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On deformations of associative algebras

By Roman Bezrukavnikov and Victor Ginzburg*

Abstract

In a classic paper, Gerstenhaber showed that first order deformations of
an associative k-algebra a are controlled by the second Hochschild cohomology
group of a. More generally, any n-parameter first order deformation of a gives,
due to commutativity of the cup-product on Hochschild cohomology, a graded
algebra morphism Sym•(kn) → Ext2•a-bimod(a, a). We prove that any extension
of the n-parameter first order deformation of a to an infinite order formal
deformation provides a canonical ‘lift’ of the graded algebra morphism above
to a dg-algebra morphism Sym•(kn) → RHom•(a, a), where the symmetric
algebra Sym•(kn) is viewed as a dg-algebra (generated by the vector space k

n

placed in degree 2) equipped with zero differential.

1. Main result

1.1. Let k be a field of characteristic zero and write ⊗ = ⊗k, Hom =
Homk, etc. Given a k-vector space V , let V ∗ = Hom(V, k) denote the dual
space.

We will work with unital associative k-algebras, to be referred to as ‘al-
gebras’. Given such an algebra B, we write mB : B ⊗ B → B for the corre-
sponding multiplication map, and put ΩB := Ker(mB) ⊂ B ⊗ B. This is a
B-bimodule which is free as a right B-module; in effect, ΩB � (B/k) ⊗ B is
a free right B-module generated by the subspace B/k ⊂ ΩB formed by the
elements b ⊗ 1 − 1 ⊗ b, b ∈ B.

Fix a finite dimensional vector space T, and let O = k ⊕ T ∗ be the com-
mutative local k-algebra with unit 1 ∈ k and with maximal ideal T ∗ ⊂ O such
that (T ∗)2 = 0. Thus, O/T ∗ = k. The algebra O is Koszul and one has a
canonical isomorphism TorO1 (k, k) ∼= T ∗.

We are interested in multi-parameter (first order) deformations of a given
algebra a. Specifically, by an O-deformation of a we mean a free O-algebra A

*Both authors are partially supported by the NSF.



534 ROMAN BEZRUKAVNIKOV AND VICTOR GINZBURG

(that is, O is a central subalgebra in A, and A is a free O-module) equipped
with a k-algebra isomorphism ψ : A/T ∗ ·A ∼= a. Two O-deformations, (A, ψ)
and (A′, ψ′), are said to be equivalent if there is an O-algebra isomorphism
ϕ : A ∼→A′ such that its reduction modulo the maximal ideal induces the

identity map Ida : a
ψ� A/T ∗ ·A ϕ−→ A′/T ∗ ·A′ ψ′

� a.
Let (A, ψ) be an O-deformation of a. Reducing each term of the short

exact sequence 0 → ΩA → A ⊗ A → A → 0 (of free right A-modules) modulo
T ∗ on the right, one obtains the following short exact sequence of left A-
modules

0 → ΩA ⊗O k → A ⊗ a → a → 0.(1.1.1)

Next, we reduce modulo T ∗ on the left, that is, apply the functor
TorO• (k,−) with respect to the left O-action. We have TorO1 (k, A ⊗ a)
= 0. Further, since multiplication by T ∗ annihilates a, we get TorO1 (k, a) =
a ⊗ TorO1 (k, k) = a ⊗ T ∗. Thus, the end of the long exact sequence of Tor-
groups corresponding to the short exact sequence (1.1.1) reads

0 −→ a ⊗ T ∗ ν−→ k ⊗O ΩA ⊗O k
u−→ a⊗a

ma−→ a −→ 0.(1.1.2)

This is an exact sequence of a-bimodules; the map ν : a ⊗ T ∗ = TorO1 (k, a) →
k ⊗O (ΩA ⊗O k) in (1.1.2) is the boundary map which is easily seen to be
induced by the assignment a ⊗ t 	→ ta ⊗ 1 − 1 ⊗ at ∈ ΩA, for any a ∈ A and
t ∈ T ∗. The map u is induced by the imbedding ΩA ↪→ A ⊗ A.

Interpretation via noncommutative geometry. For any associative algebra
A, the bimodule ΩA is called the bimodule of noncommutative 1-forms for A,
and there is a geometric interpretation of (1.1.2) as follows.

Let J ⊂ A be any two-sided ideal, and put a := A/J . There is a canonical
short exact sequence of a-bimodules (cf. [CQ, Cor. 2.11]),

0 −→ J/J2 d−→ a ⊗A ΩA ⊗A a −→ Ωa −→ 0.(1.1.3)

Here, the map J/J2 → a ⊗A ΩA ⊗A a is induced by restriction to J of the de
Rham differential d : A → ΩA; cf. [CQ]. The above exact sequence may be
thought of as a noncommutative analogue of the conormal exact sequence of a
subvariety.

We may splice (1.1.3) with the tautological extension (1.1.1), the latter
tensored by a on both sides. Thus, we obtain the following exact sequence of
a-bimodules:

0 → J/J2 d−→ a ⊗A ΩA ⊗A a −→ a ⊗ a
ma−→ a → 0.(1.1.4)

Let Exti
a-bimod(−,−) denote the i-th Ext-group in a-bimod, the abelian

category of a-bimodules. The group Ext2a-bimod(a, J/J2) classifies a-bimodule
extensions of a by J/J2. The class of the extension in (1.1.4) may be viewed
as a noncommutative version of Kodaira-Spencer class.
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We return now to the special case where A is an O-deformation of an
algebra a. In this case, we have a = A/J where J = a ⊗ T ∗ and, moreover,
J2 = 0. Thus, J/J2 = a ⊗ T ∗, and the long exact sequence in (1.1.4) reduces
to (1.1.2). Let

deform(A, ψ) ∈ Ext2a-bimod(a, a ⊗ T ∗) = Hom(T, Ext2a-bimod(a, a))

be the class of the corresponding extension.
The following theorem is an invariant and multiparameter generalization

of the classic result due to Gerstenhaber [G2].

Theorem 1.1.5. The map assigning the class

deform(A, ψ) ∈ Hom(T, Ext2a-bimod(a, a))

to an O-deformation (A, ψ) provides a canonical bijection between the set of
equivalence classes of O-deformations of a and the vector space

Hom(T, Ext2a-bimod(a, a)).

Gerstenhaber worked in more down-to-earth terms involving explicit co-
cycles. To make a link with Gerstenhaber’s formulation, observe that, for any

deformation (A, ψ), the composite A � A/T ∗ ·A
ψ
∼→ a may be lifted (since

A is free over O) to an O-module isomorphism A ∼= a ⊗ O = a ⊗ (k ⊕ T ∗) =
a
⊕

(a ⊗ T ∗) that reduces to ψ modulo T ∗. Transporting the multiplication
map on A via this isomorphism, we see that giving a deformation amounts to
giving an associative truncated ‘star product’:

a � a′ = a · a′ + β(a, a′), β ∈ Hom(a ⊗ a, a ⊗ T ∗) = Hom
(
T, Hom(a ⊗ a, a)

)
.

(1.1.6)

The associativity condition gives a constraint on β saying that β is a Hochschild
2-cocycle (such that β(1, x) = 0). Changing the isomorphism A � O ⊗ a has
the effect of replacing β by a cocycle in the same cohomology class.

One can show that β = deform(A, ψ); i.e., the class of the 2-cocycle β in
the Hochschild cohomology group Ext2a-bimod(a, a ⊗ T ∗) represents the class of
the extension in (1.1.2). Thus, our cocycle-free construction is equivalent to
the one given by Gerstenhaber.

1.2. Next, we consider the total Ext-group

Ext•a-bimod(a, a) =
⊕

i≥0

Exti
a-bimod(a, a).

This is a graded vector space that comes equipped with an associative alge-
bra structure given by Yoneda product. Another fundamental result due to
Gerstenhaber [G1] is
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Theorem 1.2.1. The Yoneda product on Ext•a-bimod(a, a) is (graded)
commutative.

In view of this result, any linear map T −→ Ext2a-bimod(a, a), of vec-
tor spaces can be uniquely extended, due to commutativity of the algebra
Ext2•a-bimod(a, a), to a graded algebra homomorphism Sym(T [−2]) →
Ext2•a-bimod(a, a), where Sym(T [−2]) denotes the commutative graded algebra
freely generated by the vector space T placed in degree 2. We conclude that
any O-deformation of a gives rise, by Theorem 1.1.5, to a graded algebra ho-
momorphism

deform : Sym(T [−2]) → Ext2•a-bimod(a, a).(1.2.2)

The present paper is concerned with the problem of ‘lifting’ this mor-
phism to the level of derived categories. Specifically, we consider the dg-
algebra RHoma-bimod(a, a), see Sect. 2.1 below, and also view the graded al-
gebra Sym(T [−2]) as a dg-algebra with trivial differential. We are interested
in lifting the graded algebra map (1.2.2) to a dg-algebra map Sym(T [−2]) →
RHoma-bimod(a, a).

To this end, one has to consider infinite order formal deformations of a.
Thus, we now let O be a formally smooth local k-algebra with maximal ideal m

such that O/m = k. We assume O to be complete in the m-adic topology; that
is, O ∼= lim

n
proj O/mn. The (finite dimensional) k-vector space T := (m/m2)∗

may be viewed as the tangent space to SpecO at the base point and one has
a canonical isomorphism O/m2 = k ⊕ T ∗. The algebra O is noncanonically
isomorphic to k[[T ]], the algebra of formal power series on the vector space T.

Let A be a complete topological O-algebra, A ∼= lim
n

proj A/mnA, such

that, for any n = 1, 2, ..., the quotient A/mnA is a free O/mn-module. Given
an algebra a and an algebra isomorphism ψ : a ∼→A/mA, we say that the pair
(A, ψ) is an infinite order formal O-deformation of a.

Clearly, reducing an infinite order deformation modulo m2, one obtains a
first order O/m2-deformation of a. The main result of this paper reads

Theorem 1.2.3 (Deformation formality). Any infinite order formal
O-deformation (A, ψ) of an associative algebra a provides a canonical lift of
the graded algebra morphism (1.2.2), associated with the corresponding first
order O/m2-deformation, to a dg-algebra morphism Deform : Sym(T [−2]) →
RHoma-bimod(a, a); see Section 2.1 for explanation.

Observe that Theorem 1.2.3 says, in particular, that one can map a basis
of the vector space deform(T [−2]) ⊂ Ext2a-bimod(a, a) to a set of pairwise com-
muting elements in RHoma-bimod(a, a). Thus, the above theorem may be seen
as a (partial) refinement of Gerstenhaber’s Theorem 1.2.1. Yet, our approach
to Theorem 1.2.3 is totally different from Gerstenhaber’s proof of his theorem;
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indeed, we are unaware of any connection between the commutativity result-
ing from Theorem 1.2.3 and the Gerstenhaber brace operation on Hochschild
cochains that plays a crucial role in the proof of Theorem 1.2.1. This ‘paradox’
may be resolved, perhaps, by observing that the notation RHoma-bimod(a, a)
stands for a quasi-isomorphism class of DG algebras; see Section 2.1 below.
Yet, the very notion of commutativity of elements of RHoma-bimod(a, a) only
makes sense after one picks a concrete DG algebra in that quasi-isomorphism
class. Thus, the commutativity statement resulting from Theorem 1.2.3 im-
plicitly involves a particular DG algebra model for RHoma-bimod(a, a). Now,
the point is that the model that we are using as well as our construction of the
morphism Deform will both involve the full infinite order deformation (A, ψ),
i.e., the full O-algebra structure on A, and not only the ‘first order’ deforma-
tion A/m2A. On the contrary, the statement of Gerstenhaber’s Theorem 1.2.1
is independendent of the choice of a DG algebra model; also, the construction
of the map deform in (1.2.2) involves the first order deformation A/m2A only.

Remark. Theorem 1.2.3 was applied in [ABG] to certain natural defor-
mations of quantum groups at a root of unity.

Acknowledgements. We would like to thank Vladimir Drinfeld for many
interesting discussions which motivated, in part, a key construction of this
paper.

2. Generalities

2.1. Reminder on dg-algebras and dg-modules. Given an integer n and a
graded vector space V =

⊕
i∈Z

V i, we write V<n :=
⊕

i<n V i. Let [n] denote
the shift functor in the derived category, and also the grading shift by n, i.e.,
(V [n])i := V i+n.

Let B =
⊕

i∈Z
Bi be a dg-algebra. We write DGM(B) for the homo-

topy category of all left dg-modules M =
⊕

i∈Z
M i over B (with differential

d : M• → M•+1), and D(B) := D(DGM(B)) for the corresponding derived
category obtained by localizing at quasi-isomorphisms. A B-bimodule is the
same thing as a left module over B ⊗ Bop, where Bop stands for the opposite
algebra. Thus, we write D(B ⊗ Bop) for the derived category of dg-bimodules
over B.

Given two objects M, N ∈ D(B), for any integer i we put Exti
B
(M, N) :=

HomD(B)(M, N [i]). The graded space Ext•
B
(M, M) =

⊕
j≥0 Extj

B
(M, M) has

a natural algebra structure, via composition.
Given an exact triangle Δ : K → M → N , in D(B), we write ∂Δ : N →

K[1] for the corresponding boundary morphism. Thus, ∂Δ ∈ HomD(B)(N, K[1])
= Ext1B(N, K).
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For a dg-algebra B =
⊕

i≤0 Bi concentrated in nonpositive degrees, the
triangulated category D(B) has a standard t-structure (D

τ<0(B), D
τ≥0(B))

where D
τ<0(B), resp. D

τ≥0(B), is a full subcategory of D(B) formed by the
objects with vanishing cohomology in degrees ≥ 0, resp., in degrees < 0; cf.
[BBD]. Write D(B) → D

τ<0(B), M 	→ M
τ<0, resp., D(B) → D

τ≥0(B), M 	→
M

τ≥0, for the corresponding truncation functors. Thus, for any object M ∈
D(B), there is a canonical exact triangle M

τ<0 → M → M
τ≥0. A triangulated

functor F : D(B1) → D(B2) between two such categories is called t-exact if it
takes D

τ<0(B1) to D
τ<0(B2), and D

τ≥0(B1) to D
τ≥0(B2).

An object M ∈ DGM(B) is said to be projective if it belongs to the
smallest full subcategory of DGM(B) that contains the rank one dg-module
B, and which is closed under taking mapping-cones and infinite direct sums.
Any object of DGM(B) is quasi-isomorphic to a projective object, see [Ke] for
a proof. (Instead of projective objects, one can use semi-free objects considered
e.g. in [Dr, Appendices A,B].)

Given M ∈ DGM(B), choose a quasi-isomorphic projective object P ∈
DGM(B) and write Hom′(P, P [n]) for the space of B-module maps P → P

which shift the grading by n (but do not necessarily commute with the dif-
ferential d). The graded vector space

⊕
n∈Z

Hom′(P, P [n]) has a natural al-
gebra structure given by composition. Super-commutator with the differen-
tial d ∈ Homk(P, P [−1]) makes this algebra into a dg-algebra, to be denoted
REnd•

B
(M) :=

⊕
n∈Z

Hom′(P, P [n]).
Let DGAlg be the category obtained from the category of dg-algebras and

dg-algebra morphisms by localizing at quasi-isomorphisms. The dg-algebra
REnd•

B
(M) viewed as an object of DGAlg does not depend on the choice of

projective representative P . More precisely, let QIso(B) denote the groupoid
that has the same objects as the category D(B) and whose morphisms are
the isomorphisms in D(B). Then, one can show, cf. [Hi] for a similar result,
that associating to M ∈ D(B) the dg-algebra REnd•

B
(M) gives a well-defined

functor QIso(B) → DGAlg.
The lift Deform : Sym(T [−2]) → RHoma-bimod(a, a) := REnda⊗aop(a),

whose existence is stated in Theorem 1.2.3, should be understood as a mor-
phism in DGAlg.

For any dg-algebra morphism f : B1 → B2, we let f∗ : D(B1) → D(B2) be

the push-forward functor M 	→ B2

L
⊗B1M, and f∗ : D(B2) → D(B1) the pull-

back functor, given by the change of scalars. The functor f∗ is clearly t-exact;
it is the right adjoint of f∗. These functors are triangulated equivalences quasi-
inverse to each other, provided the map f is a dg-algebra quasi-isomorphism.

2.2. Homological algebra associated with a deformation. Let O be a
formally smooth complete local algebra with maximal ideal m. We fix a
k-algebra a and let A be an infinite order formal O-deformation of a, as in
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Section 1.2. Note that A is a flat O-algebra. Associated with A and a, we have
the corresponding ideals ΩA ⊂ A ⊗ A and Ωa ⊂ a ⊗ a, respectively.

Set T := (m/m2)∗. The projection O � O/m2 induces an isomorphism
TorO1 (k, k) ∼→ TorO/m2

1 (k, k) = T. It follows, since A is flat over O, that the
exact sequence in (1.1.2) as well as all other constructions of Section 1.1 are
still valid in the present setting of formally smooth complete local algebras
O. In particular, we have the canonical morphism u : k⊗OΩA⊗Ok → a ⊗ a,

cf. (1.1.2), and the object Cone(u) ∈ D(a ⊗ aop). From (1.1.2) we deduce
H0(Cone(u)) = a and H−1(Cone(u)) = a⊗ T ∗. So, one may view (1.1.2) as an
exact triangle

Δu : a ⊗ T ∗[1] = H−1(Cone(u))[1] −→ Cone(u) −→ H0(Cone(u)) = a,

(2.2.1)

with boundary map ∂u : a → a ⊗ T ∗[2]. In this language, the bijection of
Theorem 1.1.5 assigns to a deformation (A, ψ) the class

∂u ∈ HomD(a⊗aop)

(
a, a ⊗ T ∗[2]

)
= Ext2a⊗aop(a, a) ⊗ T ∗.(2.2.2)

There is also a different interpretation of the triangle Δu. Specifically,
apply derived tensor product functor D(a⊗Aop)×D(A⊗ aop) −→ D(a⊗ aop)
to a, viewed as an object of either D(a⊗Aop) or D(A⊗ aop). This way, we get

an object a
L
⊗

A
a ∈ D(a ⊗ aop).

Proposition 2.2.3. (i) The object a
L
⊗

A
a ∈ D(a⊗aop) is concentrated in

nonpositive degrees, and one has a natural quasi-isomorphism φ : (a
L
⊗

A
a)

τ≥−1

qis−→ Cone(u), such that the following diagram commutes

(a
L
⊗

A
a)

τ≥−1

qis φ

��

proj �� �� H0(a
L
⊗

A
a) a

Ida

Cone(u)
proj �� �� H0(Cone(u)) a

(ii) Thus, associated with a deformation (A, ψ) there is a canonical exact
triangle

ΔA,ψ : a ⊗ T ∗[1] −→ (a
L
⊗

A
a)

τ≥−1 −→ a,

cf. (2.2.1), with boundary map ∂A,ψ, and the bijection of Theorem 1.1.5 reads

(A, ψ) 	−→ deform(A, ψ) = ∂A,ψ ∈ Ext2a⊗aop(a, a ⊗ T ∗).(2.2.4)

Proof. Since A is flat over O, on the category of left A-modules one has

an isomorphism of functors a
L
⊗

A
(−) = k

L
⊗O(−). Now, use (1.1.1) to replace
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the second tensor factor a in a
L
⊗

A
a by Cone

[
(ΩA ⊗O k)[1] → A ⊗ a

]
, a quasi-

isomorphic object. We find

a
L
⊗

A
a = k

L
⊗Oa= k

L
⊗OCone

[
(ΩA ⊗O k)[1] → A ⊗ a

]

=Cone
[
k

L
⊗ O(ΩA ⊗O k)[1] → a ⊗ a

]
.

The object k
L
⊗ O(ΩA ⊗O k) is concentrated in nonpositive degrees, and we

clearly have
(
k

L
⊗ O(ΩA ⊗O k)

)τ≥0 = H0(k
L
⊗ O(ΩA ⊗O k)) = k ⊗O ΩA ⊗O k.

Thus, we conclude that the object (a
L
⊗

A
a)

τ≥−1 is quasi-isomorphic to

Cone
[
k

L
⊗ O(ΩA ⊗O k)[1] → a ⊗ a

]τ≥−1

= Cone
[
(k

L
⊗ O(ΩA ⊗O k))

τ≥0[1] → a ⊗ a
]

= Cone
[
(k ⊗O ΩA ⊗O k)[1] → a ⊗ a

]
= Cone(u).

2.3. Koszul duality. Fix a finite dimensional vector space T and let Λ =
∧•(T ∗[1]) be the exterior algebra of the dual vector space T ∗, placed in degree
−1. For each n = 0,−1,−2, . . . , we have a graded ideal Λ<n ⊂ Λ. One has a
canonical extension of graded Λ-modules

Δ∧ : 0 −→ T ∗[1] −→ Λ/Λ<−1
ε∧−→ k∧ −→ 0,(2.3.1)

where we set k∧ := Λ/Λ<0. We will often view Λ as a dg-algebra concentrated
in nonpositive degrees, with zero differential.

Recall that the standard Koszul resolution of k∧ provides an explicit
dg-algebra model for REnd•

Λ
(k∧) together with an imbedding of the graded

symmetric algebra Sym(T [−2]) as a subalgebra of cocycles in that dg-algebra
model. Furthermore, Λ = ∧•(T ∗[1]) is a Koszul algebra, cf. [BGG], [GKM], so
this imbedding induces a graded algebra isomorphism on cohomology:

koszul : Sym(T [−2]) ∼→ Ext•Λ(k∧, k∧).(2.3.2)

Thus, the imbedding yields a dg-algebra quasi-isomorphism

Koszul : Sym(T [−2]) → REnd•
Λ
(k∧),(2.3.3)

provided the graded algebra Sym(T [−2]) is viewed as a dg-algebra with zero
differential.

From (2.3.2), we get a canonical vector space isomorphism

Endk T = T ⊗ T ∗ koszul⊗IdT∗ �� Ext2Λ(k∧, k∧) ⊗ T ∗ = Ext2Λ(k∧, T ∗).

It is immediate from the definition of the Koszul complex that the above iso-
morphism sends the element IdT ∈ Endk T to ∂∧ ∈ Ext2Λ(k∧, T ∗), the class
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of the boundary map k∧ → T ∗[2] in the canonical exact triangle Δ∧ given by
(2.3.1).

2.4. A dg-algebra. Let O = k[[T ]] be the algebra of formal power series,
with maximal ideal m ⊂ O such that T = (m/m2)∗. There is a standard super-
commutative dg-algebra R over O concentrated in nonpositive degrees and such
that

(i) R =
⊕

i≤0 Ri and R0 = O,

(ii) H0(R) = k and H i(R) = 0 , ∀i ≤ −1,

(iii) R is a free graded O-module.
(2.4.1)

To construct R, for each i = 0, 1, . . . , n = dimT, we let R−i = k[[T ]]⊗∧iT ∗

be the O-module of differential forms on the scheme SpecO. We put R :=⊕
−n≤i≤0 Ri. Further, write ξ for the Euler vector field on T . Contraction with

ξ gives a differential d : R−i → R−i+1, and it is well-known that the resulting
dg-algebra is acyclic in negative degrees, i.e., property (2.4.1)(ii) holds true.
Properties (2.4.1)(i) and (iii) are clear.

Until the end of this section, we will use the convention that each time a
copy of the vector space T ∗ occurs in a formula, this copy has grade degree −1.
We form the dg-algebra R ⊗O R � k[[T ]] ⊗ ∧•(T ∗ ⊕ T ∗). Let RΔ ⊂ R ⊗O R be
the O-subalgebra generated by the diagonal copy T ∗ ⊂ T ∗⊕T ∗ = ∧1(T ∗⊕T ∗).

Lemma 2.4.2. There is a dg-algebra imbedding ı : Λ ↪→ R ⊗O R such that

(i) Multiplication in R⊗O R induces a dg-algebra isomorphism RΔ ⊗ ı(Λ) ∼→
R ⊗O R.

(ii) The kernel of multiplication map mR : R ⊗O R → R is the ideal in the
algebra R ⊗O R generated by ı(Λ<0).

Proof. We have R ⊗O R � k[[T ]] ⊗ ∧(T ∗ ⊕ T ∗) � RΔ ⊗ ∧(T ∗), where
the last factor ∧(T ∗) is generated by the anti-diagonal copy T ∗ ⊂ T ∗ ⊕ T ∗.
It is clear that this anti-diagonal copy of T ∗ is annihilated by the differential
in the dg-algebra R ⊗O R. We deduce that the subalgebra generated by the
anti-diagonal copy of T ∗ is isomorphic to Λ as a dg-algebra. This immediately
implies properties (i)–(ii).

Now, let O be an arbitrary smooth complete local algebra. A pair (R, η),
where R =

⊕
i≤0 Ri is a super-commutative dg-algebra concentrated in non-

positive degrees and η : O → R0 is an algebra homomorphism, will be referred
to as an O-dg-algebra. A map h : R → R′, between two O-dg-algebras (R, η)
and (R′, η′), is said to be an O-dg-algebra morphism if it is a dg-algebra map
such that h ◦η = η′.
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Let D denote the standard ‘de Rham dg-algebra of the line’, that is, a
free supercommutative O-algebra with one even generator t of degree −2 and
one odd generator dt of degree −1, and equipped with the O-linear differential
sending t to dt. For any z ∈ k, the assignment t 	→ z, dt 	→ 0 gives an O-dg-
algebra morphism prz : D � O, where O is viewed as a dg-algebra with zero
differential. A pair h, g : R → R′, of O-dg-algebra morphisms, is said to be
homotopic 1 provided there exists an O-dg-algebra morphism h : R → D⊗O R′

such that the composite R
h−→ D ⊗O R′ prz ⊗Id−→ O ⊗O R′ = R′ is equal to h

for z = 0, resp. equal to g for z = 1. Let DGCom(O) be the category whose
objects are O-dg-algebras and whose morphisms are obtained from homotopy
classes of O-dg-algebra morphisms by localizing at quasi-isomorphisms.

Write m for the maximal ideal in O and put T := (m/m2)∗. So we can use
all the previously introduced notation, such as Λ = ∧•(T ∗) (with T ∗ placed in
degree −1).

Lemma 2.4.3. (i) There exists an O-dg-algebra R satisfying the three con-
ditions in (2.4.1) and such that all the statements of Lemma 2.4.2 hold.

Furthermore, let Rs, s = 1, 2, be two such O-dg-algebras. Then, for s =
1, 2, we have

(ii) There exist a third O-dg-algebra R, as in (i), and O-dg-algebra mor-

phisms hs : R
qis−→ Rs; these morphisms are unique up to homotopy.

Thus, the object of DGCom(O) arising from any choice of dg-algebra R,

as in (i), is uniquely determined up to a canonical (quasi)-isomorphism.

(iii) Let ı : Λ ↪→ R ⊗O R and ıs : Λ ↪→ Rs ⊗O Rs, be the correspond-
ing maps of Lemma 2.4.2(i). Then, the dg-algebra morphism (hs ⊗ hs) ◦ ı is
homotopic to ıs.

Proof. Any choice of representatives in m of some basis of the vector
space T ∗ = m/m2 provides a topological algebra isomorphism O ∼= k[[T ]].
This proves (i).

To prove (ii), choose an identification O ∼= k[[T ]] and let R := k[[T ]]⊗∧•T ∗

be the corresponding standard dg-algebra constructed earlier. Since R1 is a free
O-module, we may find O-module maps h1

s, s = 1, 2, which make the following
diagram commute

R1

h1
s

��

d �� R0 = O
Id

ε
R ��

k

Id

R1
s

d �� R0
s = O

ε
Rs ��

k.

1The reader is referred to [BoGu] for an excellent exposition of the homotopy theory of
dg-algebras.
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Further, R is free as a super-commutative O-algebra. Hence, the O-module
map h1

s : R1 → R1
s can be uniquely extended, by multiplicativity, to a graded

algebra map hs : R → Rs. The latter map automatically commutes with
the differentials and, moreover, induces isomorphisms on cohomology, since
each algebra has no cohomology in degrees �= 0. This proves the existence
of quasi-isomorphisms. The remaining statements involving homotopies are
proved similarly.

3. Proofs

3.1. Fix an associative algebra a, a complete smooth local k-algebra O
with maximal ideal m, and an O-dg-algebra R, as in Lemma 2.4.3(i). Let (A, ψ)
be an infinite order formal O-deformation of a.

The differential and the grading on R make the tensor product Ra :=
R ⊗O A a dg-algebra which is concentrated in nonpositive degrees and is such
that the subalgebra A = A ⊗ 1 ⊂ Ra is placed in degree zero. Since A is flat
over O, one has H•(R⊗O A) = H•(R)⊗O A = k⊗O A. Thus, we have a natural
projection

p : Ra � H0(Ra) = k ⊗O A = A/mA
ψ
∼→ a.(3.1.1)

The map p is a dg-algebra quasi-isomorphism that makes Ra a dg-algebra
resolution of a. In particular, we have mutually quasi-inverse equivalences
p∗, p∗ : D(Ra ⊗ Raop) � D(a ⊗ aop). The first surjection in (3.1.1) may be
described alternatively as the map εR ⊗ IdA : R ⊗O A → k ⊗O A, where εR :
R � R/R<0

∼= R0 = O � O/m = k is the natural augmentation that makes
R a dg-algebra resolution of k.

The dg-algebra R ⊗O R is also concentrated in nonpositive degrees. We
have the following canonical isomorphisms

(R ⊗O R)
L
⊗Λk∧

∼→ (R ⊗O R) ⊗Λ k∧

mR
∼→ R.(3.1.2)

Here, the last isomorphism is obtained by applying the functor (−) ⊗Λ k∧ to
the isomorphism R ⊗O R ∼= RΔ ⊗ Λ, provided by Lemmas 2.4.2(i), 2.4.3(i).

Similarly, applying the functor (−) ⊗O A, we obtain

(R ⊗O R) ⊗O A ∼→ (RΔ ⊗ Λ) ⊗O A ∼→ (RΔ ⊗O A) ⊗ Λ ∼→Ra ⊗ Λ.(3.1.3)

Let ξ denote the composite isomorphism in (3.1.3). The isomorphisms (3.1.3),
resp. (3.1.2), are incorporated in the top, resp. bottom, row of the following
natural commutative diagram of dg-algebra maps



544 ROMAN BEZRUKAVNIKOV AND VICTOR GINZBURG

(3.1.4)

Ra ⊗A Ra

m
Ra

��

(R ⊗O A) ⊗A (R ⊗O A)
A⊗AA=A

mR⊗mA

��

(R ⊗O R) ⊗O A
ξ

IdR⊗OR⊗ε∧

��

Ra ⊗ Λ

IdRa⊗ε∧

��
Ra R ⊗O A

(3.1.2)⊗IdA

(
(R ⊗O R) ⊗Λ k∧

)
⊗O A

ξ⊗Λk∧
Ra ⊗ k∧.

Using the isomorphisms in the top row, we may (and will) further identify
(R ⊗O R) ⊗O A with Ra ⊗A Ra. In particular, any (R ⊗O R) ⊗O A-module
may be viewed as an Ra-bimodule, and we may also view Ra and Λ at the
upper-right corner as dg-subalgebras in the dg-algebra Ra ⊗A Ra.

The algebra R being graded-commutative, any graded left R-module may
also be viewed as a right R-module. Thus, any graded left R ⊗O R-module may
be viewed as a graded R-bimodule. A key role in our proof of Theorem 1.2.3
will be played by the following push-forward functor

(3.1.5) Θ : D(Λ) → D(Ra ⊗ Raop), M 	→
(
(R ⊗O R) ⊗O A

)
⊗Λ M

= (Ra ⊗A Ra) ⊗Λ M.

By (3.1.3), for any dg-module M over Λ, we get

Θ(M) =
(
(R ⊗O R) ⊗O A

)
⊗Λ M � (Ra ⊗ Λ) ⊗Λ M = Ra ⊗ M.

Although this isomorphism does not exhibit the Ra-bimodule structure on the
object on the right, it does imply that formula (3.1.5) gives a well-defined
triangulated functor. Moreover, this functor is t-exact; indeed, since Ra is
quasi-isomorphic to a, we find

H•(Θ(M)) ∼= H•(Ra) ⊗ H•(M) ∼= a ⊗ H•(M).(3.1.6)

Proposition 3.1.7. For any infinite order deformation (A, ψ), in
D(a ⊗ aop), there is a natural isomorphism fA,ψ : p∗ ◦Θ(k∧) ∼→ a that makes
the following diagram commute:

Sym(T [−2]) ∼
koszul ��

deform
��

Ext•
Λ
(k∧, k∧) Θ �� Ext•

Ra⊗Raop

(
Θ(k∧),Θ(k∧)

)

p∗ qis

��
Ext•

a⊗aop
(a, a) Ext•

a⊗aop

(
p∗ ◦Θ(k∧), p∗ ◦Θ(k∧)

)
.

fA,ψ

∼��

(3.1.8)

Proof. First of all, using the definition of Θ and the isomorphisms in the
bottom row of diagram (3.1.4), we find

Θ(k∧) =
(
(R ⊗O R) ⊗O A

)
⊗Λ k∧ = Ra.(3.1.9)
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Write g : Θ(k∧) ∼→Ra for the composite, and canp : Ra
qis−→ p∗a for the map p

viewed as a morphism in D(Ra ⊗ Raop). We define a morphism fA,ψ to be the
following composite:

fA,ψ : p∗ ◦Θ(k∧)
p∗(g)

∼ �� p∗(Ra)
p∗(canp)

∼ �� p∗(p∗a)
adjunction

∼ �� a.

We claim that, with this definition of fA,ψ, diagram (3.1.8) commutes.
To see this, observe first that all the maps in the diagram are clearly algebra
homomorphisms. Hence, it suffices to verify commutativity of (3.1.8) on the
generators of the algebra Sym(T [−2]). That is, we must prove that for all
t ∈ T [−2] one has deform(t) = fA,ψ ◦p∗ ◦Θ ◦koszul(t).

It will be convenient to work ‘universally’ over T ; that is, to treat the map

deform : T [−2] → Ext2a⊗aop(a, a)

as an element deform(A, ψ) ∈ Ext2a⊗aop(a, a ⊗ T ∗); see (2.2.4). We also have
the element IdT ∈ Endk T = Sym1(T [−2]) ⊗ T ∗. Now, tensoring with T ∗, we
rewrite the equation that we must prove as

deform(A, ψ) = fA,ψ ◦p∗ ◦Θ ◦koszul(IdT ).

Both sides here belong to Ext2a⊗aop(a, a⊗T ∗). Thus, applying further p∗(−) to
each side and using adjunctions, we see that proving Proposition 3.17 amounts
to showing that

p∗(deform(A, ψ)) = Θ ◦koszul(IdT ) holds in Ext2Ra⊗Raop(Ra,Ra ⊗ T ∗).
(3.1.10)

We compute the LHS of this equation using Proposition 2.2.3(ii), which
says deform(A, ψ) = ∂A,ψ. Therefore, p∗(deform(A, ψ)) = p∗(∂A,ψ), is the
boundary map for p∗(ΔA,ψ), the pull-back via the equivalence p∗ : D(a ⊗ aop) ∼→
D(Ra⊗Raop) of the canonical triangle ΔA,ψ that appears in part (ii) of Propo-
sition 2.2.3. Now, using the quasi-isomorphism p∗a ∼= Ra, we can write the
triangle p∗(ΔA,ψ) as follows:

p∗(ΔA,ψ) : Ra ⊗ T ∗[1] −−−−−→ p∗
(
(a

L
⊗Aa)

τ≥−1
) p∗(ma)

−−−−−→ Ra.

To describe the middle term in the last triangle we recall that Ra is
free over the subalgebra A ⊂ Ra. It follows that in D(Ra ⊗ Raop) one has

p∗(a
L
⊗Aa) ∼= Ra

L
⊗ARa ∼= Ra ⊗A Ra. Hence, we deduce p∗

(
(a

L
⊗Aa)

τ≥−1
)

=
(Ra⊗A Ra)

τ≥−1, since the pull-back functor p∗ is always t-exact. Thus, we see
that our exact triangle takes the following final form

p∗(ΔA,ψ) : Ra ⊗ T ∗[1] −−−−−→ (Ra ⊗A Ra)
τ≥−1

mRa−−−−−→ Ra.(3.1.11)

Next, we analyze the RHS of equation (3.1.10). By §2.3, we have
koszul(IdT ) = ∂∧. Hence, the class Θ ◦koszul(IdT ) = Θ(∂∧), in

HomD(Ra⊗Raop)(Ra,Ra ⊗ T ∗[2]),
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is represented by the boundary map for the exact triangle Θ(Δ∧), see (2.3.1).
The latter triangle reads

Θ(Δ∧) : Θ(T ∗[1]) −−−−−→ Θ(Λ/Λ<−1)
Θ(ε∧)

−−−−−→ Θ(k∧).(3.1.12)

Here, Θ(k∧) = Ra, by (3.1.9); hence Θ(T ∗) = Ra ⊗ T ∗. Further, by definition
we have

Θ(Λ/Λ<−1) = (Ra ⊗A Ra) ⊗Λ (Λ/Λ<−1) = (Ra ⊗A Ra)/(Ra ⊗A Ra)·Λ<−1.

Now, Ra ⊗A Ra ∼= Ra ⊗ Λ, by (3.1.3), and we deduce

(Ra ⊗A Ra)·Λ<−1
∼= Ra ⊗ Λ<−1.(3.1.13)

We see that the morphism Θ(ε∧) in (3.1.12) may be viewed as a map induced
by the leftmost vertical arrow in diagram (3.1.4). Thus, the triangle in (3.1.12)
takes the following form (note that Lemma 2.4.2(iii) insures that mRa maps
(Ra ⊗A Ra)·Λ<−1 to zero):

Θ(Δ∧) : Ra ⊗ T ∗[1] −→ (Ra ⊗A Ra)/(Ra ⊗A Ra)·Λ<−1
mRa−→ Ra.(3.1.14)

To compare the LHS with the RHS of (3.1.10), one has to compare (3.1.11)
with (3.1.14). We see that in order to prove (3.1.10) it suffices to show

(Ra ⊗A Ra)
τ≥−1 = (Ra ⊗A Ra)/(Ra ⊗A Ra)·Λ<−1 in D(Ra ⊗ Raop).

(3.1.15)

To this end, we write an exact triangle

(Ra ⊗A Ra)·Λ<−1 → Ra ⊗A Ra → (Ra ⊗A Ra)/(Ra ⊗A Ra)·Λ<−1.(3.1.16)

Here, the dg-vector space on the right is isomorphic to Θ(Λ/Λ<−1), hence,
has no cohomology in degrees < −1, by (3.1.6). Similarly, the dg-vector space
on the left is isomorphic to Ra⊗Λ<−1, see (3.1.13), hence, has no cohomology
in degrees ≥ −1. Therefore, the triangle in (3.1.16) must be isomorphic to the
canonical exact triangle (Ra⊗A Ra)

τ<−1 → Ra⊗A Ra → (Ra⊗A Ra)
τ≥−1. This

proves (3.1.15).

3.2. Proposition 3.1.7 implies Theorem 1.2.3. To see this, we observe that
the functors Θ and p∗ provide us not only with maps between the Ext-groups
which occur in diagram (3.1.8), but also with lifts of those maps to morphisms
in DGAlg:

REnd•
D(Λ)

(k∧)
p∗ ◦ Θ

�� REnd•
D(a⊗aop)

(
(p∗ ◦Θ(k∧)

) fA,ψ

∼ �� REnd•
D(a⊗aop)

(a).

(3.2.1)

Let Deform := p∗ ◦Θ ◦Koszul be the composite of the dg-algebra morphism
Sym(T [−2]) → REnd•

Λ
(k∧), see (2.3.3), followed by the morphisms in (3.2.1).

Thus, in DGAlg, we get a morphism Deform : Sym(T [−2]) → REnd•
D(a⊗aop)

(a).
Further, the induced map of cohomology
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H•(Deform) =H•(p∗ ◦Θ ◦Koszul)

= H•(p∗ ◦Θ) ◦koszul : Sym(T [−2]) → Ext•
a⊗aop

(a)

is equal to the map deform, by Proposition 3.1.7. Thus, the morphism Deform

yields a morphism in DGAlg as required by Theorem 1.2.3.
Our construction of the functor Θ, hence of the morphism Deform, was

based on the choice of an O-dg-algebra R. To show independence of such a
choice, let Rs, s = 1, 2, be two O-dg-algebras, as in Lemma 2.4.3, and write
Ras := Rs ⊗O a. Part (ii) of the lemma implies that there exists a canoni-

cal isomorphism h : Ra1
qis−→ Ra2, in DGAlg, which is compatible with the

augmentations ps : Ras
qis−→ a. The isomorphism h induces a triangulated

equivalence h∗ : D(Ra1 ⊗ Raop
1 ) ∼→D(Ra2 ⊗ Raop

2 ), and also a canonical iso-
morphism hEnd, in DGAlg, between the two dg-algebra models for the object
REnd•

D(a⊗aop)
(a) ∈ DGAlg, constructed using R1 and R2, respectively.

Now, let Θs : D(Λ) → D(Ras ⊗ Raop
s ), s = 1, 2, be the corresponding two

functors defined as in (3.1.5). Lemma 2.4.3(iii) yields a canonical isomorphism
of functors Φ : Θ2

∼→h∗ ◦Θ1. This way, in DGAlg, we obtain the following
isomorphisms

REnd
(
(p1)∗ ◦Θ1(k∧)

) h∗
∼ �� REnd

(
h∗ ◦ (p1)∗ ◦Θ1(k∧)

) Φ
∼ �� REnd

(
(p2)∗ ◦Θ2(k∧)

)

where we have used shorthand notation REnd = REnd•
D(a⊗aop)

. Let Υ denote
the composite isomorphism, and write fA,ψ,s for the isomorphism of Proposi-
tion 3.1.7 corresponding to the dg-algebra Rs, s = 1, 2. It is straightforward
to check that our construction insures commutativity of the following diagram
in DGAlg

REnd•
D(Λ)

(k∧)

Id

(p1)∗ ◦ Θ1 �� REnd•
D(a⊗aop)

(
(p1)∗ ◦Θ1(k∧)

) fA,ψ,1 ��

Υ

��

REnd•
D(a⊗aop)

(a)

hEnd

��
REnd•

D(Λ)
(k∧)

(p2)∗ ◦ Θ2 �� REnd•
D(a⊗aop)

(
(p2)∗ ◦Θ2(k∧)

) fA,ψ,2 �� REnd•
D(a⊗aop)

(a).

It follows from commutativity of the diagram that, for the resulting two
morphisms Deforms : Sym(T [−2]) → REnds, s = 1, 2, in DGAlg, we have
hREnd ◦Deform1 = Deform2. Thus, the morphisms Deform arising from various
choices of R all give the same morphism in DGAlg. Therefore this morphism
is canonical.
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Math. France, Paris, 1982.

[BGG] J. Bernstein, I. Gelfand, and S. Gelfand, Algebraic vector bundles on P
n and prob-

lems of linear algebra, (Russian) Funkt. Anal. i Prilozhen. 12 (1978), 66–67.

[BoGu] A. K. Bousfield and V. K. A. M. Gugenheim, On PL de Rham Theory and Rational
Homotopy Type, Mem. Amer. Math. Soc. 8, no. 179, A. M. S., Providence, RI (1976).

[CQ] J. Cuntz and D. Quillen, Algebra extensions and nonsingularity, J. Amer. Math.
Soc. 8 (1995), 251–289.

[Dr] V. Drinfeld, DG quotients of DG categories, J. of Algebra 272 (2004), 643–691.

[G1] M. Gerstenhaber, The cohomology structure of an associative ring, Ann. Math. 78
(1963), 267–288.

[G2] ———, On the deformation of rings and algebras, Ann. of Math. 79 (1964), 59–103.

[GKM] M. Goresky, R. Kottwitz, and R. MacPherson, Equivariant cohomology, Koszul
duality, and the localization theorem. Invent. Math. 131 (1998), 25–83.

[Hi] V. Hinich, Homological algebra of homotopy algebras, Comm. Algebra 25 (1997),
3291–3323.

[Ke] B. Keller, Deriving dg-categories, Ann. Sci. École Norm. Sup. 27 (1994), 63–102.
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