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Lagrangian intersections
and the Serre spectral sequence

By Jean-François Barraud and Octav Cornea*

Abstract

For a transversal pair of closed Lagrangian submanifolds L, L′ of a sym-
plectic manifold M such that π1(L) = π1(L′) = 0 = c1|π2(M) = ω|π2(M) and
for a generic almost complex structure J , we construct an invariant with a
high homotopical content which consists in the pages of order ≥ 2 of a spec-
tral sequence whose differentials provide an algebraic measure of the high-
dimensional moduli spaces of pseudo-holomorpic strips of finite energy that
join L and L′. When L and L′ are Hamiltonian isotopic, we show that the
pages of the spectral sequence coincide (up to a horizontal translation) with the
terms of the Serre spectral sequence of the path-loop fibration ΩL → PL → L

and we deduce some applications.
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1. Introduction

Consider a symplectic manifold (M, ω) which is convex at infinity together
with two closed (compact, connected, without boundary) Lagrangian subman-
ifolds L, L′ in general position. We fix from now on the dimension of M to be
2n. Unless otherwise stated we assume in this introduction that

π1(L) = π1(L′) = 0 = c1|π2(M) = ω|π2(M)(1)

and we shall keep this assumption in most of the paper.
One of the main tools in symplectic topology is Floer’s machinery (see

[29] for a recent exposition) which, once a generic almost complex structure
compatible with ω is fixed on M , gives rise to a Morse-type chain complex
(CF∗(L, L′), dF ) such that CF∗(L, L′) is the free Z/2-vector space generated
by (certain) intersection points in L ∩ L′ and dF counts the number of con-
necting orbits (also called “Floer trajectories” - in this case they are pseudo-
holomorphic strips) joining intersection points of relative (Maslov) index equal
to 1 (elements of Floer’s construction are recalled in §2). In this construction
are only involved 1 and 2-dimensional moduli spaces of connecting trajectories,

The present paper is motivated by the following problem: extract out of
the structure of higher dimensional moduli spaces of Floer trajectories useful
homotopical-type data which are not limited to Floer homology (or cohomology).

This question is natural because the properties of Floer trajectories par-
allel those of negative gradient flow lines of a Morse function (defined with
respect to a generic riemannian metric) and the information encoded in the
Morse-Smale negative-gradient flow of such a function is much richer than only
the homology of the ambient manifold. Indeed, in a series of papers on “Ho-
motopical Dynamics” [2], [3], [4], [5] the second author has described a number
of techniques which provide ways to “quantify” algebraically the homotopical
information carried by a flow. In particular, in [3] and [5] it is shown how
to estimate the moduli spaces arising in the Morse-Smale context when the
critical points involved are consecutive in the sense that they are not joined by
any “broken” flow line. However, the natural problem of finding a computable
algebraic method to “measure” general, high dimensional moduli spaces of con-
necting orbits has remained open till now even in this simplest Morse-Smale
case. Of course, in the Floer case, a significant additional difficulty is that
there is no “ambient” space with a meaningful topology.
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We provide a solution to this problem in the present paper. The key new
idea can be summarized as follows:

In ideal conditions, the ring of coefficients used to define a Morse
type complex can be enriched so that the resulting chain complex
contains information about high dimensional moduli spaces of con-
necting orbits.

Roughly, this “enrichment” of the coefficients is achieved by viewing the
relevant connecting orbits as loops in an appropriate space L̃ in which the
finite number of possible ends of the orbits are naturally identified to a single
point. The “enriched” ring is then provided by the (cubical) chains of the
pointed (Moore) loop space of L̃. This ring turns out to be sufficiently rich
algebraically such as to encode reasonably well the geometrical complexity of
the combinatorics of the higher dimensional moduli spaces. Operating with the
new chain complex is no more difficult than using the usual Morse complex. In
particular, there is a natural filtration of this complex and the pages of order
higher than 2 of the associated spectral sequence (together with the respective
differentials) provide our invariant. Moreover, these pages are computable
purely algebraically in certain important cases.

This technique is quite powerful and is general enough so that each mani-
festation of a Morse type complex in the literature offers a potential application.
From this point of view, our construction is certainly just a first — and, we
hope, convincing — step.

1.1. The main result. Fix a path-connected component Pη(L, L′) of the
space P(L, L′) = {γ ∈ C∞([0, 1], M) : γ(0) ∈ L, γ(1) ∈ L′}. The construction
of Floer homology depends on the choice of such a component. We denote the
corresponding Floer complex by CF∗(L, L′; η) and the resulting homology by
HF∗(L, L′; η). In case L′ = φ1(L) with φ1 the time 1-map of a Hamiltonian
isotopy φ : M × [0, 1] → M (such a φ1 is called a Hamiltonian diffeomor-
phism) we denote by P(L, L′; η0) the path-component of P(L, L′) such that
[φ−1

t (γ(t)] = 0 ∈ π1(M, L) for some (and thus all) γ ∈ η0. We omit η0 in the
notation for the Floer complex and Floer homology in this case. Given two
spectral sequences (Er

p,q, d
r) and (Gr

p,q, d
r) we say that they are isomorphic up

to translation if there exist an integer k and an isomorphism of chain com-
plexes (Er

∗+k,�, d
r) ≈ (Gr

∗,�, d
r) for all r. Recall that the path-loop fibration

ΩL → PL → L of base L has as total space the space of based paths in L and
as fibre the space of based loops. Given two points x, y ∈ L ∩ L′ we denote
by μ(x, y) their relative Maslov index and by M(x, y) the nonparametrized
moduli space of Floer trajectories connecting x to y (see §2 for the relevant
definitions). We denote by M the disjoint union of all the M(x, y)’s. We
denote by M′ the space of all parametrized pseudo-holomorphic strips. All
homology groups below have Z/2-coefficients.
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Theorem 1.1. Under the assumptions above there exists a spectral se-
quence

EF (L, L′; η) = (EF r
p,q(L, L′; η), dr

F ) , r ≥ 1

with the following properties:

a. If φ : M × [0, 1] → M is a Hamiltonian isotopy, then (EF r
p,q(L, L′; η), dr)

and (EF r
p,q(L, φ1L

′;φ1η), dr) are isomorphic up to translation for r ≥ 2
(here φ1η is the component represented by φt(γ(t)) for γ ∈ η).

b. EF 1
p,q(L, L′; η) ≈ CFp(L, L′; η)⊗Hq(ΩL), EF 2

p,q(L, L′; η) ≈ HFp(L, L′; η)
⊗ Hq(ΩL).

c. If dr
F �= 0, then there exist points x, y ∈ L ∩ L′ such that μ(x, y) ≤ r and

M(x, y) �= ∅.

d. If L′ = φ′L with φ′ a Hamiltonian diffeomorphism, then for r ≥ 2 the
spectral sequence (EF r(L, L′), dr

F ) is isomorphic up to translation to the
Z/2-Serre spectral sequence of the path loop fibration ΩL → PL → L.

1.2. Comments on the main result. We survey here the main features of
the theorem.

1.2.1. Geometric interpretation of the spectral sequence. The differentials
appearing in the spectral sequence EF (L, L′; η) provide an algebraic measure
of the Gromov compactifications M(x, y) of the moduli spaces M(x, y) in —
roughly — the following sense. Let L̃ be the quotient topological space ob-
tained by contracting to a point a path in L which passes through each point
in L∩L′ and is homeomorphic to [0, 1]. Let M̃ be the space obtained from M

by contracting to a point the same path. Clearly, L and L̃ (as well as M and
M̃) have the same homotopy type. Each point u ∈ M(x, y) is represented by
a pseudo-holomorphic strip u : R × [0, 1] → M with u(R, 0) ⊂ L, u(R, 1) ⊂ L′

and such that lims→−∞ u(s, t) = x, lims→+∞ u(s, t) = y, ∀t ∈ [0, 1]. Clearly,
to such a u we may associate the path in L given by s → u(s, 0) which joins
x to y. Geometrically, by projecting onto L̃, this associates to u an element
of ΩL̃ 
 ΩL. The action functional can be used to reparametrize uniformly
the loops obtained in this way so that the resulting application extends in a
continuous manner to the whole of M(x, y) thus producing a continuous map
Φx,y : M(x, y) → ΩL. The space M(x, y) has the structure of a manifold with
boundary with corners (see §2 and §3.4.6) which is compatible with the maps
Φx,y. If it happened that ∂M(x, y) = ∅ one could measure M(x, y) by the
image in H∗(ΩL) of its fundamental class via the map Φx,y. This boundary is
almost never empty so this elementary idea fails. However, somewhat miracu-
lously, the differential d

μ(x,y)
F of EF (L, L′; η) reflects homologically what is left

of Φx,y((M(x, y)) after “killing” the boundary ∂M(x, y).
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From this perspective, it is clear that it is not so important where the
spectral sequence EF (L, L′; η) converges but rather whether it contains many
nontrivial differentials.

1.2.2. Role of the Serre spectral sequence. Clearly, point a. of the theorem
shows that the pages of order higher than 1 of the spectral sequence together
with all their differentials are invariant (up to translation) with respect to
Hamiltonian isotopy. Moreover, b. implies that Floer homology is isomorphic
to EF 2

∗,0(L, L′; η) and so our invariant extends Floer homology. It is therefore
natural to expect to be able to estimate the invariant EF (L, L′; η) when L′ is
Hamiltonian-isotopic to L (and η = η0) in terms of some algebraic-topological
invariant of L. The fact that this invariant is precisely the Serre spectral se-
quence of ΩL → PL → L is remarkable because, due to the fact that PL

is contractible, this last spectral sequence always contains nontrivial differen-
tials. As we shall see this trivial algebraic-topological observation together
with the geometric interpretation of the differentials discussed in §1.2.1 leads
to interesting applications.

1.3. Some applications. Here is an overview of some of the consequences
discussed in the paper. It should be pointed out that we focus in this paper
only on the applications which follow rather rapidly from the main result. We
intend to discuss others that are less immediate in later papers.

We shall only mention in this subsection applications that take place in
the case when L and L′ are Hamiltonian isotopic and so we make here this
assumption.

1.3.1. Algebraic consequences. Under the assumption at (1), a first conse-
quence of the theorem is that, if K =

⋃
x,y{Φx,y(M(x, y))} ⊂ ΩL and K̂ is the

closure of K with respect to concatenation of loops, then the inclusion K̂ k
↪→ ΩL

is surjective in homology. An immediate consequence of this is as follows. No-
tice first that the space M′ maps injectively onto a subspace M̃ of P(L, L′) via
the map that associates to each pseudo-holomorphic strip u : R × [0, 1] → M

the path u(0,−). Let e : M̃ → L be defined by e(u) = u(0, 0). We show that

H∗(Ωe) : H∗(ΩM̃; Z/2) → H∗(ΩL; Z/2) is surjective .(2)

This complements a result obtained by Hofer [13] and independently by Floer
[7] which claims that H∗(e) is also surjective.

Another easy consequence is that for a generic class of choices of L′, the
image of the group homomorphism Π = ω| : π2(M, L ∪ L′) → R verifies

rk(Im(Π)) ≥
∑

i

dimZ/2Hi(L; Z/2) − 1 .(3)
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1.3.2. Existence of pseudo-holomorphic “strips”. A rather immediate
consequence of the construction of EF (L, L′) is that through each point in L\L′

passes at least one strip u ∈ M′ of Maslov index at most n. By appropriately
refining this argument we shall see that we may even bound the energy of
these strips which “fill” L by the energy of a Hamiltonian diffeomorphism that
carries L to L′. More precisely, denote by ||φ||H the Hofer norm (or energy;
see [14] and equation (29)) of a Hamiltonian diffeomorphism φ. We put (as in
[1] and [25]):

∇(L, L′) = inf
ψ∈H,ψ(L)=L′

||ψ||H

where H is the group of compactly supported Hamiltonian diffeomorphisms.
We prove that through each point of L\L′ passes a pseudo-holomorphic strip
which is of Maslov index at most n and whose symplectic area is at most
∇(L, L′). This fact has many interesting geometric consequences. We describe
a few in the next paragraph.

1.3.3. Nonsqueezing and Hofer ’s energy. Consider on M the riemannian
metric induced by some fixed generic almost complex structure which tames ω.
The areas below are defined with respect to this metric. For two points x, y ∈
L ∩ L′ let

S(x, y) = {u ∈ C∞([0, 1] × [0, 1], M) : u([0, 1], 0) ⊂ L, u([0, 1], 1) ⊂ L′,(4)

u(0, [0, 1]) = x, u(1, [0, 1]) = y} .

Fix the notation:

aL,L′(x, y) = inf{area(u) : u ∈ S(x, y)} .

Let ak(L, L′) = min{aL,L′(x, y) : x, y ∈ L ∩ L′ , μ(x, y) = k} and, similarly,
let Ak(L, L′) be the maximum of all aL,L′(x, y) where x, y ∈ L ∩ L′ verify
μ(x, y) = k.

We prove that:
an(L, L′) ≤ ∇(L, L′) .

For x ∈ L\L′ let δ(x) ∈ [0,∞) be the maximal radius r of a standard
symplectic ball B(r) such that there is a symplectic embedding ex,r : B(r) →
M with ex,r(0) = x, e−1

x,r(L) = B(r) ∩ R
n and ex,r(B(r)) ∩ L′ = ∅. We thank

François Lalonde who noticed that, as we shall see, δx does not depend on x.
Therefore, we introduce the ball separation energy between L and L′ by

δ(L, L′) = δx .

We show a second inequality

π

2
δ(L, L′)2 ≤ An(L, L′)(5)
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and also:

π

2
δ(L, L′)2 ≤ ∇(L, L′) .(6)

The results summarized in §1.3.2 as well as the inequalitities (5) and (6)
are first proved under the assumption at (1). However, we then show that our
spectral sequence may also be constructed (with minor modifications) when
L and L′ are Hamiltonian isotopic under the single additional assumption
ω|π2(M,L) = 0 and as a consequence these three results also remain true in this
setting.

The inequality (6) is quite powerful: it implies that ∇(−,−) (which is
easily seen to be symmetric and to satisfy the triangle inequality) is also non-
degenerate thus reproving - when ω|π2(M,L) = 0 - a result of Chekanov [1]. The
same inequality is of course reminiscent the known displacement-energy esti-
mate in [18] and, indeed, this estimate easily follows from (6) (of course, under
the assumption ω|π2(M) = 0) by application of this inequality to the diagonal
embedding M → M × M .

1.4. The structure of the paper. In Section 2 we start by recalling the
basic notation and conventions used in the paper as well as the elements from
Floer’s theory that we shall need. We then pass to the main task of the
section which is to present the construction of EF (L, L′; η). A key technical
ingredient in this construction is the fact that the compactifications of the
moduli spaces of Floer trajectories, M(x, y), have a structure of manifolds
with corners. This property is closely related to the gluing properties proven by
Floer in his classical paper [8] and is quite similar to more recent results proven
by Sikorav in [34]. In fact, this same property also appears to be a feature of
the Kuranishi structures used by Fukaya and Ono in [12]. For the sake of
completeness we include a complete proof of the existence of the manifold-
with-corners structure in the appendix. We then verify the points a., b., c. of
Theorem 1.1. In Section 2.4 we prove point d. of Theorem 1.1. This proof is
based on one hand on the classical method of comparing the Floer complex to
a Morse complex of a Morse function on L and, on the other hand, on a new
Morse theoretic result which shows that if in the construction of EF (L, L′) the
moduli spaces of pseudo-holomorphic curves are replaced with moduli spaces
of negative gradient flow lines, then the resulting spectral sequence is the Serre
spectral sequence of the statement. The whole construction of EF (L, L′) has
been inspired by precisely this Morse theoretic result which, in its turn, is a
natural but nontrivial extension of some ideas described in [3] and [5].

Finally, Section 3 contains the applications mentioned above as well as
various other comments.
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2. The spectral sequence

It turns out that it is more natural to construct a richer invariant than
the one appearing in Theorem 1.1. The spectral sequence of the theorem will
be deduced as a particular case of this construction.

As before let L, L′ be closed lagrangian submanifolds of the fixed sym-
plectic manifold (M, ω). In this section we assume that their intersection
is transversal and that ω|π2(M) = c1|π2(M) = 0 = π1(L) = π1(L′). As
π2(M) → π2(M, L) is surjective (and similarly for L′) we deduce ω|π2(M,L) =
ω|π2(M,L′) = 0.

2.1. Recalls and notation. We start by recalling some elements from
Floer’s construction. This machinery has now been described in detail in
various sources (for example, [8], [26]) so that we shall only give here a very
brief presentation.

We fix a path η ∈ P(L, L′) = {γ ∈ C∞([0, 1], M) : γ(0) ∈ L, γ(1) ∈ L′}
and let Pη(L, L′) be the path-component of P(L, L′) containing η. We also
fix an almost complex structure J on M that tames ω in the sense that the
bilinear form X, Y → ω(X, JY ) = α(X, Y ) is a Riemannian metric. The set
of all the almost complex structures on M that tame ω will be denoted by Jω.
Moreover, we also consider a smooth Hamiltonian H : [0, 1] × M → R and its
associated family of Hamiltonian vector fields XH determined by the equation

ω(Xt
H , Y ) = −dHt(Y ) , ∀Y

as well as the Hamiltonian isotopy φH
t given by

d

dt
φH

t = Xt
H ◦ φH

t , φH
0 = id .(7)

The gradient of H, ∇H, is computed with respect to α and it verifies J∇H =
XH .

We shall also assume that φH
1 (L) intersects L′ transversely. Moreover, H

and all the Hamiltonians considered in this paper are assumed to be constant
outside of a compact set.
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2.1.1. The action functional and pseudo-holomorphic strips. The idea
behind the whole construction is to consider the action functional

AL,L′,H : Pη(L, L′) → R , x → −
∫

x∗ω +
∫ 1

0
H(t, x(t))dt(8)

where x(s, t) : [0, 1] × [0, 1] → M is such that x(0, t) = η(t), x(1, t) = x(t),
∀t ∈ [0, 1], x([0, 1], 0) ⊂ L, x([0, 1], 1) ⊂ L′. The fact that L and L′ are simply
connected Lagrangians and ω vanishes on π2(M) implies that AL,L′,H is well-
defined. To shorten notation we neglect the subscripts L, L′, H in case no
confusion is possible. We shall also assume A(η) = 0 (this is of course not
restrictive).

Given a vector field ξ tangent to TM along x ∈ P(L, L′) we derive A
along ξ thus getting

dA(ξ) =−
∫ 1

0
ω(ξ,

dx

dt
)dt +

∫ 1

0
dHt(ξ)(x(t))dt(9)

=
∫ 1

0
α(ξ, J

dx

dt
+ ∇H(t, x))dt .

This means that the critical points of AL,L′ are precisely the orbits of XH

which start on L, end on L′ and which belong to Pη(L, L′). Obviously, these
orbits are in bijection with a subset of φH

1 (L) ∩ L′ so that they are finite in
number. A particular important case is when H is constant. Then these orbits
coincide with the intersection points of L and L′ which are in the class of η.
We denote the set of these orbits by I(L, L′; η, H). In case H is constant we
shall also use the more intuitive notation L ∩η L′.

The putative associated equation for the negative L2-gradient flow lines
of A has been at the center of Floer’s work and is:

∂u

∂s
+ J(u)

∂u

∂t
+ ∇H(t, u) = 0(10)

with
u(s, t) : R × [0, 1] → M , u(R, 0) ⊂ L , u(R, 1) ⊂ L′ .

When H is constant, the solutions of (10) are called pseudo-holomorphic strips.
They coincide with the zeros of the operator ∂J = 1

2(d + J ◦ d ◦ i). It is well
known that (10) does not define a flow in any convenient sense.

Let S(L, L′) = {u ∈ C∞(R × [0, 1], M) : u(R, 0) ⊂ L , u(R, 1) ⊂ L′} and
for u ∈ S(L, L′) consider the energy

EL,L′,H(u) =
1
2

∫
R×[0,1]

||∂u

∂s
||2 + ||∂u

∂t
− Xt

H(u)||2 ds dt .(11)

The key point of the whole theory is that, for a generic choice of J , the solutions
u of (10) which are of finite energy, EL,L′,H(u) < ∞, do behave very much like
(negative) flow lines of a Morse-Smale function when viewed as elements in
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C∞(R,Pη(L, L′)) (in particular, A is decreasing along such solutions) . The
type of genericity needed here sometimes requires that J be time-dependent.
In other words J = Jt, t ∈ [0, 1] is a one-parameter family of almost complex
structures each taming ω. In this case the equation (10) is understood as
∂u/∂s + Jt(u)∂u/∂t + ∇H(t, u) = 0. We now put

M′ = {u ∈ S(L, L′) : u verifies(10) , EL,L′,H(u) < ∞} .(12)

The translation u(s, t) → u(s + k, t) obviously induces an R action on M′ and
we let M be the quotient space. An important feature of M′ is that for each
u ∈ M′ there exist x, y ∈ I(L, L′; η, H) such that the (uniform) limits verify

lim
s→−∞

u(s, t) = x(t) , lim
s→+∞

u(s, t) = y(t) .(13)

We let M′(x, y) = {u ∈ M′ : u verifies (13)} and M(x, y) = M′(x, y)/R.
Therefore, M =

⋃
x,y M(x, y). In case we need to indicate explicitly to which

pair of Lagrangians, to what Hamiltonian and to what almost complex struc-
ture are associated these moduli spaces we shall add L and L′, H, J as sub-
scripts (for example, we may write ML,L′,H,J(x, y)).

2.1.2. Dimension of M(x, y) and the Maslov index. Let L(n) be the set
of Lagrangian subspaces in (R2n, ω0). It is well-known that H1(L(n); Z) ≈ Z

has a generator given by a morphism called the Maslov index μ : L(n) → S1

(geometrically it is given as the class dual to the Maslov cycle constituted
by the Lagrangian subspaces nontransversal to the vertical Lagrangian). For
x, y ∈ I(L, L′; η, H) we let (as in (4))

S(x, y) = {u ∈ C∞([0, 1] × [0, 1], M) : u([0, 1], 0) ⊂ L, u([0, 1], 1) ⊂ L′,

u(0, t) = x(t), u(1, t) = y(t)} .

and suppose that u ∈ S(x, y). Following the work of Viterbo [36], the Maslov
index of u, μ(u), is given as the degree of the map S1 = ∂([0, 1] × [0, 1])

γ−→
L(n)

μ−→ S1 with the loop γ defined as follows. First notice that u∗TM is a
trivial symplectic bundle (and all trivializations are homotopic). We fix such
a trivialization. This allows the identification of each space TxL ⊂ TxM to an
element of L(n) (and similarly for TxL′). We then define the loop γ : S1 →
L(n) as follows. We let γ0 be the path of Lagrangians (φH

t )−1
∗ Tx(1)L

′ and we let
γ1 be the path (φH

t )−1
∗ Ty(1)L

′. We then join (φH
1 )−1

∗ Tx(1)L
′ to (φH

1 )−1
∗ Ty(1)L

′

by a path of Lagrangian subspaces γ′(t) ⊂ Tu(t,0)M such that for each t, γ′(t)
is transversal to Tu(t,0)L and let γ = γ0 ∗ γ′ ∗ γ−1

1 ∗ γ′′ where γ′′(t) is the path
t → Tu(1−t,1)L

′. It is easy to see that such a path γ′ does exist and that the
degree of the composition μ ◦ γ is independent of the choice of γ′ as well as
of that of the trivialization. Given that L and L′ are simply connected and
c1|π2(M) = 0 we see that for any u, v ∈ S(x, y) we have μ(u) = μ(v). Therefore,
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for any x, y ∈ I(L, L′; η, H) we may define

μ(x, y) = μ(u) , u ∈ S(x, y) .

This implies that, in this case, for any three points x, y, z ∈ I(L, L′; η, H) we
have

μ(x, z) = μ(x, y) + μ(y, z) .(14)

The fundamental role of the Maslov index in relation to the properties of
the action functional is provided by the fact that the linearized operator DH,J

u

associated to the operator ∂J+(1/2)∇H at u is Fredholm of index μ(u). In case
J is such that DH,J

u is surjective for all u ∈ M′(x, y) and all x, y ∈ I(L, L′; η, H)
(see 3.4.6), it follows that the spaces M′(x, y) are smooth manifolds (generally
noncompact) of dimension μ(x, y). Under certain circumstances the theory
works in the same way even if L and L′ are nontransversal (for example if
L = L′) but in that case the choice of H needs to be generic. In all cases, we
shall call a pair (H, J) regular if the surjectivity condition mentioned above is
satisfied. In our setting it is easy to see that for any x ∈ I(L, L′; η, H), the
space M′(x, x) is reduced to the constant solution equal to x. Because of that
we will always assume here that in writing M(x, y) we have x �= y. Thus,
M(x, y) is also a smooth manifold whose dimension is μ(x, y) − 1. The set of
regular (H, J)’s is generic and we assume below that we are using such a pair.

2.1.3. Naturality of Floer ’s equation. Let L′′ = (φH
1 )−1(L′). Consider

the map bH : P(L, L′′) → P(L, L′) defined by (bH(x))(t) = φH
t (x(t)). Let

η′ ∈ P(L, L′′) be such that η = bH(η′). Clearly, bH restricts to a map between
Pη′(L, L′′) and Pη(L, L′) and, moreover, by our assumption on φ, the inter-
section of L and L′′ is transverse and the same map restricts to a bijection
L ∩η′ L′′ = I(L, L′′; η′, 0) → I(L, L′; η, H).

We also have
AL,L′,H(bH(x)) = AL,L′′,0(x) .

Indeed, let x(s, t) : [0, 1]×[0, 1] → M be such that x(0, t) = η′(t), x(1, t) = x(t),
∀t ∈ [0, 1], x([0, 1], 0) ⊂ L, x([0, 1], 1) ⊂ L′′ and let x̃(s, t) = φH

t (x(s, t)). We
then have (by using (7) and letting φ = φH):∫

[0,1]×[0,1]
x̃∗ω =

∫
[0,1]×[0,1]

x∗(φ∗ω) +
∫ 1

0

∫ 1

0
ω(

∂x̃

∂s
,
∂φ

∂t
)dsdt

=
∫

[0,1]×[0,1]
x∗ω +

∫ 1

0
(
∫ 1

0
dH(

∂x̃

∂s
)ds)dt = −AL,L′′,0(x) +

∫ 1

0
H(bH(x)(t))dt .

Moreover, the map bH does identify the geometry of the two action func-
tionals. This is due to the fact that for u : R × [0, 1] → M with u(R, 0) ⊂ L,
u(R, 1) ⊂ L′′, ũ(s, t) = φt(u(s, t)), J̃ = φ∗J we have

φ∗(
∂u

∂s
+ J̃

∂u

∂t
) =

∂ũ

∂s
+ J(

∂ũ

∂t
− XH) .
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Therefore, the map bH induces diffeomorphisms (that we shall denote by the
same symbol):

bH : ML,L′′,J̃ ,0(x, y) → ML,L′,J,H(x, y)

where we have identified x, y ∈ L ∩η′ L′′ with their orbits φH
t (x) and φH

t (y).

2.1.4. Gromov compactification of M(x, y). The noncompactness of
M(x, y) for x, y ∈ I(L, L′; η, H) is only due to the fact that, as in the Morse-
Smale case, a sequence of strips un ∈ M(x, y) might “converge” to a broken
strip. For example, it might converge to an element of M(x, z) ×M(z, y) for
some other z ∈ I(L, L′; η, H). The type of convergence used here has been
studied extensively and it is called Gromov convergence. Moreover, there are
natural compactifications of the moduli spaces M(x, y) called Gromov com-
pactifications and denoted by M(x, y) so that each of the spaces M(x, y) is a
manifold with boundary and there is a homeomorphism:

∂M(x, y) =
⋃

z∈I(L,L′;η,H)

M(x, z) ×M(z, y) .(15)

It is shown in the Appendix A, that the manifolds M(x, y) are manifolds
with corners. We insist there mainly on the homogenous case, when H = 0.
However, as the maps bH constructed in Section 2.1.3 are compatible with
equation (15) this result is also true for a general H.

2.2. Construction of the spectral sequence.

2.2.1. Deformed pseudo-holomorphic strips viewed as paths. To each ele-
ment u ∈ M′(x, y) we associate a continuous path

γu : [0,A(x) −A(y)] → Pη(L, L′)(16)

in a rather obvious way: γu(A(x)−A(y)) = y, γu(0) = x and for τ ∈ (0,A(x)−
A(y)), γu(τ) = u(hu(−τ), [0, 1]) where

hu : (A(y) −A(x), 0) → R

is defined by A(u(hu(τ), [0, 1])) = τ + A(x). In short, γu associates to τ the
unique element of P(L, L′) which is of the form u(ξ,−) : [0, 1] → M for some
ξ ∈ R and on which A has the value A(x) − τ . The function hu is well
defined because A is strictly decreasing along u and it is easy to see that γu

is continuous (we shall use here the compact-open C0-topology on P(L, L′)).
Obviously, γu only depends on the class of u in M(x, y) and thus we have a
map:

γx,y : M(x, y) → C0([0,A(x) −A(y)],Pη(L, L′)) , γx,y(u) = γu .

To simplify notation let

Cx,yP = C0([0,A(x) −A(y)],Pη(L, L′))
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which is taken to be void in case A(x) ≤ A(y). The map γx,y is easily seen to
be continuous in view of the description of the charts of M(x, y). Moreover,
in view of the definition of Gromov compactness (or by using the description
of the small neighbourhoods of broken Floer orbits given in the Appendix A)
we see that this map extends to a continuous map

γx,y : M(x, y) → Cx,yP.

Notice that there exists an obvious continuous composition map given by con-
catenation of paths

# : Cx,yP × Cy,zP → Cx,zP(17)

which is associative in the obvious sense. As an immediate consequence of the
proof of (15) we also see that for each element u = (u1, u2, . . . uk) ∈ M(x, z1)×
M(z1, z2) × . . . ×M(zk−1, y) ⊂ ∂M(x, y) we have:

γx,y(u) = γx,z1(u1)#γz1,z2(u2)# . . .#γzk−1,y(uk).(18)

2.2.2. Some additional path spaces. We fix here some more notation. Let
w be a path (homeomorphic to [0,1]) embedded in L that joins all points {x(0) :
x ∈ I(L, L′; η, H)} and let M̃, L̃ be respectively the quotient topological spaces
obtained by contracting w to a point. Obviously, the quotient maps M →
M̃ , L → L̃ are homotopy equivalences. We also have homotopy equivalences
P(L, L′) → P(L̃, L′), Pη(L, L′) → Pη(L̃, L′). We denote any of these quotient
maps by q. We also need the obvious map l : Pη(L̃, L′) → L̃, l(γ) = γ(0).
Notice that the spaces L̃, M̃ ,P(L̃, L′) have a distinguished base point, ∗, given
by the class of the path w and (l ◦ q)(I(L, L′; η, H)) = ∗.

For any pointed topological space X we recall that ΩX is the space of
continuous loops in X that are based at the distinguished point of X and are
parametrized by the interval [0, 1]. This space is homotopy equivalent to the
space of Moore loops on X, Ω′X, which consists of the continuous loops in X

that are parametrized by arbitrary intervals [0, a], a ∈ [0,∞) (and, again, are
based at the distinguished point of X).

The compositions l ◦ q induce maps

Qx,y : Cx,yP → Ω′L̃, (Qx,y(a))(τ) = (l ◦ q)(a(τ)) .

Concatenation of loops gives Moore loops the structure of a topological
monoid. This operation, denoted by ·, commutes in an obvious way with the
maps Q−,− and the operation # of (17).

Fix also the notation

Φx,y = Qx,y ◦ γx,y .(19)

For further use, notice that the space P(L, L′) (and therefore also P(L̃, L′))
is homotopy equivalent to the homotopy pull-back of the two inclusions L ↪→ M

and L′ ↪→ M .
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2.2.3. An algebraic construction. For a topological space X let S∗(X) be
the Z/2-cubical (normalized) chain complex of X . We use cubical chains -
that is chains whose domains are unit cubes (see [23] for definitions) - instead
of singular chains because in this case, for two spaces X, Y , we have an obvious
map Sk(X) × Sq(Y ) → Sk+q(X × Y ) defined by (σ × σ′)(x, y) = (σ(x), σ′(y)).
Moreover, the multiplication · directly induces a natural multiplication denoted
again by · : Sk(Ω′X) ⊗ Sl(Ω′X) → Sk+l(Ω′X) defined by (σ · σ′)(x, y) =
σ(x) · σ(y) where x ∈ [0, 1]k, y ∈ [0, 1]l.

In particular, this turns S∗(Ω′L̃) into a differential ring that we shall
denote from now on by R∗.

Definition 2.1. A representing chain system for the moduli spaces associ-
ated to L, L′, J, H, η is a family {sxy ∈ Sμ(x,y)−1(M(x, y)) : x, y ∈ I(L, L′; η, H)}
such that:

i. The image of sxy in S∗(M(x, y), ∂M(x, y)) is a cycle representing the
fundamental class.

ii. With the identifications given by equation (15) we have ∂sxy =
∑

z sxz ×
szy ∈ S∗(M(x, y)).

Lemma 2.2. With the assumptions and notation above, there exists a rep-
resenting chain system for the moduli spaces ML,L′,J,H,η(−,−).

Proof. We construct the sxy’s by induction. Assume the construction
accomplished for μ(x, y)−1 < k. Consider now a pair x, y with μ(x, y)−1 = k.
We may assume that M(x, y) is connected (if not we apply the argument below
one component at a time). Using the identifications in (15) consider the chain
cxy =

∑
z sxz × szy ∈ Sk−1(∂M(x, y)). We denote the differential in S∗(−) by

∂ and we compute

∂cxy =
∑

z

∂sxz × syz +
∑

sxz × ∂szy

=
∑
z,k

(sxt × stz) × syz +
∑
z,j

syz × (szj × sjy) = 2(
∑
s,r

sxs × ssr × srz) = 0.

The homology class represented by cxy is the fundamental class of ∂M(x, y).
This is because the image of this class in any one of

Hk−1(M(x, z) ×M(z, y), ∂(M(x, z) ×M(z, y)))

coincides with the class represented by sxz × szy which is the fundamental
class. Therefore, cxy ∈ Im(∂ : Sk(M(x, y)) → Sk−1(M(x, y))). Let sxy be
such that ∂sxy = cxy. By construction, property ii. of a representing system
is then satisfied. The first property is also satisfied because the image of
sxy is a cycle in Sk(M(x, y), ∂M(x, y)) and the homology connectant δ of
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the pair (M(x, y), ∂M(x, y)) is an isomorphism in dimension k and it verifies
δ([sxy]) = [cxy].

Remark 2.3. Representing chain systems appear naturally when the com-
pactified moduli spaces M(x, y) are triangulated (or rather “cubulated”) in a
way compatible with formula (15): the sxy’s may then be taken to be the sum
of the top dimensional cubes. However, the existence of such a triangulation
is not obvious. The most direct approach to constructing such a triangula-
tion is to proceed by induction. Assuming that a triangulation of ∂M(x, y)
is constructed the induction step is then to extend this triangulation to the
whole of M(x, y). For this extension to exist one needs to check that the
Kirby-Siebenmann obstruction vanishes - fact which is not a priori clear.

We now fix a representing chain system ζ = {sxy} and we define

axy ∈ Rμ(x,y)−1 , axy = Φx,y(sxy) .(20)

Let m be the number of elements of the set I(L, L′; η, H). Fix one point
z0 ∈ I(L, L′; η, H) and for each x ∈ I(L, L′; η, H) let μ(x) = μ(x, z0). In view
of (14) the function μ(−) so defined only depends of z0 up to a translation by
a constant. Let a strict ordering � of the set I(L, L′; η, H) be such that we
have μ(x) > μ(y) ⇒ x � y.

The main algebraic object that we shall be using is the matrix

A = (axy){x,y∈I(L,L′;η,H)} ∈ Mm,m(R∗) .(21)

Remark 2.4. Of course, despite our short notation for A, this matrix de-
pends on L, L′, H, η, the choice of J and of ζ.

If C is a matrix with coefficients in R∗, then we let ∂C be the matrix whose
coefficients are obtained by applying the differential ∂ of R∗ to the coefficients
of C.

The key property of A is as follows.

Proposition 2.5. Under the assumptions above we have:

A2 = ∂A .

Proof. This is immediate from the construction of A and from (15) and
(18). Indeed, we have the following sequence of equalities

∂axy = ∂Φx,y(sxy) = Φx,y(∂sxy) = Φx,y(
∑

z sxz × szy)
= Qx,y ◦ γx,y(

∑
z sxz × szy) = Qx,y ◦ (

∑
z γx,z(sxz)#γz,y(szy))

=
∑

z(Qx,z ◦ γx,z)(sxz) · (Qz,y ◦ γz,y)(szy)
=

∑
z Φx,z(sxz) · Φz,y(szy)

=
∑

z axz · azy

which is valid for any x, y ∈ I(L, L′; η, H).
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2.2.4. The spectral sequence. We first use the matrix A to define an
R∗- chain complex

Cη,J,ζ(L, L′;H) = (C∗, d)

which should be thought of as an extended Morse-type chain complex as dis-
cussed in the introduction.

We consider the graded Z/2-vector space Z/2〈I(L, L′; η, H)〉 where the
grading is given by |x| = μ(x) , ∀x ∈ I(L, L′; η, H) (recall that the “absolute”
Maslov index function μ : I(L, L′; η, H) → Z from §2.2.3 depends on our
choice of a fixed point z0 ∈ I(L, L′; η, H) only up to translation by an integral
constant).

Now let C∗ be equal to the left R∗-module R∗ ⊗ Z/2〈I(L, L′; η, H)〉. The
module operation is so that for c ∈ R∗ and a⊗b ∈ C we have c·(a⊗b) = (c·a)⊗b.
The differential d : C∗ → C∗−1 is the unique R∗-module derivation (in the sense
that d(a ⊗ b) = ∂a ⊗ b + a · db) such that

d(x) =
∑

y

axy ⊗ y , ∀x ∈ I(L, L′; η, H) .

Corollary 2.6. For Cη,J,ζ(L, L′;H) = (C∗, d) defined as above, d2 = 0.

Proof. For any x ∈ I(L, L′; η, H) we have:

d(d(x)) = d(
∑

y

axy ⊗ y) =
∑

y

∂axy ⊗ y +
∑
z,y

axy · ayz ⊗ z

=
∑

t

(∂axt +
∑

s

axs · ast) ⊗ t

and all these last terms vanish in view of the equality in Proposition 2.5 (and
because we work over Z/2).

Consider the spectral sequence which is associated to the filtration of the
complex Cη,J,ζ(L, L′;H) defined by:

F kC = R∗ ⊗ Z/2 < x ∈ I(L, L′; η, H) : μ(x) ≤ k > .

Clearly, this is a differential filtration and thus it does indeed induce a spectral
sequence which we shall denote by

EF (L, L′; η, H, J, ζ) = (EF r
pq(L, L′; η, J, H, ζ), dr

F ).

We fix the notation such that an element of bi-degree (p, q) in the spectral
sequence is a class coming from an element in Rq ⊗Z/2〈x : μ(x) = p〉 (this last
vector space being isomorphic to EF 0

pq(L, L′;H)). We shall sometimes omit η,
J , ζ in the notation for the spectral sequence.

We denote by CF∗(L, L′;H) the Floer chain complex associated to AL,L′,H

and by HF∗(L, L′;H) the respective Floer homology. The relation of these to
our spectral sequence is as follows.
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Proposition 2.7. For the spectral sequence defined above,

a. EF 1(L, L′;H) 
 CF∗(L, L′;H) ⊗ H∗(ΩL).

b. EF 2(L, L′;H) 
 HF∗(L, L′;H) ⊗ H∗(ΩL).

c. If dr
F �= 0, then there exist x, y ∈ I(L, L′; η, H), μ(x, y) ≤ r, such that

M(x, y) �= 0.

d. For r ≥ 1, (EF r
pq(L, L′;H), dr

F ) is a spectral sequence of H∗(ΩL)-modules.

Proof. The only part of d that counts for the first point is the internal
differential in S∗(Ω′L̃). This expresses the E1 term as desired. The differential
d1 is horizontal and is generated by the part of d that connects orbits of relative
Maslov index equal to 1. This is precisely the Floer (classical) differential and
thus implies the second point. The third point is obvious as dr

F �= 0 implies
that there are some x, y ∈ I(L, L′; η, H) such that axy �= 0 and μ(x, y) ≤ r.
The fourth point is a direct consequence of the fact that the differential d of
C∗ verifies d(a ⊗ b) = ∂a ⊗ b + a · db

Remark 2.8. Notice that a different choice for z0 only modifies the result-
ing spectral sequence by a translation.

The spectral sequence of Theorem 1.1 consists of the terms of order greater
than or equal to 1 of EF (L, L′) = EF (L, L′; 0). In particular, Proposition 2.7
implies the points b. and c. of this theorem. We still need to prove the rest of
the theorem.

Remark 2.9. It is possible to modify the construction above in such a way
as to replace the ring R∗ with the richer ring S∗(Ω′Pη(L, L′)). However, as
R∗ is sufficient for the applications discussed in this paper we shall not pursue
this extension here.

2.3. Proof of the main theorem. I: Invariance of the spectral sequence.
Our next aim is to prove the point a. of Theorem 1.1. As we shall see this
point will follow rapidly from the main result of this subsection which is shown
in §2.3.1 below.

2.3.1. Variation of the Hamiltonian. Assume that with L, L′, η, H, J, ζ as
above we additionally have a Hamiltonian H ′ : [0, 1] × M → R which is also
constant outside of a compact set. We consider an almost complex structure
J ′ so that the pair (H ′, J ′) is regular and so EF (L, L′; η, J ′, H ′, ζ ′) is defined
with ζ ′ a representing system of chains for the moduli spaces associated to
L, L′, J ′H ′, η. Let

ε(L, L′;H, J) = min{EL,L′,H(u) : u ∈ M′
L,L′,J,H}(22)

(where EL,L′,H is the energy as defined in (11)).
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Theorem 2.10. Under the assumptions above:

a. There exists a chain morphism

V : Cη,J,ζ(L, L′;H) → Cη,J ′,ζ′
(L, L′;H ′)

of possibly nonzero degree which induces an isomorphism up to transla-
tion between EF r(L, L′;H) and EF r(L, L′;H ′) for r ≥ 2.

b. If ||H ′−H||0 < ε(L, L′;H, J)/4, then there exists a morphism V as before
which admits a retract.

Remark 2.11. A morphism of chain complexes f : C∗ → D∗+k is said to
admit a retract if there exists another morphism g : D∗ → C∗−k such that
g ◦ f = idC . Clearly, if V admits a retract, then the same is true for the
morphism induced by V on each page of the spectral sequence. Therefore,
point b. of Theorem 2.10 shows, in particular, that EF r(L, L′; η, J, H, ζ) does
not depend on J (or ζ) already for r ≥ 1.

The idea for the proof of Theorem 2.10 is classical in Floer’s theory : we
adapt the previous construction to the case of the moduli spaces of solutions
of an equation similar to (10) but such as to allow for deformations from the
Hamiltonian H to the Hamiltonian H ′.

Proof. To shorten notation let I = I(L, L′; η, H), I ′ = (L, L′; η, H ′).
We start with some recalls on Floer’s comparison method. Take a smooth
homotopy H01 : R× [0, 1]×M → R and a homotopy J01 : R×M → End(TM),
J01

s ∈ J ,∀s ∈ R (here J is the set of almost complex structures on M)
such that there exists R > 0 with the property that, for s ≥ R, we have
(H01

s (x), J01
s (x)) = (H(x), J(x)) and for s ≤ −R, (H01

s , J01
s ) = (H ′(x), J ′(x)),

∀x ∈ M . Moreover, we assume that there exists a compact set such that for
all s ∈ R, H01

s is constant outside this compact set. Consider the equation:

∂u

∂s
+ J01(s, u)

∂u

∂t
+ ∇s

xH01(s, t, u) = 0(23)

where ∇s
xH01(s, t,−) is the gradient of the function H01(s, t,−) with respect to

the riemannian metric induced by J01
s and u : R× [0, 1] → M with u(R, 0) ⊂ L

and u(R, 1) ⊂ L′. We may define the energy EL,L′,H01 by replacing H in
formula (11) by H01.

The finite energy solutions of (23) have properties that are very similar to
those of (10). In particular, for each such solution u there exist x ∈ I, y ∈ I ′

such that

lim
s→−∞

u(s,−) = x , lim
s→∞

u(s,−) = y .(24)

If the linearized operator asociated to (23), DH01,J01

u , is surjective for each finite
energy solution u we say that the pair (H01, J01) is regular. There is again a
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generic set of choices of regular such pairs. Again, to insure genericity of regu-
larity one might need to assume that J01 is also time dependent. We shall as-
sume from now on that (H01, J01) is regular. We denote by MH01,J01(x, y) the
finite energy solutions of (23) that satisfy (24). These spaces are smooth man-
ifolds of dimension μ(x, y) (the relative Maslov index in this case being defined
by a straightforward adaptation of the definition in §2.1.2). Gromov compacti-
fications also exist in this context and we shall denote them by MH01,J01(x, y).
They are manifolds with boundary and they verify:

∂MH01(x, y) =
⋃
z∈I

MH(x, z) ×MH01(z, y) ∪
⋃

z′∈I′

MH01(x, z′) ×MH′(z′, y)
(25)

Moreover, in the same way as the one described in the Appendix A it is possible
to show that these manifolds are manifolds with corners.

Another useful remark concerns the functional AH01(s, x) : R × Pη(L, L′)
→ R which is defined by the action functional formula (8) but by using H01

instead of H. This is clearly a homotopy between AH and AH′ . Assume now
that H01 is a monotone homotopy in the sense that ∂H01

∂s (s, t, y) ≤ 0, ∀ s, t, y ∈
R×[0, 1]×M . In this case, if we put aH01(s) = AH01(s, u(s,−)) for u a solution
of (23), then

daH01

ds
= dAs

H01(
∂u

∂s
) +

∫ 1

0

∂H01

∂s
(s, t, u(s, t))dt(26)

and, by (9), the first term of the sum is negative and the second is negative or
null due to monotonicity. In other words, monotone homotopies which have
been introduced in the symplectic setting by Floer and Hofer in [11], insure that
the relevant action functionals decrease along solutions of (23). Since both H

and H ′ are constant outside of a compact set we see that after possibly adding
some positive constant to H we may assume that H(t, x) > H ′(t, x) for all
t, x ∈ [0, 1] × M . As adding a constant to H does not modify its Hamiltonian
flow and only changes AH by the addition of the same constant, we may assume
that monotone homotopies as above always exist and we fix one such homotopy
H01 for the rest of this proof. To each element u ∈ MH01(x, y) we associate a
path γu : [0,AH(x)−AH′(y)] → Pη(L, L′) defined by the same formula as that
used for (16) but with AH01 instead of AH . We continue the construction in
perfect analogy to that described in Section 2.2.1 and we thus get continuous
maps

γx,y : MH01(x, y) → Cx,yP

which are coherent with the maps constructed in §2.2.1 in the sense that an
obvious analogue of (18) is verified as implied by (25). To pursue the con-
struction along the lines in Section 2.2.2 we first need to impose an addi-
tional restriction on the path w used to construct L̃: we shall assume that
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{y(0) : y ∈ I(L, L′; η, H ′)} ⊂ w. With this nonrestrictive assumption and for
any x, y ∈ I(L, L′;H) ∪ I(L, L′;H ′), we define Φx,y = Qx,y ◦ γx,y as in (19).
We pursue the construction with the step described in Section 2.2.3. This con-
struction involves the choice of z0 ∈ I(L, L′;H). We shall also need a similar
choice: z′0 ∈ I(L, L′;H ′). To insure the compatibility of these choices we take
z0 and z′0 so that μ(z0, z

′
0) = 0 (it is easy to see that such a couple necessarily

exists). With these choices, the construction described in Section 2.2.3 applied
to H and to H ′ produces, respectively, matrices A = (axy) and A′ = (a′xy) and
chain complexes C(L, L′;H), C(L, L′;H ′). There is an obvious analogue {s̃xy}
of the representing system of chains for the moduli spaces MH01(x, y) so that
this system is compatible with both ζ = {sxy} and with ζ ′ = {s′x′y′}. The con-
dition ii. in Definition 2.1 is replaced by ∂s̃xy′ =

∑
z sxz × s̃zy′ +

∑
z′ s̃xz′ ×sz′y′

which reflects equation (25). The existence of such representing chain systems
for H01 compatible with ζ and ζ ′ then follows as in Lemma 2.2. Pursuing the
construction we obtain a matrix B = (bxy) ∈ Mm,m′(R∗) where, as in Sec-
tion 2.2.3, m is the number of elements of I(L, L′;H) and m′ is the number of
elements in I(L, L′;H ′) and bxy = Φx,y(s̃xy). As in Proposition 2.5 we see that

∂B = A · B + B · A′ .(27)

For x ∈ I(L, L′;H) we now define

V(x) =
∑

y∈I(L,L′;H′)

bxy ⊗ y

and extend this to an R∗-morphism. We then have

V(dx) =V(
∑
y′

axy′ ⊗ y′)

=
∑
y′

axy′ ⊗ V(y′) =
∑
y′,z

axy′ · by′z ⊗ z

=
∑

z

(
∑
y′

axy′ · by′z) ⊗ z =
∑

z

(∂bxz +
∑

v

bxv · a′vz) ⊗ z

=
∑

z

∂bxz ⊗ z +
∑

v

(
∑

z

bxv · a′vz ⊗ z) =
∑

z

∂bxz ⊗ z +
∑

v

bxv · dv

= d(
∑

v

bxv ⊗ v) = dV(x) .

Therefore, the map V so defined is a morphism of chain complexes which we
shall sometimes also denote by VH01 to emphasize the monotone homotopy to
which it is associated. If the choices of z0 and z′0 are compatible, as above, then
this morphism is of degree 0. If z0 and z′0 are independent, then this morphism
could have a nonzero degree. Assuming for now the compatible choices from
above it is obvious that this morphism preserves filtrations and so it induces
a morphism of spectral sequences. Moreover, by the definition of the Floer
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comparison morphism VH01 : CF∗(L, L′;J, H) → CF∗(L, L′;J ′, H ′) (induced
by the same monotone homotopy) we see that the morphism induced by VH01 at
the E1 term of our spectral sequences is the H∗(ΩL)-module morphism induced
by V . But H∗(VH01) is an isomorphism so E2(V) is also an isomorphism and
so Er(V) is an isomorphism for all r ≥ 2. Obviously, in case the choices for z0

and z′0 are not compatible, then this is still an isomorphism up to translation
and this proves point a. of the theorem.

For the point b. notice that, for x, y ∈ I(L, L′;H) and u ∈ MH(x, y) we
have

AH(x) −AH(y) = EL,L′,H(u) .(28)

Therefore, ε(L, L′;H, J) = min{AH(x) − AH(y) : MH,J(x, y) �= ∅}. It has
been proven by the second author together with Andrew Ranicki in §2.1 of
[6] that under the assumptions of the theorem and for the case of periodic
orbits, the Floer comparison morphism admits a retract. More precisely, there
exist monotone homotopies H01 and G01 so that VG01 ◦VH01 is an isomorphism
whose matrix is upper triangular with 1’s on the diagonal. The exact same
argument applies also here: the only difference with respect to the proof of
Theorem 2.1 in [6] is that we deal with orbits starting in L and ending in L′

instead of periodic orbits; everything else remains the same. The fact that the
matrix for VG01 ◦ VH01 is as above implies that the matrix for VG01 ◦ VH01 is
also upper triangular with 1’s on the diagonal. Therefore, VG01 ◦ VH01 is an
isomorphism and this proves the claim.

2.3.2. Proof of Theorem 1.1 a. Point a. of Theorem 1.1 is a simple conse-
quence of Theorem 2.10 and of the naturality property recalled in Section 2.1.3.

In fact, we can as easily prove slightly more. For this we let ε(L, L′) =
ε(L, L′; 0, J) and we recall the setting: L, L′ are as before and we have also the
Lagrangian L′′ which is transversal to L and the almost complex structure J ′ so
that the complexes CJ(L, L′) = Cη,J,ζ(L, L′; 0), CJ ′

(L, L′′) = Cη′,J ′,ζ′
(L, L′′; 0)

are defined as well as the associated spectral sequences EF (L, L′) and
EF (L, L′′). Assume also that we have a Hamiltonian diffeomorphism φ such
that

φ(L′′) = L′ , η(t) = φ(η′(t)) ,∀t ∈ [0, 1] .

We shall assume here that φ has a compact support. This is not restrictive for
our purposes because L, L′ are compact. Denote by T the set of 1-periodic
Hamiltonians on M which are constant outside some compact set and recall
the Hofer norm (or energy) [14] of a compactly supported Hamiltonian diffeo-
morphism:

||φ||H = inf
H∈T , φH

1 =φ
(sup

x,t
H(t, x) − inf

x,t
H(t, x))(29)
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Corollary 2.12. Under the assumptions above:

a. There exists a morphism of chain complexes, possibly of nonzero degree

W : CJ(L, L′) → CJ ′
(L, L′′)

which induces an isomorphism up to translation between the spectral se-
quences (EF r(L, L′), dr) and (EF r(L, L′′), dr) for r ≥ 2.

b. If ||φ||H < ε(L, L′)/4, then W admits a retract.

Remark 2.13. Point a. of Theorem 1.1 is clearly the same as point a. of
Corollary 2.12. In view of the moduli-spaces interpretation of the differentials
in CJ(L, L′) we may interpret point b. of the corollary as saying that a small
enough Hamiltonian isotopy of L′ can only increase the algebraic complexity of
the moduli spaces of pseudo-holomorphic strips. A different useful formulation
is that, if CJ(L, L′) is not a retract of CJ ′

(L, L′′) (for example if the number of
intersection points in L∩L′′ is smaller than the number of intersection points
in L ∩ L′), then at least as much energy as ε(L, L′)/4 is needed to deform L′

into L′′.

Proof. Let H ∈ T be such that φH
1 = φ. Let J∗ be the almost complex

structure on M which satisfies φ∗(J∗) = J ′. Recall from Section 2.1.3 the map
bH : ML,L′′,J ′,0(x, y) → ML,L′,J∗,H(x, y) which is defined by (bH(u))(s, t) =
φH

t (u(s, t)) and is a homeomorphism respecting the various compactifications.
Obviously, this map is also compatible with the maps Φx,y and so bH induces
an identification of the two chain complexes (in the sense that it gives a base-
preserving isomorphism of chain complexes):

bH : Cη′,J ′,ζ′
(L, L′′; 0) → Cη,J∗,ζ′′

(L, L′;H)(30)

where ζ ′′ is the image of ζ ′ by bH . Clearly, bH induces an isomorphism up to
translation between the respective spectral sequences and as, by Theorem 2.10
a., we also have a morphism

V : Cη,J,ζ(L, L′; 0) → Cη,J∗,ζ′′
(L, L′;H)

which induces an isomorphism at the level of the spectral sequences, we con-
clude that the composition W = V ◦ (bH)−1 verifies point a.

Point b. of Theorem 2.10 shows that if supx,t |H(t, x(t))| ≤ ε(L, L′)/4 for
all x ∈ Pη(L, L′), t ∈ [0, 1], then the conclusion at point b. of the corol-
lary holds. We pick a Hamiltonian H ∈ T such that φH

1 (L′′) = L′ and
supx,t H(t, x)−infx,t H(t, x) = ||φ||H +δ where δ verifies ||φ||H +δ ≤ ε(L, L′)/4.
By adding an appropriate constant to H we may assume infx,t H(t, x) = 0 and
this proves the second point of the corollary.

2.4. Proof of the main theorem. II: Relation to the Serre spectral sequence.
The purpose of this subsection is to show point d. of Theorem 1.1.
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2.4.1. Elements of classical Morse theory. We shall fix here a Morse
function f : L → R and we also fix a Riemannian metric α on L such that
the pair (f, α) is Morse-Smale. The Morse-Smale condition means that, if we
denote by γ the flow induced by the negative α-gradient of f , −∇f , then the
unstable manifolds

W u(P ) = {x ∈ L : lim
t→−∞

γt(x) = P}

and the stable manifolds

W s(Q) = {x ∈ L : lim
t→+∞

γt(x) = Q}

intersect transversely for any two critical points P, Q ∈ Crit(f). If the index
of the critical points P is equal to p, then W u(P ) is diffeomorphic to an open
p-disk and W s(P ) is diffeomorphic to an open (n−p)-disk. It is easy to see that
if α ∈ R is a regular value of f such that f(P ) > α > f(Q), then the space of
γ-flow lines that join P to Q is parametrized by the intersection W u(P ) ∩
f−1(α) ∩ W s(Q) which, due to the transversality assumption, is seen to be a
manifold of dimension ind(P )−ind(Q)−1. This moduli space of negative gradi-
ent flow lines will be denoted by Mf,α(P, Q) and the space of all the points sit-
uated on elements of Mf,α(P, Q) will be denoted by M ′

f,α(P, Q) (to shorten no-
tation we shall sometimes omit the symbol α). These moduli spaces Mf (−,−)
have properties that parallel those of the moduli spaces ML,L′,H(−,−) as
described in Section 2.1.2 and 2.1.4 but with the set I(L, L′;H) replaced
by the set of critical points of f , Crit(f), and with the difference of Morse
indexes ind(P ) − ind(Q) used instead of the Maslov index μ(x, y). These
properties are much easier to prove for negative-gradient flow lines than for
pseudo-holomorphic strips and, in fact, historically the Morse case has pre-
ceded and inspired Floer’s machinery. From an analytic point of view, the
study of the moduli spaces Mf,α(−,−) is clearly a simpler version of the study
of ML,L′,H(−,−) because negative gradient flow lines are solutions v : R → L

of the equation
dv

ds
+ ∇f(v) = 0

which may be treated as a simplified version of equation (10). This approach
has been developed in detail in [30].

2.4.2. Morse flow lines and pseudo-holomorphic strips. There exists an-
other deeper relation between the moduli spaces of Morse trajectories and
the moduli spaces of pseudo-holomorphic strips which has been established
by Floer [9] and which we now recall. Recall that there exists a neighbour-
hood of L in M which is symplectically equivalent to the total space of a disk
bundle associated to the cotangent bundle T ∗L. We shall denote this neigh-
bourhood by DT ∗L and consider the Hamiltonian f : DT ∗L → R, f = −f ◦ π
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where π : DT ∗L → L is the projection. Notice that if Lf = φf
1(L), then

Lf is precisely the image of −df and L ∩ Lf coincides with the set of critical
points of f (we assume here that f is small enough so that the image of df

is contained in DT ∗L). The fact that f is a Morse function is equivalent to
the transversality of Lf and L. For any x, y ∈ L ∩ Lf , it is natural to de-

fine a map cf : M ′
f,α(x, y) → C∞(R × [0, 1], M) by (cf (v))(s, t) = φf

t (v(s)).
Floer’s result is that, if f is sufficiently small in C2-norm, then there ex-
ists a (time-dependent) almost complex structure Jf such that the image of
this map belongs to M′

L,Lf ,Jf ,0(x, y) and, moreover, the resulting application
cf : M ′

f,α(x, y) → M′
L,Lf ,Jf ,0(x, y) is a diffeomorphism. The fact that cf is

surjective is in itself highly nontrivial as, a priori , M′
L,Lf ,Jf ,0(x, y) could con-

tain some “long” Floer trajectories which do not belong to DT ∗L; however,
Gromov compactness together with our assumptions on the lack of bubbling
imply that by making f sufficiently small (for example by replacing it with
λf with λ > 0 and small) this does not happen. Obviously, this application
induces a diffeomorphism

lf : Mf,α(x, y) → ML,Lf ,Jf ,0(x, y)

and it is clear that this is compatible with the compactifications and the strat-
ifications on the two sides.

2.4.3. The Morse spectral sequence. We now let w be a path in L which is
embedded and joins all critical points of f . We then define the quotient map
q : L → L̃ as in §2.2.2. Following the scheme in §2.2 it is easy to see how to build
a spectral sequence asociated to the Morse-index filtration of the R∗-chain
complex Cf,α = (C∗, d) which is defined by Ck =

⊕
q+p=k Rq ⊗ Z/2〈Critk(f)〉

(where Critk(f) are the critical points of f which are of Morse index equal to
k) and

dx =
∑

y∈Crit(f)

mxy ⊗ y .

As in formula (20), the coefficients {mxy} are defined as images of a represent-
ing chain system for the moduli spaces Mf,α(x, y) by the map v ∈ Mf (x, y) →
q ◦ sv ∈ Ω′L̃ where

sv : [0, f(x) − f(y)] → L

is a reparametrization of v such that sv(t) = z ⇔ f(z) = f(x)− t. Further, as
in §2.2.4, the filtration F kC = R∗ ⊗ Z/2〈Critj(f) : j ≤ k〉 induces a spectral
sequence which we shall denote by E(f, α) = (Er

pq(f, α), dr) (again, sometimes
we shall omit α to shorten notation). A result similar to Proposition 2.7 is
true after we replace the Floer complex with the Morse complex and Floer
homology with the usual homology of L.
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2.4.4. Reduction to the Morse case. We now assume that f is sufficiently
C2-small so that Floer’s result mentioned above applies. Clearly, we may
extend both f and Jf to a Hamiltonian and, respectively, an almost complex
structure defined on all of M which shall be denoted by the same respective
symbols.

If we let η0 coincide with z0 and let both be equal to a minimum of f , then
we see that the map lf of §2.4.2 induces an identification of chain complexes
lf : Cf,α → Cη0,Jf

(L, Lf ; 0). This obviously preserves filtrations and identifies
the spectral sequences E(f, α) and EF (L, Lf ; η0, J

f , 0) .
We now turn to the setting of Theorem 1.1 d. Therefore, L′ is Hamiltonian

isotopic to L. By Corollary 2.12, we then have that (EF r(L, L′; η, J, 0), dr) is
isomorphic up to translation to (EF r(L, Lf ; η0, J

f , 0), dr) for r ≥ 2. At the
same time, as discussed above, this last spectral sequence is isomorphic to
E(f, α). Thus, to prove Theorem 1.1 d., it suffices to show that Er(f, α) is
isomorphic to the Serre spectral sequence of ΩL → PL → L for r ≥ 2.

2.4.5. The Morse and Serre spectral sequences. The purpose of this sub-
subsection is to conclude the proof of Theorem 1.1 by showing:

Theorem 2.14. Assume that f : L → R is a Morse function and α is a
riemannian metric on L so that the spectral sequence E(f, α) = (Er

pq(f, α), dr)
is defined as in §2.4.3. For r ≥ 2 there exist an isomorphism of spectral
sequences between E(f, α) and the Serre spectral sequence E(L) = (Er

pq, d
r) of

the path loop fibration of base L.

Proof. We may assume that the function f has just one minimum that
we shall denote by B. We also assume that f(B) = 0. It is not restrictive
to suppose also that f is self-indexed which means that for any critical point
x of f we have that f(x) = indf (x). Take ε to be a very small positive
constant and let Lk = f−1(−∞, k + ε]. Of course, by classical Morse theory,
Lk is homotopy equivalent to a k-th dimensional skeleton of L. Consider the
path-loop fibration ΩL → PL → L and let ΩL → Ek → Lk be the pull-
back of this fibration over the inclusion Lk ↪→ L. We consider the filtration
ΩL = E0 ↪→ . . . Ek ↪→ Ek+1 ↪→ . . . PL and the resulting filtration of the cubical
chain complex S∗(PL) which is given by the S∗(Ek)’s. The spectral sequence
associated to this filtration is, by definition, the Serre spectral sequence of the
statement [35]. The proof of the theorem consists of the following two steps:

i. There exists a morphism of chain complexes ξ : Cf,α → S∗(PL) so that
ξ(F kC) ⊂ S∗(Ek). Such a ξ induces a morphism of spectral sequences
denoted by E(ξ) : E(f, α) → E(L).

ii. With ξ as above the morphism E2(ξ) is an isomorphism.

Before proceeding with the proof we need to make a few adjustments.
First, notice that instead of using unit paths in the definition of the path-loop
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fibration we may as well use Moore paths - these are paths parametrized by
arbitrary intervals [0, a]. The resulting fibration is denoted by Ω′L → P ′L → L

and the associated filtration is {E′
k}. Moreover, as q : L → L̃ is a homotopy

equivalence we may replace the spaces Lk, E′
k by their respective image L̃k

and Ẽk ⊂ P ′L̃ in the latter case via the induced map P ′q : P ′L → P ′L̃ (the
two induced spectral sequences being obviously isomorphic). For further use,
notice also that there is an obvious action · : Ω′L̃× P ′L̃ → P ′L̃ which induces
Rk ⊗ Sq(P ′L̃) → Sk+q(P ′L̃).

2.4.6. Blow-up of unstable manifolds. The first step is based on a geo-
metric construction which, as we shall see, is of independent interest. This
construction provides an efficient geometric description for the compactifica-
tion of the unstable manifolds of f .

We fix x ∈ Crit(f). Notice that for each element v ∈ Mf (x, B) there
exists some k ≥ 0 such that v = (v1, v2, . . . , vk) with v1 ∈ Mf (x, x1) , . . . , vi ∈
Mf (xi−1, xi) , . . . , vk ∈ Mf (xk−1, B). This writing is of course unique. We
recall the parametrizations sv for the flow lines represented by v ∈ Mf (x, B)
defined as in §2.4.3. Clearly, this parametrization extends in an obvious way to
the elements v = (v1, v2, . . . , vk) ∈ ∂Mf (x, B) and we shall continue to denote
the parametrization of these elements by sv.

We consider the space M̂(x) which is defined as the topological quotient
of the space Mf (x, B) × [0, f(x)] by the equivalence relation induced by:

((v1, . . . , vk), t) ∼ ((v′1, . . . , v′k), t) if vi = v′i ∀i

with f(xi−1) > t , vi ∈ Mf (xi−1, xi) .

In short, two couples (v, t), (v′, t) ∈ Mf (x, B) are identified in M̂f (x, B) if
the (possibly broken) negative gradient trajectories of v and v′ coincide above
level t. Notice that if (ln, tn) ∼ (l′n, tn), where ln, l′n ∈ Mf (x, B) with ln →
l ∈ Mf (x, B), l′n → l′ ∈ Mf (x, B), tn → t, then (l, t) ∼ (l′, t) and M̂(x) is
Hausdorff.

It is useful to introduce the map S : Mf (x, B) × [0, f(x)] → L defined by
S(v, τ) = sv(f(x)− τ) (S(v, τ) is thus simply the intersection of the trajectory
v with f−1(τ)). This map factors as

S : Mf (x, B) × [0, f(x)] k−→ M̂(x) o−→ L

where k is the quotient map.
We call the space M̂(x) the blow-up of the unstable manifold W u(x). As

we shall see this is justified by a number of remarkable properties of this space.
We start with the most immediate. First, the image of o is included and is onto
the closure of W u(x). Secondly, all the points in Mf (x, B)×{f(x)} belong to
a unique equivalence class which we shall denote by ∗ . Furthermore, define
paths s′v : [0, f(x)] → M̂(x) by the formula s′v(τ) = k(v, f(x) − τ). Obviously,
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s′v(0) = ∗ and sv = o ◦ s′v. Moreover, for each y ∈ M̂(x) there exists a unique
t ∈ [0, f(x)] and a unique path y : [0, t] → M̂(x) such that y(t) = y and
y(τ) = s′v(τ), ∀τ ∈ [0, t] for some v ∈ Mf (x, B). It is easy to see that the map

β : M̂(x) → P ′(M̂(x)), β(y) = y

is continuous. As we also have that y(0) = ∗ this shows that M̂(x) is con-
tractible by a contraction that pushes each y ∈ M̂(x) along the path y till it
reaches ∗. We formulate a stronger property next. For this first notice that
for all y ∈ Crit(f) ∩ W u(x) there is a natural inclusion Mf (x, y) × M̂(y) ⊂
M̂(x) which is induced by the product of inclusions (Mf (x, y) × Mf (y, B)) ×
[0, f(y)] ↪→ Mf (x, B) × [0, f(x)].

Lemma 2.15. The space M̂(x) is homeomorphic to a closed disk of di-
mension equal to indf (x). Moreover,

∂M̂(x) =
⋃
y

Mf (x, y) × M̂(y) .

Remark 2.16. a. As we shall see below, the actual proof of Theorem 2.14
only uses that M̂(x) is a topological manifold with a boundary described as in
the statement of the lemma and that ∗ has a neighbourhood homeomorphic to
a disk. Of course, the fact that M̂(x) is a topological manifold is not surpris-
ing: this space is obviously homeomorphic to the space of all (appropriately
parametrized) possibly broken gradient flow lines that join x to points in L.

b. While the definition of M̂(x) based on the equivalence relation ∼ is
new, the space of all geometric, possibly broken, flow lines ending in points of
L and originating in x ∈ Crit(f) has appeared before in the Morse theoretic
literature, for example, in [16] and [17]. The fact that M̂(x) is homeomorphic
to a disk is of independent interest as it immediately implies that the union of
the closures of the unstable manifolds of a self-indexed Morse-Smale function
has a natural CW-complex structure - the attaching map corresponding to the
cell associated to x being simply o|

∂M̂(x)
. For completeness we provide here

an explicit proof of the existence of a homeomorphism between M̂(x) and a
closed disk. Related arguments appear in the literature in [17], [19] as well as
in [20].

Proof of the lemma. We fix i = indf (x) and recall that f is self-indexed.
We start by verifying explicitly that M̂(x) is a topological manifold whose
boundary has the description of the statement. We first notice that the re-
striction of k to Mf (x, B) × (0, f(x)) is a homeomorphism onto its image.
Moreover, the definition of the equivalence relation ∼ directly implies that the
restriction

o| : k(Mf (x, B) × [(i − 1) + δ, f(x)]) → W u(x) ∩ f−1[(i − 1) + δ, +∞)(31)
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is a homeomorphism for any small positive δ where o is, as before, the factor
of the map S (for further use, notice also that W u(x)∩ f−1[(i− 1) + δ, +∞) is
homeomorphic to an i-disk).

Consider a point (v, t) ∈ Mf (x, B)× [0, f(x)] such that v = (v1, . . . , vk) ∈
Mf (x, x1) × . . . × Mf (xk−1, B) and t > f(x1). We notice that k(v, t) has a
neighbourhood homeomorphic to an i-disk. Indeed, for λ sufficiently close to
f(x), the point k(v, λ) does have such a neighbourhood V because of the home-
omorphism at (31). This neighbourhood V verifies V ⊂ ⋃

y∈C(x1)
k(Mf (x, y)×

Mf (y, B)× [0, f(x)]) where C(x1) = {y ∈ Crit(f) : x1 ∈ W u(x)∩W s(y)}. But
this means that, if V is sufficiently small, we may isotope it by sliding it along
the paths s′r, r ∈ V till we get a neighbourhood of k(v, t). “Sliding” along the
paths s′v is given by

h(k(r, t′), τ) = s′r(t
′ + τ)

and is well defined and an isotopy when restricted to k(Mf (x, y)×Mf (y, B)×
[s, f(x)]) as long as τ + s > f(y). As y ∈ C(x1) we have that f(y) ≤ f(x1)
and thus sliding is indeed possible.

a. First look at boundary points. Next, to continue the proof of the
lemma, we need to show that each point belonging to some Mf (x, y) × M̂(y)
has a neighbourhood homeomorphic to a semi-disk. Let z = k(v, t) with v =
(v1, . . . , vk) ∈ Mf (x, x1)×Mf (x1, x2)× . . . Mf (xk−1, B) so that f(xj−1) > t >

f(xj). Because we are only interested in a neighbourhood of z we may assume
that the interval (f(xj), f(xj−1)) is regular and, in particular, t is a regular
value of f . Recall that the point o(z) is the intersection with f−1(t) of the
broken negative gradient flow line of f represented by v.

Let M̃t(x) = {z ∈ C0([0, f(x) − t], M) : ∃v ∈ Mf (x, B), z = sv|[0,f(x)−t]}.
In short, a path in M̃t(x) joins the point x to some point in f−1(t) and it
coincides geometrically to the part of a negative-gradient (possibly broken)
flow line of f which is above (and on) level t. Clearly, the spaces M̃t for t

such that f(xj−1) > t ≥ f(xj) are canonically identified with M̃j = M̃f(xj).
Obviously, for our fixed point z = k(v, t) there exists a unique point z′ ∈ M̃j(x)
such that o(z) = z′(f(x)− t) (the parametrization used for z′ is similar to that
used for the paths sv). In fact, in view of the definition of ∼ it is immediate
to see that the application z → (z′, t) is a local homeomorphism defined on a
neighbourhood of z ∈ M̂(x) and with values in M̃j(x)× (f(xj), f(xj−1)). Now
notice that M̃j(x) is a compact topological manifold whose boundary consists
as usual of broken trajectories. This means that in case xj−1 �= x the trajectory
v is broken at xj−1 and thus z is mapped by this local homeomorphism to a
point in ∂M̃j(x)×(f(xj), f(xj−1)). Therefore, z has a semi-disk neighbourhood
in M̂(x).

b. Local study around breaking points. A slightly different argument is
needed for the points k(v, t) with v = (v1, . . . , vk) as before but with t =
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f(xj−1). The first such case corresponds to j = 2. The key observation is
that x1 has inside W u(x1) a neighbourhood U which is homeomorphic to a
disk (of dimension indf (x1)). The element v1 also has a neighbourhood V in
Mf (x, x1) which is homeomorphic to a disk. Together with the definition of ∼
this shows that k(v, t) has a neighbourhood in M̂(x) which is homeomorphic
to the product U × V × [0, 1).

To see this we study the problem locally in a neighbourhood of x1 in L.
We may assume that f is in normal form around x1. Let a = f(x1) and let
ε, δ be very small positive constants. Let W be a neighbourhood of x1 which
consists of all the points x ∈ f−1[a−ε, a+ε] that are situated on flow lines of f

whose intersection with f−1(a) is at distance less than δ from x1. We remark
that D = W s(x1) ∩ W is homeomorphic to a disk of dimension n − indf (x1),
similarly D′ = W u(x1) ∩ W is a disk of dimension indf (x1). We let Ss = ∂D

and Su = ∂D′, As = W ∩f−1(a+ε), Au = W ∩f−1(a−ε). Notice that As, Au

are respectively tubular neighbourhoods of Ss inside f−1(a+ε) and of Su inside
f−1(a−ε). Therefore, As = Ss×D′′, Au = D′′′×Su with D′′ a disk of dimension
ind(x1) and D′′′ a disk of dimension n − ind(x1). Moreover, the flow provides
a homeomorphism between A′ = As\(Ss × {0}) and A′′ = Au\({0} × Su). In
view of this we may identify both A′ and A′′ with Ss × Su × (0, δ). The set of
all paths in W which join As to Au, which are parametrized by the values of f

(similarly to the sv’s) and which coincide geometrically to portions of possibly
broken flow lines of f is identified with Ss × Su × [0, δ) (the broken flow lines
correspond to Ss × Su × {0}).

We now consider the space K(x1) = (Ss × Su × [0, δ))× [a− ε, a + ε]/ ∼′

where ∼′ is the analogue of ∼ for our paths in W . It is easy to see that the
existence of our semi-disk neighbourhood of k(v, t) inside M̂(x) follows if we
show that any point of type [(x, y, 0), a], has a similar semi-disk neighbourhood
inside K(x1). We have K(x1) ≈ Ss × (Su × [0, δ) × [a − ε, a + ε]/ ∼′′) where
∼′′ is the equivalence relation induced by (x, 0, t) ∼′′ (x′, 0, t) if t ≥ a. This
means that we reduced the problem to studying the space K ′(x1) = (Su ×
[0, δ) × [a − ε, a + ε])/ ∼′′. Recall that Su = ∂D′. It is easy to check now
that K ′(x1) is homeomorphic to the cylinder D′× [a− ε, a+ ε] from which has
been eliminated the interior and the base of a circular cone of height [a− ε, a),
whose base lies in the interior of D′ × {a − ε} and whose vertex corresponds
to (y, 0, a). This shows our claim.

An immediate adaptation of this argument also works when t = f(xj−1)
even for j > 2 and this shows that M̂(x) is indeed a compact topological
manifold with boundary.

c. Homeomorphism to a disk. To end the proof of the lemma we still need
to show that M̂(x) is homeomorphic to a disk. The idea is to construct a copy
∂′M̂(x) of ∂M̂(X) such that ∂′M̂(x) is contained in M̂(x), it is transverse to
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the paths s′v and it bounds a topological manifold M̂ ′(x) which contains ∗ and
is homeomorphic to M̂(x). Recall that a neighbourhood U of ∗ as in (31) has a
boundary that is also transverse to the paths s′v. By sliding along these paths
it follows that M̂ ′(x) is homeomorphic to a disk and as this manifold is home-
omorphic to M̂(x) this concludes the proof. Before starting this construction
we make explicit the notion of transversality used here: given a separating
hypersurface V of a topological manifold N and a path g : [−a, a] → N such
that g(0) ∈ V we say that g is transversal to V if for some neighbourhood U of
V such that U\V = U0

⊔
U1 there exists ε > 0 and i ∈ {0, 1} such that ∀t ≤ ε

we have g(−t) ∈ Ui, g(t) ∈ U1−i.
To construct M̂ ′(x)) we first fix the notation ∂(y) = Mf (x, y)×Mf (y, B),

D(y) = ∂(y) × [0, f(x)] and we let s′′v be the path v × [0, f(x)] in Mf (x, B) ×
[0, f(x)]. We now intend to construct for each y ∈ Crit(f) ∩ W u(x), y �= B a
map

fy : D(y) → Mf (x, B) × [0, f(x)]

which is a homeomorphism onto its image - we shall denote this image by D′(y)
— and has the following additional properties: fy(v, t) = (v, t) if t ≥ f(y);
s′′fy(v,t) is transverse to D′(y) at the point fy(v, t) whenever t < f(y); D′(y)
together with ∂(Mf (x, B) × [0, f(x)])\Dy bound a topological manifold with
boundary M ′

y ⊂ Mf (x, B) × [0, f(x)] which is homeomorphic to Mf (x, B) ×
[0, f(x)] and contains ∗; if (v, t) ∼ (v′, t), then fy(v, t) = fy(v′, t). The con-
struction of this auxiliary application is as follows. As Mf (x, B) is a manifold
with corners and ∂(y) is a part of the boundary of Mf (x, B) there exists a
collar neighbourhood U(y) of ∂(y) inside Mf (x, B). In particular, there exists
a homeomorphism f ′ : ∂(y)× [0, ε) → U(y) so that f ′((v, w), τ) = v#τw where
v#τw is the flow line obtained by gluing v to w at y with gluing parameter τ . Of
course, for this we need to choose a particular gluing formula (we may do this
as discussed in Appendix A in the obviously harder Floer case) and we choose
the gluing parameter in such a way that v#0w coincides with (v, w). More gen-
erally, for τ small enough and v = (v1, . . . , vi) ∈ Mf (x, x1)× . . .×Mf (xi−1, y),
w = (w1, . . . , wj) ∈ Mf (y, y1)× . . .×Mf (yj−1, B) we let v#τw be the element
(v1, . . . , vi#τw1, . . . , wj) ∈ Mf (x, x1)× . . .×Mf (xi, y1)× . . .×Mf (yj , B). As
a consequence of the parametrization of the corners of Mf (x, B) as described
in the appendix we obtain that f ′ so defined is a homeomorphism. We also no-
tice that if ((v, w), t) ∼ (v′, w′), t) with t < f(y), then (v#τw, t) ∼ (v′#τw

′, t)
and so we also have (f ′((v, w), τ), t) ∼ (f ′((v′, w′), τ), t). We now let ε′ < ε

and consider a smooth one parameter family of functions qs
y : [0, f(x)] → [0, ε′]

such that for each s ∈ [0, 1], qs
y is decreasing and smooth, qs

y|[f(y),f(x)] = 0, qs
y is

strictly decreasing on [0, f(y)], qs
y(0) ≤ ε′ and, moreover, for any fixed t, q−y (t) is

a function increasing in s and q0 ≡ 0. We now define fs
y (v, t) = (f ′(v, qs

y(t)), t)
and we let fy = f1

y .



LAGRANGIAN INTERSECTIONS AND THE SERRE SPECTRAL SEQUENCE 687

We pursue with the construction of M̂ ′(x). We let D′
s(y) = Im(fs

y )
(so that D′

1(y) = D′(y), D′
0(y) = D(y)), V s(y) =

⋃
0≤s′≤s D′

s′(y) (so that
the slice of V s(y) of height t is a tubular neighbourhood of ∂(y) in Mf (x, B)
× {t}), V s =

⋃
y �=B V s(y) and M ′

s = Mf (x, B) × [0, f(x)]\V s (so that M ′
0 =

Mf (x, B) × [0, f(x)]). Notice that, for each s > 0, and for each v ∈ Mf (x, B)
the path s′′v is transversal to ∂M ′

s. We now define M̂ ′
s = k(M ′

s), Es(y) =
k(D′

s(y) ∩ M(x, B) × [0, f(y)]), Ws(y) = k(V s(y) ∩ M(x, B) × [0, f(y)]). By
definition recall that V s(y) ∩ M(x, B) × [f(y), f(x)] = ∂(y) × [f(y), f(x)] =
D′

s(y) ∩ M(x, B) × [f(y), f(x)]. Because of this, as fs
y respects the relation

∼ and as the identifications producing Mf (x, y) × M̂(y) ⊂ ∂M̂(x) occur
only on the boundary of ∂(y) × [0, f(y)], it follows that Es(y) is a copy of
Mf (x, y) × M̂(y) which verifies Es(y) ∩ Mf (x, y) × M̂(y) = Mf (x, y) × ∗.
Clearly, Wl(y) =

⋃
0≤s≤l Es(y) and M̂ ′

s = M̂(x)\(⋃y �=B Ws(y)). The descrip-
tion of Ws(y) shows that, by starting with the y’s of lowest index, and pro-
ceeding by induction we may isotope M̂ ′

s to M̂(x) and thus these two spaces
are homeomorphic.

To conclude the proof we only need to show that the paths s′v are trans-
verse to the boundary of M̂ ′(s) and we may then take M̂ ′(x) = M̂ ′(1). This
transversality is already clear for the points on the “bottom” - the points
that belong to Mf (x, B) × M̂(B). The transversality of the paths s′′v to ∂M ′

s

for v ∈ Mf (x, B) implies that for each such v, the path s′v is transversal to
∂M̂ ′

s. As
⋃

y ∂(y) = ∂Mf (x, B), the only case that remains to be discussed

is that of transversality at the points k(v, t) ∈ ∂M̂ ′
s with v in some ∂(y).

By the description of Es(y), such a point k(v, t) belongs to Mf (x, y) × ∗y

(where ∗y is the distinguished point in M̂(y)), in particular t = f(y). We
notice that, moreover, such a k(v, t) actually belongs to Mf (x, y) × ∗y. In-
deed, a point k(v, t) ∈ ∂Mf (x, y) × ∗y has the property that there exists
x1, f(x1) > f(y) so that k(v, t) ∈ Mf (x, x1) × M̂(x1). This means that
t < f(x1) which implies k(v, t) ∈ Ws(x1) and thus k(v, t) �∈ M̂ ′

s. There-
fore, we now consider k(v, t) ∈ Mf (x, y) × ∗y. But from the transversality of
s′′v to Mf (x, y) × {w} × {f(y)} for any v = (v′, w) ∈ Mf (x, y) × Mf (y, B) we
immediately deduce the transversality of s′v in this case and this concludes the
proof of the lemma.

2.4.7. Construction of ξ. We first fix a representing chain system (re-
call Definition 2.1) sxy ∈ Sind(x)−ind(y)−1(Mf (x, y)) for the moduli spaces
Mf (x, y), x, y ∈ Crit(f). By using the description of ∂M̂(x) and proceed-
ing as in Lemma 2.2, we define, by induction on indf (x), cubical chains λx ∈
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Si(M̂(x)), x ∈ Criti(f), representing the fundamental class of (M̂(x), ∂M̂(x)).

∂λx =
∑

y

sxy × λy .(32)

Recall the map β : M̂(x) → P ′(M̂(x)), y → y and let o′ : P ′(M̂(x)) →
P ′(L) → P ′(L̃) be induced by M̂(x) o−→ L

q−→ L̃. Let also β′ = o′ ◦ β.
We now define ξ : R∗ ⊗ Z/2〈Crit(f)〉 → S∗(P ′L̃) by ξ(x) = β′(λx) for each
x ∈ Crit(f). It is clear that this map respects the relevant filtrations. Due to
(32) it is also obvious that ξ so defined is a chain map.

2.4.8. E2(ξ) is an isomorphism. By construction, ξ is a morphism of
R∗-modules so it is sufficient to show that ξ′ = E2

∗,0(ξ) is an isomorphism. For
this purpose we notice that there is a natural evaluation map Υ : P ′(L̃) → L̃.
By considering the map idL : L → L as a trivial fibration we see that Υ induces
an isomorphism Υ′ : E2

∗,0 → H∗(L̃) and that the composition Υ ◦ ξ may be
factored as

R∗ ⊗ Z/2〈Crit(f)〉 r⊗id−→ C ′(f) u−→ S∗(L̃)

where C ′(f) is the chain complex defined as C ′(f) = S∗(∗) ⊗ Z/2〈Crit(f)〉
with differential ∂′x =

∑
y r(sxy)y and with r : S∗(ΩL̃) → S∗(∗) induced

by the projection Ω′L → ∗ (as our cubical chains are normalized we have
S∗(∗) = Z/2). Given that r⊗id induces an isomorphism E2

∗,0(f) → H∗(C ′(f)),
our proof ends if we show that u induces an isomorphism in homology. Clearly,
u is defined by u(x) = Υ(β′(λx)). To prove that u induces an isomorphism
we proceed by induction. We let C ′

k be the subcomplex of C ′(f) consisting of
elements of degree at most k and we assume that uk = u|C′

k
: C ′

k → S∗(L̃k)
induces an isomorphism in homology. For each x ∈ Crit(f) the chain λx

represents the fundamental class of (M̂(x), ∂M̂(x)) and, moreover, we have
the homeomorpism indicated in (31). This implies that the couple of maps
(uk+1, uk) induces an isomorphism Hk+1(C ′

k+1, C
′
k) → H∗(L̃k+1, L̃k). By the

5-lemma this shows that uk+1 induces an isomorphism and concludes the proof
of the theorem.

3. Applications

As mentioned in the introduction the Serre spectral sequence has many
nontrivial differentials. Obviously, in view of Theorem 1.1 d. this shows that
there is an abundace of pseudo-holomorphic strips. In this section we make
explicit this statement and deduce a number of applications.

We consider here the same setting as before: (M, ω) is fixed as well as the
Lagrangian submanifolds L and L′ which are in general position and satisfy
(1) if not otherwise indicated. This condition is dropped only in Section 3.4
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where it will be replaced by requiring that L and L′ be Hamiltonian isotopic
and ω|π2(M,L) = 0.

We review shortly the other relevant notation to be used in this chap-
ter. In the presence of an almost complex structure which tames ω, J ∈
Jω, we have the moduli spaces MJ(x, y), and M′

J(x, y) of, respectively, un-
parametrized and parametrized pseudo-holomorphic strips joining the inter-
section points x, y ∈ L ∩ L′ as in §2.1.1. Moreover, M′

J =
⋃

x,y M′
J(x, y),

MJ =
⋃

x,y MJ(x, y). In case J is regular (which in the terminology used
before in the paper means that the pair (0, J) is regular), then the Gromov
compactifications MJ(x, y) satisfy (15) and the spectral sequence EF (L, L′) =
EF (L, L′; 0) is defined as in §2.2.4. We denote by Jreg the set of those ele-
ments of Jω that are regular. To simplify notation, we drop the index J if no
confusion is possible. We recall that CF (L, L′) is the usual Floer complex and
C(L, L′) is the extended complex constructed in §2.2.4. Recall also from (19)
the maps Φx,y : M(x, y) → Ω′L̃ where Ω′L̃ is the space of Moore loops and L̃

is obtained from L by contracting to a point an embedded path connecting the
points in L ∩ L′ as in §2.2.2. More explicitly, for u ∈ M(x, y), Φx,y(u) is the
curve traced by the strip u on L parametrized by the interval [0,A(x)−A(y)]
(where A is the relevant action functional - see 2.2.1) viewed as a loop on L̃.
Finally, R∗ = S∗(Ω′L̃).

3.1. Global abundance of pseudo-holomorphic strips: loop space homology.
In all this subsection we work under the assumption that (1) is satisfied. The
point of view here is global. Roughly, we show that much of the algebraic
topology of ΩL may be recovered from M. We fix the additional notation

K =
⋃
x,y

Im(Φx,y) ⊂ Ω′L̃

and we let K̂ be the submonoid of Ω′L̃ generated by K. Let k : K̂ → Ω′L̃ be
the obvious inclusion.

Corollary 3.1. If L and L′ are Hamiltonian isotopic and J ∈ Jreg, then
the morphism

k∗ : H∗(K̂; Z/2) → H∗(Ω′L̃ : Z/2)

is surjective.

Proof. In view of the definition of the coefficients axy ∈ S∗(Ω′L̃) as images
through the maps Φx,y of a representing chain system for the moduli spaces
M(x, y) (as described in §2.2.3) we see that, in fact, axy ∈ S∗(K̂). We denote
this ring by R′. Therefore, the chain complex C(L, L′) has coefficients in R′

and, in general, in the construction of the spectral sequence the ring R∗ may be
replaced by the smaller ring R′. This produces a spectral sequence EF ′(L, L′)
whose E2 term is HF∗(L, L′) ⊗ H∗(K̂; Z/2). There is an obvious natural map
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E(k) from this spectral sequence to the spectral sequence EF (L, L′). By Theo-
rem 1.1 this last spectral sequence is isomorphic to the Serre spectral sequence
Er

p,q of ΩL → PL → L. We shall prove that k∗ is surjective by induction. We
assume already shown that k∗ is surjective for ∗ < i. Let a ∈ Hi(Ω′L̃; Z/2).
As the Serre spectral sequence converges to the homology of an acyclic space
this element viewed in E2

0,i has to verify [a]r = dr[b]r ∈ Er
0,i for some r ≥ 2.

We shall use again induction here over r. Therefore, assume that for all the
elements a′ ∈ E2

0,i which have the property [a′] ∈ Im(ds) with s < r we already
know that a′ ∈ Im(k∗). Let now b =

∑
j aj ⊗xj with aj ⊗xj ∈ R′⊗Z/2〈L∩L′〉

(see §2.2.4). We know that d0(b) = 0. Therefore, the aj ’s are cycles. As they
are of degree stricly less than i it follows that we may assume that they are in
the image of k∗. Together with the description of the differential in C(L, L′)
this shows that [a]r ∈ Im(Er(k)). But this shows that there exists c ∈ E2

0,i

so that [c]r = 0 and a + c ∈ Im(k∗). However, our induction assumption on r

implies that c ∈ Im(k∗) and so a ∈ Im(k∗) and this concludes the proof.

To state a closely related result, consider the (injective) map

i : M′ → P(L, L′), i(u)(t) = u(0, t)(33)

and denote by M̃ the (compact) image of i. Consider the map e : M̃ → L̃,
e(u) = u(0, 0).

Corollary 3.2. If L and L′ are Hamiltonian isotopic, J ∈ Jreg, then
the map e induces a surjective morphism

H∗(Ωe) : H∗(Ω′M̃; Z/2) → H∗(Ω′L̃; Z/2) .

Proof. This is immediate from the previous corollary as k : K̂ → Ω′L̃
factors through Ωe : Ω′M̃ → Ω′L̃.

Remark 3.3. a. There exist many examples of maps w : X → Y so that
one of H∗(w), H∗(Ωw) is surjective but the other is not. Thus, the result at
3.2 is nontrivial.

b. As mentioned in the introduction it has been proven by Floer [7] and
Hofer [13] that H∗(e) is also surjective even in the degenerate case. It is likely
that the surjectivity at 3.2 remains true in the degenerate case.

c. Both corollaries may be viewed as stability results for moduli spaces
of pseudo-holomorphic strips: they are quite immediate for negative gradient
flow lines of Morse-Smale functions and therefore they are unsurprising when
the isotopy φ is small. However the fact that the same properties are preserved
even when making φ large is nontrivial.

We end this subsection with a different, simple topological consequence.
Its content is that, generically, due to the presence of pseudo-holomorphic
strips, the form ω “sees” much of π1(L ∪ L′).
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There exists a generic class L of lagrangians L′ which are not only transver-
sal and Hamiltonian isotopic to L as assumed till now but also have the prop-
erty that the abelian group generated by the obvious map AL,L′ | : L∩L′ → R

is of maximal rank (= #(L∩L′)). In other words, the action functional AL,L′

takes different values on each of the intersection points L ∩ L′ and, moreover,
these values are linearly independent.

Let Πω,L,L′ : π2(M, L ∪ L′) → R be defined by Iω(u) =
∫
D2 u∗ω.

Corollary 3.4. For L′ ∈ L, the image of Πω,L,L′ is an abelian group of
rank at least dim(H∗(L; Z/2)) (where H(−) denotes reduced homology).

Proof. We fix J ∈ Jreg. We will prove that there is a set {x1, x2, . . . , xm} ⊂
L ∩η L′ with m = dim(H∗(L; Z/2)) such that for each xi there exists some yi

and ui ∈ M(xi, yi) �= ∅. Given the definition of L this suffices to show the state-
ment because for ui ∈ M′(x, y) we have AL,L′(xi) − AL,L′(yi) =

∫
R×[0,1] u

∗
i ω

which shows that the values Πω,L,L′(ui) are linearly independent (over Z).
To simplify notation we shall say that x ∈ L ∩ L′ is a strip origin if

there exists y such that M(x, y) �= ∅. We now let a1, a2, . . . am be a basis
for H∗(L, Z/2). We pick chains zi ∈ CF∗(L, L′) representing respectively the
classes ai. We write zi =

∑
xi

j where xi
j ∈ L ∩η L′. Notice that if a point

x ∈ L ∩ L′ of positive degree is not a strip origin, then its differential in the
Floer complex is null so its homology class [x] ∈ HF∗(L, L′) is well-defined.
Moreover, this homology class has to be null because [x] viewed as an element
of EF 2

p,0(L, L′) survives to E∞. Because of this we may assume that each xi
j

appearing in the expression of the chains zi is a strip origin. This implies the
claim because if there are strictly less than m distinct points among the xi

j ’s,
then the family {zi} is linearly dependent which contradicts the fact that the
family {ai} is linearly independent.

3.2. Local pervasiveness of pseudo-holomorphic strips. With our machin-
ery it is not hard to deduce that through each point of L\L′ passes some
pesudo-holomorphic strip (see for example Corollary 3.6 below; this also fol-
lows from the results of Hofer and Floer mentioned in Remark 3.3 and yet
another argument has been mentioned to us by Dietmar Salamon). The point
of view here is however slightly different: what most interests us is to restrict
the type of these strips that “fill” L. We again work under the assumptions
at (1) .

We start with a useful, purely algebraic consequence of the construction
of the spectral sequence EF (L, L′). Assume that g : L → X is a continuous
map. Let ΩX → Eg → L be the pullback fibration g∗(ΩX → PX → X).
There is an obvious map of fibrations which is induced by g:
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ΩL
Ωg ��

��

ΩX

��
PL

��

g �� Eg

��
L

id
�� L

This construction may be performed also by using Moore loops instead of the
usual ones and we may as well replace L by L̃. Therefore, if we denote the
ring S∗(Ω′X) by R′′ we have a change of coefficients map g# : R → R′′.
We may obviously use this map to define a complex CX(L, L′) as in §2.2.4
which is obtained from C(L, L′) by this change of coefficients. There is also
an associated spectral sequence EFX(L, L′) into which EF (L, L′) maps by the
map induced by g#. The properties of EFX(L, L′) parallel those of EF (L, L′)
and have the same proofs. In particular, property d. becomes:

Corollary 3.5. If L and L′ are Hamiltonian isotopic and J ∈ Jreg, then
the spectral sequence EFX(L, L′) is defined and its terms of order greater than
or equal to 2 are isomorphic up to translation to the corresponding terms of
the Serre spectral sequence of the fibration ΩX → Eg → L.

For the next corollary we shall assume that L and L′ are Hamiltonian
isotopic and J ∈ Jreg. Recall that we have an isomorphism up to translation
between HF∗(L, L′) ≈ H∗(L, Z/2). To simplify notation we shall assume this
isomorphism to be degree-preserving. We shall denote by [1] ∈ HF0(L, L′) and
[L] ∈ HFn(L, L′) the generators of the respective homology groups. There is
an obvious evaluation map E : M′ → L which is defined by E(u) = u(0, 0) (it
verifies E = e◦i with i, e as in (33)). For two elements x =

∑
i cixi ∈ CF (L, L′),

y =
∑

j djxj ∈ CF (L, L′) we let

R(x, y) =
⋃

ci �=0, dj �=0

E(M′(xi, xj)) .

Let a be a representative of the fundamental class [L]. Consider also an
element b ∈ CF0(L, L′) which is the sum of all the intersection points which
appear with nonvanishing coefficients in some representatives of the homology
class [1].

Corollary 3.6. In the setting above, the set R(a, b) is dense in L. In
particular, each x ∈ L\L′ belongs to some pseudo-holomorphic strip of Maslov
index at most n.

Proof. Assume that the image of R(a, b) avoids a small open disk D ⊂ L.
This implies that R(a, b) ⊂ L\D. We may assume that the path w used
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to construct L̃ out of L intersects D in just a point and that for all x with
μ(a, x) < n, D ∩ R(a, x) = ∅ (R(a, x) is nowhere dense in this case). We
intend to apply Corollary 3.5 to the map g : L → D/∂D = Sn defined by
contracting the closure of the complement of D to a point. The basic algebraic
fact that we will be using is that in the Serre spectral sequence of the induced
fibration ΩSn → Eg → L the differential dn verfies dn[L] = [1] ⊗ l where l is
the homology class of the bottom sphere Sn−1 ↪→ ΩSn (this inclusion is the
adjoint of the identity). By Corollary 3.5 the same statement is true for the
spectral sequence EFSn(L, L′). Let C′

Sn(L, L′) be the subcomplex of CSn(L, L′)
which is generated by {x ∈ L ∩ L′ : μ(a, x) > 0} ∪ {a}. The index filtration
defines a spectral sequence EF ′

Sn(L, L′) which obviously maps into EFSn(L, L′)
by the map E(i) induced by the inclusion i : C′

Sn(L, L′) ↪→ CSn(L, L′). As a

represents the fundamental class in CFn(L, L′) it follows that we also have
dn([a]) = [1] ⊗ [l] in EF ′

Sn(L, L′).
Consider also the subcomplex C′′

Sn(L, L′) which is generated by {x ∈ L ∩
L′ : μ(b, x) > 0}. The quotient complex CSn(L, L′) = C′

Sn(L, L′)/C′′
Sn(L, L′) is

well-defined and it admits an obvious filtration such that the quotient map p :
C′

Sn(L, L′) → CSn(L, L′) preserves filtrations. Therefore, it induces a morphism
of spectral sequences E(p) : EF ′

Sn(L, L′) → EFSn(L, L′). We notice that
(E(p))20,0 is injective and so, in EFSn(L, L′), we have again dSn([a]) = [1] ⊗ l.
But, if in C(L, L′) we have da =

∑
i kay ⊗ y, then the differential of a in

CSn(L, L′) is given by dSna =
∑

i g
#(kay)⊗ y and as by assumption R(a, b) as

well as R(a, x) for μ(a, x) < n avoid D it follows that all the critical points y

which appear with nonzero coefficients in the expression of some representative
of 1 have g#(kay) = 0 which contradicts dSn([a]) = [1] ⊗ l �= 0.

For the next result recall from the introduction that, for any two La-
grangians L, L′ ⊂ M (not necessarily transversal), we define as in [1], [25] the
isotopy energy of L and L′ by

∇(L, L′) = inf
φ∈H,φ(L)=L′

||φ||H

where H is the group of Hamiltonian diffeomorphisms with compact support
and, as before, || − ||H is Hofer’s energy (see (29)). In case L and L′ are not
isotopic we take ∇(L, L′) = ∞. It is easy to see that ∇(−,−) is symmetric and
verifies the triangle inequality. Moreover, it has been shown by Chekanov [1]
following earlier work by Oh [25] that ∇(−,−) is nondegenerate for arbitrary
compact lagrangians in tame symplectic manifolds thus providing a metric on
any (Hamiltonian) isotopy equivalence class of Lagrangians.

Corollary 3.7. Suppose that L, L′ ⊂ M are transversal, simply-con-
nected lagrangians embedded in the symplectic manifold (M, ω) with ω|π2(M) =
c1|π2(M) = 0. If L and L′ are Hamiltonian isotopic, then for any almost
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complex structure J ∈ Jω and for any point x ∈ L\L′ there exists a J-pseudo-
holomorphic strip u : R × [0, 1] → M, u(R, 0) ⊂ L, u(R, 1) ⊂ L′ so that
x ∈ Im(u), ∫

R×[0,1]
u∗ω ≤ ∇(L, L′) .

Moreover, when J ∈ Jreg, there is a strip u as above which also verifies
μ(u) ≤ n.

Proof. The Gromov compactness theorem applies to sequences un of
Jn-holomorphic curves where Jn ∈ Jω is a sequence of almost complex struc-
tures which converges towards another almost complex structure J ∈ Jω [24].
As any almost complex structure belonging to the set Jω may be viewed as
the limit of a sequence of regular almost complex structures, this implies that
it is sufficient to prove the statement when J ∈ Jreg and so we assume this for
the rest of the proof.

Recall the definition of the energy EL,L′,H(u) of the elements of u ∈
M′

L,L′,J,H from formula (11). If u ∈ M′
L,L′,J,0 we have EL,L′(u) =

∫
R×[0,1] u

∗ω.
Let

Ma
L,L′,J,H = {u ∈ M′

L,L′,J,H : EL,L′,H(u) ≤ a, μ(u) ≤ n} .

Our main interest is in Ma = Ma
L,L′,J,0. We now assume that φ is a Hamil-

tonian isotopy such that L′ = φ(L). Given that the set of energies of the
elements in M′ is discrete it is sufficient for our statement to show that the
set E(M||φ||H ) is dense in L and this is what we shall show next.

Let f : L → R be a Morse function with a single maximum P and a single
minimum Q and let f(P ) = ε > 0, f(Q) = 0. We pick a riemannian metric
α so that the pair (f, α) is Morse-Smale. Let f, Lf , Jf be as in §2.4.2. As in
§2.4.4 we have homeomorphisms of moduli spaces inducing an identification of
chain complexes:

lf : Cf,α → CJf

(L, Lf ; 0) .

Notice also that the naturality results in §2.1.3 show that AL,Lf
(x) = f(x) for

all x ∈ Crit(f) = L ∩ Lf . Fix some small δ > 0. By taking ε sufficiently small
we see that there exists a Hamiltonian G : [0, 1] × M → R which is constant
outside a compact set and where Lf = φG

1 (L′) and

Var(G) = sup
x,t

G(t, x) − inf
x,t

G(t, x) ≤ ||φ||H + δ .

By adding an appropriate constant toGwe may assume that infx,t G(t, x)=ε.
From (30) we see that we have homeomorphisms of moduli spaces bG : ML,L′,J,0

→ ML,Lf ,J ′ and an identification of chain complexes (which is action-preserving;
see §2.1.3):

bG : CJ(L, L′; 0) → CJ ′
(L, Lf ;G)

where (φG
1 )∗(J ′) = J .
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Thus, in view of the definition of bG, the image of Ma by the evaluation
map coincides with the image of Ma

L,Lf ,J ′,G and, therefore, to show the claim
it is enough to prove that E(Ma

L,Lf ,J ′,G) is dense (recall also that the energy
and the action are related by formula (28)).

Let Δ = Var(G). We consider also the Hamiltonian G′ = G−Δ− 2ε. We
can then define monotone homotopies from G to 0 and from 0 to G′. Let CF =
CF (L, Lf ;G) be the Floer complex and, similarly, let CF ′ = CF (L, Lf ;G′)
and C = CF (L, Lf ; 0) = Cf,α.

It follows from equation (26) and as in the proof of Theorem 2.10 that the
monotone homotopies mentioned above induce morphisms of chain complexes:

V : CJ ′
(L, Lf ;G) → CJf

(L, Lf ; 0) , V : CF → C

and
W : CJf

(L, Lf ; 0) → CJ ′
(L, Lf ;G′) , W : C → CF ′

which are not action-increasing.
For an element x ∈ CF , x =

∑
i cixi with ci ∈ Z/2 and xi ∈ I(L, Lf ;G)

we let AG(x) = maxci �=0 AL,Lf ,G(xi) and AG(x) = minci �=0 AL,Lf ,G(xi). We
define similarly AG′(x′) for x′ ∈ CF ′. Let now a =

∑
i riai ∈ CF be a chain

representative of the fundamental class [L] such that AG(a) is minimal among
all such representatives. Notice at this point that the complexes C(L, Lf ;G′)
and C(L, Lf ;G) are canonically identified (and similarly for CF and CF ′). We
distinguish elements of the two complexes by indicating this identification as
C(L, Lf ;G) � x → x′ ∈ C(L, Lf ;G′) and we clearly have AG(x) = AG′(x′) +
Δ + 2ε. Let c′ ∈ CF ′ be defined by c′ = W (P ) (we recall that P is the
unique maximum point of f). Then c is also a representative of [L] and,
therefore, AG(c) ≥ AG(a). At the same time, as W is not action-increasing,
we have AG′(c′) ≤ AL,Lf (P ) = f(P ) = ε which means that AG(a) ≤ Δ + 3ε ≤
||φ||H + δ + 3ε.

For two elements x, y ∈ CF with x =
∑

cixi, y =
∑

diyi we put RG(x, y)
=

⋃
i,j E(M′

L,Lf ,G(xi, yj)). For the proof of the corollary it suffices to show
that the element b =

∑
i bi ∈ CF defined as the sum of all the generators bi

of CF with μ(bi) = 0, AG(bi) ≥ 0 has the property that the set RG(a, b) is
dense in L. Indeed, each element in M′

L,Lf ,G(ai, bj) has energy bounded by
AG(a) − AG(b) ≤ ||φ||H + δ + 3ε and we may take δ and ε arbitrarily small.
Because the possible energy values form a discrete set this implies the claim.

To show the density of RG(a, b) we proceed in a way similar to that of
Corollary 3.6. Therefore, we assume that this set as well as all RG(a, x) for
μ(a, x) < n are disjoint from a disk D ⊂ L and we consider the associated map
g : L → D/∂D = Sn and the associated change of coefficients g# : R → R′′.
We use the same conventions as in Corollary 3.5 and to shorten notation we let
C1 = CJ ′

Sn(L, Lf ;G), C(f) = CJf

Sn(L, Lf ; 0). Consider the subcomplex C0 ↪→ C1

which is generated by the elements x ∈ I(L, Lf ;G) such that AG(x) < 0 and
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consider also the quotient C2 = C1/C0. We notice that due to the monotonicity
of the homotopy inducing V the map VSn factors as C1

V ′
−→ C2

V ′′
−→ C(f) where

the first map is the passage to quotient. Both V ′ and V ′′ respect filtrations and
thus they induce spectral sequences morphisms EF (V ′) : EFSn(L, Lf ;G) →
EF (where EF is the spectral sequence induced by the degree filtration on C2)
and EF (V ′′) : EF → ESn(f). The composition of these two morphisms is an
isomorphism for r ≥ 2 and as in ESn(f) we have dn[L] = [1]⊗[l] (with l the class
of the bottom sphere in Hn−1(ΩSn) it follows that dn[a] = k ⊗ [l] with k �= 0
in EF . But the fact that E(RG(a, b)) avoids D implies that all the coefficients
gi ∈ R of the bi’s in the expression of the differential of da ∈ CJ ′

(L, Lf ;G)
have the property that g#(gi) = 0 and thus we arrive at a contradiction.

Remark 3.8. a. There is a certain overlap between Corollary 3.7 and
Corollary 3.6. However, the choice of the element a in this last corollary is less
restrictive than in the proof of 3.7.

b. Given a manifold Nn, the degree one map N → Sn, produced by
collapsing onto Dn/∂Dn where Dn is a closed disk in N , is the simplest possible
example of a Thom-Pontryaguin map. From this point of view, Corollaries 3.6
and 3.7 are truly immediate consequences of the main theorem (compared to
this theorem, the only new idea appears in the proof of 3.7).

c. There exist some other methods to produce Floer orbits joining the
“top and bottom classes” in the Floer complex. An interesting such approach
is provided by Schwarz [32], [31] and is based on the pair-of-pants product.
This suggests a relation between our invariant and this product. Obviously,
such a relation is also to be expected for purely topological reasons.

3.3. Nonsqueezing. In this subsection we shall prove a number of geometric
consequences of the previous results.

We consider two closed Lagrangians L, L′ ⊂ M . We assume that L and
L′ intersect transversely and let J ∈ Jω. We do not assume for now that L

and L′ are Hamiltonian isotopic. Recall from, §1.3.3 and from equation (22)
the following notation in which the areas are computed with respect to the
riemannian metric induced by J .

- S(x, y) is the set of C∞ strips joining x, y ∈ L ∩ L′.

- aL,L′(x, y) is the infimum of the areas of the strips in S(x, y).

- ak(L, L′;J) is the minimal area of a pseudo-holomorphic strip of index
k.

- Ak(L, L′;J) is the maximal area of such a strip (these numbers are taken
to be infinite if no such pseudo-holomorphic strips exist).
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- ε(L, L′;J) = ε(L, L′;J, 0) is the minimal energy of some element in
M′

L,L′,J (this number is taken to be infinite if M′
L,L′,J is void). We de-

fine another pair of associated numbers by ε(L, L′) = supJ∈Jreg
ε(L, L′;J)

and ε(L, L′) = infJ∈Jreg ε(L, L′;J).

- δ(L, L′) is the maximal radius of a standard symplectic ball B(r) which
is symplectically embedded in M with an image disjoint from L′ and so
that the image of R

n ∩ B(r) is included in L.

These notions are well-defined independently of the connectivity condi-
tions in (1) but for the remainder of this subsection we assume that these
conditions are satisfied.

Remark 3.9. a. The area of an element of M′
L,L′,J coincides with its en-

ergy and also coincides with its symplectic area and, moreover, if ML,L′,J(x, y)
�= ∅, then aL,L′(x, y) = EL,L′,J(u), ∀u ∈ M′

L,L′,J(x, y).
b. As has been observed by François Lalonde, the value of δ(L, L′) is not

changed if to its definition we add the condition that the image of the center of
B(r) is equal to some fixed point x ∈ L. This is because if e : B(r) → M is an
embedding as required and such that e(0) = y, then we may find a Hamiltonian
isotopy that carries y to x, which is supported in the neighbourhood of a path
joining y to x inside L and which sends L to itself. Indeed, as L is compact,
by dividing the path joining y to x into small enough pieces, we may assume
that both x and y belong to a standard coordinate chart ressembling (Cn, Rn),
x, y ∈ R

n, and in this situation the problem is trivial.
c. We have the obvious inequalities: ε(L, L′) ≥ min{AL,L′(x)−AL,L′(y) :

x, y ∈ L ∩ L′,AL,L′(x) > AL,L′(y)} > 0 .

From Corollary 3.6 and Remark 3.9 c. we deduce that, if, in addition, L

and L′ are Hamiltonian isotopic and J ∈ Jreg then:

∞ > An(L, L′;J) ≥ an(L, L′;J) ≥ ε(L, L′;J) ≥ ε(L, L′) > 0 .(34)

Under the same assumptions, we obtain from the proof of Corollary 3.7
that

∇(L, L′) ≥ an(L, L′;J) .(35)

More interesting inequalities follow.

Corollary 3.10. Assume L, L′ are two simply-connected Lagrangian
submanifolds of (M, ω) and suppose ω|π2(M) = 0 = c1|π2(M).

i. If L and L′ intersect transversely and J ∈ Jreg, then

∇(L, L′) ≥ π

2
δ(L, L′)2 ,

An(L, L′;J) ≥ π

2
δ(L, L′)2 .
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ii. Additionally, suppose that L′′ is another Lagrangian transversal to L and
assume J ′ is another almost complex structure such that CJ ′

(L, L′′) is
defined. If CJ ′

(L, L′′) does not admit CJ,η(L, L′) as a retract (for some
choice of η), then

∇(L′, L′′) ≥ ε(L, L′;J)/4 .

In particular, the energy needed to diminish the number of intersection
points between L and L′ by a Hamiltonian isotopy is at least ε(L, L′)/4.

Proof. The proof of i. is a rapid consequence of Corollary 3.7 combined
with an argument classical in symplectic topology since the work of Gromov.
We assume L and L′ Hamiltonian isotopic by an isotopy φ. Fix a (standard)
ball B(r) and an embedding e : B(r) → M as in the definition of δ(L, L′).
Thus e(B(r)) ∩ L′ = ∅, e−1(L) = R

n ∩ B(r), e(0) = x ∈ L. Fix a small
δ > 0. There exists an almost complex structure J ∈ Jω on M such that
e∗J |B(r−δ) = J0 where J0 is the canonical almost complex structure on B(r)
(in fact, J is constructed by extending the push forward of J0). Corollary 3.7
shows that there exists a J-pseudo-holomorphic strip u ∈ M′

L,L′,J that passes
through x and verifies

∫
R×[0,1] u

∗ω ≤ ||φ||H , μ(u) ≤ n (even with μ(u) = n after
possibly perturbing x in L by an arbitrarily small amount). We now consider
v = e−1(u∩B(r−δ)). This is a J0-pseudo-holomorphic curve in B(r−δ) whose
boundary lies on ∂B(r−δ)∪R

n and whose area is bounded from above by ||φ||H .
By analytic continuation, this curve extends to a J0-pseudo-holomorphic curve
v whose boundary is contained in ∂B(r− δ), which contains 0 and whose area
is the double of that of v. By the classical isoperimetric inequality we get that
the area of v is at least π(r − δ)2. Thus the area of u is at least π(r − δ)2/2
and this shows ||φ||H ≥ πr2/2 and implies the inequalities at the first point.

Point ii. is a reformulation of Corollary 2.12.

Remark 3.11. Point i. implies that ∇(−,−) is nondegenerate (in our set-
ting): indeed, if L �= L′′ then we may find a small symplectic ball B(r) em-
bedded in M as in the definition of δ(−,−). If L and L′′ are not transversal
we may perturb L′′ to a Lagrangian L′′′ which is transversal to L without
touching B(r). Therefore, using the triangle inequality, we have ∇(L, L′′) ≥
πr2/2− δ(L′′, L′′′). As the perturbation of L′′ can be made as small as needed
we get that ∇(L, L′′) > 0.

We conjecture that the inequality on the left in Corollary 3.10 i. is true for
any pair of closed Lagrangian submanifolds of a closed symplectic manifold.
We shall prove it in the next section under weaker assumptions than (1).

3.4. Relaxing the connectivity conditions. There are some obvious exten-
sions of our construction - for example by using the orientations of the various
moduli spaces involved we could use Z coefficients instead of Z/2 coefficients.
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The purpose of this subsection is to discuss a different extension which
is quite useful. This concerns replacing the rather stringent connectivity re-
quirements in (1) by the assumption that L and L′ are Hamiltonian isotopic
and

ω|π2(M,L) = 0 .(36)

As we shall see, adapting the construction of our invariant to this setting
turns out to be reasonably straightforward even if the result of the construction
is less elegant than before (a reason that has made us postpone this variant of
the construction till this moment). As a consequence, the proofs of Corollaries
3.7 and 3.10 i. remain valid in this case and therefore we obtain the following
strengthening of these two results.

Corollary 3.12. Assume that Ln ⊂ (M2n, ω) is a closed Lagrangian
submanifold such that ω|π2(M,L) = 0. If L′ ⊂ M is a second Lagrangian in
the same Hamiltonian isotopy class as L, then for each point x ∈ L and each
almost complex structure structure J ∈ Jω there exists a pseudo-holomorphic
strip u ∈ M′

L,L′,J such that x ∈ Im(u),
∫

u∗ω ≤ ∇(L, L′) and, additionally,
when J ∈ Jreg, μ(u) ≤ n. In particular, ∇(L, L′) ≥ π

2 δ(L, L′)2 and, moreover,
if J ∈ Jreg we also have π

2 δ(L, L′)2 ≤ An(L, L′).

Remark 3.13. As in Remark 3.11, the inequality in the last corollary
recovers (under the assumption ω|π2(M,L) = 0) Chekanov’s result claiming
that ∇(L, L′) is a distance on the Hamiltonian isotopy class of L. Moreover,
the same inequality also implies that for any symplectic manifold M with
ω|π2(M) = 0, the disjunction energy of a subset A ⊂ M is greater than half the
Gromov radius of A, a result proven for all symplectic manifolds by Lalonde and
McDuff [18]. Indeed, for this last result, assume that φ is a Hamiltonian isotopy
of M that separates A from itself. Suppose also that A contains a standard
ball B(r) or radius r. We may assume that M ′ = graph(φ) ⊂ (M×M, ω⊕−ω)
intersects the diagonal Δ transversely. The fact that φ separates A from itself
implies that B(r) × B(r) is disjoint from M ′. Given that B(r) × B(r) con-
tains a standard 4n-dimensional ball B′(r) of radius r centered on Δ and such
that B′(r) ∩ Δ is included in the image of R

2n, Corollary 3.12 implies that
||φ||H ≥ π

2 r2.

Proof. We start by noting that no bubbling is possible under assumption
(36). As in the proof of Corollary 3.7, to prove our claim it is enough to show
that for any regular pair (H, J) where J ∈ Jω, H : [0, 1]×M → R, φH

1 (L) = L′,
and for any x ∈ L there exists u ∈ M′

L,L′,J,0 such that
∫

u∗ω ≤ Var(H),
μ(u) ≤ n and x ∈ Im(u) (the relevant moduli spaces as well as the notion of
regular pairs are defined in this setting in the same way as in §2.1).
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We fix such a regular pair (H, J) and start to adapt the construction of
EF (L, L′) to our new setting.

3.4.1. The action functional. Consider an additional Hamiltonian G :
[0, 1] × M → R. We first verify that the action functional AL,L′,G from (8)
continues to be well defined in our new setting. Indeed, let η0 = z0 ∈ L ∩ L′

such that the path (φH
t )−1(z0) is null in π1(M, L). We need to show that

if x : [0, 1] → Pz0(L, L′) is a path joining z0 to x ∈ Pz0(L, L′), then the
expression in (8) only depends on x and not on x. This obviously comes down
to showing that

∫
x∗ω only depends on x. For this we use a Hamiltonian isotopy

φH′
inverse of φH such that φH′

1 (L′) = L and the map bH′ : Pz0(L, L′) →
P∗(L, L) defined by (bH′(x))(t) = φH′

t (x(t)) as in §2.1.3. By applying the
action functional computation in §2.1.3 we see that proving that

∫
x∗ω only

depends on x is equivalent to showing that for any x′ : [0, 1] → P∗(L, L) with
x′(0) = z′0 = bH′(z0) the integral

∫
(x′)∗ω only depends on x′ = x′(1). But

now as [z′0] = 0 ∈ π1(M, L) we consider d : [0, 1] → P∗(L, L) which contracts
z′0 to the constant path and if x′′ is a second path with the same ends as x′,
then we may consider the concatenation d#x′#(x′′)−1#d−1 and we notice that
this represents geometrically a map defined on a disk whose boundary rests
on L. Therefore, the integral of ω on this disk vanishes and this implies that∫

(x′)∗ω =
∫

(x′′)∗ω.

3.4.2. The Maslov index. The main other difficulty that remains to be
solved is that, when (36) replaces (1), the Maslov index of a strip u ∈ M(x, y)
as defined in §2.1.2 does not only depend on the ends of the strip, x, y. The
space Pz0(L, L′) is not in general simply connected. We let Π = π1(Pz0(L, L′)).
There is a natural morphism μ : Π → Z which is defined as follows: we fix
x ∈ I(L, L′;G) and we consider a C∞ path γ : [0, 1] → Pz0(L, L′) such that
γ(0) = x = γ(1) and [γ] = g ∈ Π. We then put μ(g) = μ(γ) (where μ(γ) is
computed by viewing γ as a “strip” joining x to x and by using the method
described in §2.1.2). It is easy to see that this is well-defined and that it defines
a homomorphism. Let π be the image of this homomorphism (obviously π is
isomorphic to Z or trivial) and let Ker(μ) be its kernel. There exists a regular
covering P̃ of Pz0(L, L′) with covering projection p : P̃ → Pz0(L, L′), covering
group equal to π and such that π1(P̃) = Ker(μ).

Denote Ĩ(L, L′, G) = p−1(I(L, L′; η0, G)) and let x, y ∈ Ĩ(L, L′, G). We
define μ(x, y) = μ(u) where u ∈ S(p(x), p(y)) verifies u = p(u′) with u′ :
[0, 1] → P̃ a path joining x to y. Notice that with this definition we have
μ(x, y) = μ(gx, gy) and μ(gx, y) = μ(g) + μ(x, y) for any g ∈ π (we consider
that π acts on P̃ on the left). Fix x0 ∈ Ĩ(L, L′, G). We also define an absolute
Maslov index for the points y ∈ Ĩ(L, L′, G) by letting μ(y) = μ(y, x0); clearly
this depends on the choice of x0.
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We end this sub-subsection with a remark that will be useful later on.
There exists a natural map jL : L → Pz0(L, L′) which is defined by jL(x) =
φH

t (x). This map has the property that l ◦ jL = idL where l(γ) = γ(0).
Therefore, we may view π1(L) as a subgroup of Π. The remark in question is
that jL(π1(L)) ⊂ Ker(μ). To verify this, notice that this property is homotopy
invariant and so it is sufficient to check it in case L′ is close to L and is the
image of some df where f : L → R is some Morse function which is C2-small.
In this case the relative Maslov index agrees with the relative Morse index and
so only depends on the ends of strips and not on the strips themselves.

3.4.3. The moduli spaces. We pursue the construction by defining for
x, y ∈ Ĩ(L, L′, G) the moduli spaces

NL,L′,J,H(x, y) = {u ∈ C∞(R, P̃) : (p ◦ u) ∈ ML,L′,J,G(p(x), p(y)),

u(−∞) = x, u(+∞) = y}.
These moduli spaces behave in a way perfectly similar to the behaviour of
M(x, y) (when condition (1) is satisfied) as described in §2.1.2, §2.1.3 and
§2.1.4. In particular, the manifolds with corner structures of their compacti-
fications remain true (the proof discussed in Appendix A applies in this case
without modification). We also have, 0 < EL,L′,G(p ◦ u) = A(p(x)) −A(p(y))
when u ∈ N (x, y), μ(x, y) − 1 = dim(N (x, y)), and the formula

∂N (x, y) =
⋃
z

N (x, z) ×N (z, y)

remains valid. In particular, we claim that only a finite number of non-
trivial terms appear in this union. This is because for any B > 0 and any
x, y ∈ I(L, L′; z0, G) there is at most a finite number of homotopy classes [u] of
paths in Pz0(L, L′) that join x to y and are represented by strips u ∈ M(x, y)
with EL,L′,G(u) ≤ B (otherwise, by passing to a convergent subsequence of
strips, each of a different homotopy class, Gromov compactness would be con-
tradicted). This means that, for any x ∈ Ĩ(L, L′, G), y ∈ I(L, L′; η0, G) there
are at most a finite number of points z ∈ p−1(y) such that N (x, z) �= ∅.
As the number of points in I(L, L′; η0, G) is finite this means that, for fixed
x ∈ Ĩ(L, L′, G), there are only finitely many nonvanishing spaces N (x, z) which
implies the claim.

The spaces N (x, y) have the additional property that they are equivariant
in the sense that the left action of π induces a homeomorphism N (x, y)

g−→
N (gx, gy) for any g ∈ π.

3.4.4. The extended Floer complex and the spectral sequence. The next
step is to construct an extended Morse complex by following the method in
§2.2. We choose elements x̃ ∈ p−1(x) for each x ∈ I(L, L′; η0, G) so that all the
other elements in p−1(x) can then be uniquely written as gx̃, g ∈ π. We want to
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construct a representing chain system sxy ∈ Sμ(x,y)−1N (x, y), x, y ∈ Ĩ(L, L′, G)
for the moduli spaces N (x, y). We consider a finite, increasing sequence of
strictly positive numbers Δ1,Δ2, . . . ,Δq such that for any a, b ∈ I(L, L;G)
there exists an i verifying |A(a) − A(b)| = Δi. Assume by induction that
the sxy have been constructed for all x, y such that A(p(x)) − A(p(y)) ≤ Δk.
We then consider a couple x̃, y such that A(p(x̃)) − A(p(y)) = Δk+1 and
N (x̃, y) �= ∅ (there are finitely many such couples as mentioned before). We
proceed as in Lemma 2.2 to construct sx̃y and we then define s(gx̃)(gy) to be
g(sxy).

To continue with the construction we fix a map s : L → X such that
X is simply connected and s carries the 0-ends of the paths in I(L, L′;G)
to a distinguished base-point ∗ in X (in the original construction the role of
X was played by L̃). In our applications s will be a degree-one map (and
so X = Sn). We have an obvious map s̃ : P̃ p−→ Pz0(L, L′) l−→ L → X

(where l(γ) = γ(0)). This map takes the representing chain system sxy to
cubical chains uxy ∈ S∗(Ω′X). The advantage of using S∗(Ω′X) with X simply
connected is that Z[π] acts trivially on Ω′X. Moreover, this loop space is
connected in contrast to ΩL if π1(L) �= 0. We also notice uxy = u(gx)(gy) for
all g ∈ π.

Denote by RX
∗ the ring S∗(Ω′X) and let R̃ = RX

∗ ⊗ Z[π] be graded as a
tensor product and endowed with the differential coming from the first factor.
For x, y ∈ I(L, L′, G) consider vxy ∈ R̃ defined by vxy =

∑
ux̃g(ỹ) ⊗ g. The

extended Floer complex in this situation will be denoted by C̃J,ζ(L, L′;G). It is
a free R̃- chain complex with generators the elements of I(L, L′, G). Its grading
is defined as follows. Recall that we have already fixed an absolute index for
the points in Ĩ(L, L′, G). As the generators of Z[π] ⊗ Z/2〈I(L, L′;G)〉 are in
bijection with the elements in Ĩ(L, L′, G) this absolute index gives a grading to
Z[π] ⊗ Z/2〈I(L, L′, G)〉 and the grading on C̃ is the canonical tensor product
grading (this is compatible with the action of R̃ because μ(gx, y) = μ(g) +
μ(x, y)). Its differential is defined by dx =

∑
y vxy ⊗ y (since uxy = u(gx)(gy) it

is easily seen that d2 = 0). We denote by | − | the grading defined before and
we let F k = {a ∈ Z[π] ⊗ Z/2〈I(L, L′, G)〉 : |a| ≤ k}.

The spectral sequence in this more general setting, ẼF (L, L′;G), is in-
duced by the filtration F̃ kC̃ = RX

∗ ⊗F k. This spectral sequence is not anymore
a first quadrant spectral sequence in general but rather an upper semi-plane
sequence. It is however a rather well-behaved spectral sequence because π acts
by translation parallel to the x-axis on this sequence and, as consequence of
the fact that C̃ is a free, finitely generated RX

∗ ⊗Z[π]-module, the sequence is
equivariant with respect to this action (in the sense that dr(ga) = gdra).

3.4.5. The Morse case. It is easy to see that all the other properties
of EF (L, L′;G) — with the proofs provided in §2.3 — extend to the case of
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ẼF (L, L′;G) without difficulty (the key point of course being that the action
functional continues to be well-defined and it is equivariant with respect to the
action of π). In particular, the pages of order greater than or equal to 2 of the
spectral sequence are invariant up to translation and as the isomorphisms in
question are also naturally π-equivariant we obtain that ẼF r(L, L′), r ≥ 2 is
an invariant up to translation which is π-equivariant. In particular ẼF r(L, L′)
is isomorphic up to translation for r ≥ 2 to the analogue spectral sequence
arising from a Morse function on L. Therefore, the last stage consists in
detecting what the output of this construction in the Morse function context
(similar to §2.4.5) is. Consider the pull-back covering of L which is induced
from P̃ → Pz0(L, L′) by the map jL : L → Pz0(L, L′). We denote this covering
by p : L̂ → L. As jL(π1(L)) ⊂ Ker(μ), this covering is trivial. Therefore, L̂ is
homeomorphic to π × L.

Fix a Morse function f : L → R and let f̂ = f ◦ p. Moreover, con-
sider the fibration Ω′X → Ê → L̂ which is the pullback of the fibration
ζ : Ω′X → P ′X → X over the map s ◦ p (recall that we have fixed s : L → X

in Section 3.4.4). This fibration consists simply of π-copies of the fibration
Ω′X → E → L which is the pull-back of ζ over s. Let EFX be the Serre spec-
tral sequence of this last fibration. The argument in §2.4.5 immediately implies
that the spectral sequence constructed by following the method above in this
Morse case - as described in Section 2.4.3 when (1) is satisfied - is isomorphic
up to translation to the spectral sequence Z[π] ⊗ EFX .

Therefore, when r ≥ 2, we have a π-equivariant isomorphism up to trans-
lation between ẼF r(L, L′) and Z[π] ⊗ EF r

X .

3.4.6. End of the proof. Once the machinery above is constructed we take
X = Sn and s : L → Sn to be a degree-one map and the proof in Corollaries
3.7 and 3.10 i. proceed without change.

Appendix A.
Structure of manifolds with corners on Floer moduli spaces

A.1. Introduction. Let (M, ω) be a symplectic manifold which is convex
at infinity and let L and L′ be two simply connected compact Lagrangian
submanifolds in M . The symplectic form ω will be supposed to vanish on
π2(M), so that there are no symplectic spheres in M , nor symplectic disks
attached to L or to L′. Similarly, we assume that the first Chern class c1(M)
vanishes on π2(M) so that the Maslov index of Floer trajectories only depends
on the ends of the trajectories. Suppose moreover that L and L′ intersect
transversally.

The purpose of this section is to endow the moduli spaces, M(x, y), of
Floer trajectories - pseudo-holomorphic strips, in our case - with the topological
structure of “manifolds with corners” (see Definition A.3). In [8], A. Floer
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introduced the gluing construction to treat the case of relative index 1. His
work extends almost verbatim to the case of higher relative indexes, but some
particular care is needed when the number of breaking points is bigger than
one. In this case, Floer’s argument — as he described it in [10] (Proposition
2d.1.) — only provides stratum by stratum homeomorphisms, i.e. local maps
of the form

M(x0, xi1) × · · · ×M(xir
, xk) × (0, 1)r ϕi1,...,ir−−−−−→ M(x0, xk),

instead of a map defined up to the boundary, i.e. a local map of the form

M(x0, x1) × · · · ×M(xk−1, xk) × [0, 1)k−1 ϕ−→ M(x0, xk)

where the “k-fold broken” trajectories are identified with elements of the form
(u1, . . . , uk)×{0} and the map ϕ provides a “cornered neighborhood” of these
trajectories in the sense that ϕ preserves the natural stratifications on the two
sides. To build this last map out of the former ones, some gluing compatibility
conditions have to be fulfilled. Verifying these conditions is not obvious, in
essence, because the gluing construction relies on an application of an implicit
function theorem. The question of defining some structure on moduli spaces of
pseudo-holomorphic curves, at least such as to produce a (virtual) fundamental
class, appears as a key point in most applications of pseudo-holomorphic curves
to symplectic geometry, and, in particular, in the definition of Gromov-Witten
invariants.

This point has been treated (both in the context of Floer homology and
Gromov-Witten invariants) by different authors ([22], [28], [12], [21], [33]) in a
very general setting (allowing bubbles). However, this goes far beyond what
is required for the present paper, and we have not been able to find in the
literature a simple and explicit proof of the “manifold with corners” structure
for the moduli spaces of pseudo-holomorphic strips. For this reason as well as
to make the paper self-contained, we include one here.

We make use of now classical ideas and techniques introduced by different
authors ([8], [24], [30], [34], [22]) and we shall follow rather closely the work of
J.-C. Sikorav [34] about the gluing construction for compact Riemann surfaces,
and adapt it to our strips. The more recent and much more general technique
introduced in [15] offers a more conceptual approach to gluing problems of this
type.

Recall that the action functional A is defined as follows : choose a path
γ0 from L to L′, let Pγ0(L, L′) be the component of γ0 in P(L, L′) and for
γ ∈ Pγ0(L, L′), set

A(γ) = −
∫

[0,1]2
γ̄∗ω

where γ̄ is a path from γ0 to γ in P(L, L′).
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Let J be an almost complex structure that tames ω. For x+, x− ∈ L∩L′,
a parametrized Floer trajectory from x− to x+ is a map u : Σ → M , where

Σ = {z = s + it ∈ C, 0 ≤ im(z) ≤ 1}
such that

∂̄Ju := du + J(u)du i = 0,(37)

u(R × {0}) ⊂ L and u(R × {1}) ⊂ L′,(38)

lim
s→±∞

u(s, t) = x±(t).(39)

To shorten notation, the product of a real interval with [0, 1] will be de-
noted by double brackets : Σ =]] −∞,+∞[[= (−∞,+∞) × [0, 1] ⊂ C.

A nonparametrized Floer trajectory is the orbit of a parametrized one
under the action of R by translation in the s direction.

Let M′
J(x−, x+) be the space of all parametrized Floer trajectories from

x− to x+:

M′(x−, x+) = {u : Σ → M, (37)(38) and (39)} ,(40)

M(x−, x+) = M′(x−, x+)/R,(41)

MJ(x−, x+) = Gromov compactification of M(x−, x+).(42)

Remark A.1. For technical reasons, it is sometimes useful to work with
“time dependent” almost complex structures (Js)s∈R. We will use families that
are constant near ±∞. The equation (37) is then naturally replaced by

du(s, t) + J(s, u(s, t)) du(s, t) i = 0.(43)

Finally, Hamiltonian perturbations of L and L′ are also needed, and to
take advantage of particular Hamiltonians, we need to keep track of them. The
action functional is then replaced by (8), and the J-holomorphy equation is
replaced by the nonhomogeneous one :

∂u

∂s
+ J(u)

∂u

∂t
= −∇H(t, u(s, t)).

We will first deal with the homogeneous case, and add comments about the
nonhomogeneous one in the last section.

Once more we fix notation: the linearization of the operator ∂̄J : u �→
du + Jdu i at a map u such that ∂̄Ju = 0 does not depend on the connection
used to compute it: this defines an operator Du : L1,p(u∗TM) → Lp(Λ01u∗TV ).
The J-holomorphic map u is said to be regular, if Du is onto.

Remark A.2. The topological assumptions ω(π2(M)) = 0 and c1(π2(M))
are only used to obtain a global structure on the moduli spaces, but the un-
derlying “gluing” construction is purely local and only relies on the regularity
of the trajectories under consideration.
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We start with a simple definition:

Definition A.3. A topological space X is said to have a structure of a
manifold with corners if there is a partition X = �i∈IXi of X into manifolds
Xi of dimension i such that for each point x ∈ Xi there is a neighbourhood
Ux of x in X, and a local homeomorphism φ : Ux → V0 ⊂ R

i × [0, 1)n−i whose
restriction to each Ux ∩ Xj is a local diffeomorphism to the j-dimensional
stratum of R

i × [0, 1)n−i (which is defined to be the disjoint union of the
products of the form R

i × I1 × I2 × . . . × In−i where Ik is either {0} or (0, 1)
and there are precisely j − i nonzero terms).

We are interested in such a structure to obtain a homological representa-
tion of the stratification of M(x, y), as described in Lemma 2.2.

Theorem A.4. For a generic choice of J , and two intersection points x

and y with x �= y, the space MJ(x, y) admits a structure of a manifold with
corners of dimension μ(x, y)− 1, whose k co-dimensional stratum is the space
of trajectories broken at k intermediate points.

This statement requires a topology on M(x, y) which we recall now.
For convenience, if (x0, . . . , xk) is a sequence of intersection points of de-

creasing indexes, let

M(x0, . . . , xk) = M(x0, x1) × · · · ×M(xk−1, xk) .(44)

Consider a curve C∞ ∈ M(x0, . . . , xk), and a sequence Cn of curves in
M(x0, xk).

To express the convergence of Cn to C∞ in the sense of the Gromov
topology, pick some parametrizations u∞ : Σ∞ = �k

i=1Σ∞,i → M of C∞ and
un : Σ → M of Cn. Then, for each i ∈ {1, . . . , k}, there is a unique sn,i ∈ Σ
such that

A(un(sn,i, ·)) = A(u∞,i(0, ·)).

The sequence Cn is said to converge to C∞ in the Gromov topology if, for
all i ∈ {1, . . . , k}, un(· − sn,i, ·) C0 converges to u∞,i on all compact subsets
of Σ.

This definition naturally extends to broken trajectories: a sequence of
broken trajectories converges, if the topology of the domain stabilizes and
each smooth component converges in the previous sense.

A.2. Sketch of the construction. Let

C∞ ∈ M(x0 . . . xk), C∞ = (C∞,1, . . . , C∞,k)

be a regular curve, by which we mean that the linearization of the Cauchy
Riemann equation (37) on each component is onto. Theorem A.4, will be
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proved by constructing a local chart centered at C∞:

φ :
M(x0, xk) → (1,+∞]k−1 × TC∞M(x0 . . . xk)

C �→ (ρ(C), πρ(C))
(45)

satisfying the conditions of Definition A.3.
The first component of this map will be called the gluing parameter and is

a small perturbation of the parameter ρ defined as follows: we choose one reg-
ular level ai (ai = A(xi−1)+A(xi)

2 for instance) of the action functional between
each pair of critical values A(xi). Then we measure the time a trajectory needs
to run from one level to the next one by setting

ρ :
M(x0, xk) → (1,+∞]k−1

C �→ (2(s2 − s1), . . . , 2(sk − sk−1))
(46)

(the only purpose of this 2 is to simplify future notation) where si is defined
by A(u(si, ·)) = ai for some parametrization u :

⊔
α Σα → M of C, with the

convention that si − si−1 = +∞ if si and si−1 do not belong to the same
component. Of course, each si depends on the choice of u, but the differences
si − si−1 do not.

Remark A.5. Because of their geometric meaning, our gluing parameters
will tend to +∞ when the curve splits, and hence 0 is replaced by +∞ and
[0, 1) by (1,+∞] in Definition A.3. As a consequence, a gluing parameter
ρ = (ρ1, . . . , ρk−1) will be considered as “large” if all its components are large,
or equivalently, if e−ρ is small. In view of this, we define |ρ| = inf ρi.

The second component of the local chart is less explicit. Let Mρ denote
the fiber of ρ. Then, it is easy to see that, for each ρ large enough, Mρ is
locally diffeomorphic to TC∞M(x0, . . . , xk). The main difficulty is to control
the dependence of these diffeomorphisms with respect to ρ. In particular, they
need to be constructed in such a way that the map φ(C) = (ρ(C), πρ(C)) is a
homeomorphism on its image.

To achieve this we proceed as follows:

(1) We intend to define an inverse to φ. For this we start by defining a pre-
gluing map ρ �→ wρ: use a gluing parameter ρ and cutoff functions to glue
the different components of C∞ into a map wρ, that is “approximately”
a Floer trajectory matching the transit times ρ. Check that any “exact”
Floer trajectory C, close enough to C∞ and matching the transit times
ρ, is in fact an L1,p-small perturbation of wρ.

(2) We then set up the J-holomorphy equation for perturbations ξ ∈
Γ1,p(w∗

ρTM) of wρ as a nonlinear PDE, ∂̃wρ
ξ = 0. We check that for

ξ = 0, ∂̃wρ
(0) vanishes as |ρ| tends to +∞, and that the linearization

Dρ of this operator at ξ = 0 has a uniformly bounded right inverse. An
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implicit function theorem “near infinity” ensures then that, for ρ large
enough, the equation ∂̃wρ

ξ = 0 is regular and provides local diffeomor-
phisms ζρ between Mρ and kerDρ.

(3) One difficulty at this point is that the topology of the base of w∗
ρTM

strongly depends on ρ, making the spaces ker Dρ difficult to compare.
However, these bundles are almost the same “away from the nodes”: re-
stricted to compact sets that avoid the nodes, and pushed by parallel
transport, their sections can be considered sections of one constant bun-
dle. An L2 projection on kerD∞ = TC∞M(x0, . . . , xk) induces then an
isomorphism π : kerDρ → kerD∞ = TC∞M(x0, . . . , xk).

(4) Define πρ = π ◦ ζρ. Check that the map (ρ, πρ) and its inverse, defined
by gluing verify the conditions in Definition A.3.

Remark A.6. We identify below perturbations of wρ to sections of w∗
ρ(TM)

via the exponential diffeomorphism associated to a fixed metric gL,L′ for which
L and L′ are totally geodesic.

A.3. Pre-gluing. We first introduce some notation for the gluing operation
at the source level, which is summarized in Figure 1. Then the “pre”-gluing
operation will be described.

A.3.1. Gluing strips. Let Σ∞ = Σ∞,1 � · · · � Σ∞,k denote the disjoint
union of k copies of the standard strip, Σ =]] −∞,+∞[[.

Consider now a gluing parameter ρ = (ρ1, . . . , ρk−1) ∈ (1,+∞]k−1. We
define Σρ = Σρ,1�· · ·�Σρ,α as the disjoint union of α = 1+#{i, 1 ≤ i ≤ k−1,
ρi = +∞} copies of the standard strip which are obtained by gluing together
pieces of Σ∞ as described in 1. Explicitly, if ρi �= ∞ we paste Σ∞,i\(]]ρi,+∞[[)
and Σ∞,i+1\(]]−∞,−ρi[[) by identifying {ρi}×[0, 1] ⊂ Σ∞,i with {−ρi}×[0, 1] ⊂
Σ∞,i+1. The pasting function is the obvious translation on the first coordinate
in ]]−∞,+∞[[ and the identity on the second. In case ρi = ∞ no gluing occurs
between Σ∞,i and Σ∞,i+1. In particular, if both ρi and ρi+1 are infinite, then
Σ∞,i+1 itself represents a component of Σρ. We let θρ,i :]] − ρi−1, ρi[[⊂ Σ∞,i →
Σρ be the obvious inclusion and we put si = θρ,i(0). Moreover, for δ > 0, the
neighbourhood of size δ of the “gluing” region will be denoted by A

(δ)
i :

A
(δ)
i = ]]si + ρi − δ, si+1 − ρi + δ[[(47)

(in other words, if ρi = +∞, then A
(δ)
i = ∅; otherwise Aδ

i = ]]si + ρi − δ, si +
ρi + δ[[ ).

A.3.2. Pre-gluing maps. Let u∞ : Σ∞ → M be the parametrization of our
regular curve C∞ which reaches level ai at time 0 on each component. We now
use the usual technique of cut-off functions to define an “almost” trajectory
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Σρ,1

Σ∞,1

Σ∞,2

Σ∞,3

s1 s2 s3

0

0

0

ρ1

−ρ1 ρ2

−ρ2

�

θρ

A
(δ)
1 A

(δ)
2

Figure 1: The strip Σρ constructed from pieces of Σ∞,i.

wρ : Σρ → M which is “close” to C∞, and agrees with the transit times ρ. The
construction is summarized in Figure 2.

Let χ : R → R be a smooth function such that χ(t) = 1 if t ≤ 0 and
χ(t) = 0 if t ≥ 1 ; given two distinct real numbers a and b, we define the
function χa

b (t) = χ( t−a
b−a).

For |s| large enough, u∞,i(s, t) can be written in the form{
u∞,i(s, t) = expxi−1

(ξ−∞,i(s, t)) (s << 0)
u∞,i(s, t) = expxi

(ξ+
∞,i(s, t)) (s >> 0)

where ξ+
∞,i ∈ Txi

M , and ξ−∞,i ∈ Txi−1M .
Then, for ρ large enough, we define wρ : Σρ → M by setting, if z = θi(s, t):

wρ(z) =

⎧⎪⎪⎨⎪⎪⎩
expxi−1

(χ−(ρi−1)/2+1
−(ρi−1)/2 ξ−∞,i(s, t)) if s ≤ −ρi−1

2 + 1

u∞,i(s, t) if − ρi−1

2 + 1 ≤ s ≤ ρi

2 − 1

expxi
(χρi/2−1

ρi/2 ξ+
∞,i(s, t)) if s ≥ ρi

2 .

(48)

Notice that, with this definition, wρ is constant around the gluing region,
namely for si + ρi/2 ≤ s ≤ si+1 − ρi/2.

This map wρ is as smooth as u∞. It is J-holomorphic in the exterior of
∪A

(ρi/2+1)
i and, because of the exponential decay [27] of u∞ near each xi, there

are nonnegative constants A and λ such that

‖∂̄Jwρ(z)‖1,p ≤ Ae−λ|ρ|(49)

A.4. Holomorphic perturbations of wρ.

A.4.1. Some analytic properties of the standard Cauchy Riemann equa-
tion. All the analytic results needed in the sequel concern the standard Cauchy
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Σρ
si−1 si si+1

wρ

u∞,i−1

xi

u∞,i

xi+1

u∞,i+1

� �ρi
2 � �ρi

2 � �ρi
2 � �ρi

2

� �1

Figure 2: The pre-gluing construction.

Riemann equation applied to Σ in C
n with boundary conditions imposed by

two transversal Lagrangian linear subspaces Λ,Λ′ ⊂ C
n. We gather these

results here.
We first recall the following lemma from [32] (Theorem 3.1.13). It is

relatively easy for p = 2 but much more delicate for p > 2:

Lemma A.7. For all p ≥ 2, there is a bounded operator P :

Lp(Σ, Cn) P−→ L1,p((Σ, ∂Σ), (Cn,Λ,Λ′))(50)

such that ∂̄ ◦ P = Id. In particular, there exists a constant c(p) such that for
all f ∈ L1,p((Σ, ∂Σ), (Cn,Λ,Λ′)):

‖f‖1,p ≤ c(p)‖∂̄f‖p.(51)

The proof of this lemma in [32] is given for tubes R×S1 instead of strips,
with appropriate deformation of the Cauchy-Riemann equation on the ends,
but the boundary case is a strict analogue, where the invertibility assumption
for the asymptotic operators on the ends is replaced by the transversality of Λ
and Λ′.

We will also have to estimate the “growth” of holomorphic strips. The
following lemma is a corollary of [27] in the particular case of an integrable
almost complex structure. However we recall the proof to fix any ambiguity
about constant dependency.

Lemma A.8. Let Λ and Λ′ be two transversal Lagrangian linear subspaces
in C

n, and f : [0,+∞) × [0, 1] → C
n an L1,p holomorphic strip such that

f([0,+∞) ⊂ Λ, f([0,+∞) + i) ⊂ Λ′. Then there are constants C and δ > 0,
depending only on the relative positions of Λ and Λ′ such that :

∀(s, t) ∈ [0,+∞) × [0, 1], ‖f(s + it)‖ ≤ C‖f‖1,pe
−δs.

Proof. First, note that A = i ∂
∂t : L1,2([0, 1], Cn,Λ,Λ′) → L2([0, 1], Cn) is

a self-adjoint operator. Let α(s) =
∫
‖f(s, t)‖2dt. Since both f and ∂f

∂s belong
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to L1,2([0, 1], Cn,Λ,Λ′), we have α̇(s) = −2〈f, Af〉 and α̈(s) = 4
∫ 1
0 ‖∂f

∂t ‖2dy.
Moreover, since Λ and Λ′ intersect transversally, A is bijective with bounded
inverse (namely A−1(g) =

∫ t
0 − i g(x)dx − πΛ(

∫ 1
0 − i g(x)dx) where πΛ is the

projection on Λ in the direction of Λ′). Hence there is a constant δ such that∫ 1
0 ‖∂g

∂y‖2dy ≥ δ2
∫ 1
0 ‖g‖2dy for all functions g ∈ L1,2([0, 1], Cn,Λ,Λ′).

From α̈ ≥ 4δ2α, we derive α̇ + 2δα ≤ 0: otherwise, if β(s0) = α̇(s0) +
2δα(s0) > 0, then, as β̇ ≥ 2δβ, we have β(s) > 0 ∀s ≥ s0, and β(s) ≥
β(s0)e2δ(s−s0). Then α(s) ≥ Ke2δs + B for some K > 0 which is impossible.

Therefore, e2δsα is decreasing, and for s ≥ 1, we have α(s) ≤ α(1)e−2δ(s−1),
i.e. ‖f(s, ·)‖2 ≤ ‖f(1, ·)‖2e

−δ(s−1). The same argument applied to ∂f
∂s (which

is also holomorphic and verifies the needed boundary conditions) leads to the
estimate

‖f(s, ·)‖1,2 ≤ ‖f(1, ·)‖1,2 e−δ(s−1).

Now, using Sobolev embedding, we have ‖f(s, t)‖ ≤ K1‖f(s, ·)‖1,2, and
on the other hand, since f is holomorphic in [[0, 2]], Schwarz’ lemma implies
‖f(1, ·)‖1,2 ≤ K2‖f‖∞,[[0,2]] ≤ K2‖f‖1,p with a uniform constant K2. Finally,
there is a uniform constant C such that, for s ≥ 1:

‖f(s, t)‖ ≤ C‖f‖1,p e−δs.

The existence of such constants for 0 ≤ s ≤ 1 is obvious and so this ends the
proof of the lemma.

We will also need a bounded version of this lemma, which is a sort of
maximum principle:

Lemma A.9. Let Λ and Λ′ be two transversal Lagrangian linear subspaces
in C

n, and f : [[a, b]] → C
n a holomorphic strip such that f([a, b]) ⊂ Λ,

f([a, b] + i) ⊂ Λ′, b − a > 2. Then there are constants C and δ > 0, de-
pending only on the relative positions of Λ and Λ′ such that:

∀(s, t) ∈ [a, b] × [0, 1], ‖f(s + it)‖ ≤ C‖f‖∞([[a,a+2]]∪[[b−2,b]])e
−δ min(s−a,b−s).

Proof. As before, let α(s) =
∫ 1
0 ‖f(s, t)‖2dt, and β+ = α̇ + 2δα. Let

a′ = inf{s ∈ [a, b], β+(s) > 0} ∪ {b}. Then β+ ≤ 0 on [a, a′] and α has
an exponential decay: ∀s ≤ a′, α(s) ≤ α(a)e−2δ(s−a). In the same way, let
β− = α̇− 2δα. Then β̇− ≥ −2δβ̇−, so that if β−(s0) < 0 then β−(s) < 0 for all
s < s0, and when b′ = sup{s, β−(s) < 0} ∪ {a}, α has an exponential growth
on [b′, b]: ∀s ∈ [b′, b], α(s) ≤ e−2δ(b−s)α(b). On [a, a′] ∪ [b′, b], we have

α(s) ≤ e−2δ(s−a)α(a) + e−2δ(b−s)α(b).(52)

If a′ < b′, we still have to deal with [a′, b′]: recall that e−2δsβ+(s) is increas-
ing, so that β+(s) ≤ e−2δ(b′−s)β+(b′), and integrating once more, e2δsα(s) ≤
e2δa′

α(a′) + e−2δ(b′−2s)

4δ β+(s). Finally, α(s) ≤ e−2δ(s−a′)α(a′) + e−2δ(b′−s)

4δ β+(b′).
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Moreover, on [a′, b′] we have −2δα ≤ α̇ ≤ 2δα, and hence β+(b′) ≤ 4δα(b′),
and (52) still holds for s ∈ [a′, b′].

Finally, the same argument applied to ∂f
∂s gives the estimate

‖f(s, ·)‖1,2 ≤ ‖f(a, ·)‖1,2 e−δ(s−a) + ‖f(b, ·)‖1,2 e−δ(b−s) .(53)

The proof then ends as in the previous lemma, when we replace a and b by
a + 1 and b − 1, and using Schwarz lemma.

A.4.2. L1,p-smallness. Let C be a Floer trajectory close enough to C∞
and let ρ = ρ(C). Let u : Σρ → M be the parametrization of C such that, on
each component, the first level ai which is encoutered is reached at time s = 0.
Then, u can be written in the form:

u(s, t) = expwρ(s,t)(ξ(s, t))

where ξ is a section of w∗
ρTM , satisfying appropriate boundary conditions,

A
(
(expwρ

ξ)(si, ·)
)

= ai, and is small in L∞ norm. We want to prove that ξ is
also small in L1,p-norm.

Lemma A.10. For all ε > 0, there exist constants R, η, η′ > 0 such that
if C ∈ Vη,η′,R(C∞) (i.e. |ρ| > R, ‖ξ‖∞ < η and ‖ξ‖C1(θρ,i([[−R,R]])) < η′), then
‖ξ‖1,p < ε.

Proof. Consider a small neighbourhood Uη = ∪Ui of the points xi, and a
large R > 0 such that u∞,i(]] −∞,−R[[) ⊂ Ui−1 and u∞,i(]]R, +∞[[) ⊂ Ui. For
η′ small enough, we have

‖ξ|θρ,i([[−R,R]])‖1,p < ε.

So we restrict attention now to the neighbourhood Ui of xi: ‖ξ‖1,p has
to be estimated on [[si + R, si+1 − R]], or after a translation by −si − ρi, on
A

(ρi−R)
i = [[−ρi + R, ρi − R]] (we suppose ρi < +∞; the other case is very

similar).
Using a local chart, Ui can be identified with a ball B of C

n so that L and
L′ are identified with two Lagrangian linear subspaces intersected with B and,
moreover, the corresponding induced almost complex structure J coincides
with the standard almost complex structure at the origin. Indeed, it is standard
that there is a symplectic chart for Ui which identifies L∩Ui and L′ ∩Ui with
B ∩ R

n and B ∩ iRn, respectively. By composing with a linear symplectic
map we insure that the condition on J is satisfied and L ∩ Ui, L′ ∩ Ui are still
identified with linear Lagrangians (obviously, not orthogonal in general). In
such a chart, the (almost complex) Cauchy-Riemann equation becomes

∂̄u + q(u)∂u = 0,(54)

where q = (J + i )−1(J − i ) satisfies q(0) = 0 and ∂̄ is, of course, associated
to the standard complex structure in C

n, i.
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After possibly rescaling a smaller neighbourhood to the unit ball in C
n,

we may assume that ‖q‖C1 is as small as needed.
Notice that the relation

expwρ
ξ = wρ + ξ′

defines a new map ξ′ : [[−ρi + R, ρi − R]] → C
n still satisfying appropriate

boundary conditions. Since estimating ‖ξ‖1,p as a section of w∗
ρTM is equiv-

alent to estimating ‖ξ′‖1,p (as a C
n-valued function), we still denote this ξ′

by ξ in the sequel. Thus, ξ is now seen as a map to C
n instead of a section

of w∗
ρTM and wρ + ξ is J-holomorphic. Multiplying ξ by appropriate cut-off

functions, we obtain
ξ̂ = χ−ρ+R+1

−ρ+R χρ−R−1
ρ−R ξ

which is defined on the whole strip Σρ, satisfies the boundary conditions and
belongs to L1,p(]] −∞,+∞[[). Lemma A.7 gives the estimate:

‖ξ̂‖1,p ≤ c‖∂̄ξ̂‖p.(55)

Moreover, ξ and ξ̂ coincide on A
(ρi−R−1)
i away from a neighbourhood of

the ends, where ‖ξ‖C1 is controlled by η′: therefore ‖ξ−ξ̂‖1,p ≤ 2‖χ‖C1η′ ≤ 4η′,
so that

‖ξ‖1,p ≤ c‖∂̄ξ‖p + Cη′.(56)

To estimate ‖∂̄ξ‖p, write (54) for u = wρ + ξ, and compare with α =
∂̄wρ + q(wρ)∂wρ:

∂̄ξ +
(
q(wρ + ξ) − q(wρ)

)
∂wρ + q(wρ + ξ)∂ξ = −α(57)

Recall from (49) that α is small in Lp- norm for ρ large enough. Developing
q(wρ + ξ) − q(wρ) in the form a(z)ξ, where ‖a‖∞ is controlled by ‖q‖C1 , and
observing that ‖∂wρ‖∞ is uniformly bounded, (57) becomes

‖∂̄ξ‖p ≤ ‖α‖p + a‖ξ‖1,p(58)

where a is a constant as small as desired. Collecting (58) and (56), we obtain:(
1 − a c

)
‖ξ‖1,p ≤ ‖β‖ + Cη′.(59)

Choosing our neighbourhoods Ui small enough so that a c < 1, we obtain the
desired estimate

‖ξ‖1,p ≤ ε(60)

for η, η′, R small/large enough.

A.4.3. The Floer equation for perturbations of wρ. Let Γ1,p
ρ (w∗

ρTM) be
the linear Banach space of L1,p sections ξ of w∗

ρTM satisfying the boundary
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conditions and so that for all i∫ 1

0
ω(

dwρ

dt
(si, t), ξ(si, t))dt = 0(61)

(this condition is the linear version of A(expwρ
ξ(si, ·)) = ai). Let Hi be the

(local) exponential image of those C1 paths ξ (depending on t only) which verify
(61). This is a smooth hypersurface in P = C1

L,L′([0, 1], M) (independent of ρ)
and, by using the implicit function theorem in a C1 setting and on a bounded
portion of the strip, we see that each Floer trajectory C in a sufficiently small,
fixed neighbourhood of C∞ crosses these hypersurfaces, thus defining “linear”
transit times ρ̃(C) so that |ρ̃(C)−ρ(C)| ≤ K‖ξ‖C1(θρ,i([[−R,R]])) for constants K

and R independent of C. Thus, for each such curve there is one and only one
ρ̃(C) > 0 and ξ ∈ Γ1,p

ρ̃ (w∗
ρ̃TM) such that u = expwρ̃

(ξ) is a parametrization
of C.

Moreovoer, a section ξ ∈ Γ1,p
ρ (w∗

ρTM) defines a Floer trajectory if and
only if it satisfies a nonlinear PDE, ∂̃ξ = 0, which is the translation in terms
of ξ of the usual Floer equation (37) for u = expwρ

ξ:

∂̄J [expwρ
ξ] = 0.

This expression takes values in Γ(Ω0,1u∗TM). Using a J-hermitian connec-
tion, parallel transport along geodesics of gL,L′ defines an isomorphism ΠJ :
Γ(Ω0,1u∗TM) → Ω0,1(w∗

ρTM). Finally, ∂̃wρ
is defined as:

∂̃wρ
:

Γρ(w∗
ρTM) → Ω0,1(w∗

ρTM)

ξ �→ ΠJ

(
∂̄J

(
expwρ

ξ
))

.

This map ∂̃wρ
is as smooth as J , and one easily checks that all its deriva-

tives depend only on the derivatives of J and g, and are bounded independently
of ρ. In particular, there is a constant A2 such that, for all ρ large enough:

‖∂̃wρ
‖C2 ≤ A2.(62)

Moreover, for ξ = 0, (49) translates to:

‖∂̃wρ
0‖ ≤ Ae−λ|ρ|.(63)

Let Dρ denote the linearisation of ∂̃wρ
at ξ = 0. Then Dρ is Fredholm,

and indDρ = ind(C∞). Finally, since the initial curve C∞ is supposed to be
regular, for ρ = (+∞, . . . ,+∞), D∞ is onto.

A.4.4. Uniformly bounded right inverse.

Proposition A.11. For ρ large enough, the operator Dρ has a right in-
verse Pρ, uniformly bounded with respect to ρ:

∃C > 0, ∀ρ > 0,∀α ∈ Ω0,1(w∗
ρTM) ‖Pρα‖1,p ≤ C‖α‖p.(64)
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Proof. To construct a right inverse for Dρ, we want to look at it as a
perturbation of D∞. Unfortunately, Dρ acts on w∗

ρTM and the base of these
bundles strongly depends on ρ. To work around this difficulty, Dρ has first to
be brought into w∗

∞TM , where it will be compared to D∞.
To this end, consider the map:

uρ : Σ∞ → M

obtained by multiplying u∞ by appropriate cutoff-functions to make it constant
away from [[ρi−1

2 , ρi

2 ]] on each component:

uρ,i(s, t) =

⎧⎪⎪⎨⎪⎪⎩
expxi−1

(χ−(ρi−1)/2+1
−(ρi−1)/2 ξ−i ) if s < −ρi−1

2 + 1

u∞,i(s, t) if − ρi−1

2 + 1 ≤ s ≤ ρi

2 − 1

expxi+1
(χρi/2−1

ρi/2 ξ+
i ) if s > ρi

2 − 1.

Notice that uρ and wρ coincide where they are not constant. As before, the
Cauchy-Riemann equation for perturbations of uρ (satisfying (61) and the
boundary conditions) leads to a PDE:

∂̃uρ
: Γρ(u∗

ρTM) → Ω0,1(u∗
ρTM).

Let D̃ρ be its linearization at 0. For ρ = ∞ (i.e. ρi = +∞,∀i), D̃∞ is just
the usual linearisation D∞ of ∂̄J at u∞. Therefore, it is onto (for a generic
choice of J). For ρ large enough, parallel transport (using gL,L′ on the left
to preserve boundary conditions and a J-hermitian connection on the right to
preserve (0, 1) forms) induces isomorphisms

Γρ(u∗
ρTM)

D̃ρ−−−→ Ω0,1(u∗
ρTM)

ΠL,L′

⏐⏐� ⏐⏐�ΠJ

Γ∞(u∗
∞TM) D̃∞−−−→ Ω0,1(u∗

∞TM)

(65)

and D̃ρ becomes a continuous family of operators on Γ(u∗
∞TM). Thus, for

ρ large enough, D̃ρ has a right inverse R̃ρ, which is uniformly bounded and
continuous in ρ.

Now we want to come back to Dρ. Consider the map Rρ:

Ω0,1(w∗
ρTM)

cutρ−−→ Ω0,1(u∗
ρTM)

R̃ρ−→ Γρ(u∗
ρTM)

glueρ−−−→ Γρ(w∗
ρTM)

where cutρ is the extension by 0 away from ρi−1 < s < ρi on each component:

∀(s, t) ∈ Σ∞,i : cutρ(α)(s, t) =

{
α(θ−1

ρ (s, t)) if ρi−1 ≤ s ≤ ρi

0 otherwise,



716 JEAN-FRANÇOIS BARRAUD AND OCTAV CORNEA

and glueρ is the following gluing operation, where the different components
overlap on some region: for (s, t) = θρ(z) ∈ Σ∞,i, set

glueρ(ξ)(z) =

⎧⎪⎪⎨⎪⎪⎩
ξi(s, t) + χ

−(ρi−1)/2−1
−(ρi−1)/2 ξi−1(s′, t) if − ρi−1 ≤ s ≤ −ρi−1/2

ξi(s, t) if − (ρi−1)/2 ≤ s ≤ ρi/2

ξi(s, t) + χ
ρi/2+1
ρi/2 ξi+1(s′′, t) if ρi/2 ≤ s ≤ ρi(z − ti+1)

where s′ = s + si − 2ρi−1 − si−1 and s′′ = s + si + 2ρi − si+1, so that (s′, t) and
(s′′, t) are the value of z seen in Σ∞,i−1, and Σ∞,i+1 (see Figure 3).

Σρ
si−1 si si+1

glueρ(ξ)

ξi−1 ξi+1
ξi

� �ρi
2 � �ρi

2 � �ρi
2 � �ρi

2

Figure 3: The glueρ map.

Since the three operators cutρ, R̃ρ and glueρ are uniformly bounded in ρ,
so is Rρ.

The proof of the proposition is finished by the next lemma.

Lemma A.12. The operator Rρ is a quasi inverse for Dρ, in the sense
that :

lim
|ρ|→+∞

‖Dρ ◦ Rρ − Id‖ = 0.

Proof. Let α ∈ Ω01(w∗
ρTM) and β = DρRρα − α. We have to estimate

‖β‖p. Notice that β is supported on the gluing regions [[si + ρi/2, si+1 − ρi/2]].
Let us focus on one half of such a region [[si +ρi/2, si +ρi]]. Let (α1, . . . , αk) =
cutρα and η = (η1, . . . , ηk) = R̃ρ(cutρ(α)). We have:

β(z) = Dρ(glueρη)(z) − α(z)

= Dρ

(
ηi(s, t) + χiηi+1(s′′, t)

)
− α(z).

Notice that on the domain under consideration (and modulo appropriate
translation) wρ, ui,ρ, and ui+1,ρ are all constant, so that Dρ = D̃ρ = ∂̄, where ∂̄

is the usual Cauchy-Riemann operator associated to the complex vector space
(Txi+1M, J(xi+1)). Finally, we obtain

β(z) = αi(s, t) + (∂̄χ)ηi+1(s′′, t) + χαi+1(s′′, t) − α(z)

But αi(s, t) = α(z) and αi+1(s′′, t) = 0. Hence: β(z) = (∂̄χ)ηi+1(s′′, t) and

‖β‖p ≤ A‖ηi+1‖∞,[[−ρi/2,−ρi/2+1]].(66)
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Moreover, we have ∂̄ηi+1 = 0 on [[−∞, 0]], so that applying Lemma A.8
to ηi+1, we obtain that ‖β‖p ≤ C‖ηi+1‖1,pe

−δρi/2 ≤ C ′‖α‖pe
−δρi/2 with uni-

form constants C and δ. Gathering all these inequalities, we obtain uniform
constants C and δ, such that

‖DρRρα − α‖p ≤ Ce−δ|ρ| ‖α‖p.

This ends the proof of Proposition A.11, since, for ρ large enough, Dρ ◦Rρ

is uniformly invertible and we can set Pρ = Rρ ◦ (Dρ ◦ Rρ)−1.

A.4.5. Isomorphism from kerDρ to kerD∞. Finally, we need to iden-
tify all kerDρ to the constant space ker D∞. To this end, consider a small
neighbourhood U of the intersection points xi, and a compact subset K =⊔k

i=1[[−R, R]]i ⊂ Σ∞ with R large enough to have u∞(Σ∞ \K) ⊂ U . Then we
have ([34]):

Proposition A.13. Let π : Γ(w∗
ρTV ) → Γ(w∗

ρTV|K ) → ker D∞ be the L2

orthogonal projection on ker D∞. Then, for |ρ| large enough, the restriction of
π to ker Dρ is an isomorphism, and there is a constant C, uniform with respect
to ρ, such that

‖ξ‖1,p ≤ C‖π(ξ)‖2.

Proof. Suppose there is a sequence (ρn, ξn) such that Dρn
ξn = 0,

‖ξn‖1,p = 1 and limπ(ξn) = 0. Then a subsequence of ξn converges on all
compacts to a section ξ ∈ kerD∞. On the other hand, π(ξn) converges to
π(ξ), and hence ξ|K ∈ (kerD∞)⊥. Hence, ξ|K = 0 and ξn converges to 0
uniformly on K in the C∞ topology.

We will derive a contradiction from Lemma A.9, which implies that ‖ξn‖1,p

on the complement of K is controlled by the behaviour of ξ on the boundary
and, therefore, should tend to 0 as n goes to infinity.

To make this explicit, let us focus on one component [−ρn,i + R, ρn,i −R]
of the complement of K. On this piece of strip, wρ takes values in a small
neighbourhood of xi where we choose coordinates in which L and L′ are linear
spaces and J(0) = i as in the proof of A.10. The Cauchy-Riemann equation
takes the form

∂̄u + q(u)∂u = 0.

As before, we can replace ξn by ξ′n with expwρn
ξn = wρn

+ ξ′n, keeping control
on the L1,p norm. Then ξn satisfies an equation of the form:

∂̄ξn + qn(z)∂ξn + an(z)ξn = 0

where qn(z) = q(wρn
) and an(z)(·) = Dwρn

q(·)∂wρn
are uniformly small.

Using the operator P defined in Lemma A.7, let ηn = ξn + P (qn(z)∂ξn +
an(z)ξn) (notice that the operator P of the lemma is defined on the full strip,
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so to be more precise, we first extend qn∂ξn + anξn by 0 and then consider
the restriction of its image under P to our piece of strip). This section ηn is
holomorphic, and takes values in L and L′ on the boundary. Moreover, we
obtain a uniformly small constant κ such that, on the relevant piece of strip:

‖ηn − ξn‖1,p ≤ κ‖ξn‖1,p.l(67)

As a consequence, near the ends of our piece of strip [[−ρn,i + R, ρn,i − R]],
‖ηn‖∞ is arbitrarily small. According to Lemma A.9, we get

‖ηn‖∞ ≤ C‖ηn‖∞,Ae−δ(ρn−R−|s|),

where

A = [[−ρn,i + R,−ρn,i + R + 2]] ∪ [[ρn,i − R − 2, ρn,i − R]].

Integrating this, we get ‖ηn‖p ≤ C‖ηn‖∞,A for some uniform constant C. In
the same way, the Schwartz lemma provides a control of ∂ηn near the ends by
means of ‖ηn‖∞, from where we derive a similar estimate ‖∂ηn‖p ≤ C‖ηn‖∞,A.

Finally, ‖ηn‖1,p is arbitrarily small on [[−ρn,i +R, ρn,i−R]], which, in view
of (67), contradicts ‖ξn‖1,p = 1.

A.4.6. End of the proof. We will use the following version of the implicit
function theorem:

Proposition A.14. Let (fλ : Eλ → Fλ)λ∈[0,1[m be a family of maps be-
tween Banach spaces such that

(1) for all λ > 0, fλ is of class C2, and ‖fλ‖C2 is uniformly bounded,

(2) limλ→0 fλ(0) = 0,

(3) Dfλ(0) is uniformly invertible: ∃Rλ ∈ L(Fλ, Eλ), Dfλ(0) ◦ Rλ = Id and
∃C > 0,∀λ ‖Rλ‖ ≤ C. Let Hλ = Rλ(Fλ).

Then there exists ε > 0 such that for all λ with |λ| < ε, there are “uniform”
open subsets Uλ ⊂ kerDfλ(0) and Vλ ⊂ Eλ, and a diffeomorphism ϕλ : Uλ →
Hλ such that, in the decomposition Eλ = kerDfλ ⊕ Hλ, one has:

fλ(x, y) = 0 ⇔ y = ψλ(x).

Here, uniform means that the Uλ all contain a ball whose radius is independent
of λ.

Proof. Since Dfλ(0) has a right inverse, Dfλ remains onto on a neigh-
bourhood Vλ of 0 whose size is controlled by ‖Rλ‖ and ‖fλ‖C2 . The conditions
1 and 3 imply that this size is uniform in λ. Finally, the Newton algorithm
proves that f−1

λ (0)∩Vλ �= ∅ for λ small enough, and the usual implicit function
theorem gives the result.
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The three conditions in this proposition have been checked for

∂̃ρ : Γ1,p
ρ (w∗

ρTM) → Γp(Λ0,1Σρ ⊗ w∗
ρTM)

in (62) and (63) and Proposition A.11.
However, to have better control on the spaces Hρ, we will use a slightly

modified right inverse for Dρ. Recall the compact K used in Proposition
A.13, and consider the restriction map L1,p(Σρ)

r−→ L1,p(K) and the projec-
tion L1,p(K)

πρ−→ ker Dρ in the (constant) direction of the L2-orthogonal of
r(kerD∞). The operator P ′

ρ = Pρ − πρ(r(Pρ)) is then still a right inverse of
Dρ, it is still uniformly bounded, but has the additional property that the
corresponding space Hρ = rk(P ′

ρ) is such that πρ(r(Hρ)) = 0.
We obtain a one-to-one map ϕρ = id ⊕ ψρ from a neighbourhood of 0 in

kerDρ to the space of sections in Γ1,p
ρ (w∗

ρTM) associated to Floer trajectories
in a neighbourhood of C∞ in M(xk, x0).

Composing ϕ−1
ρ with the map π : kerDρ → ker D∞, constructed in the

previous section, we obtain a map φ = (ρ, π ◦ϕ−1
ρ ) between neighbourhoods of

C∞ in M(xk, x0) and (∞, . . . ,∞, 0) in (1,+∞]k−1 × TC∞M(xk, . . . , x0) with
ρ the linear transit times as described at the beginning of §A.4.3:

φ : M(xk, x0), C∞
(ρ,π◦ϕ−1

ρ )−−−−−−→ (1,+∞]k−1×TC∞M(xk, . . . , x0), ((∞, . . . ,∞), 0).

This map is one-to-one. For the continuity of φ−1 consider a converging
sequence (ρn, ξn) → (ρ, ξ). By possibly extracting a subsequence we may
assume that Cn = (φ−1(ρn, ξn)) converges to a curve C ′ corresponding to ξ′ ∈
kerDρ. The curves Cn may be viewed as sections xn + yn ∈ L1,p(w∗

ρn
(TM)) =

kerDρn
⊕Hρn

, and, similarly, the curves C = φ−1(ρ, ξ) and C ′ as sections x+y

and x′ + y′.
We now have π(r(yn)) = π(πρ(r(yn))) = 0, so that π(r(xn + yn)) =

π(r(xn)) = ξn. On the other hand, this has to converge to π(r(x′ + y′)) = ξ′,
so that ξ = ξ′, and finally C = C ′.

Conversely, if Cn → C is a converging sequence of trajectories, then ρ(Cn)
converges to ρ(C) and ξn is bounded in the finite dimensional space kerD∞.
On the other hand, a converging subsequence of (ρn, ξn) has to converge to
(ρ, ξ) = φ(C), and hence φ(Cn) converges to φ(C).

Let us turn to the behaviour of φ with respect to the stratification: φ

clearly respects the stratifications since a trajectory C is broken at xi if and
only if ρi(C) = +∞. Within each stratum now, all the fiber-bundles w∗

ρTM

are topologically equivalent, and we can locally move smoothly from one to
another. The whole family π ◦ ϕ−1

ρ depends then smoothly on ρ and φ is a
local diffeomorphism.

This ends the proof of Theorem A.4.
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A.5. Hamiltonian perturbations. We now shortly discuss the nonhomoge-
neous case. In this case the usual Cauchy-Riemann equation (37) is modified
by a Hamiltonian term:

∂u

∂s
+ J(u)

∂u

∂t
= −∇Ht(u)(68)

or, equivalently:

∂̄Ju = du + J(u)du i = bu,(69)

where bu is the C anti-linear map defined by bu(z) ξ = −ξ̄ ∇H(u(z)).
The homogeneous and nonhomogeneous situations differ in many respects.

In particular, the intersection points are replaced by orbits of the Hamiltonian
flow φt of H starting on L and reaching L′ at time 1 (the transversality assump-
tion being replaced by requiring that φH

1 (L) be transverse to L′). Moreover,
the “breaks” do not arise in the neighbourhood of a point, but along a curve,
making the analysis a bit more technical.

A.5.1. Reduction to the standard nonhomogeneous equation. However,
using the naturality maps used in §2.1.3, this case reduces to the one in which
the basic equation is homogenous but the almost complex structure depends
on the variable t. This is the case that we discuss below. Thus, the model
equation of Lemmas A.7, A.8 and A.9 is now replaced by

∂f

∂s
+ J(t)

∂f

∂t
= 0.

Considering a path Φt of symplectic matrices such that J(t) = Φ−1
t iΦt,

and letting g(s, t) = Φtf(s, t), we end up with the equation:

∂̄g = b(t)g

and the boundary conditions become g(s, 0) ∈ Λ and g(s, 1) ∈ Λ′′ = Φ1Λ′.
Notice that the transversality assumption on Λ and Λ′ is now replaced by
requiring that the differential equation for γ : [0, 1] → (Cn,Λ,Λ′′):

γ̇ = i b(t)γ

has no nontrivial solution.
Finally, Lemma A.7 in this setting is again a boundary version of Theorem

3.1.13 from [32]; as for Lemmas A.8 and A.9, observe that b is self-adjoint, and
replacing the operator A = i ∂

∂t in the proof of these lemmas by

A = i
∂

∂t
+ b

we get a self-adjoint, injective operator, so that α(s) =
∫ 1
0 ‖f‖2dt satisfies the

same differential inequality as before.
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This discussion also covers the case when dependence of s is required
(for example, to study Floer chain maps) because s-dependence has compact
support, where the convergence of the curves is well-controlled.
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