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Finding large Selmer rank via
an arithmetic theory of local constants

By Barry Mazur and Karl Rubin*

Abstract

We obtain lower bounds for Selmer ranks of elliptic curves over dihedral
extensions of number fields.

Suppose K/k is a quadratic extension of number fields, E is an elliptic
curve defined over k, and p is an odd prime. Let K− denote the maximal abelian
p-extension of K that is unramified at all primes where E has bad reduction
and that is Galois over k with dihedral Galois group (i.e., the generator c of
Gal(K/k) acts on Gal(K−/K) by inversion). We prove (under mild hypotheses
on p) that if the Zp-rank of the pro-p Selmer group Sp(E/K) is odd, then
rankZp

Sp(E/F ) ≥ [F : K] for every finite extension F of K in K−.

Introduction

Let K/k be a quadratic extension of number fields, let c be the nontrivial
automorphism of K/k, and let E be an elliptic curve defined over k. Let F/K

be an abelian extension such that F is Galois over k with dihedral Galois
group (i.e., a lift of the involution c operates by conjugation on Gal(F/K) as
inversion x �→ x−1), and let χ : Gal(F/K) → Q̄× be a character.

Even in cases where one cannot prove that the L-function L(E/K, χ; s)
has an analytic continuation and functional equation, one still has a conjectural
functional equation with a sign ε(E/K, χ) :=

∏
v ε(E/Kv, χv) = ±1 expressed

as a product over places v of K of local ε-factors. If ε(E/K, χ) = −1, then a
generalized Parity Conjecture predicts that the rank of the χ-part E(F )χ of
the Gal(F/K)-representation space E(F ) ⊗ Q̄ is odd, and hence positive. If
[F : K] is odd and F/K is unramified at all primes where E has bad reduction,
then ε(E/K, χ) is independent of χ, and so the Parity Conjecture predicts that
if the rank of E(K) is odd then the rank of E(F ) is at least [F : K].

*The authors are supported by NSF grants DMS-0403374 and DMS-0457481, respec-
tively.
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Motivated by the analytic theory of the preceding paragraph, in this paper
we prove unconditional parity statements, not for the Mordell-Weil groups
E(F )χ but instead for the corresponding pro-p Selmer groups Sp(E/F )χ. (The
Shafarevich-Tate conjecture implies that E(F )χ and Sp(E/F )χ have the same
rank.) More specifically, given the data (E, K/k, χ) where the order of χ is a
power of an odd prime p, we define (by cohomological methods) local invariants
δv ∈ Z/2Z for the finite places v of K, depending only on E/Kv and χv. The δv

should be the (additive) counterparts of the ratios ε(E/Kv, χv)/ε(E/Kv, 1) of
the local ε-factors. The δv vanish for almost all v, and if Zp[χ] is the extension
of Zp generated by the values of χ, we prove (see Theorem 6.4):

Theorem A. If the order of χ is a power of an odd prime p, then

rankZp
Sp(E/K) − rankZp[χ]Sp(E/F )χ ≡

∑
v

δv (mod 2).

Despite the fact that the analytic theory, which is our guide, predicts the
values of the local terms δv, Theorem A would be of limited use if we could
not actually compute the δv’s. We compute the δv’s in substantial generality
in Section 5 and Section 6. This leads to our main result (Theorem 7.2), which
we illustrate here with a weaker version.

Theorem B. Suppose that p is an odd prime, [F : K] is a power of p,
F/K is unramified at all primes where E has bad reduction, and all primes
above p split in K/k. If rankZp

Sp(E/K) is odd, then rankZp[χ]Sp(E/F )χ is
odd for every character χ of G, and in particular rankZp

Sp(E/F ) ≥ [F : K].

If K is an imaginary quadratic field and F/K is unramified outside of p,
then Theorem B is a consequence of work of Cornut [Co] and Vatsal [V]. In
those cases the bulk of the Selmer module comes from Heegner points.

Nekovár̆ [N2, Th. 10.7.17] proved Theorem B in the case where F is con-
tained in a Zp-power extension of K, under the assumption that E has ordinary
reduction at all primes above p. We gave in [MR3] an exposition of a weaker
version of Nekovár̆’s theorem, as a direct application of a functional equation
that arose in [MR2] (which also depends heavily on Nekovár̆’s theory in [N2]).

The proofs of Theorems A and B proceed by methods that are very differ-
ent from those of Cornut, Vatsal, and Nekovár̆, and are comparatively short.
We emphasize that our results apply whether E has ordinary or supersingular
reduction at p, and they apply even when F/K is not contained in a Zp-power
extension of K (but we always assume that F/k is dihedral).

This extra generality is of particular interest in connection with the search
for new Euler systems, beyond the known examples of Heegner points. Let
K− = K−

c,p be the maximal “generalized dihedral” p-extension of K (i.e.,
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the maximal abelian p-extension of K, Galois over k, such that c acts on
Gal(K−/K) by inversion). A “dihedral” Euler system c for (E, K/k, p) would
consist of Selmer classes cF ∈ Sp(E/F ) for every finite extension F of K in
K−, with certain compatibility relations between cF and cF ′ when F ⊂ F ′ (see
for example [R] §9.4). A necessary condition for the existence of a nontrivial
Euler system is that the Selmer modules Sp(E/F ) are large, as in the conclu-
sion of Theorem B. It is natural to ask whether, in these large Selmer modules
Sp(E/F ), one can find elements cF that form an Euler system.

Outline of the proofs. Suppose for simplicity that E(K) has no p-torsion.
The group ring Q[Gal(F/K)] splits into a sum of irreducible rational repre-
sentations Q[Gal(F/K)] = ⊕LρL, summing over all cyclic extensions L of K

in F , where ρL ⊗ Q̄ is the sum of all characters χ whose kernel is Gal(F/L).
Corresponding to this decomposition there is a decomposition (up to isogeny)
of the restriction of scalars ResF

KE into abelian varieties over K

ResF
KE ∼ ⊕LAL.

This gives a decomposition of Selmer modules

Sp(E/F ) ∼= Sp((ResF
KE)/K) ∼= ⊕LSp(AL/K)

where for every L, Sp(AL/K) ∼= (ρL ⊗Qp)dL for some dL ≥ 0. Theorem B will
follow once we show that dL ≡ rankZp

Sp(E/K) (mod 2) for every L. More
precisely, we will show (see Section 4 for the ideal p of EndK(AL), Section 2
for the Selmer groups Selp and Selp, and Definition 3.6 for Sp) that

rankZp
Sp(E/K) ≡ dimFp

Selp(E/K) ≡ dimFp
Selp(AL/K) ≡ dL (mod 2).

(1)

The key step in our proof is the second congruence of (1). We will see
(Proposition 4.1) that E[p] ∼= AL[p] as GK-modules, and therefore the Selmer
groups Selp(E/K) and Selp(AL/K) are both contained in H1(K, E[p]). By
comparing these two subspaces we prove (see Theorem 1.4 and Corollary 4.6)
that

dimFp
Selp(E/K) − dimFp

Selp(AL/K) ≡
∑

v

δv (mod 2)

summing the local invariants δv of Definition 4.5 over primes v of K. We show
how to compute the δv in terms of norm indices in Section 5 and Section 6,
with one important special case postponed to Appendix B.

The first congruence of (1) follows easily from the Cassels pairing for E

(see Proposition 2.1). The final congruence of (1) is more subtle, because in
general AL will not have a polarization of degree prime to p, and we deal with
this in Appendix A (using the dihedral nature of L/k).

In Section 7 we bring together the results of the previous sections to prove
Theorem 7.2, and in Section 8 we discuss some special cases.
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Generalizations. All the results and proofs in this paper hold with E

replaced by an abelian variety with a polarization of degree prime to p.
If F/K is not a p-extension, then the proof described above breaks down.

Namely, if χ is a character whose order is not a prime power, then χ is not
congruent to the trivial character modulo any prime of Q̄. However, by writing
χ as a product of characters of prime-power order, we can apply the methods
of this paper inductively. To do this we must use a different prime p at each
step, so it is necessary to assume that if A is an abelian variety over K and
R is an integral domain in EndK(A), then the parity of dimR⊗Qp

Sp(A/K)
is independent of p. (This would follow, for example, from the Shafarevich-
Tate conjecture.) To avoid obscuring the main ideas of our arguments, we will
include those details in a separate paper.

The results of this paper can also be applied to study the growth of Selmer
rank in nonabelian Galois extensions of order 2pn with p an odd prime. This
will be the subject of a forthcoming paper.

Notation. Fix once and for all an algebraic closure Q̄ of Q. A number
field will mean a finite extension of Q in Q̄. If K is a number field then
GK := Gal(Q̄/K).

1. Variation of Selmer rank

Let K be a number field and p an odd rational prime. Let W be a finite-
dimensional Fp-vector space with a continuous action of GK and with a perfect,
skew-symmetric, GK-equivariant self-duality

W × W −→ μp

where μp is the GK-module of p-th roots of unity in Q̄.

Theorem 1.1. For every prime v of K, Tate’s local duality gives a perfect
symmetric pairing

〈 , 〉v : H1(Kv, W ) × H1(Kv, W ) −→ H2(Kv,μp) = Fp.

Proof. See [T1].

Definition 1.2. For every prime v of K let Kur
v denote the maximal un-

ramified extension of Kv. A Selmer structure F on W is a collection of Fp-
subspaces

H1
F (Kv, W ) ⊂ H1(Kv, W )

for every prime v of K, such that H1
F (Kv, W ) = H1(Kur

v /Kv, W
Iv) for all but

finitely many v, where Iv := GKur
v

⊂ GKv
is the inertia group. If F and G are



FINDING LARGE SELMER RANK 583

Selmer structures on W , we define Selmer structures F + G and F ∩ G by

H1
F+G(Kv, W ) := H1

F (Kv, W ) + H1
G(Kv, W ),

H1
F∩G(Kv, W ) := H1

F (Kv, W ) ∩ H1
G(Kv, W ),

for every v. We say that F ≤ G if H1
F (Kv, W ) ⊂ H1

G(Kv, W ) for every v, so in
particular F ∩ G ≤ F ≤ F + G.

We say that a Selmer structure F is self-dual if for every v, H1
F (Kv, W )

is its own orthogonal complement under the Tate pairing of Theorem 1.1.
If F is a Selmer structure on W , we define the Selmer group

H1
F (K, W ) := ker(H1(K, W ) −→ ∏

v H1(Kv, W )/H1
F (Kv, W )).

Thus H1
F (K, W ) is the collection of classes whose localizations lie in H1

F (Kv, W )
for every v. If F ≤ G then H1

F (K, W ) ⊂ H1
G(K, W ).

For the basic example of the Selmer groups we will be interested in, where
W is the Galois module of p-torsion on an elliptic curve, see Section 2.

Proposition 1.3. Suppose that F , G are self-dual Selmer structures on
W , and S is a finite set of primes of K such that H1

F (Kv, W ) = H1
G(Kv, W )

if v /∈ S. Then

(i) dimFp
H1

F+G(K, W )/H1
F∩G(K, W )

=
∑
v∈S

dimFp
H1

F (Kv, W )/H1
F∩G(Kv, W ),

(ii) dimFp
H1

F+G(K, W ) ≡ dimFp
(H1

F (K, W ) + H1
G(K, W )) (mod 2).

Proof. Let

B :=
⊕
v∈S

(H1
F+G(Kv, W )/H1

F∩G(Kv, W ))

and let C be the image of the localization map H1
F+G(K, W ) → B. Since F and

G are self-dual, Poitou-Tate global duality (see for example [MR1, Th. 2.3.4])
shows that the Tate pairings of Theorem 1.1 induce a nondegenerate, symmet-
ric self-pairing

〈 , 〉 : B × B −→ Fp,(1.1)

and C is its own orthogonal complement under this pairing.
Let CF (resp. CG) denote the image of ⊕v∈SH1

F (Kv, W ) (resp.
⊕v∈SH1

G(Kv, W )) in B. Since F and G are self-dual, CF and CG are each
their own orthogonal complements under (1.1). In particular we have

dimFp
C = dimFp

CF = dimFp
CG = 1

2 dimFp
B.

Since
C ∼= H1

F+G(K, W )/H1
F∩G(K, W )
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and
CF ∼= ⊕v∈SH1

F (Kv, W )/H1
F∩G(Kv, W ),

this proves (i).
The proof of (ii) uses an argument of Howard ([Hb, Lemma 1.5.7]). We

have CF ∩ CG = 0 and CF ⊕ CG = B. If x ∈ H1
F+G(K, W ), let xS ∈ C ⊂ B

be the localization of x, and let xF and xG denote the projections of xS to CF
and CG , respectively.

Following Howard, we define a pairing

[ , ] : H1
F+G(K, W ) × H1

F+G(K, W ) −→ Fp(1.2)

by [x, y] := 〈xF , yG〉, where 〈 , 〉 is the pairing (1.1). Since the subspaces C,
CF , and CG are all isotropic, for all x, y,∈ H1

F+G(K, W ) we have

0 = 〈xS , yS〉 = 〈xF + xG , yF + yG〉 = 〈xF , yG〉 + 〈xG , yF 〉 = [x, y] + [y, x]

so the pairing (1.2) is skew-symmetric.
We see easily that H1

F (K, W ) + H1
G(K, W ) is in the kernel of the pairing

[ , ]. Conversely, if x is in the kernel of this pairing, then for every y ∈
H1

F+G(K, W )
0 = [x, y] = 〈xF , yG〉 = 〈xF , yS〉.

Since C is its own orthogonal complement we deduce that xF ∈ C, i.e., there
is a z ∈ H1

F+G(K, W ) whose localization is xF . It follows that z ∈ H1
F (K, W )

and x − z ∈ H1
G(K, W ), i.e., x ∈ H1

F (K, W ) + H1
G(K, W ). Therefore (1.2)

induces a nondegenerate, skew-symmetric, Fp-valued pairing on

H1
F+G(K, W )/(H1

F (K, W ) + H1
G(K, W )).

Since p is odd, a well-known argument from linear algebra shows that the
dimension of this Fp-vector space must be even. This proves (ii).

Theorem 1.4. Suppose that F and G are self-dual Selmer structures on
W , and S is a finite set of primes of K such that H1

F (Kv, W ) = H1
G(Kv, W )

if v /∈ S. Then

dimFp
H1

F (K, W ) − dimFp
H1

G(K, W )

≡
∑
v∈S

dimFp
(H1

F (Kv, W )/H1
F∩G(Kv, W )) (mod 2).

Proof. We have (modulo 2)

dimFp
H1

F (K, W )−dimFp
H1

G(K, W ) ≡ dimFp
H1

F (K, W ) + dimFp
H1

G(K, W )

= dimFp
(H1

F (K, W ) + H1
G(K, W )) + dimFp

H1
F∩G(K, W )

≡ dimFp
H1

F+G(K, W ) − dimFp
H1

F∩G(K, W )

=
∑
v∈S

dimFp
(H1

F (Kv, W )/H1
F∩G(Kv, W )),

the last two steps by Proposition 1.3(ii) and (i), respectively.
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2. Example: elliptic curves

Let K be a number field. If A is an abelian variety over K, and
α ∈ EndK(A) is an isogeny, we have the usual Selmer group Selα(A/K) ⊂
H1(K, E[α]), sitting in an exact sequence

0 −→ A(K)/αA(K) −→ Selα(A/K) −→ X(A/K)[α] −→ 0,(2.1)

where X(A/K) is the Shafarevich-Tate group of A over K. If p is a prime we
let Selp∞(A/K) be the direct limit of the Selmer groups Selpn(A/K), and then
we have

0 −→ A(K) ⊗ Qp/Zp −→ Selp∞(A/K) −→ X(A/K)[p∞] −→ 0.(2.2)

Suppose now that E is an elliptic curve defined over K, and p is an odd
rational prime. Let W := E[p], the Galois module of p-torsion in E(Q̄). Then
W is an Fp-vector space with a continuous action of GK , and the Weil pairing
induces a perfect GK-equivariant self-duality E[p] × E[p] → μp. Thus we are
in the setting of Section 1.

We define a Selmer structure E on E[p] by taking H1
E(Kv, E[p]) to be the

image of E(Kv)/pE(Kv) under the Kummer injection

E(Kv)/pE(Kv) ↪→ H1(Kv, E[p])

for every v. By Lemma 19.3 of [Ca2], H1
E(Kv, E[p]) = H1(Kur

v /Kv, E[p]) if
v � p and E has good reduction at v. With this definition the Selmer group
H1

E(K, E[p]) is the usual p-Selmer group Selp(E/K) of E as in (2.1).
If C is an abelian group, we let Cdiv denote its maximal divisible subgroup.

Proposition 2.1. The Selmer structure E on E[p] defined above is self-
dual, and

corankZp
Selp∞(E/K) ≡ dimFp

H1
E(K, E[p]) − dimFp

E(K)[p] (mod 2).

Proof. Tate’s local duality [T1] shows that E is self-dual. Let

d := dimFp
(Selp∞(E/K)/(Selp∞(E/K))div)[p]

= dimFp
(X(E/K)[p∞]/(X(E/K)[p∞])div)[p].

The Cassels pairing [Ca1] shows that d is even. Further,

corankZp
Selp∞(E/K) = dimFp

Selp∞(E/K)div[p]

= dimFp
Selp∞(E/K)[p] − d

= rankZE(K) + dimFp
X(E/K)[p] − d

by (2.2) with A = E. On the other hand, (2.1) shows that

dimFp
H1

E(K, E[p]) = rankZE(K) + dimFp
E(K)[p] + dimFp

X(E/K)[p]
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so we conclude

corankZp
Selp∞(E/K) = dimFp

H1
E(K, E[p]) − dimFp

E(K)[p] − d.

This proves the proposition.

3. Decomposition of the restriction of scalars

Much of the technical machinery for this section will be drawn from Sec-
tions 4 and 5 of [MRS].

Suppose F/K is a finite abelian extension of number fields, G := Gal(F/K),
and E is an elliptic curve defined over K. We let ResF

KE denote the Weil re-
striction of scalars ([W, §1.3]) of E from F to K, an abelian variety over K

with the following properties.

Proposition 3.1. (i) For every commutative K-algebra X there is a
canonical isomorphism

(ResF
KE)(X) ∼= E(X ⊗K F )

functorial in X. In particular, (ResF
KE)(K) ∼= E(F ).

(ii) The action of G on the right-hand side of (i) induces a canonical inclusion
Z[G] ↪→ EndK(ResF

KE).

(iii) For every prime p there is a natural G-equivariant isomorphism, com-
patible with the isomorphism (ResF

KE)(K) ∼= E(F ) of (i),

Selp∞((ResF
KE)/K) ∼= Selp∞(E/F )

where G acts on the left-hand side via the inclusion of (ii).

Proof. Assertion (i) is the universal property satisfied by the restriction
of scalars [W], and (ii) is (for example) (4.2) of [MRS]. For (iii), Theorem
2.2(ii) and Proposition 4.1 of [MRS] give an isomorphism

(ResF
KE)[p∞] ∼= Z[G] ⊗ E[p∞]

that is G-equivariant (with G acting on ResF
KE via the map of (ii) and by

multiplication on Z[G]) and GK-equivariant (with γ ∈ GK acting by γ−1 ⊗ γ

on Z[G] ⊗ E[p∞]). Then by Shapiro’s lemma (see for example Propositions
III.6.2, III.5.6(a), and III.5.9 of [Br]), there is a G-equivariant isomorphism

H1(K, (ResF
KE)[p∞]) ∼−→ H1(F, E[p∞]).(3.1)

Using (i) with X = Kv, along with the analogue of (3.1) for the local extensions
(F ⊗K Kv)/Kv for every prime v of K, one can show that the isomorphism
(3.1) restricts to the isomorphism of (iii).
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Definition 3.2. Let Ξ := {cyclic extensions of K in F}, and if L ∈ Ξ
let ρL be the unique faithful irreducible rational representation of Gal(L/K).
Then ρL⊗Q̄ is the direct sum of all the injective characters Gal(L/K) ↪→ Q̄×.
The correspondence L ↔ ρL is a bijection between Ξ and the set of irreducible
rational representations of G. Thus the semisimple group ring Q[G] decom-
poses

Q[G] ∼=
⊕
L∈Ξ

Q[G]L(3.2)

where Q[G]L ∼= ρL is the ρL-isotypic component of Q[G]. As a field, Q[G]L is
isomorphic to the cyclotomic field of [L : K]-th roots of unity.

Let RL be the maximal order of Q[G]L. If [L : K] is a power of a prime p,
then RL has a unique prime ideal above p, which we denote by pL. Also define

IL := Q[G]L ∩ Z[G],

so IL is an ideal of RL as well as a GK-module (where the action of GK is
induced by multiplication on Z[G]).

Definition 3.3. For every L ∈ Ξ define

AL := IL ⊗ E

as given by Definition 1.1 of [MRS] (see also [Mi, §2]). The abelian variety AL

is defined over K, and its K-isomorphism class is independent of the choice of
abelian extension F containing L (see Remark 4.4 of [MRS]). If L = K then
AK = E. By Proposition 4.2(i) of [MRS], the inclusion IL ↪→ Z[G] induces an
isomorphism

AL
∼=

⋂
α∈Z[G] : αIL=0

ker(α : ResF
KE → ResF

KE) ⊂ ResF
KE.(3.3)

Let Tp(E) denote the Tate module lim←−E[pn], and similarly for Tp(AL).
The following theorem summarizes the properties of the abelian varieties AL

that we will need.

Theorem 3.4. Suppose p is a prime, n ≥ 1, and L/K is a cyclic exten-
sion of degree pn. Then:

(i) IL = p
pn−1

L in RL.

(ii) The inclusion Z[G] ↪→ EndK(ResF
KE) of Proposition 3.1(ii) induces (via

(3.3)) a ring homomorphism Z[G] → EndK(AL) that factors

Z[G] � RL ↪→ EndK(AL)

where the first map is induced by the projection in (3.2).
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(iii) Let M be the unique extension of K in L with [L : M ] = p. For ev-
ery commutative K-algebra X, the isomorphism of Proposition 3.1(i) re-
stricts (using (3.3)) to an isomorphism, functorial in X,

AL(X) ∼= {x ∈ E(X ⊗K L) :
∑

h∈Gal(L/M)

(1 ⊗ h)(x) = 0}.

(iv) The isomorphism of (iii) with X = Q̄ induces an isomorphism

Tp(AL) ∼= IL ⊗ Tp(E) = p
pn−1

L ⊗ Tp(E)

that is GK-equivariant, where γ ∈ GK acts on the tensor products as
γ−1 ⊗ γ, and RL-linear, where RL acts on AL via the map of (ii).

Proof. Assertions (i), (ii), and (iv) are Lemma 5.4(iv), Theorem 5.5(iv),
and Theorem 2.2(iii), respectively, of [MRS] ((iv) is also Proposition 6(b) of
[Mi]). Assertion (iii) is Theorem 5.8(ii) of [MRS].

Theorem 3.5. The inclusions AL ⊂ ResF
KE of (3.3) induce an isogeny⊕

L∈Ξ

AL −→ ResF
KE.

Proof. This is Theorem 5.2 of [MRS]; it follows from the fact that ⊕L∈Ξ IL

injects into Z[G] with finite cokernel.

Definition 3.6. Define the Pontrjagin dual Selmer vector spaces

Sp(E/K) := Hom(Selp∞(E/K),Qp/Zp) ⊗ Qp,

Sp(AL/K) := Hom(Selp∞(AL/K),Qp/Zp) ⊗ Qp.

Define Sp(E/F ) similarly for every finite extension F of K.

Corollary 3.7. There is a G-equivariant isomorphism

Sp(E/F ) ∼=
⊕
L∈Ξ

Sp(AL/K)

where the action of G on the right-hand side is given by Theorem 3.4(ii).

Proof. We have Sp(E/F ) ∼= Sp((ResF
KE)/K) by (the Pontrjagin dual of)

Proposition 3.1(iii), and Sp((ResF
KE)/K) ∼= ⊕L∈ΞSp(AL/K) by Theorem 3.5.

4. The local invariants

Fix an odd prime p and a cyclic extension L/K of degree pn. We will
write simply A for the abelian variety AL of Definition 3.3, R for the ring RL

of Definition 3.2, p for the unique prime pL of R above p, and I ⊂ R for the
ideal IL of Definition 3.2.
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Proposition 4.1. There is a canonical GK-isomorphism A[p] ∼−→ E[p].

Proof. The action of G on p−1I/I is trivial, since for every g ∈ G, g − 1
lies in the maximal ideal of Zp[G]. Also, if π and π′ are generators of p/p2,
then π/π′ ∈ (R/p)× = F×

p , so πp−1 ≡ (π′)p−1 (mod pp). It follows that
πp−1 is a canonical generator of pp−1/pp, so there is a canonical isomorphism
pa(p−1)/pa(p−1)+1 ∼= Fp for every integer a. Now using Theorem 3.4(iv) we
have GK-isomorphisms

A[p] ∼= p−1Tp(A)/Tp(A) ∼= (ppn−1−1/ppn−1
) ⊗ Tp(E) ∼= Fp ⊗ Tp(E) ∼= E[p].

Remark 4.2. Identifying E with AK , one can show using (3.3) that

E[p] = E ∩ AL = AL[p]

inside ResF
KE. This gives an alternate proof of Proposition 4.1.

Definition 4.3. Recall that in Section 2 we defined a self-dual Selmer
structure E on E[p]. We can use the identification of Proposition 4.1 to define
another Selmer structure A on E[p] as follows. For every v define H1

A(Kv, E[p])
to be the image of A(Kv)/pA(Kv) under the composition

A(Kv)/pA(Kv) ↪→ H1(Kv, A[p]) ∼= H1(Kv, E[p])

where the first map is the Kummer injection, and the second map is from
Proposition 4.1. The first map depends (only up to multiplication by a unit
in F×

p ) on a choice of generator of p/p2, but the image is independent of this
choice. With this definition the Selmer group H1

A(K, E[p]) is the usual p-Selmer
group Selp(A/K) of A, as in (2.1).

Proposition 4.4. The Selmer structure A is self-dual.

Proof. This is Proposition A.7 of Appendix A. (It does not follow im-
mediately from Tate’s local duality as in Proposition 2.1, because A has no
polarization of degree prime to p, and hence no suitable Weil pairing.)

Definition 4.5. For every prime v of K we define an invariant δv ∈ Z/2Z
by

δv = δ(v, E, L/K) := dimFp
(H1

E(Kv, E[p])/H1
E∩A(Kv, E[p])) (mod 2).

We will see in Corollary 5.3 below that δv is a purely local invariant, depending
only on Kv, E/Kv, and Lw, where w is a prime of L above v.

Corollary 4.6. Suppose that S is a set of primes of K containing all
primes above p, all primes ramified in L/K, and all primes where E has bad
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reduction. Then

dimFp
Selp(E/K) − dimFp

Selp(A/K) ≡
∑
v∈S

δv (mod 2).

Proof. If v /∈ S then both Tp(E) and Tp(A) are unramified at v, so (see
for example [Ca2, Lemma 19.3])

H1
E(Kv, E[p]) = H1

A(Kv, E[p]) = H1(Kur
v /Kv, E[p]).

Thus the corollary follows from Propositions 2.1 and 4.4 and Theorem 1.4.

5. Computing the local invariants

Let p, L/K, A := AL, and p ⊂ R be as in Section 4. Let M be the unique
extension of K in L with [L : M ] = p, and let G := Gal(L/K) (recall that L/K

is cyclic of degree pn). In this section we compare the local Selmer conditions
H1

E(Kv, E[p]) and H1
A(Kv, E[p]) for primes v of K, in order to compute the

invariants δv of Definition 4.5.

Lemma 5.1. Suppose that c is an automorphism of K, and E is defined
over the fixed field of c in K. Then for every prime v of K, we have δvc = δv.

Proof. The automorphism c induces isomorphisms

E(Kv)
∼−→ E(Kvc), A(Kv)

∼−→ A(Kvc).

Therefore the isomorphism H1(Kv, E[p]) ∼−→ H1(Kvc , E[p]) induced by c iden-
tifies

H1
E(Kv, E[p]) ∼−→ H1

E(Kvc , E[p]), H1
A(Kv, E[p]) ∼−→ H1

A(Kvc , E[p]),

and the lemma follows directly from the definition of δv.

For every prime v of K, let Lv := Kv ⊗K L = ⊕w|vLw, and let G :=
Gal(L/K) act on Lv via its action on L. Let Mv := Kv ⊗ M and let NL/M :
E(Lv) → E(Mv) denote the norm (or trace) map. The following is our main
tool for computing δv.

Proposition 5.2. For every prime v of K, the isomorphism

H1
E(Kv, E[p]) ∼= E(Kv)/pE(Kv)

identifies

H1
E∩A(Kv, E[p]) ∼= (E(Kv) ∩ NL/ME(Lv))/pE(Kv).

Proof. Fix a generator σ of G, and let π be the projection of σ − 1 to R

under (3.2). Since σ projects to a pn-th root of unity in R, we see that π is a
generator of p.
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Note that G and GKv
act on E(K̄v⊗L) (as 1⊗G and GKv

⊗1, respectively).
We identify E(Lv), E(K̄v), A(Kv), and A(K̄v) with their images in E(K̄v ⊗L)
under the natural inclusions and Theorem 3.4(iii):

A(Kv) ⊂ E(Lv) = E(Kv ⊗ L) = E(K̄v ⊗ L)GKv ,

E(K̄v) = E(K̄v ⊗ K) = E(K̄v ⊗ L)G, A(K̄v) ⊂ E(K̄v ⊗ L).

Let π̂ := (1 ⊗ σ) − 1 on E(K̄v ⊗ L), so π̂ restricts to π on A(K̄v) and to
zero on E(K̄v). By Proposition 3.4(iii), A(K̄v) is the kernel of NL/M :=∑

g∈Gal(L/M) 1 ⊗ g in E(K̄v ⊗ L).
If x ∈ E(Kv), then the image of x in H1(Kv, E[p]) is represented by the

cocycle γ �→ yγ⊗1 − y where y ∈ E(K̄v) and py = x. Similarly, using the
identifications above, if α ∈ A(Kv) then the image of α in H1(Kv, E[p]) is
represented by the cocycle γ �→ βγ⊗1 − β where β ∈ A(K̄v) and πβ = α.

Suppose x ∈ E(Kv), and choose y ∈ E(K̄v) such that py = x. Then

the image of x in H1
E(Kv, E[p]) ⊂ H1(Kv, E[p]) belongs to H1

E∩A(Kv, E[p])

⇐⇒ ∃ β ∈ A(K̄v) : πβ ∈ A(Kv), βγ⊗1 − β = yγ⊗1 − y ∀γ ∈ GKv

⇐⇒ ∃ β ∈ A(K̄v) : βγ⊗1 − β = yγ⊗1 − y ∀γ ∈ GKv

⇐⇒ ∃ β ∈ E(K̄v ⊗ L) : NL/Mβ = 0, y − β ∈ E(Lv)

⇐⇒ NL/My ∈ NL/ME(Lv),

where for the second equivalence we use that if γ ∈ GKv
and βγ⊗1 − β =

yγ⊗1 − y, then π̂βγ⊗1 − π̂β = π̂(yγ⊗1 − y) = 0, and if this holds for every γ,
then πβ ∈ A(Kv). Since y ∈ E(K̄v) = E(K̄v ⊗ L)G, we have NL/My = py = x

and the proposition follows.

The following corollary gives a purely local formula for δv, depending only
on E and the local extension Lw/Kv (where w is a prime of L above v).

Corollary 5.3. Suppose v is a prime of K and w is a prime of L

above v. If Lw �= Kv then let L′
w be the unique subfield of Lw containing

Kv with [Lw : L′
w] = p, and otherwise let L′

w := Lw = Kv. Let NLw/L′
w

denote
the norm map E(Lw) → E(L′

w). Then

δv ≡ dimFp
E(Kv)/(E(Kv) ∩ NLw/L′

w
E(Lw)) (mod 2).

In particular if NLw/L′
w

: E(Lw) → E(L′
w) is surjective (for example, if v splits

completely in L/K) then δv = 0.

Proof. By Proposition 5.2

H1
E(Kv, E[p])/H1

E∩A(Kv, E[p]) ∼= E(Kv)/(E(Kv) ∩ NL/ME(Lv)),

and δv is the Fp-dimension (modulo 2) of the left-hand side. Since L/K is
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cyclic, L′
w is the completion of M at the prime below w, so we have

E(Kv) ∩ NL/ME(Lv) = E(Kv) ∩ NLw/L′
w
E(Lw).

This proves the corollary.

By local field we mean a finite extension of Q� for some rational prime �.

Lemma 5.4. If K is a local field with residue characteristic different from p,
and E is defined over K, then E(K)/pE(K) = E(K)[p∞]/pE(K)[p∞] and in
particular

dimFp
E(K)/pE(K) = dimFp

E(K)[p].

Proof. There is an isomorphism of topological groups

E(K) ∼= E(K)[p∞] ⊕ C ⊕ D

with a finite group C of order prime to p and a free Z�-module D of finite rank,
where � is the residue characteristic of v. Since E(K)[p∞] is finite, the lemma
follows easily.

Lemma 5.5. Suppose L/K is a cyclic extension of degree p of local fields
and E is defined over K. Let � denote the residue characteristic of K.

(i) If L/K is unramified and E has good reduction, then NL/KE(L) = E(K).

(ii) If L/K is ramified, � �= p, and E has good reduction, then

E(K)/pE(K) → E(L)/pE(L)

is an isomorphism and NL/KE(L) = pE(K).

Proof. The first assertion is Corollary 4.4 of [M].
Suppose now that � �= p, L/K is ramified, and E has good reduction. Then

K(E[p∞])/K is unramified, so K(E(L)[p∞]) = K, i.e., E(K)[p∞] = E(L)[p∞].
Now (ii) follows from Lemma 5.4.

Theorem 5.6. Suppose that v � p and E has good reduction at v. Let w

be a prime of L above v. If Lw/Kv is nontrivial and totally ramified, then

δv ≡ dimFp
E(Kv)[p] (mod 2).

Proof. Let L′
w be the intermediate field Kv ⊂ L′

w ⊂ Lw with [Lw : L′
w] = p,

as in Corollary 5.3. Applying Lemma 5.5(ii) to Lw/L′
w and to L′

w/Kv shows
that

NLw/L′
w
E(Lw) = pE(L′

w) and E(Kv) ∩ pE(L′
w) = pE(Kv),

so by Corollary 5.3 and Lemma 5.4 we have

δv ≡ dimFp
E(Kv)/pE(Kv) ≡ dimFp

E(Kv)[p] (mod 2).
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Theorem 5.7. Suppose that E is defined over Qp ⊂ Kv with good super-
singular reduction at p. If p = 3 assume further that |E(F3)| = 4.

If Kv contains the unramified quadratic extension of Qp, then δv = 0.

Proof. Under these hypotheses |E(Fp)| = p + 1, so the characteristic
polynomial of Frobenius on E/Fp is X2 + p. It follows that the characteristic
polynomial of Frobenius on E/Fp2 is (X + p)2. In other words, multiplication
by −p reduces to the Frobenius endomorphism of E/Fp2

Let Qp2 ⊂ Kv denote the unramified quadratic extension of Qp, and Zp2

its ring of integers. Let Ê denote the formal group over Zp2 giving the kernel of
reduction on E, and [−p](X) ∈ Zp[[X]] the power series giving multiplication
by −p on Ê. Then [−p](X) ≡ −pX (mod X2), and since −p reduces to
Frobenius, we have [−p](X) ≡ Xp2

(mod p). In other words, Ê is a Lubin-
Tate formal group of height 2 over Zp2 , for the uniformizing parameter −p.

It follows that Zp2 ⊂ End(Ê). Therefore Ê(Kv) is a Zp2-module, and since
E has supersingular reduction, E(Kv)/pE(Kv) ∼= Ê(Kv)/pÊ(Kv) is a vector
space over Zp2/pZp2 = Fp2 . Similarly, if w is a prime of L above v then Ê(Lw) is
a Zp2 [Gal(Lw/Kv)]-module and E(Lw)/pE(Lw) is an Fp2-vector space. Hence
E(Kv)/(E(Kv) ∩ NLw/L′

w
E(Lw)) is an Fp2-vector space, so its Fp-dimension

δv is even.

6. Dihedral extensions

Keep the notation of the previous sections. For cyclic extensions L of K

in F , Proposition 2.1 relates corankZp
Selp∞(E/K) to dimFp

Selp(E/K), and
Corollary 4.6 relates dimFp

Selp(E/K) to dimFp
Selp(AL/K). Next we need

to relate dimFp
Selp(AL/K) to corankZp

Selp∞(AL/K). For this we need an
additional hypothesis.

Suppose now that c is an automorphism of order 2 of K, let k ⊂ K be the
fixed field of c, and suppose that E is defined over k. Fix a cyclic extension
L/K of degree pn, and let A := AL, R := RL, p ⊂ R the maximal ideal, etc.,
as in Section 5. We assume further that L is Galois over k with dihedral Galois
group, i.e., c acts by inversion on G := Gal(L/K).

Theorem 6.1. dimFp
(X(A/K)/X(A/K)div)[p] is even.

Theorem 6.1 will be proved in Appendix A.

Remark 6.2. Theorem 6.1 is essential for our applications. Without it,
the formula in Proposition 6.3 below would not hold, and our approach would
fail. The proof of Theorem 6.1 depends heavily on the fact that L/k is a
dihedral extension. Stein [S] has given examples with K = Q where L/Q is
abelian, X(A/Q) is finite and dimFp

X(A/Q)[p] is odd.
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If A had a polarization of degree prime to p, then Theorem 6.1 would
follow directly from Tate’s generalization of the Cassels pairing [T2]. However,
Howe [He] showed that (under mild hypotheses) every polarization of A has
degree divisible by p2.

Let Rp := R ⊗ Zp.

Proposition 6.3.

corankRp
Selp∞(A/K) ≡ dimFp

H1
A(K, E[p]) − dimFp

E(K)[p] (mod 2).

Proof. The proof is identical to that of the formula for

corankZp
Selp∞(E/K)

in Proposition 2.1, using Theorem 3.4(ii) to view R ⊂ EndK(A), using Theo-
rem 6.1 in place of the Cassels pairing, and using Proposition 4.1 to identify
A(K)[p] with E(K)[p].

Theorem 6.4. Suppose that S is a set of primes of K containing all
primes above p, all primes ramified in L/K, and all primes where E has bad
reduction. Then

corankZp
Selp∞(E/K) − corankRp

Selp∞(A/K) ≡
∑
v∈S

δv (mod 2).

Proof. This follows directly from Corollary 4.6 and Propositions 2.1 and
6.3.

Lemma 6.5. Suppose v is a prime of K and v = vc. Let w be a prime of
L above v. Then

(i) Lw/Kv is totally ramified (we allow Lw = Kv),

(ii) if v � p and Lw �= Kv then v is unramified in K/k.

Proof. Let w be a prime of L above v, and u the prime of k below
v. Since v = vc, the group Gal(Lw/ku) is dihedral. The inertia subgroup
I ⊂ Gal(Lw/ku) is normal with cyclic quotient, and the only subgroups with
this property are Gal(Lw/ku) and Gal(Lw/Kv). This proves (i).

Suppose now that v is ramified in K/k, and let � be the residue character-
istic of Kv. By (i), the inertia group I is a dihedral group of order 2[Lw : Kv].
On the other hand, the Sylow �-subgroup of I is normal with cyclic quotient
(the tame inertia group). The maximal abelian quotient of I has order 2, so
[Lw : Kv] must be a power of �, so � = p.
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Lemma 6.6. If v is a prime of K where E has good reduction, v � p,
v = vc, and v is ramified in L/K, then dimFp

E(Kv)[p] is even.

Proof. Suppose v � p, v = vc, and v ramifies in L/K. Fix a prime w of
L above v, and let u be the prime of k below v. Let κ+ and κ denote the
residue fields of ku and Kv, respectively. Note that Kv/ku is quadratic since
v = vc, and unramified by Lemma 6.5(ii). Let φ be the Frobenius generator of
Gal(Kur

v /ku), so φ2 is the Frobenius of Gal(Kur
v /Kv).

By Lemma 6.5(i), Lw/Kv is totally, tamely ramified. A standard result
from algebraic number theory gives a Gal(κ/κ+)-equivariant injective homo-
morphism Gal(Lw/Kv) ↪→ κ×. Since c acts by inversion on Gal(Lw/Kv), which
is a nontrivial p-group by assumption, it follows that φ acts as inversion on
μp ⊂ κ×.

Let α, β ∈ F̄×
p be the eigenvalues of φ acting on E[p]. The Weil pairing

and the action of φ on μp show that αβ = −1. If α �= ±1, then 1 is not an
eigenvalue of φ2 acting on E[p], so E(Kv)[p] = E[p]φ

2=1 = 0. If α = ±1, then
{α, β} = {1,−1}, the action of φ on E[p] is diagonalizable, φ2 is the identity
on E[p], and so E(Kv)[p] = E[p]φ

2=1 = E[p]. In either case, dimFp
E(Kv)[p] is

even.

Theorem 6.7. If v | p and E has good ordinary reduction at v, then
δv = 0.

Proof. Let w be a prime of L above v. The theorem follows directly from
Corollary 5.3 and either Proposition B.3 of Appendix B (if Lw/Kv is totally
ramified) or Lemma 5.5(i) (if not).

7. The main theorems

Fix a quadratic extension K/k with nontrivial automorphism c, an elliptic
curve E defined over k, and an odd rational prime p. Recall that if F is an
extension of K then Sp(E/F ) := Hom(Selp∞(E/F ),Qp/Zp) ⊗ Qp. If L is a
cyclic extension of K in F , let RL and AL be as defined in Definitions 3.2 and
3.3.

Theorem 7.1. Suppose F is an abelian p-extension of K, dihedral over
k (i.e., F is Galois over k and c acts by inversion on Gal(F/K)). Define

S := {primes v of K : v ramifies in F/K and v = vc},
and suppose that for every v ∈ S, one of the following three conditions holds:

(a) v � p and E has good reduction at v,

(b) v | p and E has good ordinary reduction at v,
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(c) v | p, E is defined over Qp ⊂ Kv with good supersingular reduction at
p (and if p = 3, then |E(F3)| = 4), and Kv contains the unramified
quadratic extension of Qp.

Then:

(i) For every cyclic extension L of K in F ,

corankRL⊗Zp
Selp∞(AL/K) ≡ corankZp

Selp∞(E/K) (mod 2).

(ii) If Ξ is the set of cyclic extensions L of K contained in F , G = Gal(F/K),
and Q[G] ∼= ⊕L∈ΞQ[G]L is the decomposition (3.2) of Q[G] into its iso-
typic components, then there an isomorphism of Qp[G]-modules

Sp(E/F ) ∼=
⊕
L∈Ξ

(Q[G]L ⊗ Qp)dL

where for every L,

dL := corankRL⊗Zp
Selp∞(AL/K) ≡ corankZp

Selp∞(E/K) (mod 2).

Proof. Suppose that L is a cyclic extension of K in F , and let Rp :=
RL ⊗ Zp as in Section 6.

Let v be a prime of K. If v �= vc then δv + δvc ≡ 0 (mod 2) by Lemma
5.1. If v = vc and v is unramified in L/K, then v splits completely in L/K by
Lemma 6.5(i), so δv = 0 by Corollary 5.3. Therefore by Theorem 6.4 we have

corankZp
Selp∞(E/K) − corankRp

Selp∞(AL/K) ≡
∑
v∈S

δv (mod 2).

We will show that if v ∈ S then δv = 0, which will prove (i).

Case 1: v � p. Then (a) holds, so E has good reduction at v. If w is a
prime of L above v, then Lw/Kv is totally ramified by Lemma 6.5(i). Thus if
Lw = Kv then δv = 0 by Corollary 5.3, and if Lw �= Kv then Theorem 5.6 and
Lemma 6.6 show that δv ≡ dimFp

E(Kv)[p] ≡ 0 (mod 2).

Case 2: v | p. Then either (b) or (c) must hold. If (b) holds then δv = 0
by Theorem 6.7, and if (c) holds then δv = 0 by Theorem 5.7. This proves (i).

By Corollary 3.7, Sp(E/F ) ∼= ⊕L∈Ξ Sp(AL/K). By Theorem 3.4(ii),
Sp(AL/K) is a vector space over the field Q[G]L ⊗ Qp = RL ⊗ Qp, and by
(i) its dimension dL is congruent to corankZp

Selp∞(E/K) modulo 2. This
proves (ii).

Theorem 7.2. Suppose F/k and E satisfy the hypotheses of Theorem 7.1.
If corankZp

Selp∞(E/K) is odd, then Sp(E/F ) has a submodule isomorphic
to Qp[Gal(F/K)], and in particular

corankZp
Selp∞(E/F ) ≥ [F : K].
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Proof. In Theorem 7.1(ii) we have dL ≥ 1 for every L, and the theorem
follows.

Theorem 7.3. Suppose F is an abelian p-extension of K, dihedral over k,
and all three of the following conditions are satisfied :

(a) every prime v � p of K that ramifies in F/K satisfies E(Kv)[p] = 0,

(b) every prime v of K where E has bad reduction splits completely in F/K,

(c) for every prime v of K dividing p, E has good ordinary reduction at v

and if κ is the residue field of Kv, then E(κ)[p] = 0.

If Selp∞(E/K) ∼= Qp/Zp (for example, if rankZE(K) = 1 and X(E/K)[p]
= 0), then Sp(E/F ) ∼= Qp[Gal(F/K)], and in particular corankZp

Selp∞(E/F )
= [F : K].

Proof. Note that the hypotheses of this theorem are stronger than those
of Theorem 7.1, so we can apply Theorem 7.1.

Suppose L is a nontrivial cyclic extension of K in F , and K ⊂ M ⊂ L

with [L : M ] = p. We will show that for every prime v of K and w of L above
v,

E(Kv) ⊂ NLw/Mw
E(Lw).(7.1)

Assume this for the moment. Then H1
A(Kv, E[p]) = H1

E(Kv, E[p]) for every v

by Proposition 5.2, so if pL is the prime above p in RL ⊂ End(AL), we have

SelpL
(AL/K) = H1

A(K, E[p]) = H1
E(K, E[p]) = Selp(E/K).

Let dL := corankRL⊗Zp
Selp∞(AL/K). Using (2.1) and (2.2) (or the proof of

Proposition 2.1) and Proposition 4.1, we have

dL ≤ dimFp
SelpL

(AL/K)−dimFp
AL[pL] = dimFp

Selp(E/K)−dimFp
E[p] = 1.

But by Theorem 7.1(i), dL is odd, so dL = 1. This holds for every L (including
L = K), so the theorem follows directly from Theorem 7.1(ii).

It remains to prove (7.1).

Case 1: v � p, E has good reduction at v, v is unramified in L/K. In this
case (7.1) holds by Lemma 5.5(i).

Case 2: v � p, E has good reduction at v, v is ramified in L/K. In this
case E(Kv) = pE(Kv) by assumption (a) and Lemma 5.4, so (7.1) holds.

Case 3: v � p, E has bad reduction at v. In this case Lw = Mw by
assumption (b), so (7.1) holds.
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Case 4: v | p. If Lw/Kv is not totally ramified, then Lw/Mw is unramified
and (7.1) holds by Lemma 5.5(i). If Lw/Kv is totally ramified, then (7.1) holds
by Proposition B.3 of Appendix B and assumption (c). This completes the
proof.

8. Special cases

8.1. Odd Selmer corank. In general it can be very difficult to determine
the parity of corankZp

Selp∞(E/K). We now discuss some general situations in
which the corank can be forced to be odd.

Fix an elliptic curve E defined over Q, and let NE be its conductor. Fix a
Galois extension K of Q such that Gal(K/Q) is dihedral of order 2m with m

odd, m ≥ 1. Let M be the quadratic extension of Q in K, ΔM the discriminant
of M , and χM the quadratic Dirichlet character attached to M . Let c be one
of the elements of order 2 in Gal(K/Q), and let k be the fixed field of c.

Lemma 8.1. corankZp
Selp∞(E/K) ≡ corankZp

Selp∞(E/M) (mod 2).

Proof. The restriction map Sp(E/M) → Sp(E/K)Gal(K/M) is an isomor-
phism, so in the Qp-representation Sp(E/K)/Sp(E/M) of Gal(K/Q), neither
of the two one-dimensional representations occurs. Since all other representa-
tions of Gal(K/Q) have even dimension, we have that

corankZp
Selp∞(E/K) − corankZp

Selp∞(E/M) = dimQp
(Sp(E/K)/Sp(E/M))

is even.

The following proposition follows from the “parity theorem” for the
p-power Selmer group proved by Nekovár̆ [N1] and Kim [K].

Proposition 8.2. Suppose that p > 3 is a prime, and that p, ΔM , and
NE are pairwise relatively prime. Then corankZp

Selp∞(E/K) is odd if and
only if χM (−NE) = −1.

Proof. Let E′ be the quadratic twist of E by χM , and let w, w′ be
the signs in the functional equation of L(E/Q, s) and L(E′/Q, s), respectively.
Since ΔM and NE are relatively prime, a well-known formula shows that ww′ =
χM (−NE).

Using Lemma 8.1 we have

corankZp
Selp∞(E/K) ≡ corankZp

Selp∞(E/M) (mod 2)

= corankZp
Selp∞(E/Q) + corankZp

Selp∞(E′/Q).

By a theorem of Nekovár̆ [N1] (if E has ordinary reduction at p) or Kim [K] (if
E has supersingular reduction at p), we have that corankZp

Selp∞(E/Q) is even
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if and only if w = 1, and similarly for E′ and w′. Thus corankZp
Selp∞(E/K)

is odd if and only if w = −w′, and the proposition follows.

For every prime p, let K−
c,p be the maximal abelian p-extension of K that

is Galois and dihedral over k, and unramified (over K) at all primes dividing
NE that do not split in M/Q. (Note that if a rational prime � splits in M ,
then every prime of k above � splits in K/k since [K : M ] is odd.)

Theorem 8.3. Suppose p > 3 is prime, and p, ΔM , and NE are pairwise
relatively prime. If χM (−NE) = −1, then for every finite extension F of K in
K−

c,p,
corankZp

Selp∞(E/F ) ≥ [F : K].

Proof. This will follow directly from Theorem 7.2 and Proposition 8.2,
once we show that the hypotheses of Theorem 7.1 are satisfied. By definition
of K−

c,p, the set S of Theorem 7.1 contains only primes above p, and since
p � NEΔM either (b) or (c) holds for every v ∈ S.

If m = 1, so K = M , and if M is imaginary, then K−
c,p contains the

anticyclotomic Zp-extension of K, and thanks to [Co] and [V] we know that
the bulk of the contribution to the Selmer groups in Theorem 8.3 comes from
Heegner points.

If m = 1 and M is real, then there is no Zp-extension of K in K−
c,p.

However, K−
c,p is still an infinite extension of K, and (for example) every finite

abelian p-group occurs as a quotient of Gal(K−
c,p/K).

More generally, for arbitrary m, if M is imaginary then K−
c,p contains a

Zd
p-extension of K with d = (m+1)/2, and if M is real then K is totally real so

K−
c,p is infinite but contains no Zp-extension of K. Except for Heegner points

in special cases (such as when m = 1 and M is imaginary), it is not known
where the Selmer classes in Theorem 8.3 come from.

8.2. Split multiplicative reduction at p. Suppose now that K/k is a
quadratic extension, and F is a finite abelian p-extension of K, dihedral over
k. Suppose that E is an elliptic curve over k, and v is a prime of K above p,
inert in K/k, where E has split multiplicative reduction. If F/K is ramified
at v then Theorems 7.1 and 7.2 do not apply. We now study this case more
carefully.

Lemma 8.4. Suppose v is a prime of K above p such that v = vc, u

is the prime of k below v, and E has split multiplicative reduction at u. If
L is a nontrivial cyclic extension of K in F , v is totally ramified in L/K,
K ⊂ L′ ⊂ L with [L : L′] = p, and w is a prime of L above v, then

[E(Kv) : E(Kv) ∩ NL/L′E(Lw)] = p.
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Proof. Let mu denote the maximal ideal of ku. Since E has split mul-
tiplicative reduction, there is a nonzero q ∈ mu such that E(Lw) ∼= L×

w/qZ as
Gal(Lw/ku)-modules.

Since v = vc, Lw/kv is dihedral so the maximal abelian extension of kv in
Lw is Kv. Thus local class field theory gives an identity of norm groups

NKv/kv
K×

v = NLw/kv
L×

w ⊂ NLw/L′
w
L×

w .

Since q2 ∈ NKv/kv
K×

v and [(L′
w)× : NLw/L′

w
L×

w ] = [Lw : L′
w] = p is odd, we see

that q ∈ NLw/L′
w
L×

w , and so

[E(Kv) : E(Kv) ∩ NL/L′E(Lw)] = [K×
v : K×

v ∩ NL/L′L×
w ].(8.1)

Let [L : K] = pn. If [ , ] denotes the Artin map of local class field theory, then
K×

v ∩ NL/L′L×
w is the kernel of the map K×

v → Gal(Lw/Kv) given by

x �→ [x, Lw/L′
w] = [NL′/Kx, Lw/Kv] = [xpn−1

, Lw/Kv] = [x, Lw/Kv]p
n−1

.

Since x �→ [x, Lw/Kv] maps K×
v onto a cyclic group of order pn, we conclude

that the index (8.1) is p, as desired.

Let Sp be the set of primes v of K above p such that v = vc and neither
of the hypotheses (b) or (c) of Theorem 7.1 hold for v.

Theorem 8.5. Suppose that F is a finite abelian p-extension of K that
is dihedral over k and unramified at all primes v � p of bad reduction that do
not split in K/k. Suppose further that for every prime v ∈ Sp, E has split
multiplicative reduction at v and v is totally ramified in F/K. Then:

(i) If corankZp
Selp∞(E/K) + |Sp| is odd, then

corankZp
Selp∞(E/F ) ≥ corankZp

Selp∞(E/K) + [F : K] − 1.

(ii) If Selp∞(E/K) is finite and |Sp| is odd, then

corankZp
Selp∞(E/F ) ≥ [F : K] − 1.

(iii) Suppose that |Sp| = 1, and the hypotheses (a), (b), or (c) of Theorem 7.3
hold for every prime v of K not in Sp. If Selp∞(E/K) = 0, then

corankZp
Selp∞(E/F ) = [F : K] − 1.

Proof. The proof is identical to that of Theorems 7.2 and 7.3, except that
we use Lemma 8.4 to compute the δv for v ∈ Sp.

Suppose L is a nontrivial cyclic extension of K in F . Exactly as in The-
orem 7.1, we have

∑
v/∈Sp

δv ≡ 0 (mod 2). If v ∈ Sp, then δv = 1 by Lemma
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8.4 and Corollary 5.3. Thus we conclude that
∑

v δv ≡ |Sp| (mod 2). Exactly
as in Theorem 7.1 we conclude using Theorem 6.4 that

Sp(E/F ) ∼=
⊕
L∈Ξ

(Q[G]L ⊗ Qp)dL(8.2)

where dL ≡ corankZp
Selp∞(E/K) + |Sp| (mod 2) for every L �= K. Assertion

(i) now follows exactly as in the proof of Theorem 7.2, and (ii) is a special case
of (i).

For (iii), it follows exactly as in the proof of Theorem 7.3 that H1
A(Kv, E[p])

= H1
E(Kv, E[p]) for every v /∈ Sp. Thus if Sp = {v0}, there is an exact sequence

0 → H1
E∩A(K, E[p]) → H1

A(K, E[p]) → H1
A(Kv0 , E[p])/H1

E∩A(Kv0 , E[p]).
(8.3)

By Lemma 8.4 and Proposition 5.2,

dimFp
H1

A(Kv0 , E[p]) = dimFp
H1

E(Kv0 , E[p]) = dimFp
H1

E∩A(Kv0 , E[p]) + 1

(the first equality holds because A and E are self-dual), so it follows from (8.3)
that

dimFp
SelpL

(AL/K) = dimFp
H1

A(K, E[p]) ≤ dimFp
H1

E(K, E[p]) + 1

= dimFp
E[p] + 1 = dimFp

A[p] + 1.

Therefore dL := corankRL⊗Zp
Selp∞(AL/K) ≤ 1. The proof of (i) showed that

dL is odd, so dL = 1. Hence in (8.2) we have dL = 1 if L �= K, and dK = 0.
This proves (iii).

Remark 8.6. In the case where K = M is imaginary quadratic and F is a
subfield of the anticyclotomic Zp-extension, Bertolini and Darmon [BD] give a
construction of Heegner-type points that account for most of the Selmer classes
in Theorem 8.5.

Appendix A. Skew-Hermitian pairings

In this appendix we prove Proposition 4.4 and Theorem 6.1. Let p be
an odd prime, L/K be a cyclic extension of number fields of degree pn, G :=
Gal(L/K), and R := RL ⊗ Zp, where RL is given by Definition 3.2. We view
R as a GK-module by letting GK act trivially (not the action induced from
the action on RL). Then R is the cyclotomic ring over Zp generated by pn-th
roots of unity (see for example [MRS, Lemma 5.4(ii)]).

Let ι be the involution of RL (resp., R) induced by ζ �→ ζ−1 for pn-th
roots of unity ζ ∈ RL (resp., ζ ∈ R). If W is an R-module, we let W ι be the
R-module whose underlying abelian group is W , but with R-action twisted
by ι.
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Definition A.1. Suppose W is an R-module and B is a Zp-module. We
say that a Zp-bilinear pairing

〈 , 〉 : W × W → B

is ι-adjoint if 〈rx, y〉 = 〈x, rιy〉 for every r ∈ R and x, y ∈ W . We say that a
pairing

〈 , 〉 : W × W → R⊗Zp
B

is R-semilinear if 〈rx, y〉 = r〈x, y〉 = 〈x, rιy〉 for every r ∈ R and x, y ∈ W ,
and we say 〈 , 〉 is skew-Hermitian if it is R-semilinear and 〈y, x〉 = −〈x, y〉ι⊗1

for every x, y ∈ W .
We say that 〈 , 〉 is nondegenerate (resp., perfect) if the induced map

W → HomZp
(W ι, B) (or HomR(W ι,R ⊗Zp

B), depending on the context) is
injective (resp., an isomorphism).

Definition A.2. Let ζ be a primitive pn-th root of unity in RL, and let
π := ζ−ζ−1. Then π is a generator of the prime pL of RL above p, and π is also
a generator of the maximal ideal p of R, and πι = −π. Let d := πpn−1(pn−n−1),
so d is a generator of the inverse different of RL/Z and of R/Zp, and dι = −d.
Define a trace pairing

tR/Zp
: R×R → Zp, tR/Zp

(r, s) := TrR/Zp
(d−1rsι).

This pairing is ι-adjoint, perfect, and (since dι = −d) skew-symmetric. Define
τ : R → Zp by τ(r) := tR/Zp

(1, r) = −TrR/Zp
(d−1r).

Lemma A.3. Suppose that W is an R[GK ]-module and B is a Zp[GK ]-
module. Composition with τ ⊗ 1 : R ⊗Zp

B → B gives an isomorphism of
GK-modules

HomR(W,R⊗Zp
B) ∼−→ HomZp

(W, B).

Proof. We will construct an inverse to the map in the statement of the
lemma. Suppose f ∈ HomZp

(W, B). Fix a Zp-basis {ν1, . . . , νb} of R, and let
{ν∗

1 , . . . , ν∗
b } be the dual basis with respect to tR/Zp

, i.e., tR/Zp
(νi, ν

∗
j ) = δij .

For x ∈ W define

f̂(x) :=
b∑

i=1

ν∗
i ⊗ f(νι

ix) ∈ R⊗Zp
B.

Then for every j and x,

(τ ⊗1)(νι
j f̂(x)) =

b∑
i=1

tR/Zp
(1, νι

jν
∗
i )f(νι

ix) =
b∑

i=1

tR/Zp
(νj , ν

∗
i )f(νι

ix) = f(νι
jx).

Since the νj are a basis of R, we conclude that

(τ ⊗ 1)(rf̂(x)) = f(rx) for every r ∈ R.(A.1)
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Thus if s ∈ R then for every r

(τ ⊗ 1)(rf̂(sx)) = f(rsx) = (τ ⊗ 1)(rsf̂(x)).

Since tR/Zp
is perfect and R is free over Zp, it follows that f̂(sx) = sf̂(x), so

f̂ ∈ HomR(W,R⊗Zp
B).

By (A.1) with r = 1, (τ ⊗ 1) ◦ f̂ = f so HomR(W,R ⊗Zp
B)

◦(τ⊗1)−−−−→
HomZp

(W, B) is surjective. The injectivity follows from the fact that tR/Zp
is

perfect and R is free over Zp. The GK-equivariance is clear (recall that GK

acts trivially on R).

Proposition A.4. Suppose that W is an R-module and B is a Zp-module.
Composition with τ ⊗ 1 : R ⊗Zp

B → B gives a bijection between the set of
R-semilinear pairings W × W → R ⊗Zp

B, and the set of ι-adjoint pairings
W × W → B.

If 〈 , 〉R maps to 〈 , 〉Zp
under this bijection, then 〈 , 〉Zp

is perfect (resp.,
GK-equivariant) if and only if 〈 , 〉R is perfect (resp., GK-equivariant).

Proof. By Lemma A.3, composition with τ⊗1 induces a GK-isomorphism

HomR(W, HomR(W ι,R⊗Zp
B)) ∼−→ HomR(W, HomZp

(W ι, B)).(A.2)

The left-hand side is the set of R-semilinear pairings W ×W → R⊗Zp
B, and

the right-hand side is the set of ι-adjoint pairings W × W → B.
Since composition with τ ⊗ 1 identifies the isomorphisms in (A.2), we see

that 〈 , 〉R is perfect if and only if 〈 , 〉Zp
is perfect. Since (A.2) is GK-

equivariant, 〈 , 〉R is GK-equivariant if and only if 〈 , 〉Zp
is GK-equivariant.

This completes the proof of the proposition.

Let A be the abelian variety AL of Definition 3.3. Recall (Definitions
A.2 and 3.2 and Theorem 3.4(i)) that π is a generator of the prime pL of RL,
πR = p, and IL = p

pn−1

L .

Definition A.5. Define a pairing f : IL × IL → RL by

f(α, β) := π−2pn−1
αβι.

Theorem 3.4(iv) gives a GK-isomorphism Tp(A) ∼= IL ⊗ Tp(E), and using this
identification we define

〈 , 〉R := f ⊗ e : Tp(A) × Tp(A) −→ R⊗Zp
Zp(1)

where e is the Weil pairing on E. In other words, if α, β ∈ IL and x, y ∈ Tp(E),
we set

〈α ⊗ x, β ⊗ y〉R := (π−2pn−1
αβι) ⊗ e(x, y).
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Lemma A.6. The pairing 〈 , 〉R of Definition A.5 is perfect, GK-equivariant,
and skew-Hermitian.

Proof. The Weil pairing is perfect and skew-symmetric, and the pairing
f is perfect and Hermitian (since πι = −π). Thus 〈 , 〉R is perfect and skew-
Hermitian. If α, β ∈ IL, x, y ∈ Tp(E), and γ ∈ GK then

〈(α ⊗ x)γ , (β ⊗ y)γ〉R = 〈αγ−1 ⊗ γx, βγ−1 ⊗ γy〉R
= π−2pn−1

(αγ−1)(βγ−1)ι ⊗ e(γx, γy)

= π−2pn−1
(αγ−1)(βιγ) ⊗ e(x, y)γ

= f(α, β) ⊗ e(x, y)γ = 〈α ⊗ x, β ⊗ y〉γR
since the Weil pairing is GK-equivariant and GK acts trivially on R.

The following is Proposition 4.4.

Proposition A.7. The Selmer structure A on E[p] of Definition 4.3 is
self-dual.

Proof. Using Proposition A.4, we let

〈 , 〉Zp
: Tp(A) × Tp(A) −→ Zp(1)

be the pairing corresponding under Proposition A.4 to the pairing 〈 , 〉R of
Definition A.5, with B = Zp(1). It follows from Proposition A.4 and Lemma
A.6 that 〈 , 〉Zp

is perfect, GK-equivariant, and ι-adjoint.
By a generalization of Tate duality due to Bloch and Kato (see Proposition

3.8 and Example 3.11 of [BK]), for every prime v of K, the pairing 〈 , 〉Zp

induces a perfect, ι-adjoint cup-product pairing

λ : H1(Kv, Tp(A)) × H1(Kv, Tp(A) ⊗ Qp/Zp) −→ Qp/Zp,

and under this pairing the image of A(Kv) → H1(Kv, Tp(A)) and the image
of A(Kv) ⊗Qp/Zp → H1(Kv, Tp(A) ⊗Qp/Zp) are orthogonal complements of
each other.

The pairing λ induces a pairing

λpL
: H1(Kv, Tp(A)/pLTp(A)) × H1(Kv, (Tp(A) ⊗ Qp/Zp)[pL]) −→ Fp.

We have isomorphisms (the first one uses the chosen generator π of pL)

Tp(A)/pLTp(A) ∼= A[pL] ∼= (Tp(A) ⊗ Qp/Zp)[pL].

Along with the identification A[pL] ∼= E[p] of Proposition 4.1, this transforms
λpL

into a pairing H1(Kv, E[p]) × H1(Kv, E[p]) → Fp, and one can check
directly from the definition of λ that this pairing is the same as the local cup
product pairing on H1(Kv, E[p]) coming from the Weil pairing as in Section 1
and Section 2.
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A couple of straightforward diagram chases (see for example Lemma 1.3.8
and Proposition 1.4.3 of [R]) show that the image of

A(Kv) → H1(Kv, Tp(A)) → H1(Kv, Tp(A)/pLTp(A)) ∼−→ H1(Kv, E[p])(A.3)

and the inverse image of A(Kv) ⊗ Qp/Zp under

H1(Kv, E[p]) ∼−→ H1(Kv, (Tp(A) ⊗ Qp/Zp)[pL]) → H1(Kv, Tp(A) ⊗ Qp/Zp)

are equal and are orthogonal complements under λpL
. By definition the image

of (A.3) is H1
A(Kv, E[p]), so this proves that A is self-dual.

It remains to prove Theorem 6.1, and for that we need to be in the dihedral
setting of Section 6. We assume now that K has an automorphism c of order 2,
that E is defined over the fixed field k of K, that L is Galois over k, and that
c acts by inversion on G := Gal(L/K).

We begin by fixing a model of A defined over k.

Definition A.8. Fix a lift of c to Gk, and denote this lift by c. Then
Gal(L/k) is the semidirect product G � H, where H is the group of order 2
generated by the restriction of c. Let JL := (1 + c)IL, where IL ⊂ Z[G] ⊂
Z[Gal(L/k)] is the ideal of Z[G] given in Definition 3.2. Then JL is a right
ideal of Z[Gal(L/k)], and we define an abelian variety A′ over k by

A′ := JL ⊗ E

as in Definition 1.1 (and §6) of [MRS].

Proposition A.9. (i) Left multiplication by (1+c) is an isomorphism
of right GK-modules from IL to JL.

(ii) The isomorphism of (i) induces an isomorphism A ∼= A′ defined over K.

Proof. The first assertion is easily checked, and the second follows by
Corollary 1.9 of [MRS]. See also Theorem 6.3 of [MRS].

From now on we view A as defined over k, by using the model A′ of A

and Proposition A.9(ii). We extend the GK-action on Tp(A), IL, and R to
a Gk-action by identifying Tp(A) with Tp(A′), IL with JL as in Proposition
A.9(i), and letting c act on (the trivial GK-module) R by ι. The actions on
Tp(A) and IL depend on the choice of c.

Proposition A.10. With the conventions above, the pairing

〈 , 〉R : Tp(A) × Tp(A) → R⊗Zp
Zp(1)

of Definition A.5 is Gk-equivariant.



606 BARRY MAZUR AND KARL RUBIN

Proof. By Theorem 2.2(iii) of [MRS], there is a Gk-isomorphism Tp(A′) ∼=
JL ⊗ Tp(E). With the conventions above, this says that the isomorphism
Tp(A) ∼= IL ⊗ Tp(E), which was used to construct the pairing 〈 , 〉R in Defi-
nition A.5, is Gk-equivariant. The proposition follows from this exactly as in
Lemma A.6, using the fact that for α ∈ IL, (1+c)αc = (1+c)cαι = (1+c)αι.

Let Dp := R⊗Zp
Qp/Zp.

Proposition A.11. Suppose that W is an R-module of finite cardinal-
ity and a Gal(K/k)-module, and suppose that there is a nondegenerate, skew-
Hermitian, Gal(K/k)-equivariant pairing

[ , ] : W × W −→ Dp.

Then W has isotropic R-submodules M , M ′ such that M ∼= M ′ and W =
M ⊕ M ′. In particular dimFp

W [p] is even.

Proof. Define a pairing [ , ]′ : W × W → Dp by [v, w]′ := [v, cw]. It is
straightforward to check that the pairing [ , ]′ is nondegenerate, R-bilinear,
and skew-symmetric. The proposition now follows by a well-known argument.

We will now deduce Theorem 6.1 from a (slight generalization of a) result
of Flach. Let X/div := X(A/K)[p∞]/X(A/K)[p∞]div.

Theorem A.12 (Flach [F]). Suppose that

{ , }R : Tp(A) × Tp(A) → R⊗Zp
Zp(1)

is a perfect, Gk-equivariant, skew-Hermitian pairing. Then there is a perfect,
Gal(K/k)-equivariant, skew-Hermitian pairing,

[ , ]R : X/div × X/div → Dp.

Proof. This is essentially Theorems 1 and 2 of [F]. We sketch here the
minor modifications to the arguments of [F] needed to prove Theorem A.12.

Given a GK-equivariant pairing Tp(A)×Tp(A) → Zp(1), Flach constructs
a pairing X/div × X/div → Qp/Zp. The definition ([F] p. 116) is given ex-
plicitly in terms of cocycles. Since GK acts trivially on R, we have canonical
isomorphisms

H i(K,R⊗Zp
Zp(1)) ∼= R⊗Zp

H i(K,Zp(1))(A.4)

for every i, and similarly with K replaced by any of its completions Kv and/or
with Zp(1) replaced by Qp/Zp(1). The isomorphisms (A.4) come from anal-
ogous isomorphisms on modules of cocycles. Using this, starting with our
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pairing { , }R and following Flach’s construction verbatim produces a pairing

[ , ]R : X/div × X/div → Dp.

We need to show that [ , ]R is perfect, Gal(K/k)-equivariant, and skew-
Hermitian.

The fact that [ , ]R is Gal(K/k)-equivariant follows directly from the
definition in [F], as each step is canonical and Galois-equivariant.

Similarly, following the definition in [F] and using that { , }R is skew-
Hermitian, one sees directly that [rx, y]R = r[x, y]R = [x, rιy]R for every
r ∈ R, x, y ∈ X/div. The fact that [y, x]R = −[x, y]ιR is proved exactly as
Theorem 2 of [F], which proves the skew-symmetry of the pairing in Flach’s
setting.

It remains only to show that [ , ]R is perfect, or equivalently (since X/div

is finite) [ , ]R is nondegenerate. Let { , }Zp
: Tp(A) × Tp(A) → Zp(1) (resp.,

[ , ]Zp
: X/div × X/div → Qp/Zp) be the pairing corresponding to { , }R

(resp., [ , ]R) under the correspondence of Proposition A.4.
By Proposition A.4, since { , }R is perfect, { , }Zp

is perfect. One can
check from the definition that [ , ]Zp

is the pairing Flach constructs from
{ , }Zp

, and thus Flach’s Theorem 1 shows that [ , ]Zp
is perfect. Now

Proposition A.4 shows that [ , ]R is perfect. This completes the proof of the
theorem.

Proof of Theorem 6.1. We apply Theorem A.12, using the pairing 〈 , 〉R of
Definition A.5 (along with Lemma A.6 and Proposition A.10) to produce a per-
fect, Gal(K/k)-equivariant, skew-Hermitian pairing [ , ]R : X/div × X/div →
Dp. By Proposition A.11 we conclude that dimFp

(X(A/K)/X(A/K)div)[pL]
is even. This is Theorem 6.1.

Remark A.13. It is tempting to try to simplify the arguments of this
appendix by using the pairing of Definition A.5 along with the construction
at the end of the proof of Theorem A.12, to try to produce a perfect, skew-
symmetric, GK-equivariant pairing Tp(A)×Tp(A) → Zp(1). If so, Theorems 1
and 2 of [F] would give us directly a skew-symmetric perfect pairing on X/div.
Unfortunately, because πι = −π and the different of R/Zp is an odd power of
p, one can produce in this way (as in the proof of Proposition A.7) a perfect
symmetric pairing, but not a skew-symmetric one.

Appendix B. The local norm map in the ordinary case

In this appendix we study the cokernel of the local norm map when E has
ordinary reduction, following and expanding on the proof from [LR] of some of
the results of [M]. Our main result is Proposition B.3, which is used to prove
Theorem 6.7.
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If K is an algebraic extension of Qp and E is an elliptic curve over K with
good ordinary reduction, let E1(K) denote the kernel of reduction in E(K),
and let U1(K) denote the units in the ring of integers of K congruent to 1
modulo the maximal ideal. We can identify E1(K) (resp., U1(K)) with the
maximal ideal of K under the operation given by the formal group of E (resp.,
the formal multiplicative group).

Suppose now that K is a finite extension of Qp, with residue field κ. Let
u ∈ Z×

p be the unit eigenvalue of Frobenius acting on the �-adic Tate module
of E, for � �= p. Following [M], we say that E has anomalous reduction if
E(κ)[p] �= 0, or equivalently if u ≡ 1 (mod p).

Fix a totally ramified cyclic extension L/K of degree pn. Let φ denote
the Frobenius generator of Gal(Lur/L); the restriction of φ is the Frobenius
generator of Gal(Kur/K). Let IL/K ⊂ Z[Gal(L/K)] denote the augmentation
ideal.

Lemma B.1. There is a commutative diagram with exact rows and columns

0

��

0

��
E1(L)/(E1(L) ∩ IL/KU1(Lur))

NL/K ��

��

E1(K)

��
0 �� Gal(L/K) ��

1−u

��

U1(Lur)/IL/KU1(Lur)
NL/K ��

φ−u
��

U1(Kur) ��

φ−u

��

0

0 �� Gal(L/K) �� U1(Lur)/IL/KU1(Lur)
NL/K ��

��

U1(Kur) ��

��

0

0 0.

Proof. This is proved on page 239 of [LR], using an identification

E1(L) ∼= {x ∈ U1(Lur) : xφ = xu}

(see the lemma on page 237 of [LR]).

Proposition B.2. Suppose K ⊂ M ⊂ L and [L : M] = p. Then

dimFp
(E1(K)/(E1(K) ∩ NL/ME1(L))) =

{
1 if E has anomalous reduction,

0 otherwise.
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Proof. Let G := Gal(L/K) and H := Gal(L/M). There is a commutative
diagram

E1(M)/NL/ME1(L) ∼ �� H/(1 − u)H

E1(K)/NL/KE1(L) ∼ ��

��

G/(1 − u)G

Tr

����

(B.1)

where the horizontal isomorphisms are Corollaries 4.30 and 4.37 of [M], (proved
in [LR] by applying the Snake Lemma to the diagram of Lemma B.1 for L/M
and L/K), the left-hand vertical map is induced by the inclusion of K into M,
and the right-hand vertical map is induced by the transfer map G → H. The
commutativity of the diagram follows from Lemma B.1 and the commutativity
of

0 �� H �� U1(Lur)/IL/MU1(Lur)
NL/M �� U1(Mur) �� 0

0 �� G ��

Tr

��

U1(Lur)/IL/KU1(Lur)
NL/K ��

NM/K

��

U1(Kur) ��
��

��

0

(see the proof of Lemma 2 of [LR]).
If E has nonanomalous reduction, then 1−u ∈ Z×

p so the top isomorphism
of (B.1) shows that NL/ME1(L) = E1(M) ⊃ E1(K).

If E has anomalous reduction, then (1−u)H ⊂ pH = 0. Since G is cyclic,
the transfer map is surjective. Therefore (B.1) shows E1(M)/NL/ME1(L) has
order p, and is generated by the image of E1(K). The proposition follows.

Proposition B.3. Suppose that E is defined and has good reduction over
a subfield K+ ⊂ K such that [K : K+] = 2, L/K+ is Galois, and Gal(L/K+) is
dihedral. If K ⊂ M ⊂ L and [L : M] = p, then

dimFp
(E(K)/(E(K) ∩ NL/ME(L))) =

{
2 if E has anomalous reduction,

0 otherwise.

Proof. Let κ denote the common residue field of K, M, and L. We have
a commutative diagram

0 �� E1(L) ��

NL/M
��

E(L) ��

NL/M
��

E(κ) ��

p

��

0

0 �� E1(M) �� E(M) �� E(κ) �� 0.

(B.2)

If E has nonanomalous reduction, then E(κ) has order prime to p and the
proposition follows from Proposition B.2.

Suppose now that E has anomalous reduction. Let H := Gal(L/M), and
fix L+ with K+ ⊂ L+ ⊂ L, [L : L+] = 2. Let M+ = M∩L+.
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Replacing E/K+ by its quadratic twist by K/K+ if necessary, we may
suppose that E has anomalous reduction over K+. We will show that

NL/M : E1(L+) → E1(M+) is surjective.(B.3)

Assuming this for the moment, choose x ∈ E(K+) such that the reduction
of x has order p in E(κ). Then NL/M(x) = px ∈ E1(M+) so we can find
y ∈ E1(L+) such that NL/M(y) = NL/M(x). Then NL/M(x − y) = 0 and the
reduction of x − y is nontrivial. Therefore, since E(κ)[p] is cyclic of order p,
the Snake Lemma applied to (B.2) gives an exact sequence

0 → E1(M)/NL/ME1(L) → E(M)/NL/ME(L) → E(κ)/pE(κ) → 0.(B.4)

Using the natural injections

E1(K)/(E1(K) ∩ NL/ME1(L)) ↪→ E1(M)/NL/ME1(L)

and
E(K)/(E(K) ∩ NL/ME(L)) ↪→ E(M)/NL/ME(L),

(B.4) restricts to an exact sequence

0 → E1(K)/(E1(K) ∩ NL/ME1(L))

→ E(K)/(E(K) ∩ NL/ME(L)) → E(κ)/pE(κ) → 0.

Now the proposition follows from Proposition B.2.
It remains to prove (B.3). We consider two cases.

Case 1: K/K+ is unramified. Let v be the unit eigenvalue of Frobenius
over K+, so v2 = u. Since E has anomalous reduction over K+, v ≡ 1 (mod p).
Let ψ denote the Frobenius generator of Gal(Lur/L+) (note that (L+)ur = Lur),
so ψ2 = φ. As in Lemma B.1, there is a commutative diagram with exact rows
and columns

0

��

0

��
E1(L+)/(E1(L+) ∩ IL/MU1(Lur))

NL/M��

��

E1(M+)

��
0 �� H ��

−1−v

��

U1(Lur)/IL/MU1(Lur)
NL/M ��

ψ−v
��

U1(Mur) ��

ψ−v

��

0

0 �� H �� U1(Lur)/IL/MU1(Lur)
NL/M ��

��

U1(Mur) ��

��

0

0 0.
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The proof is the same as the proof in [LR] of Lemma B.1. The only point to
notice is the map −1−v on the left, which arises because if π is a uniformizing
parameter of L+ and h ∈ H, then ψhψ−1 = h−1 on L, so

(πh−1)1+ψ = πh−1+ψh−1−ψ = πh+h−1−2 = (πh−1)1−h−1 ∈ IL/MU1(L).

Since the left-most horizontal maps send h �→ πh−1, this shows that the left-
hand square commutes (see [LR] page 239). Since p �= 2, −1 − v ∈ Z×

p , and
(B.3) now follows from the Snake Lemma in this case.

Case 2: K/K+ is ramified. In this case Lur/(L+)ur is a quadratic exten-
sion. Taking Gal(Lur/(L+)ur)-invariants in the diagram of Lemma B.1 (applied
to L/M) gives a new diagram with exact rows and columns. The top row of
the new diagram is

E1(L+)/(E1(L+) ∩ IL/MU1((L+)ur))
NL/M−−−−→ E1(M+),

and the left-hand column is 0 → 0 since Gal(Lur/(L+)ur) acts on H by −1.
Now the Snake Lemma applied to this new diagram proves (B.3) in this case.
This completes the proof of the proposition.
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France, Paris (1995), 265–277.

[T2] ———, Duality theorems in Galois cohomology over number fields, in Proc. Inter-
nat. Congr. Mathematicians (Stockholm, 1962) Inst. Mittag-Leffler, Djursholm (1963),
288–295.

[V] V. Vatsal, Uniform distribution of Heegner points, Invent. Math. 148 (2002), 1–46.

[W] A. Weil, Adeles and algebraic groups, Progr. Math. 23, Birkhäuser, Boston (1982).
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