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Abstract

We assume that the manifold with boundary, X, has a SpinC-structure
with spinor bundle S/. Along the boundary, this structure agrees with the
structure defined by an infinite order, integrable, almost complex structure
and the metric is Kähler. In this case the SpinC-Dirac operator ð agrees with
∂̄ + ∂̄∗ along the boundary. The induced CR-structure on bX is integrable
and either strictly pseudoconvex or strictly pseudoconcave. We assume that
E → X is a complex vector bundle, which has an infinite order, integrable,
complex structure along bX, compatible with that defined along bX. In this
paper we use boundary layer methods to prove subelliptic estimates for the
twisted SpinC-Dirac operator acting on sections on S/ ⊗ E. We use boundary
conditions that are modifications of the classical ∂̄-Neumann condition. These
results are proved by using the extended Heisenberg calculus.

Introduction

Let X be an even dimensional manifold with a SpinC-structure; see [11].
A compatible choice of metric, g, defines a SpinC-Dirac operator, ð which acts
on sections of the bundle of complex spinors, S/. This bundle splits as a direct
sum S/ = S/e⊕S/o. The metric on TX induces a metric on the bundle of spinors.
We let 〈σ, σ〉g denote the pointwise inner product. This, in turn, defines an
inner product on the space of sections of S/, by setting:

〈σ, σ〉X =
∫
X

〈σ, σ〉gdVg.

*Research partially supported by NSF grants DMS99-70487 and DMS02-03795 and the
Francis J. Carey term chair.
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If X has an almost complex structure, then this structure defines a SpinC-
structure; see [4]. If the complex structure is integrable, then the bundle of
complex spinors is canonically identified with ⊕q≥0Λ0,q. We use the notation

Λe =
�n

2
�⊕

q=0

Λ0,2q, Λo =
�n−1

2
�⊕

q=0

Λ0,2q+1.(1)

If the metric is Kähler, then the SpinC Dirac operator is given by

ð = ∂̄ + ∂̄∗.

Here ∂̄∗ denotes the formal adjoint of ∂̄ defined by the metric. This operator
is called the Dolbeault-Dirac operator by Duistermaat; see [4]. If the metric is
Hermitian, though not Kähler, then

ðC = ∂̄ + ∂̄∗ + M0,

with M0 a homomorphism carrying Λe to Λo and vice versa. It vanishes at
points where the metric is Kähler. It is customary to write ð = ðe + ðo where

ð
e : C∞(X;S/e) −→ C∞(X;S/o),

and ðo is the formal adjoint of ðe.

If X has a boundary, then the kernels and cokernels of ðeo are generally
infinite dimensional. To obtain a Fredholm operator we need to impose bound-
ary conditions. In this instance, there are no local boundary conditions for ðeo

that define elliptic problems. Starting with the work of Atiyah, Patodi and
Singer, the basic boundary value problems for Dirac operators on manifolds
with boundary have been defined by classical pseudodifferential projections
acting on the sections of the spinor bundle restricted to the boundary. In this
paper we analyze subelliptic boundary conditions for ðeo obtained by modify-
ing the classical ∂̄-Neumann and dual ∂̄-Neumann conditions. The ∂̄-Neumann
conditions on a strictly pseudoconvex manifold allow for an infinite dimensional
null space in degree 0 and, on a strictly pseudoconcave manifold, in degree n−1.

We modify these boundary conditions by using generalized Szegő projectors,
in the appropriate degrees, to eliminate these infinite dimensional spaces.

In this paper we prove the basic analytic results needed to do index theory
for these boundary value problems. To that end, we compare the projections
defining the subelliptic boundary conditions with the Calderon projector and
show that, in a certain sense, these projections are relatively Fredholm. We
should emphasize at the outset that these projections are not relatively Fred-
holm in the usual sense of say Fredholm pairs in a Hilbert space, used in the
study of elliptic boundary value problems. Nonetheless, we can use our re-
sults to obtain a formula for a parametrix for these subelliptic boundary value
problems that is precise enough to prove, among other things, higher norm
estimates. This formula is related to earlier work of Greiner and Stein, and
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Beals and Stanton; see [7], [2]. We use the extended Heisenberg calculus intro-
duced in [6]. Similar classes of operators were also introduced by Greiner and
Stein, Beals and Stanton as well as Taylor; see [7], [2], [1], [14]. The results
here and their applications in [5] suggest that the theory of Fredholm pairs has
an extension to subspaces of C∞ sections where the relative projections satisfy
appropriate tame estimates.

In this paper X is a SpinC-manifold with boundary. The SpinC structure
along the boundary arises from an almost complex structure that is integrable
to infinite order. This means that the induced CR-structure on bX is inte-
grable and the Nijenhuis tensor vanishes to infinite order along the boundary.
We generally assume that this CR-structure is either strictly pseudoconvex or
pseudoconcave. When we say that “X is a strictly pseudoconvex (or pseudo-
concave) manifold,” this is what we mean. We usually treat the pseudoconvex
and pseudoconcave cases in tandem. When needed, we use a subscript + to
denote the pseudoconvex case and −, the pseudoconcave case.

Indeed, as all the important computations in this paper are calculations
in Taylor series along the boundary, it suffices to consider the case that the
boundary of X is in fact a hypersurface in a complex manifold, and we often
do so. We suppose that the boundary of X is the zero set of a function ρ such
that

1. dρ �= 0 along bX.

2. ∂∂̄ρ is positive definite along bX. Hence ρ < 0, if X is strictly pseudo-
convex and ρ > 0, if X is strictly pseudoconcave.

3. The length of ∂̄ρ in the metric with Kähler form −i∂∂̄ρ is
√

2 along bX.

This implies that the length dρ is 2 along bX.

If bX is a strictly pseudoconvex or pseudoconcave hypersurface, with respect
to the infinite order integrable almost complex structure along bX, then a
defining function ρ satisfying these conditions can always be found.

The Hermitian metric on X, near to bX, is defined by ∂∂̄ρ. If the almost
complex structure is integrable, then this metric is Kähler. This should be con-
trasted to the usual situation when studying boundary value problems of APS
type: here one usually assumes that the metric is a product in a neighborhood
of the boundary, with the boundary a totally geodesic hypersurface. Since we
are interested in using the subelliptic boundary value problems as a tool to
study the complex structure of X and the CR-structure of bX, this would not
be a natural hypothesis. Instead of taking advantage of the simplifications that
arise from using a product metric, we use the simplifications that result from
using Kähler coordinates.

Let Peo denote the Calderon projectors and R′ eo, the projectors defining
the subelliptic boundary value problems on the even (odd) spinors, respectively.
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These operators are defined in [5] as well as in Lemmas 4 and 5. The main
objects of study in this paper are the operators:

T ′ eo = R′ eoPeo + (Id−R′ eo)(Id−Peo).(2)

These operators are elements of the extended Heisenberg calculus. If X is
strictly pseudoconvex, then T ′ eo is an elliptic operator, in the classical sense,
away from the positive contact direction. Along the positive contact direction,
most of its principal symbol vanishes. If instead we compute its principal
symbol in the Heisenberg sense, we find that this symbol has a natural block
structure: (

A11 A12

A21 A22

)
.(3)

As an element of the Heisenberg calculus, Aij is a symbol of order 2− (i + j).
The inverse has the identical block structure(

B11 B12

B21 B22

)
,(4)

where the order of Bij is (i + j)− 2. The principal technical difficulty encoun-
tered is that the symbol of T ′ eo along the positive contact direction could,
in principle, depend on higher order terms in the symbol of Peo as well as
the geometry of bX and its embedding as the boundary of X. In fact, the
Heisenberg symbol of T ′ eo is determined by the principal symbol of Peo and
depends in a very simple way on the geometry of bX ↪→ X. It requires some
effort to verify this statement and explicitly compute the symbol. Another
important result is that the leading order part of B22 vanishes. This allows the
deduction of the classical sharp anisotropic estimates for these modifications of
the ∂̄-Neumann problem from our results. Analogous remarks apply to strictly
pseudoconcave manifolds with the two changes that the difficulties occur along
the negative contact direction, and the block structure depends on the parity
of the dimension.

As it entails no additional effort, we work in somewhat greater generality
and consider the “twisted” SpinC Dirac operator. To that end, we let E → X

denote a complex vector bundle and consider the Dirac operator acting on
sections of S/⊗E. The bundle E is assumed to have an almost complex structure
near to bX, that is infinite order integrable along bX. We assume that this
almost complex structure is compatible with that defined on X along bX. By
this we mean E → X defines, along bX, an infinite order germ of a holomorphic
bundle over the infinite order germ of the holomorphic manifold.We call such a
bundle a complex vector bundle compatible with X. When necessary for clarity,
we let ∂̄E denote the ∂̄-operator acting on sections of Λ0,q ⊗ E. A Hermitian
metric is fixed on the fibers of E and ∂̄∗

E denotes the adjoint operator. Along
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bX, ðE = ∂̄E+∂̄∗
E . In most of this paper we simplify the notation by suppressing

the dependence on E.

We first recall the definition of the Calderon projector in this case, which
is due to Seeley. We follow the discussion in [3] and then examine its symbol
and the symbol of T eo

± away from the contact directions. Next we compute
the symbol in the appropriate contact direction. We see that T eo

± is a graded
elliptic system in the extended Heisenberg calculus. Using the parametrix for
T eo
± we obtain parametrices for the boundary value problems considered here

as well as those introduced in [5]. Using the parametrices we prove subelliptic
estimates for solutions of these boundary value problems formally identical
to the classical ∂̄-Neumann estimates of J. J. Kohn. We are also able to
characterize the adjoints of the graph closures of the various operators as the
graph closures of the formal adjoints.

Acknowledgments. Boundary conditions similar to those considered in
this paper were first suggested to me by Laszlo Lempert. I would like to thank
John Roe for some helpful pointers on the SpinC Dirac operator.

1. The extended Heisenberg calculus

The main results in this paper rely on the computation of the symbol of
an operator built out of the Calderon projector and a projection operator in
the Heisenberg calculus. This operator belongs to the extended Heisenberg
calculus, as defined in [6]. While we do not intend to review this construction
in detail, we briefly describe the different symbol classes within a single fiber of
the cotangent bundle. This suffices for our purposes as all of our symbolic com-
putations are principal symbol computations, which are, in all cases, localized
to a single fiber.

Each symbol class is defined by a compactification of the fibers of T ∗Y. In
our applications, Y is a contact manifold of dimension 2n − 1. Let L denote
the contact line within T ∗Y. We assume that L is oriented and θ is a global,
positive section of L. According to Darboux’s theorem, there are coordinates
(y0, y1, . . . , y2(n−1)) for a neighborhood U of p ∈ Y, so that

θ �U= dy0 +
1
2

n−1∑
j=1

[yjdyj+n − yj+ndyj ].(5)

Let η denote the local fiber coordinates on T ∗Y defined by the trivialization

{dy0, . . . , dy2(n−1)}.

We often use the splitting η = (η0, η
′). In the remainder of this section we

do essentially all our calculations at the point p. As such coordinates can be
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found in a neighborhood of any point, and in light of the invariance results
established in [6], these computations actually cover the general case.

1.1. The compactifications of T ∗Y . We define three compactifications
of the fibers of T ∗Y. The first is the standard radial compactification, RT ∗Y ,

defined by adding one point at infinity for each orbit of the standard R+-action,
(y, η) 
→ (y, λη). Along with y, standard polar coordinates in the η-variables
define local coordinates near bRT ∗Y :

rR =
1
|η| , ωj =

ηj

|η| ,(6)

with rR a smooth defining function for bRT ∗Y .

To define the Heisenberg compactification we first need to define a parabolic
action of R+. Let T denote the vector field defined by the conditions θ(T ) =
1, iT dθ = 0. As usual iT denotes interior product with the vector field T. Let
H∗ denote the subbundle of T ∗Y consisting of forms that annihilate T. Clearly
T ∗Y = L ⊕ H∗; let πL ⊕ πH∗ denote the bundle projections defined by this
splitting. The parabolic action of R+ is defined by

(y, η) 
→ (y, λπH∗(y, η) + λ2πT (y, η)).(7)

In the Heisenberg compactification we add one point at infinity for each orbit
under this action. A smooth defining function for the boundary is given by

rH = [|πH∗(y, η)|4 + |πT (y, η)|2]− 1
4 .(8)

In [6] it is shown that the smooth structure of HT ∗Y depends only on the
contact structure, and not the choice of contact form.

In the fiber over y = 0, rH = [|η′|4 + |η0|2]−
1
4 . Coordinates near the

boundary in the fiber over y = 0 are given by

rH , σ0 =
η0

[|η′|4 + |η0|2]
1
2

, σj =
ηj

[|η′|4 + |η0|2]
1
4

, j = 1, . . . , 2(n − 1).(9)

The extended Heisenberg compactification can be defined by performing
a blowup of either the radial or the Heisenberg compactification. Since we
need to lift classical symbols to the extended Heisenberg compactification, we
describe the fiber of eHT ∗Y in terms of a blowup of RT ∗Y . In this model
we parabolically blowup the boundary of contact line, i.e., the boundary of
the closure of L in RT ∗Y . The conormal bundle to the bRT ∗Y defines the
parabolic direction. The fiber of the compactified space is a manifold with
corners, having three hypersurface boundary components. The two boundary
points of L become 2(n−1) dimensional disks. These are called the upper and
lower Heisenberg faces. The complement of bL lifts to a cylinder, diffeomorphic
to (−1, 1) × S2n−3, which was called the “classical” face. Let re± be defining
functions for the upper and lower Heisenberg faces and rc a defining function
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for the classical face. From the definition we see that coordinates near the
Heisenberg faces, in the fiber over y = 0, are given by

reH = [r2
R + |ω′|4] 1

4 , σ̃j =
ωj

reH
, for j = 1, . . . , 2n − 2,(10)

with reH a smooth defining function for the Heisenberg faces. In order for an
arc within T ∗Y to approach either Heisenberg face it is necessary that, for any
ε > 0,

|η′| ≤ ε|η0|,
as |η| tends to infinity. Indeed, for arcs that terminate on the interior of a
Heisenberg face the ratio η′/

√
|η0| approaches a limit. If η0 → +∞ (−∞),

then the arc approaches the upper (lower) parabolic face. In the interior of the
Heisenberg faces we can use [|η0|]−

1
2 as a defining function.

1.2. The symbol classes and pseudodifferential operators. The symbols of
order zero are defined in all cases as the smooth functions on the compactified
cotangent space:

S0
R = C∞(RT ∗Y ), S0

H = C∞(HT ∗Y ), S0
eH = C∞(eHT ∗Y ).(11)

In the classical and Heisenberg cases there is a single order parameter for
symbols, the symbols of order m are defined as

Sm
R = r−m

R C∞(RT ∗Y ), Sm
H = r−m

H C∞(HT ∗Y ).(12)

In the extended Heisenberg case there are three symbolic orders (mc, m+, m−),
the symbol classes are defined by

S
mc,m+,m−
eH = r−mc

c r
−m+
e+ r

−m−
e− S0

eH .(13)

If a is a symbol belonging to one of the three classes above, and ϕ is a smooth
function with compact support in U, then the Weyl quantization rule is used
to define the localized operator Mϕa(X, D)Mϕ :

Mϕa(X, D)Mϕf =
∫

R2n−1

∫
R2n−1

ϕ(y)a(
y + y′

2
, η)ϕ(y′)f(y′)ei〈η,y−y′〉 dy′dη

(2π)2n−1
.

(14)

The operator Mϕ is multiplication by ϕ. As usual, the Schwartz kernel of
a(X, D) is assumed to be smooth away from the diagonal.

We denote the classes of pseudodifferential operators defined by the sym-
bol classes Sm

R , Sm
H , S

mc,m+,m−
eH by Ψm

R ,Ψm
H ,Ψmc,m+,m−

eH , respectively. As usual,
the leading term in the Taylor expansion of a symbol along the boundary
can be used to define a principal symbol. Because the defining functions
for the boundary components are only determined up to multiplication by
a positive function, invariantly, these symbols are sections of line bundles de-
fined on the boundary. We let Rσm(A), Hσm(A) denote the principal symbols



730 CHARLES L. EPSTEIN

for the classical and Heisenberg pseudodifferential operators of order m. In
each of these cases, the principal symbol uniquely determines a function on
the cotangent space, homogeneous with respect to the appropriate R+ action.
An extended Heisenberg operator has three principal symbols, corresponding
to the three boundary hypersurfaces of eHT ∗Y . For an operator with orders
(mc, m+, m−) they are denoted by eHσc

mc
(A), eHσm+

(+)(A), eHσm−(−)(A).
The classical symbol eHσc

mc
(A) can be represented by a radially homogeneous

function defined on T ∗Y \L. The vector field T defines a splitting to T ∗Y into
two half spaces

T ∗
±Y = {(y, η) : ±η(T ) > 0}.(15)

The Heisenberg symbols, eHσm±(±)(A), can be represented by parabolically
homogeneous functions defined in the half spaces of T ∗

±Y. In most of our com-
putations we use the representations of principal symbols in terms of functions,
homogeneous with respect to the appropriate R+-action.

1.3. Symbolic composition formulas. The quantization rule leads to a
different symbolic composition rule for each class of operators. For classical
operators, the composition of principal symbols is given by pointwise multipli-
cation: If A ∈ Ψm

R , B ∈ Ψm′

R , then A ◦ B ∈ Ψm+m′

R and
Rσm+m′(A ◦ B)(p, η) = Rσm(A)(p, η)Rσm′(B)(p, η).(16)

For Heisenberg operators, the composition rule involves a nonlocal operation
in the fiber of the cotangent space. If A ∈ Ψm

H , B ∈ Ψm′

H , then A ◦B ∈ Ψm+m′

H .

For our purposes it suffices to give a formula for Hσm+m′(A◦B)(p,±1, η′); the
symbol is then extended to T ∗

p Y \H∗ as a parabolically homogeneous function
of degree m + m′. It extends to H∗ \ {0} by continuity. On the hyperplanes
η0 = ±1 the composite symbol is given by

(17) Hσm+m′(A ◦ B)(p,±1, η′)

=
1

π2(n−1)

∫
R2(n−1)

∫
R2(n−1)

am(±1, u + η′)bm′(±1, v + η′)e±2iω(u,v)dudv,

where ω = dθ′, the dual of dθ �H∗ , and

am(η) = Hσm(A)(p, η), bm′(η) = Hσm′(B)(p, η).

Note that the composed symbols in each half space are determined by the
component symbols in that half space. Indeed the symbols that vanish in a half
space define an ideal. These are called the upper and lower Hermite ideals. The
right-hand side of (17) defines two associative products on appropriate classes
of functions defined on R2(n−1), which are sometimes denoted by am�±bm′ .

An operator in Ψm
H is elliptic if and only if the functions Hσm(p,±1, η′) are

invertible elements, or units, with respect to these algebraic structures.
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Using the representations of symbols as homogeneous functions, the com-
positions for the different types of extended Heisenberg symbols are defined by
the appropriate formula above: the classical symbols are composed using (16)
and the Heisenberg symbols are composed using (17), with + for eHσ(+) and
− for eHσ(−). These formulæ and their invariance properties are established
in [6].

The formula in (17) would be of little use, but for the fact that it has
an interpretation as a composition formula for a class of operators acting on
Rn−1. The restrictions of a Heisenberg symbol to the hyperplanes η0 = ±1
define isotropic symbols on R2(n−1). An isotropic symbol is a smooth function
on R2(n−1) that satisfies symbolic estimates in all variables; i.e., c(η′) is an
isotropic symbol of order m if, for every 2(n − 1)-multi-index α, there is a
constant Cα so that

|∂α
η′c(η′)| ≤ Cα(1 + |η′|)m−|α|.(18)

We split η′ into two parts:

x = (η1, . . . , ηn−1), ξ = (ηn, . . . , η2(n−1)).(19)

If c is an isotropic symbol, then we define two operators acting on S(Rn−1) by
defining the Schwartz kernels of c±(X, D) to be

k±
c (x, x′) =

∫
Rn−1

e±i〈ξ,x−x′〉c(
x + x′

2
, ξ)dξ.(20)

The utility of the formula in (17) is a consequence of the following proposition:

Proposition 1. If c1 and c2 are two isotropic symbols, then the complete
symbol of c±1 (X, D) ◦ c±2 (X, D) is c1�±c2, with ω =

∑
dxj ∧ dξj . An isotropic

operator c±(X, D) : S(Rn−1) → S(Rn−1) is invertible if and only if c(η′) is a
unit with respect to the �± product.

Remark 1. This result appears in essentially this form in [13]. It is related
to an earlier result of Rockland.

If A is a Heisenberg or extended Heisenberg, operator, then the isotropic
symbols Hσm(A)(p,±1, η′), (eHσ±(A)(p,±1, η′)) can be quantized using (20).
We denote the corresponding operators by Hσm(A)(p,±), (eHσ(A)(p,±)). We
call these “the” model operators defined by A at p. Often the point of evalua-
tion, p is fixed and then it is omitted from the notation. The choice of splitting
in (19) cannot in general be done globally. Hence the model operators are not,
in general, globally defined. What is important to note is that the invertibility
of these operators does not depend on the choices made to define them. From
the proposition it is clear that A is elliptic in the Heisenberg calculus if and
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only if the model operators are everywhere invertible. An operator in the ex-
tended Heisenberg calculus is elliptic if and only if these model operators are
invertible and the classical principal symbol is nonvanishing.

All these classes of operators are easily extended to act between sections of
vector bundles. When necessary we indicate this by using, e.g. Ψm

R (Y ;F1, F2)
to denote classical pseudodifferential operators of order m acting from sections
of the bundle F1 to sections of the bundle F2. In this case the symbols take
values in P ∗(hom(F1, F2)), where P : T ∗Y → Y is the canonical projection.
Unless needed for clarity, the explicit dependence on bundles is suppressed.

1.4. Lifting classical symbols to eHT ∗Y . We close our discussion of the
extended Heisenberg calculus by considering lifts of classical symbols from
RT ∗Y to eHT ∗Y . As above, it suffices to consider what happens on the fiber
over p. This fixed point of evaluation is suppressed to simplify the notation.
Let a(η) be a classically homogeneous function of degree m. The transition
from the radial compactification to the extended Heisenberg compactification
involves blowing up the points (±∞, 0) in the fiber of RT ∗Y . We need to
understand the behavior of a near these points. Away from η = 0, we can
express a(η) = r−m

R a0(ω), where a0 is a homogeneous function of degree 0.
Using the relations in (6) and (10) we see that

rR = r2
eH

√
1 − |σ̃′|4, ω′ = reH σ̃′.(21)

Near bL we can use rR and ω′ as coordinates, where the function a has Taylor
expansions:

a±(rR, ω′) = r−m
R a0(±

√
1 − |ω′|2, ω′) ∼ r−m

R

∑
α

a
(α)
± ω′α.(22)

To find the lift, we substitute from (21) into (22) to obtain

a±(reH , σ̃′) ∼ r−2m
eH (1 − |σ̃′|4)−m

2

∑
α

a
(α)
± r

|α|
eH σ̃′α.(23)

We summarize these computations in a proposition.

Proposition 2. Let a(η) be a classically homogeneous function of order
m with Taylor expansion as given in (22). If a

(α)
± vanish for |α| < k±, then the

symbol a ∈ Sm
R lifts to define an element of S

m,2m−k+,2m−k−
eH . The Heisenberg

principal symbols (as sections of line bundles on the boundary) are given by
eHam± = r

k±−2m
eH (1 − |σ̃′|4)−m

2

∑
|α|=k±

a
(α)
± σ̃′α.(24)

Remark 2. From this proposition it is clear that the Heisenberg principal
symbol of the lift of a classical pseudodifferential operator may not be defined
by its classical principal symbol. It may depend on lower order terms in the
classical symbol.
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To compute with the lifted symbols it is more useful to represent them as
Heisenberg homogeneous functions. In the computations that follow we only
encounter symbols of the form

a(η) =
h(η)
|η|k ,(25)

with h(η) a polynomial of degree l. In the fiber over p, the coordinate η0

is parabolically homogeneous of degree 2 whereas the coordinates in η′ are
parabolically homogeneous of degree 1. From this observation, it is straightfor-
ward to find the representations, as parabolically homogeneous functions, of
the Heisenberg principal symbols defined by a(η). First observe that |η′|2/η0 is
parabolically homogeneous of degree 0, and therefore, in terms of the parabolic
homogeneities we have the expansion

1
|η|k =

1
|η0|k

1(
1 + |η′|2

η2
0

)k

∼ 1
|η0|k

⎡⎣1 +
∞∑

j=1

ck,j

|η0|j
( |η′|2
|η0|

)j
⎤⎦ .

(26)

Thus |η|−k lifts to define a symbol in S−k,−2k,−2k
eH . Note also that only even

parabolic degrees appear in this expansion.
We complete the analysis by expressing h(η) as a polynomial in η0:

h(η) =
l′∑

j=0

ηj
0hj(η′);(27)

here hj is a radially homogeneous polynomial of degree l − j, and l′ ≤ l. We
assume that hl′ �= 0. Evidently ηl′

0 hl′(η′) is the term with highest parabolic or-
der, and therefore h lifts to define a parabolic symbol of order l′+ l. Combining
these calculations gives the following result:

Proposition 3. If h(η) is a radially homogeneous polynomial of degree
l with expansion given by (27), then h(η)|η|−k lifts to define an element of
Sl−k,l′+l−2k,l′+l−2k

eH . As parabolically homogeneous functions, the Heisenberg prin-
cipal symbols are

(±1)l′ |η0|l
′−khl′(η′).(28)

Proof. The statement about the orders of the lifted symbols follows im-
mediately from (26) and (27). We observe that |η0|−

1
2 is a defining function

for the upper and lower Heisenberg faces, and η′/
√

|η0| is parabolically homo-
geneous of degree 0. As noted, the term in the expansion of h(η)|η|−k with
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highest parabolic degree is that given in (28). We can express it as the leading
term in the Taylor series of the lifted symbol along the Heisenberg face as:

(±1)l′ |η0|l
′−khl′(η′) = (±1)l′ [

√
|η0|]l+l′−2khl′

(
η′√
|η0|

)
.(29)

Note that the terms in the parabolic expansions of the lift of h(η)|η|−k all
have the same parity.

2. The symbol of the Dirac operator and its inverse

Let X be a manifold with boundary, Y , and suppose that X has a SpinC-
structure and a compatible metric. Let ðE denote the twisted SpinC-Dirac
operator and ðeo

E its “even” and “odd” parts. Let ρ be a defining function for
bX. As noted above, E → X is a complex vector bundle with compatible almost
complex structure along bX. The manifold X can be included into a larger
manifold X̃ in such a way that its SpinC-structure and Dirac operator extend
smoothly to X̃ and such that the operators ðeo

E are invertible; see Chapter 9
of [3]. Let Qeo

E denote the inverses of ðeo
E . These are classical pseudodifferential

operators of order −1.

Let r denote the operation of restriction of a section of S/eo⊗E, defined on
X̃ to X, and γε the operation of restriction of a smooth section of S/eo ⊗ E to
Yε = {ρ−1(ε)}. We use the convention used in [5]: if X is strictly pseudoconvex
then ρ < 0 on X and if X is strictly pseudoconcave then ρ > 0 on X. We
define the operator

K̃eo
E

d= rQeo
E γ∗

0 : C∞(Y ;S/oe ⊗ E �Y ) −→ C∞(X;S/eo ⊗ E).(30)

Here γ∗
0 is the formal adjoint of γ0. We recall that, along Y the symbol

σ1(ðeo
E , dρ) defines an isomorphism

σ1(ðeo
E , dρ) : S/eo ⊗ E �Y −→ S/oe ⊗ E �Y .(31)

Composing, we get the usual Poisson operators

Keo
E± =

∓
i
√

2
K̃eo

E ◦ σ1(ðeo
E , dρ) : C∞(Y ;S/eo ⊗ E �Y ) −→ C∞(X;S/eo ⊗ E),(32)

which map sections of S/eo ⊗ E �Y into the nullspace of ðeo
E . The factor ∓/

√
2

is inserted because ρ < 0 on X, if X is strictly pseudoconvex, and ‖dρ‖ =
√

2.

The Calderon projectors are defined by

Peo
E±s

d= lim
∓ε→0+

γεKeo
E±s for s ∈ C∞(Y ;S/eo ⊗ E �Y ).(33)

The fundamental result of Seeley is that Peo
E± are classical pseudodifferential

operators of order 0. The ranges of these operators are the boundary values of
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elements of ker ðeo
E±. Seeley gave a prescription for computing the symbols of

these operators using contour integrals, which we do not repeat, as we shall be
computing these symbols in detail in the following sections. See [12].

Remark 3 (Notational remark). The notation P± used in this paper does
not follow the usual convention in this field. Usually P± would refer to the
Calderon projectors defined by approaching a hypersurface in a single invertible
double from either side. In this case one would have the identity P++P− = Id .

In our usage, P+ refers to the projector for the pseudoconvex side and P− the
projector for the pseudoconcave side. With our convention it is not usually
true that P+ + P− = Id .

As we need to compute the symbol of Qeo
E is some detail, we now consider

how to find it. We start with the formally self adjoint operators Deo
E = ðeo

E ðoe
E .

If Qeo
E(2) is the inverse of Deo

E , then

Qeo
E = ð

oe
E Qeo

E(2).(34)

In carefully chosen coordinates, it is a simple matter to get a precise description
of symbols of ðeo

E and Qeo
E(2) and thereby the symbols of Qeo

E . Throughout this
and the following section we repeatedly use the fact that the principal symbol
of a classical, Heisenberg or extended Heisenberg pseudodifferential operator is
well defined as a (collection of) homogeneous functions on the cotangent bun-
dle. To make these computations tractable it is crucial to carefully normalize
the coordinates. At the boundary, there is a complex interplay between the
Kähler geometry of X and the CR-geometry of bX. For this reason the ini-
tial computations are done in a Kähler coordinate system about a fixed point
p ∈ bX. In order to compute the symbol of the Calderon projector we need
to switch to a boundary adapted coordinate system. Finally, to analyze the
Heisenberg symbols of T eo

E± we need to use Darboux coordinates at p. Since
the boundary is assumed to be strictly pseudoconvex (pseudoconcave), the rel-
evant geometry is the same at every boundary point; hence there is no loss of
generality in doing the computations at a fixed point.

We now suppose that, in a neighborhood of the boundary, X is a complex
manifold and the Kähler form of the metric is given by ωg = −i∂∂̄ρ. We are
implicitly assuming that bX is either strictly pseudoconvex or strictly pseu-
doconcave. Our convention on the sign of ρ implies that, in either case, ωg is
positive definite near to bX. As noted above it is really sufficient to assume
that X has an almost complex structure along bX that is integrable to infinite
order; however, to simplify the exposition we assume that there is a genuine
complex structure in a neighborhood of bX. We fix an Hermitian metric h on
sections of E.

Fix a point p on the boundary of X and let (z1, . . . , zn) denote Kähler
coordinates centered at p. This means that
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1. p ↔ (0, . . . , 0).

2. The Hermitian metric tensor gij̄ in these coordinates satisfies

gij̄ =
1
2
δij̄ + O(|z|2).(35)

As a consequence of Lemma 2.3 in [15], we can choose a local holomorphic
frame (e1(e), . . . , er(z)) for E such that

h(ej(z), ek(z)) = δjk + O(|z|2).(36)

Equation (35) implies that, after a linear change of coordinates, we can arrange
to have

ρ(z) = −2 Re z1 + |z|2 + Re(bz, z) + O(|z|3).(37)

In this equation b is an n × n complex matrix and

(w, z) =
n∑

j=1

wjzj .(38)

We use the conventions for Kähler geometry laid out in Section IX.5 of [10].
The underlying real coordinates are denoted by (x1, . . . , x2n), with zj = xj +
ixj+n, and (ξ1, . . . , ξ2n) denote the linear coordinates defined on the fibers of
T ∗X by the local coframe field {dx1, . . . , dx2n}.

In this coordinate system we now compute the symbols of ðE = ∂̄E + ∂̄∗
E ,

Deo
E , Qeo

E(2) and Qeo
E . For these calculations the following notation proves very

useful: a term which is a symbol of order at most k vanishing, at p, to order
l is denoted by Ok(|z|l). As we work with a variety of operator calculi, it is
sometimes necessary to be specific as to the sense in which the order should be
taken. The notation OC

j refers to terms of order at most j in the sense of the
class C. If C = eH we sometimes use an appropriate multi-order. If no symbol
class is specified, then the order is with respect to the classical, radial scaling.
If no rate of vanishing is specified, it should be understood to be O(1).

Recall that, with respect to the standard Euclidean metric

〈∂z̄j
, ∂z̄k

〉eucl =
1
2

and 〈dz̄j , dz̄k〉eucl = 2.(39)

Orthonormal bases for T 1,0X and Λ1,0X, near to p, take the form

Zj =
√

2(∂zj
+ ejk(z)∂zk

), ωj =
1√
2
(dzj + fjk(z)dzk),(40)

with ejk and fjk both O(|z|2). With respect to the trivialization of E given
above, the symbol of ðE is a polynomial in ξ of the form

σ(ðE)(z, ξ) = d(z, ξ) = d1(z, ξ) + d0(z),(41)



SUBELLIPTIC SPIN C DIRAC OPERATORS, II 737

with dj(z, ·) a polynomial of degree j such that

d1(z, ξ) = d1(0, ξ) + O1(|z|2), d0(z) = O0(|z|).(42)

The linear polynomial d1(0, ξ) is the symbol of ∂̄E + ∂̄∗
E on Cn with respect to

the flat metric. These formulæ imply that

σ(Deo
E ) = Δ2(z, ξ) + Δ1(z, ξ) + Δ0(z, ξ),(43)

with Δj(z, ·) a polynomial of degree j such that

Δ2(z, ξ) = Δ2(0, ξ) + O2(|z|2)
Δ1(z, ξ) = O1(|z|), Δ0(z, ξ) = O0(1).

(44)

As the metric is Kähler, Deo
E is half the Riemannian Laplacian, hence the

principal symbol at zero is

Δ2(0, ξ) =
1
2
|ξ|2 ⊗ Id .(45)

Here Id is the identity homomorphism on the appropriate bundle. As it has
no significant effect on our subsequence computations, or results, we hereafter
suppress the explicit dependence on the bundle E, except where necessary.

The symbol σ(Qeo
(2)) = q̃ = q̃−2 + q̃−3 + . . . is determined by the usual

symbolic relations:

q̃−2 = Δ−1
2

q̃−3 = −q̃−2[Δ1q̃−2 + iDξj
Δ2Dxj

q̃−2],
(46)

etc. Using the expressions in (44) we obtain that

q̃−2 =
2
|ξ|2 (Id +O0(|z|2)),

q̃−3 =
O1(|z|)
|ξ|4 ,

(47)

and generally for k ≥ 2 we have

q̃−2k =
lk∑

j=0

O2j(1)
|ξ|2(k+j)

,

q̃−(2k+1) =
l′k∑

j=0

O1+2j(1)
|ξ|2(k+j+1)

.

(48)

The exact form of denominator is important in the computation of the symbol
of Calderon projectors. The numerators are polynomials in ξ of the indicated
degrees.

Set

σ(Qeo) = q = q−1 + q−2 + . . . .(49)
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As it has no bearing on the calculation, for the moment we do not keep track
of whether to use the even or odd part of the operator. Note that the symbol
of Qeo

(2) is the same for both parities. From the standard composition formula,
we obtain that

q−1 = d1q̃−2,

q−2 = d1q̃−3 + d0q̃−2 + i
2n∑

j=1

Dξj
d1Dxj

q̃−2.
(50)

Generally, we have

q−(2+k)(x, ξ) =d0(x)q̃−(2+k)(x, ξ) + d1(x, ξ)q̃−(3+k)(x, ξ)

+ i
∑
|α|=1

Dα
ξ d1(x, ξ)Dα

x q̃−(2+k)(x, ξ).(51)

Combining (42) and (47) shows that

q−2 = O−2(|z|).(52)

Using the expressions in (48) we see that for k ≥ 2,

q−2k =
lk∑

j=0

O2j(1)
|ξ|2(k+j)

, q−(2k−1) =
l′k∑

j=0

O2j+1(1)
|ξ|2(k+j)

.(53)

In order to compute the symbol of the Calderon projector, we introduce
boundary adapted coordinates, (t, x2, . . . , x2n) where

t = −1
2
ρ(z) = x1 + O(|x|2).(54)

Note that t is positive on a pseudoconvex manifold and negative on a pseudo-
concave manifold.

We need to use the change of coordinates formula to express the symbol in
the new variables. From [8] we obtain the following prescription: Let w = φ(x)
be a diffeomorphism and a(x, ξ) the symbol of a classical pseudodifferential
operator A. Let (w, η) be linear coordinates in the cotangent space; then
aφ(w, η), the symbol of A in the new coordinates, is given by

aφ(φ(x), η) ∼
∞∑

k=0

∑
α∈Ik

(−i)k∂α
ξ a(x, dφ(x)tη)∂α

x̃ ei〈Φx(x̃),η〉

α!

∣∣∣∣
x=x̃

,(55)

where

Φx(x̃) = φ(x̃) − φ(x) − dφ(x)(x̃ − x).(56)

Here Ik are multi-indices of length k. Our symbols are matrix valued, e.g. q−2

is really (q−2)pq. As the change of variables applies component by component,
we suppress these indices in the computations that follow.
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In the case at hand, we are interested in evaluating this expression at
z = x = 0, where we have dφ(0) = Id and

Φ0(x̃) = (−1
2
[|z̃|2 + Re(bz̃, z̃) + O(|z̃|3)], . . . , 0).

Note also that, in (55), the symbol a is only differentiated in the fiber variables
and, therefore, any term of the symbol that vanishes at z = 0, in the Kähler
coordinates, does not contribute to the symbol at 0 in the boundary adapted
coordinates. Of particular importance is the fact that the term q−2 vanishes
at z = 0 and therefore does not contribute to the final result. Indeed we shall
see that only the principal symbol q−1 contributes to the Heisenberg principal
symbol along the positive (or negative) contact direction.

The k = 1 term from (55) vanishes, the k = 2 term is given by

− iξ1

2
tr[∂2

ξjξk
q(0, ξ)∂2

xjxk
φ(0)].(57)

For k > 2, the terms have the form∑
α∈Ik

∂α
ξ q(0, ξ)pα(ξ1).(58)

Here pα is a polynomial of degree at most � |α|2 �. As we shall see, the terms for
k > 2 do not contribute to the final result.

To compute the k = 2 term we need to compute the Hessians of q−1 and
φ(x) at x = 0. We define the 2n × 2n matrix B so that

Re(bz, z) = 〈Bx, x〉;(59)

if b = b0 + ib1, then

B =
(

b0 −b1

−b1 −b0

)
.(60)

With these definitions,

∂2
xjxk

φ(0) = −(Id +B).(61)

We further simplify the notation by letting d1(ξ)
d= d1(0, ξ); then

q−1(0, ξ) =
2d1(ξ)
|ξ|2 .(62)

Differentiating gives

∂q−1

∂ξj
=

2∂ξj
d1

|ξ|2 − 2ξjd1

|ξ|4(63)

and
∂2q−1

∂ξk∂ξj
= −4

d1 Id +ξ ⊗ ∂ξd
t
1 + ∂ξd1 ⊗ ξt

|ξ|4 + 16d1
ξ ⊗ ξt

|ξ|6 .(64)

Here ξ and ∂ξd1 are regarded as column vectors.
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We now compute the principal part of the k = 2 term

qc
−2(ξ) =iξ1 tr

[
(Id +B)

(
−2

d1 Id +ξ ⊗ ∂ξd
t
1 + ∂ξd1 ⊗ ξt

|ξ|4 + 8d1
ξ ⊗ ξt

|ξ|6
)]

= 4iξ1

[
(1 − n)

d1

|ξ|4 +
2d1〈Bξ, ξ〉

|ξ|6 − 〈Bξ, ∂ξd1〉
|ξ|4

]
.

(65)

Because q−2 vanishes at 0 and because the order of a symbol is preserved
under a change of variables we see that the symbol of Qeo at p is therefore

q(0, ξ) =
2d1(ξ)
|ξ|2 + qc

−2(ξ) + O−3(1).(66)

For the computation of the Calderon projector it is useful to be a little more
precise about the error term. The terms of highest symbolic order are multiples
of terms of the form ξk

1∂α
ξ q−j where |α| = 2k. We describe, in a proposition,

the types of terms that arise as error terms in (66)

Proposition 4. The O−3(1)-term in (66) is a sum of terms of the form
appearing in (53) along with terms of the forms

ξl
1h2m(ξ)

|ξ|2(k+l′+m)
with either k = 1 and l ≥ 2 or k ≥ 2,

ξl
1h2m+1(ξ)
|ξ|2(k+l′+m)

with k ≥ 2.

(67)

Here l′ ≥ l, m is a nonnegative integer and hj(ξ) is a radially homogeneous
polynomial of degree j.

Proof. This statement is an immediate consequence of (53), (55) and the
fact that Φ0(x̃) vanishes quadratically at x̃ = 0.

3. The symbol of the Calderon projector

We are now prepared to compute the symbol of the Calderon projec-
tor; it is expressed as a 1-variable contour integral in the symbol of Qeo. If
q(t, x′, ξ1, ξ

′) is the symbol of Qeo in the boundary adapted coordinates, then
the symbol of the Calderon projector is

p±(x′, ξ′) =
1
2π

∫
Γ±(ξ1)

q(0, x′, ξ1, ξ
′)dξ1 ◦ σ1(ðeo,∓idt).(68)

Here we recall that q(0, x′, ξ1, ξ
′) is a meromorphic function of ξ1. For each

fixed ξ′, the poles of q lie on the imaginary axis. If X is strictly pseudoconvex,
then t > 0 on X and we take Γ+(ξ1) to be a contour enclosing the poles of
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q(0, x′, ·, ξ′) in the upper half plane. If X is strictly pseudoconcave, then t < 0
on X and Γ−(ξ1) is a contour enclosing the poles of q(0, x′, ·, ξ′) in the lower half
plane. In a moment we use a residue computation to evaluate these integrals.
For this purpose we note that the contour Γ+(ξ1) is positively oriented, while
Γ−(ξ1) is negatively oriented.

The Calderon projector is a classical pseudodifferential operator of order
0 and therefore its symbol has an asymptotic expansion of the form

p = p0 + p−1 + . . . .(69)

The contact line, Lp, is defined in T ∗
p Y by the equations

ξ2 = · · · = ξn = ξn+2 = · · · = ξ2n = 0,(70)

and ξn+1 is a coordinate along the contact line. Because t = −1
2ρ, the positive

contact direction is given by ξn+1 < 0. If X is pseudoconvex then, for ξ′ /∈ L+
p ,

it suffices to compute p0, whereas if X is pseudoconcave, then for ξ′ /∈ L−
p it

suffices to compute p0. We begin our computations with the principal symbol

Proposition 5. If X is strictly pseudoconvex (pseudoconcave) and p ∈
bX with coordinates normalized at p as above, then

peo
0 (0, ξ′) =

doe
1 (±i|ξ′|, ξ′)

|ξ′| ◦ σ1(ðeo,∓idt).(71)

Proof. The leading term in the symbol of the Calderon projector comes
from

q−1(0, ξ) =
2d1(ξ)
|ξ|2 =

2d1(ξ1, ξ
′))

(ξ1 + i|ξ′|)(ξ1 − i|ξ′|) .(72)

Evaluating the contour integral in (68) gives (71).

Along the contact directions we need to evaluate higher order terms. We
begin by showing that the error terms in (66) contribute terms that lift to have
Heisenberg order less than −2

Proposition 6. The error terms in (66) contribute terms to the symbol
of the Calderon projector that lift to have Heisenberg orders at most −4.

Proof. We first check the terms that come from the lower order terms
in the symbol of Qeo before changing variables. These are of the forms given
in (53) with k ≥ 2. It suffices to consider a term of the form

h2j+1(ξ)
|ξ|2(k+j)

(73)
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for k ≥ 2 and j ≥ 0. Applying the contour integration to such a term gives a
multiple of

∂k+j−1
ξ1

[
h2j+1(ξ)

(ξ1 ± i|ξ′|)k+j

]
ξ1=±i|ξ′|

.(74)

As ξn+1 has Heisenberg order 2, it is not difficult to see that the highest
parabolic order term results if h2j+1(ξ) = ξ2j+1

n+1 . Differentiating gives a term
of the form

ξ2j+1
n+1

|ξ′|2k+2j−1
.(75)

Proposition 3 implies that this term lifts to have Heisenberg order 4 − 4k. As
k ≥ 2 the proposition follows in this case.

Among the terms that come from the change of variables formula, there
are two cases to consider: those coming from q−1 and those coming from q−k

for k ≥ 3. Recall that q−2 does not contribute anything to the symbol at p.

The terms in (55) coming from the principal symbol are of the form

ξl
1h1+2j(ξ)
|ξ|2(1+j+l′)

where 2 ≤ l ≤ l′ and j ≥ 0.(76)

Clearly the worst case is when l = l′ and h2j+1 = ξ2j+1
n+1 . The contour integral

applied to such a term produces a multiple of

ξ2j+1
n+1

|ξ′|l+2j+1
.(77)

This lifts to have Heisenberg order −2l. As l ≥ 2, this completes the analysis
of the contribution of the principal symbol.

Finally we need to consider terms of the forms given in (67) with k ≥ 2
and l ≥ 1. As before, the worse case is with l = l′ and h2j+1(ξ) = ξ2j+1

n+1 . The
contour integral gives a term of the form

ξ2j+1
n+1

|ξ′|2j+1

1
|ξ′|2k+l−2

.(78)

As 2k + l ≥ 5, these terms lift to have Heisenberg order at most −6. This
completes the proof of the proposition.

To finish our discussion of the symbol of the Calderon projector we need
to compute the symbol along the contact direction. This entails computing the
contribution from qc

−2. As we now show, terms arising from the holomorphic
Hessian of ρ do not contribute anything to the symbol of the Calderon pro-
jector. To do these computations we need to have an explicit formula for the
principal symbol d1(ξ) of ð at p. For the purposes of these and our subsequent
computations, it is useful to use the chiral operators ðeo. As we are working
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in a Kähler coordinate system, we only need to find the symbols of ðeo for Cn

with the flat metric. Let σ denote a section of Λeo ⊗ E. We split σ into its
normal and tangential parts at p:

σ = σt +
dz̄1√

2
∧ σn, i∂z̄1

σt = 0, i∂z̄1
σn = 0.(79)

With this splitting we see that

ð
eσ =

√
2

(
∂z̄1 ⊗ IdE,n Dt

−Dt −∂z1 ⊗ IdE,n

) (
σt

σn

)
ð

oσ =
√

2
(
−∂z1 ⊗ IdE,n −Dt

Dt ∂z̄1 ⊗ IdE,n

) (
σn

σt

)
,

(80)

where IdE,n is the identity matrix acting on the normal, or tangential parts of
Λeo ⊗ E �bX and

Dt =
n∑

j=2

[∂zj
ej − ∂z̄j

εj ] with ej = i√2∂z̄j
and εj =

dz̄j√
2
∧ .(81)

These symbols are expressed in the block matrix structure shown in (3). It is
now a simple matter to compute deo

1 (ξ):

de
1(ξ) =

1√
2

(
(iξ1 − ξn+1) ⊗ IdE,n d(ξ′′)

−d(ξ′′) −(iξ1 + ξn+1) ⊗ IdE,n

)
do

1(ξ) =
1√
2

(
−(iξ1 + ξn+1) ⊗ IdE,n) −d(ξ′′)

d(ξ′′) (iξ1 − ξn+1) ⊗ IdE,n

)(82)

where ξ′′ = (ξ2, . . . , ξn, ξn+2, . . . , ξ2n) and

d(ξ′′) =
n∑

j=2

[(iξj + ξn+j)ej − (iξj − ξn+j)εj ].(83)

As ε∗j = ej we see that d(ξ′′) is a self adjoint symbol.

In the next section we show that, in the block structure shown in equa-
tion (3), the (1, 1) block of the symbol of T eo has Heisenberg order 0, the (1, 2)
and the (2, 1) blocks have Heisenberg order −1. The symbol qc

−2 produces a
term that lifts to have Heisenberg order −2 and therefore we only need to
compute the (2, 2) block arising from this term.

We start with the nontrivial term of order −1.

Lemma 1. If X is either pseudoconvex or pseudoconcave,

1
2π

∫
Γ±(ξ′)

4iξ1(1 − n)d1(ξ1, ξ
′)dξ1

|ξ|4 = − i(n − 1)∂ξ1d1

|ξ′| .(84)

Remark 4. As d1 is a linear polynomial, ∂ξ1d1 is a constant matrix.
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Proof. The residue theorem implies that

1
2π

∫
Γ±(ξ′)

4iξ1(1 − n)d1(ξ1, ξ
′)dξ1

|ξ|4 = ±4(n − 1)∂ξ1

[
ξ1d1

(ξ1 ± i|ξ′|)2
]

ξ1=±i|ξ′|
.

(85)

The lemma follows from this equation by an elementary computation.

We complete the computation by evaluating the contribution from the
other terms in qc

−2 along the contact line.

Proposition 7. For ξ′ along the positive (negative) contact line, for j =
1, 2, ∫

Γ±(ξ′)

[
2d1(ξ)〈Bξ, ξ〉 − |ξ|2〈Bξ, ∂ξd1〉

|ξ|6
]

jj

ξ1dξ1 = 0.(86)

The subscript 11 refers to the upper left block and 22 the lower right block of
the matrix. If ξn+1 < 0, then we use Γ+(ξ′), whereas if ξn+1 > 0, then we use
Γ−(ξ′).

Proof. To prove this result we need to evaluate the contour integral with

ξ′ = ξ′c = (0, . . . , 0, ξn+1, 0, . . . , 0),

recalling that the positive contact line corresponds to ξn+1 < 0. Hence, along
the positive contact line, |ξ′| = −ξn+1. Because

[de
1]11 = [do

1]22 and [de
1]22 = [do

1]11,(87)

it suffices to prove the result for the (2, 2) block in both the even and odd
cases. We first compute the integrand along ξ′c.

Lemma 2. For ξ′ along the contact line,

(88)
[
2de

1(ξ)〈Bξ, ξ〉 − |ξ|2〈Bξ, ∂ξd
e
1〉

|ξ|6
]

22

=
(ξ1b

1
11 + ξn+1b

0
11) + i(ξ1b

0
11 − ξn+1b

1
11)

(ξn+1 + iξ1)(ξn+1 − iξ1)3
⊗ IdE,n,

(89)
[
2do

1(ξ)〈Bξ, ξ〉 − |ξ|2〈Bξ, ∂ξd
o
1〉

|ξ|6
]

22

=
(ξ1b

1
11 + ξn+1b

0
11) − i(ξ1b

0
11 − ξn+1b

1
11)

(ξn+1 − iξ1)(ξn+1 + iξ1)3
⊗ IdE,n .

The subscript 22 refers to the lower right block of the matrix, as in Proposi-
tion 7.
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Proof. Observe that along the contact line

〈Bξ, ξ〉 = b0
11(ξ

2
1 − ξ2

n+1) − 2b1
11ξ1ξn+1.

We outline the proof for the even case. The lower right block of de
1(ξ) equals

−(iξ1 + ξn+1) ⊗ IdE,n; thus

[∂ξd
e
1]22 = (−i, 0 . . . , 0,−1, 0, . . . , 0) ⊗ IdE,n .

Putting these expressions into the formula on the left-hand side of (88) gives
IdE,n times

(90)
−2(iξ1 + ξn+1)(b0

11(ξ
2
1 − ξ2

n+1) − 2b1
11ξ1ξn+1)

|ξ|3

− (ξ1b
1
11 + ξn+1b

0
11) − i(ξ1b

0
11 − ξn+1b

1
11)

|ξ|4 .

To complete the calculation we express |ξ|2 = (ξn+1 + iξ1)(ξn+1 − iξ1), cancel
and place the result over a common denominator. This leads to the cancellation
of a second factor of ξn+1 + iξ1. The odd case follows, mutatis mutandis, since

do
1(ξ) = (iξ1 − ξn+1) ⊗ IdE,n .

The details are left to the reader.

To complete the proof of the proposition we need to compute the contour
integrals of the expressions in (88) and (89) times ξ1, along the appropriate
end of the contact line. We state these computations as lemmas.

Lemma 3. If ξn+1 < 0, then

even
∫

Γ+(ξ′
c)

(ξ1b
1
11 + ξn+1b

0
11) + i(ξ1b

0
11 − ξn+1b

1
11)

(ξ1 − iξn+1)(ξ1 + iξn+1)3
ξ1dξ1 = 0,

odd
∫

Γ+(ξ′
c)

(ξ1b
1
11 + ξn+1b

0
11) − i(ξ1b

0
11 − ξn+1b

1
11)

(ξ1 + iξn+1)(ξ1 − iξn+1)3
ξ1dξ1 = 0.

(91)

Note that this implies that, if ξn+1 > 0, then the same integrals vanish if Γ+(ξ′c)
is replaced by Γ−(ξ′c).

Proof. The second statement follows by observing that the singular terms
in the integrand in the upper half plane are those coming from (ξ1 + iξn+1). If
ξn+1 > 0, then these become the singular terms in the lower half plane. Using
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a residue computation we see that the even case gives

(πi)∂2
ξ1

[
(ξ1b

1
11 + ξn+1b

0
11) + i(ξ1b

0
11 − ξn+1b

1
11)

(ξ1 − iξn+1)

]
ξ1=−iξn+1

=
2π

(−2iξn+1)2

[
b1
11 + ib0

11 −
(ξ1b

1
11 + ξn+1b

0
11) + i(ξ1b

0
11 − ξn+1b

1
11)

ξ1 − iξn+1

]
ξ1=−iξn+1

.

(92)

The quantity in the brackets is easily seen to vanish. The odd case follows
easily from the observation that[

(ξ1b
1
11 + ξn+1b

0
11) − i(ξ1b

0
11 − ξn+1b

1
11)

]
ξ1=−iξn+1

= 0.(93)

The two lemmas prove the proposition.

As a corollary, we have a formula for the −1 order term in the symbol of
the Calderon projector:

Corollary 1. If X is strictly pseudoconvex (pseudoconcave), then, in
the normalizations defined above, for j = 1, 2,

[peo
−1(0, ξ′)]jj = − i(n − 1)∂ξ1d

oe
1

|ξ′| ◦ σ1(ðeo,∓idt).(94)

We have shown that the order −1 term in the symbol of the Calderon
projector, along the appropriate half of the contact line, is given by the right-
hand side of equation (84). It is determined by the principal symbol of Qeo and
does not depend on the higher order geometry of bX. As we have shown that all
other terms in the symbol of Qeo contribute terms that lift to have Heisenberg
order less than −2, these computations allow us to find the principal symbols
of T eo

± and deduce the main results of the paper. As noted above, the off-
diagonal blocks have Heisenberg order −1, so the classical terms of order less
than zero cannot contribute to their principal parts.

4. The subelliptic boundary conditions

We now give formulæ for the chiral forms of the subelliptic boundary
conditions defined in [5] as well as the isomorphisms σ1(ðeo,∓idt). We begin by
recalling the basic properties of compatible almost complex structures defined
on a contact field and of the symbol of a generalized Szegő projector. Let θ

denote a positive contact form defining H. An almost complex structure on H

is compatible if

1. X 
→ dθ(JX, X) defines an inner product on H;

2. dθ(JX, JY ) = dθ(X, Y ) for sections of H.
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Let ω′ be the dual symplectic form on H∗ and J ′ the dual almost complex
structure. The symbol of a field of harmonic oscillators is defined by

hJ(η) = ω′(J ′πH∗(η), πH∗(η)).(95)

The model operator defined by the symbol hJ is a harmonic oscillator, as such
its minimum eigenstate or vacuum state is one dimensional. The projector onto
the vacuum state has symbol sJ0 = 21−ne−hJ . An operator S ′ in the Heisenberg
calculus with principal symbol sJ0, for a compatible almost complex structure
J, such that

[S ′]2 = S ′ and [S ′]∗ = S ′(96)

is called a generalized Szegő projector. Generalized conjugate Szegő projectors
are analogously defined, with the symbol supported on the lower half space.
A generalized Szegő projector acting on sections of a complex vector bundle
F → bX is an operator in Ψ0

H(Y ;F ), which satisfies the conditions in (96) and
its principal symbol is sJ0 ⊗ IdF .

Lemma 4. According to the splittings of sections of Λeo⊗E given in (79),
the subelliptic boundary conditions, defined by the generalized Szegő projector
S ′, on even (odd) forms are given by R′ eo

+ σ �bX= 0 where

R′ e
+σ �bX=

⎛⎝S ′ 0
0 0

0

0 Id

⎞⎠ ⎡⎣σt

σn

⎤⎦
bX

; R′ o
+ σ �bX=

⎛⎝1 − S ′ 0
0 Id

0

0 0

⎞⎠ ⎡⎣σn

σt

⎤⎦
bX

.

(97)

Lemma 5. According to the splittings of sections of Λeo⊗E given in (79),
the subelliptic boundary conditions, defined by the generalized conjugate
Szegő projector S̄ ′, on even (odd) forms are given by R′ eo

− σ �bX= 0 where,
if n is even, then

R′ e
−σ �bX=

⎛⎝0 0

0
Id 0
0 1 − S̄ ′

⎞⎠ ⎡⎣σt

σn

⎤⎦
bX

; R′ o
−σ �bX=

⎛⎝Id 0

0
0 0
0 S̄ ′

⎞⎠ ⎡⎣σn

σt

⎤⎦
bX

.

(98)

If n is odd, then

R′ e
−σ �bX=

⎛⎝0 0
0 S̄ ′ 0

0 Id

⎞⎠ ⎡⎣σt

σn

⎤⎦
bX

; R′ o
−σ �bX=

⎛⎝Id 0
0 1 − S̄ ′ 0

0 0

⎞⎠ ⎡⎣σn

σt

⎤⎦
bX

.

(99)

Remark 5. These boundary conditions are introduced in [5]. For the pur-
poses of this paper, these formulæ can be taken as the definitions of the pro-
jections R′ eo

± , which, in turn, define the boundary conditions.
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Lemma 6. The isomorphisms at the boundary between Λeo⊗E and Λoe⊗E

are given by

σ1(ðeo
± ,∓idt)σt =

±√
2
σt, σ1(ðeo

± ,∓idt)σn =
∓√
2
σn.(100)

We have thus far succeeded in computing the symbols of the Calderon
projectors to high enough order to compute the principal symbols of T eo

± as
elements of the extended Heisenberg calculus. The computations have been
carried out in a coordinate system adapted to the boundary. This suffices to
examine the classical parts of the symbols. In the next section we further
normalize the coordinates, in order to analyze the Heisenberg symbols.

We close this section by computing the classical parts of the symbols of
T eo
± and showing that they are invertible on the complement of the appropriate

half of the contact line. Recall that the positive contact ray, L+, is given at p

by ξ′′ = 0, ξn+1 < 0.

Proposition 8. If X is strictly pseudoconvex, then, on the complement
of the positive contact direction, the classical symbols Rσ0(T eo

+ ) are given by

Rσ0(T e
+)(0, ξ′) =

1
2|ξ′|

(
(|ξ′| + ξn+1) Id −d(ξ′′)

d(ξ′′) (|ξ′| + ξn+1) Id

)
;

Rσ0(T o
+)(0, ξ′) =

1
2|ξ′|

(
(|ξ′| + ξn+1) Id d(ξ′′)

−d(ξ′′) (|ξ′| + ξn+1) Id

)
.

(101)

These symbols are invertible on the complement of L+.

Proof. Away from the positive contact direction R′ eo
+ are classical pseu-

dodifferential operators with

Rσ0(R′ e
+ ) =

(
0 0
0 Id

)
, Rσ0(R′ o

+ ) =
(

Id 0
0 0

)
.(102)

The formulæ in (101) follow easily from these relations, along with (71), (82),
and (100). To show that these symbols are invertible away from the positive
contact direction, it suffices to show that their determinants do not vanish. Up
to the factor of (2|ξ′|)−1, these symbols are of the form λ Id +B where λ is real
(and nonnegative) and B is skew-adjoint. As a skew-adjoint matrix has purely
imaginary spectrum, the determinants of these symbols vanish if and only if
d(ξ′′) = 0 and |ξ′| + ξn+1 = 0. The first condition implies that |ξ′| = |ξn+1|;
hence these determinant vanish if and only if ξ′ belongs to the positive contact
ray.

An essentially identical argument, taking into account the fact that R′ eo
−

are classical pseudodifferential operators on the complement of L−, suffices to
treat the pseudoconcave case.
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Proposition 9. If X is strictly pseudoconcave, then, on the complement
of the negative contact direction, the classical symbols Rσ0(T eo

− ) are given by

Rσ0(T e
−)(0, ξ′) =

1
2|ξ′|

(
(|ξ′| − ξn+1) Id d(ξ′′)

−d(ξ′′) (|ξ′| − ξn+1) Id

)
Rσ0(T o

−)(0, ξ′) =
1

2|ξ′|

(
(|ξ′| − ξn+1) Id −d(ξ′′)

d(ξ′′) (|ξ′| − ξn+1) Id

)
.

(103)

These symbols are invertible on the complement of L−.

Remark 6. Propositions 8 and 9 are classical and implicitly stated, for
example, in the work of Greiner and Stein, and Beals and Stanton; see [2], [7].

5. The Heisenberg symbols of T eo
±

To compute the Heisenberg symbols of T eo
± we change coordinates, one last

time, to get Darboux coordinates at p. Up to this point we have used the coor-
dinates (ξ2, . . . , ξ2n) for T ∗

p bX, which are defined by the coframe dx2, . . . , dx2n,

with dxn+1 the contact direction. Recall that the contact form θ, defined by
the complex structure and defining function ρ/2, is given by θ = i

2 ∂̄ρ. The
symplectic form on H is defined by dθ. At p we have

θp = −1
2
dxn+1, dθp =

n∑
j=2

dxj ∧ dxj+n.(104)

By comparison with (5), we see that properly normalized coordinates for T ∗
p bX

are obtained by setting

η0 = −2ξn+1, ηj = ξj+1, ηj+n−1 = ξj+n+1 for j = 1, . . . , n − 1.(105)

As usual we let η′ = (η1, . . . , η2(n−1)); whence ξ′′ = η′.
As a first step in lifting the symbols of the Calderon projectors to the

extended Heisenberg compactification, we re-express them, through order −1
in the ξ-coordinates:

pe
+(ξ′) =

1
2|ξ′|

[(
(|ξ′| − ξn+1) Id d(ξ′′)

d(ξ′′) (|ξ′| + ξn+1) Id

)
− (n − 1)

(
Id 0
0 Id

)]
,

(106)

po
+(ξ′) =

1
2|ξ′|

[(
(|ξ′| + ξn+1) Id d(ξ′′)

d(ξ′′) (|ξ′| − ξn+1) Id

)
− (n − 1)

(
Id 0
0 Id

)]
,

(107)

pe
−(ξ′) =

1
2|ξ′|

[(
(|ξ′| + ξn+1) Id −d(ξ′′)

−d(ξ′′) (|ξ′| − ξn+1) Id

)
+ (n − 1)

(
Id 0
0 Id

)]
,

(108)
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po
−(ξ′) =

1
2|ξ′|

[(
(|ξ′| − ξn+1) Id −d(ξ′′)

−d(ξ′′) (|ξ′| + ξn+1) Id

)
+ (n − 1)

(
Id 0
0 Id

)]
.

(109)

Various identity and zero matrices appear in these symbolic computations.
Precisely which matrix is needed depends on the dimension, the bundle E, the
parity, etc. We do not encumber our notation with these distinctions.

In order to compute Hσ(T eo
± ), we represent the Heisenberg symbols as

model operators and use operator composition. To that end we need to quan-
tize d(η′) as well as the terms coming from the diagonals in (106)–(109). We
first treat the pseudoconvex side. In this case we need to consider the symbols
on the positive Heisenberg face, where the function |ξ′| + ξn+1 vanishes.

We express the various terms in peo
+ , near the positive contact line as sums

of Heisenberg homogeneous terms

|ξ′| =
η0

2
(1 + OH

−2),

|ξ′| − ξn+1 = η0(1 + OH
−2), |ξ′| + ξn+1 =

|η′|2
η0

(1 + OH
−2),

d(ξ′′) =
n−1∑
j=1

[(iηj + ηn+j−1)ej − (iηj − ηn+j−1)εj ].

(110)

Recall that the notation OH
j denotes a term of Heisenberg order at most j.

To find the model operators, we split η′ = (w, ϕ). Using the quantization rule
in (20) (with the + sign) we see that

ηj − iηn+j−1 ↔ Cj
d= (wj − ∂wj

),

ηj + iηn+j−1 ↔ C∗
j

d= (wj + ∂wj
),

|η′|2 ↔ H
d=

n−1∑
j=1

w2
j − ∂2

wj
.

(111)

The following standard identities are useful
n−1∑
j=1

C∗
j Cj − (n − 1) = H =

n−1∑
j=1

CjC
∗
j + (n − 1).(112)

We let D+ denote the model operator defined, using the + quantization, by
d(ξ′′); it is given by

D+ = i

n−1∑
j=1

[Cjej − C∗
j εj ].(113)

This is the model operator defined by ∂̄b + ∂̄∗
b acting on ⊕qΛ

0,q
b ⊗ E. This

operator can be split into even and odd parts, Deo
+ and these chiral forms
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of the operator are what appear in the model operators below. To keep the
notation from becoming too complicated we suppress this dependence.

With these preliminaries, we can compute the model operators for Pe
+ and

Id−Pe
+ in the positive contact direction. They are:

eHσ(Pe
+)(+) =

(
Id D+

η0
D+

η0

H−(n−1)
η2
0

)
, eHσ(Id−Pe

+)(+) =

(
H+n−1

η2
0

−D+

η0

−D+

η0
Id

)
.

(114)

The denominators involving η0 are meant to remind the reader of the Heisen-
berg orders of the various blocks: η−1

0 indicates a term of Heisenberg order −1
and η−2

0 a term of order −2. Similar computations give the model operators in
the odd case:

eHσ(Po
+)(+) =

(
H−(n−1)

η2
0

D+

η0
D+

η0
Id

)
, eHσ(Id−Po

+)(+) =

(
Id −D+

η0

−D+

η0

H+n−1
η2
0

)
.

(115)

Let π′
0 = eHσ(+)(S ′); this is a self adjoint rank one projection defined by a

compatible almost complex structure on H. Then

eHσ(R′ e
+ )(+) =

⎛⎝π′
0 0
0 0

0

0 Id

⎞⎠ , eHσ(R′ o)(+) =

⎛⎝1 − π′
0 0

0 Id
0

0 0

⎞⎠ .(116)

We can now compute the model operators for T eo
+ on the upper Heisenberg

face.

Proposition 10. If X is strictly pseudoconvex, then, at p ∈ bX, the
model operators for T eo

+ , in the positive contact direction, are given by

eHσ(T e
+)(+) =

⎛⎜⎝π′
0 0
0 0

−
[
1 − 2π′

0 0
0 Id

]
D+

η0

D+

η0

H−(n−1)
η2
0

⎞⎟⎠ ,(117)

eHσ(T o
+)(+) =

⎛⎜⎝π′
0 0
0 0

[
1 − 2π′

0 0
0 Id

]
D+

η0

−D+

η0

H+(n−1)
η2
0

⎞⎟⎠ .(118)

Proof. Observe that the Heisenberg orders of the blocks in (117) and (118)
are (

0 −1
−1 −2

)
.(119)

Proposition 6 shows that all other terms in the symbol of the Calderon pro-
jector lead to diagonal terms of Heisenberg order at most −4, and off diagonal
terms of order at most −2. This, along with the computations above, completes
the proof of the proposition.
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A similar analysis applies for the pseudoconcave case. Here we use that,
near the negative contact line,

|ξ′| = − η0

2
(1 + OH

−2),

|ξ′| + ξn+1 = −η0(1 + OH
−2), |ξ′| − ξn+1 = −|η′|2

η0
(1 + OH

−2).
(120)

The formula for d(ξ′′) is the same, however, though the quantization rule is
slightly different; note the ± in equation (20). Using the − sign we get the
following quantizations:

ηj − iηn+j−1 ↔ C∗
j

d= (wj + ∂wj
),

ηj + iηn+j−1 ↔ Cj
d= (wj − ∂wj

),

|η′|2 ↔ H
d=

n−1∑
j=1

w2
j − ∂2

wj
.

(121)

With the − sign we therefore obtain that the model operator defined by d(ξ′′)
is

D− = i

n−1∑
j=1

[C∗
j ej − Cjεj ].(122)

Using computations identical to those above, we find that the model operators
for Peo

− and Id−Peo
− , along the negative contact direction are:

eHσ(Pe
−)(−) =

(
Id D−

|η0|
D−
|η0|

H+(n−1)
|η0|2

)
, eHσ(Id−Pe

−)(−) =

(
H−(n−1)

|η0|2 −D−
|η0|

−D−
|η0| Id

)
,

eHσ(Po
−)(−) =

(
H+(n−1)

|η0|2
D−
|η0|

D−
|η0| Id

)
, eHσ(Id−Po

−)(−) =

(
Id −D−

|η0|
−D−

|η0|
H−(n−1)

|η0|2

)
.

(123)

The Heisenberg orders of the various blocks are indicated by powers of |η0|, as
we evaluate the symbols along the hyperplane η0 = −1 to obtain the model
operators. Let π̄′

0 denote the rank one projection, which is the principal symbol
of S̄ ′. If n is even, then

eHσ(R′ e
− )(−) =

⎛⎝0 0

0
Id 0
0 1 − π̄′

0

⎞⎠ , eHσ(R′ o
− )(−) =

⎛⎝Id 0

0
0 0
0 π̄′

0

⎞⎠ .(124)

If n is odd, then

eHσ(R′ e
− )(−) =

⎛⎝0 0
0 π̄′

0
0

0 Id

⎞⎠ , eHσ(R′ o
− )(−) =

⎛⎝Id 0
0 1 − π̄′

0
0

0 0

⎞⎠ .(125)



SUBELLIPTIC SPIN C DIRAC OPERATORS, II 753

Proposition 11. If X is strictly pseudoconcave, then at p ∈ bX, the
model operators for T eo

− , in the negative contact direction, are given, for n

even, by

eHσ(T e
−)(−) =

⎛⎜⎝
H−(n−1)

|η0|2 −D−
|η0|[

Id 0
0 1 − 2π̄′

0

]
D−
|η0|

0 0
0 π̄′

0

⎞⎟⎠ ,(126)

eHσ(T o
−)(−) =

⎛⎜⎝
H+(n−1)

|η0|2
D−
|η0|

−
[
Id 0
0 1 − 2π̄′

0

]
D−
|η0|

0 0
0 π̄′

0

⎞⎟⎠ .(127)

If n is odd, then

eHσ(T e
−)(−) =

⎛⎜⎝0 0
0 π̄′

0
−

[
Id 0
0 1 − 2π̄′

0

]
D−
|η0|

D−
|η0|

H+(n−1)
|η0|2

⎞⎟⎠ ,(128)

eHσ(T o
−)(−) =

⎛⎜⎝0 0
0 π̄′

0

[
Id 0
0 1 − 2π̄′

0

]
D−
|η0|

−D−
|η0|

H−(n−1)
|η0|2

⎞⎟⎠ .(129)

Proof. In the even case the Heisenberg orders of the blocks are(
−2 −1
−1 0

)
,(130)

while in the odd case they are (
0 −1
−1 −2

)
.(131)

As before, the proposition follows from this observation, the computations
above, and Proposition 6.

This brings us to the main technical result.

Theorem 1. If X is strictly pseudoconvex (pseudoconcave), E → X a
compatible complex vector bundle and S ′ (S̄ ′) a generalized (conjugate) Szegő
projector, defined by a compatible deformation of the almost complex structure
on H induced by the embedding of bX as the boundary of X, then the operators
T eo

E+ (T eo
E−) are graded elliptic elements of the extended Heisenberg calculus. If

X is pseudoconvex or X is pseudoconcave and n is odd, then,as block matrices,
the parametrices for T eo

E± have Heisenberg orders(
0 1
1 1

)
.(132)
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If X is pseudoconcave and n is even, then, as block matrices, the parametrices
for T eo

E− have Heisenberg orders (
1 1
1 0

)
.(133)

Proof. By standard symbolic arguments, to prove the theorem it suffices
to construct operators Ueo

± ,Veo
± in the extended Heisenberg calculus, so that

Ueo
± T eo

± = Id +OeH
−1,−1,

T eo
± Veo

± = Id +OeH
−1,−1.

(134)

As usual, this just amounts to the invertibility of the principal symbols. Away
from the positive (negative) Heisenberg face this is clear, as the operator is
classically elliptic of order 0. Along the Heisenberg face, the operator is graded
so a little discussion is required. For a graded Heisenberg operator A, denote
the matrix of model operators by

A =
(

A11 A12

A21 A22

)
.

The blocks of A have orders either i + j − 4 or 2− (i + j). Suppose the model
operators are invertible with inverses given by

B =
(

B11 B12

B21 B22

)
.

The orders of the blocks of B are either 4− (i + j) or (i + j)− 2. Let B denote
an extended Heisenberg operator with principal symbol given by B. Then, in
the first case, we have

AB =
(

Id +E−1 E−1

E0 Id +E−1

)
, BA =

(
Id +F−1 F0

F−1 Id +F−1

)
.(135)

Here Ej ,Fj denote operators with the indicated Heisenberg orders. Setting

Br = B
(

Id 0
−E0 Id

)
, Bl =

(
Id −F0

0 Id

)
B(136)

gives the right and left parametrices called for in equation (134). A similar
argument works if the orders of A are (i + j) − 2. Thus it suffices to show
that the model operators eHσ(T eo

± )(±) are invertible, in the graded sense used
above. This is done in the next two sections.

Remark 7. In the analysis below we show that the order 2 block in the
parametrix is absent, hence it is not necessary to correct B with a triangular
matrix.
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6. Invertibility of the model operators
with classical Szegő projectors

In this section we prove Theorem 1 with the additional assumption that
the principal symbol of S ′ (S̄ ′) agrees with the principal symbol, π0, (π̄0)
of the classical Szegő projector (conjugate Szegő projector) defined by the
CR-structure on bX. In this case the structure of the model operators is a
little simpler. It is not necessary to assume that the CR-structure on bX is
embeddable, as all that we require are the symbolic identities

σ1(∂̄bS) = 0 and σ1(∂̄∗
b S̄) = 0.(137)

Note that SE (or S̄E) are projectors onto sections of Λeo
b ⊗E �bX . Because the

complex structure of E is compatible with that of X, using the holomorphic
frame introduced in (36), we see that

σ(SE) = σ(S) ⊗ IdE , σ(S̄E) = σ(S̄) ⊗ IdE .(138)

Thus we may continue to suppress the explicit dependence on E.

The operators {Cj} are called the creation operators and the operators
{C∗

j } the annihilation operators. They satisfy the commutation relations

[Cj , Ck] = [C∗
j , C∗

k ] = 0, [Cj , C
∗
k ] = −2δjk.(139)

The operators D± act on sums of the form

ω =
n−1∑
k=0

∑
I∈I′

k

fI ω̄
I ;(140)

here I ′
k are increasing multi-indices of length k. The coefficients {fI} are sec-

tions of the appropriate holomorphic bundle, assumed trivialized near p, as
described in Section 2, with vanishing connection coefficients. We refer to the
terms with |I| = k as the terms of degree k. For an increasing k-multi-index
I = 1 ≤ i1 < i2 < · · · < ik ≤ n − 1, ω̄I is defined by

ω̄I =
1

2
k

2

dz̄i1 ∧ · · · ∧ dz̄ik
.(141)

We first describe the relationships among the operators π0,D+, π̄0 and D−.

Lemma 7. Let π0 and π̄0 be the symbols of the classical Szegő projector
and conjugate Szegő projector respectively ; then[

π0 0
0 0

]
D+ = 0 and

[
0 0
0 π̄0

]
D− = 0(142)
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Proof. The range of D+ in degree 0, where π0 acts, is spanned by
expressions of the form

n−1∑
j=1

CjfIejω̄
I , with |I| = 1.(143)

Taking the adjoint, the first identity in (137) is equivalent to π0Cj = 0 for all
j, and the lemma follows in this case. The range of D− in degree n− 1, where
π̄0 acts, is spanned by expressions of the form

n−1∑
j=1

CjfIεjω̄
I , with |I| = n − 2.(144)

Once again, (137) implies that π̄0Cj = 0; the proof of the lemma is complete.

This lemma simplifies the analysis of the model operators for T eo
± . The

following lemma is useful in finding their inverses.

Lemma 8. Let Πq denote projection onto the terms of degree q,

Πqω =
∑
I∈I′

q

fI ω̄
I .(145)

The operators D± satisfy the identities

D2
+ =

n−1∑
j=1

CjC
∗
j ⊗ Id +

n−1∑
q=0

2qΠq, D2
− =

n−1∑
j=1

CjC
∗
j ⊗ Id +

n−1∑
q=0

2(n − 1 − q)Πq.

(146)

Proof. In the proof of this lemma we make extensive usage of the following
classical identities, whose verification we leave to the reader.

Lemma 9. The operators {ej , εj} satisfy the following relations

ejek = −ekej , εjεk = −εkεj for all j, k,

εjek = −ejεk if j �= k.
(147)

For j = k,

εjejω̄
I =

{
ω̄I if j ∈ I

0 if j /∈ I,
ejεjω̄

I =

{
ω̄I if j /∈ I

0 if j ∈ I.
(148)
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Starting with D+ and using the lemma we obtain

D2
+ = −

∑
j �=k

(
1
2
[Cj , Ck]ejek +

1
2
[C∗

j , C∗
k ]εjεk − [Cj , C

∗
k ]ejεk

)

+
n−1∑
j=1

[CjC
∗
j ejεj + C∗

j Cjεjej ].

(149)

It follows from the commutation relations that the sum over j �= k vanishes.
Using (139) we rewrite the second sum as

n−1∑
j=1

[CjC
∗
j ejεj + (CjC

∗
j + 2)εjej ].(150)

The statement of the lemma follows easily from (150), and the fact that

n−1∑
j=1

εjejω̄
I = |I|ω̄I .(151)

The argument for D− is quite similar. The analogous sum over j �= k vanishes
and we see that

D2
− =

n−1∑
j=1

[C∗
j Cjejεj + CjC

∗
j εjej ]

=
n−1∑
j=1

[(CjC
∗
j + 2)ejεj + CjC

∗
j εjej ].

(152)

The proof is completed as before using

n−1∑
j=1

ejεjω̄
I = (n − 1 − |I|)ω̄I .(153)

instead of (151).

Before we construct the explicit inverses, we show that eHσ(T eo
± )(±) are

Fredholm elements (in the graded sense), in the isotropic algebra. Notice that
this is a purely symbolic statement in the isotropic algebra. The isotropic
blocks have orders (

0 1
1 2

)
(154)

on the pseudoconvex side and on the pseudoconcave side if n is odd, and orders(
2 1
1 0

)
(155)
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on the pseudoconcave side if n is even. The leading order part in the isotropic
algebra is independent of the choice of generalized (conjugate) Szegő pro-
jector. In the former case we can think of the operator as defining a map
from H1(Rn−1;E1) ⊕ H2(Rn−1;E2) to H1(Rn−1;F1) ⊕ H0(Rn−1;F2) for ap-
propriate vector bundles E1, E2, F1, F2. In the later case the map is from
H2(Rn−1;E1) ⊕ H1(Rn−1;E2) to H0(Rn−1;F1) ⊕ H1(Rn−1;F2). It is as maps
between these spaces that the model operators are Fredholm.

Proposition 12. The model operators, eHσ(T eo
± )(±), are graded Fred-

holm elements in the isotropic algebra.

Proof. As noted above this is a purely symbolic statement in the isotropic
algebra. It suffices to show that the model operators are invertible, by appro-
priately graded elements of the isotropic algebra, up to an error of lower order.
Equation (149) shows that

[H−1D±]D± = D±[H−1D±] = Id +Oiso
−1.(156)

Here Oiso
j is a term of order at most j in the isotropic algebra. Up to lower

order terms, the model operators are

eHσ(T eo
+ )(+) =

(
0 ∓D+

±D+ H

)
,

n odd eHσ(T eo
− )(−) =

(
0 ∓D−

±D− H

)
,

n even eHσ(T eo
− )(−) =

(
H ∓D−

±D− 0

)
.

(157)

The isotropic principal symbol of H is |η′|2. For these computations, we let H−1

denote a model operator with isotropic principal symbol |η′|−2. Using (156),
we see that the operators in (157) have right parametrices:(

0 ∓D+

±D+ H

) (
Id ±H−1D+

∓H−1D+ 0

)
= Id +Oiso

−1,

n odd
(

0 ∓D−
±D− H

) (
Id ±H−1D−

∓H−1D− 0

)
= Id +Oiso

−1,

n even
(

H ∓D−
±D− 0

) (
0 ±H−1D−

∓H−1D− Id

)
= Id +Oiso

−1.

(158)

The same model operators provide left parametrices as well. This proves the
proposition.

Remark 8. Note that the block of the principal symbols of the paramet-
rices, expected to have order 2, actually vanishes. As a result, the inverses
of the model operators have Heisenberg order at most 1, which in turn allows
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us to deduce the standard subelliptic 1
2 -estimates for these boundary value

problems.

The operators De
± and Do

± are adjoint to one another. From (146) and
the well known properties of the harmonic oscillator, it is clear that De

+Do
+ is

invertible. As De
+ has a one dimensional null space this easily implies that Do

+

is injective with image orthogonal to the range of π0, while De
+ is surjective.

The analogous statements for Deo
− depend on the parity of n, as D2

− has a null
space of dimension one spanned by the forms of degree n−1 in the image of π̄0.

If n is even, then De
− is injective and Do

− is surjective, with a one dimensional
null space spanned by the range of π̄0. If n is odd, then Do

− is injective and De
−

is surjective. With these observations we easily invert the model operators.
We begin with the + side. Let [De

+]−1u denote the unique solution to the
equation

De
+v = u,

orthogonal to the null space of De
+. We let

�
u =

(
1 − π0 0

0 Id

)
u;(159)

this is the projection onto the range of Do
+ and

u0 =
(

π0 0
0 0

)
u,(160)

denotes the projection onto the nullspace of De
+. We let [Do

+]−1 denote the
unique solution to

Do
+v =

�
u.

Proposition 12 shows that these partial inverses are isotropic operators of or-
der −1.

With this notation we find the inverse of eHσ(T e
+)(+). The vector [u, v]

satisfies

eHσ(T e
+)(+)

[
u

v

]
=

[
a

b

]
(161)

if and only if

u = a0 + [De
+]−1(H − (n − 1))[Do

+]−1�a + [De
+]−1b,

v = −[Do
+]−1�a.

(162)
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Expression of the inverse as a block matrix of operators, with appropriate
factors of η0 included, gives:

[eHσ(T e
+)(+)]−1

=

⎡⎢⎢⎣
(

π0 0
0 0

)
+ [De

+]−1(H − (n − 1))[Do
+]−1

(
1 − π0 0

0 Id

)
η0[De

+]−1

−η0[Do
+]−1

(
1 − π0 0

0 Id

)
0

⎤⎥⎥⎦ .

(163)

The isotropic operators [Deo
+ ]−1 are of order −1, whereas [De

+]−1(H −
(n − 1))[Do

+]−1 is of order zero. The Schwartz kernel of π0 is rapidly de-
creasing. From this we conclude that the Heisenberg orders, as a block matrix,
of the parametrix for [eHσ(T e

+)(+)] are(
0 1
1 1

)
.(164)

We get a 1 in the lower right corner because the principal symbol, a priori of
order 2, of this entry vanishes. The solution for the odd case is given by

u = a0 + [De
+]−1(H + (n − 1))[Do

+]−1�a − [De
+]−1b,

v = [Do
+]−1�a.

(165)

Once again the 2, 2 block of [eHσ(T o
+)(+)]−1 vanishes, and the principal symbol

has the Heisenberg orders indicated in (164).
We complete this analysis by writing the solutions to

eHσ(T eo
− )(−)

[
u

v

]
=

[
a

b

]
,(166)

in the various cases. For n even, the operator De
− is injective and Do

− has
a one dimensional null space. We let u0 denote the projection of u onto the
null space and

�
u the projection onto its complement. With the notation for

the partial inverses of Deo
− analogous to that used in the + case, we have the

solution operators:

even u = [De
−]−1

�
b,

v = b0 + [Do
−]−1(H − (n − 1))[De

−]−1
�
b − [Do

−]−1a,

odd u = −[De
−]−1

�
b,

v = b0 + [Do
−]−1(H − (n − 1))[De

−]−1
�
b + [Do

−]−1a.

(167)

Here and in (168), “even” and “odd” refer to the parity of the spinor. For n

even, the operator Do
− is injective and De

− has a one dimensional null space.
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We let u0 denote the projection of u onto the null space and
�
u the projection

onto its complement.

even u = a0 + [De
−]−1(H + (n − 1))[Do

−]−1�a + [De
−]−1b,

v = −[Do
−]−1�a,

odd u = a0 + [De
−]−1(H + (n − 1))[Do

−]−1�a − [De
−]−1b,

v = [Do
−]−1�a.

(168)

If n is even, then the (1, 1) block of the principal symbols of [eHσ(T eo
− )(−)]−1

vanishes and therefore the Heisenberg orders of the blocks of the parametrices
are [

1 1
1 0

]
.(169)

If n is odd, then the (2, 2) block the principal symbols of [eHσ(T eo
− )(−)]−1

vanishes and therefore the Heisenberg orders of the blocks of the parametrices
are [

0 1
1 1

]
.(170)

For the case of classical Szegő projectors, Lemma 7 implies that the model
operators satisfy

[eHσ(T eo
± )(±)]∗ = eHσ(T oe

± )(±).(171)

From Proposition 12 we know that these are Fredholm operators. Since we
have shown that all the operators eHσ(T eo

± )(±) are surjective, i.e., have a left
inverse, it follows that all are in fact injective and therefore invertible. In
all cases this completes the proof of Theorem 1 in the special case that the
principal symbols of S ′ or S̄ ′ agree with those of the classical Szegő projector
or conjugate Szegő projector.

7. Invertibility of the model operators with generalized
Szegő projectors

The proof of Theorem 1, with generalized Szegő projectors, is not much
different from that covered in the previous section. We show here that the
parametrices for eHσ(T eo

− )(−) differ from those with classical Szegő projectors
(or conjugate Szegő projectors) by operators of finite rank. The Schwartz
kernels of the correction terms are in the Hermite ideal, and so do not affect
the Heisenberg orders of the blocks in the parametrix. As before the principal
symbol in the (2, 2) block (or (1, 1) block, where appropriate) vanishes.

In [6] we characterize the set of compatible almost complex structures in
the following way:
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Lemma 10. Let J1 and J2 be compatible almost complex structures on the
co-oriented contact manifold Y. For each p ∈ Y there is a Darboux coordinate
system centered at p, so that, if (η0, η

′) are the linear coordinates on T ∗
p Y, then

hJ1(η) =
2(n−1)∑

j=1

η2
j and hJ2(η) =

n−1∑
j=1

[μjη
2
j + μ−1

j η2
j+n−1](172)

for positive numbers (μ1, . . . , μn−1).

We split the coordinates η′ into (w1, . . . , wn−1;ϕ1, . . . , ϕn−1). Let H1 and
H2 denote the harmonic oscillators obtained by quantizing these symbols with
respect to this splitting; then the ground states for these operators are spanned
by

v0
1 = m1 exp

⎡⎣−1
2

n−1∑
j=1

w2
j

⎤⎦ ,

v2
0 = m2 exp

⎡⎣−1
2

n−1∑
j=1

(
wj

μj

)2
⎤⎦ ,

(173)

with mj chosen so that ‖vj
0‖L2 = 1. From these expressions we easily deduce

the following result.

Lemma 11. If J1 and J2 are compatible almost complex structures, then,
with respect to the L2-inner product on Rn−1 defined by a choice of splitting of
Hp,

〈v1
0, v

2
0〉 > 0.(174)

On a compact manifold, this inner product is a smooth function, bounded below
by a positive constant. If the πj

0 denote the projections onto the respective
vacuum states, then

〈v1
0, v

2
0〉2 = trπ1

0π
2
0,(175)

which is therefore well defined independent of the choice of quantization.

Proof. Only the second statement requires a proof. In terms of any
Darboux coordinate system, the projection onto the vacuum state has Schwartz
kernel

vj
0 ⊗ vjt

0 .(176)

This shows that (175) is correct. It is shown in [6] that the trace is independent
of the choice of quantization.
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For our applications, the following corollary is very useful.

Corollary 2. Let J1 and J2 be compatible almost complex structures.
In a choice of quantization we define the model operator

P21 =
π2

0π
1
0

trπ2
0π

1
0

.(177)

This operator is globally defined, belongs to the Hermite ideal, and satisfies

π1
0 P21 = π1

0.(178)

Proof. The first statement follows from Lemma 11 and the fact that
the symbols of the projectors are globally defined. The relation in (177) is
easily proved using the representations of πj

0 given in (176). The fact that P21

belongs to the Hermite ideal is again immediate from the fact that its Schwartz
kernel belongs to S(R2(n−1)).

Remark 9. The relation (178) implies that

π1
0(P21 π1

0 − π1
0) = 0.(179)

An analogous result, which we use in the sequel, holds for generalized conjugate
Szegő projectors.

With these preliminaries, we can now complete the proof of Theorem 1.
For clarity, we use eHσ(T eo

± )(±) to denote the model operators with the clas-
sical (conjugate) Szegő projection, and eHσ(T ′ eo

± )(±) with a generalized Szegő
projection (or generalized conjugate Szegő projection).

Proposition 13. If π′
0 (π̄′

0) is a generalized (conjugate) Szegő projection,
which is a deformation of π0, (π̄0), then eHσ(T eo

± )(±) are invertible elements
of the isotropic algebra. The inverses satisfy

[eHσ(T ′ eo
+ )(+)]−1 = [eHσ(T eo

+ )(+)]−1 +
(

c1 c2

c3 0

)
,(180)

if n is even. Thus,

[eHσ(T ′ eo
− )(−)]−1 = [eHσ(T eo

− )(−)]−1 +
(

0 c2

c3 c1

)
,(181)

and if n is odd, then

[eHσ(T ′ eo
− )(−)]−1 = [eHσ(T eo

− )(−)]−1 +
(

c1 c2

c3 0

)
.(182)

Here c1, c2, c3 are finite rank operators in the Hermite ideal.
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Proof. The arguments for the different cases are very similar. We give
the details for one + case and one − case and formulæ for the answers in
representative cases. In these formulæ we let z0 denote the unit vector spanning
the range of π0 and z′0, the unit vector spanning the range of π′

0.

Proposition 12 implies that eHσ(T ′ eo
± )(±) are Fredholm operators. Since

the differences
eHσ(T ′ eo

± )(±) − eHσ(T eo
± )(±)

are finite rank operators, it follows that eHσ(T ′ eo
± )(±) have index zero. It

therefore suffices to construct a left inverse.
We begin with the + even case by rewriting the equation

eHσ(T ′ e
+ )(+)

[
u

v

]
=

[
a

b

]
,(183)

as [
π′

0 0
0 0

]
[u + Do

+v] =
[
π′

0 0
0 0

]
a,[

1 − π′
0 0

0 Id

]
Do

+v = −
[
1 − π′

0 0
0 Id

]
a,

De
+u + (H − (n − 1))v = b.

(184)

We solve the middle equation in (184) first. Let

α1 = (
z′0 ⊗ zt

0

〈z′0, z0〉
− π0)Π0a,(185)

and note that π0α1 = 0. Corollary 2 shows that this model operator provides
a globally defined symbol. The section v is determined as the unique solution
to

Do
+v = −(

�
a − α1).(186)

By construction (1 − π′
0)(a0 + α1) = 0 and therefore the second equation is

solved. The section
�
u is now uniquely determined by the last equation in (184):

�
u = [De

+]−1(b + (H − (n − 1)))[Do
+]−1(

�
a − α1)).(187)

This leaves only the first equation, which we rewrite as[
π′

0 0
0 0

]
u0 =

[
π′

0 0
0 0

]
(a −Do

+v − �
u).(188)

It is immediate that

u0 =
z0 ⊗ z′t0
〈z0, z′0〉

Π0(a −Do
+v − �

u).(189)
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By comparing these equations to those in (162) we see that [eHσ(T ′ e
+ )(+)]−1

has the required form. The finite rank operators are finite sums of terms
involving π0, z0 ⊗ z′t0 and z′t0 ⊗ z0, and are therefore in the Hermite ideal.

The solution in the + odd case is given by

v = [Do
+]−1(

�
a − α1),

�
u = [De

+]−1[(H + (n − 1))v − b],

u0 =
z0 ⊗ z′t0
〈z0, z′0〉

Π0(a + Do
+v − �

u).

(190)

As before α1 is given by (185). Again the inverse of eHσ(T ′ o
+ )(+) has the

desired form.
In the − case, the computations are nearly identical for n odd. We leave

the details to the reader, and conclude by providing the solution for n even. We
let z̄0 and z̄′0 denote unit vectors spanning the ranges of π̄0 and π̄′

0 respectively.
We let

β1 = (
z̄′0 ⊗ z̄t

0

〈z̄′0, z̄0〉
− π̄0)Πn−1b.(191)

The solution to

[eHσ(T ′ e
− )(−)]−1

[
u

v

]
=

[
a

b

]
(192)

is given by

u = [De
−]−1(

�
b − β1),

�
v = [Do

−]−1((H − (n − 1))u − a),

v0 =
z̄0 ⊗ z̄′t0
〈z̄0, z̄′0〉

Πn−1(b −De
−u − �

v).

(193)

The result for T ′ o
− is

u = −[De
−]−1(

�
b − β1),

�
v = [Do

−]−1(a − (H − (n − 1))u),

v0 =
z̄0 ⊗ z̄′t0
〈z̄0, z̄′0〉

Πn−1(b + De
−u − �

v).

(194)

We leave the computations in the case of n odd to the reader. In all cases
we see that the parametrices have the desired grading and this completes the
proof of the proposition.

As noted above, the operators eHσ(T ′ eo
± )(±) are Fredholm operators of

index zero. Hence, solvability of the equations

eHσ(T ′ eo
± )(±)

[
u

v

]
=

[
a

b

]
,(195)
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for all [a, b] implies the uniqueness and therefore the invertibility of the model
operators. This completes the proof of Theorem 1. We now turn to applications
of these results.

8. The Fredholm property

Let D be a (pseudo)differential operator acting on smooth sections of
F → X, and B a (pseudodifferential) boundary operator acting on sections of
F �bX . The pair (D,B) is the densely defined operator, σ 
→ Dσ, acting on
sections of F, smooth on X, that satisfy

B[σ]bX = 0.(196)

The notation (D,B) is the closure of (D,B) in the graph norm

‖σ‖2
D = ‖Dσ‖2

L2 + ‖σ‖2
L2 .(197)

We let HD denote the domain of the closure, with norm defined by ‖ · ‖D. The
following general result about Dirac operators, proved in [3], is useful for our
analysis:

Proposition 14. Let X be a compact manifold with boundary and D an
operator of Dirac type acting on sections of F → X. The trace map from
smooth sections of F to sections of F �bX ,

σ 
→ σ �bX ,

extends to define a continuous map from HD to H− 1
2 (bX;F �bX).

The results of the previous sections show that the operators T ′ eo
± are

elliptic elements in the extended Heisenberg calculus. We now let U ′ eo
± denote

a left and right parametrix defined so that

U ′ eo
± T ′ eo

± = Id +K1

T ′ eo
± U ′ eo

± = Id +K2,
(198)

with K1, K2 finite rank smoothing operators. The principal symbol compu-
tations show that U ′ eo

± has classical order 0 and Heisenberg order at most 1.

Such an operator defines a bounded map from H
1
2 (bX) to L2(bX). This fol-

lows because such operators are contained in Ψ
1
2
,1,1

eH . If Δ is a positive (elliptic)
Laplace operator, then L = (Δ+1)

1
4 lifts to define an invertible elliptic element

of this operator class. An operator A ∈ Ψ
1
2
,1,1

eH can be expressed in the form

A = A′L where A′ ∈ Ψ0,0,0
eH .(199)

It is shown in [6], that operators in Ψ0,0,0
eH act boundedly on Hs, for all real s.

This proves the following result:
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Proposition 15.The operators U ′ eo
± define bounded maps from Hs(bX;F )

to Hs− 1
2 (bX;F ) for s ∈ R. Here F is an appropriate vector bundle over bX.

Remark 10. Various similar results appear in the literature, for example
in [7] and [2]. While the simple result in the proposition is adequate for our
purposes, much more precise, anisotropic estimates can also be deduced.

The mapping properties of the boundary parametrices allow us to show
that the graph closures of the operators (ðeo

± ,R′ eo
± ) are Fredholm. As usual

E → X is a compatible complex vector bundle. Except when needed for clarity,
the explicit dependence on E is suppressed.

Theorem 2. Let X be a strictly pseudoconvex (pseudoconcave) manifold.
The graph closures of (ðeo

E+,R′ eo
E+), ((ðeo

E−,R′ eo
E−)), respectively, are Fredholm

operators.

Proof. The argument is formally identical for all the different cases, so we
do just the case of (ðe

+,R′ e
+ ). As before Qe is a fundamental solution for ðe

+

and K is the Poisson kernel mapping the range of Pe
+ into the null space of ðe

+.

We need to show that the range of the closure is closed, of finite codimension,
and that the null space is finite dimensional.

Let f be an L2-section of Λo ⊗ E; with

u1 = Qef and u0 = −KU ′ e
+ R′ e

+ [u1]bX ,(200)

we let u = u0 + u1. Proposition 15 and standard estimates imply that, for
s ≥ 0, there are constants Cs1, Cs2, independent of f, so that

‖u1‖Hs+1 ≤ Cs1‖f‖Hs , ‖u0‖Hs+ 1
2
≤ Cs2‖f‖Hs .(201)

The crux of the matter is to show that R′ e
+ [u0 + u1]bX = 0. For data

satisfying finitely many linear conditions, this is a consequence of the following
lemma.

Lemma 12. If T ′ e
+ v ∈ ImR′ e

+ , then

T ′ e
+ Pe

+v = T ′ e
+ v.(202)

Proof. As (Id−R′ e
+ )T ′ e

+ = T ′ e
+ (Id−Pe

+) we see that the hypothesis of the
lemma implies that

T ′ e
+ (Id−Pe

+)v = (Id−R′ e
+ )T ′ e

+ v = 0.(203)

The conclusion follows from this relation.
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Since u0 ∈ ker ðe
+ it follows that (Id−Pe

+)[u0]bX = 0, and therefore the
definition of u0 implies that:

R′ e
+ [u0 + u1]bX = T ′ e

+ [u0]bX + R′ e
+ [u1]bX

= −T ′ e
+ Pe

+U ′ e
+ R′ e

+ [u1]bX + R′ e
+ [u1]bX .

(204)

If

K2R′ e
+ [u1]bX = K2R′ e

+ [Qef ]bX = 0,(205)

then

T ′ e
+ U ′ e

+ R′ e
+ [u1]bX = R′ e

+ [u1]bX ∈ ImR′ e
+ .(206)

Hence, applying Lemma 12, we see that

T ′ e
+ Pe

+U ′ e
+ R′ e

+ [u1]bX = T ′ e
+ U ′ e

+ R′ e
+ [u1]bX

= R′ e
+ [u1]bX .

(207)

Combining (204) and (207) gives the desired result:

R′ e
+ [u0 + u1]bX = 0.(208)

It is also clear that, if f ∈ Hs, then u ∈ Hs+ 1
2 . In particular, if f is smooth,

then so is u. Hence u belongs to the domain of (ðe
+,R′ e

+ ).
The operator K2 is a finite rank smoothing operator, and therefore the

composition

f 
→ K2R′ e
+ [Qef ]bX(209)

has a kernel of the form
M∑

j=1

uj(x)vj(y) for (x, y) ∈ bX × X,(210)

with
uj ∈ C∞(bX) and vj ∈ C∞(X).

Hence, an L2-section, f , satisfying (205) can be obtained as the limit of a
sequence of smooth sections < fn > that also satisfy this condition. Let
< un > be the smooth solutions to

ð
e
+un = fn, R′ e

+ [un]bX = 0,(211)

constructed above. The estimates in (201) show that < un > converges to a
limit u in H

1
2 . It is also clear that ðe

+un converges weakly to ðe
+u, and in L2

to f. Therefore < un > converges to u in the graph norm. This shows that u

is in the domain of the closure and satisfies ðe
+u = f. As the composition

f 
→ K2R′ e
+ [Qef ]bX ,
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is bounded, it follows that the range of (ðe
+,R′ e

+ ) contains a closed subspace of
finite codimension and is therefore also a closed subspace of finite codimension.

To complete the proof of the theorem we need to show that the null space is
finite dimensional. Suppose that u belongs to the null space of (ðe

+,R′ e
+ ). This

implies that there is a sequence of smooth sections < un > in the domain of the
operator, converging to u in the graph norm, such that ‖ðe

+un‖L2 converges
to zero. Hence ðe

+u = 0 in the weak sense. Proposition 14 shows that u has
boundary values in H− 1

2 (bX) and that, in the sense of distributions,

R′ e
+ [u]bX = lim

n→∞
R′ e

+ [un]bX = 0.

Since u is in the null space of ðe
+, it is also the case that Pe

+[u]bX = [u]bX . These
two facts imply that T ′ e

+ [u]bX = 0. Composing on the left with U ′ e
+ shows that

(Id +K1)[u]bX = 0.(212)

As K1 is a finite rank smoothing operator, we conclude that [u]bX and therefore
u are smooth. By the unique continuation property for Dirac operators, the
dimension of the null space of (ðe

+,R′ e
+ ) is bounded by the dimension of the

null space of (Id +K1). This completes the proof of the assertion that (ðe
+,R′ e

+ )
is a Fredholm operator. The proofs in the other cases, are up to minor changes
in notation, identical.

Remark 11. In the proof of the theorem we have constructed right para-
metrices Q′ eo

± for the boundary value problems (ðeo
± ,R′ eo

± ), which gain half of
a derivative.

We close this section with Sobolev space estimates for the operators
(ðeo

± ,R′ eo
± ).

Theorem 3. Let X be a strictly pseudoconvex (pseudoconcave) manifold,
and E → X a compatible complex vector bundle. For each s ≥ 0, there is a
positive constant Cs such that if u is an L2-solution to

ð
eo
E±u = f ∈ Hs(X) and R′ eo

E±[u]bX = 0

in the sense of distributions, then

‖u‖
Hs+ 1

2
≤ Cs[‖ð

eo
E±u‖Hs + ‖u‖L2 ].(213)

Proof. With u1 = Qeof, we see that u1 ∈ Hs+1(X) and

ð
eo
± (u − u1) = 0 with R′ eo

± [u − u1]bX = −R′ eo
± [u1]bX .

These relations imply that Peo
± [u − u1]bX = [u − u1]bX and therefore

−R′ eo
± [u1]bX = R′ eo

± [u − u1]bX = T ′ eo
± [u − u1]bX .(214)
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We apply U ′ eo
± to this equation to deduce that

(Id +K1)[u − u1]bX = −U ′ eo
± R′ eo

± [u1]bX .(215)

Because K1 is a smoothing operator, Proposition 15 implies that there is a
constant C ′

s. so that

‖[u − u1]bX‖Hs(bX) ≤ C ′
s[‖u1‖Hs+ 1

2 (bX)
+ ‖[u − u1]‖H− 1

2 (bX)
].(216)

As the Poisson kernel carries Hs(bX) to Hs+ 1
2 (X), boundedly, this estimate

shows that u = u − u1 + u1 belongs to Hs+ 1
2 (X) and that there is a constant

Cs so that

‖u‖
Hs+ 1

2
≤ Cs[‖f‖Hs + ‖u‖L2 ].(217)

This proves the theorem.

Remark 12. In the case s = 0, this proof gives a slightly better result:
the Poisson kernel actually maps L2(bX) into H(1,− 1

2
)(X) and therefore the

argument shows that there is a constant C0 such that if u ∈ L2, ðeo
± u ∈ L2 and

R′ eo
± [u]bX = 0, then

‖u‖(1,− 1
2
) ≤ C0[‖f‖L2 + ‖u‖L2 ].(218)

This is just the standard 1
2 -estimate for the operators (ðeo

± ,R′ eo
± ).

It is also possible to prove localized versions of these results. The higher
norm estimates have the same consequences as for the ∂̄-Neumann problem.
Indeed, under certain hypotheses these estimates imply higher norm estimates
for the second order operators considered in [5]. We prove these in the next
section after showing the the closures of the formal adjoints of (ðeo

± ,R′ eo
± ) are

the L2-adjoints of these operators.

9. Adjoints of the SpinC Dirac operators

In the previous section we proved that the operators (ðeo
± ,R′ eo

± ) are
Fredholm operators, as well as estimates that they satisfy. In this section
we show that the L2-adjoints of these operators are the closures of the formal
adjoints.

Theorem 4. If X is strictly pseudoconvex (pseudoconcave), E → X a
compatible complex vector bundle, then we have the following relations:

(ðeo
E±,R′ eo

E±)∗ = (ðoe
E±,R′ oe

E±).(219)

We take + if X is pseudoconvex and − if X is pseudoconcave.
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Proof. The argument follows a standard outline. It is clear that

(ðoe
± ,R′ oe

± ) ⊂ (ðeo
± ,R′ eo

± )∗.(220)

Suppose that the containment is proper. This would imply that, for any
nonzero, real μ there exists a nonzero section v ∈ DomL2((ðeo

± ,R′ eo
± )∗), such

that, for all w ∈ Dom((ðoe
± ,R′ oe

± )),

〈[ðeo
± ]∗v, ðoe

± w〉 + μ2〈v, w〉 = 0.(221)

Suppose that R′ eo
± ðoe

± w �bX= 0. Since v belongs to DomL2((ðeo
± ,R′ eo

± )∗)), we
can integrate by parts to obtain that

〈v, (ðeo
± ð

oe
± + μ2)w〉 = 0.(222)

This reduces the proof of the theorem to the following proposition.

Proposition 16. For any nonzero real number μ, and

f ∈ C∞(X;S/oe ⊗ E),

there is a section w ∈ C∞(X;S/oe ⊗ E), which satisfies

(ðeo
± ð

oe
± + μ2)w = f

R′ oe
± w �bX= 0 and R′ eo

± ð
oe
± w �bX= 0.

(223)

Before proving the proposition, we show how it implies the theorem. Let
w, f be as in (223). The boundary conditions satisfied by ðoe

± w and (222)
imply that we have

〈v, f〉 = 0.(224)

As f ∈ C∞(X;S/oe ⊗E) is arbitrary, this shows that v = 0 as well and thereby
completes the proof of the theorem.

The proposition is a consequence of Theorems 1 and 3.

Proof. [Proof of Proposition 16] The first step is to show that (223) has
a weak solution for any non-zero real number μ, after which, we use a small
extension of Theorem 3 to show that this solution is actually in C∞(X;S/oe⊗E).

Lemma 13. Let Q(w) = 〈ðoe
± w, ðoe

± w〉, denote the non-negative, symmet-
ric quadratic form with domain:

Dom(Q) = {w ∈ L2(X) : ð
oe
± w ∈ L2(X) and R′ oe

± w �bX= 0}.(225)

The form Q is closed and densely defined. Let L denote the self adjoint operator
defined by Q. If w ∈ Dom(L), then

ð
eo
± ð

oe
± w ∈ L2 and R′ eo

± ð
oe
± w �bX= 0.(226)
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Remark 13. That a densely defined, closed, symmetric, non-negative
quadratic form defines a self adjoint operator is the content of Theorem VI.2.6
in [9]. For the remainder of this section we let ρ denote a defining function for
bX, with dρ of unit length along the sets {ρ = ε}, for ε sufficiently small.

Proof of lemma. It is clear that Q is densely defined. That the form
is closed is an immediate consequence of Proposition 14. By definition, the
domain of L consists of sections w ∈ Dom(Q), such that there exists a g ∈ L2,

for which

Q(w, v) = 〈g, v〉(227)

for all v ∈ Dom(Q). Since all smooth sections with compact support lie in
Dom(Q), it follows from (227) that

ð
eo
± ð

oe
± w = g ∈ L2,(228)

where the operator, ðeo
± ðoe

± , is applied in the distributional sense. This in turn
implies that w ∈ H2

loc(X), and that ðoe
± w has restrictions to the sets {ρ = ε},

which depend continuously on ε in the H− 1
2 (bX)-topology.

Now let v be a section, smooth in the closure of X, though not necessarily
in Dom(Q). The regularity properties of w imply that

Q(w, v) = 〈ðeo
± ð

oe
± w, v〉 + 〈ðoe

± w, σ(ðoe
± ,−idρ)v〉bX .(229)

If v ∈ Dom(Q), then (228) shows that the boundary term in (229) must vanish.
If h is any smooth even (odd) section defined on bX, then by smoothly extend-
ing (Id−R′ oe

± )σ(ðeo
± , idρ)h to X we obtain a smooth section vh ∈ Dom(Q),

with

vh �bX= (Id−R′ oe
± )σ(ðeo

± , idρ)h.(230)

The identity

R′ eo
± = σ(ðoe

± ,−idρ)(Id−R′ oe
± )σ(ðeo

± , idρ)(231)

is easily established; it is equivalent to the symmetry of the non-chiral operator
(ð±,R′

±). Hence, if w ∈ Dom(L), then, for any smooth section h, we have

0 = 〈ðoe
± w, σ(ðoe

± ,−idρ)vh〉bX
= 〈ðoe

± w, σ(ðoe
± ,−idρ)(Id−R′ oe

± )σ(ðeo
± , idρ)h〉bX

= 〈R′ eo
± ð

oe
± w, h〉bX .

(232)

As h is an arbitrary smooth section, this verifies the final assertion of the
lemma.
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The operator L is non-negative and self adjoint. Hence for any real μ �= 0,

and f ∈ C∞(X;S/oe ⊗ E), there is a unique w ∈ Dom(L) satisfying (223) in
the sense of distributions. To complete the proof of the proposition we need
to show that this solution is smooth.

We rewrite this in terms of the system of first order equations:

Dμ
±

(
u

v

)
d=

(
ðoe
± −μ

μ ðeo
±

) (
u

v

)
=

(
a

b

)
,

R±

(
u

v

)
d=

(
R′ oe

± 0
0 R′ eo

±

) (
u

v

)
bX

= 0.

(233)

Clearly the solution constructed above satisfies

Dμ
±

(
w

1
μðoe

± w

)
=

(
0
f
μ

)
and R±

(
w

1
μðoe

± w

)
�bX= 0,(234)

in the sense of distributions. To complete the proof of the proposition it suffices
to establish a regularity result for (Dμ

±,R±) analogous to Theorem 3. Indeed
essentially the same argument applies to this case.

Let Pμ
± denote the Calderon projector for the operator Dμ

±, and set

T μ
± = R±Pμ

± + (Id−R±)(Id−Pμ
±).(235)

Theorem 1 implies that T 0
± is a graded elliptic element of the extended Heisen-

berg calculus. Let U0
± denote a parametrix for T 0

± . We now show that

T μ
± = T 0

± + OeH
−1,−2.(236)

Here OeH
−1,−2 is an extended Heisenberg operator, having Heisenberg order −2

on the appropriate parabolic face and classical order −1. As the extended
Heisenberg order of U0

± is (0, 1) we see that this operator is also a parametrix
for T μ

± . We now verify (236).
The operator Dμ

±[Dμ
±]∗ is given by

Dμ
±[Dμ

±]∗ =
(

ðoe
± ðeo

± + μ2 0
0 ðeo

± ðoe
± + μ2

)
.(237)

The fundamental solution Qμ(2)
± has the form

Qμ(2)
± =

(
Q

eo(2)μ
± 0
0 Q

oe(2)μ
±

)
,(238)

where Q
eo(2)μ
± = (ðoe

± ðeo
± + μ2)−1. A fundamental solution for Dμ

± is then given
by

Qμ
± = [Dμ

±]∗Qμ(2)
± =

(
ðeo
± Q

eo(2)μ
± μQ

oe(2)μ
±

−μQ
eo(2)μ
± ðoe

± Q
oe(2)μ
±

)
.(239)
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The claim in (236) follows from the observation that

Q
eo(2)μ
± − Q

eo(2)0
± ∈ O−4,(240)

which is a consequence of the resolvent identity

(ðoe
± ð

eo
± + μ2)−1 − (ðoe

± ð
eo)−1 = −μ2(ðoe

± ð
eo
± + μ2)−1(ðoe

± ð
eo
± )−1,(241)

and the fact that ðoe
± ðeo

± is elliptic of order 2. Using (240) in (239) shows that

Qμ
± = Q0

± +
(

O−3 O−2

O−2 O−3

)
.(242)

We can now apply Proposition 6 to conclude that the O−3 terms along the
diagonal in Qμ

± can only change the symbol of P0
± by terms with Heisenberg

order −4. The residue computations in Section 3 show that the O−2 off diagonal
terms can only contribute terms to Pμ

± at Heisenberg order −2; hence

Pμ
± = P0

± +
(

OeH
−2,−4 OeH

−1,−2

OeH
−1,−2 OeH

−2,−4

)
.(243)

The truth of (236) is an immediate consequence of (243) and the fact that U0
±

has extended Heisenberg orders (0, 1).
As noted above, this shows that the leading order part of the parametrix

for T μ
± has the form (

Uoe
± 0
0 Ueo

±

)
.(244)

We let Uμ
± denote a parametrix chosen so that

Uμ
±T μ

± = Id +Kμ
1 T μ

±Uμ
± = Id +Kμ

2(245)

with Kμ
1 , Kμ

2 smoothing operators of finite rank. Arguing as in Theorem 3,
one easily proves the desired regularity:

Lemma 14. Let μ ∈ C and s ≥ 0, if (f, g) belongs to L2, and satisfies

Dμ
±

(
f

g

)
=

(
a

b

)
∈ Hs and R±

(
f

g

)
�bX= 0,(246)

in the sense of distributions, then f, g ∈ Hs+ 1
2 . There is a constant Cs,μ, inde-

pendent of (f, g) so that

‖(f, g)‖
Hs+ 1

2
≤ Cs,μ

[
‖Dμ

±

(
f

g

)
‖Hs + ‖

(
f

g

)
‖L2

]
.(247)

Proof. Let U1 = Qμ
±(a, b), so that U1 ∈ Hs+1, and

Dμ
±(U − U1) = 0.(248)
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On the one hand R±([U − U1]bX) = −R±([U1]bX) ∈ Hs+ 1
2 (bX). On the other

hand [U − U1]bX ∈ ImPμ
± and therefore

−R±([U1]bX) = R±([U − U1]bX) = T μ
± ([U − U1]bX).

We apply Uμ
± to this relation to obtain

−Uμ
±R±([U1]bX) = (Id +Kμ

1 )([U − U1]bX)(249)

Rewriting this result gives

[U ]bX = −Uμ
±R±([U1]bX) + (Id +Kμ

1 )([U1]bX) − Kμ
1 [U ]bX .(250)

All terms on the right-hand side of (250), but the last are, by construction,
in Hs(bX). Proposition 14 implies that [U ]bX ∈ H− 1

2 , as Kμ
1 is a smoothing

operator, the last term, Kμ
1 [U ]bX , is smooth. Thus [U − U1]bX is in Hs(bX),

and U − U1 therefore belongs to Hs+ 1
2 (X); hence U = U1 + U − U1 does as

well. The estimate (247) follows easily from the definition of U1 and (250).

Thus the solution w constructed above is smooth on X; this completes
the proofs of the proposition and Theorem 4.

Using Theorem 4 we can describe the domains of (ðeo
± ,R′ eo

± ).

Corollary 3. The domains of the closures, (ðeo
± ,R′ eo

± ), are given by

Dom(ðeo
± ,R′ eo

± ) = {u ∈ L2(X;F ) : ð
eo
± u ∈ L2(X;F ′),R′ eo

± u �bX= 0}.(251)

Remark 14. Note that Proposition 14 implies that u �bX∈ H− 1
2 (bX). It

is in this sense that the boundary condition in (251) should be understood.

Proof. By Theorem 4, we need only show that u satisfying the conditions
in (251) belong to Dom((ðoe

± ,R′ oe
± )∗). To show this we need only show that for

smooth sections, v, with Roe
± v �bX= 0, we have

〈ðoe
± v, u〉 = 〈v, ðeo

± u〉.(252)

This follows by a simple limiting argument, because the map ε 
→ u �ρ=ε is
continuous in the H− 1

2 -topology and v is smooth.

As a corollary of Lemma 14 we get estimates for the second order operators
ðoe
± ðeo

± , with subelliptic boundary conditions.

Corollary 4. Let X be a strictly pseudoconvex (pseudoconcave) mani-
fold, E → X a compatible complex vector bundle. For s ≥ 0 there exist con-
stants Cs such that if u ∈ L2, ðeo

E±u ∈ L2, ðoe
E±ðeo

E±u ∈ Hs and R′ eo
E±[u]bX = 0,

R′ oe
E±[ðeo

E±u] = 0 in the sense of distributions, then

‖u‖Hs+1 ≤ Cs[‖ð
oe
E±ð

eo
E±u‖Hs + ‖u‖L2 ].(253)
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Proof. We apply Lemma 14 to U = (u, ðeo
± u). Initially we see that

D0
±U ∈ L2. The lemma shows that ðeo

± u ∈ H
1
2 , and therefore D0

±U ∈ H
1
2 .

Applying the lemma recursively, we eventually deduce that D0
±U ∈ Hs and

that there is constant C ′
s so that

‖u‖
Hs+ 1

2
+ ‖ðeo

± u‖
Hs+ 1

2
≤ C ′

s[‖ð
oe
± ð

eo
± u‖Hs + ‖u‖L2 ].(254)

It follows from Theorem 3 that, for a constant C ′′
s , we have

‖u‖Hs+1 ≤ C ′′
s [‖u‖

Hs+ 1
2

+ ‖ð
eo
± u‖

Hs+ 1
2
].(255)

Combining the two estimates gives (253).

In the case that X is a complex manifold with boundary, these estimates
imply analogous results for the modified ∂̄-Neumann problem acting on indi-
vidual form degrees. These results are stated and deduced from Corollary 4
in [5].
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