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Subelliptic SpinC Dirac operators, I
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Abstract

Let X be a compact Kähler manifold with strictly pseudoconvex bound-
ary, Y. In this setting, the SpinC Dirac operator is canonically identified with
∂̄ + ∂̄∗ : C∞(X; Λ0,e) → C∞(X; Λ0,o). We consider modifications of the classi-
cal ∂̄-Neumann conditions that define Fredholm problems for the SpinC Dirac
operator. In Part 2, [7], we use boundary layer methods to obtain subelliptic
estimates for these boundary value problems. Using these results, we obtain an
expression for the finite part of the holomorphic Euler characteristic of a strictly
pseudoconvex manifold as the index of a SpinC Dirac operator with a subellip-
tic boundary condition. We also prove an analogue of the Agranovich-Dynin
formula expressing the change in the index in terms of a relative index on the
boundary. If X is a complex manifold partitioned by a strictly pseudoconvex
hypersurface, then we obtain formulæ for the holomorphic Euler characteristic
of X as sums of indices of SpinC Dirac operators on the components. This is
a subelliptic analogue of Bojarski’s formula in the elliptic case.

Introduction

Let X be an even dimensional manifold with a SpinC-structure; see [6],
[12]. A compatible choice of metric, g, defines a SpinC Dirac operator, ð which
acts on sections of the bundle of complex spinors, S/. The metric on X induces
a metric on the bundle of spinors. If 〈σ, σ〉g denotes a pointwise inner product,
then we define an inner product of the space of sections of S/, by setting:

〈σ, σ〉X =
∫
X

〈σ, σ〉gdVg.

*Research partially supported by NSF grants DMS99-70487 and DMS02-03795, and the
Francis J. Carey term chair.
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If X has an almost complex structure, then this structure defines a SpinC-
structure. If the complex structure is integrable; then the bundle of complex
spinors is canonically identified with ⊕q≥0Λ0,q. As we usually work with the
chiral operator, we let

Λe =
�n

2
�⊕

q=0

Λ0,2q Λo =
�n−1

2
�⊕

q=0

Λ0,2q+1.(1)

If the metric is Kähler, then the SpinC Dirac operator is given by

ð = ∂̄ + ∂̄∗.

Here ∂̄∗ denotes the formal adjoint of ∂̄ defined by the metric. This operator
is called the Dolbeault-Dirac operator by Duistermaat; see [6]. If the metric is
Hermitian, though not Kähler, then

ð = ∂̄ + ∂̄∗ + M0,(2)

where M0 is a homomorphism carrying Λe to Λo and vice versa. It vanishes at
points where the metric is Kähler. It is customary to write ð = ðe + ðo where

ð
e : C∞(X; Λe) −→ C∞(X, Λo)

and ðo is the formal adjoint of ðe. If X is a compact, complex manifold, then
the graph closure of ðe is a Fredholm operator. It has the same principal
symbol as ∂̄ + ∂̄∗ and therefore its index is given by

Ind(ðe) =
n∑

j=0

(−1)j dimH0,j(X) = χO(X).(3)

If X is a manifold with boundary, then the kernels and cokernels of ðeo

are generally infinite dimensional. To obtain a Fredholm operator we need to
impose boundary conditions. In this instance there are no local boundary con-
ditions for ðeo that define elliptic problems. Starting with Atiyah, Patodi and
Singer, boundary conditions defined by classical pseudodifferential projections
have been the focus of most of the work in this field. Such boundary conditions
are very useful for studying topological problems, but are not well suited to
the analysis of problems connected to the holomorphic structure of X. To that
end we begin the study of boundary conditions for ðeo obtained by modifying
the classical ∂̄-Neumann and dual ∂̄-Neumann conditions. For a (0, q)-form,
σ0q, the ∂̄-Neumann condition is the requirement that

[∂ρ�σ0q]bX = 0.

This imposes no condition if q = 0, and all square integrable holomorphic
functions thereby belong to the domain of the operator, and define elements
of the null space of ðe. Let S denote the Szegő projector; this is an operator
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acting on functions on bX with range equal to the null space of the tangential
Cauchy-Riemann operator, ∂̄b. We can remove the null space in degree 0 by
adding the condition

S[σ00]bX = 0.(4)

This, in turn, changes the boundary condition in degree 1 to

(Id−S)[∂̄ρ�σ01]bX = 0.(5)

If X is strictly pseudoconvex, then these modifications to the ∂̄-Neumann
condition produce a Fredholm boundary value problem for ð. Indeed, it is not
necessary to use the exact Szegő projector, defined by the induced CR-structure
on bX. Any generalized Szegő projector, as defined in [9], suffices to prove the
necessary estimates. There are analogous conditions for strictly pseudoconcave
manifolds. In [2] and [13], [14] the SpinC Dirac operator with the ∂̄-Neumann
condition is considered, though from a very different perspective. The results
in these papers are largely orthogonal to those we have obtained.

A pseudoconvex manifold is denoted by X+ and objects associated with
it are labeled with a + subscript, e.g., the SpinC-Dirac operator on X+ is
denoted ð+. Similarly, a pseudoconcave manifold is denoted by X− and objects
associated with it are labeled with a − subscript. Usually X denotes a compact
manifold, partitioned by an embedded, strictly pseudoconvex hypersurface, Y ,
into two components, X \ Y = X+

∐
X−.

If X± is either strictly pseudoconvex or strictly pseudoconcave, then the
modified boundary conditions are subelliptic and define Fredholm operators.
The indices of these operators are connected to the holomorphic Euler charac-
teristics of these manifolds with boundary, with the contributions of the infinite
dimensional groups removed. We also consider the Dirac operator acting on
the twisted spinor bundles

Λp,eo = Λeo ⊗ Λp,0,

and more generally Λeo ⊗ V where V → X is a holomorphic vector bundle.
When necessary, we use ðeo

V± to specify the twisting bundle. The boundary
conditions are defined by projection operators Reo

± acting on boundary values
of sections of Λeo ⊗V. Among other things we show that the index of ðe

+ with
boundary condition defined by Re

+ equals the regular part of the holomorphic
Euler characteristic:

Ind(ðe
+,Re

+) =
n∑

q=1

dimH0,q(X)(−1)q.(6)

In [7] we show that the pairs (ðeo
± ,Reo

± ) are Fredholm and identify their
L2-adjoints. In each case, the L2-adjoint is the closure of the formally adjoint
boundary value problem, e.g.

(ðe
+,Re

+)∗ = (ðo
+,Ro

+).
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This is proved by using a boundary layer method to reduce to analysis of oper-
ators on the boundary. The operators we obtain on the boundary are neither
classical, nor Heisenberg pseudodifferential operators, but rather operators be-
longing to the extended Heisenberg calculus introduced in [9]. Similar classes
of operators were also introduced by Beals, Greiner and Stanton as well as
Taylor; see [4], [3], [15]. In this paper we apply the analytic results obtained
in [7] to obtain Hodge decompositions for each of the boundary conditions and
(p, q)-types.

In Section 1 we review some well known facts about the ∂̄-Neumann prob-
lem and analysis on strictly pseudoconvex CR-manifolds. In the following two
sections we introduce the boundary conditions we consider in the remainder
of the paper and deduce subelliptic estimates for these boundary value prob-
lems from the results in [7]. The fourth section introduces the natural dual
boundary conditions. In Section 5 we deduce the Hodge decompositions asso-
ciated to the various boundary value problems defined in the earlier sections.
In Section 6 we identify the nullspaces of the various boundary value problems
when the classical Szegő projectors are used. In Section 7 we establish the
basic link between the boundary conditions for (p, q)-forms considered in the
earlier sections and boundary conditions for ðeo

± and prove an analogue of the
Agranovich-Dynin formula. In Section 8 we obtain “regularized” versions of
some long exact sequences due to Andreotti and Hill. Using these sequences
we prove gluing formulæ for the holomorphic Euler characteristic of a compact
complex manifold, X, with a strictly pseudoconvex separating hypersurface.
These formulæ are subelliptic analogues of Bojarski’s gluing formula for the
classical Dirac operator with APS-type boundary conditions.

Acknowledgments. Boundary conditions similar to those considered in
this paper were first suggested to me by Laszlo Lempert. I would like to thank
John Roe for some helpful pointers on the SpinC Dirac operator.

1. Some background material

Henceforth X+ (X−) denotes a compact complex manifold of complex di-
mension n with a strictly pseudoconvex (pseudoconcave) boundary. We assume
that a Hermitian metric, g is fixed on X±. For some of our results we make
additional assumptions on the nature of g, e. g., that it is Kähler. This metric
induces metrics on all the natural bundles defined by the complex structure on
X±. To the extent possible, we treat the two cases in tandem. For example, we
sometimes use bX± to denote the boundary of either X+ or X−. The kernels of
ð± are both infinite dimensional. Let P± denote the operators defined on bX±
which are the projections onto the boundary values of elements in ker ð±; these
are the Calderon projections. They are classical pseudodifferential operators of
order 0; we use the definitions and analysis of these operators presented in [5].
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We often work with the chiral Dirac operators ðeo
± which act on sections

of

Λp,e =
�n

2
�⊕

q=0

Λp,2qX±, Λp,o =
�n−1

2
�⊕

q=0

Λp,2q+1X±,(7)

respectively. Here p is an integer between 0 and n; except when entirely nec-
essary it is omitted from the notation for things like Reo

± , ðeo
± , etc. The L2-

closure of the operators ðeo
± , with domains consisting of smooth spinors such

that Peo
± (σ

∣∣
bX±

) = 0, are elliptic operators with Fredholm index zero.
Let ρ be a smooth defining function for the boundary of X±. Usually we

take ρ to be negative on X+ and positive on X−, so that ∂∂̄ρ is positive definite
near bX±. If σ is a section of Λp,q, smooth up to bX±, then the ∂̄-Neumann
boundary condition is the requirement that

∂̄ρ�σ �bX±= 0.(8)

If X+ is strictly pseudoconvex, then there is a constant C such that if σ is a
smooth section of Λp,q, with q ≥ 1, satisfying (8), then σ satisfies the basic
estimate:

‖σ‖2
(1,− 1

2
) ≤ C(‖∂̄σ‖2

L2 + ‖∂̄∗σ‖2
L2 + ‖σ‖2

L2).(9)

If X− is strictly pseudoconcave, then there is a constant C such that if σ is
a smooth section of Λp,q, with q �= n − 1, satisfying (8), then σ again satisfies
the basic estimate (9). The �-operator is defined formally as

�σ = (∂̄∂̄∗ + ∂̄∗∂̄)σ.

The �-operator, with the ∂̄-Neumann boundary condition is the graph closure
of � acting on smooth forms, σ, that satisfy (8), such that ∂̄σ also satisfies (8).
It has an infinite dimensional nullspace acting on sections of Λp,0(X+) and
Λp,n−1(X−), respectively. For clarity, we sometimes use the notation �p,q to
denote the �-operator acting on sections of Λp,q.

Let Y be a compact strictly pseudoconvex CR-manifold of real dimension
2n − 1. Let T 0,1Y denote the (0, 1)-part of TY ⊗ C and T Y the holomorphic
vector bundle TY ⊗ C/T 0,1Y. The dual bundles are denoted Λ0,1

b and Λ1,0
b

respectively. For 0 ≤ p ≤ n, let

C∞(Y ; Λp,0
b ) ∂̄b−→ C∞(Y ; Λp,1

b ) ∂̄b−→ . . .
∂̄b−→ C∞(Y ; Λp,n−1

b )(10)

denote the ∂̄b-complex. Fixing a choice of Hermitian metric on Y, we define
formal adjoints

∂̄∗
b : C∞(Y ; Λp,q

b ) −→ C∞(Y ; Λp,q−1
b ).

The �b-operator acting on Λp,q
b is the graph closure of

�b = ∂̄b∂̄
∗
b + ∂̄∗

b ∂̄b,(11)
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acting on C∞(Y ; Λp,q
b ). The operator �p,q

b is subelliptic if 0 < q < n − 1.

If q = 0, then ∂̄b has an infinite dimensional nullspace, while if q = n − 1,

then ∂̄∗
b has an infinite dimensional nullspace. We let Sp denote an orthogonal

projector onto the nullspace of ∂̄b acting on C∞(Y ; Λp,0
b ), and S̄p an orthogonal

projector onto the nullspace of ∂̄∗
b acting on C∞(Y ; Λp,n−1

b ). The operator Sp is
usually called “the” Szegő projector; we call S̄p the conjugate Szegő projector.
These projectors are only defined once a metric is selected, but this ambiguity
has no bearing on our results. As is well known, these operators are not
classical pseudodifferential operators, but belong to the Heisenberg calculus.
Generalizations of these projectors are introduced in [9] and play a role in the
definition of subelliptic boundary value problems for ð. For 0 < q < n− 1, the
Kohn-Rossi cohomology groups

Hp,q
b (Y ) =

ker{∂̄b : C∞(Y ; Λp,q
b ) → C∞(Y ; Λp,q+1

b )}
∂̄bC∞(Y ; Λp,q−1

b )

are finite dimensional. The regularized ∂̄b-Euler characteristics of Y are defined
to be

χ′
pb(Y ) =

n−2∑
q=1

(−1)q dimHp,q
b (Y ), for 0 ≤ p ≤ n.(12)

Very often we use Y to denote the boundary of X±.

The Hodge star operator on X± defines an isomorphism

� : Λp,q(X±) −→ Λn−p,n−q(X±).(13)

Note that we have incorporated complex conjugation into the definition of the
Hodge star operator. The usual identities continue to hold, i.e.,

�� = (−1)p+q, ∂̄∗ = − � ∂̄ � .(14)

There is also a Hodge star operator on Y that defines an isomorphism:

�b : Λp,q
b (Y ) −→ Λn−p,n−q−1

b (Y ), [∂̄p,q
b ]∗ = (−1)p+q+1 �b ∂̄b �b .(15)

There is a canonical boundary condition dual to the ∂̄-Neumann condition.
The dual ∂̄-Neumann condition is the requirement that

∂̄ρ ∧ σ �bX±= 0.(16)

If σ is a (p, q)-form defined on X±, then, along the boundary we can write

σ �bX±= ∂̄ρ ∧ (∂̄ρ�σ) + σb.(17)

Here σb ∈ C∞(Y ; Λp,q
b ) is a representative of σ �(T Y )p⊗(T 0,1Y )q . The dual ∂̄-

Neumann condition is equivalent to the condition

σb = 0.(18)
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For later applications we note the following well known relations: For sections
σ ∈ C∞(X±,Λp,q), we have

(∂̄ρ�σ)�b = (σ�)b, ∂̄ρ�(σ�) = σ�b

b , (∂̄σ)b = ∂̄bσb.(19)

The dual ∂̄-Neumann operator on Λp,q is the graph closure of �p,q on
smooth sections, σ of Λp,q satisfying (16), such that ∂̄∗σ also satisfies (16).
For a strictly pseudoconvex manifold, the basic estimate holds for (p, q)-forms
satisfying (16), provided 0 ≤ q ≤ n−1. For a strictly pseudoconcave manifold,
the basic estimate holds for (p, q)-forms satisfying (16), provided q �= 1.

As we consider many different boundary conditions, it is useful to have no-
tation that specifies the boundary condition under consideration. If D denotes
an operator acting on sections of a complex vector bundle, E → X, and B
denotes a boundary operator acting on sections of E �bX , then the pair (D,B)
is the operator D acting on smooth sections s that satisfy

Bs �bX= 0.

The notation s �bX refers to the section of E �bX obtained by restricting a
section s of E → X to the boundary. The operator B is a pseudodifferential
operator acting on sections of E �bX . Some of the boundary conditions we con-
sider are defined by Heisenberg pseudodifferential operators. We often denote
objects connected to (D,B) with a subscripted B. For example, the nullspace
of (D,B) (or harmonic sections) might be denoted HB. We denote objects con-
nected to the ∂̄-Neumann operator with a subscripted ∂̄, e. g., �p,q

∂̄
. Objects

connected to the dual ∂̄-Neumann problem are denoted by a subscripted ∂̄∗,
e.g., �p,q

∂̄∗ .

Let Hp,q

∂̄
(X±) denote the nullspace of �p,q

∂̄
and Hp,q

∂̄∗ (X±) the nullspace of
�p,q

∂̄∗ . In [11] it is shown that

Hp,q

∂̄
(X+) � [Hn−p,n−q

∂̄∗ (X+)]∗, if q �= 0,

Hp,q

∂̄
(X−) � [Hn−p,n−q

∂̄∗ (X−)]∗, if q �= n − 1.
(20)

Remark 1. In this paper C is used to denote a variety of positive constants
which depend only on the geometry of X. If M is a manifold with a volume
form dV and f1, f2 are sections of a bundle with a Hermitian metric 〈·, ·〉g,
then the L2-inner product over M is denoted by

〈f1, f2〉M =
∫
M

〈f1, f2〉g dV .(21)

2. Subelliptic boundary conditions for pseudoconvex manifolds

In this section we define a modification of the classical ∂̄-Neumann con-
dition for sections belonging to C∞(X̄+; Λp,q), for 0 ≤ p ≤ n and 0 ≤ q ≤ n.
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The bundles Λp,0 are holomorphic, and so, as in the classical case they do not
not really have any effect on the estimates. As above, Sp denotes an orthog-
onal projection acting on sections of Λp,0

b with range equal to the null space
of ∂̄b acting sections of Λp,0

b . The range of Sp includes the boundary values
of holomorphic (p, 0)-forms, but may in general be somewhat larger. If σp0

is a holomorphic section, then σp0
b = Spσ

p0
b . On the other hand, if σp0 is any

smooth section of Λp,0, then ∂̄ρ�σp0 = 0 and therefore, the L2-holomorphic
sections belong to the nullspace of �p0

∂̄
.

To obtain a subelliptic boundary value problem for �pq in all degrees, we
modify the ∂̄-Neumann condition in degrees 0 and 1. The modified boundary
condition is denoted by R+. A smooth form σp0 ∈ Dom(∂̄p,0

R+
) provided

Spσ
p0
b = 0.(22)

There is no boundary condition if q > 0. A smooth form belongs to Dom([∂̄p,q
R+

]∗)
provided

(Id−Sp)[∂̄ρ�σp1]b = 0,

[∂̄ρ�σpq]b = 0 if 1 < q.
(23)

For each (p, q) we define the quadratic form

Qp,q(σpq) = 〈∂̄σpq, ∂̄σpq〉L2 + 〈∂̄∗σpq, ∂̄∗σpq〉L2 .(24)

We can consider more general conditions than these by replacing the clas-
sical Szegő projector Sp by a generalized Szegő projector acting on sections of
Λp,0

b . Recall that an order-zero operator, SE in the Heisenberg calculus, acting
on sections of a complex vector bundle E → Y , is a generalized Szegő projector
if

1. S2
E = SE and S∗

E = SE .

2. σH
0 (SE) = s ⊗ IdE where s is the symbol of a field of vacuum state

projectors defined by a choice of compatible almost complex structure
on the contact field of Y.

This class of projectors is defined in [8] and analyzed in detail in [9]. Among
other things we show that, given a generalized Szegő projector, there is a ∂̄b-
like operator, DE so that the range of SE is precisely the null space of DE .

The operator DE is ∂̄b-like in the following sense: If Z
′
j is a local frame field

for the almost complex structure defined by the principal symbol of SE , then
there are order-zero Heisenberg operators μj , so that, locally

DEσ = 0 if and only if (Z ′
j + μj)σ = 0 for j = 1, . . . , n − 1.(25)

Similar remarks apply to define generalized conjugate Szegő projectors. We
use the notation S ′

p to denote a generalized Szegő projector acting on sections
of Λp,0

b .
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We can view these boundary conditions as boundary conditions for the
operator ð+ acting on sections of ⊕qΛp,q. Let σ be a such a section. The
boundary condition is expressed as a projection operator acting on σ �bX+ .

We write

σ �bX+= σb + ∂̄ρ ∧ σν , with

σb = (σp0
b , σ̃p

b ) and σν = (σp1
ν , σ̃p

ν).
(26)

Recall that σpn
b and σp0

ν always vanish. With this notation we have, in block
form, that

R′
+σ �bX+=

⎛⎜⎜⎝
S ′

p 0
0 0

0 0
0 0

0 0
0 0

Id−S ′
p 0

0 Id

⎞⎟⎟⎠
⎛⎜⎜⎝

σp0
b

σ̃p
b

σp1
ν

σ̃p
ν

⎞⎟⎟⎠ .(27)

Here 0 denotes an (n − 1) × (n − 1) matrix of zeros. The boundary condition
for ð+ is R′

+σ �bX+= 0. These can of course be split into boundary conditions
for ðeo

+ , which we denote by R′ eo
+ . The formal adjoint of (ðe

+,R′ e
+ ) is (ðo

+,R′ o
+ ).

In Section 7 we show that the L2-adjoint of (ðe
+,R′ e

+ ) is the graph closure
of (ðo

+,R′ o
+ ). When the distinction is important, we explicitly indicate the

dependence on p by using R′
p+ to denote the projector acting on sections of

⊕qΛp,q �bX+ and ðp+ to denote the operator acting on sections of ⊕qΛp,q.

We use R+ (without the ′) to denote the boundary condition defined by
the matrix in (27), with S ′

p = Sp, the classical Szegő projector. In [7], we prove
estimates for the SpinC Dirac operator with these sorts of boundary conditions.
We first state a direct consequence of Corollary 13.9 in [5].

Lemma 1.Let X be a complex manifold with boundary and σpq∈L2(X; Λp,q).
Suppose that ∂̄σpq, ∂̄∗σpq are also square integrable; then σpq �bX is well defined
as an element of H− 1

2 (bX; Λp,q
bX).

Proof. Because X is a complex manifold, the twisted SpinC Dirac oper-
ator acting on sections of Λp,∗ is given by (2). The hypotheses of the lemma
therefore imply that ðσpq is square integrable and the lemma follows directly
from Corollary 13.9 in [5].

Remark 2. If the restriction of a section of a vector bundle to the boundary
is well defined in the sense of distributions then we say that the section has
distributional boundary values. Under the hypotheses of the lemma, σpq has
distributional boundary values.

Theorem 3 in [7] implies the following estimates for the individual form
degrees:
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Proposition 1. Suppose that X is a strictly pseudoconvex manifold, S ′
p

is a generalized Szegő projector acting on sections of Λp,0
b , and let s ∈ [0,∞).

There is a constant Cs such that if σpq is an L2-section of Λp,q with ∂̄σpq,
∂̄∗σpq ∈ Hs and

S ′
p[σ

pq]b = 0 if q = 0,

(Id−S ′
p)[∂̄ρ�σpq]b = 0 if q = 1,(28)

[∂̄ρ�σpq]b = 0 if q > 1,

then

‖σpq‖
Hs+ 1

2
≤ Cs[‖∂̄σpq‖Hs + ‖∂̄∗σpq‖Hs + ‖σpq‖L2 ].(29)

Remark 3. As noted in [7], the hypotheses of the proposition imply that
σpq has a well defined restriction to bX+ as an L2-section of Λpq �bX+ . The
boundary conditions in (28) can therefore be interpreted in the sense of distri-
butions. If s = 0 then the norm on the left-hand side of (29) can be replaced
by the slightly stronger H(1,− 1

2
)-norm.

Proof. These estimates follow immediately from Theorem 3 in [7] when
we observe that the hypotheses imply that

ðΛp,0+σpq ∈ Hs(X+) and

R′
Λp,0+[σpq]bX+ = 0.

(30)

These estimates show that, for all 0 ≤ p, q ≤ n, the form domain for Q̄p,q
R+

,

the closure of Qp,q
R+

, lies in H(1,− 1
2
)(X+; Λp,q). This implies that the self-adjoint

operator, �p,q
R+

, defined by the Friedrichs extension process, has a compact
resolvent and therefore a finite dimensional null space Hp,q

R+
(X+). We define

closed, unbounded operators on L2(X+; Λp,q) denoted ∂̄p,q
R+

and [∂̄p,q−1
R+

]∗ as the
graph closures of ∂̄ and ∂̄∗ acting on smooth sections with domains given by
the appropriate condition in (22), (23). The domains of these operators are
denoted DomL2(∂̄p,q

R+
),DomL2([∂̄p,q−1

R+
]∗), respectively. It is clear that

Dom(Q̄p,q
R+

) = DomL2(∂̄p,q
R+

) ∩ DomL2([∂̄p,q−1
R+

]∗).

3. Subelliptic boundary conditions for pseudoconcave manifolds

We now repeat the considerations of the previous section for X−, a strictly
pseudoconcave manifold. In this case the ∂̄-Neumann condition fails to define
a subelliptic boundary value problem on sections of Λp,n−1. We let S̄p denote
an orthogonal projection onto the nullspace of [∂̄p(n−1)

b ]∗. The projector acts
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on sections of Λp(n−1)
b . From this observation, and equation (15), it follows

immediately that

S̄p = �bSn−p �b .(31)

If instead we let S ′
n−p denote a generalized Szegő projector acting on (n−p, 0)-

forms, then (31), with Sn−p replaced by S ′
n−p, defines a generalized conjugate

Szegő projector acting on (p, n − 1)-forms, S̄ ′
p.

Recall that the defining function, ρ, is positive on the interior of X−. We
now define a modified ∂̄-Neumann condition for X−, which we denote by R′

−.

The Dom(∂̄p,q
R′

−
) requires no boundary condition for q �= n − 1 and is specified

for q = n − 1 by

S̄ ′
pσ

p(n−1)
b = 0.(32)

The Dom([∂̄p,q
R′

−
]∗) is given by

∂̄ρ�σpq = 0 if q �= n,(33)

(Id−S̄ ′
p)(∂̄ρ�σpn)b = 0.(34)

As before we assemble the individual boundary conditions into a boundary
condition for ð−. The boundary condition is expressed as a projection operator
acting on σ �bX− . We write

σ �bX−= σb + ∂̄ρ ∧ σν , with

σb = (σ̃p
b , σ

p(n−1)
b ) and σν = (σ̃p

ν , σ
pn
ν ).

(35)

Recall that σpn
b and σp0

ν always vanish. With this notation we have, in block
form that

R′
−σ �bX−=

⎛⎜⎜⎝
0 0
0 S̄ ′

p

0 0
0 0

0 0
0 0

Id 0
0 Id−S̄ ′

p

⎞⎟⎟⎠
⎛⎜⎜⎜⎝

σ̃p
b

σ
p(n−1)
b

σ̃p
ν

σpn
ν

⎞⎟⎟⎟⎠ .(36)

Here 0 denotes an (n − 1) × (n − 1) matrix of zeros. The boundary condition
for ð− is R′

−σ �bX−= 0. These can of course be split into boundary conditions
for ðeo

− , which we denote by R′ eo
− . The formal adjoint of (ðe

−,R′ e
− ) is (ðo

−,R′ o
− ).

In Section 7 we show that the L2-adjoint of (ðeo
− ,R′ eo

− ) is the graph closure
of (ðoe

− ,R′ oe
− ). When the distinction is important, we explicitly indicate the

dependence on p by using R′
p− to denote this projector acting on sections of

⊕qΛp,q �bX− and ðp− to denote the operator acting on sections of ⊕qΛp,q. If
we are using the classical conjugate Szegő projector, then we omit the prime,
i.e., the notation R− refers to the boundary condition defined by the matrix
in (36) with S̄ ′

p = S̄p, the classical conjugate Szegő projector.
Theorem 3 in [7] also provides subelliptic estimates in this case.
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Proposition 2. Suppose that X is a strictly pseudoconcave manifold,
S̄ ′

p is a generalized Szegő projector acting on sections of Λp,n−1
b , and let s ∈

[0,∞). There is a constant Cs such that if σpq is an L2-section of Λp,q with
∂̄σpq, ∂̄∗σpq ∈ Hs and

S̄ ′
p[σ

pq]b = 0 if q = n − 1,

(Id−S̄ ′
p)[∂̄ρ�σpq]b = 0 if q = n,(37)

[∂̄ρ�σpq]bX− = 0 if q �= n − 1, n,

then

‖σpq‖
Hs+ 1

2
≤ Cs[‖∂̄σpq‖Hs + ‖∂̄∗σpq‖Hs + ‖σpq‖L2 ].(38)

Proof. The hypotheses imply that

ðΛp,0−σpq ∈ Hs(X−) and

R′
Λp,0−[σpq]bX− = 0.

(39)

Thus σpq satisfies the hypotheses of Theorem 3 in [7].

4. The dual boundary conditions

In the two previous sections we have established the basic estimates for L2

forms on X+ (resp. X−) that satisfy R′
+ (resp. R′

−). The Hodge star operator
defines isomorphisms

� : L2(X±;⊕qΛp,q) −→ L2(X±;⊕qΛn−p,n−q).(40)

Under this isomorphism, a form satisfying R′
±σ �bX±= 0 is carried to a form,

�σ, satisfying (Id−R′
∓)�σ �bX±= 0, and vice versa. Here of course the general-

ized Szegő and conjugate Szegő projectors must be related as in (31). In form
degrees where R′

± coincides with the usual ∂̄-Neumann conditions, this state-
ment is proved in [10]. In the degrees where the boundary condition has been
modified, it follows from the identities in (19) and (31). Applying Hodge star,
we immediately deduce the basic estimates for the dual boundary conditions,
Id−R′

∓.

Lemma 2.Suppose that X+ is strictly pseudoconvex and σpq∈L2(X+; Λp,q).
For s ∈ [0,∞), there is a constant Cs so that, if ∂̄σpq, ∂̄∗σpq ∈ Hs, and

σpq
b = 0 if q < n − 1,

(Id−S̄ ′
p)σ

pq
b = 0 if q = n − 1,(41)

S̄ ′
p(∂̄ρ�σpq)b = 0 if q = n,

then

‖σpq‖
Hs+ 1

2
≤ Cs

[
‖∂̄σpq‖Hs + ‖∂̄∗σpq‖Hs + ‖σpq‖2

L2

]
.(42)
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Lemma 3. Suppose that X− is strictly pseudoconcave and σpq ∈
L2(X−; Λp,q). For s ∈ [0,∞), there is a constant Cs so that, if ∂̄σpq, ∂̄∗σpq ∈
Hs, and

σpq
b = 0 if q > 1,

S ′
p(∂̄ρ�σpq)b = 0 and σpq

b = 0 if q = 1,(43)

(Id−S ′
p)σ

pq
b = 0 if q = 0,

then

‖σpq‖
Hs+ 1

2
≤ Cs

[
‖∂̄σpq‖Hs + ‖∂̄∗σpq‖Hs + ‖σpq‖2

L2

]
.(44)

5. Hodge decompositions

The basic analytic ingredient that is needed to proceed is the higher norm
estimates for the �-operator. Because the boundary conditions R′

± are non-
local, the standard elliptic regularization and approximation arguments em-
ployed, e.g., by Folland and Kohn, do not directly apply. Instead of trying to
adapt these results and treat each degree (p, q) separately, we instead consider
the operators ðeo

± with boundary conditions defined by R′ eo
± . In [7] we use a

boundary layer technique to obtain estimates for the inverses of the operators
[ðeo

± ]∗ðeo
± + μ2. On a Kähler manifold the operators [ðeo

± ]∗ðeo
± preserve form de-

gree, which leads to estimates for the inverses of �p,q
R±

+ μ2. For our purposes
the following consequence of Corollary 3 in [7] suffices.

Theorem 1. Suppose that X± is a strictly pseudoconvex (pseudoconcave)
compact, complex Kähler manifold with boundary. Fix μ > 0, and s ≥ 0. There
is a positive constant Cs such that for β ∈ Hs(X±; Λp,q), there exists a unique
section α ∈ Hs+1(X±; Λp,q) satisfying [�p,q + μ2]α = β with

α ∈ Dom(∂̄p,q
R′

±
) ∩ Dom([∂̄p,q−1

R′
±

]∗) and ∂̄α ∈ Dom([∂̄p,q
R′

±
]∗), ∂̄∗α ∈ Dom(∂̄p,q−1

R′
±

)
(45)

such that

‖α‖Hs+1 ≤ Cs‖β‖Hs .(46)

The boundary conditions in (45) are in the sense of distributions. If s is
sufficiently large, then we see that this boundary value problem has a classical
solution.

As in the classical case, these estimates imply that each operator �p,q
R′

±
has a complete basis of eigenvectors composed of smooth forms. Moreover the
orthocomplement of the nullspace is the range. This implies that each operator
has an associated Hodge decomposition. If Gp,q

R′
±
, Hp,q

R′
±

are the partial inverse
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and projector onto the nullspace, then we have that

�p,q
R′

±
Gp,q

R′
±

= Gp,q
R′

±
�p,q

R′
±

= Id−Hp,q
R′

±
.(47)

To get the usual and more useful Hodge decomposition, we use boundary
conditions defined by the classical Szegő projectors. The basic property needed
to obtain these results is contained in the following two lemmas.

Lemma 4. If α ∈ DomL2(∂̄p,q
R±

), then ∂̄α ∈ DomL2(∂̄p,q+1
R±

).

Proof. The L2-domain of ∂̄p,q
R±

is defined as the graph closure of smooth
forms satisfying the appropriate boundary conditions, defined by (22) and (32).
Hence, if α ∈ DomL2(∂̄p,q

R±
), then there is a sequence of smooth (p, q)-forms

< αn > such that

lim
n→∞

‖∂̄αn − ∂̄α‖L2 + ‖αn − α‖L2 = 0,(48)

and each αn satisfies the appropriate boundary condition. First we consider
R+. If q = 0, then Sp(αn)b = 0. The operator ∂̄p,1

R+
has no boundary condition,

so ∂̄αn belongs to Dom(∂̄p,1
R+

). Since ∂̄2αn = 0. we see that ∂̄α ∈ DomL2(∂̄p,1
R+

).
In all other cases ∂̄p,q

R+
has no boundary condition.

We now turn to R−. In this case there is only a boundary condition if
q = n − 1, so we only need to consider α ∈ DomL2(∂̄p,n−2

R−
). Let < αn > be

smooth forms converging to α in the graph norm. Because S̄p∂̄b = 0, it follows
that

S̄p(∂̄αn)b = S̄p(∂̄b(αn)b) = 0.

Hence ∂̄αn ∈ Dom(∂̄p,n−1
R−

). Again ∂̄2αn = 0 implies that ∂̄α ∈ DomL2(∂̄p,n−1
R−

).

Remark 4. The same argument applies to show that the lemma holds for
the boundary condition defined by R′

+.

We have a similar result for the adjoint. The domains of [∂̄p,q
R±

]∗ are defined
as the graph closures of [∂̄p,q]∗ with boundary conditions defined by (23), (33)
and (34).

Lemma 5. If α ∈ DomL2([∂̄p,q
R±

]∗) then ∂̄∗α ∈ DomL2([∂̄p,q−1
R±

]∗).

Proof. Let α ∈ DomL2([∂̄p,q
R±

]∗). As before there is a sequence 〈αn〉 of
smooth forms in Dom([∂̄p,q

R±
]∗), converging to α in the graph norm. We need

to consider the individual cases. We begin with R+. The only case that is
not classical is that of q = 1. We suppose that 〈αn〉 is a sequence of forms in
C∞(X+; Λp,2) with ∂̄ρ�αn = 0. Using the identities in (19) we see that

[∂̄ρ�∂̄∗αn]b = [(∂̄�αn)b]�b .(49)
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On the other hand, as (∂̄ρ�αn)b = 0 it follows that (�αn)b = 0 and therefore

(∂̄�αn)b = ∂̄b(�αn)b = 0.

This shows that (Id−Sp)∂̄ρ�∂̄∗αn = 0 and therefore ∂̄∗αn is in the domain of
[∂̄p,0

R+
]∗. As [∂̄∗]2 = 0 this shows that ∂̄∗α ∈ DomL2([∂̄p,0

R+
]∗).

On the pseudoconcave side we only need to consider q = n − 1. The
boundary condition implies that ∂̄∗

b (∂̄ρ�αn)b = 0. Using the identities in (19)
we see that

∂̄ρ�∂̄∗αn = �b(∂̄�αn)b = ∂̄∗
b (∂̄ρ�αn)b = 0.(50)

Thus ∂̄∗αn ∈ Dom([∂̄p,n−2
R−

]∗).

Remark 5. Again, the same argument applies to show that the lemma
holds for the boundary condition defined by R′

+.

These lemmas show that, in the sense of closed operators, ∂̄2
R±

and [∂̄∗
R±

]2

vanish. This, along with the higher norm estimates, gives the strong form of
the Hodge decomposition, as well as the important commutativity results, (52)
and (53).

Theorem 2. Suppose that X± is a strictly pseudoconvex (pseudoconcave)
compact, Kähler complex manifold with boundary. For 0 ≤ p, q ≤ n, we have
the strong orthogonal decompositions

α = ∂̄∂̄∗Gp,q
R±

α + ∂̄∗∂̄Gp,q
R±

α + Hp,q
R±

α.(51)

If α ∈ DomL2(∂̄p,q
R±

) then

∂̄Gp,q
R±

α = Gp,q+1
R±

∂̄α.(52)

If α ∈ DomL2([∂̄p,q
R±

]∗) then

∂̄∗Gp,q
R±

α = Gp,q−1
R±

∂̄∗α.(53)

Given Theorem 1 and Lemmas 4 and 5 the proof of this theorem is exactly
the same as the proof of Theorem 3.1.14 in [10]. Similar decompositions also
hold for the dual boundary value problems defined by Id−R+ on X− and
Id−R− on X+. We leave the explicit statements to the reader.

As in the case of the standard ∂̄-Neumann problems these estimates
show that the domains of the self-adjoint operators defined by the quadratic
forms Qp,q with form domains specified as the intersection of Dom(∂̄p,q

R±
) ∩

Dom([∂̄p,q−1
R±

]∗) are exactly as one would expect. As in [10] one easily deduces
the following descriptions of the unbounded self-adjoint operators �p,q

R±
.
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Proposition 3. Suppose that X+ is strictly pseudoconvex, then the op-
erator �p,q

R+
with domain specified by

σpq ∈ DomL2(∂̄p,q
R+

) ∩ DomL2([∂̄p,q−1
R+

]∗) such that

∂̄∗σpq ∈ DomL2(∂̄p,q−1
R+

) and ∂̄σpq ∈ DomL2([∂̄p,q
R+

]∗)
(54)

is a self-adjoint operator. It coincides with the Friedrichs extension defined by
Qpq with form domain given by the first condition in (54).

Proposition 4. Suppose that X− is strictly pseudoconcave, then the op-
erator �p,q

R−
with domain specified by

σpq ∈ DomL2(∂̄p,q
R−

) ∩ DomL2([∂̄p,q−1
R−

]∗) such that

∂̄∗σpq ∈ DomL2(∂̄p,q−1
R−

) and ∂̄σpq ∈ DomL2([∂̄p,q
R−

]∗)
(55)

is a self-adjoint operator. It coincides with the Friedrichs extension defined by
Qpq with form domain given by the first condition in (55).

6. The nullspaces of the modified ∂̄-Neumann problems

As noted above �p,q
R±

has a compact resolvent in all form degrees and
therefore the harmonic spaces Hp,q

R±
(X±) are finite dimensional. The boundary

conditions easily imply that

Hp,0
R+

(X+) = 0 for all p and Hp,q
R+

(X+) = Hp,q

∂̄
(X+) for q > 1.(56)

Hp,q
R−

(X−) =Hp,q

∂̄
(X−) for q < n − 1.(57)

We now identify Hp,1
R+

(X+), and Hp,n
R−

(X−), but leave Hp,n−1
R−

(X−) to the next
section.

We begin with the pseudoconvex case. To identify the null space of �p,1
R+

we need to define the following vector space:

Ep,1
0 (X+) =

{∂̄α : α ∈ C∞(X+; Λp,0) and ∂̄bαb = 0}
{∂̄α : α ∈ C∞(X+; Λp,0) and αb = 0}

.(58)

It is clear that Ep,1
0 (X+) is a subspace of the “zero”-cohomology group Hp,1

0 (X+) �
Hp,1

∂̄∗ (X+) � [Hn−p,n−1

∂̄
]∗(X+) and is therefore finite dimensional. If X+ is a

Stein manifold, then this vector space is trivial. It is also not difficult to show
that

Ep,1
0 (X+) � Hp,0

b (Y )
[Hp,0(X+)]b

.(59)

Thus Ep,1
0 measures the extent of the failure of closed (p, 0) forms on bX+ to

have holomorphic extensions to X+.
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Lemma 6. If X+ is strictly pseudoconvex, then

Hp,1
R+

(X+) � Hp,1

∂̄
(X+) ⊕ Ep,1

0 .

Proof. Clearly Hp,1
R+

(X+) ⊃ Hp,1

∂̄
(X+). If σp1 ∈ Hp,1

R+
(X+), then

(Id−Sp)(∂̄ρ�σp1)b = 0.

If β ∈ Hp,0

∂̄
(X+), then

0 = 〈∂̄β, σp1〉X+ = 〈β, ∂̄ρ�σp1〉bX+ .(60)

Thus, we see that ∂̄ρ�σp1 is orthogonal to Hp,0

∂̄
(X+) �bX+ .

Let a ∈ ImSp � Hp,0

∂̄
(X+) �bX+ . We now show that there is an element

α ∈ Hp,1
R+

(X+) with ∂̄ρ�α = a. Let ã denote a smooth extension of a to X+. If

ξ ∈ Hp,0

∂̄
(X+), then

〈∂̄∗∂̄(ρã), ξ〉X+ = −〈a, ξ〉bX+ .(61)

By assumption, a is orthogonal to Hp,0

∂̄
(X+) �bX+ ; thus Hp,0

∂̄
(∂̄∗∂̄(ρã)) = 0.

With b = Gp,0

∂̄
∂̄∗∂̄(ρã), we see that

∂̄∗∂̄b = (Id−Hp,0

∂̄
)∂̄∗∂̄a = ∂̄∗∂̄a,

∂̄ρ�∂̄b = 0.
(62)

Hence if α = ∂̄(ρã−b), then ∂̄α = ∂̄∗α = 0, and ∂̄ρ�α = a. If α1, α2 ∈ Hp,1
R+

(X+)

both satisfy ∂̄ρ�α1 = ∂̄ρ�α2 = a, then α1 − α2 ∈ Hp,1

∂̄
(X+). Together with the

existence result, this shows that

Hp,1
R+

(X+)

Hp,1

∂̄
(X+)

� Ep,1
0 ,(63)

which completes the proof of the lemma.

For the pseudoconcave side we have

Lemma 7. If X− is strictly pseudoconcave then

Hp,n
R−

(X−) � [Hn−p,0(X−)]� � Hp,n
Id−R+

(X−).

Proof. A (p, n)-form σpn belongs to Hp,n
R−

(X−) provided that

∂̄∗σpn = 0, and (Id−S̄p)(∂̄ρ�σpn)b = 0.

The identities in (14) imply that �σpn ∈ Hn−p,0(X−).
On the other hand, if η∈Hn−p,0(X−), then ∂̄∗�η=0, and (Id−Sn−p)ηb =0.

The identities in (19) and (31) imply that (Id−S̄p)(∂̄ρ��η)b = 0. Since this
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shows that �η ∈ Hpn
R−

(X−), completing the proof of the first isomorphism. A
form η ∈ Hp,n

Id−R+
(X−) provided that ∂̄∗η = 0. The boundary condition ηb = 0

is vacuous for a (p, n)-form. This shows that �η ∈ Hn−p,0(X−), the converse
is immediate.

All that remains is Hp,n−1
R−

(X−). This space does not have as simple a
description as the others. We return to this question in the next section. We
finish this section with the observation that the results in Section (4) imply
the following duality statements, for 0 ≤ q, p ≤ n:

[Hp,q
R+

(X+)]∗ � Hn−p,n−q
Id−R−

(X+), [Hp,q
R−

(X−)]∗ � Hn−p,n−q
Id−R+

(X−).(64)

The isomorphisms are realized by applying the Hodge star operator.

7. Connection to ð± and the Agranovich-Dynin formula

Thus far we have largely considered one (p, q)-type at a time. As noted
in the introduction, by grouping together the even, or odd, forms we obtain
bundles of complex spinors on which the SpinC Dirac operator acts. We let

Λp,e =
�n

2
�⊕

q=0

Λp,2q, Λp,o =
�n−1

2
�⊕

q=0

Λp,2q+1.(65)

The bundles Λp,e,Λp,o are the basic complex spinor bundles, Λe,Λo, twisted
with the holomorphic vector bundles Λp,0. Unless it is needed for clarity, we
do not include the value of p in the notation.

When we assume that the underlying manifold is a Kähler manifold, the
SpinC Dirac operator is ð = ∂̄ + ∂̄∗. It maps even forms to odd forms and we
denote this by

ð
e
± : C∞(X±; Λp,e) −→ C∞(X±; Λp,o), ð

o
± : C∞(X±; Λp,o) −→ C∞(X±; Λp,e).

(66)

As noted above, the boundary projection operators R± (or R′
±) can be divided

into operators acting separately on even and odd forms, Reo
± , ( R′ eo

± ). These
boundary conditions define subelliptic boundary value problems for ðeo

± that
are closely connected to the individual (p, q)-types. The connection is via the
basic integration-by-parts formulæ for ðeo

± . There are several cases, which we
present in a series of lemmas.

Lemma 8. If σ ∈ C∞(X±; Λp,eo) satisfies either R′ eo
+ σ �bX±= 0 or

(Id−R′ eo
− )σ �bX±= 0, then

〈ð±σ, ð±σ〉X± = 〈∂̄σ, ∂̄σ〉X± + 〈∂̄∗σ, ∂̄∗σ〉X± .(67)



SUBELLIPTIC SPINC DIRAC OPERATORS, I 201

Remark 6. Note that when using the boundary conditions defined by R+

and Id−R−, we are able to use a generalized Szegő projector, unconnected to
the complex structure on X±. This is not always true for R− and Id−R+. See
Lemmas 9 and 10.

Proof. The proof for R′ eo
± is a consequence of the facts that

(a) ∂̄2 = 0.

(b) If η is a (p, j)-form satisfying ∂̄ρ�η �bX±= 0, then, for β any
smooth (p, j − 1)-form,

〈β, ∂̄∗η〉X± = 〈∂̄β, η〉X± .(68)

We need to show that

〈∂̄σpq, ∂̄∗σp(q+2)〉X± = 0.(69)

This follows immediately from (a), (b), and the fact that σp(q+2) satisfies

∂̄ρ�σp(q+2) = 0, for all q ≥ 0.

In the proof for Id−R′ eo
− , we replace (a) and (b) above with

(a′) [∂̄∗]2 = 0.

(b′) If η is a (p, j)-form satisfying ∂̄ρ ∧ η �bX±= 0, then, for β any
smooth (p, j + 1)-form we have

〈β, ∂̄η〉X± = 〈∂̄∗β, η〉X± .(70)

Since (Id−R′ eo
− )σ �bX±= 0 implies that ∂̄ρ ∧ σpq �bX±= 0 holds for q < n − 1,

the relation in (69) holds for all q of interest. This case could also be treated
by observing that it is dual to R′

+.

Now we consider R− and Id−R+. Let bn denote the parity (even or odd)
of n, and b̃n the opposite parity.

Lemma 9. If a section σ ∈ C∞(X±; Λp,o) satisfies (Id−R′ o
+ )σ �bX±= 0,

or σ ∈ C∞(X±; Λp,b̃n) satisfies R′b̃n

− σ �bX±= 0, then (67) holds.

Remark 7. In these cases we can again use generalized Szegő projectors.

Proof. The proofs here are very much as before. For Id−R′ o
+ we use the

fact that

〈∂̄σpq, ∂̄∗σp(q+2)〉X± = 〈∂̄ρ ∧ σpq, ∂̄∗σp(q+2)〉bX± ,(71)

and this vanishes if q ≥ 1. For R′b̃n

− we use the fact that

〈∂̄σpq, ∂̄∗σp(q+2)〉X± = −〈∂̄σpq, ∂̄ρ�σp(q+2)〉bX± ,(72)

and this vanishes if q < n − 2.
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In the final cases we are restricted to the boundary conditions which em-
ploy the classical Szegő projector defined by the complex structure on X±.

Lemma 10. If a section σ ∈ C∞(X±; Λp,e) satisfies (Id−Re
+)σ �bX±= 0,

or σ ∈ C∞(X±; Λp,bn) satisfies Rbn

− σ �bX±= 0, then (67) holds.

Proof. First we consider Id−Re
+. For even q ≥ 2, the proof given above

shows that (69) holds; so we are left to consider q = 0. The boundary condition
satisfied by σp0 is (Id−Sp)σ

p0
b = 0. Hence, we have

〈∂̄σp0, ∂̄∗σp2〉X± = −〈∂̄σp0
b , ∂̄ρ�σp2〉bX±

= −〈∂̄ρ ∧ ∂̄σp0
b , σp2〉bX± = 0.

(73)

The last equality follows because ∂̄ρ ∧ ∂̄σp0 = 0 if ∂̄bσ
p0
b = 0.

Finally we consider R−. The proof given above suffices for q < n. We need
to consider q = n; in this case (Id−S̄p)(∂̄ρ�σpn)b = 0. We begin by observing
that

〈∂̄σp(n−2), ∂̄∗σpn〉X± = −〈∂̄bσ
p(n−2)
b , (∂̄ρ�σpn)b〉bX±

= −〈σp(n−2)
b , ∂̄∗

b (∂̄ρ�σpn)b〉bX± = 0.
(74)

The last equality follows from the fact that(∂̄ρ�σpn)b = S̄p(∂̄ρ�σpn)b.

In all cases where (67) holds we can identify the null spaces of the operators
ðeo
± . Here we stick to the pseudoconvex side and boundary conditions defined

by the classical Szegő projectors. It follows from (67) that

ker(ðe
p+,Re

+) =
�n

2
�⊕

j=1

Hp,2j

∂̄
(X+),

ker(ðo
p+,Ro

+) = Ep,1
0 ⊕

�n−1
2

�⊕
j=1

Hp,2j+1

∂̄
(X+).

(75)

In [7] we identify the L2-adjoints of the operators (ðeo
± ,R′ eo

± )with the graph
closures of the formal adjoints, e.g.,

(ðeo
+ ,R′ eo

+ )∗ = (ðoe
+ ,R′ oe

+ ),

(ðeo
− ,R′ eo

− )∗ = (ðoe
− ,R′ oe

− ).
(76)

Using these identities, the Dolbeault isomorphism and standard facts about
the ∂̄-Neumann problem on a strictly pseudoconvex domain, we obtain

Ind(ðe
p+,Re

+) = −dimEp,1
0 +

n∑
q=1

(−1)q dimHp,q(X+).(77)
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Recall that if S ′
p and S ′′

p are generalized Szegő projectors, then their rela-
tive index R-Ind(S ′

p,S ′′
p ) is defined to be the Fredholm index of the restriction

S ′′
p : ImS ′

p −→ ImS ′′
p .(78)

For the pseudoconvex side we now prove an Agranovich-Dynin type formula.

Theorem 3. Let X+ be a compact strictly pseudoconvex Kähler manifold,
with Sp the classical Szegő projector, defined as the projector onto the null space
of ∂̄b acting on C∞(bX+; Λp,0

b ). If S ′
p is a generalized Szegő projector, then

Ind(ðe
+,R′ e

+ ) − Ind(ðe
+,Re

+) = R-Ind(Sp,S ′
p).(79)

Proof. It follows from Lemma 8 that all other groups are the same, so
we only need to compare Hp,0

R′
+
(X+) to Hp,0

R+(X+) and Hp,1
R′

+
(X+) to Hp,1

R+(X+).

For this purpose we introduce the subprojector Ŝp of Sp, defined to be the
orthogonal projection onto Hp,0

∂̄
(X+) �bX+ . Note that

R-Ind(Sp, Ŝp) = dimEp,1
0 .(80)

The q = 0 case is quite easy. The group Hp,0
R+(X+) = 0. A section σp0 ∈

Hp,0
R′

+
(X+), if and only if ∂̄σp0 = 0 and S ′

pσ
p0
b = 0. The first condition implies

that σp0
b ∈ Im Ŝp. Conversely, if η ∈ ker[S ′

p : Im Ŝp → ImS ′
p], then there is a

unique holomorphic (p, 0)-form σp0 with σp0
b = η. This shows that

Hp,0
R′

+
(X+) � ker[S ′

p : Im Ŝp → ImS ′
p].(81)

Now we turn to the q = 1 case. No matter which boundary projection is
used

Hp,1

∂̄
(X+) ⊂ Hp,1

R′
+
(X+).(82)

As shown in Lemma 6

Hp,1
R+

(X+)

Hp,1

∂̄
(X+)

� Ep,1
0 .(83)

Now suppose that σp1 ∈ Hp,1
R′

+
(X+) and η ∈ Hp,0

∂̄
(X+); then

0 = 〈∂̄η, σp1〉X+ = 〈η, (∂̄ρ�σp1)b〉bX+ .(84)

Hence (∂̄ρ�σp1)b ∈ ker[Ŝp : ImS ′
p → Im Ŝp].

To complete the proof we need to show that for ηb ∈ ker[Ŝp : ImS ′
p →

Im Ŝp] there is a harmonic (p, 1)-form, σp1 with (∂̄ρ�σp1)b = ηb. Let η denote
a smooth extension of ηb to X+. We need to show that there is a (p, 0) form β

such that

∂̄∗∂̄(ρη) = ∂̄∗∂̄β and (∂̄ρ�∂̄β)b = 0.(85)
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This follows from the fact that Ŝpηb = 0, exactly as in the proof of Lemma 6.
Hence σp1 = ∂̄(ρη − β) is an element of Hp,1

R′
+
(X+) such that (∂̄ρ�σp1)b = ηb.

This shows that

Hp,1
R′

+
(X+)

Hp,1

∂̄
(X+)

� ker[Ŝp : ImS ′
p → Im Ŝp].(86)

Combining (83) with (86) we obtain that

dimHp,1
R′

+
(X+) − dimHp,1

R+
(X+) = dim ker[Ŝp : ImS ′

p → Im Ŝp] − dimEp,1
0 .

(87)

Combining this with (81) and (80) gives

Ind(ðe
+,R′

+) − Ind(ðe
+,R+) = R-Ind(Ŝp,S ′

p) + R-Ind(Sp, Ŝp) = R-Ind(Sp,S ′
p).

(88)

The last equality follows from the cocycle formula for the relative index.

8. Long exact sequences and gluing formulæ

Suppose that X is a compact complex manifold with a separating, strictly
pseudoconvex hypersurface Y. Let X \ Y = X+

∐
X−, with X+ strictly pseu-

doconvex and X− strictly pseudoconcave. A principal goal of this paper is to
express

χp
O(X) =

n∑
q=0

(−1)q dimHp,q(X),

in terms of indices of operators on X±. Such results are classical for the topo-
logical Euler characteristic and Dirac operators with elliptic boundary con-
ditions; see for example Chapter 24 of [5]. In this section we modify long
exact sequences given by Andreotti and Hill in order to prove such results for
subelliptic boundary conditions.

The Andreotti-Hill sequences relate the smooth cohomology groups

Hp,q(X±, I), Hp,q(X±), and Hp,q
b (Y ).

The notation X± is intended to remind the reader that these are cohomology
groups defined by the ∂̄-operator acting on forms that are smooth on the closed
manifolds with boundary, X±. The differential ideal I is composed of forms,
σ, so that near Y, we have

σ = ∂̄ρ ∧ α + ρβ.(89)

These are precisely the forms that satisfy the dual ∂̄-Neumann condition (16).
If ξ is a form defined on all of X, then we use the shorthand notation

ξ±
d= ξ �X± .
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For a strictly pseudoconvex manifold, it follows from the Hodge decom-
position and the results in Section 6 that

Hp,q(X+) � Hp,q

∂̄
(X+) for q �= 0, and

Hp,q(X+) � Hp,q
R+

(X+) for q �= 0, 1,
(90)

and for a strictly pseudoconcave manifold

Hp,q(X−) � Hp,q

∂̄
(X−) = Hp,q

R−
(X−) for q �= n − 1, n and

[Hn−p,0(X−)]� = Hp,n
R−

(X−).
(91)

By duality we also have the isomorphisms

Hp,q(X+, I) � Hp,q

∂̄∗ (X+) for q �= n, and

Hp,q(X+, I) � Hp,q
Id−R−

(X+) for q �= n, n − 1,
(92)

and for a strictly pseudoconcave manifold

Hp,q(X−, I) � Hp,q

∂̄∗ (X−) = Hp,q
Id−R+

(X−) for q �= 0, 1 and

Hp,0(X−) = Hp,0
Id−R+

(X−).
(93)

We recall the definitions of various maps introduced in [1]:

αq : Hp,q(X) −→ Hp,q(X+) ⊕ Hp,q(X−),

βq : Hp,q(X+) ⊕ Hp,q(X−) −→ Hp,q
b (Y ).

γq : Hp,q
b (Y ) −→ Hp,q+1(X).

(94)

The first two are simple

αq(σpq) d= σpq �X+
⊕σpq �X−

, βq(σ
pq
+ , σpq

− ) d= [σpq
+ − σpq

− ]b.(95)

To define γq we recall the notion of distinguished representative defined in [1]:
If η ∈ Hp,q

b (Y ) then there is a (p, q)-form ξ defined on X so that

1. ξb represents η in Hp,q
b (Y ).

2. ∂̄ξ vanishes to infinite order along Y.

The map γq is defined in terms of a distinguished representative ξ for η by

γq(η) d=

{
∂̄ξ on X+

−∂̄ξ on X−.
(96)

As ∂̄ξ vanishes to infinite order along Y, this defines a smooth form.
The map α̃0 : Hp,0(X) → Hp,0(X−) is defined by restriction. To define

β̃0 : Hp,0(X−) → Ep,1
0 (X+), we extend ξ ∈ Hp,0(X−) to a smooth form, ξ̃ on

all of X and set

β̃0(ξ) = ∂̄ξ̃ �X+
.(97)
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It is easy to see that β̃0(ξ) is a well defined element of the quotient, Ep,1
0 (X+).

To define γ̃0 : Ep,1
0 (X+) → Hp,1(X) we observe that an element [ξ] ∈ Ep,1

0 (X+)
has a representative, ξ which vanishes on bX+. The class γ̃0([ξ]) is defined by
extending such a representative by zero to X−. As noted in [1], one can in fact
choose a representative so that ξ vanishes to infinite order along bX+.

We can now state our modification to the Mayer-Vietoris sequence in
Theorem 1 in [1].

Theorem 4. Let X, X+, X−, Y be as above. Then the following sequence
is exact

0 −−−→

Hp,0(X) α̃0−−−→ Hp,0(X−)
β̃0−−−→ Ep,1

0 (X+)
γ̃0−−−→ Hp,1(X) α1−−−→ Hp,1(X+) ⊕ Hp,1(X−)
β1−−−→ Hp,1

b (Y )
γ1−−−→ · · ·

βn−2−−−→ Hp,n−2
b (Y )

γn−2−−−→ Hp,n−1(X)
r+⊕Hp,n−1

R−−−−−−−−→ Hp,n−1(X+) ⊕Hp,n−1
R−

(X−) −−−→ Hp,n−1(X+)

Kp,n−1
+

−−−→ 0.

(98)

Here r+ denotes restriction to X+ and

Kp,n−1
+ = {α ∈ Hp,n−1(X+) :

∫
Y

ξ ∧ αb = 0 for all ξ ∈ Hn−p,0(X−)}.(99)

The last nontrivial map in (98) is the canonical quotient by the subspace
Kp,n−1

+ ⊕Hp,n−1
R−

(X−).

Remark 8. Note that if p = 0, then E0,1
0 = 0. This follows from (59) and

the fact that, on a strictly pseudoconvex manifold, all CR-functions on the
boundary extend as holomorphic functions. The proof given below works for all
n ≥ 2. If n = 2, then one skips in (98) from Hp,1(X) to Hp,1(X+)⊕Hp,1

R−
(X−).

Proof. It is clear that α̃0 is injective as Hp,0(X) consists of holomorphic
forms. We now establish exactness at Hp,0(X−). That Im α̃0 ⊂ ker β̃0 is clear.
Now suppose that on X+ we have β̃0(ξ) = 0; this means that

∂̄ξ̃ �X+
= ∂̄θ where θb = 0.(100)

This implies that ξ̃+ − θ defines a holomorphic extension of ξ to all of X and
therefore ξ ∈ Im α̃0. That Im β̃0 ⊂ ker γ̃0 is again clear. Suppose on the other
hand that γ̃0(ξ) = 0. This means that there is a (p, 0)-form, β, defined on all
of X so that ∂̄β = ξ on X+ and ∂̄β = 0 on X−. This shows that ξ = β̃0(β−).
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It is once again clear that Im γ̃0 ⊂ kerα1. If α1(ξ) = 0, then there are
forms β± so that

∂̄β± = ξ±.(101)

Let β̃ be a smooth extension of β− to all of X. The form ξ − ∂̄β̃ represents the
same class in Hp,1(X) as ξ. Since

(ξ − ∂̄β̃) �X−= 0 and (ξ − ∂̄β̃) �X+= ∂̄(β+ − β̃−),(102)

we see that ξ ∈ Im γ̃0.

Exactness through Hp,n−2
b (Y ) is proved in [1]. We now show exactness at

Hp,n−1(X). The ∂̄-Neumann condition, satisfied by elements of Hp,n−1
R−

(X−),

implies that Hp,n−1
R−

(∂̄α−) = 0; that r+(∂̄α+) = 0 is obvious. Hence

Im γn−2 ⊂
[
ker r+ ⊕ Hp,n−1

R−

]
.

Now suppose that β ∈ Hp,n−1(X) satisfies Hp,n−1
R−

β− = 0, r+(β+) = 0. The
second condition implies that

β+ = ∂̄γ+.(103)

Let γ− denote a smooth extension of γ+ to X−. Then β−− ∂̄γ− vanishes along
Y and therefore Theorem 2 gives

β− − ∂̄γ− = ∂̄∂̄∗Gp,n−1
R−

(β− − ∂̄γ−) = ∂̄χ−.(104)

Putting these equations together, we have shown that

β+ = ∂̄γ+, β− = ∂̄(γ− + χ−).(105)

Andreotti and Hill show that this implies that β ∈ Im γn−2, thus establishing
exactness at Hp,n−1(X).

To show exactness at Hp,n−1(X+) ⊕Hp,n−1
R−

(X−) we need to show that

Im
[
r+ ⊕ Hp,n−1

R−

]
= Kp,n−1

+ ⊕Hp,n−1
R−

(X−).(106)

Let α ∈ Hp,n−1
R−

(X−); then ∂̄α = ∂̄∗α = 0 and (∂̄ρ�α)b = S̄pαb = 0. The last
condition implies that

αb = ∂̄bβ.

We can extend β to β+ on X+ so that ∂̄ρ�∂̄β+ = 0. Defining

α̃ =

{
α on X−
∂̄β+ on X+,

(107)

gives a ∂̄-closed form that defines a class in Hp,n−1(X). It is clear that

r+(α̃+) = 0 and Hp,n−1
R−

(α̃−) = α.
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To finish the argument we only need to describe Ip,n−1
+ = {r+(θ) : θ ∈

Hp,n−1(X)}. If α+ belongs to Ip,n−1
+ , then evidently α+ has a closed exten-

sion to X−; call it α−. If ξ ∈ Hn−p,0(X−), then

0 =
∫

X−

∂̄(α− ∧ ξ) =
∫

Y
α+b ∧ ξ.(108)

Hence Ip,n−1
+ ⊂ Kp,n−1

+ . If α+ ∈ Kp,n−1
+ , then α+ has a closed extension to X−.

This follows from Theorem 5.3.1 in [10] and establishes (106).

We now identify Hp,n
R−

(X−).

Proposition 5. With X, X+, X− as above, we have the isomorphism

Hp,n
R−

(X−) � Hp,n(X) ⊕ Hp,n−1(X+)

Kp,n−1
+

.(109)

Remark 9. If X+ is a Stein manifold then the groups Hp,q(X+) vanish
for q > 0, as do the groups Hp,q

b (Y ) for 1 < q < n − 1. This proposition and
Theorem 4, then imply that

Hp,q(X) � Hp,q
R−

(X−)(110)

for all 0 ≤ p, q ≤ n.

Proof. The group Hp,n
R−

(X−) consists of (p, n)-forms α− on X− that satisfy:

∂̄∗α− = 0 and S̄p(∂̄ρ�α−)b = (∂̄ρ�α−)b.(111)

It is a simple matter to show that the first condition implies the second. Hence
if β− ∈ Hn−p,0(X−), then ∂̄∗�β− = 0 and therefore �β− ∈ Hp,n

R−
(X−). From

this we conclude that the inclusion of Hp,n(X) into Hp,n
R−

(X−) is injective. The
range consists of exactly those forms α− such that �α− has a holomorphic
extension to X+. Again applying Theorem 5.3.1 of [10], we see that the ob-
struction to having such an extension is precisely Hp,n−1(X+)

Kp,n−1
+

, thus proving the
proposition.

Putting together Proposition 5 with Theorem 4 and the results of Sec-
tion 6, we have our first gluing formula.
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Corollary 1. Suppose that X, X+, X− are as above; then, for 0 ≤ p ≤ n,

there are the following identities:

(112)

χp
O(X) =

n∑
q=0

dimHp,q(X)(−1)q

=
n∑

q=0

[dimHp,q
R+

(X+) + dimHp,q
R−

(X−)](−1)q −
n−2∑
q=1

(−1)q dimHp,q
b (Y ).

The last term is absent if dimX = 2.

Proof. The identity in (112) follows from the fact that the alternating sum
of the dimensions in a long exact sequence is zero, along with the consequence
of Proposition 5:

dimHp,n
R−

(X−) = dimHp,n(X) + dimHp,n−1
R+

(X+) − dimKp,n−1
+ .(113)

We also use that

H0,0(X) � H0,0
R−

(X−) and Hp,0
R+

(X+) = 0 for all p ≥ 0,

Hp,1
R+

(X+) � Hp,1

∂̄
(X+) ⊕ Ep,1

+ � Hp,1(X+) ⊕ Ep,1
+ .

(114)

We modify a second exact sequence in [1] in order to obtain an expression
for χp

O(X) in terms of Hp,q
R+

(X+) and Hp,q
Id−R+

(X−). This formula is a subelliptic
analogue of Bojarski’s formula expressing the index of a Dirac operator on a
partitioned manifold in terms of the indices of boundary value problems on the
pieces. First we state the modification of the exact sequence from Proposition
4.3 in [1].

Theorem 5. Let X, X+, X−, Y be as above. Then the following sequence
is exact

0 −−−→ Hp,1
Id−R+

(X−) α̃1−−−→ Hp,1(X−)
β1−−−→ Hp,1

b (Y )
γ1−−−→ Hp,2(X−, I) α2−−−→ Hp,2(X−)

β2−−−→ · · · · · · αn−2−−−→ Hp,n−2(X−)
βn−2−−−→ Hp,n−2

b (Y )
γn−2−−−→ Hp,n−1(X−, I)

Hp,n−1
R−−−−−→ Hp,n−1

R−
(X−) −−−→ 0.

(115)

The map γq is defined here by following the map γq, defined above, by restriction
to X−.



210 CHARLES L. EPSTEIN

Remark 10. If n = 2, then this sequence degenerates to

0 −−−→ Hp,1
Id−R+

(X−)
Hp,1

R−−−−→ Hp,1
R−

(X−) −−−→ 0.(116)

In this case Hp,1(X−) is not isomorphic to Hp,1
R−

(X−), nor is Hp,1(X−, I) iso-

morphic to Hp,1
Id−R+

(X−). The argument given below shows that Hp,1
R−

is injec-
tive for all p. The duality argument used at the end of the proof allows us to
use the injectivity of H2−p,1

R−
to deduce that it is also surjective.

Proof. We first need to show that Hp,1
Id−R+

(X−) injects into Hp,1(X−).

A form α belongs to Hp,1
Id−R+

(X−) provided that ∂̄α = ∂̄∗α = 0, αb = 0, and

Sp(∂̄ρ�α)b = 0. As Hp,1(X−) � Hp,1
R−

(X−), it suffices to show that Hp,1
R−

(α) = 0

if and only if α = 0. A form in Hp,1
Id−R+

(X−) belongs to DomL2(∂̄p,1
R−

); hence,

if Hp,1
R−

(α) = 0, then

α = ∂̄∂̄∗Gp,1
R−

(α) = ∂̄β.(117)

Observe that 0 = αb = ∂̄bβb. We can now show that α = 0 :

〈α, α〉X− = 〈∂̄β, α〉X−

= 〈β, (∂̄ρ�α)b〉Y .
(118)

On the one hand Sp(∂̄ρ�α)b = 0, while, on the other hand Sp(βb) = βb. This
shows that 〈α, α〉X− = 0.

Now we show that Im α̃1 = kerβ1. The containment Im α̃1 ⊂ ker β1 is clear
because αb = 0 for α ∈ Hp,1

Id−R+
(X−). If ξ ∈ kerβ1, then there is a (p, 0)-form,

ψ on Y so that

∂̄bψ = ξb.(119)

Let Ψ0 denote a smooth extension of ξ to X−; the form ξ − ∂̄Ψ0 satisfies
(ξ − ∂̄Ψ0)b = 0, and therefore belongs to DomL2(∂̄p,1

Id−R+
). Hence we have the

expression

ξ − ∂̄Ψ0 = Hp,1
Id−R+

(ξ − ∂̄Ψ0) + ∂̄∂̄∗Gp,1
Id−R+

(ξ − ∂̄Ψ0).(120)

If we let Ψ1 = ∂̄∗Gp,1
Id−R+

(ξ − ∂̄Ψ0), then

ξ − ∂̄(Ψ0 + Ψ1) = Hp,1
Id−R+

(ξ − ∂̄Ψ0).(121)

As ξ − ∂̄(Ψ0 + Ψ1) and ξ represent the same class ξ ∈ Hp,1(X−), we see that
[ξ] ∈ Im α̃1. This shows the exactness at Hp,1(X−). The exactness through
Hp,n−2

b (Y ) follows from Proposition 4.3 in [1].
The next case we need to consider is Hp,n−1(X−, I). The range of γn−2

consists of equivalence classes of exact (p, n− 1)-forms, ∂̄ξ̃, such that ∂̄bξb = 0.

Such a form is evidently in DomL2(∂̄p,n−1
R−

), and therefore Hp,n−1
R−

(∂̄ξ̃) = 0. Now



SUBELLIPTIC SPINC DIRAC OPERATORS, I 211

suppose that Hp,n−1
R−

(ξ) = 0, for a ξ with ∂̄ξ = ξb = 0. As ξ ∈ DomL2(∂̄p,n−1
R−

)
it follows that

ξ = ∂̄∂̄∗Gp,n−1
R−

(ξ).(122)

If we let θ = ∂̄∗Gp,n−1
R−

(ξ), then clearly

0 = ξb = ∂̄bθb,(123)

and therefore ξ ∈ Im γn−2.

To complete the proof of this theorem, we need to show that Hp,n−1
R−

is

surjective. We use the isomorphism Hp,n−1(X−, I) � Hp,n−1
Id−R+

(X−). If ξ ∈
Hp,n−1

R−
(X−) and θ ∈ Hp,n−1

Id−R+
(X−), then

〈ξ, θ〉X− = 〈ξ, Hp,n−1
R−

θ〉X− = 〈Hp,n−1
Id−R+

ξ, θ〉X− .(124)

Using the relations in (124) we see, by duality, that Hp,n−1
R−

is surjective if and

only if Hp,n−1
Id−R+

is injective. As Hp,n−1
Id−R+

= �Hn−p,1
R−

�, this injectivity follows

from the proof of exactness at Hr,1
Id−R+

(X−) for the case r = n − p.

We get a second gluing formula for χp
O(X).

Corollary 2. Suppose that X, X+, X− are as above; then for 0 ≤ p ≤ n,

there are the following identities:

n∑
q=0

dimHp,q(X)(−1)q =
n∑

q=0

[dimHp,q
R+

(X+) + dimHp,q
Id−R+

(X−)](−1)q,

(125)

that is,

Ind(ðe
X) = Ind(ðe

+,Re
+) + Ind(ðe

−, Id−Re
+).(126)

Proof. These formulæ follow from those in Corollary 1 as a consequence
of the previous theorem that

n−1∑
q=1

dimHp,q
Id−R+

(X−)(−1)q =
n−1∑
q=1

dimHp,q
R−

(X−)(−1)q +
n−2∑
q=1

dimHp,q
b (Y )(−1)q.

(127)

If n = 2 the last sum is absent. To complete the proof we use the isomorphisms

Hp,0
R−

(X−) = Hp,0
Id−R+

(X−) = Hp,0(X−),

Hp,n
R−

(X−) = Hp,n
Id−R+

(X−) � [Hn−p,0(X−)]�.
(128)
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Remark 11. These formulæ are exactly what would be predicted, in the
elliptic case, from Bojarski’s formula: Let Peo

± denote the Calderon projectors
for ∂̄ + ∂̄∗ acting on Λp,eoX±. Bojarski proved that,

Ind(ðe
X) = R-Ind(Id−Pe

−,Pe
+).(129)

Let P be a projection in the Grassmanian of Pe
+. From Bojarski’s formula we

easily deduce the following identity

Ind(ðe
X) = Ind(ðe

+, P ) + Ind(ðe
−, Id−P ).(130)

The proof uses elementary properties of the relative index:

−R-Ind(P2, P1) = R-Ind(P1, P2) = −R-Ind(Id−P1, Id−P2)

R-Ind(P1, P3) = R-Ind(P1, P2) + R-Ind(P2, P3).
(131)

To deduce (130) we use the observation that

Ind(ðe
+, P ) = R-Ind(Pe

+, P ), Ind(ðe
−, Id−P ) = R-Ind(Pe

−, Id−P ).(132)

Hence, we see that

Ind(ðe
+, P ) + Ind(ðe

−, Id−P ) = R-Ind(Pe
+, P ) + R-Ind(Pe

−, Id−P )

= R-Ind(Pe
+, P ) − R-Ind(Id−Pe

−, P )

= R-Ind(Pe
+, Id−Pe

−).

(133)

The proofs of the identities in (131) use the theory of Fredholm pairs. If H

is a Hilbert space, then a pair of subspaces H1, H2 of H is a Fredholm pair if
H1 ∩H2 is finite dimensional, H1 +H2 is closed and H/(H1 +H2) � H⊥

1 ∩H⊥
2

is finite dimensional. One uses that, for two admissible projectors P1, P2, the
subspaces of L2(Y ;E) given by H1 = Im P1, H2 = Im(Id−P2) are a Fredholm
pair and

R-Ind(P1, P2) = dimH1 ∩ H2 − dimH⊥
1 ∩ H⊥

2 .(134)

In our case the projectors are Pe
± and Re

±. While it is true that,
e.g. ImPe

+ ∩ Im(Id−Re
+) is finite dimensional, it is not true that ImPe

+ +
Im(Id−Re

+) is a closed subspace of L2. So these projectors do not define a
traditional Fredholm pair. If we instead consider these operators as acting on
smooth forms, then the ImPe

+ and Im(Id−Re
+) are a “Fréchet” Fredholm pair.

As the result predicted by Bojarski’s theorem remains true, this indicates that
perhaps there is a generalization of the theory of Fredholm pairs that includes
both the elliptic and subelliptic cases.

It seems a natural question whether the Agranovich-Dynin formula holds
on the pseudoconcave side as well, that is, if

Ind(ðe
−, Id−R′ e

+ ) + Ind(ðe
−, Id−Re

+) ?= R-Ind(S ′
p,Sp).(135)
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If this were the case, then (126) would also hold for boundary conditions defined
by generalized Szegő projectors. Because the null space of (ðe

−, Id−R′ e
+ ) does

not seem to split as a direct sum over form degrees, the argument used to prove
Theorem 3 does not directly apply to this case.

9. General holomorphic coefficients

Thus far we have considered the Dirac operator acting on sections of Λp,eo.

Essentially everything we have proved for cases where p > 0 remains true if
the bundles Λp,eo are replaced by Λeo ⊗ V, where V → X is a holomorphic
vector bundle. In [7] we proved the necessary estimates for the twisted Dirac
operator acting on sections of Λeo⊗V. For example, suppose that X+ is strictly
pseudoconvex, then defining

EV,1
0 (X+) =

{∂̄α : α ∈ C∞(X+;V) and ∂̄bαb = 0}
{∂̄α : α ∈ C∞(X+;V) and αb = 0}

,(136)

we can easily show that

Ind(ðe
V+,Re

+) = −dimEV,1
0 +

n∑
q=1

Hq(X+;V).(137)

The vector space EV,1
0 is the obstruction to extending ∂̄b-closed sections of

V �bX+ as holomorphic sections of V. Hence it is isomorphic to Hn−1
∂̄

(X+; Λn,0⊗
V ′), see Proposition 5.13 in [11]. It is therefore finite dimensional, and vanishes
if X+ is a Stein manifold.

The Agranovich-Dynin formula and the Bojarski formula also hold for
general holomorphic coefficients.

Theorem 6. Let X+ be a compact strictly pseudoconvex Kähler manifold
and V → X+ a holomorphic vector bundle. If the classical Szegő projector onto
the null space of ∂̄b, acting on sections of V �bX+ is denoted SV , and S ′

V is a
generalized Szegő projector, then

Ind(ðe
V+,R′ e

+ ) − Ind(ðe
V+,Re

+) = R-Ind(SV ,S ′
V).(138)

Corollary 3. Suppose that X, X+, X− are as above and V → X is a
holomorphic vector bundle, then the following identity holds:

n∑
q=0

dimHq(X;V)(−1)q =
n∑

q=0

[dimHq
R+

(X+;V) + dimHq
Id−R+

(X−;V)](−1)q;

(139)

that is,

Ind(ðe
V+) = Ind(ðe

V+,Re
+) + Ind(ðe

V−, Id−Re
+).(140)
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The proofs of these statements are essentially identical to those given
above and are left to the interested reader.

University of Pennsylvania
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