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Global well-posedness of the
three-dimensional viscous primitive

equations of large scale ocean
and atmosphere dynamics

By CHONGSHENG CAO and EDRISs S. TITI

Abstract

In this paper we prove the global existence and uniqueness (regularity) of
strong solutions to the three-dimensional viscous primitive equations, which
model large scale ocean and atmosphere dynamics.

1. Introduction

Large scale dynamics of oceans and atmosphere is governed by the primi-
tive equations which are derived from the Navier-Stokes equations, with rota-
tion, coupled to thermodynamics and salinity diffusion-transport equations,
which account for the buoyancy forces and stratification effects under the
Boussinesq approximation. Moreover, and due to the shallowness of the oceans
and the atmosphere, i.e., the depth of the fluid layer is very small in compar-
ison to the radius of the earth, the vertical large scale motion in the oceans
and the atmosphere is much smaller than the horizontal one, which in turn
leads to modeling the vertical motion by the hydrostatic balance. As a result
one obtains the system (1)—(4), which is known as the primitive equations for
ocean and atmosphere dynamics (see, e.g., [20], [21], [22], [23], [24], [33] and
references therein). We observe that in the case of ocean dynamics one has to
add the diffusion-transport equation of the salinity to the system (1)—(4). We
omitted it here in order to simplify our mathematical presentation. However,
we emphasize that our results are equally valid when the salinity effects are
taking into account.

Note that the horizontal motion can be further approximated by the
geostrophic balance when the Rossby number (the ratio of the horizontal ac-
celeration to the Coriolis force) is very small. By taking advantage of these
assumptions and other geophysical considerations, we have developed and used
several intermediate models in numerical studies of weather prediction and
long-time climate dynamics (see, e.g., [4], [7], [8], [22], [23], [25], [28], [29], [30],
[31] and references therein). Some of these models have also been the subject
of analytical mathematical study (see, e.g., [2], [3], [5], [6], [9], [11], [12], [13],
[15], [16], [17], [26], [27], [33], [34] and references therein).
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In this paper we will focus on the 3D primitive equations in a cylindrical
domain

Q=M x (—h,0),

where M is a smooth bounded domain in R2:

ov ov >
(1) E—l—(v-V)v—l—w%—FVp—ka><U+L1U—O7
(2) O:p +T =0,
(3) V- -v+d,w=0,
oT oT
(4) — +v- VI +w-—+ LT =Q,

ot 0z

where the horizontal velocity field v = (v, v2), the three-dimensional velocity
field (v1,v2,w), the temperature T and the pressure p are the unknowns. f =
fo(B+1v) is the Coriolis parameter and @ is a given heat source. The viscosity
and the heat diffusion operators L1 and L are given by

1 1 02
5 [1=—— A — ~_
(5) ! Rey Rey 022’

1 1 02

© A T e
where Re;, Res are positive constants representing the horizontal and verti-
cal Reynolds numbers, respectively, and Rtq, Rty are positive constants which
stand for the horizontal and vertical heat diffusion, respectively. We set
= (0r,0y) to be the horizontal gradient operator and A = 97 + 9; to be
the horizontal Laplacian. We observe that the above system is similar to the
3D Boussinesq system with the equation of vertical motion approximated by
the hydrostatic balance.
We partition the boundary of 2 into:

(7) Iy ={(z,9,2) € Q:2=0},
(8) Ty ={(2,9,2) € Q:2z=—h},
(9) s ={(z,y,2) € Q: (z,y) € IM, —h < z <0}

We equip the system (1)—(4) with the following boundary conditions: wind-
driven on the top surface and free-slip and non-heat flux on the side walls and
bottom (see, e.g., [20], [21], [22], [24], [25], [28], [29], [30]):

ov or .
(10) OHFU.%—}LT,U)—O,E——CV(T—T),
v oT
(11) on Ty : = 0, w=0, o 0;
. ov 0T
(12) onFS.v-n—O,%xn—O,%—O,
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where 7(x,y) is the wind stress on the ocean surface, 7 is the normal vector
to I's, and T™*(z,y) is typical temperature distribution of the top surface of
the ocean. For simplicity we assume here that 7 and T* are time independent.
However, the results presented here are equally valid when these quantities are
time dependent and satisfy certain bounds in space and time.

Due to the boundary conditions (10)—(12), it is natural to assume that 7
and T™ satisfy the compatibility boundary conditions:

0
(13) T-ﬁzo,a—;xﬁzo, on OM.
oT*
(14) o 0 on OM.
In addition, we supply the system with the initial condition:
(15) U(l’,y,Z,O) :UO(xayaz)'
(16) T(w,y,z,(]) :TO(x7y>Z)‘

In [20], [21] and [33] the authors set up the mathematical framework to
study the viscous primitive equations for the atmosphere and ocean circulation.
Moreover, similar to the 3D Navier-Stokes equations, they have shown the
global existence of weak solutions, but the question of their uniqueness is still
open. The short time existence and uniqueness of strong solutions to the
viscous primitive equations model was established in [15] and [33]. In [16]
the authors proved the global existence and uniqueness of strong solutions to
the viscous primitive equations in thin domains for a large set of initial data
whose size depends inversely on the thickness of the domain. In this paper
we show the global existence, uniqueness and continuous dependence on initial
data, i.e. global regularity and well-posedness, of the strong solutions to the
3D viscous primitive equations model (1)—(16) in a general cylindrical domain,
), and for any initial data. It is worth stressing that the ideas developed in
this paper can equally apply to the primitive equations subject to other kinds
of boundary conditions. As in the case of 3D Navier-Stokes equations the
question of uniqueness of the weak solutions to this model is still open.

2. Preliminaries

2.1. New Formulation. First, let us reformulate the system (1)-(16) (see
also [20], [21] and [33]). We integrate the equation (3) in the z direction to
obtain

w(x7 y? Z7 t) = w(x7 y7 _h7 t) - / v : v(m7 y? €7 t)dé.'
—h
By virtue of (10) and (11) we have

(17) Wy, 2 t) = — / h Vol y, €, £)de,
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and
0 0
(18) /_hV-U(l‘,y,f,t)dﬁ—V'/_hv(ﬂc,y,é,t)dé—().
We denote
_ 1 9
—h

In particular,

1 0
(20) u(z,y) = E/ v(z,y,£)d§,  in M,
—h
denotes the barotropic mode. We will denote by
(21) v=0v-—71,

the baroclinic mode, that is the fluctuation about the barotropic mode. Notice
that

(22) T =0.
Based on the above and (12) we obtain
(23) V.o=0, in M,
and
(24) sei=0, Lxi—o oM
U= — X7 = on OM.
Y aﬁ Y

By integrating equation (2) we obtain
z
p(z,y,2,t) = —/ T(x,y,& t)dE + ps(z, y, t).
“h

Substituting (17) and the above relation into equation (1), we reach

0 z 0
@) G ([ Vo) g

+nu(e0) =V [ Tl 6 06+ FF x o+ Lio =0
—h

Remark 1. Notice that due to the compatibility boundary conditions (13)
and (14) one can convert the boundary condition (10)—(12) to be homoge-
neous by replacing (v, T') by (v + WT, T + T*) while (23) is still true.
For simplicity and without loss of generality we will assume that 7 = 0, T*
= 0. However, we emphasize that our results are still valid for general 7 and
T* provided they are smooth enough. In a forthcoming paper we will study
the long-time dynamics and global attractors to the primitive equations with
general 7 and T™.
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Therefore, under the assumption that = = 0, 7" = 0, we have the following
new formulation for system (1)-(16):

(26) %—Fle—i—(v Vv—(/ V-ou(z,y,k, )d§>

- Vpa(a,y,t) — V/ T(2,y,€,0)dE + [F x v =0,

(27) 6_T+L2T+'U VT — (/ V-u(z,y,E, )df) =Q,

ot

ov ov ov
(28) az‘z_ﬂ D 02|,y v, "o ans ’
(29) (0.T+aT)|,_y=0; 0.T|,__,, =0; 8nT]FS =0,
(30) U($7y7270) zvo(x,y,z),
(31) T(a:,y,z,O) :TO(J"??/) Z)

2.2. Properties of U and v. By taking the average of equations (26) in the
z direction, over the interval (—h,0), and using the boundary conditions (28),
we obtain the following equation for the barotropic mode

(32) %4—(@ Vv—(/ V oz, €, )d£>—+Vps(:E u. )

—V[ / / xyﬁtdﬁdz]—i—kav—R—Av—O

As a result of (22), (23) and integration by parts,
(33)

(v-V)v— </_Zhv-v(ac,y,§,t)d§> % =@ -V)u+[@-V)v+ (V-0)7].

By subtracting (32) from (26) and using (33) we obtain the following equation
for the baroclinic mode

(34)

g—;—FLw—i-(v VU—</ V-u(z,y,¢, )d§> o

+@-V)u+ (@ -V)o—[v-V)o+ (V-0)7]

z 1 0 g o
_v<lhT(xay7§’t)d§_E/_h/_hT(ZC,y,g,t)dé'dZ> + fkxv=0.

Therefore, v satisfies the following equations and boundary conditions:
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v 1 = = = >
(35) E—R—QAU—F(U Vo +[@-V)o+ (V-0) 0] + fk xT
1
+V |:ps(x7y>t)_ﬁ / (x,y,g,t) d§ dZ:| :0,
—h

(36) V.-v=0, in M,
(37) v-n=0 @x 0, n oM
U= B = © ’

and v satisfies the following equations and boundary conditions:

(38) ‘;—fulm(a-vw— </ v-a(x,y,g,t)dg> 9v

+ @V +@- VU —[0-V)o+ (V-0) 0]+ fk xD

v(/_zh (a;ygtdg—// xy,gtdgdz>:,

v o N v
g 0, & =0, Tty =0, = x7
0z|,_g 0z

(39) o . 57

=0.
I

Remark 2. We recall that by virtue of the maximum principle one is able
to show the global well-posedness of the 3D viscous Burgers equations (see, for
instance, [19] and references therein). Such an argument, however, is not valid
for the 3D Navier-Stokes equations because of the pressure term. Remarkably,
the pressure term is absent from equation (38). This fact allows us to obtain a
bound for the L% norm of v, which is a key estimate in our proof of the global
regularity for the system (1)-(16).

2.3. Functional spaces and inequalities. Denote by L?(Q), L?(M) and
H™(Q), H™(M) the usual L2-Lebesgue and Sobolev spaces, respectively ([1]).
Let

40) o, = (folo(z,y, )P d$dyd2)5 for every ¢ € LP(),
! (fM |p(z, y)|P dwdy) ) for every ¢ € LP(M).
Now,
~ v ov
- o0 Q . = _— =
Vi {v € C™(Q) 9z, 0, |, 0,
URETIN :0,@><n :O,V-EZO},
s on r.
~ oT oT oT
v, { cox@: G —u(Gea >z:0 o Gl 0}

We denote by V; and V4 the closure spaces of Vi in H'(), and Vs in H(Q)
under H!-topology, respectively.
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Definition 1. Let vg € V1 and Ty € Vs, and let 7 be a fixed positive time.
(v,T) is called a strong solution of (26)—(31) on the time interval [0, 7] if it
satisfies (26) and (27) in a weak sense, and also

veC([0,T],V1) N L([0, 7], H*(2)),
TeC([0,T],V2) N L*([0, 7], H*(2)),

fi—;’ e ([0, 7], L*(2)),
e 10,71, 27(2).

For convenience, we recall the following Sobolev and Ladyzhenskaya’s in-
equalities in R? (see, e.g., [1], [10], [14], [18)):

(41) lllzeany < Colloli 2 11 7 ary:
(42) léllzsan < CollolFoian 161 ary:

for every ¢ € H*(M), and the following Sobolev and Ladyzhenskaya’s inequal-
ities in R? (see, e.g., [1], [10], [14], [18]):

1/2 1/2
(43) lull oo <co||u||Lé(Q [
(44) lull o) < Collull ey

for every u € H'(Q). Here Cj is a positive constant which might depend on
the shape of M and © but not on their size. Moreover, by (41) we get

(45) 161 Rean = 6P Eean < Col &P Zacan I8P B
< CollélSean ( [ 1ot 1w da:dy> 1610

for every ¢ € H'(M). Also, we recall the integral version of Minkowsky in-
equality for the LP spaces, p > 1. Let Q1 C R™ and Qs C R™2 be two
measurable sets, where m; and mg are positive integers. Suppose that f(&,n)
is measurable over 21 x 5. Then,

(46) [ / ( 5 If(é“,n)!dn)pdé] " / < A If(é,n)\pdé“)l/pdn-

3. A priori estimates

In the previous subsections we have reformulated the system (1)—(16) and
obtained the system (26)—(31). The two systems are equivalent when (v, T)
is a strong solution. The existence of such a strong solution for a short in-
terval of time, whose length depends on the initial data and the other phys-
ical parameters of the system (1)—(16), was established in [15] and [33]. Let
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(vo, Tp) be given initial data. In this section we will consider the strong solution
that corresponds to the initial data in its maximal interval of existence [0, 7).
Specifically, we will establish a priori upper estimates for various norms of this
solution in the interval [0, 7,). In particular, we will show that if 7, < co then
the H! norm of the strong solution is bounded over the interval [0, 7). This
key observation plays a major role in the proof of global regularity of strong
solutions to the system (1)—(16).

3.1. L? estimates. We take the inner product of equation (27) with T, in
L?(€2), and obtain

1d||T|3 1 9 1
i 1l | T v/ _
5 at Rt IVTIlz + Rt2’

z oT
= /QQT drdydz — /Q <v -VT — </_hV : v(:n,y,f,t)d§> E) T dxdydz.

After integrating by parts we get

(47) —/Q (v VT — (/hv . v(x,y,f,t)df) g—f) T dxdydz = 0.

As a result of the above we conclude
1d||T|3 1
LTy 1
2 dt Rty

- /Q QT dadydz < Q2 | T2

IT-05 + ol T (= = 0)13

1
IVTI3 + - IT:]3 + el T(= = 0)]3
Rty

Notice that
(48) ITII3 < 2h*(|T2]3 + 2h/|T(= = 0)I3.
Using (48) and the Cauchy-Schwarz inequality we obtain

diTE , 2
dt Rty

(50) <20” Rt + Q3

1
(49) HVTH§+R—t2HTzH§+aHT(Z:0)||§

By the inequality (48) and thanks to Gronwall inequality the above gives

(51) T3 < e 2077 | Tol3 + (2h* Rtz + 2h/a)?|Q|3,

Moreover, we have

50 [ |G IVTIR + g I + a7 =0l as

h
<2(1* Rez + Z) QI3 ¢ + | Tol3
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By taking the inner product of equation (26) with v, in L?(£2), we reach

Ldfjoll; e

:/Q [(U-V)U (/_hV-v(x,y,f,t)d§> %} v dedydz
—I—/Q <fE><v+Vps—V</_hT(:U,y,5,t)d§>> v dedydz.

By integration by parts we get

(53) /Q [(v V) — (/_h v. v(m,y,g,t)dg> %] v dedydz = 0,

By (36) we have

(54) / Vps - v dedydz = h/ Vps - U dxdy = —h/ ps(V - 0) dedy = 0.
Q M Q

Since

(55) (fk xv)-v=0,

then from (53)—(55) we have

1d|vl3

3 Vel B

~ [ ] 1.0 de(7 - v) dadyds < 01T [Tl
QJ-h
By Cauchy-Schwarz and (51) we obtain

dol 1 L
2+ e V0l + sl

< W2Rey |ITI3 < h2Rex (ITol3 + (262 Res + 20 /)2 QI3)
Recall that (cf., e.g., [14, Vol. I p. 55])
loll3 < Carl[Voll3.

By the above and thanks to Gronwall’s inequality we get

(56) oll3<e” @ = (hlvgll3 + llvoll3)
+Cuh?Red [ | Tol3 + (2h2 Rty +2h/a)?||Q3 ] -

Moreover,

t
1 2 1 2
61 [ | V0B + Gl
< 2 Rer (ITo13 + (242 Rea + 20/ 1QIB) ¢+ (Aol + 1l
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Therefore, by (51), (52), (56) and (57) we have
(58)

LT 1
o)1+ [R—eJ'W(S)"%*R—eJ’”z(S)"% ds + | ()3

tr 1
+ [ VT + TR + a7 =0))E] ds < Ko
0 1 2
where

(59) K1(t)=2(h* Rta + h/a)||Qll5 t + (Rl[o]l3 + |15ol3)
+ (14 Cuh®Ref + h*Rer t) [ |To|l5 + (2h* Rt2 +2h/a)?| Q)3 ] -

3.2. LY estimates. Taking the inner product of the equation (38) with
[0]40 in L?(Q), we get

1d|v]I§
6 di

1 'Y ~ ~212 |~
+R—€2/Q(\vz|2\v!4+\azyv|2| [32) dadyd:

:—/Q{(T).V)ﬂ— </;V.5(w,y,£,t)d§> g;g+(5'v)6+(5-v)5
~[@- Vo +(V-0) 0] + fEx

z 0 P
-V (/;h T(x,y,&,t)dE — %/_h /_hT(x’y’g’t)dgdz)} . W|45 dadydz.

Integrating by parts we get

(60) —/Q [(5- V) — (/_Zhv - 5(x,y,§,t)d§> g—z] 9% dedydz = 0.

1 51417 ~1212 |~
b [ (VORI + [P ) dedy:

Since
(61) (fE x a;) )4 =0,
then by (36) and the boundary condition (28) we also have
(62) /Q (@ - V)3 - [3'5 dedydz = 0.
Thus, by (60)—(62),

éd”jt”g + R%l/g (|v5|2|m4 + v m?) dadydz

19~ 912 1~
Tes ; (\vzlz|v\4+|8z\v]2} ]v|2> drdydz
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:—/ (G-V-T VT (V05
Q

z 1 [0 » o
v </_hT(x,y,§,t)d€ — E/—h /_hT(x,y,§,t)d§dz)} 15| drdyds.

Notice that by integration by parts and boundary condition (28),

- [[@vr-Tvrr @ e
-V < /_ h T,y &, 1)dg — % /_ i /_ h T(fﬁ,y,&t)dﬁdz>] 9|4 dadydz
—/Q (V- 0) - 515 + (5 V)([35) - 7 — 55 O, ([5]*%)

z 0 z
([ remenas— [ [ T o) v 0D

Therefore, by Cauchy-Schwarz inequality and Hoélder inequality we obtain

L}, 1 N
6 dt R_el/QOW' 0]* + |V[o)*|” 9] ) dadydz
+R—62/Q(’Uz| 7] —i—’@z|v| ’ [ ) dzdydz

0
SC/ [m/ Vo [7]° dz] dxdy
M —h
0 0
+C/ [(/ 92 dz> (/ v [t dz)] dady
M —h —h
0
+C/ [\T|/ (Vo [o]* dz] dxdy
M —h
0 1/2 0 1/2
< C/ 7| </ V7|2 [o) dz) </ |9 dz) ] dxdy
M —h —h
0 0 1/2 0 1/2
+c/ </ ok dz) (/ Vol o] dz> (/ ok dz) ] dudy
v | \J-n “h _n
o 0 1/2 0 1/2
+c/ 7] </ Va2 o] dz> (/ ok dz) ] daxdy
M —h —h
1/2 0 2
< Cllsan ([ 15 ol dodya ( [ ([ ) da:dy)
Q M —h
0 4 1/4
+C (/ (/ bl dz> dz:dy)
M —h

1/4
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1/2 0 2
><< / |vo|? o)t dmdydz) ( / ( / bl dz) dmdy)
Q M —h
L 1/2 0 2
O T lean < / Vo2 |5|4da:dydz> ( / ( / |5|4dz> da:dy)
Q M —h

By using Minkowsky inequality (46), we get

0 2 1/2 0 1/2
</ </ biN dz) dxdy) < C/ (/ biks da:dy) dz.
M \J-h ~h \JM

By (45),

2
/ [9]'? dxdy < Cj </ bl dxdy) (/ b\l d:cdy) + </ 5 dxdy)
M M M M

Thus, by Cauchy-Schwarz inequality,
(63)

(/M </_(; b dz>2 dxdy)

Similarly, by (46) and (42),
(64)

</ (/ o dz>2 dxdy> <c/ </ ok d:ndy)l/Q dz

< C/ 15126y (VB 220ty + T 22any) dz < CLBIIE (VT2 + 13]]2)

1/4

1/4

1/2 1/
<Clly ( [ e dmdydz) 70

1/2

(65)

(/M </_(; bk dz>4 d:ndy)

1/4 0 1/4

SC/ (/ bl dxdy) dz

<c / 15155 0ry (IVBUeE g + 11525 )
3/2 1/2 1/2

<clalg (Ivally + 19115*)

Therefore, by (63)-(65) and (41),

Ldol} 1 e
6 dt R—el/ﬂ(lwl o]* + |V[o]?|” [9] ) dxdydz
1
bz [ (TP + 0.7 o) dodya:
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1/2 1/2)1~13/2 3/4 1/2 1/2
< C[lly"” [Vl “[[o]lg (/QIWI2 o]* dwdyd2> + ClIBlly” [Ivolly ~I1o)1g
1/2
O (1952 + 71)2) ( JcHES dmdydz)

1/2
1/2 1/2 3/2 1/2 1/2 ~12 |~
+CITIl> VT80 (19515 + 1515 ( /Q vl [o" da:dydz> .

Thanks to the Young and the Cauchy-Schwarz inequalities,
d||v]g
dt

1 9~ ~ ~
+ —/ <|VU\2]0|4 + ‘V|v|2‘2 |v|2> dxdydz
Re1 Ja

1 . Iyt ~ ~
+R—62/Q (\vzﬂv\‘“r \8,3!142}2]1)]2) dzdydz

< C|[@)3 IVoli3I[Tlg + ClIzlgI Vol + CIITIS (VT3 + CllolIo]g-
By (58) and Gronwall inequality, we get

~ tro1 o
(66) [[5(1)]¢ + / (— / VP dedyd-
0 R@l Q

1 ~ 12~
+R—62/9v2|2\v]4 dxdydz) < Kg(t),
where
(67) Ki(t) = 10 [fooll$ ) + K3(1)]
Taking the inner product of the equation (27) with |T|*T in L?(2), and
by (27), we get

1d||T§
6 dt

5
- T1*T|* dedyd
b [ VTPIT dody:
5
b2 / (2T dedydz + o T(z = 0)[¢
Rty Jo

= /Q|T4T dxdydz
Q

— /Q<U~VT— (/_ V- o(z,y, €, t)d§> )yT\‘*T dxdydz.

By integration by parts and (36),

(68) —/Q<u VT — </ V-o(x,y, &, )d§> )\T|4dedydz—o

As a result of the above we conclude
1d||T)8
6 dt

) )
— | |VTP|T|* dzdyd —/Tz2T4ddd
+ g [ IVTPITY dodydz -+ o [ (2 PITI dody:

+aT(z = 0)[¢ = /Q QITI'T dudydz < | QIls|| T
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By Gronwall, again,

(69) 1T N6 < QI () t + 1 Toll 1 ()-

3.3. H' estimates.

3.3.1. ||V||2 estimates. First, we observe that since v is a strong solution
on the interval [0,7,) then Av € L?([0,7.), L>(M)). Consequently, and by
virtue of (36), AT-7 € L*([0,7:), H~/2(0M)) (see, e.g., [10], [32]). Moreover,
and thanks to (36) and (37), we have Av -7 =0 on OM (see, e.g., [35]). This
observation implies also that the Stokes operator in the domain M, subject to
the boundary conditions (37), is equal to the —A operator.

As a result of the above and (36) we apply a generalized version of the
Stokes theorem (see, e.g., [10], [32]) to conclude:

/ Vps(2,y,t) - Av(z,y, t)dzdy = 0.
M

By taking the inner product of equation (35) with —Aw in L?(M), and
applying (36) and the above, we reach

1d|[V[3
2 dt

:/M{(E-V)E—F (T V)7 +(V-9) m}-A@dxdy+/MfEx5.Av dady.

1
— IATII?
+ gorllal?

Following similar steps as in the proof of 2D Navier-Stokes equations (cf. e.g.,
[10], [32]) one obtains

[ @900 dedy| < Ol 0l ol

Applying the Cauchy-Schwarz and Hoélder inequalities, we get

0
‘/ (v-Vo+(V-0)v-Av dxdy‘ < C/ / [v| |VY| dz |Av| dxdy
M MJ-h
0 1/2 0 1/2
< c/ (/ 2 |Vl d,z) (/ v dz> AT
M —h —h
i 0 2 1/4
<C / </ 7% |V dz) da:dy]
S \Jn
1/4

[ 0 2 1/2
X / ( / V| dz> dxdy] [ / |AT|? dwdy}
i M —h M

1/4
< vy ( [ BT dedyds) ol

dxdy
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Thus, by Young’s and Cauchy-Schwarz inequalities,

d|Valf | 1

T e 1T < Ol vl

+C’HV5||§+C’/ PV dedydz + O|[5]2
Q

By (58), (66) and thanks tothe Gronwall inequality, we obtain

1 t
(70) IVol3+ — / AD2 ds < Ko(t),
R€1 0
where
(71) Ka(t) = ¢4 [[juolfys ) + Ka(t) + Ko(t)]

3.3.2. ||lvs||2 estimates. Since u = v, it is clear that u satisfies

0 z 0
(72) 8—1;+L1u+(v-V)u— </_hV-v(w,y,§,t)d§> 8_1,:
+(u-V)v— (V-v)u+ fkxu— VT =0.

Taking the inner product of the equation (72) with v in L? and using the
boundary condition (28), we get

1d|ull3
2 dt

1 1
——|IVul|3 + —||0-ull3

_ _/Q <(U.v)u_ (/_Zhv-v(x,y,g,t)a%) %) w dadydz

_/Q((u.v)v_(V-v)u—|—fE><u—VT)-udxdydz.

From integration by parts we get

(73) —/Q ((v V)u— </_Zhv - u(x,y,g,t)dg) %) u ddydz = 0.

Since
(74) (fk xu)-u=0,
then by (73) and (74) we have
1 dl|ull3 1 2 1 2
| | PR — o,
3T [Vl 4 0.l

= —/Q((U-V)v— (V-v)u—VT) - u dedydz

éc/uwvmvmmwm+wmﬂwwz
Q
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< Cllvlls [[ullsVullz + T2 [[Vull2
1/2 3/2
< Cllolls s [Vl + 1Tz [ Vull2
By Young’s inequality and Cauchy—Schwarz inequality, we have

d”“”z
dt

—IIV I3+ 52— Ha ull3 < Cllolls lull? + CIIT3

<C (IVallz + 13lls) llul3 + CIT]3-
By (58), (66), (70), and Gronwall inequality,

1 [t 1/t
2 2 2
I S <
1) Bt [ Ve + g [ o)1 ds < Koo,
where
(76) K (1) = MG g 30 + Ka(0)]

3.3.3. ||Vvl|2 estimates. By taking the inner product of equation (26) with
—Awv in L%*(Q), we reach

1dHVUH% 1 2 1 2
— =21+ —||A — |V
R o [l ot N |

= —/Q |:(U-V)v— (/Zhv-v(x,y,g,t)dg) g—

—i—fE X v+ Vps —V (/ T(m,y,f,t)df)] - Av dzdydz
“h

0 0
= C/ [M [Vl +/ |Vl dz|v,| +/ VT dz] |Av| dzdydz
Q —h —h
< Cllllze) VUl a1 Av]2

0 0
+C/ </ |Vl dz/ lv.||Av| dz) dzxdy 4+ C||VT||2 ||Av||2.
M —h —h

Notice that by applying Proposition 2.2 in [5] with v = v, f = Av and g = v,,
we get

0 0
/ </ |Vl dz/ |v.||Av| dz) dxdy
M —h —h

1/2 1/2 1/2 3/2
< ClIVlly? o 3" [9os 1 | Av 5.
As a result and by (43) and (44), we obtain

1d|[ Vol
2 dt

2 1/2 1/2 3/2
< C (Iwllzoe) + 19015210 1152) 10521 A0]3% + AIV Tl || Av]l.

1 1
—GHAU”%JF —HV%H%
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Thus, by Young’s inequality and Cauchy-Schwarz inequality,

d|[ V|3

1 1
—||Av[|3 + = Vv |13
e 183+ v
4 2 2 2 2
< C (Il + IV0IBlo=13) 11V0ll3 + CIVTIB.

By (58), (66), (70), (75) and thanks to Gronwall inequality, we obtain

trq 1
m  Ivelg+ [ (R—el||Av<s>||%+R—@nwz@né) ds < Ky (t),

where

2/3

(78) Ky () = Ko O t+K(0) Ko () [HUO\|12ql(Q) n Kl(t)] .

3.3.4. ||T||g: estimates. Taking the inner product of equation (27) with
—AT —T,, in L*(Q), we get
1A (VT3 + I 7213 + o V(= = 0)|3)
2 dt
1 1

1 1
—ATIE + (= 4+ =) (IVT|2 + a|[VT(z = 0)[12) + —— || To. |2

:/ [U'VT—(/ZV~Ud§>TZ—Q:| [AT +T,.] dedydz
Q —h

SC/ (0| IVT| + |Q|) |AT + T..| dzdydz
Q

0 0
+/ U |Vl dz/ IT.| |AT + T..| dz} dady
M —h —h

< Clolls IVTls (IATI + V.13 + 175013) 2
+CVolly 21 A0y 2Tl (IATIE + (VT3 + 1 T=013)
+1Qllz (IATIZ + VT2 IE + I172-13)
< C|llolls 97132 + 901y 21 a0) 21T 15| (IATIZ + 1T + 1= 13) ™

1/2
+lQll2 (IATIZ + IVT2)3 + 1 T22115)

By Young’s inequality and Cauchy-Schwarz inequality,

d (VT3 + I Z:]3 + el VI(z = 0)[3)
dt

1 1 1
—AT3+ (| o+ = T.|3 T(z=0)|3
+ e IATIE+ (g + 7 ) UV TIB+ all V(e o)) +

<C (llvlls + IVelzlavlz) (IVTI5+ I1Z:113) + ClQl3.

1

By (66), (77), and Gronwall inequality, we get
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t
1
(79) HVTH§+\ITz!\§+a|!VT(z=0)II§+/O [R—tlHATH%

1 1 1
Dt TR vTz2 vT :02—T222d<K
+ (g + ) (VT8 + IV TG = O1) g7l s <
where
(80) Kt — eK(s(t)t-i-Kv(t) |:HT0H§{1(Q) 4 HQH%} '

4. Existence and uniqueness of the strong solutions

In this section we will use the a priori estimates (58)—(79) to show the
global existence and uniqueness, i.e. global regularity, of strong solutions to
the system (26)—(31).

THEOREM 2. Let Q € HY(Q), vg € V4, Ty € Vo and T > 0, be given.
Then there exists a unique strong solution (v,T') of the system (26)—(31) on
the interval [0, 7] which depends continuously on the initial data.

Proof. As indicated earlier the short time existence of the strong solution
was established in [15] and [33]. Let (v, T') be the strong solution corresponding
to the initial data (vg,Tp) with maximal interval of existence [0,7;). If we
assume that 7, < oo then it is clear that

1im;up (loll 2 ) + 1T mrg)) = oo
t—7,
Otherwise, the solution can be extended beyond the time 7,. However, the
above contradicts the a priori estimates (75), (77) and (79). Therefore 7, = oo,
and the solution (v, T') exists globally in time.

Next, we show the continuous dependence on the initial data and the
the uniqueness of the strong solutions. Let (v1,71) and (vg,T>) be two strong
solutions of the system (26)—(31) with corresponding pressures (ps)1 and (ps)2,
and initial data ((vg)1, (To)1) and ((vg)e, (To)2), respectively. Denote by u =
v] — v2,qs = (ps)1 — (ps)2 and @ = T — T5. It is clear that

)
(81) a_? + Lyu+ (01 V)u+ (u- Voo

z ou z Ovg
- (/hV'Ul(w7y7€7t)d§) E - </hV’U((L'7y,§,t)d§> E

+fk X u+ Vg —V (/ e(x,y,g,t)dg) =0,
—h

z
(82) %+L20+01-V9+U-VT27 </ V~vl(:v,y,§,t)d§> 99
—h

ot 0z
: Ty
_</_hvu(l‘ay7£>t)d£>a_oa
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(83) ’LL(?L‘, Y, %, t) = (Uo)l - (00)27
(84) 0(1‘, Y, z, 0) = (TO)I — (To)g.

By taking the inner product of equation (81) with u in L?(€2), and equation
(82) with 6 in L?(2), we get

1d|[ul)3 1 9, 1
2 dt _%}%qHVUH2+_Reg

[ s 9= ([ 9ontoe o) 3
— (/_Zhv . u(x,y,f,t)d£> %] ~u drdydz

—/ [fExu+Vqs—V (/z G(x,y,f,t)dg)} - dadydz,
Q —h

1
Hvﬂz tJ&ﬁ+aW@=®M

z 00
:—/Q [vl-VH—l—u-VTg— (/_hv-vl(x,y,f,t)d§> EP
— (/z V-u(x,y,&,t)dﬁ) %} 0 dxdydz.

By integration by parts, and the boundary conditions (28) and (29), we get

(85) —/Q((vl-V)u—</_zV oz, 9, €,1) ) ) w dzdydz = 0,
(86) —/Q<v1 v9—</ vz, 9,6, )d§> g—> 0 dedydz — 0.

Since
(87) (fExu)-uzo,
and by (85), (86) and (87) we have

ez 13

and

1ﬂWb
2 dt

1 d||ull3 1 2 2
S vl + B
—/(u-V)vg-udxdydz—}—// V-u(w,y,g,t)dg% -u drdydz,
Q QJ-h 0z
then

Ldj|o3 | 1 g, 1 2 2

———= 4+ —||VO —1|6. 0(z=0

S 002 ¢ 9013 + 1013 + allo(= = 0) 13

# T
— / (u-V)T560 dedydz + / / V- u(z,y, &, t)d&ﬁﬁ drdydz.
9 aoJ_n 0z
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Notice that

(88) tﬂwVMwmmestMmeﬁ
Q
1/2 3/2

< OVl lz|lully* || Vul3,

(89) /wwmwdwwzﬂwWMwwwﬁ
Q
1/2 1/2
< C|IVTll2)10115 270115 Vul 2.

Moreover,

/ / V- u(x,y,ﬁ,t)dﬁ% - daxdydz
aJon 0z
0

0
S/ </ |Vul dz/ \8zv2||u]dz> dxdy
M —h —h
0 0 1/2 0 1/2
S/ / |Vul|dz (/ \8zvg|2dz> </ |u\2dz) dxdy
M —h —h —h

([, ([ ) w) | |
X (/M (/_i\@zvg\de>2 dmdy>4 </M (/_[;]u]de)2 dmdy>4.

By Cauchy-Schwarz inequality,

(90) (/M </_(; |vu|d,z>2 dxdy) - < C||Vulf2.

By using Minkowsky inequality (46) and (41), we obtain

(91) (/M </_(; |u|? dz>2 dmdy) mgc/_i (/M ||t dxdy>1/2 dz

0
<c / | V] dz < Cllullo]| Vullz,
—h

and

0 2 0 1/2
(92) ( / ( / 0, v5 |2 dz> dxdy) <C / < / 0, va|* da:dy) dz
M \J—-h —h \UM

0
< 0/ 10,02V D,05] dz < C|8,03]]| VD02l
—h

1/2
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Similarly,

(93)

z T
/ / V. u(m,y,f,t)dfgﬁ drdydz
aJ-n 0z
1/2 1/2 1/2 1/2
< C|[Vullal|0:To 1y [Vo-To 11y 6113011y >.
Therefore, by estimates (88)-(93), we reach

1d (Jluf3 +119113)
2 dt

+ eIVl + sl + 19613
6.1+ alo(z = 0)B
< C (IVeallz + [9vally > 19000132 ) a2 V3
+C|IV T 6]y V6] |Vl
+C||Vulla|0-T11y * V0. Tall3 * 16115 * V6115
By Young’s inequality, we get

dlul3
dt

< C([IVuzllz + IVTalz + [[0:02[3]V Oz 023 + [|0:-T2|[3]| VO T2 13)
x (llull3 + 11913) -
Thanks to Gronwall inequality,
lu(@)I13 + 10113 < (llult = 0)I3 + [6(t = 0)[3)
<expfc | (190l + 19T+ o-ea()BIV-vas)

+ 10:T5(5) 31 VO-To(5)]13) s}
Since (ve,T?) is a strong solution,

lu(t)]13 + 100813
< (Jlut=0)[I3+ [|0(t = 0)||3) exp{C (Kit+ Kit+ K. Ky + K})}.

The above inequality proves the continuous dependence of the solutions on the
initial data; in particular, when u(t = 0) = 0(t = 0) = 0, we have u(t) = 6(t)
= 0, for all ¢t > 0. Therefore, the strong solution is unique. O
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