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Weyl group multiple Dirichlet series III:
Eisenstein series and twisted unstable Ar

By B. Brubaker, D. Bump, S. Friedberg, and J. Hoffstein

Abstract

Weyl group multiple Dirichlet series were associated with a root system Φ
and a number field F containing the n-th roots of unity by Brubaker, Bump,
Chinta, Friedberg and Hoffstein [3] and Brubaker, Bump and Friedberg [4]
provided n is sufficiently large; their coefficients involve n-th order Gauss
sums. The case where n is small is harder, and is addressed in this paper
when Φ = Ar. “Twisted” Dirichet series are considered, which contain the
series of [4] as a special case. These series are not Euler products, but due to
the twisted multiplicativity of their coefficients, they are determined by their
p-parts. The p-part is given as a sum of products of Gauss sums, parametrized
by strict Gelfand-Tsetlin patterns. It is conjectured that these multiple Dirich-
let series are Whittaker coefficients of Eisenstein series on the n-fold metaplec-
tic cover of GLr+1, and this is proved if r = 2 or n = 1. The equivalence of our
definition with that of Chinta [11] when n = 2 and r � 5 is also established.

Let F be a totally complex algebraic number field containing the group
μ2n of 2n-th roots of unity. Thus −1 is an n-th power in F . Let Φ ⊂ Rr

be a reduced root system. It has been shown in Brubaker, Bump, Chinta,
Friedberg and Hoffstein [3] and Brubaker, Bump and Friedberg [4] how one
can associate a multiple Dirichlet series with Φ; its coefficients involve n-th
order Gauss sums. A condition of stability is imposed in this definition, which
amounts to n being sufficiently large, depending on Φ. In this paper we will
propose a description of the Weyl group multiple Dirichlet series in the unstable
case when Φ has Cartan type Ar, and present the evidence in support of this
description. We will refer to this as the Gelfand-Tsetlin description whose
striking characteristic is that it gives a single formula valid for all n for these
coefficients, that reduces to the stable description when n is sufficiently large.

We conjecture that this Weyl group multiple Dirichlet series coincides
with the Whittaker coefficient of an Eisenstein series. The Eisenstein series
E(g; s1, · · · , sr) is of minimal parabolic type, on an n-fold metaplectic cover of
an algebraic group defined over F whose root system is the dual root system
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of Φ. We refer to this identification of the series with a Whittaker coefficient
of E as the Eisenstein conjecture.

We will present some evidence for the Eisenstein conjecture by proving
it when Φ is of type A2 (for all n) or when Φ is of type Ar and n = 1.
We will also present evidence for the Gelfand-Tsetlin description (but not the
Eisenstein conjecture) for general n.

There is a good reason not to use the Eisenstein series as a primary foun-
dational tool in the study of the Weyl group multiple Dirichlet series. This is
the relative complexity of the Matsumoto cocycle describing the metaplectic
group. The approach taken in [3] and [4] had its origin in Bump, Friedberg
and Hoffstein [9], where it was proposed that multiple Dirichlet series could
profitably be studied without use of Eisenstein series on higher rank groups,
using instead an argument based on Bochner’s convexity theorem. The realiza-
tion of this approach in [3] and [4] involves a certain amount of bookkeeping,
consisting of tracking some Hilbert symbols that occur in the definition of the
series and the proof of its functional equation. Eisenstein series intervene only
through the Kubota Dirichlet series, whose functional equations are deduced
from the functional equations of rank one Eisenstein series. In the approach
of [3] and [4], the bookkeeping is very manageable, and these foundations seem
good for supplying proofs.

The Weyl group multiple Dirichlet series associated in [4] with a root
system Φ ⊆ Rr has the form

ZΨ(s1, · · · , sr) =
∑

c1,··· ,cr

HΨ(c1, · · · , cr) Nc
−2s1
1 · · ·Nc−2sr

r ,(1)

where the sum is over nonzero ideals c1, · · · , cr of the ring oS of S-integers,
where S is a finite set of places chosen so that oS is a principal ideal domain.
It is assumed that S contains all archimedean places, and those ramified over Q.

The coefficients in Z thus have two parts, denoted H(C1, · · · , Cr) and
Ψ(C1, · · · , Cr), defined for nonzero Ci ∈ oS . The product HΨ is unchanged
if Ci is multiplied by a unit, and so is a function of r-tuples of ideals in the
principal ideal domain oS . This fact is implicit in the notation (1), where use
is made of the fact that HΨ(C1, · · · , Cr) depends only on the ideals ci = CioS .
The factor Ψ is the less important of the two, and we will not define it here; it is
described in [4]. Suffice it to say that Ψ is chosen from a finite-dimensional vec-
tor space of functions on FS =

∏
v∈S Fv, and that these functions are constant

on cosets of an open subgroup. If one changes the setup slightly, the function
Ψ can be suppressed using congruence conditions, and this is the point of view
that we will take in Section 1.

The function H is more interesting and requires discussion before we can
explain our results. For simplicity we assume that Φ is simply-laced, and that
all roots are normalized to have length 1; see [4] for the general case. Let
α1, · · · , αr be the simple positive roots of Φ in some fixed order. The coeffi-
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cients H have the following “twisted” multiplicativity. If gcd(C1 · · ·Cr, C
′
1 · · ·C ′

r)
= 1, then

(2)
H(C1C

′
1, · · · , CrC

′
r)

H(C1, · · · , Cr)H(C ′
1, · · · , C ′

r)

=
r∏

i=1

(
Ci

C ′
i

) (
C ′

i

Ci

) ∏
i < j

αi, αj not orthogonal

(
Ci

C ′
j

)−1 (
C ′

i

Cj

)−1

.

The condition that αi, αj not be orthogonal means that these simple roots
correspond to adjacent nodes in the Dynkin diagram. In this formula

(
C
D

)
is

the n-th power-residue symbol, defined for nonzero coprime elements of oS . It
satisfies the reciprocity law(

C

D

)
= (D, C)S

(
D

C

)
,

where (a, b)S =
∏

v∈S(a, b)v is the S-Hilbert symbol, defined for a, b ∈ F×
S .

See [4] for further information.
Knowing the twisted multiplicativity of H, we may reduce the description

of H to the case where the Ci are all powers of the same prime p. This is
done in [4] when n is sufficiently large. In that case, it is found that there
are exactly |W | values of (k1, · · · , kr) such that H(pk1 , · · · , pkr) �= 0, where
W is the Weyl group of Φ. More precisely, there is a bijection between the
Weyl group W and the set Suppstable(H) of such (k1, · · · , kr) in which w ∈ W

corresponds to (k1, · · · , kr) determined by ρ−w(ρ) =
∑

kiαi, where the Weyl
vector ρ = 1

2

∑
α∈Φ+ α with Φ+ the set of positive roots. This set is independent

of p. When (k1, · · · , kr) ∈ Suppstable(H) we have

H(pk1 , . . . , pkr) =
∏

α ∈ Φ+

wα �∈ Φ+

g(pd(α)−1, pd(α)),(3)

where in terms of the simple roots α1, · · · , αr we have d
(
Σi kiαi

)
= Σiki and

g(a, c) =
∑

d mod c
gcd(d, c) = 1

(
d

c

)
ψ

(
ad

c

)
,

with ψ a fixed additive character of FS such that ψ(xoS) = 1 if and only if
x ∈ oS .

Up to this point, we have described the stable coefficients H, defined for
sufficiently large n in [4]. We turn now to the more difficult case where n is
not assumed to be large, and discuss what modifications we expect. The set

Suppn(H) = {(k1, · · · , kr) |H(pk1 , · · · , pkr) �= 0}
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will still be finite, and will contain Suppstable(H). Moreover, the values of
H(pk1 , · · · , pkr) when (k1, · · · , kr) ∈ Suppstable(H) will still be given by (3).
However, there will be other values of (k1, · · · , kr) in Suppn(H). These will lie
in the convex hull of Suppstable(H).

For the rest of this paper, we will specialize to the case Φ = Ar. It
will be useful to generalize the definition of H(C1, · · · , Cr). The generalized
coefficients will be denoted H(C1, · · · , Cr;m1, · · · , mr) where mi are nonzero
elements of oS , and as a special case

H(C1, · · · , Cr) = H(C1, · · · , Cr; 1, · · · , 1).(4)

We will give the definition of the coefficients H(C1, · · · , Cr;m1, · · · , mr) in
Section 2. Here we will explain those properties that are immediately relevant.

First, the coefficients H(C1, · · · , Cr;m1, · · · , mr) will satisfy the same
multiplicativity (2) as H(C1, · · · , Cr). Moreover if gcd(m′

1 · · ·m′
r, C1 · · ·Cr)=1

we will have the multiplicativity

(5) H(C1, · · · , Cr;m1m
′
1, · · · , mrm

′
r)

=
(

m′
1

C1

)−1

· · ·
(

m′
r

Cr

)−1

H(C1, · · ·Cr;m1, · · · , mr).

(Compare Propositions 2 and 3.)
Thus we can extend the definition (1) obtaining a multiple Dirichlet series

ZΨ(s1, · · · , sr;m1, · · · , mr) =
∑

0 �=Ci∈o
×
S \oS

H(C1, · · · , Cr;m1, · · · , mr)(6)

· Ψ(C1, · · · , Cr) NC−2s1
1 NC−2s2

2 · · ·NC−2sr
r .

Roughly speaking, ZΨ(s1, · · · , sr;m1, · · · , mr) is a twist of the original ZΨ by
n-th order characters, since by (4) and (5), if gcd(m1, · · · , mr, C1 · · ·Cr) = 1,
we have

H(C1, · · · , Cr;m1, · · · , mr) =
(

m1

C1

)−1

· · ·
(

mr

Cr

)−1

H(C1, · · ·Cr).

This will not be true without the assumption gcd(m1 · · ·mr, C1 · · ·Cr) = 1, so
that this type of twisting is more subtle than simply multiplying the coefficients
by n-th order characters. Still, we will refer to ZΨ(s1, · · · , sr;m1, · · · , mr) as
the twisted series.

We observe that equations (2) and (5) reduce the specification of the
coefficients to the case where the Ci and mi are all powers of the same prime p,
in which case we denote Ci = pki and mi = pli .

With li fixed, it is still true that for n sufficiently large, there are exactly
|W | = (r+1)! values of (k1, · · · , kr) such that H(pk1 , · · · , pkr ; pl1 , · · · , plr) �= 0.
However the location of the stable values (k1, · · · , kr) for the twisted series will
differ from the values Suppstable(H) that we previously considered. If r = 2, the
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(k1, k2) H(pk1 , pk2 ; pl1 , pl2) T

(0, 0) 1

⎧⎨
⎩

l1+l2+2 l2+1 0

l2+1 0

0

⎫⎬
⎭

(l1 + 1, 0) g(pl1 , pl1+1)

⎧⎨
⎩

l1+l2+2 l2+1 0

l1+l2+2 0

0

⎫⎬
⎭

(0, l2 + 1) g(pl2 , pl2+1)

⎧⎨
⎩

l1+l2+2 l2+1 0

l2+1 0

l2+1

⎫⎬
⎭

(l1 + l2 + 2, l2 + 1)
g(pl2 , pl2+1)

×g(pl1+l2+1, pl1+l2+2)

⎧⎨
⎩

l1+l2+2 l2+1 0

l1+l2+2 l2+1

l2+1

⎫⎬
⎭

(l1 + 1, l1 + l2 + 2)
g(pl1 , pl1+1)

×g(pl1+l2+1, pl1+l2+2)

⎧⎨
⎩

l1+l2+2 l2+1 0

l1+l2+2 0

l1+l2+2

⎫⎬
⎭

(l1 + l2 + 2, l1 + l2 + 2)
g(pl1 , pl1+1)

×g(pl2 , pl2+1)

×g(pl1+l2+1, pl1+l2+2)

⎧⎨
⎩

l1+l2+2 l2+1 0

l1+l2+2 l2+1

l1+l2+2

⎫⎬
⎭

Table 1: Stable coefficients for twisted A2

six stable coefficients are given in Table 1. (The last column will be explained
presently.)

As the li increase, the size of n needed for this stability also increases.
Thus twisting introduces instability for many more n, allowing us to study
this phenomenon for Ar even when r is small. This is one reason that we
study the twisted series, though not the only reason. Even in the stable case,
the twisted series are interesting, and they are studied in detail in [5].

When n is not assumed to be large, however, other coefficients appear.
We will describe these next, in the case where Φ = A2. We will find that

Suppn(H; l1, l2) =
{

(k1, k2) |H(pk1 , pk2 ; pl1 , pl2) �= 0}

still contains a set Suppstable(H; l1, l2) consisting of the six pairs (k1, k2) that
are listed in Table 1. Moreover Suppn(H; l1, l2) = Suppstable(H; l1, l2) when n

is sufficiently large, but when n is small, Suppn(H; l1, l2) is a strictly larger set
contained in the convex hull of Suppstable(H; l1, l2). If (k1, k2) ∈ Suppn(H; l1, l2),
we find that H(pk1 , pk2 ; pl1 , pl2) is a sum of products of Gauss sums.

By a Gelfand-Tsetlin pattern we mean a triangular array of integers

T =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a00 a01 a02 · · · a0r

a11 a12 a1r

. . . . . .

arr

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(7)
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with r rows, where the rows interleave; that is, ai−1,j−1 � ai,j � ai−1,j . We
will say that the pattern is strict if each row is strictly decreasing.

We will make use of strict Gelfand-Tsetlin patterns of the form

T =

⎧⎨
⎩

l1 + l2 + 2 l2 + 1 0
a b

c

⎫⎬
⎭ .(8)

For each such T define

G(T) = g(pa−b−1, pc−b) g(pl2 , pb) g(pl1+b, pa+b−l2−1)(9)

unless a = l2 + 1; in the latter case we modify the definition and write

G

⎛
⎝

⎧⎨
⎩

l1 + l2 + 2 l2 + 1 0
l2 + 1 b

c

⎫⎬
⎭

⎞
⎠ = Npb g(pa−b−1, pc−b) g(pl2 , pb).

(10)

Note that the pattern T with a = b = l2 + 1 is not strict, and will be omitted
from our summations. Thus a − b − 1 � 0.

Let k1(T) = a + b − l2 − 1 and k2(T) = c. Then we will define H so that∑
k1,k2

H(pk1 , pk2 ; pl1 , pl2) Np−2k1s1−2k2s2 =
∑

T

G(T) Np−2k1(T)s1−2k2(T)s2 ,(11)

where the summation is over all T of the form (8). Note that (11) is equivalent
to

H(pk1 , pk2 ; pl1 , pl2) =
∑

k(T)=(k1,k2)

G(T),

where k(T) = (a + b − l2 − 1, c).

Remark 1. Taking into account the reduction to the case where Ci = pki

and mi = pli , we have now given a definition of H(C1, C2;m1, m2). In what
sense is this definition “correct”? There are two possible notions of correctness,
either of which would be a valid goal.

• We can take these formulas to be the definition of H(C1, C2;m1, m2),
in which case “correctness” means that the functional equations proved
in [4] extend to this context. This is the approach we prefer if Φ = Ar.

• Alternatively we may construct a multiple Dirichlet series as a Whittaker
coefficient of a metaplectic Eisenstein series – in which case the theorem
to be proved will be the agreement of the resulting Dirichlet series with
(11). The functional equations will follow from the functional equations
of Eisenstein series. This is carried out in Theorem 1 when Φ = A2.
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Next let us explain how the description of the coefficients H(C1, C2;m1, m2)
through (11) contains the stable case. By elementary properties of the Gauss
sum

g(pk, pl) = 0 unless

⎧⎨
⎩

l = 0 or
l = k + 1 or
1 � l � k and n|l.

Because of this, G(T) = 0 for all but the six patterns in Table 1 when n is
sufficiently large. Each of the six patterns in Table 1 contributes a product
of three Gauss sums by (9), but (except for the last coefficient) some of those
sums are equal to 1 since g(a, 1) = 1. Omitting those sums gives exactly the
values of the table.

Looking at the interior of the hexagon bounded by the stable support,
we see that the number of Gelfand-Tsetlin patterns contributing to
H(pk1 , pk2 ; pl1 , pl2) increases as we move in towards the center of the hexagon.
It may be useful to look at an example. In Table 2 we plot the values of
H(pk1 , pk2 ; p, p3). We abbreviate g(pi, pj) as simply gij to save space; also, for
succinctness, we will write pi or p instead of Npi or Np. We will freely make
use of the fact that gi0 = 1 and Np0 = 1 to discard superfluous factors; on the
other hand, gij = gjj if i > j, but we will distinguish between these two Gauss
sums to make it easier for the reader to check the computations.

6 g56g12 g45g31g23 g34g32g34 g23g33g45 g12g34g56

5 g45g11
g55g12

+g34g31g22

g44g31g23
+g23g32g33

g33g32g34
+g12g33g44

g22g33g45
+g01g34g55

g11g34g56

4 g34
g44g11

+p g23g31

g54g12
+g33g31g22
+p2g12g32

g43g31g23
+g22g32g33
+p3g01g33

g32g32g34
+g11g33g44

g21g33g45
+g00g34g55

g34g56

3 g33
g43g11

+p g22g31

g53g12
+g32g31g22
+p2g11g32

g42g31g23
+g21g32g33

+p3g33

g31g32g34
+g33g44

g33g45

2 g32
g42g11

+p g21g31

g52g12
+g31g31g22

+p2g32

g41g31g23
+g32g33

g32g34

1 g31
g41g11
+p g31

g31g22
+g51g30g12

g31g23

0 1 g11 g12
0 1 2 3 4 5 6

Table 2: The values of H(pk1 , pk2 ; p, p3). (Column,Row)= (k1, k2)

To illustrate how this table was generated, Table 3 shows how H(p4, p4; p, p3)
was computed. If i � j then g(pi, pj) = 0 for sufficiently large n, so that one
can confirm the vanishing of all coefficients except the six “stable” ones for n

sufficiently large.
In Section 2, we will extend the Gelfand-Tsetlin description to Φ = Ar,

defining coefficients H(C1, · · · , Cr;m1, · · · , mr) and multiple Dirichlet series
ZΨ(s1, · · · , sr;m1, · · · , mr); see (6). Then we make the following conjectures,
which are supported by strong and rather interesting evidence, to be discussed
in Section 2.
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T k(T) G(T)
6 4 0

6 2
4

(4, 4) g32g32g34

6 4 0
5 3

4
(4, 4) g11g33g44

Table 3: Computation of H(p4, p4; p, p3)

Conjecture 1. ZΨ has meromorphic continuation to all Cr and satisfies
a group of functional equations containing the Weyl group of Ar as in [4].

Conjecture 2. ZΨ is a Whittaker coefficient of an Eisenstein series on
the n-fold metaplectic cover of GLr+1.

The evidence for these conjectures may be summarized as follows.

• When r = 2, we prove both conjectures in Section 1 (see Theorem 1).

• For all r, it is proved in [5] that the Gelfand-Tsetlin description gives the
right stable coefficients, and Conjecture 1 is proved when n is sufficiently
large. As a special case when m1 = . . . = mr = 1, this shows that the
multiple Dirichlet series defined here agrees with that of [4] in the stable
case.

• If n = 1, we will deduce Conjecture 2 (and hence Conjecture 1) by
showing that the Shintani-Casselman-Shalika formula reduces this case
to a result of Tokuyama [22].

• If n = 2 and r � 5 we will prove Conjecture 1 by reconciling our definition
with work of Chinta [11]. See Theorem 2.

The first piece of evidence will be taken up in Section 1, the remaining points
will be addressed in Section 2.

After this paper was written, Chinta and Gunnells [12] gave a definition of
the Weyl group multiple Dirichlet series when n = 2 for any simply-laced root
system. Their very interesting construction does not compute the coefficients
but in view of their Remark 3.5 and our Theorem 2 we can say that it agrees
with our definition when Φ = Ar and r � 5.

Acknowledgements. This work was supported by NSF FRG Grants DMS-
0354662, DMS-0353964 and DMS-0354534. We would like to thank Gautam
Chinta and Paul-Olivier Dehaye for useful comments.
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1. Metaplectic Eisenstein series on GL(3)

In this section, o will be the ring of integers in a totally complex number
field F . We assume that o× contains the group μn of n-th roots of unity, and
that −1 is an n-th power in o×. We will denote by

(
c
d

)
the ordinary power

residue symbol, whose properties may be found in Neukirch [17].
Bass, Milnor and Serre [1] (following earlier work of Kubota and Mennicke)

constructed a homomorphism κ : Γ(f) −→ μn, where f is a suitable conductor,
and Γ(f) is the principal congruence subgroup in GL(r + 1, o). We may choose
f so that

d ≡ c ≡ 1 mod f, gcd(d, c) = 1 ⇒
( c

d

)
=

(
d

c

)
.(12)

We also assume that if d ≡ d′ ≡ 1 modulo f then

d ≡ d′ mod f2 and d ≡ d′ mod c ⇒
( c

d

)
=

( c

d′

)
.(13)

For convenience we will assume that o is a principal ideal domain and that the
canonical map o× −→ (o/f)× is surjective. For example, these conditions are
satisfied in the following cases.

• n = 2, F = Q(i), o = Z[i], λ = 1 + i and f = λ3o.

• n = 3, F = Q(ρ) where ρ = e2πi/3, o = Z[ρ], λ = 1−ρ, and f = λ2o = 3o.

We embed F −→ F∞, the product of the archimedean completions of F . Let
ψ : F∞ −→ C be a nontrivial additive character. We assume that the conductor
of ψ is precisely o; that is, ψ(xo) = 1 if and only if x ∈ o.

This setup has perhaps less to recommend it than the S-integer formalism
of [4], but it does have the advantage of allowing us to suppress all Hilbert
symbols.

Let

w =

⎛
⎝ 1

1
1

⎞
⎠ .(14)

Then G = SL3 has an involution defined by ιg = w · tg−1 · w. It preserves the
group Γ(f) and its subgroup Γ∞(f), consisting of the upper triangular matrices
in Γ(f). If g ∈ Γ(f), let [A1, B1, C1] and [A2, B2, C2] be the bottom rows of g

and ιg, respectively. Then

(A1, B1, C1) ≡ (A2, B2, C2) ≡ (0, 0, 1) mod f,(15)

A1C2 + B1B2 + C1A2 = 0,

gcd(A1, B1, C1) = gcd(A2, B2, C2) = 1.
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We call A1, B1, C1, A2, B2, C2 the invariants of g. We will refer to (15) as the
Plücker relation. The invariants depend only on the coset of g in Γ∞(f)\Γ(f).

We will make use of the following formula for κ(g). Suppose that g ∈ Γ(f)
has invariants A1, B1, C1, A2, B2, C2. Then there exists a factorization

C1 = r1r2C
′
1, C2 = r1r2C

′
2,(16)

B1 = r1B
′
1, B2 = r2B

′
2,

where r1 ≡ r2 ≡ C ′
1 ≡ C ′

2 ≡ 1 modulo f, and gcd(C ′
1, C

′
2) = 1. We have

gcd(B′
1, C

′
1) = gcd(B′

2, C
′
2) = gcd(A1, r1) = gcd(A2, r2) = 1 and

κ(g) =
(

B′
1

C ′
1

) (
B′

2

C ′
2

) (
C ′

1

C ′
2

)−1 (
A1

r1

) (
A2

r2

)
.(17)

Details can be found in [7]. Similar formulas can be found in Proskurin [19].
Let C1 and C2 be elements of o that are congruent to 1 modulo f, and let

m1, m2 ∈ o. We define

(18)

H(C1, C2;m1, m2) =
∑

A1, B1 mod C1

A2, B2 mod C2

gcd(A1, B1, C1) = 1
gcd(A2, B2, C2) = 1

A1 ≡ B1 ≡ A2 ≡ B2 ≡ 0 mod f

A1C2 + B1B2 + C1A2 ≡ 0 mod C1C2

·
(

B′
1

C ′
1

) (
B′

2

C ′
2

) (
C ′

1

C ′
2

)−1 (
A1

r1

) (
A2

r2

)
ψ

(
m1B1

C1
+

m2B2

C2

)
,

where we have chosen a factorization (16).

Remark 2. In the introduction we defined H(C1, C2;m1, m2) as a sum
over Gelfand-Tsetlin patterns. In this section, we take (18) to be the def-
inition of sums H(C1, C2;m1, m2). The content of Theorem 1 is that the
two definitions are equivalent when Φ = A2, so that H(C1, C2;m1, m2) =
H(C1, C2;m1, m2).

Remark 3. The summation is more correctly written∑
B1 mod C1

B2 mod C2

B1 ≡ B2 ≡ 0 mod f

∑
A1 mod C1

A2 mod C2

gcd(A1, B1, C1) = 1
gcd(A2, B2, C2) = 1
A1 ≡ A2 ≡ 0 mod f

A1C2 + B1B2 + C1A2 ≡ 0 mod C1C2

.(19)

The reason that this way of writing the sum is correct is that if B1 is changed
to B1+tC1 then the terms of the inner sum are permuted, with a compensating
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change A2 −→ A2−tB2. With this understanding, the sum H(C1, C2;m1, m2)
is well-defined.

Let f be a smooth function on SL3(F∞) that satisfies

f

⎛
⎝

⎛
⎝ y1 ∗ ∗

y2 ∗
y3

⎞
⎠ g

⎞
⎠ = |y1|2s2 |y3|−2s1f(g),

where s1 and s2 have sufficiently large real part. Let

E(g) =
∑

γ∈Γ∞(f)\Γ(f)

κ(γ) f(γg).

Let w be as in (14). Let m1, m2 ∈ o be nonzero, and let

Wm1,m2(g) =
∫

C3

f

⎛
⎝w

⎛
⎝ 1 x1 x3

1 x2

1

⎞
⎠ g

⎞
⎠ ψ(−m1x1 − m2x2) dx1 dx2 dx3

be the Jacquet-Whittaker function.

Proposition 1.

∫
f3\C3

E

⎛
⎝w

⎛
⎝ 1 x1 x3

1 x2

1

⎞
⎠ g

⎞
⎠ ψ(−m1x1 − m2x2) dx1 dx2 dx3

=
∑

C1, C2 �= 0

H(C1, C2;m1, m2) NC−2s1
1 NC−2s2

2 Wm1,m2(g).

Proof. The invariants give a bijection between the set of parameters A1,
B1, C1, A2, B2, C2 that satisfy (15) and Γ∞(f)\Γ(f); this may be proved
along the lines of Theorem 5.4 of Bump [8]. It may be shown that with
m1, m2 nonzero, only γ in the “big cell” characterized by the nonvanishing of
C1, C2 give a nonzero contribution; let Γ(f)bc denote the set of such elements.
Discarding the others, the integral unfolds to∑

γ∈Γ∞(f)\Γ(f)bc/wΓ∞(f)w

·
∫

C3

κ(γ) f

⎛
⎝γw

⎛
⎝ 1 x1 x3

1 x2

1

⎞
⎠ g

⎞
⎠ ψ(−m1x1 − m2x2) dx1 dx2 dx3.

We have the explicit Bruhat decomposition

γ =

⎛
⎝ 1/C2 ∗ ∗

C2/C1 ∗
C1

⎞
⎠

⎛
⎝ 1

B2/C2 1
A1/C1 B1/C1 1

⎞
⎠ .
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Thus making the variable change x1 −→ x1 + B1/C1, x2 −→ x2 + B2/C2 we
obtain ∑

γ∈Γ∞(f)\Γ(f)bc/wΓ∞(f)w

κ(γ) ψ

(
m1B1

C1
+

m2B2

C2

)
NC−2s1

1 NC−2s2
2 Wm1,m2(g)

where it is understood that A1, B1, C1, A2, B2, C2 are the invariants of γ. The
action of wΓ∞(f)w on the invariants is easily computed, and so we obtain a
sum over nonzero C1, C2, and over A1, B1 modulo C1, A2, B2 modulo C2 such
that gcd(A1, B1, C1) = gcd(A2, B2, C2) = 1, satisfying the Plücker relation;
and for γ with these invariants, κ(γ) is given by (17).

Proposition 2. If gcd(C1C2, C
′
1C

′
2) = 1 with C1 ≡ C2 ≡ C ′

1 ≡ C ′
2 ≡ 1

modulo f, then

H(C1C
′
1, C2C

′
2;m1, m2)

=
(

C1

C ′
1

)2 (
C2

C ′
2

)2 (
C1

C ′
2

)−1 (
C2

C ′
1

)−1

H(C1, C2;m1, m2) H(C ′
1, C

′
2;m1, m2).

Proof. This is proved in [7].

Proposition 3. Suppose that gcd(m′
1m

′
2, C1C2) = 1. Then

H(C1, C2;m1m
′
1, m2m

′
2) =

(
m′

1

C1

)−1 (
m′

2

C2

)−1

H(C1, C2;m1, m2).

Proof. This is easier than Proposition 2, and can be left to the reader.

We turn now to the lemmas for Theorem 1.
If T is as in (8), let k(T) = (a + b − l2 − 1, c). We will also denote

k1(T) = a + b − l1 − 1 and k2(T) = c.

Lemma 1. Let

T =

⎧⎨
⎩

l1 + l2 + 2 l2 + 1 0
a b

c

⎫⎬
⎭

be a Gelfand-Tsetlin pattern. Assume that

l2 � b, c + l2 + 1 � a, c − 2a + l1 + 2l2 + 2 � b.(20)

Let

a′ = c − a + l1 + l2 + 2, b′ = a − l2 − 1, c′ = a + b − l2 − 1,

and

T′ =

⎧⎨
⎩

l1 + l2 + 2 l1 + 1 0
a′ b′

c′

⎫⎬
⎭ .
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Then T′ is also a Gelfand-Tsetlin pattern and G(T) = G(T′). The hypothesis
(20) is always satisfied if k2(T) = c is greater than k1(T) = a + b − l2 − 1.

Proof. It is straightforward to check that (20) implies that T′ is a Gelfand-
Tsetlin pattern. It is also easy to check that k2 > k1 implies (20).

We turn to the proof that G(T) = G(T′). First suppose that a > l2 + 1.
We note that our assumptions imply that a′ > l1 + 1. Assuming (20) we must
show that

g(pa−b−1, pc−b) g(pl2 , pb) g(pl1+b, pa+b−l2−1)

= g(pc−2a+l1+2l2+2, pb) g(pl1 , pa−l2−1) g(pa−1, pc).

Since we are assuming l2 � b and c − 2a + 2l1 + l2 + 2 � b both sides vanish
unless n|b. We therefore assume n|b. Since

g(pl2 , pb) = g(pb, pb) = g(pc−2a+2l1+l2+2, pb),(21)

we must show that

g(pa−b−1, pc−b) g(pl1+b, pa+b−l2−1) = g(pa−1, pc)g(pl1 , pa−l2−1) .

This follows since n|b implies that

g(pa−1, pc) = Npb g(pa−b−1, pc−b)(22)

and

g(pl2+b, pa+b−l1−1) = Npb g(pl2 , pa−l1−1).

If a = l2+1 then both G(T) and G(T′) are zero unless n|b, and proceeding
as before, the statement now follows from (21) and (22), together with the fact
that g(pl1 , pa−l2−1) = 1.

Let Υ(k1, k2; l1, l2) be the set of all T of the form (8) such that k(T) =
(k1, k2). As in the introduction, let

H(pk1 , pk2 ; pl1 , pl2) =
∑

T∈Υ(k1,k2;l1,l2)

G(T).

Lemma 1 gives a bijection Υ(k1, k2; l1, l2) −→ Υ(k2, k1; l2, l1) when k2 > k1;
since the bijection preserves G(T), this means that the right-hand side of (27)
satisfies

H(pk1 , pk2 ; pl1 , pl2) = H(pk2 , pk1 ; pl2 , pl1)(23)

when k2 > k1. No bijection Υ(k1, k2; l1, l2) −→ Υ(k2, k1; l2, l1) preserving G(T)
exists when k1 = k2, though we will see that (23) is still true. Indeed, examples
may be given where the number of nonzero G(T) with T ∈ Υ(k, k; l1, l2) is
different when l1 and l2 are interchanged, though their sum is still remarkably
the same due to more complicated identities between the G(T).
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Lemma 2. If k1 > k2, then

H(pk1 , pk2 ; pl1 , pl2) =
min(k2,k2−k1+l1+1)∑
i=max(0,k2−l2−1)

g(pi, pi) g(pl2 , pk2−i) g(pl1+k2−i, pk1).

Proof. We note that since g(pa, pb) = 0 if a < b − 1, the statement is
equivalent to

H(pk1 , pk2 ; pl1 , pl2) =
k2∑

i=0

g(pi, pi) g(pl2 , pk2−i) g(pl1+k2−i, pk1)(24)

since any terms in this sum with i < k2− l2−1 or i > k2−k1+ l1+1 contribute
zero. We prove (24).

In the definition of H, we have r1r2 = pk2 and we can take C ′
1 = pk1−k2 ,

C ′
2 = 1. Thus

(25) H(pk1 , pk2 ; pl1 , pl2) =
∑

A1, B1 mod pk1

A2, B2 mod pk2

gcd(A1, B1, p) = gcd(A2, B2, p) = 1
A1pk2 + B1B2 + A2pk1 ≡ 0 mod pk1+k2

·
(

B′
1

pk1−k2

) (
A1

r1

) (
A2

r2

)
ψ

(
B1p

l1

pk1
+

B2p
l2

pk2

)
.

It is understood that A1, A2, B1 and B2 are always chosen to be divisible by
the conductor f; we will omit this condition from all summations since it really
plays no role in the computation. We break the sum up into three pieces:
(1) gcd(B2, p) = 1, (2) pi exactly divides B2 with 1 � i < k2, and (3) pk2 |B2.

First we consider the contribution where gcd(B2, p) = 1. Here r2 = 1,
r1 = pk2 , and from the Plücker relation, B1 ≡ 0 mod pk2 . After replacing
B1 by pk2B′

2 and dropping the prime, we get∑
A1 mod pk1 , B1 mod pk1−k2

A2, B2 mod pk2

gcd(B2, p) = gcd(A1, p) = 1
A1 + B1B2 + A2pk1−k2 ≡ 0 mod pk1

(
B1

pk1−k2

) (
A1

pk2

)
ψ

(
B1p

l1

pk1−k2
+

B2p
l2

pk2

)
.(26)

We may use the Plücker relation to determine A1. The sum becomes∑
B1 mod pk1−k2

A2, B2 mod pk2

gcd(B2, p) = gcd(A2pk1−k2 + B1B2, p) = 1

·
(

B1

pk1−k2

) (
A2p

k1−k2 + B1B2

pk2

)
ψ

(
B1p

l1

pk1−k2
+

B2p
l2

pk2

)
.
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Since k1 > k2 we may replace the condition gcd(A2p
k1−k2+B1B2, p) = 1 by just

gcd(B1, p) = 1, and we also have
(

A2pk1−k2+B1B2

pk2

)
=

(
B1B2
pk2

)
. The summand

is independent of A2, and we may drop this summation to obtain

Npk2
∑

B1 mod pk1−k2

B2 mod pk2

gcd(B1B2, p) = 1

(
B1

pk1

) (
B2

pk2

)
ψ

(
B1p

l1

pk1−k2
+

B2p
l2

pk2

)
.

Now we may drop the leading factor of Npk2 by summing B2 over pk1 instead
of pk1−k2 . Hence we obtain

g(pl2 , pk2) g(pl1+k2 , pk1).

This is the contribution i = 0 in (24).
One may show similarly that if pi exactly divides B2 for some i, 1 � i < k2,

then one obtains the i-th term (24), and that the contribution when pk2 |B2

is the contribution of i = k2 in (24). We leave these cases to the reader, or
see [7].

Lemma 3.

H(pk, pk; pl1 , pl2) =
min(k−1,l2+1)∑

i=max(0,k−l1−1)

g(pl2 , pi) g(pl1+i, pk) g(pl2+k−2i, pk−i)

+
{

Npk g(pk, pk) if k � l2;
0 if k > l2.

Proof. We leave this to the reader, or see [7]. It is similar to Lemma 2.

Theorem 1. Let l1, l2 be nonnegative integers. Then∑
k1,k2

H(pk1 , pk2 ; pl1 , pl2) Np−k1s1−k2s2 =
∑

T

G(T) Np−k1(T)s1−k2(T)s2 ,

where the summation is over all strict Gelfand-Tsetlin patterns T of the form (8).

Proof. Evidently what must be proved is that

H(pk1 , pk2 ; pl1 , pl2) = H(pk1 , pk2 ; pl1 , pl2).(27)

It is clear from the definition that H(pk1 , pk2 ; pl1 , pl2) = H(pk2 , pk1 ; pl2 , pl1).
By (23) we may therefore assume that k1 � k2.

First suppose that k1 > k2. Then given an integer i we consider

T =

⎧⎨
⎩

l1 + l2 + 2 l2 + 1 0
a b

c

⎫⎬
⎭ ,

a = k1 − k2 + i + l2 + 1,

b = k2 − i,

c = k2.
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A necessary and sufficient condition for this to be a Gelfand-Tsetlin pattern is
that

max(0, k2 − l2 − 1) � i � min(k2, k2 + l1 + 1 − k1).

This gives a complete enumeration of Υ(k1, k2; l1, l2). We have a−b−1 � c−b

and so

G(T) = g(pc−b, pc−b) g(pl2 , pb) g(pl1+b, pa+b−l2−1)

= g(pi, pi) g(pl2 , pk2−i) g(pl1+k2−i, pk1).

In this case, the result now follows from Lemma 2.
Next assume that k1 = k2 = k. Given an integer i, consider

T =

⎧⎨
⎩

l1 + l2 + 2 l2 + 1 0
a b

c

⎫⎬
⎭ ,

a = k − i + l2 + 1,

b = i,

c = k.

A necessary and sufficient condition for this to be a Gelfand-Tsetlin pattern is
that

max(0, k − l1 − 1) � i � max(k, l2 + 1),

and this gives a complete enumeration of Υ(k, k; l1, l2). We assume first that
i < k. In this case we have

G(T) = g(pa−b−1, pc−b) g(pl2 , pb) g(pl1+b, pa+b−l2−1)

= g(pl2+k−2i, pk−i) g(pl2 , pi) g(pl1+i, pk),

and these terms account for the first summation in Lemma 3. If k � l2 + 1
there is one more term with i = k. Using (10), this accounts for the last term
in Lemma 3, and the theorem is proved.

2. The case Φ = Ar

In this section we generalize the definition of H(C1, · · · , Cr;m1, · · · , mr)
from the introduction, where it was given for A2, to Φ = Ar, for arbitrary r. We
will present evidence that this definition is “correct,” as discussed in Remark 1.
As explained in the introduction, the multiplicativity properties of H reduce
us to the case where the Ci and mi are all powers of the same prime p.

First we must generalize the definition of G(T) when T is a strict Gelfand-
Tsetlin pattern of rank r, given as in (7). We define

G(T) =
∏

j�i�1

γ(i, j),
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where

γ(i, j) =
{

g
(
psij−aij+ai−1,j−1−1, psij ) if aij > ai−1,j ,

Npsij if aij = ai−1,j ,
(28)

sij =
r∑

k=j

aik −
r∑

k=j

ai−1,k.

Thus we are associating one factor γ(i, j) to each entry of the pattern below
the top row. If r = 2, this formula is the same as (11). Also, define

ki(T) =
r∑

j=i

(aij − a0,j).

Now we may generalize the Weyl group multiple Dirichlet series from [4]
for type Ar to the unstable case where n is any arbitrary positive integer.
Define

H(pk1 , · · · , pkr ; pl1 , · · · , plr) =
∑

G(T)(29)

where the sum is over all strict Gelfand-Tsetlin patterns T with top row

l1 + . . . + lr + r, l2 + . . . + lr + r − 1, · · · , lr + 1, 0(30)

such that
r∑

j=i

(aij − a0,j) = ki.(31)

We now discuss some evidence for Conjectures 1 and 2.

Definition 1. If each aij with i �= 0 is equal to one of the two terms above
it (ai−1,j−1 or ai−1,j), then the Gelfand-Tsetlin pattern T is called stable.

A stable Gelfand-Tsetlin pattern is the unique one such that (31) is satis-
fied for the particular values of (k1, · · · , kr). There are (r + 1)! such patterns.

In [5], Dirichlet series are introduced with parameters m1, · · · , mr that
generalize the definition of the multiple Dirichlet series and results of [4]. That
is, the Dirichlet series are shown to possess a Weyl group of functional equa-
tions. It is then checked that these so-called “twisted, stable” Weyl group
multiple Dirichlet series have coefficients matching those associated to stable
patterns in (29), while G(T) = 0 for all patterns that are not stable. There-
fore Conjecture 1 is proved in the stable case, that is, for n sufficiently large.
The use of the term “stable” in Definition 1 is also natural since only the
contributions of the stable patterns survive when n is large.

Next we turn to the relationship between this formula and the Shintani-
Casselman-Shalika formula. To begin with, these formulas are somewhat anal-
ogous; we will explain this analogy before giving a formula that combines the
two.
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Let T be the diagonal maximal torus in GL(r, C). We identify Zr with
the character group X∗(T ) in the usual way; elements of this group are called
weights, and with this identification, μ = (μ1, · · · , μr) corresponds to the ra-
tional character

t =

⎛
⎜⎝

t1
. . .

tr

⎞
⎟⎠ 
−→

∏
tμi

i = 〈μ, t〉(32)

of T . Let λ1 � λ2 � λ3 � · · · � λr be integers. Then λ = (λ1, · · · , λr) is the
highest weight vector of an irreducible analytic representation σλ of GL(r, C).

It was shown by Gelfand and Tsetlin [13] that one could exhibit a specific
basis of an irreducible analytic representation of GLr(C) isomorphic to σλ

parametrized by these Gelfand-Tsetlin patterns.
Dually, there is also a parametrization of the weights of σλ by the same set

of Gelfand-Tsetlin patterns. When r = 3, the parametrization of the weights
in σλ by Gelfand-Tsetlin patterns sends⎧⎨

⎩
λ1 λ2 λ3

a b

c

⎫⎬
⎭

to the weight μ(T) = (λ1 + λ2 + λ3 − a − b, a + b − c, c). Note that we can
write λ − μ(T) = k1α1 + k2α2 where α1 = (1,−1, 0) and α2 = (0, 1,−1) are
the simple positive roots and k1, k2 are nonnegative integers. We find that

k1 = a + b − λ2 − λ3, k2 = c − λ3.

As T runs through the Gelfand-Tsetlin patterns with prescribed λ1, λ2 and λ3,
μ(T) runs through the weights of σλ, each occurring with its proper multiplicity.
Thus if t ∈ GL3(C), we see that

tr σλ(t) =
∑

T

〈μ(T), t〉 ,(33)

with notation as in (32); and this formula remains valid for GLr, with the
obvious extension of the definition of μ(T) in the general case.

We recall the formula of Shintani [20] and Casselman and Shalika [10] for
Whittaker functions on GLr(F ) where F is a nonarchimedean local field. Let
π be a spherical principal series representation of GLr(F ), and let W be the
spherical Whittaker function of π, normalized so that W (1) = 1. Langlands
associates with π (by means of the Satake isomorphism) a semisimple conju-
gacy class in GLr(C); see Borel [2]. Let Aπ be a diagonal representative of this
conjugacy class. Let

a =

⎛
⎜⎝


λ1

. . .

λr

⎞
⎟⎠ ,
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where 
 is a prime element in F . The Shintani-Casselman-Shalika formula
may be stated

W (a) =
{

δ1/2(a) tr σλ(Aπ) if λ1 � λ2 � · · · � λr;
0 otherwise.

Combining this with (33), we see that the values of the Whittaker function
can be expressed as a sum parametrized by Gelfand-Tsetlin patterns.

The Shintani-Casselman-Shalika formula may be regarded as a
formula for the Whittaker coefficients of Eisenstein series on GLr+1. Since
Z(s1, · · · , sr; pl1 , · · · , plr+1) is conjecturally the Whittaker coefficient of an
Eisenstein series on the n-fold metaplectic cover of GLr+1, expressing its
“p-part” as a sum over Gelfand-Tsetlin patterns seems analogous.

There are some important differences to be noted.

• The Shintani-Casselman-Shalika formula is for the normalized Whittaker
function; this means that if one regards it as a formula for the Whittaker
coefficients of Eisenstein series, those Eisenstein series are normalized.
By contrast, the new formula is for the unnormalized Eisenstein series.

• In the Shintani-Casselman-Shalika formula the top row of the Gelfand-
Tsetlin patterns that occur in (33) is the partition λ. In the new formula
the top row is λ shifted by (r, r − 1, · · · , 0) as in (30).

• Also, only strict patterns have nonzero contribution to the new formula.

• In the Shintani-Casselman-Shalika formula, one has uniqueness of
Whittaker models. In the metaplectic case, Whittaker models are not
unique, so the formula must be regarded as expressing one particular
spherical Whittaker function.

• Most surprisingly, in the new formula the weight μ(T) is replaced by a
product of Gauss sums.

These differences are substantial enough that we do not insist too strongly
on the analogy between our new formula and the Shintani-Casselman-Shalika
formula. However, as we will now explain, we may combine the Shintani-
Casselman-Shalika formula with a theorem of Tokuyama [22] to prove Conjec-
ture 2 when n = 1.

To explain this point, we give another formula for H(pk1 , · · · , pkr ;
pl1 , · · · , plr), valid for all n, before specializing to n = 1. We say that the strict
Gelfand-Tsetlin pattern T in (7) is left-leaning at (i, j) if ai,j = ai−1,j−1, right-
leaning if ai,j = ai−1,j , and that (i, j) is special for T if ai−1,j−1 > ai,j > ai−1,j .
We observe that ∑

1�i�j�r

sij =
∑

1�i�j�r

aij −
r∑

i=1

ja0j =
r∑

i=1

ki(T),
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where sij is as defined in (28). Let γ′(i, j) = Np−sijγ(i, j) and

G′(T) =
∏

j�i�1

γ′(i, j).

Then∑
k1

· · ·
∑
kr

H(pk1 , · · · , pkr ; pl1 , · · · , plr)xk1
1 · · ·xkr

r

=
∑
k1

· · ·
∑
kr

H ′(pk1 , · · · , pkr ; pl1 , · · · , plr)(Np · x1)k1 · · · (Np · xr)kr ,

with

H ′(pk1 , · · · , pkr ; pl1 , · · · , plr) =
∑

G′(T),

where the sum is over all strict Gelfand-Tsetlin patterns T with top row (30)
satisfying (31). By elementary properties of Gauss sums

γ′(i, j) =

⎧⎪⎪⎨
⎪⎪⎩

1 if T is right-leaning at (i, j),
Np−sijg(psij−1, psij ) if T is left-leaning at (i, j),
1 − Np−1 if (i, j) is special and n|sij ,
0 if (i, j) is special and n � sij .

From this expression, we may clearly see how the stability phenomenon
is reconciled with Conjecture 1. If n is sufficiently large, the condition n|sij

cannot be met, and Gelfand-Tsetlin patterns containing special entries have
G′(T) = 0. The ones that do not are just the (r + 1)! stable patterns.

If n = 1 then the Gauss sums that appear in this formula are Ramanujan
sums, and may be evaluated. We have

γ′(i, j) =

⎧⎨
⎩

1 if T is right-leaning at (i, j),
−Np−1 if T is left-leaning at (i, j),
1 − Np−1 if (i, j) is special.

We now recall Tokuyama’s theorem from [22]. Tokuyama defines s(T) and l(T)
to be the number of special and left-leaning entries, respectively. Let di(T) be
the sum of the i-th row and let

mi(T) =
{

di(T) − di+1(T) if 0 � i < r,
di(T) if i = r.

Let λ = (λ0, λ1, · · · , λr) be a partition into r+1 distinct parts, so λ0 > . . . > λr.
Also let ρ = (ρ0, ρ1, · · · , ρr) = (r, r−1, · · · , 0), so ρi = r− i. Tokuyama proves
that if t and z0, · · · , zr are indeterminates, then

∑
T

(t + 1)s(T)tl(T)z
m0(T)
0 · · · zmr(T)

r =

⎡
⎣ ∏

r�j>i�0

(zi + tzj)

⎤
⎦ sλ(z0, · · · , zr),



WEYL GROUP MULTIPLE DIRICHLET SERIES III 313

where the sum is over strict Gelfand-Tsetlin patterns T with top row λ + ρ,
and sλ is the Schur polynomial.

We take λi = li+1 + li+2 + · · · + lr and t = −Np−1. Moreover, let

z0 = 1, z1 = Np · x1, · · · , zr = Npr · x1 · · ·xr.

Since

(t + 1)s(T)tl(T) =
∏

1�i�j�r

γ′(i, j)

and ki(T) = di(T) − (λi − ρi) − · · · − (λr − ρr), we obtain∑
k1

· · ·
∑
kr

H(pk1 , · · · , pkr ; pl1 , · · · , plr) xk1
1 · · ·xkr

r(34)

=
∑
k1

· · ·
∑
kr

H ′(pk1 , · · · , pkr ; pl1 , · · · , plr)(Np · x1)k1 · · · (Np · xr)kr

= (Np · x1)−λ1 · · · (Npr−1 · x1 · · ·xr−1)−λr−1(Npr · x1 · · ·xr)−λr

sλ(1, Npx1, Np2x1x2, · · · , Nprx1 · · ·xr)
∏

1�i�j�r

(1 − Npj−ixi · · ·xj).

This allows us to deduce Conjecture 2 when n = 1. When p is a prime
and xi = Np−2si are the Satake parameters of a minimal parabolic Eisenstein
series on GLr+1, we thus confirm the agreement of the two formulas for the
Whittaker coefficient, one given by Conjecture 2, the other by the Shintani-
Casselman-Shalika formula. Since both sides are polynomials in the xi and p,
this is sufficient. The 1

2r(r + 1) factors (1 − Npi−j · xixi+1 · · ·xj) on the right
correspond to the normalizing factor.

Another very convincing piece of evidence for the formula (31) is the com-
parison with computations of Gautam Chinta when n = 2. Chinta computed
“correction polynomials” that are needed to create a multiple Dirichlet series
of type Ar for r � 5; the case r = 5 is contained in [11]; the correction poly-
nomial occupies about 2 pages at the end of the paper. It can be downloaded
from http://www.math.brown.edu/~chinta/a5poly. (We have also checked
cases r � 4, which Chinta has also worked out, though not in print.)

To compare Chinta’s result with (31), observe that the correct denom-
inator to correspond to the fifteen factors in the normalizing factor of the
GL6 Eisenstein series should have 1 − x2, 1 − y2, 1 − z2, 1 − w2 and 1 − v2,
where Chinta’s denominator has 1 − x, 1 − y, 1 − z, 1 − w and 1 − v. Thus
both the numerator and denominator need to be multiplied by (1 + x)(1 + y)
· (1+z)(1+w)(1+v). If this is done, and the resulting numerator is expanded,
one obtains a polynomial P (x, y, z, w, v) that we will interpret in terms of Gauss
sums of Gelfand-Tsetlin patterns. Let us write

P (x, y, z, w, v) =
∑

(k1,k2,k3,k4,k5)

h(k1, k2, k3, k4, k5)xk1yk2zk3wk4vk5 .
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One finds that there are 1,340 values of (k1, k2, k3, k4, k5) such that h(k1, k2, k3,

k4, k5) �= 0; each of these is a (usually uncomplicated) polynomial in Np of
degree up to 7. We will now explain how these can be related to Conjecture 1.

While Chinta works over Q, we will work over Q[i]; thus Chinta’s p be-
comes Np. Since the canonical map Z[i]× −→ (Z[i]/(1 + i)3)× is a bijection,
every odd prime has a unique generator p ≡ 1 modulo (1 + i)3. We choose the
additive character ψ(z) = e2πi re(z) in the definition of the Gauss sums. Then
g(pk, pl) is positive; more precisely, if l is even,

g(pk, pl) =

⎧⎨
⎩

φ(pl) if k � l,

−Npk if k = l − 1;
0 otherwise,

while if l is odd,

g(pk, pl) =
{

Npk+ 1
2 if k = l − 1;

0 otherwise .

With these values of g(pk, pl), let us take r = 5, l1 = l2 = . . . = l5 = 0, and
regard (29) as the definition of H(k1, k2, k3, k4, k5).

Theorem 2. With this notation,

h(k1, k2, k3, k4, k5) = Np−(k1+k2+k3+k4+k5)/2H(k1, k2, k3, k4, k5).

Proof (Sketch). We first explain the meaning of the factor

Np−(k1+k2+k3+k4+k5)/2.

To compare our normalization with Chinta’s, we would take his si to be
our 2si − 1

2 . Thus his x = Np2s1− 1
2 , y = Np2s2− 1

2 , z = Np2s3− 1
2 , w =

Np2s4− 1
2 and v = Np2s5− 1

2 . To compensate for the shifts by 1
2 , the factor

Np−(k1+k2+k3+k4+k5)/2 is needed.
This identity was verified by computer. There are 7,436 strict Gelfand-

Tsetlin patterns. These combine in various ways to produce the 1,340 nonzero
coefficients in P (x, y, z, w, v). The computations are too long to publish, but
a TEX dvi file of 1,012 pages reconciling our expression with Chinta’s compu-
tation may be found at [6].

We finally mention an alternative description in the untwisted case, when
the parameters mi in Z(s1, · · · , sr;m1, · · · , mr) are all equal to 1. In this case
the li are all equal to 0 for each p, and so the top row of the Gelfand-Tsetlin
patterns that occur is (r, r − 1, · · · , 0). An alternating sign matrix of size
(r + 1)× (r + 1) is one whose entries are 0’s and ±1’s, whose row and column
sums all equal 1, and whose nonzero entries in each row and column alternate
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in sign. A bijection between the alternating sign matrices and the Gelfand-
Tsetlin patterns with top row (r, r− 1, · · · , 0) was described by Mills, Robbins
and Rumsey [16]. Since these are the Gelfand-Tsetlin patterns that occur in
the untwisted case, we may take the parameter set in the sum (29) to be the
set of alternating sign matrices.

This is significant since alternating sign matrices are a generalization of
permutation matrices, that is, Weyl group elements, which appeared in the
parametrization of the stable terms. A necessary and sufficient condition for
the pattern to be stable by Definition 1 is that this corresponding alternating
sign matrix is a permutation matrix.

Gelfand-Tsetlin patterns are also in bijection with semistandard Young
tableaux, as is explained in Stanley [21, p. 314]. Some of the literature gener-
alizing Tokuyama’s results to classical groups is in the language of alternating
sign matrices and semistandard Young tableaux. See Okada [18] and Hamel
and King [14], [15]. We expect that this literature will become relevant when
one looks to other root systems beyond Ar.
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