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Dynamical delocalization in
random Landau Hamiltonians

By François Germinet, Abel Klein, and Jeffrey H. Schenker

Abstract

We prove the existence of dynamical delocalization for random Landau
Hamiltonians near each Landau level. Since typically there is dynamical local-
ization at the edges of each disordered-broadened Landau band, this implies
the existence of at least one dynamical mobility edge at each Landau band,
namely a boundary point between the localization and delocalization regimes,
which we prove to converge to the corresponding Landau level as either the
magnetic field goes to infinity or the disorder goes to zero.

1. Introduction

In this article we prove the existence of dynamical delocalization for ran-
dom Landau Hamiltonians near each Landau level. More precisely, we prove
that for these two-dimensional Hamiltonians there exists at least one energy E

near each Landau level such that β(E) ≥ 1
4 , where β(E), the local transport

exponent introduced in [GK5], is a measure of the rate of transport in wave
packets with spectral support near E. Since typically there is dynamical local-
ization at the edges of each disordered-broadened Landau band, this implies
the existence of at least one dynamical mobility edge at each Landau band,
namely a boundary point between the localization and delocalization regimes,
which we prove to converge to the corresponding Landau level as either the
magnetic field goes to infinity or the disorder goes to zero.

Random Landau Hamiltonians are the subject of intensive study due to
their links with the integer quantum Hall effect [Kli], for which von Klitzing
received the 1985 Nobel Prize in Physics. They describe an electron moving
in a very thin flat conductor with impurities under the influence of a constant
magnetic field perpendicular to the plane of the conductor, and play an impor-
tant role in the understanding of the quantum Hall effect [L], [AoA], [T], [H],
[NT], [Ku], [Be], [AvSS], [BeES]. Laughlin’s argument [L], as pointed out by
Halperin [H], uses the assumption that under weak disorder and strong mag-
netic field the energy spectrum consists of bands of extended states separated
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by energy regions of localized states and/or energy gaps. (The experimental
existence of a nonzero quantized Hall conductance was construed as evidence
for the existence of extended states, e.g., [AoA], [T].) Halperin’s analysis pro-
vided a theoretical justification for the existence of extended states near the
Landau levels, or at least of some form of delocalization, and of nonzero Hall
conductance. Kunz [Ku] stated assumptions under which he derived the di-
vergence of a “localization length” near each Landau level at weak disorder, in
agreement with Halperin’s argument. Bellissard, van Elst and Schulz-Baldes
[BeES] proved that, for a random Landau Hamiltonian in a tight-binding ap-
proximation, if the Hall conductance jumps from one integer value to another
between two Fermi energies, then there is an energy between these Fermi ener-
gies at which a certain localization length diverges. Aizenman and Graf [AG]
gave a more elementary derivation of this result, incorporating ideas of Avron,
Seiler and Simon [AvSS]. (We refer to [BeES] for an excellent overview of
the quantum Hall effect.) But before the present paper there were no results
about nontrivial transport and existence of a dynamical mobility edge near the
Landau levels.

The main open problem in random Schrödinger operators is delocaliza-
tion, the existence of “extended states”, a forty-year-old problem that goes
back to Anderson’s seminal article [An]. In three or more dimensions it is
believed that there exists a transition from an insulator regime, characterized
by “localized states”, to a very different metallic regime characterized by “ex-
tended states”. The energy at which this metal-insulator transition occurs is
called the “mobility edge”. For two-dimensional random Landau Hamiltonians
such a transition is expected to occur near each Landau level [L], [H], [T].

The occurrence of localization is by now well established, e.g., [GoMP],
[FrS], [FrMSS], [CKM], [S], [DrK], [KlLS], [AM], [FK1], [A], [Klo1], [CoH1],
[CoH2], [FK2], [FK3], [W1], [GD],[KSS], [CoHT], [FLM], [ASFH], [DS], [GK1],
[St], [W2], [Klo2], [DSS], [KlK2], [GK3], [U], [AENSS], [BouK] and many more.
But delocalization is another story. At present, the only mathematical result
for a typical random Schrödinger operator (that is, ergodic and with a locally
Hölder-continuous integrated density of states at all energies) is for the Ander-
son model on the Bethe lattice, where Klein has proved that for small disorder
the random operator has purely absolutely continuous spectrum in a nontriv-
ial interval [Kl1] and exhibits ballistic behavior [Kl2]. For lattice Schrödinger
operators with slowly decaying random potential, Bourgain proved existence
of absolutely continuous spectrum in d = 2 and constructed proper extended
states for dimensions d ≥ 5 [Bou1], [Bou2]. For lattice Schrödinger operators,
Jaksic and Last [JL] gave conditions under which the existence of singular spec-
trum can be ruled out, yielding the existence of absolutely continuous spec-
trum. Two other promising approaches to the phenomena of delocalization
do not work directly with spectral analysis of random Schrödinger operators.
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The most successful to date has been the analysis of a scaling limit of the time
dependent Schrödinger equation up to a disorder dependent finite time scale
[ErY], [Che], [ErSY]. It has also been suggested that delocalization could be
understood in the context of random matrices [BMR]. However at present
only a result on the density of states [DiPS] and a result compatible with
delocalization in a modified random matrix model [SZ] have been established.

But what do we mean by delocalization? In the physics literature one finds
the expression “extended states,” which is often interpreted in the mathemat-
ics literature as absolutely continuous spectrum. But the latter may not be
the correct interpretation in the case of random Landau Hamiltonians; Thou-
less [T] discussed the possibility of singular continuous spectrum or even of
the delocalization occurring at a single energy. In this paper we rely on the
approach to the metal-insulator transition developed by Germinet and Klein
[GK5], based on transport instead of spectral properties. It provides a struc-
tural result on the dynamics of Anderson-type random operators: At a given
energy E there is either dynamical localization (β(E) = 0) or dynamical de-
localization with a nonzero minimal rate of tranport (β(E) ≥ 1

2d , with d the
dimension). An energy at which such a transition occurs is called a dynamical
mobility edge. (The terminology used in this paper differs from the one in
[GK4], [GK5], which use strong insulator region for the intersection of the re-
gion of dynamical localization with the spectrum, weak metallic region for the
region of dynamical delocalization, and transport mobility edge for dynamical
mobility edge. Note also that the region of dynamical localization is called the
region of complete localization in [GK6].)

We prove that for disorder and magnetic field for which the energy spec-
trum consists of disjoint bands around the Landau levels (as in the case of
either weak disorder or strong magnetic field), the random Landau Hamil-
tonian exhibits dynamical delocalization in each band (Theorem 2.1). Since
the existence of dynamical localization at the edges of these Landau bands is
known [CoH2], [W1], [GK3], this proves the existence of dynamical mobility
edges. We thus provide a mathematically rigorous derivation of the previously
mentioned underlying assumption in Laughlin’s argument.

It is worth noting that the results proved here have no implications re-
garding the spectral type of random Landau Hamiltonians. In fact, there
might be only finitely many points, even exactly one point, in each Landau
band with β(E) > 0. Indeed, β(E) need not be continuous in E, and a priori
there is no contradiction between having β(E) ≥ 1

2d and the random Landau
Hamiltonian having pure point spectrum almost surely in a neighborhood of
E. Thus it may happen that β(E) > 0 only at a discrete set of points, for
example at a single energy in each Landau band, in which case the spectrum
of the Hamiltonian would be pure point almost surely. In fact, percolation
arguments and numerical results indicate that for a large magnetic field there
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should be only one delocalized energy, located at the Landau level [ChC]. We
prove that these predictions hold asymptotically. That is, for the random Lan-
dau Hamiltonian studied in [CoH2], [GK3], we prove that delocalized energies
converge to the corresponding Landau level as the magnetic field goes to infin-
ity (Corollary 2.3). We also prove this result as the disorder goes to zero for
an appropriately defined random Landau Hamiltonian (Corollary 2.4).

Our proof of dynamical delocalization for random Landau Hamiltonians
is based on the use of some decidedly nontrivial consequences of the multi-
scale analysis for random Schrödinger operators combined with the general-
ized eigenfunction expansion to establish properties of the Hall conductance.
It relies on three main ingredients:

(1) The analysis in [GK5] showing that for an Anderson-type random
Schrödinger operator the region of dynamical localization is exactly the region
of applicability of the multiscale analysis, that is, the conclusions of the multi-
scale analysis are valid at every energy in the region of dynamical localization,
and that outside this region some nontrivial transport must occur with nonzero
minimal rate of transport.

(2) The random Landau Hamiltonian satisfies all the requirements for
the multiscale analysis (i.e., the hypotheses in [GK1], [GK5]) at all energies.
The only difficulty here is a Wegner estimate at all energies, including the
Landau levels, a required hypothesis for applying (1). If the single bump in
the Anderson-style potential covers the unit square this estimate was known
[CoH2], [HuLMW]. But if the single bump has small support (which is the most
interesting case for this paper in view of Corollary 2.3), a Wegner estimate at
all energies was only known for the case of rational flux in the unit square
[CoHK]. We prove a new Wegner estimate which has no restrictions on the
magnetic flux in the unit square (Theorem 5.1). This Wegner estimate holds
in appropriate squares with integral flux, hence the length scales of the squares
may not be commensurate with the distances between bumps in the Anderson-
style potential. This problem is overcome by performing the multiscale analysis
with finite volume operators defined with boundary conditions depending on
the location of the square (see the discussion in Section 4).

(3) Some information on the Hall conductance, namely: (i) The precise
values of the Hall conductance for the (free) Landau Hamiltonian: it is constant
between Landau levels and jumps by one at each Landau level, a well known
fact (e.g., [AvSS], [BeES]). (ii) The Hall conductance is constant as a function
of the disorder parameter in the gaps between the Landau bands, a result de-
rived by Elgart and Schlein [ES] for smooth potentials and extended here to
more general potentials (Lemma 3.3). Combining (i) and (ii) we conclude that
the Hall conductivity cannot be constant across Landau bands. (iii) The Hall
conductance is well defined and constant in intervals of dynamical localization.
This is proved here in a very transparent way using a deep consequence of the
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multiscale analysis, called SUDEC [GK6, Cor. 3(iii)], derived from a new char-
acterization of the region of dynamical localization [GK6, Theorem 1]. SUDEC
is used to show that in intervals of dynamical localization the change in the
Hall conductance is given by the (infinite) sum of the contributions to the Hall
conductance due to the individual localized states, which is trivially seen to be
equal to zero. (See Lemma 3.2. This constancy in intervals of localization was
known for discrete operators as a consequence of the quantization of the Hall
conductance [BeES], [AG]. An independent but somewhat similar proof for
discrete operators with finitely degenerate eigenvalues is found in the recent
paper [EGS]. The proof of Lemma 3.2 does not require “a priori” knowledge
of the nonexistence of eigenvalues with infinite multiplicity; they are controlled
using SUDEC. But note that it follows from [GK6, Corollary 1] that the ran-
dom Landau Hamiltonian has eigenvalues with finite multiplicity in the region
of dynamical localization.) Combining (i), (ii) and (iii), we will conclude that
there must be dynamical delocalization as we cross a Landau band.

It is worth noting that each of the three ingredients (1), (2) and (3) is
based on intensive research conducted over the past 20 years. (1) relies on the
ideas of the multiscale analysis, originally introduced by Fröhlich and Spencer
[FrS] and further developed in [FrMSS], [Dr], [DrK], [S], [CoH1], [FK2], [GK1].
(2), namely the Wegner estimate, originally proved for lattice operators by
Wegner [We], is a key tool for the multiscale analysis, and it has been studied
in the continuum in [CoH1], [Klo1], [HuLMW], [CoHN], [HiK], [CoHK]. (3)
has a long story in the study of the quantum Hall effect [L], [H], [TKNN], [Ku],
[Be], [AvSS], [BeES], [AG], [ES], [EGS].

In this paper we give a simple and self-contained analysis of the Hall
conductance based on consequences of localization for random Schrödinger op-
erators. In particular, we do not use the fact that the quantization of the Hall
conductance is a consequence of the geometric interpretation of this quantity
as a Chern character or a Fredholm index [TKNN, Be, AvSS, BES, AG]. Our
analysis applies when the disorder-broadened Landau bands do not overlap
(true at either large magnetic field or small disorder); the existence of spectral
gaps between the Landau bands allows the calculation of the Hall conductivity
in these gaps from its values for the (free) Landau Hamiltonian as outlined in
ingredient (3)(ii). In a sequel, we will discuss quantization of the Hall conduc-
tance for ergodic Landau Hamiltonians in the region where we have sufficient
decay of operator kernels of the Fermi projections, extending to continuous
operators an argument given in [AG] for discrete operators. This fact is well
known for lattice Hamiltonians [Be, BES, AG], but the details of the proof
have been spelled out for continuum operators only in spectral gaps [AvSS].
Combining results from the present paper and its sequel we expect to prove
dynamical delocalization for random Landau Hamiltonians in cases when the
Landau bands overlap.
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This paper is organized as follows: In Section 2 we introduce the random
Landau Hamiltonians and state our results. Our main result is Theorem 2.1,
the existence of dynamical delocalization for random Landau Hamiltonians
near each Landau level. This theorem is restated in a more general form as
Theorem 2.2, which is proved in Section 3. In Corollary 2.3 we give a rather
complete picture for random Landau Hamiltonians at large magnetic field as
in [CoH1], [GK3]: there are dynamical mobility edges in each Landau band,
which converge to the corresponding Landau level as the magnetic field goes
to infinity. Corollary 2.4 gives a similar picture as the disorder goes to zero;
it is proven in Section 6. In Sections 4 and 5 we show that random Landau
Hamiltonians satisfy all the requirements for a multiscale analysis; Theorem 5.1
is the Wegner estimate.

Notation. We write 〈x〉 :=
√

1 + |x|2. The characteristic function of a
set A will be denoted by χA. Given x ∈ R2 and L > 0 we set

ΛL(x) :=
{
y ∈ R2; |y − x|∞ < L

2

}
, χx,L := χΛL(x), χx := χx,1.

C∞
c (I) denotes the class of real valued infinitely differentiable functions on R

with compact support contained in the open interval I, with C∞
c,+(I) being the

subclass of nonnegative functions. The Hilbert-Schmidt norm of an operator
A is written as ‖A‖2 =

√
trA∗A.

Acknowledgements. The authors are grateful to Jean Bellissard, Jean-
Michel Combes, Peter Hislop and Frédéric Klopp for many helpful discussions.

2. Model and results

We consider the random Landau Hamiltonian

HB,λ,ω = HB + λVω on L2(R2),(2.1)

where HB is the (free) Landau Hamiltonian,

HB = (−i∇− A)2 with A = B
2 (x2,−x1).(2.2)

Here A is the vector potential and B > 0 is the strength of the magnetic field.
(We use the symmetric gauge and incorporated the charge of the electron in
the vector potential). The parameter λ > 0 measures the disorder strength,
and Vω is a random potential of the form

Vω(x) =
∑
i∈Z2

ωi u(x − i),(2.3)

with u a measurable function satisfying u−χ0,εu
≤ u ≤ u+χ0,δu

for some
0 < εu ≤ δu < ∞ and 0 < u− ≤ u+ < ∞, and ω = {ωi; i ∈ Z2} a fam-
ily of independent, identically distributed random variables taking values in a
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bounded interval [−M1, M2] (0 ≤ M1, M2 < ∞, M1 + M2 > 0) whose com-
mon probability distribution ν has a bounded density ρ. (We write (Ω, P)
for the underlying probability space, and E for the corresponding expecta-
tion.) Without loss of generality we set

∥∥∑
i∈Z2 u(x − i)

∥∥
∞ = 1, and hence

−M1 ≤ Vω(x) ≤ M2.
HB,λ,ω is a random operator, i.e., the mappings ω → f(HB,λ,ω) are

strongly measurable for all bounded measurable functions on R. We define
the magnetic translations Ua = Ua(B), a ∈ R2, by

(Uaψ) (x) = e−i B

2
(x2a1−x1a2)ψ(x − a),(2.4)

obtaining a projective unitary representation of R2 on L2(R2):

UaUb = ei B

2
(a2b1−a1b2)Ua+b = eiB(a2b1−a1b2)UbUa, a, b ∈ Z2.(2.5)

We have UaHBU∗
a = HB for all a ∈ R2, and for magnetic translation by

elements of Z2 we have the covariance relation:

UaHB,λ,ωU∗
a = HB,λ,τaω for a ∈ Z2,(2.6)

where (τaω)i = ωi−a, i ∈ Z2. It follows that HB,λ,ω is a Z2-ergodic random self-
adjoint operator on L2(R2); hence there exists a nonrandom set ΣB,λ such that
σ(HB,λ,ω) = ΣB,λ with probability one, and the decomposition of σ(HB,λ,ω)
into pure point spectrum, absolutely continuous spectrum, and singular con-
tinuous spectrum is also independent of the choice of ω with probability one
[KM1], [PF].

The spectrum σ(HB) of the Landau Hamiltonian HB consists of a sequence
of infinitely degenerate eigenvalues, the Landau levels:

Bn = (2n − 1)B, n = 1, 2, . . . .(2.7)

It will be convenient to set B0 = −∞. A simple argument shows that

ΣB,λ ⊂
∞⋃

n=1

Bn(B, λ), where Bn(B, λ) = [Bn − λM1, Bn + λM2].(2.8)

If the disjoint bands condition

λ(M1 + M2) < 2B,(2.9)

is satisfied (true at either weak disorder or strong magnetic field), the (disorder-
broadened) Landau bands Bn(B, λ) are disjoint, and hence the open intervals

Gn(B, λ) =]Bn + λM2, Bn+1 − λM1[, n = 0, 1, 2, . . . ,(2.10)

are nonempty spectral gaps for HB,λ,ω. Moreover, if ρ > 0 a.e. on [−M1, M2]
and (2.9) holds, then for each B > 0, λ > 0, and n = 1, 2, . . . we can find
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aj,B,λ,n ∈ [0, λMj ], j = 1, 2, continuous in λ, such that (using an argument
similar to [KM2, Theorem 4])

ΣB,λ =
∞⋃

n=1

In(B, λ), In(B, λ) = [Bn − a1,B,λ,n, Bn + a2,B,λ,n] .(2.11)

Our main result says that under the disjoint bands condition the random
Landau Hamiltonian HB,λ,ω exhibits dynamical delocalization in each Landau
band Bn(B, λ). To measure “dynamical delocalization” we introduce

MB,λ,ω(p,X , t) =
∥∥∥〈x〉 p

2 e−itHB,λ,ωX (HB,λ,ω)χ0

∥∥∥2

2
,(2.12)

the random moment of order p ≥ 0 at time t for the time evolution in the
Hilbert-Schmidt norm, initially spatially localized in the square of side one
around the origin (with characteristic function χ0), and “localized” in energy
by the function X ∈ C∞

c,+(R). Its time averaged expectation is given by

MB,λ(p,X , T ) =
1
T

∫ ∞

0
E {MB,λ,ω(p,X , t)} e−

t

T dt.(2.13)

Theorem 2.1. Under the disjoint bands condition the random Landau
Hamiltonian HB,λ,ω exhibits dynamical delocalization in each Landau band
Bn(B, λ): For each n = 1, 2, . . . there exists at least one energy En(B, λ) ∈
Bn(B, λ), such that for every X ∈ C∞

c,+(R) with X ≡ 1 on some open interval
J � En(B, λ) and p > 0, we have

MB,λ(p,X , T ) ≥ Cp,X T
p

4
−6(2.14)

for all T ≥ 0 with Cp,X > 0.

The random Landau Hamiltonian HB,λ,ω (λ > 0) satisfies all the hy-
potheses in [GK1], [GK5] at all energies (see Section 4). Following [GK5], we
introduce the (lower) transport exponent

βB,λ(p,X ) = lim inf
T→∞

log+ MB,λ(p,X , T )
p log T

for p ≥ 0, X ∈ C∞
c,+(R),(2.15)

where log+ t = max{log t, 0}, and define the p-th local transport exponent at
the energy E by (I denotes an open interval)

βB,λ(p, E) = inf
I�E

sup
X∈C∞

c,+(I)
βB,λ(p,X ).(2.16)

The transport exponents βB,λ(p, E) provide a measure of the rate of transport
in wave packets with spectral support near E. They are increasing in p and
hence we define the local (lower) transport exponent βB,λ(E) by

βB,λ(E) = lim
p→∞

βB,λ(p, E) = sup
p>0

βB,λ(p, E).(2.17)
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These transport exponents satisfy the ballistic bound [GK5, Prop. 3.2]: 0 ≤
βB,λ(p,X ), βB,λ(p, E), βB,λ(E) ≤ 1. Note that βB,λ(E) = 0 if E /∈ ΣB,λ.

Using this local transport exponent we define two complementary regions
in the energy axis for fixed B > 0 and λ > 0: the region of dynamical localiza-
tion,

ΞDL
B,λ = {E ∈ R; βB,λ(E) = 0} ,(2.18)

and the region of dynamical delocalization,

ΞDD
B,λ = {E ∈ R; βB,λ(E) > 0} .(2.19)

It is easily seen that ΞDD
B,λ ⊂ ΣB,λ. In addition, ΞDL

B,λ is an open set (see [GK5]),
and hence ΞDD

B,λ is a closed set.
We may now restate Theorem 2.1 in a more general form as

Theorem 2.2. Consider a random Landau Hamiltonian HB,λ,ω under the
disjoint bands condition (2.9). Then for all n = 1, 2, . . . we have

ΞDD
B,λ ∩ Bn(B, λ) �= ∅.(2.20)

In particular , there exists at least one energy En(B, λ) ∈ Bn(B, λ) satisfying
(2.14) and

βB,λ(p, En(B, λ)) ≥ 1
4
− 6

p
> 0 for all p > 24,

βB,λ(En(B, λ)) ≥ 1
4
.

(2.21)

Theorem 2.2 is proved in Section 3. We will prove (2.20), from which
(2.21) and (2.14) follows by [GK5, Th.s 2.10 and 2.11]. Note that (2.14)
actually holds with T

p

4
− 11

2
−ε for any ε > 0.

Next we investigate the location of the delocalized energy En(B, λ), and
show in two different asymptotic regimes that it converges to the n-th Landau
level. We recall that in the physics literature localized and extended states
are expected to be separated by an energy called a mobility edge. Similarly,
there is a natural definition for a dynamical mobility edge: an energy Ẽ ∈
ΞDD

B,λ ∩
{

ΞDL
B,λ ∩ ΣB,λ

}
, that is, an energy where the spectrum undergoes a

transition from dynamical localization to dynamical delocalization.
In the regime of large magnetic field (and fixed disorder) we have the

following rather complete picture for the model studied in [CoH2], [GK3],
consistent with the prediction that at very large magnetic field there is only
one delocalized energy in each Landau band, located at the Landau level [ChC].

Corollary 2.3. Consider a random Landau Hamiltonian HB,λ,ω satis-
fying the following additional conditions on the random potential : (i) u ∈ C2

and suppu ⊂ D√
2

2
(0), the open disc of radius

√
2

2 centered at 0. (ii) The density
of the probability distribution ν is an even function ρ > 0 a.e. on [−M, M ]
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(M = M1 = M2). (iii) ν([0, s]) ≥ cmin{s, M}ζ for some c > 0 and ζ > 0. Fix
λ > 0 and let B > 0 satisfy (2.9), in which case the spectrum ΣB,λ is given by
(2.11) with

0 ≤ λM − aj,B,λ,n ≤ Cn(λ)B− 1
2 , j = 1, 2.(2.22)

Then for each n = 1, 2, . . . , if B is large enough (depending on n) there exist
dynamical mobility edges Ẽj,n(B, λ), j = 1, 2, with

max
j=1,2

∣∣∣Ẽj,n(B, λ) − Bn

∣∣∣ ≤ Kn(λ)
log B

B
→ 0 as B → ∞,(2.23)

Bn − a1,B,λ,n < Ẽ1,n(B, λ) ≤ Ẽ2,n(B, λ) < Bn + a2,B,λ,n,(2.24)

[Bn − a1,B,λ,n, Ẽ1,n(B, λ)[∪ ]Ẽ2,n(B, λ), Bn + a2,B,λ,n] ⊂ ΞDL
B,λ.(2.25)

(By Cn(λ), Kn(λ) we denote finite constants. It is possible that Ẽ1,n(B, λ) =

Ẽ2,n(B, λ), i.e., dynamical delocalization occurs at a single energy .)

Proof. The estimate (2.22) is proven in [CoH2], the existence of energies
Ẽj,n(B, λ), j = 1, 2, satisfying (2.24), (2.25) and (2.23) is proven in [GK3,
Theorem 4.1]. The fact that we can choose Ẽj,n(B, λ), j = 1, 2, that are also
dynamical mobility edges follows from Theorem 2.1.

We now investigate the small disorder regime (at fixed magnetic field) and
prove a result in the spirit of Corollary 2.3. It is not too interesting to just
let λ → 0 in (2.1), since the spectrum of the Hamiltonian would then shrink
to the Landau levels (see (2.8)) and the result would be trivial. In order to
keep the size of the spectrum constant we rescale the probability distribution
ν of the ω′

is by concentrating more and more of the mass of ν around zero as
λ → 0.

Corollary 2.4. Let ρ > 0 a.e. on R be the density of a probability dis-
tribution ν with 〈u〉γρ(u) bounded for some γ > 1. Fix b > 0, and set νλ to
be the probability distribution with density ρλ(u) = cb,λλ−1ρ(λ−1u)χ[−b,b](u),
where the constant cb,λ is chosen so that νλ(R) = νλ([−b, b]) = 1. Define
Hω,B,λ by (2.1) with λ = 1 but with the λ dependent common probability dis-
tribution νλ for the random variables {ωi; i ∈ Z2}. Assuming B > b, (2.9)
holds and the spectrum ΣB,λ given by (2.11) is independent of λ. Then for
each n = 1, 2, . . . , if λ is small enough (depending on n) there exist dynamical
mobility edges Ẽj,n(B, λ), j = 1, 2, satisfying (2.24) and (2.25), and we have

max
j=1,2

∣∣∣Ẽj,n(B, λ) − Bn

∣∣∣ ≤ Kn(B)λ
γ−1

γ |log λ|
2
γ → 0 as λ → 0,(2.26)

with a finite constant Kn(B). Moreover, if the density ρ satisfies the stronger
condition of e|u|

α

ρ(u) being bounded for some α > 0, the estimate in (2.26)
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holds with Kn(B)λ |log λ| 1
α in the right-hand side. (It is possible that Ẽ1,n(B, λ)

= Ẽ2,n(B, λ), i.e., dynamical delocalization occurs at a single energy.)

Corollary 2.4 is proven in Section 6.

3. The existence of dynamical delocalization

In this section we prove Theorem 2.2 (and hence Theorem 2.1). For
convenience we write HB,0,ω = HB and extend (2.18) to λ = 0 by ΞDL

B,0 =
R\σ(HB) = R\{Bn; n = 1, 2, . . . }; the statements below will hold (trivially)
for λ = 0 unless this case is explicitly excluded. Given a Borel set J ⊂ R, we
set PB,λ,J ,ω = χJ (HB,λ,ω). If J =]−∞, E], we write PB,λ,E,ω for PB,λ,]−∞,E],ω,
the Fermi projection corresponding to the Fermi energy E.

The random Landau Hamiltonian HB,λ,ω (λ > 0) satisfies all the hypothe-
ses in [GK1], [GK5], [GK6] at all energies, as shown in Section 4. The following
results, stated below as properties, are relevant to the proof of Theorem 2.2:
RDL (region of dynamical localization), RDD (region of dynamical delocaliza-
tion), DFP (decay of the Fermi projection), and SUDEC (summable uniform
decay of eigenfunction correlations). (We refer the reader to Section 4 for a
discussion of the multiscale analysis and the relevant results.)

Property RDL. The region of dynamical localization ΞDL
B,λ (see (2.18))

is exactly the region of applicability of the multiscale analysis, that is, the con-
clusions of the multiscale analysis are valid at every energy E ∈ ΞDL

B,λ [GK5,
Theorem 2.8].

Property RDD. Let λ > 0. If an energy E is in the region of dy-
namical delocalization ΞDD

B,λ (see (2.19)) we must have βB,λ(E) ≥ 1
4 ; in fact,

βB,λ(p, E) ≥ 1
4 − 11

2p > 0 for all p > 22. Moreover, for each X ∈ C∞
c,+(R) with

X ≡ 1 on some open interval J � E, we have

lim
T→∞

1
Tα

MB,λ(p,X , T ) = ∞(3.1)

for all α ≥ 0 and p > 4α + 22 [GK5, Theorems 2.10 and 2.11].

Property DFP. The Fermi projection PB,λ,E,ω exhibits fast decay if the
Fermi energy E is in the region of dynamical localization ΞDL

B,λ: If E ∈ ΞDL
B,λ

and ζ ∈]0, 1[,

E

{
‖χxPB,λ,E,ωχy‖2

2

}
≤ Cζ,B,λ,E e−|x−y|ζ for all x, y ∈ Z2,(3.2)

with the constant Cζ,B,λ,E locally bounded in E . (See [GK6, Theorem 3]–
the result is based on [GK1, Theorem 3.8] and [BoGK, Theorem 1.4].) As a
consequence, for P-a.e. ω and each ζ ∈]0, 1[ there exists Cζ,B,λ,E,ω < ∞, locally
bounded in E, such that

‖χxPB,λ,E,ωχy‖2 ≤ Cζ,B,λ,E,ω〈x〉〈y〉 e−|x−y|ζ for all x, y ∈ Z2.(3.3)
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(Sufficiently fast polynomial decay would suffice for our purposes. Note that
in the special case when E is in a spectral gap of HB,λ,ω a simple argument
based on the Combes-Thomas estimate yields exponential decay, i.e., ζ = 1.)

Property SUDEC. For P-a.e. ω the Hamiltonian HB,λ,ω has pure point
spectrum in ΞDL

B,λ with the following property : Given a closed interval I ⊂
ΞDL

B,λ, let {φn,ω}n∈N be a complete orthonormal set of eigenfunctions of HB,λ,ω

with eigenvalues En,ω ∈ I; for each n we denote by Pn,ω the one-dimensional
orthogonal projection on the span of φn,ω and set αn,ω =

∥∥〈x〉−2Pn,ω

∥∥2

2
=

‖〈x〉−2φn,ω‖2. Then for each ζ ∈]0, 1[ there exists CI,ζ,ω < ∞ such that for all
x, y ∈ Z2 we have

‖χxPn,ωχy‖2 = ‖χxφn,ω‖‖χyφn,ω‖ ≤ CI,ζ,ωαn,ω〈x〉2〈y〉2 e−|x−y|ζ .(3.4)

Moreover, ∑
n∈N

αn,ω = μω(I) := tr
{
〈x〉−2PB,λ,I,ω〈x〉−2

}
< ∞.(3.5)

(See [GK6, Corollary 3(iii)]. Almost-sure pure point spectrum is well known,
e.g., [FrMSS], [DrK], [GK1], [Kl3]. Property SUDEC, namely (3.4) with (3.5),
is a modification of Germinet’s WULE [G]. It is the almost everywhere conse-
quence of a new characterization of the region of dynamical localization [GK6,
Theorem 1].)

Remark. Throughout this work we characterize the localization regime
using consequences of the multiscale analysis. If the single site bumps of the
Anderson-type potential cover the whole space, i.e. if

∑
i∈Zd u(x − i) ≥ δ

> 0, then another option is available, namely the fractional moment method
[AENSS], which yields exponential bounds for expectations. However at this
time the fractional moment method is not available for potentials which violate
the aforementioned “covering condition.”

We now turn to the Hall conductance. Consider the switch function Λ(t) =
χ[ 1

2
,∞)(t) and let Λj denote multiplication by the function Λj(x) = Λ(xj),

j = 1, 2. Given an orthogonal projection P on L2(R2), we set

Θ(P ) := tr {P [[P,Λ1] , [P,Λ2]]} ,(3.6)

defined whenever

|Θ|(P ) := ‖P [[P,Λ1] , [P,Λ2]]‖1 < ∞,(3.7)

in which case we also have

Θ(P ) = tr {[PΛ1P, PΛ2P ]} .(3.8)

Note that although Θ(P ) is the trace of a commutator it need not be zero,
because in general the two summands PΛ1PΛ2P and PΛ2PΛ1P are not sep-
arately trace class.
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Lemma 3.1. Let P be an orthogonal projection on L2(R2) such that for
some ξ ∈ ]0, 1], κ > 0, and KP < ∞,

‖χxPχy‖2 ≤ KP 〈x〉κ〈y〉κ e−|x−y|ξ for all x, y ∈ Z2.(3.9)

Then:

(i) |Θ|(P ) ≤ Cξ,κK2
P for some constant Cξ,κ independent of P , and Θ(P )

is well defined.

(ii) Given s ∈ R, let Λ(s)(t) = Λ(t − s) and Λ(s)
j (x) = Λ(s)(xj), j = 1, 2.

Set Θr,s(P ) = tr
{

P
[[

P,Λ(r)
1

]
,
[
P,Λ(s)

2

]]}
, r, s ∈ R. Then Θr,s(P ) is well

defined as in (i), and Θr,s(P ) = Θ(P ).

(iii) Let Q be another orthogonal projection on L2(R2) satisfying (3.9) with
some constant KQ, such that QP = PQ = 0. Then P + Q is an orthogonal
projection satisfying (3.9) with constant KP+Q = KP + KQ, and we have

Θ(P + Q) = Θ(P ) + Θ(Q).(3.10)

Remark. (i) is similar to statements in [AvSS], [AG], (ii) and (iii) are
well known [AvSS], [BeES], [AG]. We provide a short proof in our setting; the
precise form of the bound in (3.9) is important for Lemma 3.2. Lemma 3.1
remains true if Λ is replaced by any monotone “switch function,” with Λ(t) →
0, 1 as t → −∞,+∞, with essentially the same proof.

Proof. If x ∈ Z2 we have Λjχx = Λ(xj)χx, j = 1, 2, and hence, if
x1y1 > 0 we get χx[P,Λ1]χy = (Λ(y1) − Λ(x1))χxPχy = 0. If x1y1 ≤ 0,
we have |x1 − y1|ξ ≥ 1

2 |x1|ξ + 1
2 |y1|ξ. Thus it follows from (3.9) that for all

x, y ∈ Z2,

‖χx[P,Λ1]χy‖2 ≤ KP 〈x〉κ〈y〉κ e−
1
4
|x1|ξ− 1

4
|y1|ξ− 1

2
|x2−y2|ξ ,(3.11)

and, similarly,

‖χx[P,Λ2]χy‖2 ≤ KP 〈x〉κ〈y〉κ e−
1
4
|x2|ξ− 1

4
|y2|ξ− 1

2
|x1−y1|ξ .(3.12)

We conclude that

‖P [P,Λ1][P,Λ2]‖1 ≤
∑

x,y,z∈Z2

‖χx[P,Λ1]χy‖2 ‖χy[P,Λ2]χz‖2 ≤ C1K
2
P < ∞,

(3.13)

where C1 is a finite constant independent of P , and similarly ‖P [P,Λ2][P,Λ1]‖1 ≤
C1K

2
P . Part (i) follows.
The only nontrivial item in (iii) is (3.10). It follows from (3.6), cyclicity

of the trace, and the fact that P [Q,Λj ] = −PΛjQ for j = 1, 2.
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It remains to prove (ii). The proof of (i) clearly applies also to Θr,s(P );
we only need to show that Θr,s(P ) = Θ(P ). This will follow if we can show
that

tr {P [[P, F1] , [P, G2]]} = tr {P [[P, G1] , [P, F2]]} = 0,(3.14)

if F = Λ(s) − Λ(s′) and G = Λ(s′′) for some s, s′, s′′ ∈ R, with Fj(x) = F (xj),
Gj(x) = G(xj), j = 1, 2. Note that Fj(x) has compact support in the xj

direction. If we write a trace without a comment, as in (3.14), we are implicitly
stating that it is well defined by the argument in (3.11)–(3.13).

We have

tr {P [[P, F1] , [P, G2]]} = tr {PF1(I − P ) [P, G2]} + tr {[P, G2] (I − P )F1P}
(3.15)

= tr {F1(I − P ) [P, G2]P + F1P [P, G2] (I − P )}
= tr {F1 [P, G2]} = tr {[F1P, G2]} .

Here [F1P, G2] = F1 [P, G2] = F1(I −P ) [P, G2]P +F1P [P, G2] (I −P ) is trace
class, since the two operators in the sum are trace class by the argument in
(3.11)–(3.13). If F1PG2 and G2F1P were trace class, we could then conclude
that tr {[F1P, G2]} = 0. Since F1PG2 and G2F1P may not be trace class,
we need an extra argument. Since P is a projection satisfying (3.9), using
‖χxPχy‖1 ≤ ∑

z∈Z2 ‖χxPχzPχy‖1 we get

‖χxPχy‖1 ≤ CK2
P 〈x〉2κ〈y〉2κ e−

1
2
|x−y|ξ for all x, y ∈ Z2,(3.16)

for some constant C. We recall that the function F1(x) has compact support in
the x1 direction, and introduce a cutoff Yn(x) = χ[−n,n](x2) in the x2 direction.
Then

tr {Yn [F1P, G2]} = tr {[YnF1P, G2]} = 0,(3.17)

since YnF1PG2 and YnG2F1P are then trace class by (3.16). Thus, since
Yn → I strongly and boundedly (‖Yn‖ = 1),

tr {[F1P, G2]} = lim
n→∞

tr {Yn [F1P, G2]} = 0.(3.18)

The other term in (3.14) is treated in the same way, and Part (ii) is proven.

For a given disorder λ ≥ 0, magnetic field B > 0, and energy E ∈ ΞDL
B,λ,

we consider the Hall conductance [AvSS], [ES]

σH,ω(B, λ, E) = −2πiΘ(PB,λ,E,ω),(3.19)

well defined for P-a.e. ω in view of Lemma 3.1(i) and DFP, namely (3.3).
The covariance relation (2.6) and Lemma 3.1(ii) then imply σH,ω(B, λ, E) =
σH,τaω(B, λ, E) for all a ∈ Z2 for P-a.e. ω, and hence ergodicity yields

σH(B, λ, E) := E {σH,ω(B, λ, E)} = σH,ω(B, λ, E) for P-a.e. ω.(3.20)
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A key ingredient in justifications of the quantum Hall effect is that the
Hall conductance should be constant in intervals of localization since localized
states do not carry current [L], [H], [Ku], [BeES]. The following lemma makes
this precise in a very transparent way: In intervals of dynamical localization
the change in the Hall conductance is given by the (infinite) sum of the Hall
conductance of the individual localized states. But the conductance of a lo-
calized state is equal to −2πiΘ(P ), where P is the orthogonal projection on
the localized state. But if P is a one-dimensional orthogonal projection, say
on the span of unit vector ψ, (3.8) yields

Θ(P ) = 〈ψ, Λ1ψ〉〈ψ, Λ2ψ〉 − 〈ψ, Λ2ψ〉〈ψ, Λ1ψ〉 = 0.(3.21)

Lemma 3.2. The Hall conductance σH(B, λ, E) is constant on connected
components of ΞDL

B,λ, that is, if [E1, E2] ⊂ ΞDL
B,λ we must have σH(B, λ, E1) =

σH(B, λ, E2).

Proof. If I = [E1, E2] ⊂ ΞDL
B,λ, we apply property (SUDEC) in I for the

P-a.e. ω for which we have (3.4) and (3.5). Given a (finite or infinite) subset M

of the index set N, we set PM,ω =
∑

n∈M Pn,ω; it follows that we have condition
(3.9) for PM,ω for κ = 2 and all ζ ∈]0, 1[ with constant

KPM,ω
= CI,ζ,ω

∑
n∈M

αn,ω ≤ CI,ζ,ω μω(I) < ∞.(3.22)

Since PB,λ,]E1,E2],ω = PB,λ,E2,ω − PB,λ,E1,ω, it follows from Lemma 3.1, (i)
and (iii), that it suffices to prove that

Θ(PB,λ,]E1,E2],ω) = 0.(3.23)

But again using Lemma 3.1, (i) and (iii), taking M = {1, 2 . . . , m} ⊂ N, we
have

Θ(PB,λ,]E1,E2],ω) = Θ(PN,ω) = Θ(PM,ω) + Θ(P(N\M),ω)(3.24)

=
m∑

n=1

Θ(Pn,ω) + Θ(P(N\M),ω).

Since by Lemma 3.1(i), (3.22) and (3.5) we have

∣∣Θ(P(N\M),ω)
∣∣ ≤ Cζ

(
CI,ζ,ω

∞∑
n=m+1

αn,ω

)2

→ 0 as m → ∞,(3.25)

we conclude that

Θ(PB,λ,]E1,E2],ω) =
∞∑

n=1

Θ(Pn,ω) = 0(3.26)

in view of (3.21).
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Remark. The constancy of the Hall conductance in intervals of localiza-
tion is known for lattice Hamiltonians with eigenvalues of finite multiplicity
[BeES], [AG], [EGS]. Our proof allows eigenvalues of infinite multiplicity; the
crucial estimate is (3.22), a consequence of property (SUDEC).

In the next lemma, we calculate the value of the Hall conductance in the
spectral gaps between the bands under the disjoint bands condition.

Lemma 3.3. Under the disjoint bands conditions (2.9) we have
σH(B, λ, E) = n if E ∈ Gn(B, λ) for all n = 0, 1, 2 . . . .

Proof. It is well known that σH(B, 0, E) = n if E ∈]Bn, Bn+1[ for all
n = 0, 1, 2 . . . [AvSS], [BeES]. Under condition (2.9), if E ∈ Gn(B, λ1) for
some n ∈ {0, 1, 2 . . . } we can find λE > λ1 such that E ∈ Gn(B, λ) for all
λ ∈ I = [0, λE [. We take ω ∈ [−M1, M2]Z

2
, a set of probability one, and note

that the contour Γ below and all the constants on what follows are independent
of ω. We have

Pλ = − 1
2πi

∫
Γ

Rλ(z) dz for all λ ∈ I,(3.27)

where Pλ = PB,λ,E,ω, Rλ(z) = (HB,λ,ω − z)−1, and Γ is a bounded contour
such that d(Γ, σ(HB,λ,ω)) ≥ η > 0 for all λ ∈ I. (Note HB,λ,ω ≥ B −λEM1 for
all λ ∈ I.) We have (K1, K2, . . . denote constants)

‖χxRλ(z)χy‖ ≤ K1e−K1|x−y| for all x, y ∈ Z2, z ∈ Γ, λ ∈ I,(3.28)

‖Rλ(z)χx‖2 ≤ K2 for all x ∈ Z2, z ∈ Γ, λ ∈ I,(3.29)

where (3.28) is the Combes-Thomas estimate (e.g., [GK2, Cor. 1]) and (3.29)
is in [BoGKS, Proposition 2.1]. Combining with (3.27), we get

‖χxPλχy‖ ≤ K1|Γ|
2π e−K1|x−y| for all x, y ∈ Z2, λ ∈ I,(3.30)

‖χxPλχy‖1 ≤
(

K2|Γ|
2π

)2
for all x, y ∈ Z2, λ ∈ I,(3.31)

‖χxPλχy‖2 ≤ K3 e−K3|x−y| for all x, y ∈ Z2, λ ∈ I,(3.32)

where (3.32) follows from (3.30) and (3.31).
Given λ, ξ ∈ I, it follows from (3.27) and the resolvent identity that

Qλ,ξ := Pξ − Pλ = (ξ−λ)
2πi

∫
Γ

Rλ(z)V Rξ(z) dz,(3.33)

with V = Vω (recall ‖V ‖ ≤ max{M1, M2}). Using (3.28) and (3.29), we get

‖χxQλ,ξχy‖2 ≤ K4 e−K4|x−y| for all x, y ∈ Z2, λ, ξ ∈ I.(3.34)

We now use an idea of Elgart and Schlein [ES]. If the potential V had
compact support, it would follow from (3.29) that Qλ,ξ is trace class. In this
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case, using (3.8) and (3.33), we get

Θ(Pξ) − Θ(Pλ) = tr {[Qλ,ξΛ1Pξ, PξΛ2Pξ] + [PλΛ1Qλ,ξ, PξΛ2Pξ]
(3.35)

+ [PλΛ1Pλ, Qλ,ξΛ2Pξ] + [PλΛ1Pλ, PλΛ2Qλ,ξ]} = 0,

since tr[A, B] = 0 if either A or B are trace class by centrality of the trace.
Our potential V , given in (2.3), does not have compact support, so we will use
an approximation argument.

Given L > 0 and ω ∈ [−M1, M2]Z
2
, we define ω(L), ω(>L) ∈ [−M1, M2]Z

2

by ω
(L)
i = ωi if |i| ≤ L and ω

(L)
i = 0 otherwise, and ω

(>L)
i = ωi − ω

(L)
i for

all i ∈ Z2. Recalling (2.3), we set VL = Vω(L) , V>L = Vω(>L) = V − VL,
Pλ,L = PB,λ,E,ω(L) , Pλ,>L = PB,λ,E,ω(>L) = Pλ − Pλ,L, etc. We have

Qλ,>L := Pλ − Pλ,L = λ
2πi

∫
Γ

Rλ(z)V>LRλ,L(z) dz.(3.36)

Moreover, it follows from (3.36) and (3.28) that

‖χxQλ,>Lχy‖ ≤ K5 e−K5(max{L−|x|,0}+max{L−|y|,0} e−K5|x−y|(3.37)

for all x, y ∈ Z2, λ ∈ I and L > 0, with a similar estimate holding in the
Hilbert-Schmidt norm by the argument used for (3.32). Using (3.6) and (3.36),
we have

Θ(Pλ) − Θ(Pλ,L)(3.38)

= tr {Qλ,>L [[Pλ,Λ1] , [Pλ,Λ2]] + Pλ,L [[Qλ,>L,Λ1] , [Pλ,Λ2]]

+Pλ,L [[Pλ,L,Λ1] , [Qλ,>L,Λ2]]} → 0 as L → ∞,

where the convergence to 0 is proved as follows: Since ‖Qλ,>L‖ ≤ K6 for all
L > 0 and Qλ,>L → 0 strongly as L → ∞, the trace of the first term goes to
0 as L → ∞. The traces of the other two terms can be estimated as in (3.13),
and converge to 0 as L → ∞ by an argument using (3.37) and dominated
convergence.

The lemma now follows from (3.35) and (3.38).

We may now finish the proof of Theorem 2.2. Since (2.9) holds, if Bn(B, λ)
⊂ ΞDL

B,λ for some n ∈ {1, 2, . . . }, we have

]Bn−1 + λM1, Bn+1 − λM2[ = Gn−1(B, λ) ∪ Bn(B, λ) ∪ Gn(B, λ) ⊂ ΞDL
B,λ,

and hence it follows from Lemma 3.2 that the Hall conductance σH(B, λ, E) has
the same value on the spectral gaps Gn−1(B, λ) and Gn(B, λ), which contradicts
Lemma 3.3. Thus we must have Bn(B, λ) ∩ ΞDD

B,λ �= ∅ for all n ∈ {1, 2, . . . },
and hence Theorem 2.2 follows from property (RDD).
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4. The applicability of the multiscale analysis

In order to use properties RDL, RDD, DFP, and SUDEC, stated in Sec-
tion 3, we must show that the results in [GK1], [GK5], [GK6] apply to the
random Landau Hamiltonian HB,λ,ω as in (2.1). Thus we need to verify that
the random Landau Hamiltonian satisfy the requirements for the bootstrap
multiscale analysis–the hypotheses in [GK1], [GK5], [GK6]–at all energies, in-
cluding the Landau levels. To do so, we will define finite volume operators for
the multiscale analysis in a nonstandard way, which in turn will require slight
changes in the multiscale analysis.

In this context the multiscale analysis is a technique, initially developed
by Fröhlich and Spencer [FrS] and Fröhlich, Martinelli, Spencer and Scoppolla
[FrMSS], and simplified by von Dreifus [Dr] and von Dreifus and Klein [DrK],
for the purpose of proving exponential localization (pure point spectrum and
exponential decay of eigenfunctions). Although originally developed for lattice
Hamiltonians, it was extended to continuum Hamiltonians by Combes and
Hislop [CoH1] and Figotin and Klein [FK2]. It was shown to yield dynamical
localization almost-surely by Germinet and De Bièvre [GD], and strong (i.e.,
in expectation) dynamical localization for moments up to some finite order by
Damanik and Stollman [DS]. To go beyond this limitation, Germinet and Klein
[GK1] developed the bootstrap multiscale analysis, built out of four different
multiscale analyses, which yields exponential localization, strong dynamical
localization (up to all orders) in the Hilbert-Schmidt norm, sub-exponential
decay of the expectation of the kernel of the evolution operator, semi-uniformly
localized eigenfunctions (SULE), and, as shown in [GK6], SUDEC, decay of the
Fermi projection, and finite multiplicity of eigenvalues. It also plays a crucial
role in the converse to the multiscale analysis of Germinet and Klein [GK5];
previous versions of the multiscale analysis do not suffice for the nontrivial
lower bound on the transport exponent outside the region of applicability of
the multiscale analysis.

The requirements for the bootstrap multiscale analysis were called as-
sumptions or properties SGEE (strong generalized eigenfunction expansion),
SLI (Simon-Lieb inequality), EDI (eigenfunction decay inequality), IAD (in-
dependence at a distance), NE (number of eigenvalues), and W (Wegner es-
timate) in [GK1], [GK3], [GK5], [Kl3]; they will be discussed below in the
context of the random Landau Hamiltonian. It is important to note that these
properties are also the requirements for the converse to the multiscale analysis
given in [GK5]. (Although the results in [GK1], [GK5] are written for random
Schrödinger operators without magnetic fields, they hold without change with
magnetic fields as long as these properties are satisfied. Note also that these
results only require a Wegner estimate as in (4.7) below; see [GK1, Remark
2.4] and [GK5, Remark 2.13].)
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The random Landau Hamiltonian satisfies the trace estimate

tr
{
〈x〉−2 (HB,λ,ω − (B − λM1) + 1)−2 〈x〉−2

}
≤ CB,λ < ∞ for all ω,(4.1)

where CB,λ is a constant independent of ω, locally bounded in B and λ. (for
example, [BoGKS, Prop. 2.1]; recall HB,λ,ω ≥ B − λM1.) This estimate guar-
antees the existence of a generalized eigenfunction expansion as in [KlKS, §3]
for the random Landau Hamiltonian, establishing property SGEE.

The multiscale analysis requires the notion of a finite volume operator. For
the random Landau Hamiltonian the finite volumes may be the squares ΛL(x),
with center x ∈ Z2 and side L ∈ L̄N for a suitable L̄ ≥ 1. The finite volume
operator is a “restriction” HB,λ,ω,x,L of HB,λ,ω to the square ΛL(x), where
the “randomness based outside the square ΛL(x)” is not taken into account.
Usually the finite volume operator is defined as an operator on L2(ΛL(x))
by specifying the boundary condition, most commonly Dirichlet or periodic
boundary condition. (In the case of the random Landau Hamiltonian it has
also been defined as an operator on the whole space by throwing away the
random coefficients “based outside the square ΛL(x)” [CoH2], [W1], [GK4].)
Properties SLI, EDI, IAD, NE, and W are statements about these finite volume
operators.

A key observation for our purposes is that it is not necessary to use the
same boundary condition on all squares; what is important are compatibility
conditions. (This observation plays an important role in Theorem 5.1.) For the
multiscale analysis it suffices to fix a reference scale L̄ ≥ 1, not necessarily an
integer, fix some δ > 0, and define a random operator HB,λ,ω,x,L on L2(ΛL(x))
for each x ∈ Z2 and L ∈ L̄N as follows: First pick a closed densely defined
operator DB,x,L from L2(ΛL(x)) to L2(ΛL(x); C2) which is an extension of
the differential operator DB = (−i∇ − A) restricted to C∞

c (ΛL(x)). Second,
pick a random potential Vx,L,ω in the square ΛL(x) depending only on the
random variables {ωi; i ∈ ΛL(x)}, and set HB,λ,ω,x,L = D∗

B,x,LDB,x,L +λVx,L,ω

on L2(ΛL(x)). Require that the resulting operators HB,λ,ω,x,L have compact
resolvent and satisfy the following compatibility conditions: If ϕ ∈ D(DB,x,L)
with suppϕ ⊂ ΛL−δ(x), then Ix,Lϕ ∈ D(DB), and

Ix,LDB,x,Lϕ = DBIx,Lϕ, Ix,Lχx,L−δVx,L,ω = χx,L−δVω,(4.2)

where Ix,L : L2(ΛL(x)) → L2(R2) is the canonical injection: (Ix,Lϕ) (y) = ϕ(y)
if y ∈ ΛL(x), (Ix,Lϕ) (y) = 0 otherwise (we will also use Ix,L for C2 valued
functions). Note that in the square centered at x ∈ Z2 with side L − δ the
potential Vx,L,ω is just Vω. Furthermore, require the covariance condition (but
only between x and 0, not between arbitrary x and y in Z2)

HB,λ,ω,x,L = UxHB,λ,τ−x(ω),0,LU∗
x for all x ∈ Z2,(4.3)

where the magnetic translation Ux is as in (2.4) but considered as a unitary
map from L2(ΛL(0)) to L2(ΛL(x)). This is equivalent to fixing the boundary
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condition for the operators DB,x,L at the square centered at x = 0, and using
the magnetic translations to define the finite volume operators in all other
squares by (4.3). (See Section 5 for specific choices for these finite volume
operators.)

The compatibility conditions (4.2) ensure that the finite volume operators
HB,λ,ω,x,L agree with HB,λ,ω “inside” the square ΛL(x); that is, we have

Ix,LHB,λ,ω,x,Lϕ = HB,λ,ωIx,Lϕ for ϕ ∈ C∞
c (ΛL(x)), suppϕ ⊂ ΛL−δ(x).

(4.4)

The covariance condition (4.3) ensures that the probabilities of events based in
squares ΛL(x) (that is, determined by conditions on the finite volume operator
HB,λ,ω,x,L) are translation invariant; that is, independent of the center x ∈ Z2.
Note that given (4.3) it suffices to establish (4.2) for x = 0. Note also that
events based on disjoint squares are independent; this gives property IAD.

Taking (4.2) into account, given a square ΛL(x) we define its “bound-
ary belt” as ΛL−δ−1(x)\ΛL−δ−3(x), with Γx,L denoting its characteristic func-
tion. We write Λ(y) � ΛL(x) if Λ(y) ⊂ ΛL−δ−3(x). We let RB,λ,ω,x,L(z) =
(HB,λ,ω,x,L − z)−1 be the resolvent of the finite volume operator HB,λ,ω,x,L.

Properties SLI and EDI follow from (4.2) and (4.3) by the geometric re-
solvent identity and interior estimates, as in [GK5, Theorem A.1] (see also the
discussion in [GK3, §4]). Property SLI here says that for all E ∈ R there exists
a finite constant γλ,E , locally bounded in λ and E, such that, given L, �′ ∈ L̄N,
�′′ > 0, x, y, y′ ∈ Z2 with Λ′′(y) � Λ′(y′) � ΛL(x), then for every ω such that
E /∈ σ(HB,λ,ω,x,L) ∪ σ(HB,λ,ω,y′,′),

‖Γx,LRB,λ,ω,x,L(E)χy,′′‖(4.5)

≤ γλ,E ‖Γy′,′RB,λ,ω,y′,′(E)χy,′′‖ ‖Γx,LRB,λ,ω,x,L(E)Γy′,′‖.

Property EDI states that for all E ∈ R and every ω, given a generalized
eigenfunction ψ of HB,λ,ω with generalized eigenvalue E, we have for any x ∈ Z2

and L ∈ L̄N with E /∈ σ(HB,λ,ω,x,L) that (with the same γλ,E as above)

‖χxψ‖ ≤ γλ,E‖Γx,LRB,λ,ω,x,L(E)χx‖‖Γx,Lψ‖.(4.6)

We write PB,λ,ω,x,L(J ) = χJ (HB,λ,ω,x,L) if J ⊂ R is a Borel set. To
establish properties NE and W for the random Landau Hamiltonian at all
energies, it suffices to prove the following Wegner estimate: given a bounded
interval I ⊂ R and q ∈]0, 1[, there exist constants QB,λ,I,q < ∞ and ηB,λ,I ∈
]0, 1], and a finite scale LB,λ,I,q, such that for all subintervals J ⊂ I with
|J | ≤ ηB,λ,I , L ∈ L0N with L ≥ LB,λ,I,q, and x ∈ Z2,

E {trPB,λ,ω,x,L(J)} ≤ QB,λ,I,q ‖ρ‖∞ |J |qL2,(4.7)

where ρ is the bounded density of the common probability distribution of the
ωi’s.
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If the single bump potential u in (2.3) has εu ≥ 1, then such a Weg-
ner estimate is proven for appropriate finite dimensional operators in [CoH2],
[HuLMW] at all energies. But if εu is small (the most interesting case for this
paper in view of Corollary 2.3), a Wegner estimate at all energies was only
known under the rational flux condition on the unit square, namely B ∈ 2πQ

[CoHK]. Under the hypotheses of Corollary 2.3, without the rational flux con-
dition a Wegner estimate was known only at energies away from the Landau
levels [CoH2], [W1].

The Wegner estimate is closely connected to Hölder continuity of the inte-
grated density of states; in fact Combes, Hislop and Klopp [CoHK] proved first
a Wegner estimate for random Landau Hamiltonians with B ∈ 2πQ, and from
it derived the Hölder continuity of the integrated density of states. Combes,
Hislop, Klopp and Raikov [CoHKR] established the Hölder continuity of the
integrated density of states for HB,λ,ω as in (2.1) with no extra hypotheses,
but they did not obtain estimates on finite volume operators, and hence no
Wegner estimate.

In Theorem 5.1 we establish a Wegner estimate for the random Landau
Hamiltonian as in (2.1), for an appropriate choice of finite volume operators.
Although the Wegner estimate does not follow from Hölder continuity of the
integrated density of states, we use some of the key results in [CoHKR] to
obtain the crucial estimate [CoHK, Eq. (3.1)], from which the Wegner estimate
follows as in [CoHK, Proof of Theorem 1.2].

Thus the random Landau Hamiltonian as in (2.1) satisfies all the require-
ments for the bootstrap multiscale analysis (BMSA) at all energies, including
the Landau levels. For our purposes the BMSA can be thought of a “black
box”. The input is an “initial estimate”, which gives control of the finite vol-
ume resolvent at a sufficiently large scale with good probability, the output is
control of the finite volume resolvents for scales increasing to ∞, with appro-
priately increasing probabilities, and its consequences. This initial estimate at
an energy E is of the form

P

{
‖Γx,LRB,λ,ω,x,L(E)χx, L

3
‖ ≤ 1

Lθ

}
> 1 − p0,(4.8)

where θ > 2. It follows from the BMSA [GK1] that there is p0 ∈]0, 1[, such
that if (4.8) holds for some L sufficiently large, then there is an open interval
I � E such that in I we have exponential localization, strong dynamical local-
ization in the Hilbert-Schmidt norm, sub-exponential decay of the expectation
of the kernel of the evolution operator, semi-uniformly localized eigenfunctions
(SULE), and, as shown in [GK6], SUDEC, decay of the Fermi projection, and
finite multiplicity of eigenvalues. In particular, I ⊂ ΞDL

B,λ, with ΞDL
B,λ as defined

in (2.18).
The multiscale analysis yields localization. To obtain delocalization, the

main result of this paper, we use the converse to the multiscale analysis given
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in [GK5]. The main result here is [GK5, Theorem 2.11], which states that slow
transport implies the initial estimate of the BMSA. An important consequence
is that, if E ∈ ΞDL

B,λ, then the initial estimate (4.8) for the BMSA is satisfied at
the energy E with appropriate θ, p0, L, and hence the BMSA can be performed
with all its consequences. This is stated as property RDL in Section 3. An-
other crucial consequence for this paper is the estimate on the minimal rate of
transport at energies E ∈ ΞDD

B,λ [GK5, Theorem 2.10], given as property RDD
in Section 3.

Once we have established properties RDL and RDD, properties DFP and
SUDEC in Section 3 are just consequences of the BMSA given in [GK1], [GK6].

5. The Wegner estimate

In this section we establish a Wegner estimate for the random Landau
Hamiltonian as in (2.1).

Let B > 0 be arbitrary; since we do not assume the rational flux condition
on the unit square, we set a reference length scale L̄ = LB corresponding to
squares with even (for convenience) integer flux. We take

KB = min
{

k ∈ N; k ≥
√

B
4π

}
,

and set

LB = KB

√
4π
B , NB = LBN, and Z2

B = LBZ2.(5.1)

Note that LB ≥ 1 may not be an integer. We consider squares ΛL(0) with
L ∈ NB and identify them with the torii TL := R2/(LZ2) in the usual way.
As shown in [CoHK, §4], the magnetic translations UB := {Ua; a ∈ Z2

B}
form a unitary representation of the abelian group Z2

B; we write Ûa for the
corresponding action on L2(ΛL(0)), with ÛB := {Ûa; a ∈ Z2

B}. If x ∈ ΛL(0)
and r < L we denote by Λ̂r(x) and χ̂x,r the square and characteristic function
in the torus TL.

Given L ∈ NB, we define HB,0,L = D∗
B,0,LDB,0,L, with DB,0,L the re-

striction of DB to L2(ΛL(0)) with periodic boundary condition with respect to
ÛB. The spectrum of HB,0,L still consists of the Landau levels: σ(HB,0,L) =
σ(HB) = {Bn; n = 0, 1, . . . }, but since HB,0,L has compact resolvent each
Landau level has now finite multiplicity. We let Λ̃L(x) = Z2 ∩ ΛL(x). Given
L ∈ NB we set

HB,λ,0,L,ω = HB,0,L + λV0,L,ω on L2(ΛL(0)),

V0,L,ω(x) =
∑

i∈Λ̃L−δu (0)

ωi u(x − i),(5.2)

where suppu ⊂ Λδu
(0), and then define HB,λ,ω,x,L for all x ∈ Z2 by (4.3). (We

prescribed periodic boundary condition for the (free) Landau Hamiltonian at
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the square centered at 0, and used the magnetic translations to define the
finite volume operators in all other squares by (4.3); in the square centered at
x ∈ Z2 the potential Vx,L,ω is exactly as in (5.2) except that the sum is now
over i ∈ Λ̃L−δu

(x).) Note that HB,λ,x,L,ω has compact resolvent and satisfies
the compatibility conditions (4.2) with δ = 2δu.

Theorem 5.1. Fix B > 0 and λ > 0. Given a bounded interval I ⊂ R

and q ∈]0, 1[, there exist constants QB,λ,I,q < ∞ and ηB,λ,I ∈]0, 1], and a finite
scale LB,λ,I,q, such that for all subintervals J ⊂ I with |J | ≤ ηB,λ,I , L ∈ NB

with L ≥ LB,λ,I,q, and x ∈ Z2,

E {trPB,λ,ω,x,L(J)} ≤ QB,λ,I,q ‖ρ‖∞ |J |qL2.(5.3)

Proof. In view of (4.3) it suffices to prove the theorem for x = 0.
We start by proving a lemma that will allow us to derive the theorem from

the results of [CoHKR], [CoHK]. For each L ∈ NB we set ΓL = χΛL−1(0)\ΛL−3(0)

and fix a function ΦL ∈ C∞(R2) such that ΦL(x) ≡ 1 on ΛL− 5
2
(0), supp ΦL ⊂

ΛL− 3
2
(0), and 0 ≤ ΦL(x) ≤ 1, |∇ΦL(x)| ≤ 5 for all x ∈ R2. (Such a function

always exists.) We use ΦL, (∇ΦL), and χr = χ0,r (0 < r ≤ L) to denote the
operators given by multiplication by the functions ΦL, ∇ΦL and χr in both
L2(ΛL(0)) and L2(R2). For convenience we set HB,L = HB,0,L, IL = I0,L,
ÑB = NB ∪ {∞}, HB,∞ = HB, and so on. By Ca,b,... we denote a constant
depending only on the parameters a, b, . . . (we may use the same Ca,b,... for
different constants), and similarly for constants ma,b,... > 0.

Lemma 5.2. Fix B > 0. Given n ∈ N and L ∈ ÑB, let Πn,L = ΠB,n,L

denote the orthogonal projection on the eigenspace corresponding to the n-th
Landau level Bn for the Landau Hamiltonian HB,L. Then for all x ∈ ΛLB

(0),
r > 0, and L ∈ NB such that L ≥ 2(LB + r),

Πn,Lχx,rΠn,L = ΦLI∗
LΠnχx,rΠnILΦL + Ex,r,n,L,(5.4)

with the error operator Ex,r,n,L satisfying

‖Ex,r,n,L‖ ≤ Cn,B e−mn,BL.(5.5)

Proof. Let L, r, and x be as in the lemma. Since all HB,L have the same
spectrum, namely the Landau levels, we have

Πn,L = − 1
2πi

∫
γn

RL(z) dz with RL(z) = (HB,L − z)−1 if L ∈ ÑB,(5.6)

where γn denotes the circle centered at Bn with radius B. Let z ∈ γn, in view
of (4.2) we may use the smooth resolvent identity as in [GK5, Eq. (6.13)] to
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obtain,

χx,rILRL(z) = χx,rΦLILRL(z) = χx,rR(z)ΦLIL − χx,rYL(z),

YL(z) := iR(z) {D∗
B(∇Φ)IL + IL(∇Φ)∗DB,L}RL(z).

(5.7)

Proceeding as in [GK5, Proof of Lemma 6.4], using L ≥ 2(LB + r), ‖RL(z)‖ =
1
B , |z| ≤ Bn + B, and the Combes-Thomas estimate (e.g., [GK2, Theorem 1]),
we obtain

‖χx,rYL(z)‖ ≤ ‖χx,rR(z)D∗
B |∇Φ|‖ ‖RL(z)‖ + ‖χx,rR(z) |∇Φ|‖ ‖DB,LRL(z)‖

≤ Cn,B ‖χx,rR(z)ΓL‖ ≤ Cn,B e−mn,BL.(5.8)

Putting together (5.6), (5.7), and (5.8) we get

χx,rΠn,L = χx,rI∗
LΠnILΦL + E ′

x,r,n,L,(5.9)

with the error operator E ′
x,r,n,L satisfying the estimate (5.5). The lemma now

follows from (5.9).

Using Lemma 5.2 we adapt the crucial [CoHKR, Lemma 2] to finite vol-
ume.

Lemma 5.3. Fix B > 0, n ∈ N, ε > 0, R > ε, and η > 0. If κ > 1 and
L ∈ NB are such that L > 2(LB + κR), then for all x ∈ ΛL(0), we have

Πn,Lχ̂x,εΠn,L ≥ C0Πn,L(χ̂x,R − ηχ̂x,κR)Πn,L + Πn,LEn,x,LΠn,L,(5.10)

where C0 = C0;n,B,ε,R,η > 0 is a constant and the error operator En,x,L =
En,x,L,B,ε,R,η satisfies

‖En,x,L‖ ≤ Cn,B,ε,R,η e−mn,BL.(5.11)

Proof. Given B, n, ε, R, η as in the lemma, it follows from [CoHKR,
Lemma 2] that for all κ > 1 and x ∈ R2, we have

Πnχx,εΠn ≥ C0Πn(χx,R − ηχx,κR)Πn, C0 = C0;B,n,ε,R,η,κ > 0.(5.12)

(Although [CoHKR, Eq. 61] is stated for discs instead of squares, (5.12) follows
with a small change in the constant C0.)

Let κ > 1 and L ∈ NB be such that L > 2(LB + κR). If x ∈ ΛLB
(0), it

follows from Lemma 5.2 and (5.12) that

Πn,Lχx,εΠn,L = ΦLI∗
LΠnχx,εΠnILΦL + Ex,ε,n,L

≥ C0ΦLI∗
LΠn(χx,R − ηχx,κR)ΠnILΦL + Ex,ε,n,L

= C0Πn,L(χx,R − ηχx,κR)Πn,L + Ex,ε,R,κ,n,L,

(5.13)

and hence we have (5.10) and (5.11) for x ∈ ΛLB
(0). For arbitrary x ∈ ΛL(0),

we pick ax ∈ Z2
B such that x − ax ∈ ΛLB

(0) (such ax always exists). Since
χ̂x, = Ûax

χ̂x−ax,Û
∗
ax

for � < L and Ûax
Πn,LÛ∗

ax
= Πn,L, (5.10) and (5.11)

follows with En,x,L = Ûax
En,x−ax,LÛ∗

ax
.
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We can now finish the proof of of Theorem 5.1. Let

ṼL(x) :=
∑

i∈Λ̃L−δu (0)

u(x − i) ≥ u− ∑
i∈Λ̃L−δu (0)

χi,εu
.(5.14)

We fix R > 1 + 2δu, in which case
∑

i∈Λ̃L−δu (0) χ̂i,R ≥ χ0,L, and κ > 1, and
pick η > 0 such that η

∑
i∈Λ̃L−δu (0) χ̂i,κR ≤ 1

2χ0,L. It follows from (5.14) and
Lemma 5.3 that for all L ∈ NB with L > 2(LB + κR),

Πn,LṼLΠn,L ≥ u−C0

∑
i∈Λ̃L−δu (0)

Πn,L(χ̂i,R − ηχ̂i,κR)Πn,L + Πn,LEn,LΠn,L

≥ u−C0

2
Πn,L + Πn,LEn,LΠn,L ≥ C1Πn,L(5.15)

for L ≥ L∗ for some L∗ = L∗
n,B,ε,R,κ,η < ∞ and C1 = u−C0

4 , since the error
term En,L satisfies

‖En,L‖ ≤ 2L2Cn,B,ε,R,η e−mn,BL.(5.16)

Theorem 5.1 now follows by [CoHK, Proof of Theorem 1.2], since (5.15)
for all n = 1, 2, . . . gives the crucial estimate [CoHK, Eq. (3.1)].

6. The small disorder limit

Proof of Corollary 2.4. Note first that 1 < cb,λ ≤ 2 for λ ≤ λ1, which we
assume from now on. Fixing B > b, we have (2.11) with In(B, λ) = In(B) :=
In(B, 1) for all λ and n = 1, 2, . . . . By the hypothesis on the density ρ, for all
ε > 0 we have

νλ({|u| ≥ ε}) ≤ C1

(
λε−1

)γ−1
.(6.1)

Let L̄ ∈ NB (see (5.1)), and let HB,λ,0,L̄,ω and V0,L̄,ω be as in (5.2) with λ = 1
but with νλ being the common probability distribution of the random variables
{ωi; i ∈ Z2}. The spectrum of these finite volume Hamiltonians satisfies (2.8)
(appropriately modified) for each ω, and hence

P

{
σ(HB,λ,0,L̄,ω) ⊂

∞⋃
n=1

[Bn − ε, Bn + ε]

}
≥ P

{
|ωi| ≤ ε if i ∈ Λ̃L̄−δu

(0)
}

(6.2)

≥
(
1 − C1

(
λε−1

)γ−1
)(L̄−δu)2

≥ 1 − C2

(
λε−1

)γ−1
L̄2

for small
(
λε−1

)γ−1.
We now apply the finite volume criterion for localization given in [GK3,

Theorem 2.4], in the same way as in [GK3, Proof of Theorem 3.1], with pa-
rameters (we fix q ∈]0, 1]) ηI,λ = 1

2ηB,λ,I,q = 1
2ηB,1,I,q and QI,λ = QB,λ,I,q ≤

2λ−1QI,1, where ηB,λ,I and QB,λ,I,q come from Theorem 5.1. (Note that the



240 FRANÇOIS GERMINET, ABEL KLEIN, AND JEFFREY H. SCHENKER

fact that we work with length scales L ∈ NB instead of L ∈ 6N only affects the
values of the constants in [GK3, Eqs. (2.16)–(2.18)].) The SLI constant γI,B,λ

is uniformly bounded in closed intervals I if λ ≤ B. Since we are working in
spectral gaps, we use the Combes-Thomas estimate of [BCH, Prop. 3.2] (see
also [KlK1, Theorem 3.5]–its proof, based on [BCH, Lemma 3.1], also works
for Schrödinger operators with magnetic fields), adapted to finite volume as in
[GK3, §3].

Now fix n ∈ N, take I = In(B), and set L̄ = L̄(n, B) to be the smallest
L ∈ NB satisfying [GK3, Eq. (2.16)]. Let E ∈ In(B), |E − Bn| ≥ 2ε, where
ε = ε(n, B, λ)) > 0 will be chosen later. Then, using (6.2) and the Combes-
Thomas estimate, we conclude that condition [GK3, Eq. (2.17)] will be satisfied
at energy E if

ε ≥ C3 λL̄
2

γ−1 ,(6.3)

C4 (λε)−1 L̄
25
3 e−C5

√
εL̄ < 1,(6.4)

for appropriate constants Cj = Cj(n, B), j = 3, 4, 5, with C5 > 0. This can be
done by choosing

ε = C6λ
γ−1

γ |log λ|
2
γ ,(6.5)

with a sufficiently large constant C6 = C6(n, B) and taking λ ≤ λ2 for some
0 < λ2 = λ(n, B, C6). We conclude from [GK3, Theorem 2.4] that{

E ∈ In(B); |E − Bn| ≥ 2C5λ
γ−1

γ |log λ|
2
γ

}
⊂ ΞDL

B,λ(6.6)

for all λ ≤ λ2.
The existence at small disorder of dynamical mobility edges Ẽj,n(B, λ),

j = 1, 2, satisfying (2.24), (2.25), and (2.26) now follows from Theorem 2.1
and (6.6).

The case when e|u|
α

ρ(u) is bounded for some α > 0 can be treated in a
similar way.
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