
Annals of Mathematics, 166 (2007), 347–366

Lehmer’s problem for polynomials
with odd coefficients

By Peter Borwein, Edward Dobrowolski, and Michael J. Mossinghoff*

Abstract

We prove that if f(x) =
∑n−1

k=0 akx
k is a polynomial with no cyclotomic

factors whose coefficients satisfy ak ≡ 1 mod 2 for 0 ≤ k < n, then Mahler’s
measure of f satisfies

log M(f) ≥ log 5
4

(
1 − 1

n

)
.

This resolves a problem of D. H. Lehmer [12] for the class of polynomials with
odd coefficients. We also prove that if f has odd coefficients, degree n−1, and
at least one noncyclotomic factor, then at least one root α of f satisfies

|α| > 1 +
log 3
2n

,

resolving a conjecture of Schinzel and Zassenhaus [21] for this class of poly-
nomials. More generally, we solve the problems of Lehmer and Schinzel and
Zassenhaus for the class of polynomials where each coefficient satisfies ak ≡ 1
mod m for a fixed integer m ≥ 2. We also characterize the polynomials that
appear as the noncyclotomic part of a polynomial whose coefficients satisfy
ak ≡ 1 mod p for each k, for a fixed prime p. Last, we prove that the smallest
Pisot number whose minimal polynomial has odd coefficients is a limit point,
from both sides, of Salem [19] numbers whose minimal polynomials have coef-
ficients in {−1, 1}.

1. Introduction

Mahler ’s measure of a polynomial f , denoted M(f), is defined as the
product of the absolute values of those roots of f that lie outside the unit disk,
multiplied by the absolute value of the leading coefficient. Writing f(x) =
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a
∏d

k=1(x − αk), we have

M(f) = |a|
d∏

k=1

max{1, |αk|}.(1.1)

For f ∈ Z[x], clearly M(f) ≥ 1, and by a classical theorem of Kronecker,
M(f) = 1 precisely when f(x) is a product of cyclotomic polynomials and the
monomial x. In 1933, D. H. Lehmer [12] asked if for every ε > 0 there exists a
polynomial f ∈ Z[x] satisfying 1 < M(f) < 1 + ε. This is known as Lehmer’s
problem. Lehmer noted that the polynomial

�(x) = x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1

has M(�) = 1.176280 . . . , and this value remains the smallest known measure
larger than 1 of a polynomial with integer coefficients.

Let f∗ denote the reciprocal polynomial of f , defined by f∗(x) =
xdeg ff(1/x); it is easy to verify that M(f∗) = M(f). We say a polynomial
f is reciprocal if f = ±f∗.

Lehmer’s problem has been solved for several special classes of polyno-
mials. For example, Smyth [22] showed that if f ∈ Z[x] is nonreciprocal and
f(0) �= 0, then M(f) ≥ M(x3−x−1) = 1.324717 . . . . Also, Schinzel [20] proved
that if f is a monic, integer polynomial with degree d satisfying f(0) = ±1
and f(±1) �= 0, and all roots of f are real, then M(f) ≥ γd/2, where γ denotes
the golden ratio, γ = (1 +

√
5)/2. In addition, Amoroso and Dvornicich [1]

showed that if f is an irreducible, noncyclotomic polynomial of degree d whose
splitting field is an abelian extension of Q, then M(f) ≥ 5d/12.

The best general lower bound for Mahler’s measure of an irreducible, non-
cyclotomic polynomial f ∈ Z[x] with degree d has the form

log M(f) �
(

log log d

log d

)3

;

see [6] or [8].
In this paper, we solve Lehmer’s problem for another class of polynomials.

Let Dm denote the set of polynomials whose coefficients are all congruent to 1
mod m,

Dm =

{
d∑

k=0

akx
k ∈ Z[x] : ak ≡ 1 mod m for 0 ≤ k ≤ d

}
.(1.2)

The set D2 thus contains the set of Littlewood polynomials, defined as those
polynomials f whose coefficients ak satisfy ak = ±1 for 0 ≤ k ≤ deg f . We
prove in Corollaries 3.4 and 3.5 of Theorem 3.3 that if f ∈ Dm has degree n−1
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and no cyclotomic factors, then

log M(f) ≥ cm

(
1 − 1

n

)
,

with c2 = (log 5)/4 and cm = log(
√

m2 + 1/2) for m > 2.
We provide in Theorem 2.4 a characterization of polynomials f ∈ Z[x] for

which there exists a polynomial F ∈ Dp with f | F and M(f) = M(F ), where
p is a prime number. The proof in fact specifies an explicit construction for
such a polynomial F when it exists.

In [21], Schinzel and Zassenhaus conjectured that there exists a constant
c > 0 such that for any monic, irreducible polynomial f of degree d, there exists
a root α of f satisfying |α| > 1 + c/d. Certainly, solving Lehmer’s problem
resolves this conjecture as well: If M(f) ≥ M0 for every member f of a class
of monic, irreducible polynomials, then it is easy to see that the conjecture of
Schinzel and Zassenhaus holds for this class with c = log M0. We prove some
further results on this conjecture for polynomials in Dm. In Theorem 5.1, we
show that if f ∈ Dm is monic with degree n−1 and M(f) > 1, then there exists
a root α of f satisfying |α| > 1 + cm/n, with c2 = log

√
3 and cm = log(m− 1)

for m > 2. We also prove (Theorem 5.3) that one cannot replace the constant
cm in this result with any number larger than log(2m − 1).

Recall that a Pisot number is a real algebraic integer α > 1, all of whose
conjugates lie inside the open unit disk, and a Salem number is a real algebraic
integer α > 1, all of whose conjugates lie inside the closed unit disk, with at
least one conjugate on the unit circle. (In fact, all the conjugates of a Salem
number except its reciprocal lie on the unit circle.) In Theorem 6.1, we obtain
a lower bound on a Salem number whose minimal polynomial lies in D2. This
bound is slightly stronger than that obtained from our bound on Mahler’s
measure of a polynomial in this set.

The smallest Pisot number is the minimal value of Mahler’s measure of a
nonreciprocal polynomial, M(x3 − x − 1) = 1.324717 . . . . In [4], it is shown
that the smallest measure of a nonreciprocal polynomial in D2 is the golden
ratio, M(x2 −x− 1) = γ, and therefore this value is the smallest Pisot number
whose minimal polynomial lies in D2. Salem [19] proved that every Pisot
number is a limit point, from both sides, of Salem numbers. We prove in
Theorem 6.2 that the golden ratio is in fact a limit point, from both sides, of
Salem numbers whose minimal polynomials are also in D2; in fact, they are
Littlewood polynomials.

This paper is organized as follows. Section 2 obtains some preliminary
results on factors of cyclotomic polynomials modulo a prime, and describes
factors of polynomials in Dp. Section 3 derives our results on Lehmer’s problem
for polynomials in Dm. The method here requires the use of an auxiliary
polynomial, and Section 4 describes two methods for searching for favorable
auxiliary polynomials in a particularly promising family. Section 5 proves our
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bounds in the problem of Schinzel and Zassenhaus for polynomials in Dm, and
Section 6 contains our results on Salem numbers whose minimal polynomials
are in D2.

Throughout this paper, the nth cyclotomic polynomial is denoted by Φn.
Also, for a polynomial f(x) =

∑d
k=0 akx

k, the length of f , denoted L(f), is
defined as the sum of the absolute values of the coefficients of f ,

L(f) =
d∑

k=0

|ak| ,(1.3)

and ‖f‖∞ denotes the supremum of |f(x)| over the unit circle.

2. Factors of polynomials in Dp

Let p be a prime number. We describe some facts about factors of cyclo-
tomic polynomials modulo p, and then prove some results about cyclotomic
and noncyclotomic parts of polynomials whose coefficients are all congruent
to 1 mod p. We begin by recording a factorization of the binomial xn − 1
modulo p.

Lemma 2.1. Suppose p is a prime number, and n = pkm with p � m.
Then

xn − 1 ≡
∏
d|m

Φpk

d (x) mod p.

Proof. Using the standard formula Φn(x) =
∏

d|n
(
xd − 1

)μ(n/d), where
μ(·) denotes the Möbius function, one obtains the well-known relations

Φpq(x) =

⎧⎪⎨
⎪⎩

Φq(xp), if p | q,

Φq(xp)
Φq(x)

, if p � q.

Thus, if n = pkm with p � m, then Φn(x) ≡ Φϕ(pk)
m (x) mod p, where ϕ(·)

denotes Euler’s totient function. Therefore,

xn − 1 =
∏
d|n

Φd(x) ≡
∏
d|m

Φ
∑k

i=0 ϕ(pi)
d (x) =

∏
d|m

Φpk

d (x) mod p,

establishing the result.

Let Fp denote the field with p elements, where p is a prime number. Cyclo-
tomic polynomials are of course irreducible in Q[x], but this is not necessarily
the case in Fp[x]. However, cyclotomic polynomials whose indices are relatively
prime and not divisible by p have no common factors in Fp[x].
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Lemma 2.2. Suppose m and n are distinct, relatively prime positive inte-
gers, and suppose p is a prime number that does not divide mn. Then Φn(x)
and Φm(x) are relatively prime in Fp[x].

Proof. Let e denote the multiplicative order of p modulo n. In Fp[x], the
polynomial Φn(x) factors as the product of all monic irreducible polynomials
with degree e and order n (see [13, Ch. 3]). Since their factors in Fp[x] have
different orders, we conclude that Φn and Φm are relatively prime modulo p.

We next describe the cyclotomic factors that may appear in a polynomial
whose coefficients are all congruent to 1 modulo p.

Lemma 2.3. Suppose f(x) ∈ Z[x] has degree n− 1 and Φr | f . If f ∈ D2,
then r | 2n; if f ∈ Dp for an odd prime p, then r | n.

Proof. Suppose f ∈ Dp with p prime. Write n = pkm with p � m. By
Lemma 2.1, we have

(x − 1)f(x) ≡
∏
d|m

Φpk

d (x) mod p.(2.1)

Write r = pls with p � s. If l = 0, then in view of Lemma 2.2, the polynomial
Φr must appear among the factors Φd on the right side of (2.1), so that r | m.
If l > 0, then Φr ≡ Φϕ(pl)

s mod p, so s | m. If s > 1 then we also have
pk ≥ pl −pl−1, and so if p > 2 then k ≥ l and thus r | n; if p = 2 then k ≥ l−1
and consequently r | 2n. Last, if s = 1 then pk ≥ pl − pl−1 + 1 and thus k ≥ l

and r | n.

We now state a simple characterization of polynomials f ∈ Z[x] that divide
a polynomial with the same measure having all its coefficients congruent to 1
modulo p.

Theorem 2.4. Let p be a prime number, and let f(x) be a polynomial
with integer coefficients. There exists a polynomial F ∈ Dp with f | F and
M(f) = M(F ) if and only if f is congruent modulo p to a product of cyclotomic
polynomials.

Proof. Suppose first that F ∈Dp factors as F (x)=f(x)Φ(x) with M(Φ)=1,
so that Φ(x) is a product of cyclotomic polynomials. Since F ∈ Dp, it is
congruent modulo p to a product of cyclotomic polynomials. Using Lemma 2.2
and the fact that Fp[x] is a unique factorization domain, we conclude that the
polynomial f must also be congruent modulo p to a product of cyclotomic
polynomials.
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For the converse, suppose

f(x) ≡
∏
p�d

Φed

d (x) mod p,

with each ed ≥ 0. Let k =
⌈
logp(max{e1 + 1,max{ed : d > 1, p � d}})

⌉
, m =

lcm{d : ed > 0, p � d}, n = mpk + 1, and

Φ(x) = (x − 1)pk−e1−1
∏
d|m
d>1

Φpk−ed

d (x).

Then

(x − 1)f(x)Φ(x) ≡
∏
d|m

Φpk

d (x) ≡ xn − 1 mod p,

and so F (x) = f(x)Φ(x) has the required properties.

Theorem 2.4 suggests an algorithm for determining if a given polynomial f

with degree d divides a polynomial F in Dp with the same measure: Construct
all possible products of cyclotomic polynomials with degree d, and test if any of
these are congruent to f mod p. Using this strategy, we verify that none of the
100 irreducible, noncyclotomic polynomials from [15] representing the smallest
known values of Mahler’s measure divides a Littlewood polynomial with the
same measure. This does not imply, however, that no Littlewood polynomi-
als exist with these measures, since measures are not necessarily represented
uniquely by irreducible integer polynomials, even discounting the simple sym-
metries M(f) = M(±f(±xk)). See [7] for more information on the values of
Mahler’s measure.

The requirement in Theorem 2.4 that F (x) contain no noncyclotomic fac-
tors besides f is certainly necessary. For example, the polynomial x10 − x7 −
x5−x3+1 is not congruent to a product of cyclotomic polynomials mod 2, so no
Littlewood polynomial exists having this polynomial as its only noncyclotomic
factor. However, the product (x10 − x7 − x5 − x3 + 1)(x10 − x9 + x5 − x + 1) is
congruent to Φ33 mod 2, and our construction indicates that multiplying this
product by Φ1Φ2

3Φ
2
11Φ33 yields a polynomial with all odd coefficients. (In fact,

using the factors Φ2Φ3Φ6Φ33Φ44 instead yields a Littlewood polynomial.)
We close this section by noting that one may demand stronger conditions

on the polynomial F of Theorem 2.4 in certain situations.

Corollary 2.5. Suppose f ∈ Z[x] has no cyclotomic factors, and there
exists a polynomial F ∈ D2 with even degree 2m having f | F and M(f) =
M(F ). Then there exists a polynomial G ∈ D2 with deg G = 2m, f | G,
M(f) = M(G), and the additional property that G(x) and 1+x+x2 + · · ·+x2m

have no common factors.
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Proof. Suppose Φd | F . By Lemma 2.3, we have d | (4m + 2). If d is odd
and d ≥ 3, so that Φd(x) is a factor of 1 + x + · · · + x2m, then we can replace
the factor Φd in F with Φ2d without disturbing the required properties of F ,
since Φ2d(x) = Φd(−x). Let G be the polynomial obtained from F by making
this substitution for each factor Φd of F with d ≥ 3 odd.

3. Lehmer’s problem

We derive a lower bound on Mahler’s measure of a polynomial that has no
cyclotomic factors and whose coefficients are all congruent to 1 modulo m for
some fixed integer m ≥ 2. Our results depend on the bounds on the resultants
appearing in the following lemma.

Lemma 3.1. Suppose f ∈ Dm with degree n−1, and let g be a factor of f .
If gcd(g(x), xn − 1) = 1, then

|Res(g(x), xn − 1)| ≥ mdeg g.(3.1)

Further, if m = 2, k is a nonnegative integer, and gcd(g(x), xn2k

+1) = 1, then∣∣∣Res(g(x), xn2k

+ 1)
∣∣∣ ≥ 2deg g.(3.2)

Proof. Define the polynomial s(x) by

ms(x) = (xn − 1) + (1 − x)f(x),(3.3)

and note that s(x) ∈ Z[x] since f ∈ Dm. If g has no common factor with xn−1,
then gcd(g, s) = 1, so |Res(g, s)| ≥ 1. Thus, by computing the resultant of both
sides of (3.3) with g, we obtain (3.1).

Suppose m = 2. For k ≥ 0, define the polynomial tk(x) by

2tk(x) = (xn2k

+ 1) + (1 + x)f(x)
2k−1∑
j=0

xjn.

Now, (3.2) follows by a similar argument.

We also require the following result regarding the length of a power of a
polynomial.

Lemma 3.2. For any polynomial f ∈ C[x], the value of L(fk)1/k ap-
proaches ‖f‖∞ from above as k → ∞.

Proof. From the triangle and Cauchy-Schwarz inequalities, we have
∥∥fk

∥∥
∞

≤ L(fk) ≤ √
1 + k deg f

∥∥fk
∥∥
∞, and since

∥∥fk
∥∥
∞ = ‖f‖k

∞, the result follows
immediately.
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Our main theorem in this section provides a lower bound on the measure
of a polynomial in Dm that depends on certain properties of an auxiliary
polynomial. For a polynomial g ∈ Z[x], let νk(g) denote the multiplicity of
the cyclotomic polynomial Φ2k(x) in g(x), and let ν(g) =

∑
k≥0 νk(g).

Theorem 3.3. Suppose f ∈ Dm with degree n− 1, and suppose F ∈ Z[x]
satisfies gcd(f(x), F (xn)) = 1. Then

log M(f) ≥

⎧⎪⎪⎨
⎪⎪⎩

ν(F ) log 2 − log ‖F‖∞
deg F

(
1 − 1

n

)
, if m = 2,

ν0(F ) log m − log ‖F‖∞
deg F

(
1 − 1

n

)
, if m > 2.

Proof. Suppose m = 2. Since f(x) and F (xn) have no common factors,
by Lemma 3.1 each cyclotomic factor Φ2k of F contributes a factor of 2n−1 to
their resultant. Thus

|Res(f(x), F (xn))| ≥ 2ν(F )(n−1).

If α is a root of f , then

|F (αn)| ≤ L(F ) max
{

1, |α|n deg F
}

,

so that

|Res(f(x), F (xn))| ≤ L(F )n−1M(f)n deg F .

Therefore

2ν(F )(n−1) ≤ L(F )n−1M(f)n deg F ,

or

log M(f) ≥ ν(F ) log 2 − log L(F )
deg F

(
1 − 1

n

)
.(3.4)

Let k be a positive integer. Since ν(F k) = kν(F ) and deg F k = k deg F , we
obtain

log M(f) ≥ ν(F ) log m − log L(F k)1/k

deg F

(
1 − 1

n

)
.

The theorem follows by letting k → ∞ and using Lemma 3.2. The proof for
m > 2 is similar, with ν0(F ) in place of ν(F ).

For example, if f has all odd coefficients and no cyclotomic factors, then
we may use F (x) = x2 − 1 in Theorem 3.3 to obtain

log M(f) ≥ log 2
2

(
1 − 1

n

)
.(3.5)
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For m > 2, if f ∈ Dm has no cyclotomic factors, then we may use F (x) = x−1
to obtain

log M(f) ≥ log(m/2)
(

1 − 1
n

)
.(3.6)

Section 4 describes a class of polynomials that one might expect to contain
some choices for F that improve the bounds (3.5) and (3.6), and describes some
algorithms developed to search this set for better auxiliary polynomials. We
record here some improved bounds that arose from these searches.

Corollary 3.4. Let f be a polynomial with degree n − 1 having odd co-
efficients and no cyclotomic factors. Then

log M(f) ≥ log 5
4

(
1 − 1

n

)
,(3.7)

with equality if and only if f(x) = ±1.

Proof. Let F (x) =
(
1 + x2

) (
1 − x2

)4. Since ν(F ) = 9, deg F = 10, and

‖F‖∞ =
∥∥(1 + y)(1 − y)4

∥∥
∞

= 25 max
0≤t≤1

∣∣cos(πt) sin4(πt)
∣∣ =

29

25
√

5
,

using Theorem 3.3 we establish (3.7). Last, if the leading or constant coefficient
of f is greater than 1 in absolute value, then M(f) ≥ 3; if n > 1 and these
coefficients are ±1, then M(f) is a unit.

Another auxiliary polynomial yielding the lower bound (3.7) appears in
Section 4.

We remark that the bound of 51/4 = 1.495348 . . . is not far from the
smallest known measure of a polynomial with odd coefficients and no cyclo-
tomic factors: M(1 + x− x2 − x3 − x4 + x5 + x6) = 1.556030 . . . . This number
is in fact the smallest measure of a reciprocal polynomial with ±1 coefficients
having no cyclotomic factors and degree at most 72; see [4]. Section 6 provides
more information on the structure of known small values of Mahler’s measure
of these polynomials.

For the case m > 2, an auxiliary polynomial similar to the one employed
in Corollary 3.4 improves (3.6) slightly.

Corollary 3.5. Let f ∈ Dm have degree n−1 and no cyclotomic factors.
Then

log M(f) ≥ log

(√
m2 + 1

2

)(
1 − 1

n

)
,(3.8)

with equality if and only if f(x) = ±1.
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Proof. Let F (x) = (1 + x) (1 − x)m2

. Since ν0(F ) = m2, deg F = m2 + 1,
and

‖F‖∞ = 2m2+1 max
0≤t≤1

∣∣∣cos(πt) sinm2
(πt)

∣∣∣
=

2m2+1mm2

(m2 + 1)(m2+1)/2
,

using Theorem 3.3 we verify (3.8). The argument for the case of equality is
similar to that of Corollary 3.4.

Section 4.3 shows that the bound of
√

10/2 = 1.581138 . . . for m = 3 may
be replaced by 1.582495 . . . by using the auxiliary polynomial

(1 − x)425(1 − x2)50(1 − x5).

No improvements are known for m > 3.

4. Auxiliary polynomials

We obtain nontrivial bounds on the measure of a polynomial f ∈ Dm

from Theorem 3.3 by using auxiliary polynomials having small degree, small
supremum norm, and a high order of vanishing at 1. In this section, we inves-
tigate a family of polynomials having precisely these properties and search for
auxiliary polynomials yielding good lower bounds.

4.1. Pure product polynomials. A pure product of size n is a polynomial
of the form

n∏
k=1

(1 − xek) ,

with each ek a positive integer. Let A(n) denote the minimal supremum over
the unit disk among all pure products of size n,

A(n) = min

{∥∥∥∥∥
n∏

k=1

(1 − xek)

∥∥∥∥∥
∞

: ek ≥ 1 for 1 ≤ k ≤ n

}
.

Erdős and Szekeres studied this quantity in [10], proving that the growth rate
of A(n) is subexponential:

lim
n→∞

A(n)1/n = 1.

The upper bound on the asymptotic growth rate of log A(n) has since been
greatly improved. Atkinson [2] obtained O(

√
n log n), Odlyzko [17] proved

O(n1/3 log4/3 n), Kolountzakis [11] demonstrated O(n1/3 log n), and Belov and
Konyagin [3] showed O(log4 n). The best known general lower bound on A(n)
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is simply
√

2n; strengthening this would provide information on the Diophan-
tine problem of Prouhet, Tarry, and Escott (see for instance [14]). Erdős
conjectured [9, p. 55] that in fact A(n) � nc for any c > 0.

Since ν0(A(n)) = n and log A(n) = o(n), it follows that there exist pure
product polynomials F (x) that yield nontrivial lower bounds in Theorem 3.3.
The article [5] exhibits some pure products of size n ≤ 20 with very small
length and degree, and these polynomials yield nontrivial lower bounds in
Theorem 3.3. However, these polynomials arise as optimal examples of poly-
nomials with {−1, 0, 1} coefficients having a root of prescribed order n at 1 and
minimal degree. We obtain better bounds by designing some more specialized
searches. We describe two such searches.

4.2. Hill-climbing. Our first method employs a modified hill-climbing
strategy to search for good auxiliary polynomials F (x), replacing the objective
function appearing in Theorem 3.3 with the computationally more attractive
function from (3.4). So for each m we wish to find large values of

Bm(F ) =

⎧⎪⎨
⎪⎩

ν(F ) log 2 − log L(F )
deg F

, if m = 2,

ν0(F ) log m − log L(F )
deg F

, if m > 2.

Algorithm 4.1. Modified hill-climbing for auxiliary polynomials.

Input. An integer m ≥ 2, a set E of positive integers, and for each e ∈ E,
a nonnegative integer re.

Output. A sequence of pure products {Fk} with Fk−1 | Fk for each k.

Step 1. Let F0(x) =
∏

e∈E(1 − xe)re , let b0 = Bm(F0), and set k = 1.

Step 2. For each e ∈ E, compute Bm((1−xe)Fk−1(x)). If the largest of these
|E| values is greater than bk−1, then set Fk(x) = (1−xe)Fk−1(x) for
the optimal choice of e, set bk = Bm(Fk), print Fk and bk, increment
k, and repeat Step 2. Otherwise, continue with Step 3.

Step 3. For each subset {e1, e2} of E, compute Bm((1−xe1)(1−xe2)Fk−1(x)).
If the largest of these

(|E|
2

)
values exceeds bk−1, then set Fk(x) =

(1 − xe1)(1 − xe2)Fk−1(x) for the optimal choice {e1, e2}, set bk =
Bm(Fk), print Fk and bk, increment k, and repeat Step 3. Otherwise,
set bk−1 = 0 and perform Step 2.

Several criteria may be used for termination, for example, a prescribed
bound on k or deg Fk, or the appearance of a decreasing sequence of values of
bk of a particular length.
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We remark that a pure hill-climbing method would omit the resetting of
bk−1 to 0 at the end of Step 3 and would terminate as soon as none of the
adjustments of Steps 2 or 3 improves the bound. By adding this assignment,
we need not stop at local maxima and instead allow our objective value to
decrease temporarily in order to continue searching for better values.

We use the revolving door algorithm [16] to enumerate the
(|E|

2

)
combi-

nations of factors to test in Step 3. This way, each polynomial we test can be
constructed from the previous polynomial considered with just one division by
a binomial and one multiplication.

We implemented Algorithm 4.1 in C++ and ran it on an Apple Pow-
erPC G4. For m = 2, letting F0(x) = 1 − x2 and choosing E to be a set of
small positive integers like {1, 2, . . . , 8}, we see that Algorithm 4.1 produces
a sequence of polynomials of the form (1 − x2)a(1 − x4)b with a ≈ 3b. This
suggests the sequence Fk(x) = ((1 − x2)3(1 − x4))k and hence Corollary 3.4.
Despite several variations on the initial values, no better sequence was found
with Algorithm 4.1 for m = 2.

For several values of m greater than 2, Algorithm 4.1, starting with
F0(x) = 1 − x, produces a sequence of auxiliary polynomials of the form
(1 − x)a(1 − x2)b with a ≈ (m2 − 1)b, suggesting the polynomial employed
in Corollary 3.5. Our method also indicates a further improvement for the
case m = 3. With E = {1, 2, 3, 4, 5}, Algorithm 4.1 constructs the polynomial

F (x) = (1 − x)1078(1 − x2)127(1 − x5)3,(4.1)

which has B3(F ) = 1.581983 . . . >
√

10/2. This example is investigated further
in our second search method.

4.3. Special families. A second method of searching for good auxiliary
polynomials in Theorem 3.3 computes ‖F‖∞ directly for certain families of pure
products rather than using the quantity L(F ) as a bound. For a polynomial
F , let βm(F ) denote the expression appearing in Theorem 3.3:

βm(F ) =

⎧⎪⎨
⎪⎩

ν(F ) log 2 − log ‖F‖∞
deg F

, if m = 2,

ν0(F ) log m − log ‖F‖∞
deg F

, if m > 2.

Given m and fixing a set of positive integers E, we evaluate

βm

(∏
e∈E

(1 − xe)re

)

for a number of selections for the exponents re, subject to gcd{re : e ∈ E} = 1.
For example, for m = 2 and E = {2, 4, 8}, we find no polynomials that yield
a bound as good as that of Corollary 3.4. However, using E = {2, 4, 6},
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Figure 1: β2(Gk) for k ≤ 100.

we detect an auxiliary polynomial that does just as well. After computing
β2((1 − x2)a(1 − x4)b(1 − x6)) for 1 ≤ a, b ≤ 50, we find that the polynomials

Gk(x) =
(
1 − x2

)2k+1 (
1 − x4

)k (
1 − x6

)
produce values rather close to (log 5)/4, and further that these values are
increasing in k over this range. We obtain Figure 1 by computing β2 for
additional polynomials in this sequence. The maximum value occurs at k = 34,
and

‖G34‖∞ =
∥∥(1 − y)104(1 + y)34(1 + y + y2)

∥∥
∞

= 2138 max
0≤t≤1

∣∣sin104(πt) cos34(πt)(2 cos(2πt) + 1)
∣∣

=
2242

570
.

Since ν(G34) = 242 and deg G34 = 280, we again obtain (3.7).
For m = 3, given (4.1) we investigate polynomials with E = {1, 2, 5} and

find that we obtain good bounds using r1 ≈ 8.5r2 and r3 = 1. The maximum
value of β3((1 − x)17k(1 − x2)2k(1 − x5)) occurs at k = 25, yielding the value
1.582495 . . . cited at the end of Section 3.

Similar investigations for larger values of m have not improved the bound
of Corollary 3.5. For example, choosing E = {1, 2, 5}, r1 = (2m2−1)k, r2 = 2k,
k ≥ 1, and r3 = 1, we obtain a sequence of values under βm approaching
log(

√
m2 + 1/2) from below, but no polynomial tested improves this bound.

5. The conjecture of Schinzel and Zassenhaus

The lower bounds on log M(f) for f ∈ Dm of Corollaries 3.4 and 3.5
automatically yield lower bounds on max{|α| : f(α) = 0} for polynomials f ∈
Dm having no cyclotomic factors. The following theorem improves these results
in the Schinzel-Zassenhaus problem in two ways: weakening the hypotheses and
improving the constants.
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Theorem 5.1. Suppose f ∈ Dm is monic with degree n−1 having at least
one noncyclotomic factor. Then there exists a root α of f satisfying

|α| >

⎧⎪⎨
⎪⎩

1 +
log 3
2n

, if m = 2,

1 +
log(m − 1)

n
, if m > 2.

(5.1)

Proof. Let g denote the noncyclotomic part of f , let d = deg g, and let
α1, . . . , αd denote the roots of g. Suppose that

max{|αk| : 1 ≤ k ≤ d} < 1 +
c

n

for a positive constant c, so that |αn
k | < ec for each k.

Suppose m = 2. Since the maximum value of
∣∣1 − z2

∣∣ for complex numbers
z lying in the disk {z : |z| ≤ r} is 1 + r2, with the maximum value occurring
at z = ±ir, we have ∣∣1 − α2n

k

∣∣ < 1 + e2c

for each k. Consequently, using Lemma 3.1 with both xn + 1 and xn − 1, we
find

22d ≤
∣∣Res(g(x), 1 − x2n)

∣∣ <
(
1 + e2c

)d
.(5.2)

Therefore 1 + e2c > 4, and the inequality for m = 2 follows.
If m > 2, in a similar way we obtain

md ≤ |Res(g(x), 1 − xn)| < (1 + ec)d ,(5.3)

and the theorem follows.

No better bounds were found by using other auxiliary polynomials in place
of 1−x2n and 1−xn in (5.2) and (5.3). However, for some m we find that the
polynomials employed in Corollaries 3.4 and 3.5 do just as well. For example,
let Fa,b(x) = (1−x2)a(1+x2)b, with a and b positive integers. The supremum
of Fa,b on the disk {z ∈ C : |z| = r} is

‖Fa,b‖|z|=r = aa/2bb/2

(
2(1 + r4)

a + b

)(a+b)/2

,

and we obtain a lower bound on c from the inequality

22a+b < ‖Fa,b‖|z|=ec .

The optimal choice of parameters is a = 4 and b = 1, as in Corollary 3.4,
yielding c ≥ (log 3)/2. Likewise, for m > 1 the optimal choice for a and b in
the auxiliary polynomial (1−x)a(1+x)b is a = m2 and b = 1, but this selection
achieves c ≥ log(m − 1) only for m = 3.
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We now show that the constant in Theorem 5.1 for f ∈ Dm cannot be re-
placed with any number larger than log(2m−1). We first require the following
inequality.

Lemma 5.2. Suppose f(z) = zn + an−1z
n−1 + · · · + a1z + a0, and let

K = {k : 0 ≤ k ≤ n − 1 and ak �= 0}. For each k ∈ K, let ck be a positive
number, and suppose that

∑
k∈K ck ≤ 1. If α is a root of f , then

|α| ≤ max

{( |ak|
ck

) 1
n−k

: k ∈ K

}
.

Proof. See [18, part III, problem 20].

Theorem 5.3. For each m ≥ 2, any ε > 0, and all n ≥ n0(m, ε), there
exists a polynomial f ∈ Dm with degree n satisfying

1 +
log m − ε

n
< max

f(α)=0
|α| < 1 +

log(2m − 1) + ε

n
.

Proof. Fix m ≥ 2. Let fn(x) = xn + xn−1 + · · · + x + 1 − m, so that
(x − 1)fn(x) = xn+1 − mx + m − 1. By Rouché’s theorem, fn has exactly one
zero inside the unit disk, and this root is a real number approaching (m−1)/m

for large n. Thus f∗
n has a single root outside the unit disk near m/(m − 1),

so that M(fn) = M(f∗
n) → m as n → ∞.

If fn has a reciprocal factor g, then g divides f∗
n as well, and so g | fn−f∗

n =
m(xn − 1). However, fn(1) = n + 1 − m and fn(ζ) = 1 − m for any complex
nth root of unity ζ; so f has no reciprocal factor, and hence no roots on the
unit circle, if n �= m − 1.

Given ε > 0. For sufficiently large n, the polynomial fn has n − 1 roots
outside the unit circle, and at least one of them must have modulus at least as
large as the geometric mean of these roots. Thus,

max
fn(α)=0

|α| ≥ M(fn)1/(n−1) >
(
e−εm

)1/(n−1)
> 1 +

log m − ε

n
.

For the upper bound, we apply Lemma 5.2 using f(z) = zn+1−mz+m−1,
c0 = (m − 1)/(2m − 1), and c1 = m/(2m − 1) to obtain

max
fn(α)=0

|α| ≤ (2m − 1)1/n.

Taking n sufficiently large completes the proof.

For m = 2, the positive real root of the polynomial f∗
n appearing in the

proof of Theorem 5.3 is a Pisot number, since all its conjugates lie inside the
open unit disk. In the next section we study some properties of Pisot and
Salem numbers that appear as roots of Littlewood polynomials.
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6. Pisot and Salem numbers

We say a real number α > 1 is a Littlewood-Pisot number if it is a Pisot
number and its minimal polynomial is a Littlewood polynomial, and define
a Littlewood-Salem number in the same way. The article [4] proves that the
minimal value of Mahler’s measure of a nonreciprocal polynomial in D2 is the
golden ratio. Thus, this value is the smallest Littlewood-Pisot number.

We first improve Theorem 3.3 slightly for Salem numbers. Since we focus
on Littlewood polynomials in this section, we present only the case of poly-
nomials with odd coefficients; an analogous argument improves the bound for
Salem numbers whose minimal polynomial lies in Dm with m > 2.

Theorem 6.1. Suppose f is a monic, irreducible polynomial in D2 with
degree n − 1 having exactly one root α outside the unit disk. Then

log |α| >
log 5

4

(
1 +

1
10n

)
.

Proof. If F (x) is a polynomial with f(x) � F (xn), then using Lemma 3.1
and the fact that the complex roots of f lie on the unit circle, we obtain

2ν(F )(n−1) ≤ |Res(f(x), F (xn))| ≤ ‖F‖n−3
∞

∣∣F (αn)F (α−n)
∣∣ .

Choose F (x) = (1 − x2)4(1 + x2). Then∣∣F (αn)F (α−n)
∣∣ = α−10n |F (αn)|2 = α−10n

(
α2n − 1

)6 (
α4n − 1

)2
< α10n,

so that

29(n−1) < α10n

(
29

55/2

)n−3

.

Consequently

|α| > 51/4

(
218

515/2

)1/10n

.

Thus

log |α| >
log 5

4
+

9 log 2
5n

− 3 log 5
4n

=
log 5

4

(
1 +

c

n

)
,

where

c =
36 log 2
5 log 5

− 3 = .100871 . . . >
1
10

.

Our main result of this section concerns a limit point of Littlewood-Salem
numbers. It is well-known that every Pisot number is a two-sided limit point of
Salem numbers. We prove that more is true for the smallest Littlewood-Pisot
number.
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Theorem 6.2. The smallest Littlewood-Pisot number is a limit point,
from both sides, of Littlewood-Salem numbers.

Proof. We first define two sequences of Littlewood polynomials which
have exactly one root outside the unit circle. Let Pn(x) denote the cyclotomic
product

Pn(x) = Φ6(x)
2n∑

k=0

x3k = Φ6(x)
x6n+3 − 1

x3 − 1
= Φ6(x)

∏
d|6n+3

d>3

Φd(x),

and let
pn(t) = e(−(3n + 1)t)Pn(e(t)),

where e(t) = e2πit. Thus, pn(t) is a real-valued, periodic function with period 1
having simple zeros in the interval (0, 1/2) at the points{

1
6

} ⋃ {
k

6n + 3
: 1 ≤ k ≤ 3n + 1, k �= 2n + 1

}
.

Let
an(t) = 2 cos((6n + 2)πt)

and
bn(t) = −4 sin(πt) sin((6n + 1)πt).

Since
2k − 1
12n + 4

<
k

6n + 3
<

2k + 1
12n + 4

<
k + 1
6n + 3

for 1 ≤ k ≤ 3n, it follows that between two consecutive zeros of an(t) in (0, 1/2)
there exists exactly one zero of pn(t), with two exceptions corresponding to
the absence of a zero of pn(t) at t = 1/3 and the extra zero at t = 1/6.
Consequently, the function an(t) − pn(t) has at least 3n − 2 zeros in (0, 1/2).
A similar computation verifies that pn(t) − bn(t) has at least 3n − 2 zeros in
(0, 1/2).

For n ≥ 1, define the Littlewood polynomials An(x) and Bn(x) by

An(x) = x6n + (1 − x − x2)
2n−1∑
k=0

x3k(6.1)

and

Bn(x) = x6n−1 + (1 + x − x2)
2n−1∑
k=0

x3k,(6.2)

so that deg An = 6n and deg Bn = 6n − 2. Since

Pn(x) + xAn(x) = x6n+2 + 1
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and

Pn(x) − x2Bn(x) = (x − 1)(x6n+1 − 1),

it follows that e(−3nt)An(e(t)) and e(−(3n − 1)t)Bn(e(t)) each have at least
6n−4 zeros in (0, 1), and thus that An(x) and Bn(x) each have at least 6n−4
zeros on the unit circle. Since An(−1) = 1, An(1) = 1 − 2n, Bn(−1) = −1,
and Bn(1) = 1 + 2n, it follows that An(x) and Bn(x) have one real root in
the interval (−1, 1), and, since these polynomials are reciprocal, one real root
outside the unit disk as well. This accounts for all roots of Bn(x), and all but
two roots of An(x). These last two roots cannot be real, since evidently An(x)
has an odd number of roots in [−1, 1] and hence its total number of real roots
is congruent to 2 mod 4. Also, they must have modulus 1, for otherwise a root
α would have distinct conjugates 1/α, α, and 1/α.

We next prove that An(x) and Bn(x) are irreducible. Let αn denote the
real root of An(x) outside the unit disk, and let βn denote that of Bn(x).
If f | An and f(αn) �= 0, then by Kronecker’s theorem f is a product of
cyclotomic polynomials. Suppose then that Φd | An. By Lemma 2.3, we have
d | 12n + 2. If d | 6n + 1, then Φd divides

An(x) +
x6n+1 − 1

x − 1
= 2

x6n+3 − 1
x3 − 1

,

so that d | 6n + 3 and thus d = 1, but An(1) �= 0. If d is an even divisor of
12n + 2, then Φd/2(x) | An(−x). Since

x6n+1 − 1
x − 1

− An(−x) = 2x2Φ3(x)
x6n − 1
x6 − 1

,

we have d | 12n as well and again arrive at a contradiction. The proof that
Bn(x) is irreducible is similar.

Let γ denote the golden ratio, γ = (1 +
√

5)/2. Since An(1) = 1 − 2n

and An(γ) = 1, we have αn < γ for each n. Similarly, we compute Bn(−2) =
(26n−1 − 5)/9 and Bn(−γ) = 1 − γ, so that βn < −γ for each n. Further,

An+1(αn) = α6n+6
n − α6n

n + (1 − αn − α2
n)(α6n

n + α6n+3
n )

= α6n+1
n (α3

n + 1)(α2
n − αn − 1),

and since x2 − x − 1 < 0 on (1, γ), we conclude An+1(αn) < 0 and thus
αn+1 > αn. Similarly,

Bn+1(βn) = β6n−1
n (β3

n + 1)(β2
n + βn − 1) > 0,

and so βn+1 > βn. Thus, the sequences {αn} and {βn} converge.
Finally, since An(x) converges uniformly to (1 − x − x2)/(1 − x3) on any

compact subset of (−1, 1), it follows that limn→∞ 1/αn = 1/γ, and so {αn}
converges to γ. Similarly, {βn} converges to −γ. Thus, An(x) and Bn(−x)
provide the required Littlewood-Salem numbers.
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The root α1 of A1(x) in the proof of Theorem 6.2 is the smallest known
measure of an irreducible Littlewood polynomial. Moreover, the sequences
{αn} and {−βn} encompass all known values of Mahler’s measure below 1.645
of reciprocal, irreducible Littlewood polynomials (see [15]).

Finally, it is likely that the method of the proof extends, at least in part,
to the other Littlewood-Pisot numbers appearing in the proof of Theorem 5.3.
Let

fm(x) = xm−1 −
m−2∑
k=0

xk,

and let γm denote the Pisot number having fm(x) as its minimal polynomial.
Following (6.1) and (6.2), for each m ≥ 3 and n ≥ 1 define the Littlewood
polynomials

Am,n(x) = x2mn + f∗
m(x)

2n−1∑
k=0

xmk

and

Bm,n(x) = x2mn−1 − fm(x)
2n−1∑
k=0

xmk.

For each m, it appears that Am,n(x) yields a sequence of Salem numbers ap-
proaching γm from below. However, while M(Bm,n) approaches γm as n → ∞,
evidently Bm,n(x) has m − 2 roots outside the unit circle.

Added in proof. Since this article was written, some other papers have ap-
peared on the topics treated in this paper. Lower bounds in Lehmer’s problem
and the Schinzel-Zassenhaus problem for polynomials with coefficients congru-
ent to 1 mod m are developed further in

A. Dubickas and M. J. Mossinghoff, Auxiliary polynomials for some prob-
lems regarding Mahler’s measure, Acta Arith. 119 (2005), 65–79.

Results on Lehmer’s problem are generalized in

C. L. Samuels, The Weil height in terms of an auxiliary polynomial, Acta
Arith. 128 (2007), 209–221.

More information on Littlewood-Pisot and Salem numbers may be found in

K. Mukunda, Littlewood Pisot numbers, J. Number Theory 117 (2006),
106–121.
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