of sufficient strength along more conventional
lines. Appropriate modifications of the aforementioned devices from [7] are
embodied in the following two lemmas.

Lemma 9. Let A be a fixed non-zero rational number, and let δ be a fixed
positive number. Then one has

sup
λ∈R

∫
M

|g(a1θ)|2+δ|h(Aθ + λ)|2 dθ 	 P 1+δ.
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It is noteworthy, and important in our later discussion, that the bound
here has the expected order of magnitude, uninflated by factors of P ε. The
next lemma shares this feature.

Lemma 10. (i) One has∫ 1

0
|h(α)|77/10 dα 	 P 47/10.

(ii) When Λi and Λj are inequivalent, one has∫∫
n

h8
i h

8
j dα dβ 	 P 10Q−3/100.

We postpone the proof of these two lemmas to the end of this section, ini-
tiating at once the estimation of the contribution of the set E within the mean
value on the left-hand side of (6.1). Suppose that the number of equivalence
classes amongst Λ2, . . . ,Λ13 is T . By relabelling variables if necessary, we may
suppose that representatives of these equivalence classes are Λ̃1, Λ̃2, . . . , Λ̃T .
For each index i, let Ri denote the number of linear forms amongst Λ2, . . . ,Λ13

equivalent to Λ̃i. Then in view of the discussion of §5, we may suppose that

1 ≤ RT ≤ RT−1 ≤ . . . ≤ R1 ≤ 5 and R1 + · · · + RT = 12.(6.4)

In addition, since Λ1 has maximum multiplicity amongst Λ1, . . . ,Λ13, and mul-
tiplicity at most 5, we may suppose that

(a) when none of Λ̃1, . . . , Λ̃T are equivalent to Λ1, then necessarily T = 12
and R1 = R2 = · · · = RT = 1, and

(b) when there is a linear form Λ̃j equivalent to Λ1, then necessarily Rj ≤ 4.

Our strategy is to simplify the mean value in question using an argument
akin to that employed in the proof of Lemma 6. First, the argument leading
to (4.5) above in this instance shows that there is no loss of generality in
supposing that∫∫

E

|g(Λ1)H0(α, β)| dα dβ 	
∫∫

E

g1h̃
R1
1 . . . h̃RT

T dα dβ,(6.5)

where here, and in what follows, for each index l we write h̃l in place of |h(Λ̃l)|
and gl in place of |g(Λl)|. Suppose next that we are in the situation (a) above.
We apply Lemma 5 with N = 4, with h̃3l−2h̃3l−1h̃3l in place of ul (1 ≤ l ≤ 4),
and with u0 replaced by g1. By relabelling indices if necessary, we obtain an
upper bound of the shape (6.5) in which the exponent sequence (R1, . . . , RT )
is equal to (4, 4, 4). Now apply Lemma 5 again with N = 2, with h̃l in place of
ul (l = 1, 2), and with u0 replaced by g1h̃

3
1h̃

3
2h̃

4
3. In this way, we conclude that
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there are indices i, j, k with 1 < i < j < k ≤ 13 for which Λi, Λj and Λk are
pairwise inequivalent, and∫∫

E

|g(Λ1)H0(α, β)| dα dβ 	
∫∫

E

g1h
4
i h

5
jh

3
k dα dβ.(6.6)

We note for future reference the trivial observation that Λj is not equivalent
to Λ1.

We analyse the situation (b) by applying an argument paralleling that of
the second paragraph of the proof of Lemma 6, in this instance supposing ν to
be a non-negative integer for which RT−1 = RT +ν < 4, and now incorporating
g1 into the definition of u0. Thus, by relabelling indices if necessary, we derive
a bound of the shape (6.5), subject to the constraints (6.4) and condition (b)
above, wherein RT−1 = 4. The constraints (6.4) then imply that necessar-
ily (R1, R2, . . . , RT ) = (5, 4, 3) or (4, 4, 4). The latter circumstance may be
converted to the former by means of the argument concluding the previous
paragraph, and it is apparent that we may ensure in this process that Λ̃2 re-
mains inequivalent to Λ1. In this second situation, therefore, we may again
conclude that the bound (6.6) holds with Λi,Λj ,Λk pairwise inequivalent, and
with Λj not equivalent to Λ1.

Define the mean values

U =
∫∫

E

g
21/10
1 h2

i h
77/10
j dα dβ, V =

∫∫
E

h8
i h

8
k dα dβ,(6.7)

and, when (l m n) is a permutation of (i j k),

Wlmn =
∫∫

E

h2
l h

6
mh6

n dα dβ.

Then a swift application of Hölder’s inequality to (6.6) leads to the bound∫∫
E

|g(Λ1)H0(α, β)| dα dβ 	 U10/21V 1/42W
3/84
ijk W

35/84
jki W

1/21
kij .(6.8)

The bound V = O(P 10Q−3/100) is immediate from Lemma 10(ii), and when Λl,
Λm and Λn are pairwise inequivalent, Lemma 7 supplies the estimate Wlmn =
O(P 8). Thus we conclude from (6.8) that∫∫

E

|g(Λ1)H0(α, β)| dα dβ 	 P 89/21Q−1/1400U10/21.(6.9)

It remains to estimate the integral U defined in (6.7). We recall that
Λ1 = a1α, and change variables from β to γ via the linear transformation
ajα + bjβ = bjγ. Note here that since Λ1 and Λj are inequivalent, then
necessarily bj �= 0. Write A = ai − biaj/bj . Then in view of the definition (6.2)
of E, we may make use of the periodicity of the integrand to deduce that

U ≤
∫ 1

0

∫
M

|g(Λ1)|21/10|h(Aα + biγ)|2|h(bjγ)|77/10 dα dγ ≤ U1U2,(6.10)
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where we write

U1 =
∫ 1

0
|h(bjγ)|77/10dγ and U2 = sup

λ∈R

∫
M

|g(a1α)|21/10|h(Aα + λ)|2 dα.

An application of Lemma 10(i) reveals, via a change of variable, that U1 =
O(P 47/10), and the bound U2 = O(P 11/10) is immediate from Lemma 9. Thus
we find from (6.9) and (6.10) that∫∫

E

|g(Λ1)H0(α, β)| dα dβ 	 P 89/21Q−1/1400(P 29/5)10/21 	 P 7Q−1/1400.

The conclusion of Lemma 8 now follows directly from (6.2), (6.3) and (5.7).

We complete this section with the proofs of Lemmas 9 and 10.

The proof of Lemma 9. Suppose that λ and δ are real numbers with δ > 0.
Let A be a fixed non-zero rational number, so that for some B ∈ Z \ {0} and
S ∈ N with (B, S) = 1, one has A = B/S. We define the modified set of major
arcs M∗ by putting M∗ = {β ∈ [0, 1) : Sβ ∈ M}. Then a change of variable
yields the relation∫

M

|g(a1θ)|2+δ|h(Aθ + λ)|2 dθ = S

∫
M∗

|g(a1Sβ)|2+δ|h(Bβ + λ)|2 dβ.(6.11)

It follows from the definition of M in the preamble to Lemma 7 that for each
β ∈ M∗, there exist c ∈ Z and r ∈ N with 0 ≤ c ≤ r ≤ P 3/4, (c, r) = 1
and |Sβr − c| ≤ P−9/4. Thus there exist also a ∈ Z and q ∈ N with 0 ≤
a ≤ q ≤ SP 3/4, (a, q) = 1 and |qβ − a| ≤ P−9/4. We now take κ(q) to
be the multiplicative function defined for q ∈ N by taking, for primes p and
non-negative integers l,

κ(p3l) = p−l, κ(p3l+1) = 2p−l−1/2, κ(p3l+2) = p−l−1.

Then as a consequence of Theorem 4.1 and Lemmas 4.3 and 4.4 of [19], one
has

g(a1Sβ)	κ(q)P (1 + P 3|β − a/q|)−1 + q1/2+ε(1 + P 3|β − a/q|)1/2

	κ(q)P (1 + P 3|β − a/q|)−1/2.

We therefore deduce from (6.11) that

(6.12)
∫

M

|g(a1θ)|2+δ|h(Aθ + λ)|2 dθ

	
∑

1≤q≤SP 3/4

(κ(q)P )2+δ
q∑

a=1
(a,q)=1

∫ ∞

−∞

|h (B(a/q + γ) + λ)|2
(1 + P 3|γ|)1+δ/2

dγ.

On making use of the familiar inequality∣∣∣ q∑
a=1

(a,q)=1

e(al/q)
∣∣∣ ≤ (q, l),
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we find that
q∑

a=1
(a,q)=1

|h (B (a/q + γ) + λ)|2 =
∑

x,y∈A(P,R)

q∑
a=1

(a,q)=1

e
(
(x3 − y3) (B (a/q + γ) + λ)

)
≤ |B|

∑
1≤x,y≤P

(x3 − y3, q).

For each natural number q, write q0 for the cubefree part of q, and define the
integer q3 via the relation q = q0q

3
3. Then it follows from the estimate (3.3) of

Brüdern and Wooley [7] that whenever 1 ≤ q ≤ P , one has∑
1≤x,y≤P

(x3 − y3, q) 	 P 2qεq3.

In this way, we may conclude from (6.12) that∫
M

|g(a1θ)|2+δ|h(Aθ + λ)|2 dθ(6.13)

	 P 4+δ
∑

1≤q≤SP 3/4

qεκ(q)2+δq3

∫ ∞

−∞

(
1 + P 3|γ|

)−1−δ/2
dγ

	 P 1+δ
∑

1≤q≤SP 3/4

qεκ(q)2+δq3.

When δ > 3ε, moreover, the sum
∞∑

q=1
qεκ(q)2+δq3 converges, as one readily

verifies on recalling the definition of κ(q). The conclusion of Lemma 9 is now
apparent from (6.13).

The proof of Lemma 10. The conclusion of part (i) of Lemma 10 is
a special case of Theorem 2 of Brüdern and Wooley [7]. The proof of part
(ii) of the lemma requires greater effort. Observe first that from Lemmas
2.2 and 4.4 of [7], it follows easily that when γ is a real number for which
|h(γ)| ≥ PQ−1/10, then there exist a ∈ Z and q ∈ N with 1 ≤ q ≤ Q1/3,
(a, q) = 1 and |qα−a| ≤ Q1/3P−3. Consequently, if Λk and Λl are inequivalent
linear forms and hkhl ≥ P 2Q−1/10, then for σ = k, l there exist integers dσ and
qσ with

1 ≤ qσ ≤ Q1/3, (dσ, qσ) = 1 and |Λσ − dσ/qσ| ≤ q−1
σ Q1/3P−3.

Write c = albk − akbl and τc = c/|c|, and consider the linear expressions
alΛk − akΛl and bkΛl − blΛk. Then we see that, in the circumstances at hand,
one has (α, β) ∈ N(q, a, b), where

q = |c|qlqk, a = τc(bkdlqk − bldkql) and b = τc(aldkql − akdlqk).
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It follows inter alia that when hkhl ≥ P 2Q−1/10, one necessarily has (α, β) ∈ N.
We therefore deduce that

sup
(α,β)∈n

(hkhl) 	 P 2Q−1/10,

whence ∫∫
n

h8
kh

8
l dα dβ 	 (P 2Q−1/10)3/10

∫ 1

0

∫ 1

0
(hkhl)77/10 dα dβ.(6.14)

On making use of the first conclusion of the lemma in combination with a
change of variables, one finds that∫ 1

0

∫ 1

0
(hkhl)77/10 dα dβ 	

(∫ 1

0
|h(ξ)|77/10 dξ

)2

	 P 47/5,

and so the conclusion of the second part of the lemma follows from (6.14).

7. The major arc analysis

We now turn our attention to the problem of estimating the contribution
to the integral in (5.6) that arises from the major arcs N. There are relatively
few variables involved in this integral, and our current set-up avoids various
artifices that earlier writers have employed. For these reasons, there is no
suitable reference available in the literature. However, the argument that we
apply is nonetheless largely standard, and so we shall be brief.

First we introduce the approximants to the generating functions g and h

on the major arcs N. Let

S(q, r) =
q∑

l=1

e(rl3/q) and Si(q, c, d) = S(q, aic + bid) (1 ≤ i ≤ s).

Also, write

v(θ) =
∫ P

0
e(θγ3) dγ and w(θ) =

∫ P

ηP
e(θγ3) dγ.(7.1)

Finally, we mimic the convention (5.1) by associating with the pair (aj , bj) the
linear form λj = ajξ + bjζ for 1 ≤ j ≤ s, and when it is convenient for the
task at hand, we write also vj(ξ, ζ) = v(λj). From Lemma 8.5 of [20] (see also
Lemma 5.4 of [18]), it follows that there exists a positive number ρ, depending
at most on η, such that whenever (α, β) ∈ N(q, a, b) ⊆ N, then

h(Λj) − ρq−1Si(q, a, b)vi(α − a/q, β − b/q) 	 P (log P )−1/2.(7.2)

Similarly, as a consequence of Theorem 4.1 of [19], one finds that under the
same constraints on (α, β), one has

g(Λ1) − q−1S1(q, a, b)w(a1(α − a/q)) 	 log P.(7.3)
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Here we have made use of the hypothesis, justified by the discussion of Section 5
and recorded in (5.3), that b1 = 0, whence in particular Λ1 = a1α. On writing

V (ξ, ζ) = w(a1ξ)
s∏

j=2

v(λj) and U(q, a, b) = q−s
s∏

j=1

Si(q, a, b),(7.4)

and recalling the definition (5.5), we deduce from (7.2) and (7.3) that the
estimate

g(Λ1)H(α, β) − ρs−1U(q, a, b)V (α − a/q, β − b/q) 	 P s(log P )−1/2(7.5)

holds whenever (α, β) ∈ N(q, a, b) ⊆ N.
Next we introduce truncated versions of the singular integral and singular

series, which we define respectively by

J(X) =
∫∫

B(X)
V (ξ, ζ) dξ dζ and S(X) =

∑
1≤q≤X

A(q),(7.6)

in which we have written B(X) for the box [−XP−3, XP−3]2, and where

A(q) =
q∑

c=1
(c,d,q)=1

q∑
d=1

U(q, c, d).(7.7)

The measure of the major arcs N is O(Q5P−6), so that on recalling (5.7) and
integrating over N, we infer from (7.5) that∫∫

N

g(Λ1)H(α, β) dα dβ − ρs−1S(Q)J(Q) 	 P s−6(log P )−1/4.(7.8)

It now remains only to analyse the singular series and the singular integral
defined, in truncated form, in (7.6). With an application in our forthcoming
article [8] in mind, we study S(X) and J(X) in a slightly more general situation
than is warranted for the application at hand, and suppose only that for any
(c, d) ∈ Z2 \ {(0, 0)}, at least s − 6 of the numbers caj + dbj (1 ≤ j ≤ s)
are non-zero. In this new more general context, it is possible that a given
linear form Λi may have multiplicity as high as six from amongst Λ1, . . . ,Λ13.
Fortunately, the proofs of Lemmas 12 and 13 below would be no simpler if this
additional case were to be excluded.

In preparation for our discussion of the singular series, we introduce some
additional notation and provide a simple auxiliary estimate. When 1 ≤ j ≤ 13
and (c, d) ∈ Z2 \ {0, 0}, we define the integer uj = uj(c, d) by

uj = (q, caj + dbj).(7.9)

We suppose that {j1, . . . , jt} ⊆ {1, . . . , 13} is a maximal set of distinct sub-
scripts with the property that the linear forms Λjk

are pairwise inequivalent
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for 1 ≤ k ≤ t. It is convenient then to define the integers

Δ =
∏

1≤k<l≤t

|ajk
bjl

− ajl
bjk

| and Ξ = Δ2
∏

1≤k≤t

(ajk
, bjk

).(7.10)

Lemma 11. When q ∈ N and (c, d) ∈ Z2 satisfy the condition (q, c, d) = 1,
one has uj1uj2 . . . ujt

|Δq. Moreover, when v1, . . . , vt are integers with
v1v2 . . . vt|Δq, there are at most Ξq2(v1 . . . vt)−1 pairs (c, d) with 1 ≤ c, d ≤ q

satisfying (c, d, q) = 1 and ujk
= vk (1 ≤ k ≤ t).

Proof. Although the desired conclusions may be extracted from the ar-
gument of the proof of Lemma 35 of Davenport and Lewis [12], we provide a
brief proof here for the sake of transparency of exposition. Suppose first that
q ∈ N and (c, d) ∈ Z2 satisfy (q, c, d) = 1. By manipulating appropriate linear
combinations of arguments, one sees that for 1 ≤ k < l ≤ t one has

(q, cajl
+ dbjl

, cajk
+ dbjk

)|(q, ajl
bjk

− ajk
bjl

)(q, c, d).

By hypothesis, we may suppose that ajl
bjk

�= ajk
bjl

, and thus we deduce from
(7.9) and (7.10) that ∏

1≤k<l≤t

(ujk
, ujl

)|Δ.(7.11)

The desired conclusion uj1uj2 . . . ujt
|Δq then follows from the observation that

ujl
|q for 1 ≤ l ≤ t. Next we note that for 1 ≤ l ≤ t, the number of solutions

(c, d), distinct modulo vl, of the congruence ajl
c + bjl

d ≡ 0 (mod vl), is pre-
cisely (ajl

, bjl
, vl)vl. On recalling (7.9) and applying the Chinese Remainder

Theorem, therefore, the number of integral pairs (c, d) satisfying 1 ≤ c, d ≤ q,
(q, c, d) = 1 and ujl

= vl (1 ≤ l ≤ t) is at most( ∏
1≤l≤t

(ajl
, bjl

)vl

)(
q(v1 . . . vt)−1

∏
1≤k<l≤t

(vk, vl)

)2

.

Now (vk, vl) = (ujk
, ujl

), so that on making use of (7.11) in order to bound
the last product in this expression, we conclude from (7.10) that an upper
bound for the number of integral pairs (c, d) in question is Ξq2(v1 . . . vt)−1.
This confirms the final conclusion of the lemma.

As will shortly be confirmed, the singular series S is equal to the product
of the p-adic densities of solutions. In this context we define the p-adic density
χp by

χp = lim
h→∞

ph(2−s)Ms(ph),(7.12)

where we write Ms(ph) for the number of solutions of the system (1.1) with
x ∈ (Z/phZ)s.
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Lemma 12. Suppose that the linear forms L1(θ) and L2(θ) associated
with the system (1.1) satisfy the condition that for any pair (c, d) ∈ Z2\{(0, 0)},
the linear form cL1(θ) + dL2(θ) contains at least s − 6 non-zero coefficients.
Then the limit S = lim

X→∞
S(X) exists, and

S − S(X) 	 X−1/4.(7.13)

Moreover, the Euler product
∏

p χp converges absolutely to S, and χp = 0 if
and only if the system (1.1) has no non-trivial solution in Qp. Finally, when
the system (1.1) possesses a non-trivial solution in Qp for every prime number
p, one has S � 1.

Proof. We establish the upper bound

A(q) 	 qε−4/3.(7.14)

In view of (7.6), the estimate (7.14) not only confirms (7.13) but also shows
that the limit S = lim

X→∞
S(X) exists. The proof of the remaining conclusions

of the lemma follow by the theory familiar to practitioners of the circle method
(see, for example, Section 2.6 of [19], or Section 10 of Davenport and Lewis
[12]). From (7.7) and (7.14) one finds that

ph(2−s)Ms(ph) =
ph∑
l=0

A(pl) = 1 + O(pε−4/3),

so that the definition (7.12) yields the estimate χp = 1 + O(p−5/4). It follows
that the Euler product

∏
p χp converges absolutely. But from (7.7) we see that

A(q) is a multiplicative function of q, and so we see from (7.6) that indeed S

is equal to the aforementioned Euler product. We may choose p0 large enough
so that χp ≥ 1 − p−6/5 for p > p0, and then it follows that

S �
∏
p≤p0

χp.(7.15)

In circumstances wherein the system (1.1) has no non-trivial solution in
Qp, it fails to possess a non-trivial solution in Z/phZ for any h, and thus
it follows from (7.12) that χp = 0. On the other hand, when the system
(1.1) possesses a non-trivial solution in Qp, the argument of the proof of the
corollary to Theorem 1 of Davenport and Lewis [12] (see the end of Section
5 of the latter paper) shows that the system (1.1) has a non-singular solution
in Qp. An argument employing Hensel’s Lemma (as in Lemma 6.7 of [20],
for example) then shows that Ms(ph) � ph(2−s) for large enough values of h,
whence (7.12) shows that χp > 0. Thus χp = 0 if and only if the system (1.1)
has no non-trivial solution in Qp, and by (7.15) one has S � 1 unless the
system (1.1) fails to possess a non-trivial solution in Qp for some prime p.
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It remains to establish (7.14). First, by relabelling indices if necessary,
we see that the hypotheses of the lemma permit the assumption that the
maximum multiplicity of any of the forms Λ1, . . . ,Λ13 is six. By Theorem 4.2
of [19], whenever (q, r) = 1 one has S(q, r) 	 q2/3. Thus, on recalling the
definition (7.9), one finds that

q−1S(q, caj + dbj) 	 u
1/3
j q−1/3.

Consequently, using trivial estimates for factors in the definition (7.4) of U(q, c, d)
with j > 13, we deduce that

U(q, c, d) 	 q−13/3(u1u2 . . . u13)1/3.

We note now that when Λl and Λk are equivalent linear forms, it is a conse-
quence of (7.9) that ul 	 uk 	 ul. Recall the notation defined in the preamble
to Lemma 11, and suppose that for 1 ≤ k ≤ t, the linear form Λjk

has multi-
plicity rk amongst Λ1, . . . ,Λ13. Then in view of (7.7), it follows from Lemma
11 that

A(q)	 q−13/3
q∑

c=1

q∑
d=1

(c,d,q)=1

(u1u2 . . . u13)1/3

	 q−13/3
∑

v1,...,vt

v1...vt|Δq

Ξq2

v1 . . . vt
(vr1

1 . . . vrt

t )1/3.

Observe that since the linear forms Λj1 , . . . ,Λjt
are pairwise inequivalent, the

integer Δ is non-zero, and further, the integers Δ and Ξ are bounded purely
in terms of the coefficients a and b. We are permitted to assume that rj ≤ 6
for 1 ≤ j ≤ t, so that on using an elementary bound for the divisor function,
we conclude that

A(q) 	 q−7/3
∑

v1,...,vt

v1...vt|Δq

v1 . . . vt 	 qε−4/3,

as claimed in (7.14). This completes the proof of the lemma.

We now turn our attention to the truncated singular integral J(X). The
analysis here is very straightforward, but ironically, the simplicity of our ap-
proach prevents any convenient reference to the literature.

Lemma 13. Under the same hypotheses as in the statement of Lemma
12, the limit J = lim

X→∞
J(X) exists, and

J − J(X) 	 P s−6X−1.(7.16)

Moreover, one has J � P s−6.
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Proof. We begin by considering two inequivalent forms Λi and Λj . When
T is a positive number, write B(T ) for the box [−T, T ]2, and B̂(T ) for the
complementary set R2 \B(T ). Consider now a positive number Y and suppose
that (Λi,Λj) ∈ B(Y ). The latter assertion is equivalent to the statement that

aiα + biβ ∈ [−Y, Y ] and ajα + bjβ ∈ [−Y, Y ],

so that on taking suitable linear combinations of these forms, one obtains

(aibj − ajbi)α ∈ |bj | [−Y, Y ] + |bi| [−Y, Y ]

and
(ajbi − aibj)β ∈ |aj | [−Y, Y ] + |ai| [−Y, Y ],

the sums of intervals being interpreted set theoretically. The integer aibj −ajbi

is non-zero, so that if we write

Θ−1 = max
1≤i<j≤s

{|ai| + |aj | , |bi| + |bj |},

then we may conclude that (α, β) ∈ B(Θ−1Y ). On making a transparent
change of variables, we see from this discussion that when Λi and Λj are
inequivalent,∫∫

B̂(XP−3)
|v(λi)v(λj)|6 dξ dζ 	

∫∫
B̂(ΘXP−3)

|v(λi)v(λj)|6 dλi dλj .(7.17)

We now recall the estimate v(γ) 	 P (1 + P 3|γ|)−1/3 that follows, for ex-
ample, from Theorem 7.3 of [19]. In the situation at hand, we may suppose
that none of the forms Λ1, . . . ,Λ13 has multiplicity exceeding six. Hence, fol-
lowing a suitable relabelling of indices, we may temporarily suppose that for
1 ≤ k ≤ 6, the forms Λ2k, Λ2k+1 are inequivalent. Then on integrating the
elementary inequality

|v(λ2)v(λ3) . . . v(λ13)| ≤
6∑

k=1

|v(λ2k)v(λ2k+1)|6

and applying the observation (7.17), we deduce that∫∫
B̂(XP−3)

|v(λ2)v(λ3) . . . v(λ13)| dξ dζ

	 P 12

∫∫
B̂(ΘXP−3)

(1 + P 3|λ|)−2(1 + P 3|μ|)−2 dλ dμ

	 P 6X−1.

Finally, on using trivial bounds for w(a1ξ) and v(λj) when j > 13, we conclude
that ∫∫

B̂(XP−3)
|V (ξ, ζ)| dξ dζ 	 P s−6X−1.(7.18)
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In particular, it follows from (7.6) that the singular integral J = lim
X→∞

J(X)

exists, and (7.18) provides the desired estimate (7.16).
In order to evaluate J we follow the familiar routine based on the use of

Fourier’s integral theorem. From (7.1) and (7.6), we see that

J =
∫ ∞

−∞

∫ ∞

−∞

∫
D

e(ξL1(γ) + ζL2(γ)) dγ dξ dζ,

where we write

L1(γ) =
s∑

i=1

aiγ
3
i and L2(γ) =

s∑
i=1

biγ
3
i ,

and where D denotes the box [ηP, P ] × [0, P ]s−1. Put μ = P 3ξ and ν = P 3ζ,
and substitute ωi = (P−1γi)3 for 1 ≤ i ≤ s. Then with these changes of
variables we discover that

J = 3−sP s−6

∫ ∞

−∞

∫ ∞

−∞

∫
D′

e(μL1(ωωω) + νL2(ωωω))
(ω1 . . . ωs)2/3

dωωω dμ dν,

where L1(ωωω) and L2(ωωω) are defined in (5.2), and where D′ = [η3, 1]× [0, 1]s−1.
The discussion of Section 5 ensures that the equations L1(ωωω) = L2(ωωω) = 0
define an (s − 2)-dimensional linear space that passes through the point θ

lying in the interior of D′. Recall from (5.3) that b1 = a2 = 0, whence from
(5.2),

ω1 = a−1
1

(
L1(ωωω) −

s∑
j=3

ajωj

)
and ω2 = b−1

2

(
L2(ωωω) −

s∑
j=3

bjωj

)
.

Then on making a change of variables and applying Fourier’s integral formula
twice, in the shape

lim
λ→∞

∫ T

−T

∫ λ

−λ
V (t)e(tω) dω dt = V (0),

we obtain the relation

J � P s−6

∫
D′′

(ω1 . . . ωs)−2/3 dω3 dω4 . . . dωs.(7.19)

Here, we define the coordinates ω1 and ω2 by

ω1 = −a−1
1

s∑
j=3

ajωj and ω2 = −b−1
2

s∑
j=3

bjωj ,

and we write D′′ for the set of (s − 2)-tuples (ω3, ω4, . . . , ωs) ∈ [0, 1]s−2 for
which the s-tuple (ω1, . . . , ωs) lies in D′. Notice that the point (θ3, . . . , θs)
necessarily lies in the interior of the polytope D′′, whence D′′ has positive
volume. The latter observation ensures that the integral on the right-hand
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side of (7.19) is positive. Since, plainly, the latter integral is independent of P ,
we may conclude that J � P s−6, and this completes the proof of the lemma.

The proof of Theorem 2 is now swiftly completed. By (7.8) and Lemmas
12 and 13, we find that∫∫

N

g(Λ1)H(α, β) dα dβ − ρs−1SJ 	 P s−6Q−1/4,

so that in view of the estimate (5.9) we may conclude that∫ 1

0

∫ 1

0
g(Λ1)H(α, β) dα dβ = ρs−1SJ + O(P s−6(log P )−1/140000).

From Lemmas 12 and 13, moreover, it is apparent that ρs−1SJ � P s−6

provided only that the system (1.1) has non-trivial solutions in Qp for ev-
ery prime p. But in such circumstances, the lower bound (5.6) ensures that
N (P ) � P s−6. In view of the discussion on p-adic solubility prior to the state-
ment of Theorem 2, solubility over Qp is already assured when p �= 7, and the
conclusion of Theorem 2 follows immediately.

8. Le coup de grâce

The theme of this concluding section is the proof of Theorem 1. Needless
to say, if Theorem 2 is applicable to the system (1.1), then there is nothing
further to discuss. Thus we may suppose that there exists a pair (c, d) ∈
Z2 \ {(0, 0)} with the property that at most s − 6 of the numbers caj + dbj

(1 ≤ j ≤ s) are non-zero. By taking suitable rational linear combinations of
the two equations defining (1.1), it is apparent that there is no loss of generality
in supposing that the system (1.1) takes the shape

a1x
3
1 + . . . + asx

3
s = bt+1x

3
t+1 + . . . + bsx

3
s = 0,(8.1)

where s ≥ 13 and t ≥ 6. We now recall a conclusion of R. Baker concerning
the solubility of diagonal cubic equations.

Lemma 14. Whenever r ≥ 7 and c1, . . . , cr are rational integers, the
equation c1x

3
1 + . . . + crx

3
r = 0 possesses a non-trivial integral solution.

Proof. On setting xi = 0 for i > 7, the desired conclusion follows from [1].

Let us return to the system (8.1). If one has t ≥ 7, then it follows from
Lemma 14 that the equation a1y

3
1+. . .+aty

3
t = 0 possesses a non-trivial integral

solution y = z, and thus the system (8.1) has the non-trivial integral solution
x = (z1, . . . , zt, 0, . . . , 0). We are therefore left to ponder the situation in which
t = 6 and s ≥ 13. In view of Lemma 14, the equation b7y

3
7 + . . . + bsy

3
s = 0

possesses a non-trivial integral solution (y7, . . . , ys) = (z7, . . . , zs). We put
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A = a7z
3
7 + · · ·+ asz

3
s , and consider the equation Ay3

0 + a1y
3
1 + . . . + a6y

3
6 = 0.

This equation possesses a non-trivial solution y = w, again by Lemma 14, and
so the system (8.1) in this instance has the non-trivial integral solution

(x1, . . . , xs) = (w1, . . . , w6, w0z7, . . . , w0zs).

We therefore conclude that when s ≥ 13 and Theorem 2 fails to deliver the
Hasse principle for the system (1.1), this system nonetheless possesses non-
trivial integral solutions. This completes the proof of Theorem 1.
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