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On Mott’s formula for the ac-conductivity
in the Anderson model

By Abel Klein, Olivier Lenoble, and Peter Müller*

Abstract

We study the ac-conductivity in linear response theory in the general
framework of ergodic magnetic Schrödinger operators. For the Anderson model,
if the Fermi energy lies in the localization regime, we prove that the ac-
conductivity is bounded from above by Cν2(log 1

ν )d+2 at small frequencies ν.
This is to be compared to Mott’s formula, which predicts the leading term to
be Cν2(log 1

ν )d+1.

1. Introduction

The occurrence of localized electronic states in disordered systems was
first noted by Anderson in 1958 [An], who argued that for a simple Schrödinger
operator in a disordered medium,“at sufficiently low densities transport does
not take place; the exact wave functions are localized in a small region of
space.” This phenomenon was then studied by Mott, who wrote in 1968 [Mo1]:
“The idea that one can have a continuous range of energy values, in which
all the wave functions are localized, is surprising and does not seem to have
gained universal acceptance.” This led Mott to examine Anderson’s result in
terms of the Kubo–Greenwood formula for σEF

(ν), the electrical alternating
current (ac) conductivity at Fermi energy EF and zero temperature, with ν

being the frequency. Mott used its value at ν = 0 to reformulate localization:
If a range of values of the Fermi energy EF exists in which σEF

(0) = 0, the
states with these energies are said to be localized; if σEF

(0) �= 0, the states are
nonlocalized.

Mott then argued that the direct current (dc) conductivity σEF
(0) indeed

vanishes in the localized regime. In the context of Anderson’s model, he studied
the behavior of ReσEF

(ν) as ν → 0 at Fermi energies EF in the localization
region (note ImσEF

(0) = 0). The result was the well-known Mott ’s formula
for the ac-conductivity at zero temperature [Mo1], [Mo2], which we state as in
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[MoD, Eq. (2.25)] and [LGP, Eq. (4.25)]:

Re σEF
(ν) ∼ n(EF )2 �̃d+2

EF
ν2

(
log 1

ν

)d+1 as ν ↓ 0,(1.1)

where d is the space dimension, n(EF ) is the density of states at energy EF ,
and �̃EF

is a localization length at energy EF .
Mott’s calculation was based on a fundamental assumption: the leading

mechanism for the ac-conductivity in localized systems is the resonant tunnel-
ing between pairs of localized states near the Fermi energy EF , the transition
from a state of energy E ∈ ]EF − ν, EF ] to another state with resonant en-
ergy E + ν, the energy for the transition being provided by the electrical field.
Mott also argued that the two resonating states must be located at a spatial
distance of ∼ log 1

ν . Kirsch, Lenoble and Pastur [KLP] have recently provided
a careful heuristic derivation of Mott’s formula along these lines, incorporating
also ideas of Lifshitz [L].

In this article we give the first mathematically rigorous treatment of Mott’s
formula. The general nature of Mott’s arguments leads to the belief in physics
that Mott’s formula (1.1) describes the generic behavior of the low-frequency
conductivity in the localized regime, irrespective of model details. Thus we
study it in the most popular model for electronic properties in disordered
systems, the Anderson tight-binding model [An] (see (2.1)), where we prove a
result of the form

Re σEF
(ν) � c �̃d+2

EF
ν2

(
log 1

ν

)d+2 for small ν > 0.(1.2)

The precise result is stated in Theorem 2.3; formally

Re σEF
(ν) =

1
ν

∫ ν

0
dν ′ Re σEF

(ν ′),(1.3)

so that Re σEF
(ν) ≈ Re σEF

(ν) for small ν > 0. The discrepancy in the
exponents of log 1

ν in (1.2) and (1.1), namely d+2 instead of d+1, is discussed
in Remarks 2.5 and 4.10.

We believe that a result similar to Theorem 2.3 holds for the continuous
Anderson Hamiltonian, which is a random Schrödinger operator on the con-
tinuum with an alloy-type potential. All steps in our proof of Theorem 2.3 can
be redone for such a continuum model, except the finite volume estimate of
Lemma 4.9. The missing ingredient is Minami’s estimate [M], which we recall
in (4.47). It is not yet available for that continuum model. In fact, proving a
continuum analogue of Minami’s estimate would not only yield Theorem 2.3
for the continuous Anderson Hamiltonian, but it would also establish, in the
localization region, simplicity of eigenvalues as in [KlM] and Poisson statistics
for eigenvalue spacing as in [M].

To get to Mott’s formula, we conduct what seems to be the first careful
mathematical analysis of the ac-conductivity in linear response theory, and
introduce a new concept, the conductivity measure. This is done in the general
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framework of ergodic magnetic Schrödinger operators, in both the discrete and
continuum settings. We give a controlled derivation in linear response theory of
a Kubo formula for the ac-conductivity along the lines of the derivation for the
dc-conductivity given in [BoGKS]. This Kubo formula (see Corollary 3.5) is
written in terms of ΣEF

(dν), the conductivity measure at Fermi energy EF (see
Definition 3.3 and Theorem 3.4). If ΣEF

(dν) was known to be an absolutely
continuous measure, Re σEF

(ν) would then be well-defined as its density. The
conductivity measure ΣEF

(dν) is thus an analogous concept to the density of
states measure N (dE), whose formal density is the density of states n(E). The
conductivity measure has also an expression in terms of the velocity-velocity
correlation measure (see Proposition 3.10).

The first mathematical proof of localization [GoMP] appeared almost
twenty years after Anderson’s seminal paper [An]. This first mathematical
treatment of Mott’s formula is appearing about thirty seven years after its
formulation [Mo1]. It relies on some highly nontrivial research on random
Schrödinger operators conducted during the last thirty years, using a good
amount of what is known about the Anderson model and localization. The
first ingredient is linear response theory for ergodic Schrödinger operators
with Fermi energies in the localized region [BoGKS], from which we obtain
an expression for the conductivity measure. To estimate the low frequency
ac-conductivity, we restrict the relevant quantities to finite volume and esti-
mate the error. The key ingredients here are the Helffer–Sjöstrand formula
for smooth functions of self-adjoint operators [HS] and the exponential esti-
mates given by the fractional moment method in the localized region [AM],
[A], [ASFH]. The error committed in the passage from spectral projections to
smooth functions is controlled by Wegner’s estimate for the density of states
[W]. The finite volume expression is then controlled by Minami’s estimate [M],
a crucial ingredient. Combining all these estimates, and choosing the size of
the finite volume to optimize the final estimate, we get (1.2).

This paper is organized as follows. In Section 2 we introduce the Anderson
model, define the region of complete localization, give a brief outline of how
electrical conductivities are defined and calculated in linear response theory,
and state our main result (Theorem 2.3). In Section 3, we give a detailed
account of how electrical conductivities are defined and calculated in linear
response theory, within the noninteracting particle approximation. This is
done in the general framework of ergodic magnetic Schrödinger operators; we
treat simultaneously the discrete and continuum settings. We introduce and
study the conductivity measure (Definition 3.3), and derive a Kubo formula
(Corollary 3.5). In Section 4 we give the proof of Theorem 2.3, reformulated
as Theorem 4.1.

In this article |B| denotes either Lebesgue measure if B is a Borel subset
of R

n, or the counting measure if B ⊂ Z
n (n = 1, 2, . . . ). We always use χB to
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denote the characteristic function of the set B. By Ca,b,..., etc., we will always
denote some finite constant depending only on a, b, . . . .

2. The Anderson model and the main result

The Anderson tight binding model is described by the random Schrödinger
operator H, a measurable map ω 	→ Hω from a probability space (Ω, P) (with
expectation E) to bounded self-adjoint operators on �2(Zd), given by

Hω := −Δ + Vω.(2.1)

Here Δ is the centered discrete Laplacian,

(Δϕ)(x) := −
∑

y∈Zd; |x−y|=1

ϕ(y) for ϕ ∈ �2(Zd),(2.2)

and the random potential V consists of independent identically distributed
random variables {V (x);x ∈ Z

d} on (Ω, P), such that the common single site
probability distribution μ has a bounded density ρ with compact support.

The Anderson Hamiltonian H given by (2.1) is Z
d-ergodic, and hence its

spectrum, as well as its spectral components in the Lebesgue decomposition,
are given by nonrandom sets P-almost surely [KM], [CL], [PF].

There is a wealth of localization results for the Anderson model in arbi-
trary dimension, based either on the multiscale analysis [FS], [FMSS], [Sp],
[DK], or on the fractional moment method [AM], [A], [ASFH]. The spectral
region of applicability of both methods turns out to be the same, and in fact
it can be characterized by many equivalent conditions [GK1], [GK2]. For this
reason we call it the region of complete localization as in [GK2]; the most
convenient definition for our purposes is by the conclusions of the fractional
moment method.

Definition 2.1. The region of complete localization ΞCL for the Anderson
Hamiltonian H is the set of energies E ∈ R for which there are an open interval
IE 
 E and an exponent s = sE ∈]0, 1[ such that

sup
E′∈IE

sup
η �=0

E
{
|〈δx, R(E′ + iη)δy〉|s

}
� K e−

1
�
|x−y| for all x, y ∈ Z

d,(2.3)

where K = KE and � = �E > 0 are constants, and R(z) := (H − z)−1 is the
resolvent of H.

Remark 2.2. (i) The constant �E admits the interpretation of a lo-
calization length at energies near E.

(ii) The fractional moment condition (2.3) is known to hold under vari-
ous circumstances, for example, large disorder or extreme energies [AM], [A],
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[ASFH]. Condition (2.3) implies spectral localization with exponentially de-
caying eigenfunctions [AM], dynamical localization [A], [ASFH], exponential
decay of the Fermi projection [AG], and absence of level repulsion [M].

(iii) The single site potential density ρ is assumed to be bounded with
compact support, so condition (2.3) holds with any exponent s ∈ ]0, 1

4 [ and
appropriate constants K(s) and �(s) > 0 at all energies where a multiscale
analysis can be performed [ASFH]. Since the converse is also true, that is,
given (2.3) one can perform a multiscale analysis as in [DK] at the energy E,
the energy region ΞCL given in Definition 2.1 is the same region of complete
localization defined in [GK2].

We briefly outline how electrical conductivities are defined and calculated
in linear response theory following the approach adopted in [BoGKS]; a detailed
account in the general framework of ergodic magnetic Schrödinger operators,
in both the discrete and continuum settings, is given in Section 3.

Consider a system at zero temperature, modeled by the Anderson Hamil-
tonian H. At the reference time t = −∞, the system is in equilibrium in the
state given by the (random) Fermi projection PEF

:= χ
]−∞,EF ](H), where we

assume that EF ∈ ΞCL; that is, the Fermi energy lies in the region of complete
localization. A spatially homogeneous, time-dependent electric field E(t) is
then introduced adiabatically: Starting at time t = −∞, we switch on the
electric field Eη(t) := eηtE(t) with η > 0, and then let η → 0. On account of
isotropy we assume without restriction that the electric field is pointing in the
x1-direction: E(t) = E(t)x̂1, where E(t) is the (real-valued) amplitude of the
electric field, and x̂1 is the unit vector in the x1-direction. We assume that

E(t) =
∫

R

dν eiνtÊ(ν), where Ê ∈ Cc(R) and Ê(ν) = Ê(−ν).(2.4)

For each η > 0 this results in a time-dependent random Hamiltonian H(η, t),
written in an appropriately chosen gauge. The system is then described at time
t by the density matrix �(η, t), given as the solution to the Liouville equation{

i∂t�(η, t) = [H(η, t), �(η, t)]
limt→−∞ �(η, t) = PEF

.(2.5)

The adiabatic electric field generates a time-dependent electric current, which,
thanks to reflection invariance in the other directions, is also oriented along
the x1-axis, and has amplitude

Jη(t;EF , E) = −T
(
�(η, t)Ẋ1(t)

)
,(2.6)

where T stands for the trace per unit volume and Ẋ1(t) is the first component
of the velocity operator at time t in the Schrödinger picture (the time depen-
dence coming from the particular gauge of the Hamiltonian). In Section 3 we



554 ABEL KLEIN, OLIVIER LENOBLE, AND PETER MÜLLER

calculate the linear response current

Jη,lin(t;EF , E) :=
d
dα

Jη(t;EF , αE)
∣∣
α=0

.(2.7)

The resulting Kubo formula may be written as

Jη,lin(t;EF , E) = eηt

∫
R

dν eiνt σEF
(η, ν) Ê(ν),(2.8)

with the (regularized) conductivity σEF
(η, ν) given by

σEF
(η, ν) := − i

π

∫
R

ΣEF
(dλ) (λ + ν − iη)−1 ,(2.9)

where ΣEF
is a finite, positive, even Borel measure on R, the conductivity

measure at Fermi Energy EF —see Definition 3.3 and Theorem 3.4.
It is customary to decompose σEF

(η, ν) into its real and imaginary parts:

σin
EF

(η, ν) := Re σEF
(η, ν) and σout

EF
(η, ν) := ImσEF

(η, ν),(2.10)

the in phase or active conductivity σin
EF

(η, ν) being an even function of ν, and
the out of phase or passive conductivity σout

EF
(η, ν) an odd function of ν. This

induces a decomposition Jη,lin = J in
η,lin + Jout

η,lin of the linear response current
into an in phase or active contribution

J in
η,lin(t;EF , E) := eηt

∫
R

dν eiνt σin
EF

(η, ν) Ê(ν),(2.11)

and an out of phase or passive contribution

Jout
η,lin(t;EF , E) := i eηt

∫
R

dν eiνt σout
EF

(η, ν) Ê(ν).(2.12)

The adiabatic limit η ↓ 0 is then performed, yielding

Jlin(t;EF , E) = J in
lin(t;EF , E) + Jout

lin (t;EF , E).(2.13)

In particular we obtain the following expression for the linear response in phase
current (see Corollary 3.5):

J in
lin(t;EF , E) := lim

η↓0
J in

η,lin(t;EF , E) =
∫

R

ΣEF
(dν) eiνt Ê(ν).(2.14)

The terminology comes from the fact that if the time dependence of the electric
field is given by a pure sine (cosine), then J in

lin(t;EF , E) also varies like a sine
(cosine) as a function of time, and hence is in phase with the field, while
Jout

lin (t;EF , E) behaves like a cosine (sine), and hence is out of phase. Thus
the work done by the electric field on the current Jlin(t;EF , E) relates only
to J in

lin(t;EF , E) when averaged over a period of oscillation. The passive part
Jout

lin (t;EF , E) does not contribute to the work.
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It turns out that the in phase conductivity

σin
EF

(ν) = Re σEF
(ν) := lim

η↓0
σin

EF
(η, ν),(2.15)

appearing in Mott’s formula (1.1), and more generally in physics (e.g., [LGP,
KLP]), may not be a well defined function. It is the conductivity measure ΣEF

that is a well defined mathematical quantity. If the measure ΣEF
happens to

be absolutely continuous, then the two are related by σin
EF

(ν) := ΣEF
(dν)

dν , and
(2.14) can be recast in the form

J in
lin(t;EF , E) =

∫
R

dν eiνt σin
EF

(ν) Ê(ν).(2.16)

Since the in phase conductivity σin
EF

(ν) may not be well defined as a func-
tion, we state our result in terms of the average in phase conductivity, an even
function (ΣEF

is an even measure) defined by

σin
EF

(ν) := 1
ν ΣEF

([0, ν]) for ν > 0.(2.17)

Our main result is given in the following theorem, proved in Section 4.

Theorem 2.3. Let H be the Anderson Hamiltonian and consider a Fermi
energy in its region of complete localization: EF ∈ ΞCL. Then

lim sup
ν↓0

σin
EF

(ν)

ν2
(
log 1

ν

)d+2
� Cd+2π3 ‖ρ‖2

∞�d+2
EF

,(2.18)

where �EF
is as given in (2.3), ρ is the density of the single site potential, and

the constant C is independent of all parameters.

Remark 2.4. The estimate (2.18) is the first mathematically rigorous ver-
sion of Mott’s formula (1.1). The proof in Section 4 estimates the constant:
C � 205; tweaking the proof would improve this numerical estimate to C � 36.
The length �EF

, which controls the decay of the s-th fractional moment of the
Green’s function in (2.3), is the effective localization length that enters our
proof and, as such, is analogous to �̃EF

in (1.1). The appearance of the term
‖ρ‖2

∞ in (2.18) is also compatible with (1.1) in view of Wegner’s estimate [W]:
n(E) � ‖ρ‖∞ for a.e. energy E ∈ R.

Remark 2.5. A comparison of the estimate (2.18) with the expression in
Mott’s formula (1.1) would note the difference in the power of log 1

ν , namely
d+2 instead of d+1. This comes from a finite volume estimate (see Lemma 4.9)
based on a result of Minami [M], which tells us that we only need to consider
pairs of resonating localized states with energies E and E + ν in a volume of
diameter ∼ log 1

ν , which gives a factor of (log 1
ν )d. On the other hand, Mott’s

argument [Mo1], [Mo2], [MoD], [KLP] assumes that these localized states must
be at a distance ∼ log 1

ν from each other, which only gives a surface area
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factor of (log 1
ν )d−1. We have not seen any convincing argument for Mott’s

assumption. (See Remark 4.10 for a more precise analysis based on the proof
of Theorem 2.3.)

Remark 2.6. A zero-frequency (or dc) conductivity at zero temperature
may also be calculated by using a constant (in time) electric field. This dc-
conductivity is known to exist and to be equal to zero for the Anderson model
in the region of complete localization [N, Th. 1.1], [BoGKS, Cor. 5.12].

3. Linear response theory and the conductivity measure

In this section we study the ac-conductivity in linear response theory and
introduce the conductivity measure. We work in the general framework of
ergodic magnetic Schrödinger operators, following the approach in [BoGKS].
(See [BES], [SB] for an approach incorporating dissipation.) We treat simul-
taneously the discrete and continuum settings. But we will concentrate on the
zero temperature case for simplicity, the general case being not very different.

3.1. Ergodic magnetic Schrödinger operators. We consider an ergodic
magnetic Schrödinger operator H on the Hilbert space H, where H = L2(Rd)
in the continuum setting and H = �2(Zd) in the discrete setting. In either
case Hc denotes the subspace of functions with compact support. The ergodic
operator H is a measurable map from the probability space (Ω, P) to the self-
adjoint operators on H. The probability space (Ω, P) is equipped with an
ergodic group {τa; a ∈ Z

d} of measure preserving transformations. The crucial
property of the ergodic system is that it satisfies a covariance relation: there
exists a unitary projective representation U(a) of Z

d on H, such that for all
a, b ∈ Z

d and P-a.e. ω ∈ Ω we have

U(a)HωU(a)∗ = Hτa(ω),(3.1)

U(a)χbU(a)∗ = χb+a,(3.2)

U(a)δb = δb+a if H = �2(Zd),(3.3)

where χa denotes the multiplication operator by the characteristic function of a
unit cube centered at a, also denoted by χa. In the discrete setting the operator
χa is just the orthogonal projection onto the one-dimensional subspace spanned
by δa; in particular, (3.2) and (3.3) are equivalent in the discrete setting.

We assume the ergodic magnetic Schrödinger operator to be of the form

Hω =
{

H(Aω, Vω) := (−i∇− Aω)2 + Vω if H = L2(Rd)
H(ϑω, Vω) := −Δ(ϑω) + Vω if H = �2(Zd)

.(3.4)

The precise requirements in the continuum are described in [BoGKS, §4].
Briefly, the random magnetic potential A and the random electric potential
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V belong to a very wide class of potentials which ensures that H(Aω, Vω)
is essentially self-adjoint on C∞

c (Rd) and uniformly bounded from below for
P-a.e. ω, and hence there is γ � 0 such that

Hω + γ � 1 for P-a.e. ω.(3.5)

In the discrete setting ϑ is a lattice random magnetic potential and we require
the random electric potential V to be P-almost surely bounded from below.
Thus, if we let B(Zd) := {(x, y) ∈ Z

d × Z
d; |x − y| = 1}, the set of oriented

bonds in Z
d, we have ϑω : B(Zd) → R, with ϑω(x, y) = −ϑω(y, x) a measurable

function of ω, and(
Δ(ϑω)ϕ

)
(x) := −

∑
y∈Zd; |x−y|=1

e−iϑω(x,y)ϕ(y).(3.6)

The operator Δ(ϑω) is bounded (uniformly in ω), H(ϑω, Vω) is essentially self-
adjoint on Hc, and (3.5) holds for some γ � 0. The Anderson Hamiltonian
given in (2.1) satisfies these assumptions with ϑω = 0.

The (random) velocity operator in the xj-direction is Ẋj := i [H, Xj ],
where Xj denotes the operator of multiplication by the j-th coordinate xj . In
the continuum Ẋω,j is the closure of the operator 2(−i∂xj

− Aω,j) defined on
C∞

c (Rd), and there is Cγ < ∞ such that [BoGKS, Prop. 2.3]∥∥Ẋω,j (Hω + γ)−
1
2
∥∥ � Cγ for P-a.e. ω.(3.7)

In the lattice Ẋω,j there is a bounded operator (uniformly in ω), given by

Ẋω,j = Dj(ϑω) +
(
Dj(ϑω)

)∗
,(

Dj(ϑω)ϕ
)
(x) := e−iϑω(x,x+x̂j)ϕ(x + x̂j) − ϕ(x).

(3.8)

3.2. The mathematical framework for linear response theory. The deriva-
tion of the Kubo formula will require normed spaces of measurable covariant
operators, which we now briefly describe. We refer to [BoGKS, §3] for back-
ground, details, and justifications.

By Kmc we denote the vector space of measurable covariant operators
A : Ω → Lin

(
Hc,H), identifying measurable covariant operators that agree

P-a.e.; all properties stated are assumed to hold for P-a.e. ω ∈ Ω. Here
Lin

(
Hc,H) is the vector space of linear operators from Hc to H. Recall that

A is measurable if the functions ω → 〈φ, Aωφ〉 are measurable for all φ ∈ Hc,
A is covariant if

U(x)AωU(x)∗ = Aτx(ω) for all x ∈ Z
d,(3.9)

and A is locally bounded if ‖Aωχx‖ < ∞ and ‖χxAω‖ < ∞ for all x ∈ Z
d. The

subspace of locally bounded operators is denoted by Kmc,lb. If A ∈ Kmc,lb, we
have D(A∗

ω) ⊃ Hc, and hence we may set A‡
ω := A∗

ω

∣∣
Hc

. Note that (JA)ω :=

A‡
ω defines a conjugation in Kmc,lb.
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We introduce norms on Kmc,lb given by

|||A|||∞ := ‖ ‖Aω‖ ‖L∞(Ω,P)

|||A|||pp := E
{
tr{χ0|Aω|pχ0}

}
, p = 1, 2,(3.10)

= E
{
〈δ0, |Aω|pδ0〉

}
if H = �2(Zd),

and consider the normed spaces

Kp := {A ∈ Kmc,lb; |||A|||p < ∞}, p = 1, 2,∞.(3.11)

It turns out that K∞ is a Banach space and K2 is a Hilbert space with inner
product

〈〈A, B〉〉 := E
{
tr{χ0A

∗
ωBωχ0}

}
= E

{
〈Aωδ0, Bωδ0〉

}
if H = �2(Zd).

(3.12)

Since K1 is not complete, we introduce its (abstract) completion K1. The
conjugation J is an isometry on each Kp, p = 1, 2,∞. Moreover, K(0)

p :=
Kp ∩ K∞ is dense in Kp for p = 1, 2.

Note that in the discrete setting we have

|||A|||1 � |||A|||2 � |||A|||∞ and hence K∞ ⊂ K2 ⊂ K1;(3.13)

in particular, K∞ = K(0)
p is dense in Kp, p = 1, 2. Moreover, in this case Δ(ϑ)

and Ẋj are in K∞.
Given A ∈ K∞, we identify Aω with its closure Aω, a bounded operator in

H. We may then introduce a product in K∞ by pointwise operator multiplica-
tion, and K∞ becomes a C∗-algebra. (K∞ is actually a von Neumann algebra
[BoGKS, Subsection 3.5].) This C∗-algebra acts by left and right multiplica-
tion in Kp, p = 1, 2. Given A ∈ Kp, B ∈ K∞, left multiplication B �L A is
simply defined by (B�L A)ω = BωAω. Right multiplication is more subtle; we
set (A�R B)ω = A‡∗

ω Bω (see [BoGKS, Lemma 3.4] for a justification), and note
that (A�R B)‡ = B∗�L A‡. Moreover, left and right multiplication commute:

B �L A �R C := B �L (A �R C) = (B �L A) �R C(3.14)

for A ∈ Kp, B, C ∈ K∞. (We refer to [BoGKS, §3] for an extensive set of
rules and properties which facilitate calculations in these spaces of measurable
covariant operators.)

Given A ∈ Kp , p = 1, 2, we define

U (0)
L (t)A := e−itH �L A,(3.15)

U (0)
R (t)A := A �R e−itH , i.e., U (0)

R (t) = JU (0)
L (−t)J ,(3.16)

U (0)(t)A := e−itH �L A �R eitH , i.e., U (0)(t) = U (0)
L (t)U (0)

R (−t).(3.17)

Then U (0)(t),U (0)
L (t),U (0)

R (t) are strongly continuous, one-parameter groups of
operators on Kp for p = 1, 2, which are unitary on K2 and isometric on K1,
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and hence extend to isometries on K1. (See [BoGKS, Cor. 4.12] for U (0)(t); the
same argument works for U (0)

L (t) and U (0)
R (t).) These one-parameter groups of

operators commute with each other, and hence can be simultaneously diago-
nalized by the spectral theorem. Using Stone’s theorem, we define commuting
self-adjoint operators L,HL,HR on K2 by

e−itL := U (0)(t), e−itHL := U (0)
L (t), e−itHR := U (0)

R (t).(3.18)

The operator L is the Liouvillian; now we have

L = HL −HR and HR = JHLJ .(3.19)

If the ergodic magnetic Schrödinger operator H is bounded, e.g., the
Anderson Hamiltonian in (2.1), then H ∈ K∞, and L,HL,HR are bounded
commuting self-adjoint operators on K2, with

HLA = H �L A, HRA = A �R H, and L = HL −HR.(3.20)

The trace per unit volume is given by

T (A) := E {tr {χ0Aωχ0}} for A ∈ K1,

= E
{
〈δ0, Aωδ0〉

}
if H = �2(Zd),

(3.21)

a well defined linear functional on K1 with |T (A)| � |||A|||1, and hence can be
extended to K1. Note that T is indeed the trace per unit volume:

T (A) = lim
L→∞

1
|ΛL| tr {χΛL

AωχΛL
} for P-a.e. ω ,(3.22)

where ΛL denotes the cube of side L centered at 0 (see [BoGKS, Prop. 3.20]).

3.3. The linear response current. We consider a quantum system at zero
temperature, modeled by an ergodic magnetic Schrödinger operator H as in
(3.4). We fix a Fermi energy EF and the x1-direction, and make the following
assumption on the (random) Fermi projection PEF

:= χ
]−∞,EF ](H).

Assumption 3.1.

YEF
:= i [X1, PEF

] ∈ K2.(3.23)

Under Assumption 3.1 we have YEF
= Y ‡

EF
and YEF

∈ D(L) by [BoGKS,
Lemma 5.4(iii) and Cor. 4.12]. Moreover, we also have YEF

∈ K1 (see [BoGKS,
Rem. 5.2]). (Condition (3.23) is the main assumption in [BoGKS]; it was
originally identified in [BES].)

If H is the Anderson Hamiltonian we always have (3.23) if the Fermi
energy lies in the region of complete localization, i.e., EF ∈ ΞCL [AG, Th. 2],
[GK2, Th. 3]. (In fact, in this case [Xj , PEF

] ∈ K2 for all j = 1, 2, . . . , d.)
In the distant past, taken to be t = −∞, the system is in equilibrium

in the state given by this Fermi projection PEF
. A spatially homogeneous,



560 ABEL KLEIN, OLIVIER LENOBLE, AND PETER MÜLLER

time-dependent electric field E(t) is then introduced adiabatically: Starting
at time t = −∞, we switch on the electric field Eη(t) := eηtE(t) with η > 0,
and then let η → 0. We here assume that the electric field is pointing in the
x1-direction: E(t) = E(t)x̂1, where the amplitude E(t) is a continuous function
such that

∫ t
−∞ ds eηs|E(s)| < ∞ for all t ∈ R and η > 0. Note that the relevant

results in [BoGKS], although stated for constant electric fields E, are valid
under this assumption. We set Eη(t) := eηtE(t), and

Fη(t) :=
∫ t

−∞
ds Eη(s).(3.24)

For each fixed η > 0 the dynamics are now generated by a time-dependent
ergodic Hamiltonian. Following [BoGKS, Subsection 2.2], we resist the impulse
to take Hω + Eη(t)X1 as the Hamiltonian, and instead consider the physically
equivalent (but bounded below) Hamiltonian

Hω(η, t) := G(η, t)HωG(η, t)∗,(3.25)

where G(η, t) := eiFη(t)X1 is a time-dependent gauge transformation. We get

Hω(η, t) = H(Aω + Fη(t)x̂1, Vω) if H = L2(Rd),

Hω(η, t) = H(ϑω + Fη(t)γ1, Vω) if H = �2(Zd),
(3.26)

where γ1(x, y) := y1 − x1 for (x, y) ∈ B(Zd).

Remark 3.2. If Hω is the Anderson Hamiltonian given in (2.1), there is
no difficulty in defining H̃ω(η, t) := Hω + Eη(t)X1 as an (unbounded) self-
adjoint operator. Moreover, in this case Hω(η, t) is actually a bounded op-
erator. It follows that if ψ̃(t) is a strong solution of the Schrödinger equa-
tion i∂tψ̃(t) = H̃ω(η, t)ψ̃(t), then ψ(t) = G(η, t)ψ̃(t) is a strong solution of
i∂tψ(t) = Hω(η, t)ψ(t). A similar statement holds in the opposite direction
for weak solutions. (See the discussion in [BoGKS, Subsection 2.2].) At the
formal level, one can easily see that the linear response current given in (2.7)
is independent of the choice of gauge.

The system was described at time t = −∞ by the Fermi projection PEF
. It

is then described at time t by the density matrix �(η, t), the unique solution to
the Liouville equation (2.5) in both spaces K2 and K1. (See [BoGKS, Th. 5.3]
for a precise statement.)

The adiabatic electric field generates a time-dependent electric current. Its
amplitude in the x1-direction is given by (2.6), where Ẋ1(t) := G(η, t)Ẋ1G(η, t)∗

is the first component of the velocity operator at time t in the Schrödinger pic-
ture. The linear response current is then defined as in (2.7), its existence is
proven in [BoGKS, Th. 5.9] with

Jη,lin(t;EF , E) = T
{∫ t

−∞
dr eηrE(r)Ẋ1 U (0)(t − r)YEF

}
.(3.27)
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Since the integral in (3.27) is a Bochner integral in the Banach space K1, where
T is a bounded linear functional, they can be interchanged, and hence, using
[BoGKS, Eq. (5.88)], we obtain

Jη,lin(t;EF , E) = −
∫ t

−∞
dr eηrE(r) 〈〈YEF

, e−i(t−r)LLPEF
YEF

〉〉.(3.28)

Here PEF
is the bounded self-adjoint operator on K2 given by

PEF
:= χ

]−∞,EF ](HL) − χ
]−∞,EF ](HR); that is,

PEF
A = PEF

�L A − A �R PEF
for A ∈ K2.

(3.29)

Note that PEF
commutes with L,HL,HR; in particular PEF

YEF
∈ D(L).

Moreover, we have P2
EF

YEF
= YEF

[BoGKS, Lemma 5.13].

3.4. The conductivity measure and a Kubo formula for the ac-conductivity.
Suppose now that the amplitude E(t) of the electric field satisfies assumption
(2.4). We can then rewrite (3.28), first using the Fubini–Tonelli theorem, and
then proceeding as in [BoGKS, Eq. (5.89)], as

Jη,lin(t;EF , E) = −
∫

R

dν Ê(ν)
∫ t

−∞
dr e(η+iν)r 〈〈YEF

, e−i(t−r)LLPEF
YEF

〉〉

(3.30)

= −i eηt

∫
R

dν eiνtÊ(ν) 〈〈YEF
, (L + ν − i η)−1 (−LPEF

)YEF
〉〉.

This leads us to the following definition, which is justified in the subse-
quent theorem.

Definition 3.3. The conductivity measure (x1-x1 component) at Fermi en-
ergy EF is defined as

ΣEF
(B) := π〈〈YEF

, χB(L) (−LPEF
)YEF

〉〉 for a Borel set B ⊂ R.(3.31)

Theorem 3.4. Let EF be a Fermi energy satisfying Assumption 3.1. Then
ΣEF

is a finite, positive, even, Borel measure on R. Moreover, for an electric
field with amplitude E(t) satisfying assumption (2.4),

Jη,lin(t;EF , E) = eηt

∫
R

dν eiνt σEF
(η, ν) Ê(ν)(3.32)

with
σEF

(η, ν) :=− i
π

∫
R

ΣEF
(dλ) (λ + ν − i η)−1 .(3.33)

Proof. Recall that HL and HR are commuting self-adjoint operators on
K2, and hence can be simultaneously diagonalized by the spectral theorem.
Thus it follows from (3.19) and (3.29) that

−LPEF
� 0.(3.34)
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Since YEF
∈ D(L) and PEF

is bounded, we conclude that ΣEF
is a finite

positive Borel measure. To show that it is even, note that JLJ = −L,
JPEF

J = −PEF
, and JχB(L)LPEF

J = χB(−L)LPEF
= χ−B(L)LPEF

.
Since J YEF

= YEF
, we get ΣEF

(B) = ΣEF
(−B).

Since (3.33) may be rewritten as

σEF
(η, ν) = −i 〈〈YEF

, (L + ν − i η)−1 (−LPEF
)YEF

〉〉,(3.35)

the equality (3.32) follows from (3.30).

Corollary 3.5. Let EF be a Fermi energy satisfying Assumption 3.1,
and let E(t) be the amplitude of an electric field satisfying assumption (2.4).
Then the adiabatic limit η ↓ 0 of the linear response in phase current given in
(2.11) exists:

J in
lin(t;EF , E) := lim

η↓0
J in

η,lin(t;EF , E) =
∫

R

ΣEF
(dν) eiνt Ê(ν).(3.36)

If in addition E(t) is uniformly Hölder continuous, then the adiabatic limit
η ↓ 0 of the linear response out of phase current also exists:

Jout
lin (t;EF , E) : = lim

η↓0
Jout

η,lin(t;EF , E)

= 1
πi

∫
R

ΣEF
(dλ) pv

∫
R

dν
eiνt Ê(ν)
ν − λ

,
(3.37)

where the integral over ν in (3.37) is to be understood in the principal-value
sense.

Proof. This corollary is an immediate consequence of (3.32), (3.33), and
well known properties of the Cauchy (Borel, Stieltjes) transform of finite Borel
measures. The limit in (3.36) follows from [StW, Th. 2.3]. We can establish
the limit in (3.37) by using Fubini’s theorem and the existence (with bounds)
of the principal value integral for uniformly Hölder continuous functions (see
[Gr, Rem. 4.1.2]).

Remark 3.6. The out of phase (or passive) conductivity does not appear
to be the subject of extensive study; but see [LGP].

3.5. Correlation measures. For each A ∈ K2 we define a finite Borel
measure ΥA on R

2 by

ΥA(C) := 〈〈A,χC(HL,HR)A〉〉 for a Borel set C ⊂ R
2.(3.38)

Note that it follows from (3.19) that

ΥA(B1 × B2) = ΥA‡(B2 × B1) for all Borel sets B1, B2 ⊂ R.(3.39)

The correlation measure we obtain by taking A = YEF
plays an important

role in our analysis.
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Proposition 3.7. Let EF be a Fermi energy satisfying Assumption 3.1
and set ΨEF

:= ΥYEF
. Then

ΣEF
(B) = π

∫
R2

ΨEF
(dλ1dλ2) |λ1 − λ2|χB(λ1 − λ2)(3.40)

for all Borel sets B ⊂ R. Moreover, the measure ΨEF
is supported by the set

SEF
; i.e., ΨEF

(R2 \ SEF
) = 0, where

SEF
:=

{
] −∞, EF ]×]EF ,∞[

}
∪

{
]EF ,∞[×] −∞, EF ]

}
⊂ R

2.(3.41)

Proof. If we set

QEF
(λ1, λ2) := χ

SEF
(λ1, λ2) =

∣∣χ
]−∞,EF ](λ1) − χ

]−∞,EF ](λ2)
∣∣,(3.42)

then, from (3.29),

QEF
= P2

EF
, where QEF

:= QEF
(HL,HR).(3.43)

Thus QEF
YEF

= YEF
, and the measure ΨEF

is supported by the set SEF
.

Hence

ΣEF
(B) = π〈〈YEF

, χB(L)|L|YEF
〉〉 for all Borel sets B ⊂ R,(3.44)

and (3.40) follows.

3.6. The velocity-velocity correlation measure. The velocity-velocity cor-
relation measure Φ is formally given by Φ = ΥẊ1

, but note that Ẋ1 /∈ K2 in
the continuum setting.

Definition 3.8. The velocity-velocity correlation measure (x1-x1 compo-
nent) is the positive σ-finite Borel measure on R

2 defined on bounded Borel
sets C ⊂ R

2 by

Φ(C) := 〈〈Ẋ1,α, (HL + γ)2α χC(HL,HR) (HR + γ)2α Ẋ1,α〉〉(3.45)

= ΥẊ1
(C) if H = �2(Zd),(3.46)

where

Ẋ1,α :=
{

(H + γ)−α Ẋ1 (H + γ)−
1
2

}
�L (H + γ)−[[ d

4
]] ∈ K2,

α := 1
2 + [[d4 ]] with [[d4 ]] the smallest integer bigger than d

4 .
(3.47)

Note that (3.47) is justified since we have Ẋ1 (H + γ)−
1
2 ∈ K∞ by (3.7)

and (H + γ)−[[ d

4
]] ∈ K2 by [BoGKS, Prop. 4.2(i)]; note that Ẋ‡

1,α = Ẋ1,α. In
the discrete setting, Ẋ1 ∈ K2 and hence Φ = ΥẊ1

, a finite measure.
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The following lemma relates the measure ΨEF
of Proposition 3.7 to the

measure Φ.

Lemma 3.9. The correlation measure ΨEF
is absolutely continuous with

respect to the velocity-velocity correlation measure Φ, with
dΨEF

dΦ
(λ1, λ2) =

QEF
(λ1, λ2)

(λ1 − λ2)2
.(3.48)

Proof. The key observation is that (use [BoGKS, Lemma 5.4(iii) and
Cor. 4.12])

(HL + γ)−α (HR + γ)−α LYEF
= −PEF

Ẋ1,α,

LYEF
= −PEF

Ẋ1 if H = �2(Zd).
(3.49)

Now, for all Borel sets C ⊂ R
2,∫

C
ΨEF

(dλ1dλ2) (λ1 − λ2)2 = 〈〈LYEF
, χC(HL,HR)LYEF

〉〉

= 〈〈PEF
Ẋ1,α, (HL + γ)2α χC(HL,HR) (HR + γ)2α PEF

Ẋ1,α〉〉
= 〈〈Ẋ1,α,P2

EF
(HL + γ)2α χC(HL,HR) (HR + γ)2α Ẋ1,α〉〉

= 〈〈Ẋ1,α, (HL + γ)2α χC∩SEF
(HL,HR) (HR + γ)2α Ẋ1,α〉〉

=
∫

C
Φ(dλ1dλ2) QEF

(λ1, λ2).

(3.50)

Since ΨEF
is supported on SEF

, the lemma follows.

We can now write the conductivity measure in terms of the velocity-
velocity correlation measure.

Proposition 3.10. Let EF be a Fermi energy satisfying Assumption 3.1.
Then

ΣEF
(B) = π

∫
SEF

Φ(dλ1dλ2) |λ1 − λ2|−1χB(λ1 − λ2)(3.51)

for all Borel sets B ⊂ R.

Proof. The representation (3.51) is an immediate consequence of (3.40)
and (3.48).

Remark 3.11. If we assume, as is customary in physics, that the con-
ductivity measure ΣEF

is absolutely continuous, its density being the in phase
conductivity σin

EF
(ν), and that in addition the velocity-velocity correlation mea-

sure Φ is absolutely continuous with a continuous density φ(λ1, λ2), then (3.51)
yields the well-known formula (cf. [P], [KLP])

σin
EF

(ν) =
π

ν

∫ EF

EF−ν
dE φ(E + ν, E).(3.52)
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The existence of the densities σin
EF

(ν) and φ(λ1, λ2) is currently an open ques-
tion, and hence (3.52) is only known as a formal expression. In contrast, the
integrated version (3.51) is mathematically well established. (See also [BH] for
some recent work on the velocity-velocity correlation function.)

3.7. Bounds on the average in phase conductivity. The average in phase
conductivity σin

EF
(ν) defined in (2.17) can be bounded from above and below

by the correlation measure ΨEF
. Note that since ΣEF

is an even measure it
suffices to consider frequencies ν > 0.

λ2

EF

EF − ν

λ2 = λ1

I−

λ2 = λ1 − ν
EF EF + ν

I+ λ1

J+ × J−

T

Figure 1: J+ × J− ⊂ T ⊂ I+ × I−.

Proposition 3.12. Let EF be a Fermi energy satisfying Assumption 3.1.
Given ν > 0, define the pairs of disjoint energy intervals

I− := ]EF − ν, EF ] and I+ := ]EF , EF + ν],

J− := ]EF − ν
2 , EF − ν

4 ] and J+ := ]EF + ν
4 , EF + ν

2 ].
(3.53)

Then

π
2 ΨEF

(J+ × J−) � σin
EF

(ν) � π ΨEF
(I+ × I−).(3.54)

Proof. It follows immediately from the representation (3.40) that

σin
EF

(ν) � π

∫
SEF

ΨEF
(dλ1dλ2) χ

[0,ν](λ1 − λ2) = π ΨEF
(T),(3.55)

where

T := {(λ1, λ2) ∈ R
2 : λ2 � EF < λ1 and λ1 − λ2 � ν}(3.56)

is the triangle in Figure 1. Since T ⊂ I+ × I−, as can be seen there, the upper
bound in (3.54) follows from (3.55).

Similarly, we have J+ × J− ⊂ T (see Figure 1) and the lower bound in
(3.54).
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4. The proof of Theorem 2.3

In this section we let H be the Anderson Hamiltonian and fix a Fermi
energy EF ∈ ΞCL. Thus (2.3) holds, and hence, using the exponential decay
of the Fermi projection given in [AG, Th. 2] and ‖PEF

‖ � 1, we have

E {|〈δx, PEF
δy〉|p} � Ce−c|x−y| for all p ∈ [1,∞[ and x, y ∈ Z

d,(4.1)

where C and c > 0 are constants depending on EF and ρ. In particular,
Assumption 3.1 is satisfied, and we can use the results of Section 3.

In view of Proposition 3.12, Theorem 2.3 is an immediate consequence of
the following result.

Theorem 4.1. Let H be the Anderson Hamiltonian and consider a Fermi
energy in its region of complete localization: EF ∈ ΞCL. Consider the finite
Borel measure ΨEF

on R
2 of Proposition 3.7, and , given ν > 0, let I− and I+

be the disjoint energy intervals given in (3.53). Then

lim sup
ν↓0

ΨEF
(I+ × I−)

ν2
(
log 1

ν

)d+2
� 205d+2π2 ‖ρ‖2

∞�d+2
EF

,(4.2)

where �EF
is as in (2.3) and ρ is the density of the single site potential.

Theorem 4.1 will be proved by a reduction to finite volume, a cube of
side L, where the relevant quantity will be controlled by Minami’s estimate.
Optimizing the final estimate will lead to a choice of L ∼ log 1

ν , which is
responsible for the factor of

(
log 1

ν

)d+2 in (4.2). By improving some of the
estimates in the proof (at the price of making them more cumbersome), the
numerical constant 205 in (4.2) may be reduced to 36.

4.1. Some properties of the measure ΨEF
. We briefly recall some facts

about the Anderson Hamiltonian. If I ⊂ ΞCL is a compact interval, then for
all Borel functions f with |f | � 1 we have ([A], [AG])

E {|〈δx, f(H)χI(H)δy〉|} � CI e−cI |x−y| for all x, y ∈ Z
d,(4.3)

for suitable constants CI and cI > 0, and hence

[X1, f(H)χI(H)] ∈ K2.(4.4)

We also recall Wegner’s estimate [W], which yields

|E {〈δx, χB(H)δy〉}| � E {〈δ0, χB(H)δ0〉} � ‖ρ‖∞|B|(4.5)

for all Borel sets B ⊂ R and x, y ∈ Z
d.

We begin by proving a preliminary bound on ΨEF
(I+×I−), a consequence

of Wegner’s estimate.
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Lemma 4.2. Given β ∈ ]0, 1[, there exists a constant Wβ such that

ΨEF
(B+ × B−) � Wβ

(
min

{
|B+|, |B−|

})β(4.6)

for all Borel sets B± ⊂ R.

Proof. Since

ΨEF
(B+ × B−) � min {ΨEF

(B+ × R),ΨEF
(R × B−)} ,(4.7)

ΨEF
(B+ × B−) = ΨEF

(B− × B+),(4.8)

and, for all Borel sets B ⊂ R,

ΨEF
(B × R) = 〈〈YEF

, χB(HL)YEF
〉〉,(4.9)

it suffices to show that for β ∈ ]0, 1[ there exists a constant Wβ such that

〈〈YEF
, χB(HL)YEF

〉〉 � Wβ|B|β for all Borel sets B ⊂ R.(4.10)

Using X1δ0 = 0, we obtain

〈〈YEF
, χB(HL)YEF

〉〉 = E
{
〈X1PEF

δ0, χB(H)X1PEF
δ0〉

}
�

∑
x,y∈Zd

|x1||y1| E
{
|〈δ0, PEF

δx〉| |〈δx, χB(H)δy〉| |〈δy, PEF
δ0〉|

}
(4.11)

� Wβ|B|β,

where we used Hölder’s inequality plus the estimates (4.1) and (4.5).

Remark 4.3. In the case of the Anderson Hamiltonian, the self-adjoint
operators HL and HR on the Hilbert space K2 have absolutely continuous
spectrum. The proof is a variation of the argument in Lemma 4.2. Recalling
that in the discrete setting K∞ is a dense subset of K2, to show that HL has
absolutely continuous spectrum it suffices to prove that for each A ∈ K∞ the
measure Υ(L)

A on R, given by Υ(L)
A (B) := ΥA(B × R) (see (3.38)) is absolutely

continuous. Since χB(H) ∈ K∞ ⊂ K2, we have, similarly to (4.11), that

Υ(L)
A (B) = 〈〈A,χB(HL)A〉〉 = |||χB(H) �L A|||22 = |||A‡ �R χB(H)|||22

� |||A|||2∞ |||χB(H)|||22 = |||A|||2∞ E {〈δ0, χB(H)δ0〉}(4.12)

� ‖ρ‖∞ |||A|||2∞ |B|.
Unfortunately, knowing that HL, and hence also HR, has absolutely continuous
spectrum does not imply that the Liouvillian L = HL − HR has no nonzero
eigenvalues. (Note that 0 is always an eigenvalue for L.)

The next lemma rewrites ΨEF
(I+ × I−) in ordinary �2(Zd)-language. Re-

call that f(H) ∈ K2 ∩ K∞ and [X1, f(H)] ∈ K2 if either f ∈ S(R), or f is a
bounded Borel function with fχI = f for some bounded interval I ⊂ ΞCL, or
f = χ

]−∞,E] with E ∈ ΞCL [BoGKS, Prop. 4.2].
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Lemma 4.4. Let F± := f±(H), where f± � 0 are bounded Borel measur-
able functions on R. Suppose

F−PEF
= F−, F+PEF

= 0, and F±, [X1, F±] ∈ K2.(4.13)

Then ∫
R2

ΨEF
(dλ1dλ2) f2

+(λ1)f2
−(λ2) = E

{
〈δ0, F−X1F

2
+X1F−δ0〉

}
.(4.14)

Proof. It follows from (3.38) that∫
R2

ΨEF
(dλ1dλ2) f2

+(λ1)f2
−(λ2) = |||F+ �L YEF

�R F−|||22 .(4.15)

In view of (3.23) and (4.13), it follows from [BoGKS, Eq. (4.8)] that

−iYEF
�R F− = [X1, F−PEF

] − PEF
�L [X1, F−] = [X1, F−] − PEF

�L [X1, F−],
(4.16)

and hence

F+ �L YEF
�R F− = iF+ �L [X1, F−].(4.17)

Thus, from (4.15),∫
R2

ΨEF
(dλ1dλ2) f2

+(λ1)f2
−(λ2) = E

{
‖F+X1F−δ0‖2

2

}
,(4.18)

which implies (4.14).

Lemma 4.4 has the following corollary, which will be used to justify the
replacement of spectral projections by smooth functions of H.

Lemma 4.5. Let B± be bounded Borel subsets of the region of complete
localization ΞCL with B− ⊂] −∞, EF ] and B+∩] −∞, EF ] = ∅, so that

P−PEF
= P− and P+PEF

= 0, where P± := χB±(H),(4.19)

and let f± and F± be as in Lemma 4.4 obeying χB± � f± � 1. Then

ΨEF
(B+ × B−) = E

{
〈δ0, P−X1P+X1P−δ0〉

}
(4.20)

� E
{
〈δ0, F−X1F+X1F−δ0〉

}
.(4.21)

Proof. The equality (4.20) follows from Lemma 4.4 with f± = χB± . To
prove the bound (4.21), note that we also have χB± � f2

± � f± � 1, and hence,
since

ΨEF
(B+ × B−) �

∫
R2

ΨEF
(dλ1dλ2) f2

+(λ1)f2
−(λ2),(4.22)

(4.21) follows from (4.14) since F 2
+ � F+.
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4.2. Passage to finite volume. Restricting the Anderson Hamiltonian to
finite volume leads to a natural minimal distance between its eigenvalues, as
shown in [KlM, Lemma 2] using Minami’s estimate [M]. It is this natural
distance that allows control over an eigenvalue correlation like (4.20).

The finite volumes will be cubes ΛL with L � 3. Here ΛL is the largest
cube in Z

d, centered at the origin and oriented along the coordinate axes, with
|ΛL| � Ld. We denote by HL the (random) finite-volume restriction of the
Anderson Hamiltonian H to �2(ΛL) with periodic boundary condition. We will
think of �2(ΛL) as being naturally embedded into �2(Zd), with all operators
defined on �2(ΛL) acting on �2(Zd) via their trivial extension. In addition, it
will be convenient to consider another extension of HL to �2(Zd), namely

ĤL := HL + χΛc
L
HχΛc

L
,(4.23)

where by Sc we denote the complement of the set S. We set ∂S := {x ∈
S : there exists y ∈ Sc with |x − y| = 1}, the boundary of a subset S in Z

d.
Moreover, when convenient we use the notation A(x, y) := 〈δx, Aδy〉 for the
matrix elements of a bounded operator A on �2(Zd).

To prove (4.2), we rewrite ΨEF
(I+ × I−) as in (4.20), estimate the cor-

responding finite-volume quantity, and calculate the error committed in going
from infinite to finite volume. To do so, we would like to express the spectral
projections in (4.20) in terms of resolvents, where we can control the error by
the resolvent identity. This can be done by means of the Helffer–Sjöstrand
formula for smooth functions f of self-adjoint operators [HS], [HuS]. More
precisely, it requires finiteness in one of the norms

{{f}}m :=
m∑

r=0

∫
R

du |f (r)(u)| (1 + |u|2) r−1
2 , m = 1, 2, . . . .(4.24)

If {{f}}m < ∞ with m � 2, then for any self-adjoint operator K we have

f(K) =
∫

R2

df̃(z) (K − z)−1,(4.25)

where the integral converges absolutely in operator norm. Here z = x + iy,
f̃(z) is an almost analytic extension of f to the complex plane, df̃(z) :=
1
2π∂z̄ f̃(z) dxdy, with ∂z̄ = ∂x+i∂y, and |df̃(z)| := (2π)−1|∂ z f̃(z)|dxdy. More-
over, for all p � 0 we have∫

R2

|df̃(z)| 1
|Im z|p � cp {{f}}m < ∞ for m � p + 1(4.26)

with a constant cp (see [HuS, App. B] for details).
Thus we will pick appropriate smooth functions f± and estimate the error

between the quantity in (4.21) and the corresponding finite volume quantity.
The error will then be controlled by the following lemma.
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Lemma 4.6. Let I ⊂ ΞCL be a compact interval, so that (2.3) holds for
all E ∈ I with the same � and s. Then there exists a constant C such that for
all C4-functions f± with supp f± ⊂ I and |f±| � 1,∣∣E {〈δ0, F−X1F+X1F−δ0〉 − 〈δ0, F−,LX1F+,LX1F−,Lδ0〉}

∣∣
� C

(
1 + {{f−}}3

) 2
3
(
{{f+}}4 + {{f−}}4

) 1
3 L

4
3
d e−

1
12�

L
(4.27)

for all L � 3, where F± := f±(H) and F±,L := f±(HL).

Proof. Since f± = f±χI and I ⊂ ΞCL with I a compact interval, and
|f±| � 1, it follows from (4.3) that

E {|〈δx, F±δy〉|p} � CIe−cI |x−y| for all p ∈ [1,∞[ and x, y ∈ Z
d,(4.28)

where the constants CI and cI > 0 are independent of f±. The corresponding
estimates for F±,L and F±− F̂±,L, the two main technical estimates needed for
the proof of Lemma 4.6, are isolated in the following sublemma.

Sublemma 4.7. Let the interval I be as in Lemma 4.6. Then there exist
constants C1, C2 such that for all all C4-functions f with supp f ⊂ I, L � 3,
and all x, y ∈ Z

d,

E
{
|〈δx, (F − F̂L)δy〉|

}
� C1 {{f}}4 L2d−2 e−

1
2�
{dist(x,∂ΛL)+dist(y,∂ΛL)}(4.29)

and

E
{
|〈δ0, F̂Lδx〉|

}
� C2 {{f}}3 Ld−1 e−

1
�
|x| χΛL

(x),(4.30)

where F := f(H) and F̂L := f(ĤL).

Proof. Let R(z) := (H − z)−1 and R̂L(z) := (ĤL − z)−1 be the resolvents
for H and ĤL. It follows from the resolvent identity that

R̂L(z) = R(z) + R(z)ΓLR̂L(z)(4.31)

= R(z) + R(z)ΓLR(z) − R(z)ΓLR̂L(z)ΓLR(z),(4.32)

where ΓL := H − ĤL. Note that either ΓL(x, y) = 0 or |ΓL(x, y)| = 1, and if
(x, y) ∈ EL := {(x, y) ∈ Z

d×Z
d : ΓL(x, y) �= 0} we must have either x ∈ ∂ΛL or

y ∈ ∂ΛL (or both, because we use periodic boundary conditions), and moreover
|EL| � 8d2Ld−1.

To prove (4.29), we first apply the Helffer–Sjöstrand formula (4.25) to
both F and F̂L, use (4.32) and the crude estimate ‖R̂L(z)‖ � | Im z|−1 to get

E
{
|〈δx, (F − F̂L)δy〉|

}
� |EL| sup

(u,v)∈EL

∫
R2

|df̃(z)| E
{
|R(z;x, u)| |R(z; v, y)|

}
+ |EL|2 sup

(u,v)∈EL

(w′,w)∈EL

∫
R2

|df̃(z)| | Im z|−1
E

{
|R(z;x, u)| |R(z;w, y)|

}
.

(4.33)



ON MOTT’S FORMULA FOR THE AC-CONDUCTIVITY 571

We now exploit the crude bound ‖R(z)‖ � | Im z|−1 and the Cauchy–Schwarz
inequality to obtain fractional moments. This allows the use of (2.3) for Re z ∈
supp f ⊂ I ⊂ ΞCL, obtaining,

E
{
|R(z;x, u)| |R(z; v, y)|

}
� | Im z|s−2

E{|R(z;x, u)|s} 1
2 E{|R(z; v, y)|s} 1

2

� K| Im z|s−2 e−
1
2�

(|x−u|+|v−y|)
(4.34)

for all x, u, v, y ∈ Z
d. Plugging the bound (4.34) into (4.33), and using (4.26)

and properties of the set EL, we get the estimate (4.29).
The estimate (4.30) is proved along the same lines. We may assume x ∈

ΛL, since otherwise the left-hand side is clearly zero. Proceeding as above, we
get

E
{
|〈δ0, F̂ δx〉|

}
�

∫
R2

|df̃(z)| E{|R̂L(z; 0, x)|}

�
∫

R2

|df̃(z)| E{|R(z; 0, x)|}

+ |EL| sup
(u,v)∈EL

∫
R2

|df̃(z)| | Im z|−1
E{|R(z; 0, u)|}

(4.35)

and

E{|R(z; 0, x)|} � | Im z|s−1
E{|R(z; 0, x)|s} � K| Im z|s−1 e−

1
�
|x|.(4.36)

The estimate (4.30) now follows.

We may now finish the proof of Lemma 4.6 using the fact that

〈δ0, F−,LX1F+,LX1F−,Lδ0〉 = 〈δ0, F̂−,LX1F̂+,LX1F̂−,Lδ0〉,(4.37)

since χΛL
F±,LχΛL

= χΛL
F̂±,LχΛL

and the operators F±,L and F̂±,L commute
with χΛL

. Thus∣∣E {〈δ0, F−X1F+X1F−δ0〉 − 〈δ0, F−,LX1F+,LX1F−,Lδ0〉}
∣∣

�
∣∣E{

〈δ0, (F− − F̂−,L)X1F+X1F−δ0〉
}∣∣(4.38)

+
∣∣E{

〈δ0, F̂−,LX1F+X1(F− − F̂−,L)δ0〉
}∣∣(4.39)

+
∣∣E{

〈δ0, F̂−,LX1(F+ − F̂+,L)X1F̂−,Lδ0〉
}∣∣.(4.40)

Each term in the above inequality can be estimated by Hölder’s inequality:

|E {〈δ0, A1X1A2X1A3δ0〉}|
�

∑
x,y∈Zd

|x1| |y1|E {|A1(0, x)| |A2(x, y)| |A3(y, 0)|}

�
∑

x,y∈Zd

|x1| |y1|E
{
|A1(0, x)|3

} 1
3 E

{
|A2(x, y)|3

} 1
3 E

{
|A3(y, 0)|3

} 1
3 ,

(4.41)
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where Aj , j = 1, 2, 3, may be either F±, F̂−,L, or F± − F̂±,L. We estimate
E

{
|F±(x, y)|3

}
by (4.28) and E

{
|F̂−,L(0, x)|3

}
by (4.30). If follows from (4.29)

that

E
{
|(F− − F̂−,L)(0, x)|3

}
� 4 E

{
|(F− − F̂−,L)(0, x)|

}
� 4C1 {{f−}}4 L2d−2 e−

1
2�

(dist(0,∂ΛL)+dist(x,∂ΛL))(4.42)

� 4C1 {{f−}}4 L2d−2 e−
1
2�

L−3
2 ,(4.43)

since |(F− − F̂−,L)(0, x)| � 2 and dist(0, ∂ΛL) � L−3
2 . Thus we get, with some

constant C,

(4.38) + (4.39) � C
(
1 + {{f−}}

1
3
3

)
{{f−}}

1
3
4 Ld−1 e−

1
6�

L−3
2 .(4.44)

To estimate (4.40), we control E
{
|(F+− F̂+,L)(x, y)|3

}
from (4.29) as in (4.42).

We get, with constant C ′,

(4.40) � C ′L
4
3
(d−1) {{f−}}

2
3
3 {{f+}}

1
3
4

×
∑

x,y∈ΛL

|x1| |y1| e−
1
3�

(|x|+|y|) e−
1
6�

(dist(x,∂ΛL)+dist(y,∂ΛL))

� C ′L
4
3
(d−1) {{f−}}

2
3
3 {{f+}}

1
3
4 e−

1
6�

L−3
2 ,

(4.45)

since for x ∈ ΛL we have

|x| + dist(x, ∂ΛL) � dist(0, ∂ΛL) � L−3
2 .(4.46)

The desired estimate (4.27) now follows from (4.38)–(4.40), (4.44), and
(4.45), with a suitable constant C.

4.3. The finite volume estimate. For the finite volume Anderson Hamil-
tonian HL we have available a beautiful estimate due to Minami [M], which
may be stated as

E
{
{trχI(HL)}2 − trχI(HL)

}
� π2‖ρ‖2

∞|I|2|ΛL|2(4.47)

for all intervals I ⊂ R and length scales L � 1. (See [KlM, App. A] for an out-
line of the argument.) Although Minami wrote his original proof for Dirichlet
boundary condition, the result is valid for the usual boundary conditions, and
in particular for periodic boundary conditions.

Remark 4.8. The dependence on L ∼ |ΛL|
1
d on the right-hand side of

(4.47) is optimal; it cannot be improved. Ergodicity implies that

lim
L→∞

1
|ΛL| tr

χB(HL) = E {〈δ0, χB(H)δ0〉} = N (B) P-a.s.,(4.48)

where N (B) is the density of states measure. If I and I± are intervals of
nonzero lengths contained in the spectrum of H, we must have N (I),N (I±)
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> 0, and hence

lim
L→∞

1
|ΛL|2 E

{
{trχI(HL)}2 − trχI(HL)

}
= N (I)2 > 0,(4.49)

lim
L→∞

1
|ΛL|2 E

{
{trχI+(HL)}{trχI−(HL)}

}
= N (I+)N (I−) > 0.(4.50)

Lemma 4.9. Let J± ⊂ R be intervals such that J−∩J+ = ∅, and consider
an interval J ⊃ J− ∪ J+. Then, with Borel functions f± on R with 0 � f± �
χJ± ,

E
{
〈δ0, F−,LX1F+,LX1F−,Lδ0〉

}
� π2

4 ‖ρ‖2
∞|J |2Ld+2(4.51)

for all L � 3, where F±,L = f±(HL).

Proof. With periodic boundary condition finite volume expectations are
invariant with respect to translations (in the torus). This, combined with
F−,LF+,L = 0, gives

E
{
〈δ0,F−,LX1F+,LX1F−,Lδ0〉

}
= 1

|ΛL|
∑

x∈ΛL

E
{
〈δx, F−,LX1F+,LX1F−,Lδx〉

}
= 1

|ΛL| E
{
tr{F−,LX1F+,LX1F−,L}

}
,

(4.52)

where the trace is taken in �2(ΛL). Since ‖X1,L‖ � L
2 , where X1,L = X1χΛL

is the restriction of X1 to �2(ΛL), 0 � F±,L � Q±,L := χJ±(HL), and Q+,L +
Q−,L � QL := χJ(HL), we have

tr
{
F−,LX1F+,LX1F−,L

}
� ‖X1,LF+,LX1,L‖

(
trF 2

−,L

)
(4.53)

� L2

4 ‖F+,L‖
(
trF 2

−,L

)
� L2

4

(
trF+,L

)(
trF 2

−,L

)
(4.54)

� L2

4

(
trQ+,L

)(
trQ−,L

)
� L2

4

{(
trQL

)2 − trQL

}
.(4.55)

Combining (4.52) and (4.53) – (4.55), and using Minami’s estimate (4.47), we
get

E
{
〈δ0, F−,LX1F+,LX1F−,Lδ0〉

}
� π2

4 ‖ρ‖2
∞|J |2|ΛL|L2,(4.56)

which yields (4.51).

4.4. The proof of Theorem 4.1. We now have all the ingredients to prove
Theorem 4.1. Since EF ∈ ΞCL, there is ν0 ∈ ]0, 1[ such that I0 := [EF − ν0,

EF +ν0] ⊂ ΞCL, and (2.3) holds for all E ∈ I0 with the same exponent s = sEF

and localization length � = �EF
. Given ν ∈]0, ν0], we define compact intervals

I := [EF − ν, EF + ν],

I− := ]EF − ν, EF ] and J− := ]EF − ν + ν4, EF − ν4],

I+ := ]EF , EF + ν] and J+ := ]EF + ν4, EF + ν − ν4].

(4.57)
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Note that J± ⊂ I± ⊂ I ⊂ ΞCL and I− ∩ I+ = ∅. Moreover, we have I±\J± =
J±,1 ∪ J±,2, where J±,j , j = 1, 2, are intervals of length |J±,j | = ν4. Thus

ΨEF
(I+ × I−) = ΨEF

(J+ × J−) + ΨEF
(I+ × J−,1) + ΨEF

(I+ × J−,2)

+ ΨEF
(J+,1 × J−) + ΨEF

(J+,2 × J−)(4.58)

� ΨEF
(J+ × J−) + 4W 1

2
ν2,

where the four terms containing J±,1 and J±,2 were estimated by Lemma 4.2
(with β = 1/2).

To estimate ΨEF
(J+ × J−), we exploit the existence of C4-functions f±

such that χJ± � f± � χI± and |f (k)
± | � 2ν−4kχ

I±\J± , k = 1, 2, 3, 4. Note that

{{f±}}3 � {{f±}}4 � Cν−16ν = Cν−15,(4.59)

where the constant C is independent of ν ∈ ]0, ν0] and f±. Using first (4.21) in
Lemma 4.5 (with B± = J± and F± = f±(H)) to replace the spectral projec-
tions by smooth functions of H, followed by Lemma 4.6 to achieve the passage
to finite volume, we get

ΨEF
(J+ × J−) � E

{
〈δ0, F−X1F+X1F−δ0〉

}
� E

{
〈δ0, F−,LX1F+,LX1F−,Lδ0〉

}
+ C ′ν−15L

4
3
d e−

1
12�

L
(4.60)

for all L � 3, where F±,L = f±(HL).
Combining (4.58) and (4.60), and using Lemma 4.9 to estimate the finite

volume quantity, we get

ΨEF
(I+ × I−) � π2‖ρ‖2

∞ν2Ld+2 + C ′ν−15L
4
3
d e−

1
12�

L + 4W 1
2
ν2.(4.61)

If we now choose

L = (17 · 12 + 1)� log 1
ν = 205� log 1

ν ,(4.62)

then there exists ν ′
0 ∈ ]0, ν0], such that for all ν ∈ ]0, ν ′

0],

ΨEF
(I+ × I−) � 205d+2π2‖ρ‖2

∞�d+2ν2
(
log 1

ν

)d+2 + C ′′ν2,(4.63)

from which (4.2) follows.
Theorem 4.1 is proved, yielding Theorem 2.3.

Remark 4.10. As discussed in Remark 2.5, in our estimate for Mott’s
formula, namely (2.18) (or, equivalently, (4.2)), the exponent of log 1

ν is d + 2,
instead of d + 1 as in (1.1). This comes from (4.56), where we get a factor of
Ld+2. As seen in Remark 4.8, the power of L we acquire in the passage from
(4.55) to (4.56) cannot be improved. The factor of L2 obtained going from
(4.53) to (4.54) must also be correct because of (4.62), since we need Ld+2 in
(4.56) to get �d+2 in (4.63). To obtain a factor of (log 1

ν )d+1 as in (1.1), we
would need to improve the estimate in (4.53), (4.54) to gain an extra factor of
(log 1

ν )−1.
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Remark 4.11. Starting from the lower bound given in Proposition 3.12,
and proceeding as in the derivation of (4.60), we obtain the lower bound

σin
EF

(ν) � π
2 E

{
〈δ0, G−,LX1G+,LX1G−,Lδ0〉

}
+ C ′′ν−15L4d e−

1
12�

L,(4.64)

where G±,L := g±(HL) and the functions g± satisfy χB± � g± � χJ± with
J± as in (3.53), B− := ]EF − ν

2 + ν4, EF − ν
4 − ν4], and B+ := ]EF + ν

4

+ ν4, EF + ν
2 − ν4]. Moreover, the functions g± are supposed to satisfy the

hypotheses of Lemma 4.6 with respect to the intervals B±, the estimate (4.59),
and f± = √

g± satisfy the hypotheses of Lemma 4.5 with respect to the
intervals B±. Unfortunately, we are not able to obtain a useful lower bound
for σin

EF
(ν) from (4.64) because we do not have a lower bound for the finite

volume term; Minami’s estimate gives only an upper bound.
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