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C™ extension by linear operators

By CHARLES FEFFERMAN*

0. Introduction and statement of results

Let E C R", and m > 1. We write C"(FE) for the Banach space of all
real-valued functions ¢ on E such that ¢ = F on E for some F € C™(R").
The natural norm on C™(FE) is given by

| ¢ Nl (= inf{]l F lom(gey: F € C(R") and F =  on E}.

Here, as usual, C"™(R") is the space of real-valued functions on R" with con-
tinuous and bounded derivatives through order m; and

F ||gm@ny= max sup |0°F(z)].
I 7 lonzry= max. sup [07F(z)

The first main result of this paper is as follows.

THEOREM 1. For E C R"™ and m > 1, there exists a linear map
T: C™(E)— C™R"), such that

(A) Ty =y on E, for each ¢ € C"™(E); and
(B) The norm of T is bounded by a constant depending only on m and n.

This result was announced in [16].

To prove Theorem 1, it is enough to treat the case of compact E. In
fact, given an arbitrary £ C R", we may first pass to the closure of E without
difficulty, and then reduce matters to the compact case via a partition of unity.

Theorem 1 is a special case of a theorem involving ideals of m-jets. To
state that result, we fix m,n > 1.

For x € R", we write R, for the ring of m-jets (at x) of smooth, real-
valued functions on R™. For F' € C™(R"), we write J;(F') for the m-jet of F
at z. Our generalization of Theorem 1 is as follows.

*Partially supported by Grant Nos. DMS-0245242 & DMS-0070692.
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THEOREM 2. Let E C R™ be compact. For each x € E, let I(x) be an
ideal in Ry. Set J = {F € C™(R") : Jy(F) € I(x) for all x € E}. Thus, J
is an ideal in C™(R™), and C™(R™)/J is a Banach space.

Let m: C"™(R"™) — C™(R™)/J be the natural projection. Then there exists
a linear map T : C™(R™)/J — C™(R"), such that

(A)  nT[p] =[] for all [p] € C™(R")/T; and
(B) The norm of T is less than a constant depending only on m and n.

Specializing to the case I(x) ={J,(F) : F =0 at x}, we recover Theorem 1.

The study of C™ extension by linear operators goes back to Whitney [25],
[26], [27]; and Theorems 1 and 2 are closely connected to the following classical
question.

Whitney’s extension problem. Given E C R", f: F — R, and m > 1,
how can we tell whether f € C™(E)?

The relevant literature on this problem and its relation to Theorem 1 in-
cludes Whitney [25], [26], [27], Glaeser [17], Brudnyi and Shvartsman [4]-[10]
and [20], [21], [22], Bierstone-Milman-Pawtucki [1], [2], and my own papers
[11]-[16]. (See, e.g., the historical discussions in [1], [8], [13]. See also Zobin [29]
for a related problem.) Merrien proved Theorem 1 for C™(R!), and Bromberg
[3] proved Theorem 1 for C''(R"). Brudnyi and Shvartsman proved the ana-
logue of Theorem 1 for C1*(R™), the space of functions whose gradients have
modulus of continuity w. On the other hand, they exhibited a counterexample
to the analogue of Theorem 1 for the space of functions with uniformly contin-
uous gradients on R2. In [4], [9], they explicitly conjectured Theorem 1 and its
analogue for C™*“(R"™). As far as I know, no one has previously conjectured
Theorem 2.

We turn our attention to the proof of Theorem 2.

Theorem 2 reduces easily to the case in which the family of ideals (I(z)).cr
is “Glaeser stable”, in the following sense. Let £ C R"™ be compact. Suppose
that, for each x € E, we are given an ideal I(z) in R, and an m-jet f(z) € R,.
Then the family of cosets (f(z) + I(z))zcr will be called “Glaeser stable” if
either of the following two equivalent conditions holds:

(GS1) Given 29 € E and Py € f(xo) + I(x0), there exists F' € C™(R"), with
Jzo(F) = Py, and J,(F) € f(z)+ I(z) for all x € E.

(GS2) Given xg € E and Py € f(xo) + I(x¢), there exist a neighborhood U
of zg in R™, and a function F € C™(U), such that J,, (F) = Py, and
Jo(F) € f(x)+I(x) forallz € ENU.

To see the equivalence of (GS1) and (GS2), we use a partition of unity,
and exploit the compactness of E and the fact that each I(x) is an ideal. (See
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Section 1.) Conditions (GS1) and (GS2) are also equivalent to the assertion
that (f(z) 4+ I(x))zep is its own “Glaeser refinement” in the sense of [13], by
virtue of the Corollary to Theorem 2 in [13]. We emphasize that compactness
of E is part of the definition of Glaeser stability.

To reduce our present Theorem 2 to the case of Glaeser stable families of
ideals, we set I(z) = {J,(F): F € J} for each z € E.

One checks easily that I(z) is an ideal in Ry, that (I(z))zer is Glaeser
stable, and that J = {F € C"™(R") : J,(F) € I(z) for each z € E}.

Thus, Theorem 2 for the general family of ideals (I(z)),ep is equivalent to
Theorem 2 for the Glaeser stable family (I(z))zep. From now on, we restrict
attention to the Glaeser stable case.

To explain our proof of Theorem 2, in the Glaeser stable case, we start
with the following result, which follows immediately from Theorem 3 in [13].

THEOREM 3. There exist constants k and Cy, depending only on m and
n, for which the following holds.

Let A > 0. Suppose that, for each point x in a compact set E C R™, we
are given an m-jet f(x) € Ry and an ideal I(x) in Ry. Assume that

(I)  (f(z)+ I(x))zeE is Glaeser stable, and
(I)  Given x1, ...,z € E, there exists F e C™(R"), with
| Fllem@n< A, and Jp (F) € fx;) + I(z;) fori=1,...,k.

Then there exists F' € C™(R™), with
| F [lgm@n < C1A, and Jo(F) € f(x) + I(x) for allz € E.

In principle, this result lets us calculate the order of magnitude of the
infimum of the C"™-norms of the functions F' satisfying J,(F) € f(x) + I(z)
for all x € E.

We will prove a variant of Theorem 3, in which the m-jets f(z)(zx € E)
and the function F' depend linearly on a parameter £ belonging to a vector
space Z. That variant (Theorem 4 below) is easily seen to imply Theorem
2, as we spell out in Section 1. (The spirit of the reduction of Theorem 2 to
Theorem 4 is as follows. Suppose we want to prove that a given map y = ®(z)
is linear. To do so, we may assume that x depends linearly on a parameter
¢ € £, and then prove that y = ®(x) also depends linearly on &.)

The main content of this paper is the proof of Theorem 4. To state
Theorem 4, we first introduce a few definitions. Let £ C R™ be compact. If
I(x) is an ideal in R, for each z € E, then we will call (I(x))zecr a “family of
ideals”. Similarly, if, for each x € E, I(z) is an ideal in R, and f(z) € R,
then we will call (f(x) 4+ I(x))zep a “family of cosets”.
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More generally, let = be a vector space, and let £ C R"™ be compact.
Suppose that for each x € E we are given an ideal I(x) in R,, and a linear
map & — fe(z), from Z into R,. We will call (fe(z)+1(2))zecrccz a “family of
cosets depending linearly on £ € =7. We will say that (fe(z) +1(x))zep, ces is
“Glaeser stable” if, for each fixed { € Z, the family of cosets (fe(x) +1(2))zck
is Glaeser stable.

We can now state our analogue of Theorem 3 with parameters.

THEOREM 4. Let E be a vector space, with seminorm |- |. Let (fe(z) +
I(x))zercc= be a Glaeser stable family of cosets depending linearly on § € E.
Assume that for each £ € Z with |{| < 1, there exists F € C™(R™), with
| F' legm@n< 1, and Jo(F) € fe(x) + I(x) for all z € E. Then there exists a
linear map & — Fg, from Z into C™(R™), such that

(A) Jo(F¢) € fe(x)+I(x) forallz € E, § € E; and
(B) || F¢ llem@m< ClE| for all € € Z, with C' depending only on m and n.

It is an elementary exercise to show that Theorem 4 implies Theorem 2
in the case of Glaeser stable (I(x))zeck-

Since we have just seen that this case of Theorem 2 implies the general
case, it follows that Theorems 1 and 2 are reduced to Theorem 4. The rest of
this paper gives the proof of Theorem 4.

In this introduction, we explain some of the main ideas in that proof. It is
natural to try to adapt the proof of Theorem 3 from [13]. There, we partition
FE into finitely many “strata”, including a “lowest stratum” FEj.

Theorem 3 is proven in [13] by induction on the number of strata, with
the main work devoted to a study of the lowest stratum. Unfortunately, the
analysis on the lowest stratum in [13] is fundamentally nonlinear; hence it
cannot be used for Theorem 4. (It is based on an operation analogous to
passing from a continuous function F' to its modulus of continuity wp.)

To prove Theorem 4, we partition F into finitely many “slices”, including
a “first slice” FEp; and we proceed by induction on the number of slices. We
analyze the first slice Fy in a way that maintains linear dependence on the
parameter £ € =. This is the essentially new part of our proof. Once we have
understood the first slice, we can proceed as in [13].

Let us explain the notion of a “slice.” To define this notion, we in-
troduce the ring R% of k-jets of smooth (real-valued) functions at z. For
0<k<m,letrk:R, =R" — RE be the natural projection. To each
r € E we associate the (m + 1)-tuple of integers type(r) = (dim[r2I(x)],
dim[rl ()], ..., dim[x™1(z)]).

For each fixed (m + 1)-tuple of integers (dy, ..., dn), the set

E(dy,dy,...,dy) ={x € E: type(z) = (do,...,dm)}

will be called a “slice”. Thus, E is partitioned into slices.
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We thank the referee for pointing out that this partition is the “Hilbert-
Samuel stratification”.

The “number of slices” in F means simply the number of distinct
(do, ...,dp) for which E(do,...,dy) is nonempty. Note that 0 < dy < d; <
-+« < dy < D for a nonempty slice, where D = dim R, (any z). Hence, the
number of slices is bounded by a constant depending only on m and n.

Next, we define the “first slice”. To do so, we order (m + 1)-tuples lex-
icographically as follows: (dp,...,dn) < (Do,...,Dy) means that dp < Dy
for the largest ¢ with dy # D,. If E is nonempty, then the (m + 1)-tuples
{type(x) : € E'} have a minimal element (d,d;, ..., d},), with respect to the
above order. We call E(dy,d;,...,d},) the “first slice”, and denote it by Ey.
It is easy to see that Ej is compact. (See §1.)

We partition R” \ Ey into “Whitney cubes” {@Q,}, with the following
geometrical properties: For each v, let §, be the diameter of @), and let Q7
be the (closed) cube obtained by dilating @, by a factor of 3 about its center.
Then

(a) ¢, <1 for each v,
(b) @ C R™\ Ej for each v, and

(¢c) If 6, < 1, then distance (Q}, Ey) < C9,, with C depending only on the
dimension n.

In particular, (b) shows that E N @}, has fewer slices than E. This will play a
crucial role in our proof of Theorem 4.

Corresponding to the Whitney cubes {Q,}, there is a “Whitney partition
of unity” {6, }, with

o) 6,=1onR"\ E,
14

e suppf, C @Q; for each v, and
e [0°0,] < c 6, on R™ for |B] < m+1 and for all v.

Here, C depends only on m and n. See, e.g., [19], [23] , [25] for the construction
of such Q,, 0,.

Now we can start to explain our proof of Theorem 4. We give a self-
contained explanation, without assuming familiarity with [13]. We use induc-
tion on the number of slices in E. If the number of slices is zero, then FE is
empty, and the conclusion of Theorem 4 holds trivially, with F¢ = 0. For the
induction step, fix A > 1, and assume that Theorem 4 holds whenever the
number of slices is less than A. Fix Z, | - |, (fe(x) + I(2))zcpecz as in the
hypotheses of Theorem 4, and assume that the number of slices in F is equal
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to A. Under these assumptions, we will prove that there exists a linear map
§ — F¢ from Z into C™ (R"), satisfying conclusions (A) and (B) of Theorem 4.
This will complete our induction, and establish Theorem 4.

To achieve (A) and (B), we begin by working on the first slice Ey. We
construct a linear map £ — Fg0 from = into C™(R"), satisfying

(A) Jz(Féo) € fe(x) + I(x) for all x € Ey, £ € Z; and
(B) | Fg0 lem @< Cl¢] for all § € =, with C' depending only on m and n.

Comparing (A’) with (A), we see that Jx(FEO) does what we want only for
x € Ep.

We will correct Fg away from FEy. To do so, we work separately on each
Whitney cube @} C R™ \ Ey. For each fixed v, we can apply our induction
hypothesis (a rescaled version of Theorem 4 for fewer than A slices) to the
family of cosets (fg(x)—Jw(Fg)—i—I(x))ermQ;,geE, depending linearly on § € =.

The crucial point is that our induction hypothesis applies, since as we
observed before, ENQ);, has fewer slices than E. From the induction hypothesis,
we obtain, for each v, a linear map & — Fg, from = into C™(R"), with the
following properties:

(A)y: Jo(Fep) € Jo(8y) © [fe(z) — Jw(Fg)] +I(x) forallz e ENQ;, £ €
and

(B)y: |0°Fe,(2)| < Cl¢| 60 for 2 € R, ¢ € Z, |B] < m, with C depending
only on m and n.

Here {60,} is our Whitney partition of unity, and ® denotes multiplication in
Ry In view of (A),, the function F¢, corrects FEO on ENQ;.

Now, we combine our Fg and F¢, into Fy = FEO + Zﬁng,y, where 6

v

is a smooth cutoff function supported in Q. Using (A’), (B'), (A),, (B), and
Glaeser stability, we will show that Fy € C™(R"), and that the linear map
§ > F¢ satisfies conditions (A) and (B) in the statement of Theorem 4. This
will complete our induction on the number of slices, and establish Theorem 4.

As in [13], the above plan cannot work, unless we can construct the linear
map £ +— Fg to satisfy something stronger than (A’). More precisely, for a
convex set I'¢(z, k,C) to be defined below, we need to make sure that & — F£0
satisfies

(A"): Jo(FQ) € Te(x, k, C) for all z € Ey, € € = with [¢| < 1.

Here, T¢(2, k, C) C fe(x) + I(z), so that (A”) is stronger than (A’).
To define I'¢(z,k,C) and understand why we need (A”), we introduce
some notation and conventions.
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Unless we say otherwise, C' always denotes a constant depending only on
m and n. The value of C' may change from one occurrence to the next. For
2’ z" € R", we adopt the convention that |2/ — 2”| 18l = 0 in the degenerate
case ' =2’ | 8] = m.

We identify the m-jet J,(F') with the Taylor polynomial

yro 3 @) - (-0

la|<m

Thus, as a vector space R is identified with the vector space P of all m™
degree (real) polynomials on R".

Now suppose H = (f(z) + I(x)),ep is a family of cosets, and let g € E,
k> 1, A > 0 be given. Then we define I'gr(z, k, A) as the set of all Py €
f(zo) + I(zo) with the following property:

Given x1,...,x, € E, there exist Py € f(x1) + I(x1),..., Py € f(zi) +
I(xy), such that

0°Pi(:)] < A for [B| <m, 0<i<Fk
and
0°(P; = P) ()| < Al — " for |B] <m, 0<i,j <k

Here, we regard Fy,...,P, as m'" degree polynomials. Note that
Iy (xo, k, A) is a compact, convex subset of f(zg) + I(x¢).

The point of this definition is that, if we are given F' € C"(R"), with
| F' [[em@< A, and Jo(F) € f(x) + I(x) for each x € E, then, trivially,
Juo (F) € T (xo, k,CA) for any k > 1. (To see this, just take P; = J,,(F') in
the definition of Iy (20, k, CA). The desired estimates on P; — P; follow from
Taylor’s theorem.)

More generally, suppose (fe(x) + I(2))zepecz is a family of cosets de-
pending linearly on £ € =. For each £ € E, we set He = (fe(x) + 1(2))zcE,
and we define I'¢(z0, k, A) = 'y, (v0,k, A) for 20 € E, k > 1, A > 0. Thus, if
§ + Iy is a linear map as in the conclusion of Theorem 4, then we must have
Jo(Fe) € Te(x,k,C) for all x € F, € € E with [¢] < 1.

Recall that our plan for the proof of Theorem 4 was to set F; = Fg =+
ZQ;I Fe,, with supp 6,7 C Q7 C R™\ Ey. Hence, for z € Ey, we expect that
Jx(Ff) = Jx(Fgo)

Therefore, unless & — FgO has been carefully prepared to satisfy (A”), we
will never be able to prove Theorem 4 by defining F; as above. Conversely, if
Fg satisfies (A”), then we will gain the quantitative control needed to establish
estimates (B), above. Thus, (A”) necessarily plays a crucial role in our proof
of Theorem 4.
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We discuss very briefly how to construct & — Fg satisfying (A”). Let 7
be a small enough positive number determined by (I(z))zer. We pick out a
large, finite subset Egg C Ejy, such that every point of Ey lies within distance
1 of some point of Eyy. We then construct a linear map & — F, 500 from Z into
C™(R™), with norm at most C, satisfying the following condition.

(A")  Jo(FQ) € T¢(x,k,C) for all z € Ego, § € E with [¢] < 1.

Thus, Jx(Fgoo) does what we want only for x € Eyg. For v € Ey \ Eyg, we
don’t even have Jm(FgO) € fe(x) + I(x).

On the other hand, for [{| < 1, x € Ey \ Epp, we hope that Jm(FSOO) lies
very close to fe(x)+1(x), since Jy(FgoO) € Te(y, k, C) C fe(y)+I(y) for a point
y € Epo within distance n of . We confirm this intuition by constructing a
linear map £ — FE from = into C™(R"™), with the following two properties:

) Fg is “small” for [¢] < 1.
o J.(FQ®+F) € fe(x)+ I(x) for x € Ey, § € E with [¢] < 1.

The “corrected” operator & +— F) = FEOO + F¢ will then satisfy (A”). To
construct Fgo, we combine our previous results from [13], [16]. The construc-
tion of 13'5 requires new ideas and serious work. (See §86-11 below.) This
concludes our summary of the proof of Theorem 4.

I am grateful to E. Bierstone, Y. Brudnyi, P. Milman, W. Pawtucki,
P. Shvartsman, and N. Zobin, whose ideas have greatly influenced me. I am
grateful also to Gerree Pecht for TEXing this paper to her usual (i.e. the high-
est) standards.

1. Elementary verifications

In this section, we prove some of the elementary assertions made in the
introduction. We retain the notation of the introduction.

First of all, we check that the two conditions (GS1) and (GS2) are equiv-
alent. Obviously, (GS1) implies (GS2). Suppose (f(x) + I(z))zcr satisfies
(GS2). We recall that E is compact, and that each I(z) is an ideal in R,.
Suppose 29 € E and Py € f(xg) + I(xg). For each y € E, (GS2) produces an
open neighborhood U, of y in R", and a C"" function Fy on Uy, such that

Jo(Fy) € f(z)+I(z) forallz e Uy N E,

and
Jxo(Fy) = P() if Yy=2x9.

If y # o, then by shrinking U,, we may suppose xy does not belong to the
closure of U,. By compactness of E, finitely many U,’s cover E. Say, I C
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Uy, U---UUy,. Since xg € E, one of the y; must be x¢. Say, yo = xo, and
Yy # xo for v # 0. We introduce a partition of unity {6, }, such that
e Each 0, € C*(U,, ), and

v

N
. Z 6, = 1 in a neighborhood of F.
v=0

Since xg cannot belong to supp 6, for v # 0, we have J;,(6g) =1, J5,(6,) =0
for v # 0.

N
Now set F' = ZHV F,, € C™(R"). For x € E, and for any v with supp

6, > x, we have J,(F,, )— f(x) € I(x); hence J,(0,Fy,)—J.(6,) © f(z) € I(x),
since I(z) is an ideal. Here, ® denotes multiplication in R,. Summing over v,
we obtain J,(F) — f(z) € I(x). Also, since J,, (Fy,) = Py and J;,(6,) = do,
(Kronecker ¢), we have J,, (F) = Py. This proves (GS1).

Next, we check that Theorem 4 implies Theorem 2 in the case of Glaeser
stable (I(x))zep. Let E, I(x), J, m be as in the hypotheses of Theorem 2,
with (I(x))zcr Glaeser stable. We take Z to be the space C™(FE,I), which
consists of all families of m-jets & = (f(x))zep, with f(z) € R, for x € E,
such that (f(z) + I(x))zer is Glaeser stable. (We use Glaeser stability of
(I(x))zer to check that = is a vector space.) As a seminorm on Z, we take

1€l =2 || (f(®))zer ||C’"(E,I)a where

| (f(@)zeE llomE,n
—inf{|| F [|omezny: F € C™(R™) and J,(F) € f(z) + I(x) for = € E}.

Here, the inf is finite, since (f(z) + I(x))zcr is Glaeser stable.

Next, we define a linear map & — f¢(x) from = into R, for each z € F.
For £ = (f(2))zer, we simply define f¢(x) = f(x). One checks easily that the
above Z, ||, (fe(x) +1(x))rcE ez satisfy the hypotheses of Theorem 4. Hence,
Theorem 4 gives a linear map & : C"(E,I) — C™(R"™), with norm bounded
by a constant depending only on m and n, and satisfying

J(€) € f(z)+ I(x) for all x € E, whenever £ = (f(x))zer € C™(E,I).

Next, we define a linear map 7 : C™(R")/J — C™(E,I). To define T,
we fix for each x a subspace V(z) C R, complementary to I(z), and we write
e ¢ Ry — V(x) for the projection onto V(x) arising from R, = V(z) ®
I(x). For ¢ € C™(R™), we define 7¢ = ((7¢)(2))scr = (7zJz(p))zeck . Since
(7o) (x) — Ju(p) € I(x) for x € E, it follows that

(7o) (@) + I(2))2er = (Jo(@) + 1(7))ecE -
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Since (I(z))ger is Glaeser stable and ¢ € C™(R"), it follows in turn that
((Te)(x) + I(z))zecr is Glaeser stable. Thus, 7¢ € C™(E,I). Moreover,
since p € C™(R™) and J,(p) € (7¢)(z) + I(x) for all x € E, the defini-
tion of the C™(E, I)-seminorm shows that || 7o |[cm g, <| ¢ ||cm®»). Thus,
7:C™R") — C™(E,I) is a linear map of norm < 1.

Next, note that J(¢) € I(z) implies (7¢)(x) = 0 by definition of 7
and 7. Hence, ¢ € J implies 7 = 0, and therefore 7 collapses to a linear
map 7: C™(R")/TJ — C™(E, ).

We now define T = &r. Thus, T : C"™(R")/J — C™(R") is a linear
map with norm bounded by a constant depending only on m and n. For
v € C™(R™) and [p] € C™(R™)/J the equivalence class of ¢, we have (for
x € E):

J(ET[@]) = Jo(ET) €, (Tp)(x) + I(z) (by the defining property of &)
= Jy(p) + I(x) (by definition of 7).

Thus,
Jo(ET[p] — ) € I(z) forall x € E; ie., ET[p] —p e T.

Therefore, 7T[p] = w€1[p| = [¢] for [¢] € C(R™)/J. Thus, T : C"™(R"™)/T
— C"™(R™) has all the properties asserted in Theorem 2. We have succeeded
in reducing Theorem 2 (for (I(x)).cp Glaeser stable) to Theorem 4.

We close this section by checking that the first slice Ey is compact. For
r € E, we have type(z) = (do(z),...,dn(z)), with d(z) = dim7¥I(z). Fix
xo € E, ke {0,1,...,m}. Since W’;OI(ZC()) has dimension di(z¢), we may pick
P, € I(z) (1 < p < dy(wo)) such that the images 7F P, (1 < p < dy(wo))
are linearly independent. Since (I(z))zcr is Glaeser stable, there exist C™
functions F, on R™ such that J,(F),) € I(x) for all x € E, and J,,(F),) = P,.

The k-jets %.J,(F,) (1 < pu < dg(z0)) are linearly independent at z = o,
hence also at all  close enough to xg. Consequently, di(z) = dim7* I(z) >
di(zg) for all z € E near enough to xg. Thus, we have proven the following:

Given xg € E there exists a neighborhood U of x( in F, such that di(x) >
di(zo) forallz € U, k € {0,1,...,m}. In particular, type(z) > type(xg) for all
x € U, where the inequality sign refers to our lexicographic order on (m + 1)-
tuples.

It follows at once that the set Ey of all x € E of the minimal type is a
closed subset of the compact set E. Thus, Ey is compact.

2. Review of previous results

In this section, we collect from previous literature some ideas and results
that will play a role in our proof of Theorem 4. We retain the notation of
Section 0.
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We start with the classical Whitney Extension Theorem. Let F C R™.
Then we write C/G(E) for the space of all families of m'" degree polynomials
(P*).er, satisfying the following conditions;

(a) Given e > 0 there exists § > 0 such that, for any x,y € F with |[z—y| < 0,
we have |0%(P* — PY)(y)| < e|x — y[™ 18 for |3] < m.

(b)  There exists a finite constant M > 0 such that [0°P%(x)] < M for
18] < m, x € E; and |9°(P* — PY)(y)| < M|z — y|™ 18I for |8] < m,
z,y € E.

(Here and throughout this paper 9°P*(x) always denotes the value at y =

B

of (8%) P(y), never 3% (x) with ¢(z) = P*(z).)
The norm || (P*)zek [lcp(p) is defined to be the infimum of all possible

M in (b). Note that condition (a) holds vacuously when E is finite. In terms

of these definitions, the classical Whitney Extension Theorem may be stated
as follows.

THEOREM 2.1. Given a compact set E C R", there exists a linear map
E:C(E) — C™(R™), such that

Jet
(A) The norm of € is bounded by a constant C' depending only on m and n;
and

(B)  Ju (E[(P?)zer]) = P*™ for any xg € E and (P*),cp € CI(E).

Jet
(See, e.g., [18], [23], [25] for a proof of Theorem 2.1.)

Next, we recall some definitions and results from [13]. We introduce a
convex set o(xg, k) that will play a key role. Let (I(z))zer be a family of
ideals, and let 29 € E, k > 1 be given. Then we define o(z, k) as the set of
all Py € I(xg) with the following property: Given x1,...,z; € E, there exist
Py € I(z1),..., P, € I(xy), such that |08P;(z;)| < 1 for |B] < m, 0 < i < k;
and [0%(P; — P;)(z;)| < |xi — 5™ 18 for |3 <m, 0 <i,j < k.

One checks easily that o(zg, k) is a compact, convex, symmetric subset of
I(zp). (By “symmetric”, we mean that P € o(xg, k) implies —P € o(xq, k).)
The basic convex set I'¢c(xo,k, A) defined in the introduction is essentially a
translate of o(zg, k), as the following proposition shows.

PROPOSITION 2.1. Let H = (f(z) + I(x))zcr be a family of cosets, and
suppose P € Ty (xo, k, A). Then, for any A’ > 0, we have P + A'o(xo, k) C
Tg(zo,k, A+ A") C P+ (2A+ A)o(xo, k).

The above proposition follows trivially from the definitions. A basic prop-
erty of o(xg, k) is “Whitney convexity”, which we now define.

Let o be a closed, convex, symmetric subset of R, and let A be a positive
constant. Then we say that o is “Whitney convex with Whitney constant
A” if the following condition is satisfied: Let P € o, @ € P, § € (0,1] be
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given. Suppose P and Q satisfy |0°P(zo)| < 6™ 1Pl and |0°Q(z¢)| < 6~ 18, for
|B] < m. Then P ® Q € Ao, where ® denotes multiplication in R,. Let k%
be a large enough constant, depending only on m and n, to be picked later.
Then we have the following results.

LEMMA 2.1 Let (I(z))zer be a Glaeser stable family of ideals. Then, for
o € E and 1 < k < k¥, the set o(x, k) is Whitney convex, with a Whitney
constant depending only on m and n.

LEMMA 2.2 Let (I(x))zer be a Glaeser stable family of ideals, and suppose
o € E and 1 < k < k¥. Then there exists 6 > 0 such that any polynomial P,
belonging to I(xg) and satisfying |0°P(x0)| < 6 for |3| < m, also belongs to
o(xo, k).

To prove Lemmas 2.1 and 2.2, we set f(x) = 0 for all € E, and then
note that (f(z) + I(x)).cp satisfies hypotheses (I) and (II) of Theorem 3 in
[13]. (In fact, (I) is immediate from the Glaeser stability of (I(x)).er; and (II)
holds trivially, since we may just set all the P; in (II) equal to zero.) Since also
k*# is a large enough constant, depending only on m and n, to be picked later,
we find ourselves in the setting of Section 5 of [13]. Our present Lemmas 2.1
and 2.2 are simply Lemmas 5.3 and 5.5, respectively, from [13].

We recall from [13] the notion of the “lowest stratum” E. Let (I(x)).ck
be a family of ideals. We set k; = min{dim I(z) : z € E}, and

ko = max{dim(I(z) N ker 7" ") : z € B, dim I(z) = k1 }.
The “lowest stratum” FEj is then defined as
Ei={zeE :dimI(z) =k and dim(I(z) N ker7™"') = ky}.

We compare the lowest stratum FE; with the first slice Ey. Since dim(I(xz)N
ker 77~ 1) + dim(7 1 I(z)) = dim I(z), the set F1 may be equivalently defined
as follows: A given x € F belongs to F; if and only if

(a) dim(I(x)) is as small as possible; and
(b) dim(7™~1I(x)) is as small as possible, subject to (a).
On the other hand, recalling our lexicographic order on (m + 1)-tuples,

we see that Fy may be equivalently defined as follows: A given xz € E belongs
to Ey if and only if

(a) dim(I(x)) is as small as possible;
(b) dim(7™~1I(x)) is as small as possible, subject to (a);

(c) dim(7™~2I(x)) is as small as possible, subject to (a) and (b); and so forth.

Thus, we have proven the following elementary result.
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PROPOSITION 2.2.  Let (I(x))zer be a family of ideals. Let Ey be the
first slice, and let Ey be the lowest stratum. Then Ey C Ey.

Our next result is again essentially taken from Section 5 in [13]. Recall
that D = dim P.

LEMMA 2.3.  Suppose 14+(D+1) - k3 < kg, 1+(D+1) - ko < k1, k1 < k7.
Let (I(x))zer be a Glaeser stable family of ideals, and let Ei be the lowest
stratum. Then there exists 1 > 0 with the following property: Suppose x € Fq
and P € I(x), with |0°P(z)| < ™18 for |8] < m. Then P € Co(x,k3), with
C depending only on m and n.

To prove Lemma 2.3, we again set f(z) = 0 for all x € E, and note that
we are in the setting of Section 5 of [13], as in our discussion of Lemmas 2.1
and 2.2. Since f(z) =0 for all z € E, one checks trivially from the definitions
that (in the notation of [13]) we have I'¢(x,k, A) = Ao(x, k). Consequently,
Lemma 2.3 is simply the special case f =0, A1 = Ay =1, 2" =2" =2,Q' =0,
Q" = P, of Lemma 5.10 in [13]. Thus, Lemma 2.3 holds.

Again, from Section 5 in [13], we have the following result.

LEMMA 2.4. Let H = (f(z) + I(x))zer be a family of cosets. Suppose
1+ (D+1) - ka<ki,and A>0. Let 2/,2" € E, and let P' € Ty (', k1, A).
Then there exists P" € T (" ko, A), with |0°(P" — P')(z')| < Alz' — 2|17l
for |B] < m.

The proof of Lemma 5.6 in [13] applies here, and establishes our present
Lemma 2.4. Advancing to Section 6 in [13], we have the following.

LEMMA 2.5. Suppose k > 1, 1+ (D +1) - k < k¥*. Let (I(x))zer be a
Glaeser stable family of ideals, and let Fy be the lowest stratum. Then, given
€ > 0 there exists 6 > 0 such that the following holds: Given xo € E1, Py €
I(x0), and x1,...,z € EN B(xg,9), there exist P, € I(z1),..., Py € I(zk),
with

|0%(P; = Pj)(y)] < elai — g™~ (1 + max 107 Po (o)1)

for|al <m, 0<i,j <k.

To prove Lemma 2.5, we again set f(x) = 0 for all x € E, and note once
more that (f(z)41(x))zcp satisfies the hypotheses of Theorem 3 in [13]. Since
k# is also a large enough constant, depending only on m and n, to be picked
later, we find ourselves in the setting of Section 6 of [13]. Our present Lemma
2.5 is simply Lemma 6.3 in [13], for the special case f(z) =0 (all z € E).

Next, we recall Lemma 3.3 from [16]. We write #(.S) for the cardinality
of a finite set S.
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LEMMA 2.6.  Suppose k% > (D + 1)1 - ky, ky > 1, A> 0,6 > 0. Let
= be a vector space, with seminorm |-|. Let E C R", and let 9 € E. For
each x € E, suppose we are given a vector space I(x) C Ry, and a linear map
& — fe(x) from = into Ry. Assume that the following conditions are satisfied.

(a) Given € € = and S C E, with |¢§] < 1 and #(S) < k¥, there ea-
ists Ffs e C™(R™), with || Fg lem@m< A, and JI(Fg) € felx) +
I(x) for each x € S.

(b)  Suppose Py € I(xg), with |0°Py(xo)| < & for || < m. Then, given
T1,...,Tps € E, there exist Py € I(x1),. .., Py € I(x), with |0° Py(x;)|
<1 for |8] < m, 0 < i <15 and [07(P; = Py) ()] < |wi — 5" for
Bl <m, 0<i,j < k¥

Then there exists a linear map & +— fg(azo), from = into Ry, with the
following property:

(¢) Given & € E with || < 1, and given x1,...,x, € E, there exist poly-
nomials Py, Pi,..., Py, € P, with Py = fe(xo); Pi € felwi) + I(x;)
for 0 < i < ky; lﬁﬂPi(xi)\ < CA for |B] < m,0 < i < ki; and
08(P; — Pj)(z;)| < CA| z; — 2™ 18l for |3] <m,0<i,j <ki. Here, C
depends only on m and n.

The version of Lemma 2.6 stated here differs slightly from Lemma 3.3 in
[16], since there the constant k¥ is arbitrary, and the constant C' is determined
by m,n and k¥. Here, we have taken k* to be a (large enough) constant
determined by m and n. Consequently, the constant C' in our present Lemma
2.6 depends only on m and n, as stated there. For a family of cosets depending
linearly on ¢ € E, conclusion (c) of Lemma 2.6 says that we can find fg (zo0) €
I'¢ (20, k1, CA) depending linearly on &.

To state the next result, we recall another definition from [16]. Let E C R”
be nonempty. For each x € F, suppose we are given a convex, symmetric subset
o(x) CR,. Let f = (f(x))zer be a family of m-jets, with f(z) € R, for each
x € E. Then we say that f belongs to C™(FE,o(-)) if there exist a function
F € C™(R™) and a finite constant M > 0, such that

(1) N Fllgm@n< M, and J(F) € f(z) + Mo(x) for all z € E.

The seminorm || f |

Cm(E,0()) 18 defined as the infimum of all possible M in (1).
We now recall Theorem 5 from [16].

THEOREM 2.2. Let Egpg C R"™ be a finite set. For each © € Ey, let
o(x) € R, be Whitney convex, with Whitney constant A. Then there exists a
linear map T : C™(Eg,0(:)) — C™(R™), with the following properties.



C™ EXTENSION BY LINEAR OPERATORS 793

(A) The norm of T is bounded by a constant determined by m,n and A.

(B)  Given f = (f(z))zer € C"(Eo0,0(-)) with || f [lom(Ey.0()< 1, we have
Jo(Tf) € f(x) + Ao(z) for all x € Eyy, with A" determined by m,n
and A.

We close this section by pointing out that several of the above results
could have been given in a more general or natural form than the versions
stated here. We were motivated by the desire to quote from [13], [16] rather
than prove slight variants of known results.

3. Consequences of previous results

In this section, we prove some simple consequences of the results of Section
2, as well as a corollary of Theorem 3 (which, we recall, was proven in [13]).

LEMMA 3.1.  There exist C, k, depending only on m and n, for which
the following holds. Let (f(x) 4+ I(x)).er be a Glaeser stable family of cosets.
Suppose we are given A > 0, xg € E, and Py € f(xo) + I(xg). Assume that,
given x1,...,x5 € E, there exist Py € f(x1) + I(x1),..., P € f(a) + I(xp),
with

|0°Pi(i)| < A for |8 <m, 0<i<Fk
and
10°(P; = Py) ()| < Alas — 2"V for |8 <m, 0<i,j<Fk.

Then there exists F' € C™(R™), with || F' ||cm@n< CA, Jo(F) € f(z) + I(z)
forallz € E, and Jz,(F) = P.

Proof. Define f(zo) = Py, I(zo) = {0}; and, for z € E ~ {0}, de-
fine f(z) = f(x), I(z) = I(z). Using the definition (GS2), we see that
( f (z) + I (2))zer is a Glaeser stable family of cosets. Applying Theorem 3
to (f(x) + I(x))secE, we obtain the conclusion of Lemma 3.1. (To check hy-
pothesis (II) of Theorem 3, we apply Theorem 2.1 to the set {xo,...,z3}.)
The proof of the lemma is complete. O

As in the previous section, we take k# to be a large enough constant,
determined by m and n, to be picked later.

LEMMA 3.2. Suppose 14+ (D+1)-kz < ko, 14+ (D41)-ky < ky, ky < k¥;
and Ay, A2 > 0. Let (I(z))zer be a Glaeser stable family of ideals, and let F;
be the lowest stratum. Then there exists 1 > 0, for which the following holds:

For each x € E, suppose we are given an m-jet f(x) € Ry. Set H =
(f(z) 4+ I(x))zer. Suppose we are given x', 2" € Ey, P' € Ty (a’, k1, A1), and
P’ e f(z") + I(2z"). If |2’ — 2" < n and |9°(P' — P")(z')| < Agn™ 1P for
|IB8] < m, then P" € Ty (2", ks, A"), with A’ depending only on Ay, Ay, m,n.
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Proof. In this proof, we write Az, A4, etc. for constants depending only
on A1, Ay, m,n. Let n be as in Lemma 2.3, and let H, 2, 2", P', P" be as in the
hypotheses of Lemma 3.2. In particular, we have P’ € I'y(2/, k1, A1). Lemma
2.4 gives us a polynomial P € 'y (2", k3, A1) C f(2") + I(z"), with

09(P' = P)(a')| < Agla’ — 2" < Ayl

for |8] < m. Since also P” € f(2") + I(z") and |0°(P" — P")(z')| < Agny™~ 1Pl
for |3] < m, it follows that

(1) P’ —Pecl(z"),and |0°(P" — P)(z')| < (A1 + Ag) - ™18l for |3] < m.

This last estimate implies

(2) |98 (P" — P)(z")| < Asn™ I8l for | 8] < m, since |2/ — 2”| <, and P, P
are m'™ degree polynomials.

Since z” € FEj, we learn from (1) and (2) that Lemma 2.3 applies to
(P" — P)/As. Consequently, we have P” — P € Ayo(z”,k3). Since also P €
Ty (2", ks, A1), it now follows from Proposition 2.1 that P” € Ty (2", ks, As),
which is the conclusion of Lemma 3.2. The proof of Lemma 3.2 is complete. O

Note that Lemma 3.2 here sharpens Lemma 5.10 in [13], since our 7 is
independent of f.

LEMMA 3.3.  Suppose k% > (D + 1) - ky, ky > 1, and A > 0. Let
E be a vector space with a seminorm | - |, and let (fe(x) + I1())rcpce= be a
Glaeser stable family of cosets, depending linearly on & € Z. Assume that, for
any & € Z with |£| < 1, there exists F € C™(R™), with

(*) | F [lem@< A, and Jo(F) € fe(z) + I(z) for allx € E.

Then, given xg € E, there exists a linear map £ — fg(mo), from = into Ry,
such that

fe(xo) € Te(wo, k1, CA) for all § € Z with |§] < 1.
Here, C depends only on m and n.

Proof. By definition, (f¢(x) + I(x)).er is Glaeser stable for each § € =,
Setting £ = 0, we learn that (I(z)).cp is Glaeser stable; hence Lemma 2.2
applies. Thus, there exists § > 0 such that

(xx) any P € I(zg) satisfying |0°P(xg)| < § for |3] < m belongs to o(xg, k#).

We now invoke Lemma 2.6. Hypotheses (a) and (b) of that lemma follow
at once from () and (), and from the definition of o(xq, k7). Hence, there
exists a linear map & — fg(:co) from = into R,, satisfying condition (c) in
the statement of Lemma 2.6. Comparing condition (c) with the definition
of T¢(xo, k1, CA), we see that fe(xg) € T¢(wo, ki, CA) for |¢] < 1, with C
depending only on m and n. The proof of Lemma 3.3 is complete. O
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The next result involves the space C™(E, o(-)) from Section 2. (See The-
orem 2.2 and the paragraph before it.)

LEMMA 3.4.  Suppose k#* > (D + 1)1 - k1, ky > 1 and A > 0. Let
E be a wvector space with a seminorm |- |. Let (fe(x) + I(x))zerec= be a
Glaeser stable family of cosets depending linearly on £ € Z=. Assume that,
given § € E with [§] < 1, there exists F' € C™(R"), with || F' [|gm@< A, and
Jo(F) € fe(x) + I(x) for allx € E.

For each xg € E, let £ — fe(xo) be a linear map from = into Ry, as in
the conclusion of Lemma 3.3. Set o(x) = o(x, k1) for all z € E, and set fg =
(fg(a:o))xer for each & € Z. Then, for each £ € E, we have fg e C"™(E,o0(-)).
Moreover, if || < 1, then || f lem (B0 < CA, with C depending only on m
and n.

Proof. Since £ — fg is linear, we may restrict attention to the case |£] < 1.
Fix £ € E with [£] < 1, and fix F' € C™(R"), with || F' [[¢m@< A, and
Jo(F) € fe(x) + I(x) for all z € E. We then have

(¥)  Jgo(F) € T¢(x0,k,CA) for any zg € E, k > 1.
To see this, suppose we are given z1,...,x; € E. Setting P; = J,,(F) for
1=0,1,...,k, we have:
Py = Jg, (F);
P; € fe(x;) + I(x;) for 0 < < k;
|09 Pi(ai)] < CA for |B] <m, 0 <i<k;and
08(P; — Pj)(x)| < CAlw; — 2| P for |8] <m, 0<i,j <k.

Hence, () holds, by definition of I'¢(zo, k, CA).
~ For zg € E, we have Jy,(F), fe(zo0) € T¢(wo, k1, CA), since (x) holds and
fe(xo) is as in the conclusion of Lemma 3.3. Consequently,

Juo(F) — fe(w0) € CAo(z0, k1) = C Ao (o)
for z9 € E, by Proposition 2.1. Thus, F' € C™(R"), with || F' ||cm®~)< CA,
and J,(F) € fe(z) + CAo(z) for all z € E.

_ By definition of C™(E, (")), this means that fe € C™(E,o(+)), and that
| fe llem (o))< CA. The proof of Lemma 3.4 is complete. O

LEMMA 3.5.  Suppose k7 > (D +1)10 -k, ky > 1, A > 0. Let = be a
vector space with a seminorm |- |, and let (f¢(x) + I(x))zecrccz be a Glaeser
stable family of cosets depending linearly on € € =.

Assume that, given any & € Z with || < 1, there exists F € C™(R™), with

| F llem@n< A, and Jo(F) € fe(z) + I(x) for all x € E.
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Let Eyg C E be a finite set. Then there exists a linear map & — Fgo, from =
into C™(R™), with norm at most C'A, such that, for |§] <1,

Jo(F) € Te(x, k1, CA) C fe(x) + I(x) for all x € Eyg .
Here, C depends only on m and n.

Proof. We recall that C' denotes a constant determined by m and n. For
each x € Eq, set o(x) = o(x,k1). By Lemma 2.1, each o(x) is Whitney
convex, with Whitney constant C'. Hence, Theorem 2.2 provides a linear map

T:C™(Ep,o()) — C™(R"),
with norm at most C| satisfying the following property:

(*)  Suppose f = (f(2))zeE, € C™(Eoo,0(-)), with || f llcm (B0 < 1.

Then J,(Tf) € f(z) + Co(x, kp) for all = € Eg.

Next, note that our present hypotheses include those of Lemma 3.3.
Hence, Lemma 3.3 lets us pick out, for each z € Fyg, a linear map £ — fg(az),
from = into R, such that

(#%) fe(z) € T¢(x, k1, CA) for all z € Eyg, & € = with |¢] < 1.

For £ € =, we set fgo = (fg(l‘))erOO. Immediately from Lemma 3.4, we learn
that £ — fgo is a linear map from Z into C™(Epo, o(+)), with norm at most C'A.
For £ € E, we now define FEOO =T fgo. Thus, & — FEOO is a linear map
from E into C™(R™), of norm at most C'A. Moreover, suppose |€] < 1. Then
we have || fgo o (Boo,0(-)) < CA. Applying (¥) to f = fgo/(CA), we learn that
J2(F) € fe(x) + CAo(x, k) for all x € Ego.
Together with (**) and Proposition 2.1, this shows that

Jo(Fg°) € Te(x, ki, CA)

for all x € Eyg. Thus, the map £ — F£00 has all the properties asserted in the
statement of Lemma 3.5. The proof of the lemma is complete. O

LEMMA 3.6.  Suppose k > 1, and 1 + (D + 1) -k < k#. Let (f(x) +
I(x))zep be a Glaeser stable family of cosets, and let Ey be the lowest stratum
for (I(x))zer. Then, given £ > 0, there exists § > 0 such that the following
holds:

Given xg € E1, Py € f(xo) + I(z9), and x1, ...,z € EN B(xg,0), there
exist Py € f(x1) + I(z1),..., Py € f(zx) + I(zx) such that

0%(Pi = Pj) ()] < elws — ;™ 1%+ (14 max |07 Po(wo)])

I8]<m

forlal <m, 0<i,5 <k.
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Proof.  Since (f(x) + I(x))zer is Glaeser stable, it follows easily that
(I(7))zer is Glaeser stable. Moreover, by definition (GS1) of Glaeser stability,
there exists F' € C™(R"), with

(%0) Ji(F) € f(x)+ I(z) for all x € E.
We fix an F' as above, and let € > 0 be given. Set &’ = m
Since F' € C™(R™) and F is compact, there exists §; > 0 with the
following property:

(x1) Given g € E and x1,...,x; € EN B(xg,01), we have
0%( Ty, (F) = Ju,(F)) ()] < € |2 — 25/m7 1o for |a] <m, 0<i,5 <k
We apply Lemma 2.5, with ¢’ in place of e. Thus, we obtain dy > 0, for
which the following holds.

(%2) Given xg € Fy, B e I(x0), and 1, ...,z € E N B(xg, d2), there exist
Py e I(x1),..., P, € I(z), with
(P, = By)(a,)| < /o =21+ (14 max 09 PoCan)) for Ja] < m,
0<i,j<k.

We set 6 = min(dy, d2). Now suppose we are given xg € E1, Py € f(x¢)+ I(xo),

and x1,...,2x € EN B(xg,0). Then

(%3) Py = Py — Jyu, (F) belongs to I(xg), thanks to (+0).
We apply (2), to obtain P € I(x1),..., Py € I(x}) as indicated there.
Setting

(x4) P, =P+ Jy (F) fori=1,...,k,
we have P; € f(x;) + I(z;) for i =1,..., k, thanks to (x0).
Note that (x4) holds also for i = 0. From (x1),...,(x4), we learn that
|0%(P; = Py) ()| <&l — a1l 2+ lﬁgfl!aﬁpo(wem

<&l — zj|™ 712+ || F ||om (@) + max [8°Po(z0)])
[B|<m
for |a] < m, 0 <i,j < m. Since we have taken &' = &/(2+ || F ||cm®n)), it
follows that
|8a(Pi — PJ)(ZUJN < 8’1’1' — l‘j|m_|a‘ . (1 + |IBI\13X |aﬁP0($0)|)
<m
for [a| <m, 0<1i,7 <m.
Thus, the polynomials Py, ..., P, have all the properties asserted in the
statement of Lemma 3.6.
The proof of the lemma is complete. O
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4. Picking the constants

Let k be as in Lemma 3.1. Thus, k depends only on m,n. We recall that
D is the dimension of the vector space of all m'" degree polynomials on R”.
We set k3 = k, ko = 1+ (D +1) - k3, ky = 1+ (D + 1) - ko, and we pick
k# > (D+1)10 . k.

5. The first main lemma

In this section, we complete the analysis of F£00 as described in the in-

troduction. Our result is as follows. Recall that P is the vector space of m'™®
degree polynomials on R".

FIRST MAIN LEMMA. Let E be a vector space with a seminorm |- |, let
(fe(x)+1(x))ger cce be a Glaeser stable family of cosets depending linearly on
€ € 2, and let Ey be the first slice for (1(x))zek-

Assume that, given & € Z with |§| < 1, there exists F' € C™(R"™), with
| F llem@n< 1, and J(F) € fe(z) + I(x) for all x € E. Then, given A > 0,
there exists ng > 0 for which the following holds:

Suppose Egg C Ey is finite, and suppose that no point of Eqy lies farther
than distance ng from Egoo. Then there exists a linear map & — Fgoo, from =
into C™(R™), such that, for any £ € E with |£| < 1,

@ Fgo lcm@n< C, with C depending only on m,n.
(IT) JI(FQO) € fe(x) + I(x) for all x € Eqyp.

(ITT) Let x € Ey, Q € P be given, with [0°Q(x)| < Angl_w for |B] < m. If
Jm(Fgo) +Q € fe(x) + I(x), then

Jo(FE%) + Q € Te(x, k, A),

where k is as in Lemma 3.1, and A’ is a constant depending only on
A, m,n.

Proof. We take k¥ k1, ko, k3 as in Section 4. Let Z, ||, (fe(z)+1(2))zep ce=
be as in the hypotheses of the First Main Lemma, and let A > 0 be given. We
know that (I(x)).cr is Glaeser stable, since (f¢(x) + I())zepcc= is Glaeser
stable. Also, from Section 4, we have 1+ (D+1) k3 < ko, 1+ (D+1) ko < kq,
and k; < k#. Hence, we may apply Lemma 3.2, for any constants A1, Ay > 0.
We will take 4, = C' and Ay = C* + C*A, where C and C* are constants,
depending only on m and n, to be picked below.

Applying Lemma 3.2 with the above A1, As and recalling Proposition 2.2,
we obtain 1y > 0, for which the following hold.
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A~

(1) Suppose & € =, zg € Ey, v € Ey, Py € T¢(xo,k1,C), P € fe(x) + I(z),
= 20| < o, and |93(P — Py)(zo)| < (C* + C*A) 07" for |8] < m.
Then P € I'¢(z, k3, A"), with A’ depending only on m,n, A.

Now suppose Egg C Ey is a finite set, and suppose that no point of Ey lies
farther than distance 7y from Fyj.

The hypotheses of Lemma 3.5 (with A = 1 there) are satisfied by =, | - |,
(fe(z)+1(x))sepccz, and Eg. (In particular, we have k# > (D+1)10-k;,
as we recall from Section 4.) Let £ — Fg00 be the linear map, from = into
C™(R"™), given by Lemma 3.5. Thus, for £ € = with || <1,

2) || F [lgm @< Ch, and
(3) Juo(FY°) € Te(wo, k1, C2) € fe(wo) + I(wo) for all 2 € Eoo.

We now take C to be the constant Cy in (3). As promised, C depends only
on m and n. From (2) and (3), we see that the linear map £ — Fgo satisfies
(I) and (II) in the statement of the First Main Lemma. We check that it also
satisfies (III). Thus, let £ € Z with |{| < 1, and let x € Ey, Q € P be given,
with

4) 10°Q(x)| < Ang™ " for 5] < m,
(5) Jo(F)+Q € fe(x) + I(=).

We must show that Jz(Fgo) + Q € D¢(z,k, A’), where k is as in Lemma
3.1, and A’ is a constant depending only on m,n, A. By our assumption on
Ey, there exists xg € Eyg, with |z — xg| < 9. From (2), we then have

105 (Jo(F) = Juy (F)) ()] < Cla — ao| ™10 < g7 for |8 < m.
Together with (4), this yields
0P {[To(F) + Q) — Juy (F)} (@) < (C + A) - iy for |68] < m.

Since |z — xg| < no and the expression in curly brackets is an m'™ degree
polynomial , it follows that

(6) [0°{[Ja(F) + Q) = Juy (FE) } ()| < (C" +C"A) - g for |8] < m.

We now take C* to be the constant C’ in (6). As promised, C* depends
only on m and n. We set P = Jx(FEOO) +Q, and Py = Jg, (Fgo). We make the
following observations:

e £ € Eand xg,x € Ey (since Ey C Ep).

o I e Fg(xo,kl,é) ( by (3) and our choice of C).
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e Pc fg(x) +I(m) (by (5))

o |z — xo| < np (by the defining properties of xg).

o [05(P—Py)(z0)| < (C*—i—C’*A)-ngl_‘Bl for | 5] < m (by (6) and our choice
of C*).

Consequently, (1) applies, and it tells us that P € T¢(z, k3, A’), with A" de-
termined by A, m,n. Recalling that P = Jx(Fgoo) + @, and that k3 = k (as
in Lemma 3.1; see §4), we conclude that Jm(Fgo) + Q € Ie(z,k, A'), with A’
determined by A, m,n. This completes the proof of (IIT), hence also that of
the First Main Lemma. O

6. Dominant monomials

In the next several sections, we will construct the linear map & — F¢
described in the introduction. We begin with an elementary rescaling lemma
that will be used in Section 8 below.

LEMMA 6.1.  Let P1,..., P, € P be given, nonzero polynomials. Let
0 < a <1 be given. Then there exists a linear map T : R™ — R"™, of the form
T:(x1,...,2n) — (AM1Z1, ..., \nZp), with the following properties:

(1) <X <1 fori=1,...,n, where k is a positive constant depending only
on a,L,m,n.

(2)  For each ¢(1 < ¢ < L), there exists a multi-index B(¢), with |G(£)] < m,
such that

107(Peo T)(0)] < alo” (P o T)(0)| for ] <m. 5 # B(C).
Proof. Let A be a large, positive constant, to be picked later. For 1 <i <
n, let \; = exp(—s;) with 0 < s; < A. Thus,
(3) exp(—A) <\ <lfori=1,...,n.
Note that (2) holds unless there exist

(1<e<L),B =,....0,), 68" =,..., 3", with

(4) |ﬁ/|> |ﬁ”| < m, ﬁ, 7é ﬁ”a 85/PZ(0) ?é 07 aﬁ”Pf(O) ?é 0’ for which (817 sy Sn)
satisfies

Y ’ 0" Pi(0) ‘ < |logal.

(5) Z (8 = Bf) - si —log m

=1
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For fixed ¢, 3, 3" satisfying (4), the volume of the set of all (s1,...,s,) €
[0, A" for which (5) holds is at most 2|logal - A", To see this, fix iy with
! # ! and then fix all the s; except for s;,. The set of all s;, € [0, A] for

10 107
which (5) holds forms an interval of length < | g,l l(igﬁ‘fh < 2|logal.

Integrating over all (s1,...,8i,_1, Sigt1,---,5n) € [0, A]""1, we see that
the set where (5) holds has volume at most 2|log a|- A1, as claimed. Note also
that the number of distinct (¢, 3, 3"”) satisfying (4) is bounded by a constant
depending only on m,n, L. Consequently, the set Q = {(s1,...,s,) € [0, A]"
satisfying (5) for some (¢, 5', 3”) satisfying (4) } has volume at most C|logal -
A" ! with C depending only on m,n, L. Hence, if we take A to be a large
enough constant depending only on m,n, L, a, then we will have vol Q) < % vol
([0, A]™), and thus [0, A]" . © will be nonempty.

Taking (s1,...,sn) € [0, A]" N\, we conclude that (5) never holds for any
(0,0, 3") satisfying (4), and therefore (2) holds for \; = exp(—s;). Also, (3)
shows that (1) holds, since A depends only on m,n, L,a. The proof of Lemma
6.1 is complete. O

7. Definitions and notation

We write M for the set of all multi-indices a = (aq, ..., ay) of order
o = a1+ -+ ap, < m. A subset A C M will be called “monotonic” if, for
any « € A, and any multi-index v with |y| < m —|a|, we have a+~v € A. (We
warn the reader that this differs from the standard use of the word “monotonic”
in the literature on resolution of singularities. We thank the referee of [11] for
bringing this to our attention.)

If o, 8 are multi-indices, then dg, denotes the Kronecker delta, equal to
1 if o = (3, and equal to zero otherwise. Now suppose we are given a point
zp € R”, and an ideal I in R,,. Then we make the following definitions.

A subset A C M is called “adapted to I” if A is monotonic, and, for each
r (0 <r <m), we have

dim(my, I) = #{a € A:|a <7r}.

o If A C M, and if (Py)ae.4 forms a basis for I and satisfies 9° P, (z) = 64
for all 8, € A, then we will say that (Py)aea is an “A-basis” for I.

o If A C M, then we say that “I admits an A-basis” if there exists an
A-basis for I.

e Let 7, A > 0, suppose A C M, and let (P,)aca be a family of polyno-
mials, indexed by A. Then we say that (Py)aca is “(n, A)-controlled”
if
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(a) |0°Py(x0)| < Anlal=18l for o € A, § € M; and
(b) 0PPy(x0) =0 for |8] < |a|, a € A.

e Let n,A > 0, and suppose A C M. Then we say that I “admits an
(n, A)-controlled A-basis” if there exists an A-basis (Py)aca for I, such
that (Py)aca is (7, A)-controlled.

Note that, whenever (P,)aca is (1, A)-controlled, it is also (', A’)-controlled
for0<n' <n, A > A.

The referee has indicated that definitions similar to those above appear
in Hironaka’s work. We thank the referee for bringing this to our attention.

8. An A-basis at a point

Let zp € R", and let I be an ideal in R,,. In this section, we show that
I admits an (7, A)-controlled A-basis, for suitable 7, A, 4. We begin with the
elementary properties of an A-basis.

PROPOSITION 8.1. There exists at most one A-basis for I.

Proof. Suppose (Py)acA, (Pa)aca are two A-bases for I. Then we have
P, = Z My oPy (all o € A), for some matrix (My,). Hence, for any

acA
B,a' € A, we have

560/ = 8ﬁ]5a’(x0) = Z Mo/oc aﬁpoz(x()) = Z Mo/oc 5,804 = Ma’,@ )
acA acA

and therefore P, = P, for all o/ € A. O

In view of the above proposition, we may speak of “the A-basis for I”
whenever I admits an A-basis.

PROPOSITION 8.2.  Suppose A C M 1is adapted to I, and suppose I
admits an A-basis. Then the A-basis (Py)aca for I satisfies ° Py(29) = 0 for
18] < |al, a € A.

Proof. Fix (3, &, with |3| < |a] and & € A. Set r = |3]; thus r < |a|. Also,
set B={aecA:|a| <r}.

For 8 € B, we have dg5 = 0. We know that the 7 P, (o € B) belong to
77 I. We know also that, for 8, € B, we have 9°[n?, Py](z0) = 0P Py () =
03a- Hence, the 7, P, (o € B) are linearly independent in 77, I. On the other
hand, since A is adapted to I, the dimension of 77, I is equal to the number of
elements of B. Hence, the 7, P,(ca € B) form a basis for , I. In particular,
for some coefficients A, (a € B),

Ty, Pa = ZAaﬂ';OPa .
aeB
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Consequently, for any 3 € B,
0 = 0pa =0"Pa(xo) = °[n], Pal(z0) = Y A 0°[r], Pal(x0)

a€eB
=Y A, 0°Po(x0) = Y Aabpa = Ap.
aEB aEB
Thus, the coefficients Ag all vanish, and therefore 7; Pz = 0. Since
|B| = r, it follows that 9° Ps(zo) = 0.
The proof of Proposition 8.2 is complete. O

We begin the work of constructing an (7, A)-controlled A basis. Recall
that ¢, C,C’, etc. denote constants depending only on m and n. We call such
constants “controlled”.

LEMMA 8.1. There exist a monotonic set A C M, and a basis (Py)acA
for I, with the following properties.

(1
2

) 0PPa.(z0) =0 for |B| < |al,a € A.
(2) |9 Pa(x0)| < C for |B] = |al,a € A.
(3)  0°Ps(z0) =1 for B € A.
(4)

For each (0 < r < m), we can order the set A(r) ={a € A: |a| =r}
so that the matriz (aﬁPa(xo))@aeA(T) is triangular.

(If A(r) is empty, then (4) holds vacuously.)

Proof. Without loss of generality, we may suppose xg = 0. For 0 < r < m,
set
M, ={aeM:|a|=r}.
For each 7(0 <7 < m) and B C M,, we say that B € Q(r) if and only if there
exists P € I such that:

(5) 85P(0 =0 for |B| < r;

(6) 9”P(0

)=

) =0 for all g € B; and
(7)  9%P(0) # 0 for some 8 € M,..

0<

);

r < m), and for each B € Q(r), fix a polynomial P,z € I
satisfying (5), (6), (7); and let P, 5 be the part of P, that is homogeneous of
degree r. (That is, if P, g(x Z Ayx®™, then PTB Z Ayx”.
aeEM aEM,
Since P, p satisfies (7), the polynomials P,z (0 < r < m, B € Q(r)) are
all nonzero. Let a € (0,1) be a small constant, to be picked later. We write

For each (
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c(a),C(a), C'(a), etc. to denote constants determined by a,m,n. We apply
Lemma 6.1 to the polynomials P,z (0 < r < m, B € Q(r)). Thus, for some
linear map T : R™ — R"™ of the form

(8) T:(x1,...,2n) — (AM1x1,..., \n2y), the following hold.
(9) cla) <N <lfori=1,...,n.

(10) For 0 <r < m and B € Q(r), there exists a multi-index (r, B) such that
|0°(Pr5 0 T)(0)] < a|0°F) (B, 0 T)(0)| whenever 8 # 3(r, B).

Fix B(r, B) as in (10). Since P, is the part of P, 5 that is homogeneous
of degree r, it follows from (10) that

(11) |B(r,B)| =r for 0 <r <m, B € Q(r); and

(12) [0%(Pp o T)(0)| < ald®"B) (P, 50 T)(0)] for all B € M, ~ {B(r,B)},
0<r<m,BeQr).

Also, by definition of T',Q(r), P, 5, we have

(13) 9%(P.goT)(0)=0for |B] <7, 0<r<m,BecQ(r);
(14) 9P(P.goT)(0) =0 for 3€ B, B Qr),0 <r<m;and
(15) 9P"B) (P, 5o T)(0) # 0 for B € Qr), 0 <r < m.

For each (0 < r < m), we define a (possibly empty) finite sequence of
multi-indices 77,74, . . . ,'yz(r) € M,, and a (possibly empty) finite sequence of
polynomials, Q7,... ,QTL(T), by the following induction.

Fix (0 < r < m). For a given £ > 1, suppose we have already defined the
vy and @y, for all ¢/ with 1 < ¢ < £. (For ¢ = 1, this holds vacuously.) Set

(16) By ={"1,---,7_1}- (Thus, By is empty if £ = 1.)

If By ¢ §(r), then we set L(r) = — 1, and we stop defining additional ] and
Qr. If instead Bj € §(r), then we set

(17) Q; = by By e} T, and

(18) g = B(r, By).

This completes our induction on ¢, and produces possibly empty, possibly
infinite sequences 77, 75,... and @7, @5, ... of multi-indices and polynomials,
respectively. We will see that these sequences terminate. Note that |v;| = r,
by (11) and (18). Set [oT ={PoT : P € I}.

Then, since all P, g belong to I and satisfy (12)-(15), and since v}, @}
are defined by (16), (17), (18), we have the following results.
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(19) QjeloTfor0<r<m,1<l<L(r).
(20) 9%Qy(0)=0for |B| <7, 0<r<m,1<l<L(r).
(21) 6/3622;(0) =0for f=7,,1 <l <L<L(r),0<r<m.
(22) 0°Qy(0) #£0for B=~5, 1 <L<L(r),0<r <m.
(23) 10°Q;(0)] < a0 Q(0)] for f € My~ {7}, 0< 7 <m, 1 <L< L(r).

Here, we define L(r) = 0 if our sequences 77,73, ... and Qf, @5, ... are empty;
and we define L(r) = oo if those sequences never terminate.

Comparing (21) with (22), we see that, for fixed r, the ~; are all distinct.
Since also |y;| = r for each ¢, the sequence 77,73, ... must terminate. Thus,

(24) L(r) <oofor 0 <r <m,

as promised. This tells us that

BE(T)+1 - {771”7 s 7’72(7’)} ¢ Q(T) .
By definition of (), this in turn tells us the following.

(25) Let 0 <7 < m and P € I be given. If 9°P(0) = 0 for |3| < r, and for
B=1.7:- 27, then °P(0) = 0 for |5 < 7.

Since T : R™ — R" is a linear map given by a diagonal matrix, (25) is equivalent
to the following result.

(26) Let 0 <r <m and P € I oT be given. Suppose 0°P(0) = 0 for |3| < r,
and for 3=~5 ((=1,...,L(r)). Then 9°P(0) = 0 for |3| < r.

Next, suppose we are given r (0 <r <m) and P € [ o T, with

(27) 9°P(0) =0 for |B| < 7.

Then, since the matrix (97 Q}(0))1<¢,¢<r(r is invertible (thanks to (21),
(22)), there exist coefficients Ag(1 < ¢ < L(r)) such that

(28) P=P— Z ApQy satisfies
1<¢<L(r)

(29) 9% P(0) =0 for 1 < £ < L(r).
From (19), (20), (27), (28), we have also
(30) 9PP(0) =0 for |8 < r, and

(31) PeloT.
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From (26) and (29), (30), (31), we find that 9°P(0) = 0 for |8] < r.
Thus, we have established the following.

(32) Let P € (IoT)Nkerm . (For r = 0, this means simply that P € IoT.)

Then there exist coefficients Ay (1 < ¢ < L(r)), such that P — Z A Qy €
1<e<L(r)
(I oT)Nkermny.
Here, 7y denotes my  with 2o = 0. Since ! is the identity map on Ry,
an obvious induction on r using (32) shows that

(33) IoT is contained in the linear span of the @} (1 < ¢ < L(r), 0 <r < m).
Now we define

(34) A={y :0<r <m,1 <0< L(r)}, and for a € A we define P,, by
setting

(35) Py, T QT 1(0) for0 <r<m,1<¢<L(r).

Note that the denominator in (35) is nonzero, thanks to (22) and the
diagonal form of the linear map 7. Note also that the set A(r) = {a € A :
|a] = r} from (4) is given by

(36) A(r) ={y : 1 <L < L(r)} for 0 < r < m, since |y;| =7 for 0 < r <m,
1<¢<L(r).

We prepare to show that A is monotonic, provided we take the constant a
to be small enough. To see this, we introduce the vector space of polynomials

(37) V, =nflkerny t N (IoT) for 0<r <m.

(If r = 0, this means simply Vy = nQ[I o T].)
We set
<y
(38) Q) = 7675062;(0) for 0 <r<m,1</¢<L(r).

The denominator in (38) is nonzero, by (22). In view of (19), (20), (37),
we have

(39) QyeV,for0<r<m,1<{<L.
From (22), (23), (38) (and the fact that |v;| = r), we have
(40) 19°Qp(0)| <afor 0<r<m,1<{<L,B#].

(Note that 9°Q}(0) = 0 for || # 7, by (37) and (39).) Also, since |vj| = r,
we have 07 [4Q7](0) = 87 Q}(0), and therefore (38) yields
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(41) 9% Qy0)=1for 0<r<m,1<l<L
Next, we check that
(42) V; =span{Q}:1 < (< L(r)} for 0 <r <m.

In fact, an obvious induction using (32) shows that any polynomial P €
ker 751N (I oT) may be written as a linear combination of the Qy for1< (<
L(r"), v > r. We have also 74Q} = 0 for ' > r, by (20); and 7}Q} is a con-
stant multiple of Q;, by (38). Consequently, 75 P € span {Q; 1 << L(r)}
for every P € kerny ' N (I o T). Together with (37) and (39), this completes
the proof of (42).

Now, from (36), (40), (41) , (42), we see that

(43) max |0°P(0)| < Ca- max [9°P(0)| for all P € V., 0 < r < m, provided
BEA(r) BEA(r)

(44) 0 < a < ¢ for a small enough controlled constant c.

We recall here that ¢, C, C’, etc. denote “controlled constants”, i.e., con-
stants depending only on m and n.
We are now ready to show that

(45) A is monotonic.

To see this, suppose 0 < 7 < s <m, and 1 < ¢ < L(r); and let v be a
multi-index with

(48) |y|=s—r.
We must show that
(49) 7 +v € Als).

This will establish (45), in view of (34), (36).

Let P(z) = 27 ® Qj(x), the symbol ® denoting multiplication in Rg
(= Ry, with zg = 0). Since I oT is an ideal , (19) shows that P € I oT. (This
is the only place in the proof of Lemma 8.1 where we use the hypothesis that
I is an ideal.) Also, (20) and (48) show that P € ker 75~ '. Hence, by (37), we
have

(50) wSP € Vi

From (22), (23), (48), and the definition of P, we see that
0°P(0)] < Ca|d 7 P(0)] #0 for B € My~ {7 +7},

and therefore

(51) [07(§P)(0)] < Cal@i*7(m§P)(0)] # 0 for B € M~ {7} +7}-
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Also, from (50) and the definition of V;, we see that 7§ P is homogeneous
of degree s. Consequently, (51) implies

(52) [0°(mgP)(0)] < Caldi*+7(m§P)(0)| # 0 for 5 € M~ {7} +}.

In particular, 5P # 0.
Now suppose we take our constant a to be a small enough controlled
constant. Then (44) holds, and therefore (43) and (50) show that

53) max |0%(xP)(0)| < max |0°(7gP)(0)|, while (52) shows that
(53 max [0°(m5P)0)] < maxe 10°(xiP)(0)] while (52)

54 9B (mEP)(0 TV (wEP)(0)].
(54) ﬁeMH\l?%ﬂ}’ (moP)(0)] < | (m6P)(0)]

If v5 + v ¢ A(s), then (53) and (54) would show that
Y (g P)(0)| < 0% (w5P)(0
@7 (w3 P)O) < max 10°(5P)(O)
< max P (rsP)(0)] < |87 Y (75 P)(0)],
<m0 mP)0)] <107 (x5 P)(O)

which is absurd. This completes the proof of (49), hence also that of (45).
From now on, we fix a to be a controlled constant, picked small enough to
make the above arguments work. In particular, since a is a controlled constant,

(9) yields
(55) c< N <1, fori=1,...,n.
From (8) and (55), we obtain
D Q(0)] < 1%} 0 T1)(0)
<Cl9°Qy(0)| for € M, 0<r<m, 1 <L<L(r).
Together with (22), (23), (35), this shows that
|8’6P7;(0)| <Cfor|fl=r,0<r<m,1<l<L(r).
Since |y, | = r, it therefore follows from (34) that
(56) 9P P,(0)] < C for |8] = |a|, a € A.

It is now easy to check the conclusions of Lemma 8.1 for A, (P, )aca as
in (34), (35). In fact, we have already checked that A is monotonic (see (45)).

Conclusion (1) follows easily from (8), (20), (34), (35) and the fact that
|7y | = r. Conclusion(2) is simply our result (56). Conclusion(3) is immediate
from (34), (35). Conclusion(4) follows easily from (8), (21), (35), and (36).

Thus, it remains only to check that the P, (a € A) form a basis for I. From
(19), (33), we see that JoT =span{Q} : 0 <r <m,1 < ¢ < L(r)}. Hence (34),
(35) show that I = span{P, : @ € A}. Moreover, by (1), (3), (4) (which we
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already know), we may order A in such a way that the matrix (9°P,(0)) BacA
is triangular, with 1’s on the main diagonal. Hence the P,(a € A) are linearly
independent.

Since we have now shown that the (P,),c4 form a basis for I, the proof
of Lemma 8.1 is complete. O

PrROPOSITION 8.3.  Let A, (Py)aca be as in Lemma 8.1. Then A is
adapted to I.

Proof. Already from Lemma 8.1, we know that A is monotonic. We must
show that dim(ny, I) = #{a € A:|a] <7} for 0 <r <m.
Fix r, and note that 7, P, = 0 for o € A, |a| > r, by conclusion (1) of

Lemma 8.1. On the other hand, conclusions (1), (3), (4) of Lemma 8.1 show
that we may order B = {a € A : |a| < r} in such a way that the matrix

(aﬁ[ﬂgopa]('xO))ﬁ,aeB = (aﬁpa(xO))ﬂ,aEB

is triangular, with 1’s on the main diagonal. Consequently, the polynomials
Ty, Pa(a € B) are linearly independent.

Recalling from Lemma 8.1 that the P, (o € A) form a basis for I, we
conclude that

dim(rm}, I) = dim span {7, Py :a € A} =dim span{m; Py:a € A, ja| <71}

=#{aceA:|o| <r}.
The proof of Proposition 8.3 is complete. O

The main result of this section is as follows.

LEMMA 8.2. There exist a controlled constant C', a positive number 1,
and a subset A C M, such that A is adapted to I and I admits an (n,C)-
controlled A-basis.

Proof. Let A, (P,)aca be as in Lemma 8.1. By Proposition 8.3, A is
adapted to I. Moreover, by conclusions (1) and (2) of Lemma 8.1, there exists
a positive real number 7, such that

(57) nlPl=1el 188 P, (20)] < C for a € A, |B] < m.

We fix n > 0 as in (57).

Next, as noted before, conclusions (1), (3), (4) of Lemma 8.1 show that
we can order A in such a way that the matrix (0°P,(70))s,aca is triangular,
with 1’s on the main diagonal. Hence, the same is true of the matrix

N = (/97191 9 P (w0))g.ac -

Moreover (57) shows that the entries of M are bounded in absolute value by
a controlled constant.
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It follows that M is invertible, and that its inverse matrix

M = (Ma/a)oz’,aeA

satisfies
(58) |Myao| < C for o/, € A.
By definition,

(59) bga = > 01109 Py (o) - Mg for B,a € A.
a’eA

We now set

(60) P, = n'a‘ Z 77_|0‘/‘ P.M,. for o € A.
a’eA

Since (Mu/a)ar,aca is invertible, so is (77‘04_‘0‘,| My o)oaca. Since the
P, (a/ € A) form a basis for I (by Lemma 8.1), it therefore follows from (60)
that the Py (« € A) also form a basis for I. Moreover, (59) and (60) show that,
for B,a € A,

aﬁpa(xo) - n\alflﬁ\ . Z n|5|*|a/| aﬁpa,(xo) My = n\alflﬁ\ g0 = 0pa -
a’'eA

Thus, (P,)aca is an A-basis for I.

We show that the A-basis (Pa)aca is (17, C)-controlled. In fact, since
(]Sa)ae A is an A-basis for I, and since A is adapted to I, Proposition 8.2
shows that

(61) 9PP,(x0) =0 for |3| < |a|, a € A.
Moreover, (57), (58), (60) show that, for a € A, |5] < m, we have

nP=led) 98 P (20)] < Z plBl=1el
a’'cA

PPy (z0)| - |Myo| < C.

Thus,
(62) |0° Pa(x0)| < Cplol=18l for a € A, 8] < m.

Our results (61), (62) tell us that (Pn)aeca is (7, C)-controlled. Thus, we
know that A is adapted to I, that (P)aeA is an A-basis, and that (]Sa)aeA is
(n, C)-controlled.

The proof of Lemma 8.2 is complete. O
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9. An A-basis on a small ball

In this section, suppose we are given a Glaeser stable family of ideals,
(I(2))ger. We write Ey for the first slice of E and say that an open ball
B(yo,n) C R™ with radius n < 1 is an “excellent ball” if there exists A C M
for which the following hold:

(I)  For each z € Ey N B(yo,n), A is adapted to I(x), and I(z) admits an
(n, C1)-controlled A-basis.

(II) Let x,2" € EgN B(yo,n), and let (Py)aea be the A-basis for I(x). Then,
for each o € A, there exists P/, € I(z'), with

0°(P), = Po) ()| < | — "7 for |8] < m.

(IIT) Given € > 0, there exists 6 > 0 for which the following holds:

Let z, 2" € Ey N B(yo,n), with |z — 2'| < §. Let (Py)aca be the A-basis
for I(x). Then, for each a € A, there exists P, € I(2), with

09(P, — Po)(@)] < el — 2/|™ VP for 8] < m.

Here, C is a large enough controlled constant, to be picked later.

We recall that, in view of (I) and Proposition 8.1, there exists a unique
A-basis for I(z), at each z € Ey N B(yo,n). Note that any open ball of radius
< 1 that does not meet Ej satisfies (I), (II), (III) vacuously, and is therefore
excellent.

The goal of this section is to prove that every sufficiently small open ball
is excellent.

LEMMA 9.1.  Let xg € Ey be given. Then there exists p > 0 such that
any open ball contained in B(xo, p) is excellent.

Proof. We recall from the start of Section 2 a small remark about notation.
In our proof of Lemma 9.1, we will introduce polynomials P¥, Py"" depending
on parameters z,z’ € R". When we write 9° P¥(x) or 0°Py" (x), we mean

N o ,
(%) PZ(y) or (a%) P¥* (y) evaluated at y = x, rather than the derivative

of order a of # — P*(z) or & — P ().

Let us apply Lemma 8.2 to the ideal I(zg) and the point zp € R™. We
obtain a set A C M adapted to I(zg), a positive number 79, and an (g, Cp)-
controlled A-basis (PY)aec4 for I(xg).

By definition of a slice, we know that the function z +— dim#.I(z) is
constant on Ey, for each 7(0 < r < m). Therefore, since A is adapted to I(xo)
with zg € Ey, it follows that

(1) Ais adapted to I(z) for all x € Ey.
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Also, since (P2)aea is an (19, Co)-controlled A-basis for I(zg), we have
(2)  P% e I(xg) for a € A;

(3)  9PPY(zg) = s34 for B,a € A; and

() 0°PY(wo)| < Cony” ™ for a € A, || < m.

Next, since (I(z))zer is Glaeser stable, (2) shows that there exist F, €
C™R") (a € A), with

(5)  Ju(Fy) € I(z) for « € A, x € E; and

(6)  Jyp(Fo) = P for a € A.

We fix F,, as above. From (3), (4), (6), we have

(1) 108 Fa(zo)| < Conl®™ " for a € A, |8] < m; and
(8) 9P F,(x0) = dpq for B,a € A.

The matrix-valued function x + (9°F,(z))g.aca is continuous on R”,
and equal to the identity matrix at = z (see (8)). Hence, for p; > 0 small
enough, (0°F,(2))p.aca is invertible for x € B(wo, p1), and its inverse matrix
(Mya(2))ar acA satisfies

(9) 2+ (Myal())a,acAa is continuous on B(zo, p1) and equal to the identity
matrix at x = xg.

By definition of (Myq),

(10) Z 0P F o (2) - Muo(x) = g for B,a € A and x € B(zg, p1).
a’'cA

Now define

(11) P? =) Jo(Fo) - Mya(z) for o € A, x € Eg 0 B(xo, p1); and
a’'eA

(12) Py = Z Jo(For) + Myo(x) for a € A, z,2" € Ey N B(xo, p1).
a’'cA

From (5), (11), (12), we have

(13) PT¥ e I(x) for a € A, x € Eg N B(xg, p1); and
(14) PY™ e I(z') for a € A, 2,2’ € Ey N B(xo, p1).
Also, from (10), (11), we have

(15) 0°P2%(z) = 6 for B,a € A, x € Ey N B(zo, p1).
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In particular, the PZ(a € A) are linearly independent for x € Ey N B(xo, p1).
Moreover, the number of P (a € A) is equal to dim I (z) for z € EyNB(xo, p1),
thanks to (1). Together with (13), these remarks imply

(16) (P7)aca is the A-basis for I(x), for each x € Ey N B(xo, p1)-

Also, since F, € C™(R"), we learn from (7), (9), (11) that: For a € A,
|B] < m, the function x — 9°PZ%(z) is continuous on Ey N B(xg, p1), and
has absolute value at most Con!®—18l at = z5. Consequently, for a positive
number p2 < p1, we have

A7) |0°P2(2)| < O™ for 18] < m, a € A, x € Ey N B(x, pa).
Also, from (1), (16), and Proposition 8.2,
(18) 9PP(x) =0 for |B] < |af, « € A, x € EyN B(x, p2).

We now take the constant C in the definition of an “excellent ball” to be
equal to C' from (17). Thus, (16), (17), (18) show that

(19) I(x) admits an (ng, C1)-controlled A-basis, for each x € Ey N B(xo, p2)-

Next, let € > 0 be given. Since each F, belongs to C"(R") and Ej is
compact, there exists § > 0 such that, for z,2’ € Ey with |z — 2| <4,

(20) |0%(Ju(Fo) — Jo (Fa))(2)| < delo — 2/ |™ Wl for |8] < m, a € A.

From (9), (11), (12) we obtain a positive number p3 < p2, independent of ¢,
such that, for z, 2’ € Ey N B(xg, p3), (20) implies

185(PT — P> (2)| < ela — /|1 for [B] <m, a e A.
Consequently, we obtain:

(21) Given € > 0, there exists 0 > 0 such that, for any z,2’ € Ey N B(zo, p3)
with |z — 2/| <4,

0°(P? — P2 (z)| < elz — /|1 for |B] <m, a € A.
In particular, (21) gives us a positive number d;, such that
(22) For any z, 2’ € Ey N B(xo, p3) with |z — 2’| < 41,

09(P2 — P2)(@)] < Jo — /" for [B] <m, a € A.

If we take p to be a positive number less than the minimum of ps3, % 01, 1,mo,
then (22) yields

(23) For any z,z’ € Ey N B(xo, p), and for |3] < m, a € A,
07 (P = Py ()] < |o — a7
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Now let B(yo,n) be any open ball contained in B(zg,p). We will show
that B(yo,n) is an excellent ball, thus proving Lemma 9.1. In fact, we have
n < p < 1 by our choice of p. We must show that (I), (II), (III) hold for
B(yo,n)-

To check (I), we first note that A is adapted to I(z) for all x € EoNB(yo,7n)
(see (1)). Moreover, since n < p < gy and

(24) B(yo,n) C B(zo,p) C B(xzo,p3) C B(zo,p2) C B(xg,p1) we know from
(16), (17), (18) that

185 P%(2)] < C1nl®=P for o € A, || < |B] < m, 2 € Ey N B(yo, n)
and
0°PE(x) =0 for |B| < |al, a € A, z € Eg N B(yo,n),
where (PY),ca is the A-basis for I(z), z € Eg N B(yo,n).

Thus, I(z) admits an (7, Cq)-controlled A-basis for each x € EqgNB(yo,n).

This completes the proof of (I) for the ball B(yg,n). To check (II), we
just recall (16) , (14), (23), and the inclusions (24). Thus, for any z,2’ €
Eo N B(yo,n) and any « € A, we obtain

0°(Py — Py™)(@)] < o — '™ for 5] < m,

where P2 € I(z') and (P§)pea is the A-basis for I(x). This completes the
proof of (II) for the ball B(yo,n).

Finally, to check (III), we just recall (16), (14), (21), and the inclusions
(24). Thus, given € > 0 there exists § > 0 such that, for z,2’ € Ey N B(yo, n)
with |z — 2/| < ¢, we have

10%(P% — P2 (z)] < elz — /|1 for |B] <m, a € A,

where P2* € I(z') for o € A, and (P¥)aca is the A-basis for I(x). This
completes the proof of (III) for the ball B(yo,n).

We have now shown that any open ball B(yo,n) C B(zo, p) has radius less
than 1 and satisfies (I), (II), (III). Thus, any open ball contained in B(xg, p)
is excellent. The proof of Lemma 9.1 is complete. O

LEMMA 9.2. Let (I(x))zcr be a Glaeser stable family of ideals. Then
there exists n > 0 such that any open ball of radius less than 7 is excellent.

Proof. Let B(xg,p) be an open ball in R". We will call B(zg,p) a
“useful” ball if every open ball B(yg,n) C B(xo,10p) with radius n < p is
excellent. By Lemma 9.1, every point of Ejy is the center of a useful ball.
Since Ey is compact, it follows that Ey is covered by finitely many useful balls
B(z1,p1),...,B(zN, pn). We take 7 = min(1, p1,...,pn) > 0; we show that
every open ball B(yp,n) of radius n < 7 is excellent. In fact, if B(yo,n) is
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disjoint from Fjy, then (as observed earlier) B(yo,n) is an excellent ball, for
trivial reasons. If B(yp,n) is not disjoint from FEjy, then let & € B(yo,n) N Ep.
We have & € B(z,,py) for some v(1 < v < N). For that v, we have also
Z € B(yo,n) and n < 77 < py. Consequently, B(yo,n) C B(z,,10p,). Since
B(zy, py) is useful, it follows that B(yp,n) is excellent. The proof of Lemma
9.2 is complete. O

10. Analysis on an excellent ball

In this section, suppose we are given the following data:
e A vector space Z with a seminorm | - |.

o A Glaeser stable family of cosets (g¢(x) +1(x))zeck cc= depending linearly
on ¢ € =.

e An open ball B(yo,n) C R".
e A positive constant A.

Note that the family of ideals (I(x))zcr is Glaeser stable. Let Ey be the
first slice for the family of ideals (I(z))yerp. We make the following assump-

tions:
1 1Yo € Ey.

2)  B(yo,n) is an excellent ball for the family of ideals (I(z))zer. (See §9.)

(1)

(2)

(3)  9¢(yo) € I(yo) for all € € =.

(4) For any & € = with [¢| < 1, there exists G € C™(R"), with

| Gllem@r< A, and Jo(G) € ge(x) + I(x) for all z € E.

Let A C M be as in the definition of an “excellent ball” in Section 9.
For z € Ey N B(yo,n), let (P¥)qeca be the A-basis for I(x). Then, for z €
Eo N B(yo,n), we define a linear map proj, : P — P, by setting

(5) projz P =P~ [0°P(x)]- Py
acA

Recall that P is the vector space of m'™ degree polynomials on R™.
We note a few elementary properties of proj,.

PROPOSITION 10.1. Let z € Ey N B(yo,n), and let P € P. Then:
(6) P —proj, P€l(z);

(7) If P € I(x), then proj, P = 0; and
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(8)  9P(proj,P)(z) =0 for B € A.

B
Here, 0”(proj, P)(z) denotes <8%> (proj,P)(y) evaluated at y = x.

Proof. We have (6), simply because each PZ belongs to I(z). To prove (8),
we note that, for 3 € A,

09 (proi, P)(x) = 0°P(x) ~ 3 [0 P(a)]- 9" PE(x) = 0.
acA

since O° P%(z) = 3, for B,a € A (because (P%)ae4 is the A-basis for I(x)).
To prove (7), suppose P € I(x). Then (6) gives proj, P € I(x). Since
(PT)aeq is a basis for I(z), we therefore have

(9) proj.P = ZAQP,;C for some coefficients A,.
acA
Since 9°P¥(z) = 3, for B, € A, we learn from (8) and (9) that

0= 07 (proj, P)(z) = An0° Pi(x) = Ag for any B € A.
acA

Therefore, (9) gives proj, P = 0, completing the proof of (7). O
LEMMA 10.1. Let £ € E, with [¢| < 1. Then, for z,x’ € Ey N B(yo,n),
107 (proj,g¢ () — projy ge(2)) ()| < CAlx — '[Pl for |p] < m.

Proof. Recall that C' denotes a constant depending only on m and n. Let
(P!)aca satisty the following conditions.

(10) P e I(2) for a € A,
(11) |9%(P% — P)(x)| < |x — 2'|™ 18l for |B] < m, o € A.

Such P/, exist, by part (II) of the definition of an excellent ball. Also, we fix
G € C"™(R"), with

(12) || G llgm@)< A and
(13) Jo(G) € ge(x) +I(x) forall z € E.

We set P = J,(G) and P’ = J(G). From (12),
(14) [0°P(z)| < CA for |8] < m, and
(15) [9°(P — P')(z)| < CAlz — 2’| %l for |5] < m.
Note that

(16) proj,ge(x) = proj,J.(G) = proj, P, and
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(17)  proj,.ge(z') = proj,. Jo(G) = proj,, P, thanks to (13) and (7).

We define
(18) P=P—) [0"P(z)] - P} and
acA
(19) P'=P =) [0*P(x)] - P,
acA

Then P = proj, P by definition, and proj,, P’ = proj,. P’ by (7) and (10).
Hence, (16), (17) yield

(20) pro.]ng(x) = Pv and

(21) proj,ge(a’) = projz,P’.

For [3] <m,
(22) |0°(P — P')(z)| <|0°(P — P')(x)| + Z\ao‘P(x)\ - |0%(P% — P)(x)]
acA
< CAlz — /™18 4 Z[CA] o — /|1l
acA

<C'Alz — /|18 by (18), (19), (15), (14) , (11).

In particular, for 3 € A, we have PP (x) = 9°(proj,P)(x) = 0 by (8).
Hence (22) yields [0°P'(z)| < C'Alz — 2/ 18] for g € A.
Since A is monotonic (by definition of an “excellent ball”), it follows that

(23) [07H0P!(2)| < C'Ale — /| P for 5 € A, ] <m — 1.
Since 9P P’ is a polynomial of degree at most m — |3|, (23) implies
(24) |9°P'(2")| < CAlz — /|18l for B € A.

Now, for |3] < m, we have

|0°[P" — proj,, P'|(z')| = |Z [0%P'(2")] - 9°P% (2')| (by definition of proj,,)
acA

(25) < Z |0%P' ()| - |86ngl(x')| (since 3PP (2') =0
NEY
for v € A, |5] < |a|; see Proposition 8.2)
< Z [CA|z — /|1l - [oplel=18]

acA
la|<|B]

(by (24) and the fact that (P*)aec4 is (17, C1)-controlled; see the definition of
an “excellent ball”, and also the definition of “(n, C})-controlled”)
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< Y [CAlz — /|l - [Clx — o el

acA
[ <181

(since |z — /| < 2n because z, 2" € B(yo,7))
<CAlx — 2/ |™ 181,

Since P’ — proj,, P is an m™ degree polynomial on R", (25) implies

(26) |0°[P' — proj, P'] (z)] < CAlx — 2'[™ I for |8 < m.

From (22) and (26), we have

185(P — proj,, P')(z)] < CAlz —2'|™ 1 for |8] < m.
In view of (20), (21), this means that
107 (proj,ge () — proi, ge () ()] < CAla — 2/ "4 for 8] < m,

which is the conclusion of Lemma 10.1. The proof of the lemma is complete.

O

Similarly, we have the following result.

LEMMA 10.2. Let & € Z and € > 0 be given. Then there exists § > 0
such that, for any z,x’" € EgN B(yo,n) with |x — 2’| <4,
107 (proj,g¢ (x) — projy ge(2'))(z)| < el — '™ for |B] < m.

Proof. Since § — g¢(x) is linear for each x € E, we may assume without
loss of generality that |¢| < 1. Let ¢’ > 0 be a small, positive number, to be
picked later.

By part (III) of the definition of an excellent ball, there exists d; > 0, for
which the following holds.

(27) Given z,2’ € Ey N B(yo,n) with |z — 2| < 61, there exists a family of
polynomials (P/)aea, such that

(a) P, e I(2) for a € A;
and
(b) |0°(P% — P)(z)| < €|z — x/‘m—lﬁ\ for |B] <m, a € A.

Also, we fix G € C™(R"), with

(28) [ G|

cm@m< A, and
(29) Jo(G) € ge(x) + I(z) for all z € E.

Since G € C™(R"™) and Ejy is compact, there exists d2 > 0 for which the
following holds.
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(30) Given z,2’ € Ey with |z — 2’| < d2, we have
10°(J2(G) — Jo (G))(@)| < €' — 2’|V for |8 < m.

Now suppose x, 2’ € Ey N B(yp,n) with |« — 2’| < min(dy,02). Then (27)
and (30) apply. We fix (P.)qeca as in (27); and we set

P:Jx(G)vpl = Jx’(G)a
P=P-) [0"P(x)] - P,

(0%
acA

P'=P' =% [0°P(x)] - Fi,

acA
as in the proof of Lemma 10.1, which gives
(31) proj, ge(x) = P and proj, ge(2') = proj, P’
By (28) and (30),

(32) 10° P(z)| < CA for 8] < m,
and
(33) 0°(P = P')(x)| < &'lw — /| for |8 < m.
For |8] < m,
(34) [09(P — P')(w)| < [0°(P — P')(x)| + Z;ma |- 10°(PE = PL)(@)]
<o —a/ "4 YA [z =2/ "] (by (27)(b), (32), (33))
acA

<[C+CA]- €|z — /™18,
From (34) it follows, as in the proof of Lemma 10.1, that
(35) %P ()| < [C + CA] - €'lw — /| 1P for B € A.
Proceeding as in our derivation of (25), we obtain for |3| < m the estimates

(36)

|0°(P" — proj, P')(a")| =Y _ [0°P'(a)] - 8"PY (a)

acA
< Y|P - 0°PY (o))
<151
<Y [(CA+C) & - | —afmlel) - [oyle=1A]

acA
le|<[8]
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< N [(CA+C) & - |z~ [Cla — 2 |l01-1A))

a€A
la|<I8]

<(CA+C) & |z —a ™,
thanks to (35). Since P’ — proj,, P’ is an m' degree polynomial, (36) implies
(37)  |9%(P" = proj,, P')(x)| < (CA+C) -&" - |x — /| for |8] < m.
From (31), (34), (37), we see that
(38)
107 [proj, g¢ (x) — proj g («)] (2)| < [CA+ C]e'jw — &' for 5] < m.

Taking &’ = ¢/[CA 4+ C] with C as in (38), we obtain the conclusion of
Lemma 10.2. The proof of the lemma is complete. O

We prepare to apply the classical Whitney extension theorem, i.e., The-
orem 2.1. Recall that this result produces a linear extension operator & :
Cit(E) — C™(R™), for any compact £ C R".

The main result of this section is as follows.

LEMMA 10.3. There exists a linear map & — Ge, from = into C™(R™),
with norm at most C A, such that the following properties hold.

(a) Jo(Ge) € ge(x) + I(z) for allz € EgN B(yo, 3n),£ €E.
(b) Jy,(Ge¢) =0 for all § € E.
Proof. We start with a corollary of Lemma 10.1, namely
(39)  0”[proj,g¢(x))(w)| < CAfor |5] <m, x € EyN Blyo,m), |€] < 1.

To prove (39), we note that assumptions (1), (3), and property (7) show
that

(40) proj,, ge(yo) = 0 for all § € =.
Hence, putting 2’ = gy in Lemma 10.1, we learn that
(41)  |97[proj,ge(x)]] < C Al — yo|™ ! for 6] <m, = € Egn B(yo, ).

For © € Ey N B(yg,n), we have |z — yo|™ 1% < =18l < 1, since an
excellent ball B(yo,n) has radius n < 1 by definition. Hence, (41) implies (39).

Let B(yo, %77) denote the closed ball about yy with radius %77. In view of
(39) and Lemmas 10.1 and 10.2, the linear map & — (projng(‘r)):UEEOOB(yo,%n)
carries E into Cfgy (Eo N B(yo, 37)), and has norm at most C'A.

Now let £ : Ci&(Eo N B(yo, 31)) — C™(R") be as in Theorem 2.1. Thus,
é: has norm at most C, aﬁund Jo(Ef) = [(z) for [ = (f(2))zer € Clgq(Eo N
B(yo, 3n)) and x € Ey N B(yo, 31). We define

GE = 5([projxg§($)]x€EoﬂB(yo,%n)) for £ €E.
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Thus, £ — G¢ is a linear map from Z into C™(R"), with norm at most
CA. Moreover, for £ € E, z € Ey N B(yo, 37),

(42)  J2(Ge) = Jo(E([projuge()] e onB(yo, 1)) = Prolzge(x), by the defining
property of £.

From (6) and (42), we obtain J,(G¢) € ge(z)+1(z) for z € EgNB(yo, 31), £ €
=, which is conclusion (a) of Lemma 10.3. Also, from (40) and (42), we obtain

Jy(Ge¢) =0 for all £ € =,

which is conclusion (b). The proof of Lemma 10.3 is complete. O

11. The second main lemma

In this section, we pass from Fg00 to the “corrected” linear map & — F, 50 =
Fgo + Fg, as described in the introduction.

SECOND MAIN LEMMA. Let = be a vector space with a seminorm |-|, and
suppose (fe(x) + I(x))zepcc= s a Glaeser stable family of cosets, depending
linearly on & € =. Let Ey be the first slice.

Assume that, given & € = with |§| < 1, there exists F' € C™(R"), with
| F' llem@n< 1, and Jo(F) € fe(x) + I(x) for all x € E. Then there exists a
linear map & — F?2, from E into C™(R™), with norm at most C, and satisfying
the following properties.

(A) If& € E with [€] <1, then J$(F50) € I¢(x,k,C) for all x € Ey, with k as
wmn Lemma 3.1.

(B) For any & € =, we have Jx(Fg) € fe(x) + I(x) for all x € Ep.
Here, C depends only on m and n.

Proof. Since (fe(x) + I(x))zep,ccz is Glaeser stable, it follows that

(1)  (I(z))zer is Glaeser stable.

Let A > 0 be a large number, and let n > 0 be a small number, to be
picked later. We introduce a partition of unity

(2) ) 6, =1onR", with

(3) suppb, C B(zy, %n) and
(4) 10°%6,] < Cny~ 18l on R™, for |8] < m + 1.

Here, the points x, in (3) may be taken to satisfy
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(5) Any given ball of radius 7 intersects at most C' of the balls B(z,,n).

Let © be the set of v for which B(z,, 1) N Ey is nonempty. Note that
Q is finite, thanks to (5) and the compactness of Ey. For x € Ejy, we have
x € supp 8, only for v € Q. Hence, (2) implies

(6) ZJx(HV) =1 for all z € Ey.
veQ)

For each v € €, we pick y, € Eg N B(z,, 371). From (3), we have
(7)  suppb, C B(yy,n) for v e Q.
Let
(8)  Epo={y,:veQ}.

Thus, Ego is a finite subset of Ep; and (6), (7) show that
(9) No point of Ej lies farther than distance n from Ey.

In view of (9) and the hypotheses of the Second Main Lemma, we are in
position to apply the First Main Lemma. We write 1y(A) for the small constant
called 79 in the statement of the First Main Lemma (Section 5). Recall that
no(A) is determined by A and by the family of cosets (fe(x) + I(x))zep ccz-

From the First Main Lemma, we learn the following. Suppose 7 satisfies

(10) 1 <mo(A).

Then there exists a linear map £ — FEOO, from Z into C™(R"™), with norm at
most C, such that the following hold.

(11) JI(FQO) € fe(x) + I(x) for all z € Ey, & € E.
(12) Let £ € Z with |§] < 1. Let € Ey and Q € P. Suppose Jx(Fgoo) +Q €

fe(z) + I(z), and suppose also that [0°Q(z)| < An™ 1%l for |8] < m.

Then Jx(Fgo) + @ € T¢(x, k, A'), where k is as in Lemma 3.1, and A’ is
determined by A, m,n.

We fix £ — Fgo as above.
Next, we apply Lemma 9.2. (The hypothesis of Lemma 9.2 holds here,
thanks to (1).) Thus, we obtain 77 > 0, determined by (I(x)).ep, such that

(13) B(yy,2n) is an excellent ball, for each v € Q, provided n satisfies

(14) n <.

We define a new family of cosets (g¢(z) + I(2))zep cc= depending linearly
on ¢ € 2, by taking
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(15) ge(x) = fe(z) — Jx(FgO) for €Z, € E.

Since Ff00 € C™(R™) and (fe(x)+1(x))zer cc= is Glaeser stable, it follows that
(16) (ge(w) + I(x))zecp ez is Glaeser stable.

Also, from (11) and (8), we see that

(17) Jy,(g¢) € I(yy) for v € Q, € € E.

Moreover, suppose ¢ € = with |{| < 1. Then we have || F£00 |em @< C, since

& FEOO has norm at most C'. Also, by hypothesis of the Second Main Lemma,
there exists F' € C™(R"), with

| F' llem@n< 1, and Jo(F) € fe(z) + I(x) for all x € E.
Setting G = F — Fgo, we therefore have G € C™(R"), || G |cm@n< C,

Jo(G) € ge(x) + I(x) for all z € E.
We have proven the following:

(18) Given ¢ € Ewith [§] < 1, there exists G € C™(R"), with || G [[¢m @< C,
and J,(G) € ge(x) + I(x) for all x € E.

Thanks to (13), (17), (18) and the defining properties of y,,, we see that the
standing assumptions (10.1),..., (10.4) of Section 10 hold here, with our present
Yy in place of yg in Section 10, with 27 in place of n, and with a controlled
constant C' in place of A in Section 10. Hence, we may apply Lemma 10.3.

For each v € €2, Lemma 10.3 gives us a linear map { — G, ¢, from Z into
C™(R™), with norm at most C, such that the following properties hold.

(19) Jo(Gug) € ge(x) + I(x) for all z € Eg N B(yy, 1), £ € E.
(20) Jy,(GLe) =0forall £ € =.

In particular, for £ € E with |¢] < 1, we have
| Gue llom@< C and Jy, (Gy¢) = 0. Consequently, we have
(21) 107Gy e(w)| < Cp™ P for 8] < m, x € Blyw,m), 6] < 1.

Our results (19), (20), (21) hold for all v € Q.
We now define

(22) Fe=> 6, Gyefor{€E.
vesd

Thus, £ — Fg is a linear map from = into C™(R™).

Suppose ¢ € Z, with [¢] < 1. From (4), (7), (21), we see that [9°{0, -
Gue}l < Cnpm 18 on R™, for |B] < m, v € Q. Also, from (3) and (5), we see
that any given ball of radius 7 intersects at most C' of the supports of the
functions {6, - G, ¢}, v € Q2. Consequently, we have
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(23) 0°Fe| =1 0, - Guel < O 1P on R”, for |6 < m, |¢ < 1.
ves)

It follows that the linear map £ — ﬁ'g from = to C™(R™) has norm at most C,
provided we take 7 to satisfy

(24) n<1.

Suppose once more that £ € = with |{| < 1, and let x € Ey. From (19) and
(7), we learn that

Jo(Gug) € ge(w) + 1(z) = fe(x) — Jo(F") + I(2),
whenever supp 6, > = and v € ). Consequently,

(25) Jo(by - Gug) € Jo(0,) © [fe(x) — Jo(F)] + I () for all v € Q, where ©
denotes multiplication in R, and we have used the fact that I(x) is an
ideal.

Summing (25) over all v € €, and recalling (6), we find that

Te(F) =Y Je(0y - Gug) € fe(x) — Jo(FO) + I(x)
VEQN

Thus, we have shown that
(26) Jo(F) + Jo(Fe) € fe(x) + I(x) for x € Ey, [¢] < 1.
Also, from (23), we have
(27) [87[Jo(F)](x)| < Cry™ 1P for |B] < m, [¢] < 1.
If we take
(28) A > (4,
with C; as in (27), then from (26), (27) and (12), we learn that
(29) Jo(FO) 4 Jo(Fe) € Te(a, k, A') for x € Ey, [¢] < 1.

Here, k is as in Lemma 3.1, and A’ is determined by A, m,n.

We now pick the constants A and 7. First, we take A to be a controlled
constant, large enough to satisfy (28). We then pick n > 0 small enough to
satisfy the smallness assumptions (10), (14) and (24). With A, n picked in
this manner, the above arguments go through, and the constant A’ in (29) is
controlled (i.e., it depends only on m and n). Thus, from (29), we have

(30) Ja:(Fgo + Fg) € I'¢(z,k,C) for z € Ey, [£] <1,
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with k as in Lemma 3.1.
Finally, as promised in the introduction, we define

Fg=F"+ Fgfor (€ E.

Since & — Fg00 and £ — Fg are linear maps from = into C™(R") with norm at
most C, the same is true for £ — F§0.

Moreover, conclusion (A) of the Second Main Lemma is precisely our result
(30). Since I'¢(x, k,C) C fe(x) + I(x), it follows that

(31) Jx(Fg) € fe(x) + I(x) for z € Ep, || < 1.

Since the maps £ — Fg and £ — f¢(x) (z € E) are both linear, we may drop
the assumption [£| < 1 from (31).

This proves conclusion (B) of the Second Main Lemma and the entire
proof is complete. O

12. The error outside the first slice

In this section, we study fe(z) — JI(F&O) for x outside the first slice Ey,
where f¢ and F, 50 are as in the Second Main Lemma.

LEMMA 12.1. Let Z,|-|, (fe(x) +I(x))zep ez, Eo, and § — Fg be as in
the Second Main Lemma. Then, given § € E with || < 1, and given z¢ € Ey,
there exists G € C™(R™), with

1Gllem@rny < C, Jm(G)Efg(:c)—Jx(Fg) + I(x) for all z € E, and J,,(G) = 0.

Proof. Set Py = Jg, (Fg) By the Second Main Lemma, we have Py €
T¢(z0, k, C) with k as in Lemma 3.1. That is, given z1,...,2; € E, there exist

P € fe(x1) +1(z1),. .., Py € fe(ag) + I(x), with |0° Py(x;)| < C for |3| < m,
0 <i<k;and [0°(P; — P)(2;)| < Cla; — zj|™ 18 for [8] <m, 0 <i,j <k
Hence, Lemma 3.1 shows that there exists F' € C™(R"), with

(1) | F llon@n< Cr Ja(F) € fe(e) + T(x) for 2 € B, and J,(F) = Py .
Setting G = F — Fg € C™(R™), and recalling that

(2) | F llgm@mm< C

by the Second Main Lemma, we conclude from (1) and (2) that G satisfies the
conditions asserted in Lemma 12.1. The proof of the lemma is complete. [

LEMMA 12.2. Let 2, ||, (fe(z) + I(2))zep ez, Eo and & — FEO be as in
the Second Main Lemma. Then, given & € Z and € > 0, there exists § > 0 for
which the following holds: Given x¢ € Ey, there exists G € C™(R™), with
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G|

om@n)< & Jo(G) € fe(x) — Jo(FY) + I()
for all x € EN B(xp,0), and J,,(G) =0.

Proof. Fix £ € Z. Then (fe(x) + I(x))zcr is Glaeser stable, and Fgo €
C™(R™). Hence, (fe(x) — (FO) + I(x))zer is Glaeser stable.

We take k = k from Lemma 3.1, and we take k# as in Section 4. Thus,
E>1and 1+ (D+1)-k < k¥, as in the hypotheses of Lemma 3.6. We apply
Lemma 3.6 to the family of cosets H = (f¢(x)— (FO) +I1(x))zer, for xg € Ey
and Py = 0.

We recall from Proposition 2.2 that the first slice Ey is contained in the
lowest stratum F7. From the Second Main Lemma, we recall also that 0 €
fe(xo) — JmO(FEO) + I(xg). Consequently, given £ > 0, Lemma 3.6 applied to H
provides a positive number §, for which the following holds:

(3) Given xg € Ep and z1,...,x5 € EN B(x,0), there exist
Pr€ fe(wr) = Jo, (FQ) + (1), .., Py € fe(mg) — Ju (FQ) + I(zz)
with

(4) |0%(P; — Pj)(x;)| < elwy — 2] P for |8] < m, 0 < i,j < k; where
Py = 0.

By taking ¢ smaller in (3), we may assume that B(zo,d) is a closed ball, and
that 6 < 1.
Taking ¢ = 0 in (4), we learn that

(5)  10°Pj(x;)| < elzg — a8l < e6m 1Bl < ¢ for |B] <m, 0 < § < m.

In view of (3), (4) and (5), Lemma 3.1 applies to the Glaeser stable family
of cosets (fe(x)— Jx(Fgo) +1(7))se EnB(x0,6)> With A = ¢ and Py = 0. Therefore,
there exists G € C™(R"), with

6) | G llgm@n< Cc, Jo(G) € fe(x) = Jo(FY) + I(x) for z € E N B(xo,9),
and J,, (G) = 0.

We can achieve (6) for any xo € Ey. Lemma 12.2 follows trivially. O

13. The rescaled induction hypothesis

For 6 > 0 and F' € C™(R™), we introduce the norm

| F HCm (Rn)= INax sup \OBF( )|.5|ﬂ|—m
| L xER™
We wite an(Rn) for the vector space C™(R") equipped with the norm

I lep @
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Next, suppose we are given a Glaeser stable family of ideals 7 = (I(z))cp,
and a positive number 0. Let f = (f(x))zerp be a family of m-jets, with
f(x) € Ry forallx € E. Wesay that f € CJ*(E, J) if there exists F' € Cj*(R")
with J,(F) € f(z) + I(z) for all x € E; and we write || f |[cm (g, for all in-
fimum of || F' | gny over all such F. Thus, C§*(E,J) is a vector space
equipped with a seminorm. Note that (f(z) + I(z)).er is Glaeser stable for
[ =(f(2))zer € C§Y(E,T).

The purpose of this section is to establish the following simple result.

LEMMA 13.1 (Rescaled Induction Hypothesis). Fiz A > 1, and assume
that Theorem 4 holds whenever the number of slices is less than N. Let § > 0,
and let J = (I(x))zer be a Glaeser stable family of ideals, with fewer than A

slices. Then there exists a bounded linear map T : C§*(E, J) — C§*(R™), with
the following properties.

(A) The norm of T is less than a constant C' depending only on m and n.

(B) Let f = (f(x))zcE belong to C§*(E,J). Then J.(Tf) € f(x) + I(x) for
allz € E.

Proof. By an obvious rescaling, we may assume that § = 1. We now
follow the reduction of Theorem 2 to Theorem 4 in Section 1. We take 2 =
CT(E,J), with the seminorm [{| = 2 || £ |[cm(p,7). For @ € E, there is a
natural tautological map & — f¢(x) from Z to R,, defined by fe(z) = g(z)
for £ = (g(z))zer € E. Thus, E is a vector space with a seminorm | - |, and
(fe(z) + I(2))rep ez is a Glaeser stable family of cosets, depending linearly
on £ € E. Moreover, given £ € ZE with |£] < 1, there exists F' € C"(R"), with
| F [lem@< 1, and Jo(F) € fe(z) + I(z) for all z € E. Thus, Z, |- |, (fe(x) +
I(z))zep ez satisfy the hypotheses of Theorem 4. Also, by hypothesis, the
number of slices is less than A, and Theorem 4 holds whenever the number of
slices is less than A. Consequently, we obtain a linear map T': { +— Fy, from =
into C"(R™), with norm at most C, such that

Jo(Fe) € fe(x)+I(x) forallz € B, { € .

Recalling the definitions of Z,| - |, f¢(z), we conclude that the linear map T'
behaves as asserted in the statement of Lemma 13.1. The proof of the lemma
is complete. O

14. Whitney cubes

Let Ey be a compact subset of R™. We define a partition of R™ \ Ej
into “Whitney cubes” @,, and we introduce cutoff functions 6,, 6, adapted to

the Q..
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We begin with some notation. Let @ be a cube in R™. To “bisect” @
means to partition it into 2" congruent subcubes in the obvious way. Also, we
write Q* for the closed cube having the same center as (), but with three times
the diameter of Q. Similarly, we write Q% for the cube having the same center
as @, but with (1 4 ¢1) times the diameter of (). Here, ¢; is a small enough
constant depending only on the dimension n.

To construct the Whitney cubes, we first partition R™ into a grid of cubes

?,i = 1,2,..., with diameter 1. We then successively “bisect” each Q? in
Calderén-Zygmund fashion, stopping at a cube () whenever we have

dist(Q*, Ep) > diam(Q™) .
Let {Q,} be the collection of all the cubes obtained in this manner from all
the Q?; and let 4, be the diameter of @,.
Then the Whitney cubes @), have the following geometrical properties.

(See, e.g., the proof of the classical Whitney extension theorem in [18], [23],
[25].)

(1) The @, form a partition of R" \ Ej.

(2) Each @Qj is a closed cube disjoint from Ej.

(3) 4, <1.

(4) If 6, < 1, then there exists =, € Ey, with distance (z,,Q,) < Cé,; hence

Q} C B(zy,,C'6,).
(5) IfQ} and Q intersect, then ¢ < 4,/d, < C.
(6) For each v, there are at most C distinct p for which Qf[ meets Q.

(7)  Each point of R" \ Ey has a neighborhood that meets at most C' of the
Q-

(8) Given x € Ey and § > 0, there exists a neighborhood of = that intersects
none of the Q;F with 6, > 4.

(9) Given z € R™ \ Ejy, there exist a neighborhood U of = and a positive
number §(z), such that 6, > d(z) for any v such that Q; intersects U.

Next, we introduce a “Whitney partition of unity”. We can find func-
tions 6, 6,7 € C™(R"), with the following properties.

(10) ) 6, =1o0nR"\ E.

(11) 6} =1 on supp (6,), and supp b C Q;'.

(12) 106, (2)], |9%6; (z)] < €5, for |B] < m, x € R, all v.
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Again, see the proof of Whitney’s classical theorem in [18], [23], [25].
We will use the above cubes and cutoff functions in the next section, taking
Ej to be the first slice.

15. Proof of the main result

In this section, we give the proof of Theorem 4. As explained in the
introduction, we use induction on the number of slices. If the number of slices
is zero, then Theorem 4 holds trivially (as also noted in the introduction).

Fix A > 1, and assume that

(1) Theorem 4 holds for the case of fewer than A slices.

Let Z, | - |, (fe(x) + I(x))zep.cc= be as in the hypotheses of Theorem 4,
and assume that

(2)  The number of slices for (I(x)),ecp is equal to A.

Under these assumptions, we will prove the conclusion of Theorem 4. This will
complete our induction and establish Theorem 4.

Let Ey be the first slice. We recall that Ey is compact. We use the
Whitney cubes {Q,} and cutoff functions 6,,6; from the preceding section.
These satisfy (14.1) , ..., ( 14.12), with J, = diameter (Q,).

We apply the Second Main Lemma, and Lemmas 12.1 and 12.2. Thus,
we obtain a linear map & — Fg, from = into C™(R™), with the following
properties.

(3) If & € Ewith [¢] <1, then || FY |lgm@n)< C.
(4) Jx(Fg) € fe(z) + I(x) for all z € Ey, £ € E.

(5) Suppose £ € Z with [¢] < 1, and suppose yg € Ey. Then there exists
G € C™(R"), with || G [[gm@< O, Jo(G) € fe(x) — Jm(FEO) + I(x) for
r ek, J,(G)=0.

(6) Given £ € Z and ¢ > 0, there exists 6 > 0 with the following property:
Suppose yg € Ey. Then there exists G € C™(R"™), with

1 G llom@En< e, Jo(G) € fe(x) — Ju(FE) + ()
for x € EN B(yo,0), and J,,, (G) =0.
For each v, we define
(7) gu,ﬁ(x) = Jz(eu) © [f{(x) - Jx(Fgo)] forz € EN QZv §E€E.

Here, ® denotes multiplication in R,. Note that
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(8) & gue(x) is a linear map from = into R, for each x € ENQ;,.

Note also that

(9) T = (I(x))eeenq: is Glaeser stable, with fewer than A slices, thanks to
(2) and (14.2).

Hence, Lemma 13.1 and (1) yield a linear map
(10) T, : CH(ENQ;, Jv) — C§*(R™), for each v, with the following properties.
(11) The norm of T, is at most C.

(12) Let g = (g(a))semro; € CP(EN Q5 J,). Then
Jo(Tyg) € g(z)+ I(z) forallz € ENQ; .

We remark that the functions called F¢ , in the introduction are given here by
Fe, =T,(g9v,¢) with g, ¢ as in (7).
The next two lemmas estimate the Cj"(ENQ);, J,,)-seminorms of the g, ¢.

LEMMA 15.1. Let § € E, with [¢| < 1. Then g,¢ € C{*(ENQ;, J,) and
| 9ve HCQ(EQQ;JV)S C for each v.

Proof. We look separately at the cases §, < 1 and §, = 1. (See (14.3).)
Suppose first that J, < 1. We let 2, and C’ be as in (14.4), and then apply
(5), with yo = x,. Let G be as in (5). Since || G ||cm@rn)< C and J,, (G) = 0,
we have |0°G(z)| < cor =l for 16| < m, x € B(x,,C"d,), and therefore for
18] <m, z € Q. Together with (14.11) and (14.12), this shows that

(13) 6,G € C™(R™), with |9%(6,G)(z)| < C65" ™ for |8 < m, & € R™,
Also, for x € ENQ}, we have (with ® denoting multiplication in R,):
(14) Jo(0,G) € J(0,) © [fe(w) — Jo(F) + I(x)] (by (5))
C J2(0) © [fe(z) — Jo(FP)] + I(x) (since I(x) is an ideal)
=gug(x) +1(x) (by (7).

The conclusion of Lemma 15.1 is immediate from (13), (14), and the
definition of the C§"(E N Q;, J,)-seminorm. This proves Lemma 15.1 in the
case 0, < 1.

On the other hand, suppose that §,, = 1. Since Z, |-|, (fe(x)+1(2))rep ce=
satisfy the hypotheses of Theorem 4, there exists F' € C™(R"), with

(15) | F [lem@e< 1, and J(F) € fe(x) + I(x) for all z € E.
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From (15), (3), and (14.12) with §, = 1, we learn that
(16) G=0, (F—-F)ecC™R"), with || G [|cm@< C.
Moreover, for z € E N Q}, we have (with ® denoting multiplication in R):
(17)  J2(G) € Ja(0,) © [fe(x) — Jo(FY) + ()] (by (15))

CJ(0,) © [fe(x) — JJC(FS)] I(x) (since I(x) is an ideal)

= gvg(x) + 1(z) (by (7).

Comparing (16) and (17) with the definition of the Cj*(E, J)-seminorm (with
6 = 1), we conclude that g, ¢ € CJ*(ENQ;, Tv), with || gue llcr (Bng:,7)< C,

in the case d, = 1. The proof of Lemma 15.1 is complete. O
LEMMA 15.2.  Given £ € 2 and € > 0, there exists § > 0 such that
| gu.e HC;*;(EmQ;JV) < e ford, <.

Proof. Let 6 > 0 be as in (6), and suppose 0, < 1. Let x,, and C’ be as in
(14.4). If C"5, < 6, then from (6) with yo = x,, we obtain G € C™(R"), with

(18) | G [lgmgny< € and Jp, (G) =0,
and
(19) Jo(G) € fe(x) — Jo(FQ) + I(z) for x € EN B(x,,C'5,),

hence for x € ENQ;.
From (18), we obtain |0°G(z)| < Ced," Pl for 2 € B(z,,C"5,), |8 < m;
hence for x € Q}, |5 < m. Together with (14.11) and (14.12), this shows that

(20) 189[0,G]| < Ces™ 18l on R™, for 8] < m.
Also, for x € ENQ}, we have (with ® denoting multiplication in R,):
(21) J2(0,G) € Ju(6y) © [fe(w) — Jo(F¢) + I(x)] (by (19))
C Jx(0,) O [fe(z) — (Fg)]%—l( x) (since I(z) is an ideal)
=gue(x) + I(z) (see (7).
Comparing (20), (21) with the definition of the C§"*(E N Q;, J,)-seminorm, we
see that
(22) I 9ve llop (Bnq;.a.)< Ce -
We have proven (22) under the assumptions §, < 1, €', < §. This
trivially implies Lemma 15.2. O
Now, for § > 0, we define
(23) Fg[(s] FO—I—ZG Ty(gye) for £ € .
6,>06
Note that
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(24) For fixed 6 > 0, each x € R™ has a neighborhood on which the sum in
(23) includes at most C' nonzero terms.

+ and

v

(This follows from (14.7), (14.8), (14.11).) Also, we recall that Fg, 6
T,(gv,e) are C™ functions on R™.

It follows that F, 6[5] is well-defined by (23), belongs to C7,
the estimates:

(25)
6 —
| llemen < L llem @y +C sup || 05+ Tolgug) lloman) for & € E,

(R™), and satisfies

and

01 8o
26) | F - F ]Hm(mscrg sup || 65 - Tolge) llommr)

156, <02

f0r0<51<(§2 and £ € =.
In particular, if the right-hand side of (25) is finite, then Fs[(ﬂ belongs to
C™(R™). Since & — Fg0 is linear, and since each T}, is linear, (23) gives

27) ¢~ F”is alinear map from = into C,

(R™), for each ¢ > 0.
Next, we examine Jx(Fg[é]) for € R". From (23) and (14.8), we obtain

(28) Jo(FP) = Jo(FY) for € o, € € 2,6 > 0.

On the other hand, suppose = € R™ \ Ey. We define

(29) Q(x) = {v: x €suppf} for x e R" \ Ep.
From (14.7) and (14.11), we see that

(30) )(x) contains at most C' elements.

From (14.10), (14.11), and (29), we have

(31) > Ju(0,)=1forz e R"\ Ey.
veQ(z)

Also, from (14.9), (14.11), and (23), (29), we see that

)
(32)  L(FE=JEFE)+ Y T - Togue)
veQ(x)

forz e R" N\ Ep, 0 < < d(x), £ € E.
Here, §(z) is the small positive number from (14.9).

We estimate the right-hand sides of (25) and (26). To do this, note that
| F llem@)<| F [lcy@ny for 6 <1, and that 4, < 1. (See (14.3).)
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Now, suppose [¢| < 1. From (3), (10), (11), and Lemma 15.1, we learn

1605 - Tolgve) lom@) <1105 - Tulgne) lom @n
<C | Tu(9ve) lloy @n) (see (14.12))
<C | gve llerm ngz,g)< C.

Therefore, (25) shows that Fg] e C™(R™), with || Fg[(ﬂ lem@n< C. Thus,
we may sharpen (27) as follows.

(33) & — Fg[a] is a bounded linear map from Z into C"(R"), with norm at
most C, for each § > 0.

Turning to the right-hand side of (26), we apply (14.12), (10), (11), and

Lemma 15.2. Thus, let £ € Z and € > 0 be given. If 0 < 6; < 5 and 95 is
small enough, then for d; <, < Jo we have

1605 - To(gve) llom@ <1165 - Tlgve) llop @
<C | Tu(9ve) llep @< C |l 9ug lloy (mngs.a.)< €-

Consequently, for fixed ¢ € = and € > 0, the right-hand side of (26) will be
less than ¢ if & is small enough.

Hence, (26) shows that, for each fixed ¢ € Z, the function § — Fé[(ﬂ7
from (0,1] into C™(R"™), is Cauchy as 6 — 04. Consequently, there exists
F¢ € C™(R™), such that

(34) lim FP) = F in C™(R™), for each € € E.
—0+

From (33) and (34), we see that

(35) & — F¢ is a bounded linear map from Z into C"(R"), with norm at
most C.

We examine the jet J,(F¢) for x € E. From (4), (28), and (34), we obtain
(36) Ju(Fy) € fe(x) + I(x) for x € Ey, § € E.
On the other hand, suppose x € E N\ Ey, £ € 2. Then (7) and (12) yield

(37) Jo(Togue) € gue(@) + 1(@) = Jo(6,) © [fe(@) = Jo(FO)] + I(x) for all v
with Q} 3 x, with ® denoting multiplication in R.

We have Q;f 5 z for all v € Q(z). (See (29) and (14.11).) Hence, for v € Q(z),
(37) holds, and consequently
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(38) Ju(07 - Tugue) € Jo(0) © [Juo(0) © (fe(z) = Ju(FE)) + I(2)]
C J(05) © Jp(0,) ® [fe(x) — (Fgo)] I(x) (since I(z) is an ideal)

= Jo(0y) © [fe(x) = Jo(F)] + I(x). (See (14.11).)

(
Summing (38) over all v € Q( ), and applying (31), we learn that
Z J : ugz/,E)efé( ) Jw(Fg)+I( )
veQ(z)

Hence, from (32) and (34), we obtain J,(F¢) € fe(x) + I(z) for z € E \ Ey,
¢ € E. Together with (36), this yields
(39) Jo(Fe) € fe(x) +1(x) forz e B, § € E.

Our results (35) and (39) are the conclusions of Theorem 4. This completes
our induction on A, and thus proves Theorem 4. Since we have already shown

that Theorem 4 implies Theorem 2, which in turn implies Theorem 1, we have
proven those results as well. O
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