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Density of hyperbolicity in dimension one

By O. Kozlovski, W. Shen, and S. van Strien

1. Introduction

In this paper we will solve one of the central problems in dynamical sys-
tems:

Theorem 1 (Density of hyperbolicity for real polynomials). Any real
polynomial can be approximated by hyperbolic real polynomials of the same
degree.

Here we say that a real polynomial is hyperbolic or Axiom A, if the real
line is the union of a repelling hyperbolic set, the basin of hyperbolic attracting
periodic points and the basin of infinity. We call a C1 endomorphism of the
compact interval (or the circle) hyperbolic if it has finitely many hyperbolic
attracting periodic points and the complement of the basin of attraction of
these points is a hyperbolic set. By a theorem of Mañé for C2 maps, this
is equivalent to the following conditions: all periodic points are hyperbolic
and all critical points converge to periodic attractors. Note that the space
of hyperbolic maps is an open subset in the space of real polynomials of fixed
degree, and that every hyperbolic map satisfying the mild “no-cycle” condition
(which states that orbits of critical points are disjoint) is structurally stable;
see [dMvS93]. Theorem 1 solves the 2nd part of Smale’s eleventh problem for
the 21st century [Sma00]:

Theorem 2 (Density of hyperbolicity in the Ck topology). Hyperbolic
(i.e. Axiom A) maps are dense in the space of Ck maps of the compact in-
terval or the circle, k = 1, 2, . . . ,∞, ω.

This theorem follows from the previous one. Indeed, one can approximate
any smooth (or analytic) map on the interval by polynomial maps, and there-
fore by Theorem 1 by hyperbolic polynomials. Similarly, one can approximate
any map of the circle by trigonometric polynomials. If a circle map does not
have periodic points, it is semi-conjugate to the rotation and it can be approxi-
mated by an Axiom A map (this is a classical result). If a circle map does have
a periodic point, then using this periodic point we can construct a piecewise
smooth map of an interval conjugate to the circle map.
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1.1. History of the hyperbolicity problem. The problem of density of hy-
perbolicity goes back in some form to Fatou; see [Fat20, p. 73] and [McM94,
§4.1]. Smale gave this problem ‘naively’ as a thesis problem in the 1960’s; see
[Sma98]. Back then some people even believed that hyperbolic systems are
dense in all dimensions, but this was shown to be false in the late 1960’s for
diffeomorphsms on manifolds of dimension ≥ 2. The problem whether hyper-
bolicity is dense in dimension one was studied by many people, and it was
solved in the C1 topology by [Jak71], a partial solution was given in the C2

topology by [BM00] and C2 density was finally proved in [She04].
From the 1980’s spectacular progress was made in the study of quadratic

polynomials. In part, this work was motivated by the survey papers of May (in
Science and Nature) on connections of the quadratic maps fa(x) = ax(1 − x)
with population dynamics, and also by popular interest in computer pictures
of Julia sets and the Mandelbrot set. Mathematically, the realization that
quasi-conformal mappings and the measurable Riemann mapping theorem were
natural ingredients, enabled Douady, Hubbard, Sullivan and Shishikura to go
far beyond the work of the pioneers Julia and Fatou. Using these quasicon-
formal rigidity methods, Douady, Hubbard, Milnor, Sullivan and Thurston
proved in the early 1980’s that bifurcations appear monotonically within the
family fa : [0, 1] → [0, 1], a ∈ [0, 4]. In the early 1990’s, as a byproduct of
his proof on the Feigenbaum conjectures, Sullivan proved that hyperbolicity of
the quadratic family can be reduced to proving that any two topologically con-
jugate nonhyperbolic quadratic polynomials are quasi-conformally conjugate.
In the early 1990’s McMullen was able to prove a slightly weaker statement:
each real quadratic map can be perturbed to a (possibly complex) hyperbolic
quadratic map. A major step was made when, in 1997, Graczyk and Światek
(see [GŚ97] and [GŚ98]), and Lyubich (see [Lyu97]) proved independently that
hyperbolic maps are dense in the space of real quadratic maps. Both proofs re-
quire complex bounds and growth of moduli of certain annuli. The latter part
was inspired by Yoccoz’s proof that the Mandelbrot set is locally connected at
nonrenormalizable parameters, but is heavily based on the fact that z2 + c has
only one quadratic critical point (the statement is otherwise wrong). Using
their result, Kozlovski was able to prove hyperbolic maps are dense within the
space of smooth unimodal maps in [Koz03].

In 2003, the authors were able to prove density of hyperbolicity for real
polynomials with real critical points, see [SKvS]. The main step in that proof
was to obtain estimates for Yoccoz puzzle pieces both from above and below.
In the present paper, we solve the original density of hyperbolicity questions
completely for real, one-dimensional, dynamical systems.

1.2. Strategy of the proof and some remarks. The main ingredient for the
proof of Theorem 1 is the rigidity result [SKvS].
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The first step in proving Theorem 1 is to prove complex bounds for real
maps in full generality. This was done previously in [LvS98], [LY97] and [GŚ96]
in the real unimodal case, and in the (real) multimodal minimal case in [She04].
The proof of the remaining case (multimodal nonminimal) will be given in
Section 3. As in [SKvS] one has quasi-conformal rigidity for the box mappings
we construct; see Theorem 4.

Next we show (roughly speaking) that if a real analytic family of real
analytic maps fλ has nonconstant kneading type, then either f0 is hyperbolic
or fλ displays a critical relation for λ arbitrarily close to 0. This will be done
in Section 4, by a strategy which is similar to the unimodal situation dealt
with in [Koz03], but we use the additional combinatorial complexity in the
multimodal case and the existence of box mappings and their quasi-conformal
rigidity.

With this in mind, it is is fairly easy to construct families of polynomial
maps fλ, so that fλ has more critical relations than f0 for (some) parameters λ

arbitrarily close to 0: approximate an artificial family of C3 maps by a family
of polynomials (of much higher degree). In this way one can approximate
the original polynomial by polynomials (of higher degree) so that each critical
point either is contained in the basin of attracting periodic points or satisfies
a critical relation, i.e., is eventually periodic. From this, and the Straightening
Theorem, the main theorem will immediately follow.

Of course it is natural to ask about the Lebesgue measure of parameters
for which fλ is ‘good’. At this moment, we are not able to prove the general
version of Lyubich’s results [Lyu02] that for almost every c ∈ R, the quadratic
map z �→ z2+c is either hyperbolic or stochastic. (This result was strengthened
by Avila and Moreira [AM], who proved that for almost all real parameters
the quadratic map has nonzero Lyapounov exponents.) This would prove the
famous Palis conjecture in the real one-dimensional case; see [Pal00]. See,
however, [BSvS04].

2. Notation and terminology

Let Z be a topological space and x ∈ Z. The connected component of Z

containing x will be denoted as Compx Z, or, if it is not misleading, as Z(x).
Similar notation applies to a connected subset of Z.

Let I = (a, b) be an interval on the real line. For any α ∈ (0, π) we use
Dα(I) to denote the set of points z ∈ C such that the angle ∠azb is greater
than α. Dα(I) is a Poincaré disc: it is equal to the set of points z ∈ C with
dP (z, I) < d(α) where dP is the Poincaré metric on C \ (R \ I), and d(α) > 0
is a constant depending only on α.

Let f be a real C1 map of a closed interval X = [0, 1] with a finite number
of critical points which are not of inflection type (so each critical point of f is
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either a local maximum or minimum) and are contained in int(X). The set of
critical points of f will be denoted as Crit(f).

Denote the critical points of f by c1 < c2 < · · · < cb. These critical
points divide the interval [0, 1] into a partition P which consists of elements
{[0, c1), c1, (c1, c2), c2, . . . , (cb, 1]}.

For every point x ∈ [0, 1] we can define a sequence νf (x) = {ik}∞k=0 such
that ik = j if fk(x) belongs to the j-th element of the partition P, 0 ≤ j ≤ 2b.
This sequence is called the itinerary of x.

We say that f, f̃ are combinatorially equivalent if there exists an order-
preserving bijection h from the postcritical set (i.e., the iterates of the critical
points) of f onto the corresponding set for f̃ which conjugates f and f̃ . Ob-
viously, the itineraries of the corresponding critical points of f and f̃ are the
same.

In many cases we want to control only critical points which do not con-
verge to periodic attractors and for this purpose we introduce the following
notion. Two maps f and f̃ are called essentially combinatorially equivalent
if there exists an order preserving bijection h : ∪corbf (c) → ∪c̃orbf̃ (c̃) which
conjugates f and f̃ , where the union is taken over the set of critical points
whose iterates do not converge to a periodic attractor.

For a critical point c of f , let Forw(c) denote the set of all critical points
contained in the closure of the orbit {fn(c)}∞n=0, and let Back(c) be the set of
all critical points c′ with Forw(c′) 	 c. So if c′ ∈ Forw(c), then either fn(c) = c′

for some n ≥ 0 or ω(c) 	 c′. Let [c] = Forw(c) ∩ Back(c). Now, [c] is equal to
{c} if c is nonrecurrent and equal to the collection of critical points c′ ∈ ω(c)
with ω(c) = ω(c′) otherwise.

An open set I ⊂ X is called nice if for any x ∈ ∂I and any n ≥ 1,
fn(x) �∈ I. Let Ω be a subset of Crit(f). An admissible neighborhood of Ω is a
nice open set I with the following property:

• I has exactly #Ω components each of which contains a critical point in
Ω;

• for each connected component J of the domain of definition of the first
return map to I, either J is a component of I or J is compactly contained
in I.

Given an admissible neighborhood I of Ω, Dom(I) will denote the union of the
components of the domain of the first entry map to I which intersect the orbit
of c for some c ∈ Ω, Dom′(I) = Dom(I) ∪ I, and D(I) = Dom(I) ∩ I. We use
RI : D(I) → I to denote the first entry map EI to I restricted to D(I). For
each admissible neighborhood I of Ω, let

C1(I) = Ω \ Dom(I) and C2(I) = {c′ ∈ Ω : I(c′) ⊂ Dom(I)}.
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3. Induced holomorphic box mappings

In this section we will prove the existence of complex bounds, i.e., the
existence of box mappings. There are several definitions of box mappings.
Here we will use a definition which is slightly more general than the one given
in [SKvS].

Definition 1 (Complex box mappings). A holomorphic map

F : U → V(1)

between open sets in C is a complex box mapping if the following hold:

• V is a union of finitely many pairwise disjoint Jordan disks;

• Every connected component V ′ of V is either a connected component of
U or the intersection of V ′ and U is a union of Jordan disks with pairwise
disjoint closures which are compactly contained in V ′,

• For each component U ′ of U , F (U ′) is a component of V and F |U ′ is a
proper map with at most one critical point;

• Each connected component of V contains at most one critical point of F .

The filled Julia set of F is defined to be

K(F ) = {z ∈ U : Fn(z) ∈ U for any n ∈ N};
and the Julia set is J(F ) = ∂K(F ).

Such a complex box mapping is called real-symmetric if F is real, all its
critical points are real, and the domains U and V are symmetric with respect
to R.

A real box mapping is defined similarly: replace “Jordan disks” by “inter-
vals”, and “holomorphic” by “real analytic”.

We say that a box mapping F is induced by a map f if any branch of F

is some iterate of a complex extension of the map f : X → X.
This type of box mapping naturally arises in the following setting: let

f : Δ → C be a holomorphic map, f(X) ⊂ X, where Δ is some complex
neighborhood of X. Fix some critical points of f and an appropriate neigh-
borhood V of these critical points, consider the first entry map R : U → V of
f to V . We will see that if the domain V is carefully chosen, then the map
R : U → V is a complex box mapping.

Let us define a graph Cr=Cr(f) as follows: the vertices of Cr are the
critical points of f , and there is an edge between two distinct critical points
c1, c2 if and only if c1 ∈ Forw(c2) or c2 ∈ Forw(c1). A subset Ω of Crit(f) is
called connected if it is connected with respect to the graph.
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A subset Ω of Crit(f) is called a block if it is contained in a connected
component of Cr(f) and if Back(c) ⊂ Ω holds for all c ∈ Ω. Clearly, a
connected component of Cr(f) is a block, and it is maximal in the sense that
it is not properly contained in another block. A block is called nontrivial if it
is disjoint from the basin of periodic attractors and there exists c ∈ Ω with an
infinite orbit.

Theorem 3 (Existence of complex box mappings). Let f : X → X be a
real analytic map with nondegenerate critical points.

I. Let c0 be a nonperiodic recurrent critical point of f . Then there exists
an admissible neighborhood I of [c0] such that RI : D(I) → I extends to a
real-symmetric complex box mapping F : U → V with Crit(F ) = [c0], and F

carries no invariant line field on its filled Julia set.

II. Assume that Ω is a nontrivial block of critical points such that

• each recurrent critical point c ∈ Ω has a nonminimal ω-limit set ;

• if Ω′ is the component of the graph Cr(f) which contains Ω, then f is
not infinitely renormalizable at any c′ ∈ Ω′.

Then, for any K > 0 there exists an admissible neighborhood I of Ω, such that
RI : D(I) → I extends to a complex box mapping F : U → V with the following
properties:

• For each c ∈ Ω, V (c) is contained in Dθ0(I(c)), where θ0 ∈ (0, π) is a
universal constant ;

• There exists a universal constant θ1 > 0 such that any connected compo-
nent U ′ of U satisfies

fU ′ ⊂ Dθ1(fU ′ ∩ R);

• Let Q be the closure of ∂(U ∩R)∪∂(V ∩R). Then there exists a constant
C > 0 such that

distC\Q(∂U ′, ∂V ′) > C and distC\Q(∂U ′, ∂U ′′) > C

where distC\Q is the hyperbolic distance in C \Q, V ′ is a connected com-
ponent of V and U ′ �= U ′′ are connected components of U ;

• The filled Julia set of F has Lebesgue measure zero;

• If U ′ is a connected component of U and compactly contained in a com-
ponent V ′ of V , then mod(V ′ \ U ′) ≥ K;

• For each c ∈ U ∩ Ω, |f(Compc(V ) ∩ R)| > K|f(Compc(U)) ∩ R|.
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In the case of minimal ω(c0) the existence of the box mapping is proved in
[She04], and the absence of an invariant line field follows from the same argu-
ment in Sections 6 and 7 of [She03]. So we only have to prove the nonminimal
case. The proof of this theorem will occupy the next two subsections.

3.1. Complex bounds from real bounds. Let Ω be as in Theorem 3. Our goal
of this subsection is to prove that for an appropriate choice of an admissible
neighborhood I of Ω, the real box mapping RI extends to a complex box
mapping with the desired properties. To this end, it is convenient to introduce
geometric parameters Space(I), Gap(I) and Cen(I) as follows.

For any intervals j ⊂ t, where the components of t \ j are denoted by l, r,
define

Gap(l, r) =
1

Space(t, j)
:=

|t||j|
|l||r| .

So if Gap(l, r) is large, then the gap interval j is at least larger than one of the
intervals l or r. At the same time, if Space(t, j) is large, then there is a large
space around the interval j inside t. The parameter Gap(I) is defined as

Gap(I) = inf
(J1,J2)

Gap(J1, J2),

where (J1, J2) runs over all distinct pairs of components of Dom′(I).
To introduce the parameter Space(I), let

I∗ =
⋃

c′∈C2(I)

I(c′), I� = I − I∗.(2)

The parameter Space(I) is defined to be

Space(I) = inf
J

Space(CompJ I, J),

where the infimum is taken over all components J of the domain of RI which are
contained in I�. In the following construction we shall be unable to guarantee
that all components of D(I) are compactly contained in I.

Furthermore, for any c ∈ Ω, let Ĵ(c) be the component of Dom′(I) which
contains f(c) (so Ĵ(c) = ∅ if f(c) �∈ Dom′(I)), and define

Cen1(I) = max
c∈Ω\C2(I)

|Ĵ(c)|
|f(I(c))| ,

Cen2(I) = max
c∈C2(I)

(∣∣∣∣∣ |Ĵ(c)|
|f(I(c))| − 2

∣∣∣∣∣
)

,

and Cen(I) = max(Cen1(I),Cen2(I)).

Proposition 1. There exists ε0 > 0, C0 > 0 and θ0 ∈ (0, π) (depending
only on #Ω) with the following properties. Let I be an admissible neighborhood
of Ω such that Cen(I) < ε0, Space(I) > C0 and Gap(I) > C0. Assume also
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that maxc′∈Ω |I(c′)| is sufficiently small. Then there exists a real-symmetric
complex box mapping F : U → V whose real trace is real box mapping RI .
Moreover, the map F satisfies the properties specified in Theorem 3.

To prove this proposition we need a few lemmas. Let U ⊂ C be a small
neighborhood of X so that f : X → X extends to a holomorphic function
f : U → C which has only critical points in X. Here, as before, X = [0, 1].

Fact 1 (Lemma 3.3 in [dFdM99]). For every small a > 0, there exists
θ(a) > 0 satisfying θ(a) → 0 and a/θ(a) → 0 as a → 0 such that the following
holds. Let F : D → C be univalent and real-symmetric, and assume that
F (0) = 0 and F (a) = a. Then for all θ ≥ θ(a), we have F (Dθ((0, a))) ⊂
D(1−a1+τ )θ((0, a)), where 0 ≤ τ < 1 is a universal constant.

Lemma 1. For any θ > 0 there exists η1 = η1(f, θ) > 0 such that if J is an
interval which does not contain a critical point and |J | < η1, then f : J → fJ

extends to a conformal map f : U → Dθ(fJ) such that U ⊂ D(1−M |fJ |1+τ )θ(J),
where M > 0 is a constant depending on f .

� Taking two small neighborhoods N � N ′ of Crit(f), assuming |J | is
small enough, we have either J ∩ N = ∅ or J ⊂ N ′. In the former case, f

defines a conformal map onto a definite complex neighborhood of fJ , and the
lemma follows by applying Fact 1 to the inverse of this conformal map. In the
latter case, f can written as Q ◦φ, where φ is a conformal map onto a definite
neighborhood of fJ and Q is a real quadratic polynomial. The lemma follows
from Fact 1 applied to φ−1 and the Schwarz lemma. �

Let us say that a sequence of open intervals {Gi}s
i=0 is a chain if Gi is a

component of f−1(Gi+1) for each i = 0, . . . , s − 1. The order of this chain is
the number of Gi’s which contain a critical point, 0 ≤ i < s.

Lemma 2. For any θ ∈ (0, π) there exists η = η(f, θ) > 0 and θ′ ∈ (0, π)
such that the following holds. Let I be an admissible neighborhood of Ω with
|I| < η and Cen2(I) < 1. Let J be a component of Dom′(I), let s ≥ 0
be minimal with fs(J) ⊂ I�, and let K be the component of I� containing
fs(J). Then there exists a Jordan disk U with J ⊂ U ⊂ Dθ′(J) such that
fs : U → Dθ(K) is a well-defined proper map.

� Let {Gj}s
j=0 be the chain with Gs = K and G0 = J . Since f has no

wandering interval, maxs
j=1 |Gj | is small provided that |K| ≤ |I| is sufficiently

small. Moreover since fs : J → K is a first return map, the intervals Gj ,
1 ≤ j ≤ s are pairwise disjoint; thus

s∑
j=1

|Gj | ≤ |X| = 1.
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Therefore, assuming |I| is sufficiently small, we obtain that
∑s

j=1 |Gj |1+τ is as
small as we want.

First consider the case that fs|J is a diffeomorphism. Let η1 and M be
as in Lemma 1. Then provided that maxs

j=1 |Gj | < η1 and
∑s

j=1 |Gj |1+τ <

1/(2M), that lemma implies that there is a sequence of Jordan disks Uj with
Uj ⊂ Dθ/2(Gj), 0 ≤ j ≤ s, such that Us = Dθ(K) and f : Uj → Uj+1 is a
conformal map for all 0 ≤ j < s. The lemma follows when U = U0.

Now assume that fs|J is not diffeomorphic, and let s1 < s be maximal
such that Gs1 contains a critical point c. Then as above, we obtain Jordan
disks Uj for all s1 < j ≤ s such that Us = Dθ(K), such that

• for all s1 < j < s, f : Uj → Uj+1 is a conformal map;

• Uj ⊂ Dθ/2(Gj).

Provided that I is sufficiently small, we have c ∈ ⋃
c′∈Ω Back(c′) = Ω. By

the minimality of s we have c ∈ C2(I) and so by the assumption on Cen2(I),
|f(Gs1)|/|Gs1+1| = |f(I(c))|/|Ĵ(c)| is bounded away from zero. Therefore,
provided that |Gs1+1| is sufficiently small, we have a Jordan disk Us1 with
Gs1 ⊂ Us1 ⊂ Dθ1(Gs1) such that f : Us1 → Us1+1 is a 2-to-1 proper map,
where θ1 ∈ (0, π) is a constant depending only on θ. Repeat the argument for
the shorter chain {Gj}s1

j=0 and so on. Since the order of the chain {Gj}s
j=0 is

bounded from above by #Ω, the procedure stops within #Ω steps, completing
the proof. �

Proof of Proposition 1. Assume that |I| and Cen2(I) are both very small.
For each c ∈ Ω \ C2(I), define Vc = Dπ/2(I(c)). By Lemma 2, there exists
a constant θ0 ∈ (0, π) and for each component J of Dom′(I), there exists
a Jordan disk U(J) with J ⊂ U(J) ⊂ Dθ0(J) such that if r = r(J) is the
minimal nonnegative integer with f r(J) ⊂ I(c) for some c ∈ Ω \ C2(I), then
f r : U(J) → Vc is a well-defined proper map.

For c ∈ C2(I), define Vc = U(I(c)). For each component J of Dom(I)∩I�,
let Ĵ be the component of Dom′(I) which contains f(J), and let U(J) be the
component of f−1(U(Ĵ)) which contains J . Then U(J) is a Jordan disk with
U(J) ∩ R = J , and f : U(J) → U(Ĵ) is a well-defined proper map.

Clearly, for each component J of the domain of RI , if c ∈ Ω is such that
RI(J) ⊂ I(c), and if RI |J = fs|J , then fs : U(J) → Vc is a well-defined proper
map.

Assume now that Space(I) is very big and and Cen1(I) is very small.
Then for each c ∈ Ω \ C2(I) and for each component J of Dom(I) ∩ I(c),
mod(Vc \ UJ) is bounded from below by a large constant. In fact, if J �	 c

then by Lemma 1, U(J) ⊂ Dθ0/2(J), which implies that mod(Vc \ U(J)) ≥
mod(Dπ/2(I(c))\Dθ0/2(J)) is large since Space(I, J) is large. If J 	 c, then by
assumption, |Ĵ |/|f(I(c))| is small, so that U(J) is contained in a round disk
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centered at c with radius much smaller than |I(c)|; hence mod(Vc \ U(J)) is
again big. Note that provided that Space(I) is large enough,⋃

J⊂I(c)

U(J) ⊂ B

(
c,
|I(c)|

4

)
∪ Dα(I(c)),(3)

where α ∈ (0, π) is a constant close to π.
Next let us assume that Gap(I) is large and show that there exists δ > 0

such that for any components J1 and J2 of Dom(I) ,

distC\Q(∂U(J1), ∂U(J2)) > δ.(4)

To this end, we may assume that J1 and J2 are contained in I(c) for some
c ∈ Ω \ C2(I), and that |Ĵ1| ≤ |Ĵ2|. Recall that

f(U(Ji)) = U(Ĵi) ⊂ Dθ0(Ĵi), i = 1, 2.(5)

In particular, provided that Gap(Ĵ1, Ĵ2) is larger than some number which only
depends on θ0,

U(J1) ∩ U(J2) = ∅.(6)

Let us consider the following two cases:

Case 1. J1 	 c′. Since there exist only finitely many components of
Dom′(I) with length not smaller than |J1|, there are only finitely many pairs
(J1, J2) satisfying the property, and thus (4) follows from (6).

Case 2. J1 �	 c′. In this case, (5) implies that d(∂U(J1), ∂U(J2))/|J1|
is big, provided that Gap(Ĵ1, Ĵ2) is big enough. Moreover, Lemma 1 im-
plies that U(J1) ⊂ Dθ0/2(J1). All these imply that the distance between
distC\∂J1

(∂U(J1), ∂U(J2)) is large, where distC\∂J1
denotes the hyperbolic dis-

tance in C \ ∂J1. As dist∂J1 ≤ distC\Q, (4) follows.

Now we define a complex box mapping F : U → V by setting U =⋃
J U(J), V =

⋃
c∈Ω V (c′) and by defining F so that its real trace is RI .

To complete the proof, it remains to show that the filled Julia set of F

has measure zero. In fact, the property (3) implies that for a.e. z ∈ K(F ),
ω(z) contains a critical point. For the set of points with this last property, one
argues as in Proposition 2.2 and Theorem 5.1 of [She04] to show that this set
has Lebesgue measure zero.

For later use, let us include the following easy proposition to end this
section.

Proposition 2. For any ρ > 0, there exists η = η(f, ρ) with the following
property. Let I be a nice interval, and let {Ji} be a collection of components
of the domain of the first return map RI such that
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• RI |Ji is monotone;

• Space(I, Ji) > ρ;

• these Ji have pairwise disjoint closures.

Assume that |I| < η and I is disjoint from the immediate basin of periodic
attractors. Then for any θ ∈ (π/2, π), RI :

⋃
Ji → I extends to a complex

box mapping φ :
⋃

Ui → V such that V = Dθ(I) and Ui ⊂ Dθ′(Ji). Moreover,
θ′ → θ as |I| → 0.

Proof. For each Ji, let si denote the return time of Ji to I. Then∑s
j=1 |f jJi| ≤ 1. Provided that I is a small interval which is disjoint from

the basin of periodic attractors, we have that sups
j=1 |f jJi| is small, so that∏s

j=1(1 − M |f jJi|)1+τ is close to 1. By Lemma 1, it follows that fsi : Ji → I

extends to a conformal map F : Ui → V with V = Dθ(I) and Ui ⊂ Dθ′(Ji),
with

θ′ =
s∏

j=1

(
1 − M |f jJi|1+τ

)
θ.

Since θ′/θ is close to 1 and Ji is well-inside I, mod(V \ Ui) is greater than a
positive constant. Since Ji’s have pairwise disjoint intervals, these Ui’s have
pairwise disjoint closure, so that F :

⋃
Ui → V defines a complex box mapping.

3.2. Choice of an admissible neighborhood. We shall prove here:

Proposition 3. Let Ω be a subset of Crit(f) as in Theorem 3. For any
ε > 0 and C > 0 there exists an arbitrarily small admissible neighborhood I of
Ω such that such that Gap(I) > C, Space(I) > C, and Cen(I) < ε.

First we observe that there exists a forward invariant finite set Z which is
disjoint from the forward orbits of the critical points, such that for all c ∈ Ω,
the length of the component of X \ f−n(Z) which contains c tends to 0 as
n → ∞. In fact, this has been shown in Section 6.1 of [SKvS]. More precisely,
this last property is equivalent to the fact that c is an accumulation point
of

⋃∞
n=0 f−n(Z); thus if it holds for some c, then it holds for c′ ∈ Forw(c) ∪

Back(c). By Fact 6.1 and Lemma 6.1 of [SKvS], this property holds for c ∈ Ω
which has an infinite orbit; thus it holds for all c ∈ Ω.

Clearly, a component of X \ f−n(Z) is a nice interval. Throughout this
subsection, all nice intervals are of this form.

Let us say that a nice interval I is C-nice if for each return domain J of I,
we have Space(I, J) > C.

The first step to prove Proposition 3 is the following:
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Proposition 4. Let Ω be a subset of Crit(f) as in Theorem 3. For any
C > 0 there exists an arbitrarily small admissible neighborhood of Ω such that
Space(T ) > C.

Proof. Let us first prove the following:

Claim. For any C > 0 and any c ∈ Ω, there exists an arbitrarily small
C-nice interval I 	 c.

In fact, this claim was proved in Theorem 3.4 of [She04] in the case that
c is recurrent. So let us assume that c is nonrecurrent. Let K1 � K2 �
. . . be a sequence of nice intervals containing c such that for each i ≥ 1,
Space(Ki, Ki+1) > 1 and such that c does not return to K1. Taking a large n,
we show that Kn is C-nice. To this end, let x ∈ Kn be a point which returns
to Kn under iterates of f , and let Lj denote the entry domain of Kj containing
x for all 1 ≤ j ≤ n. Then by Theorem A of [vSV04], there exists a constant
ξ > 0 such that Space(Lj , Lj+1) > ξ for all 1 ≤ j < n; thus Space(L1, Ln) > C

provided that n is large enough. As c is nonrecurrent, we have L1 ⊂ Kn, for
otherwise we would have L1 ⊃ Kn 	 0, which implies that 0 returns to K1.
Therefore Space(Kn, Ln) > C.

To complete the proof, let Ω1 = {c1, c2, . . . , cn} be a minimal subset of
Ω with the following property: for each c ∈ Ω \ Ω1, Forw(c) ∩ Ω1 �= ∅. By
the minimality of Ω1, we have that Forw(ci) �	 cj for any i �= j. For each
1 ≤ j ≤ n, let Ij be a small C-nice interval containing cj . Then I� =

⋃n
j=1 Ij

is a nice open set and

I := I� ∪
⋃

c∈Ω\Ω1

Compc(Dom′(I�))

is an admissible neighborhood of Ω. Let us show that Space(I) > C (provided
that sup |Ij | is small enough).

To this end, let J be a component of Dom(I) which is compactly contained
in I. Since I \ I� ⊂ Dom(I), we have J ⊂ Ij for some 1 ≤ j ≤ n, and that J is
also a return domain of Ik for some 1 ≤ k ≤ n. If j = k then Space(Ij , J) > C

since Ij is a C-nice interval. If j �= k, then cj does not enter a fixed nice interval
Tk 	 ck. Let J ′ be the entry domain of Tk which contains J . Arguing as in the
proof of the claim above, provided that Ik is small enough, Space(J ′, J) > C.
On the other hand, J ′ �	 cj , which implies that J ′ ⊂ Ij . Thus Space(Ij , J) > C.

Now let us fix for the moment a small constant ρ > 0. Given an admissible
neighborhood T of Ω, we define a new admissible neighborhood A(T ) = Aρ(T )
with the following properties:

• for c ∈ C1(T ), A(T )(c) is the maximal admissible neighborhood of c such
that |A(T )(c)|/|T (c)| < ρ;
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• for c ∈ Ω \ (C1(T )∪C2(T )), A(T )(c) is the component of Dom(T ) which
contains c;

• for any c ∈ C2(T ), when k(c) is the minimal positive integer such that
R

k(c)
T (c) ∈ T (c′) for some c′ ∈ Ω \ C2(T ), then A(T )(c) is the maximal

interval containing c such that R
k(c)
T (A(T )(c)) ⊂ A(T )(c′).

Clearly C2(A(T )) ⊂ C2(T ). For c ∈ Ω \C2(T ), let k(c) = 0. Note that for any
0 ≤ k ≤ k(c), Rk

T (A(T )(c)) ⊂ A(T ).

Lemma 3. Assume that C2(A(T )) = C2(T ). Then

1. For each c ∈ C2(T ), RT (A(T )(c)) ⊂ A(T );

2. For each c ∈ Ω and x ∈ T (c) \ A(T )(c), there exists an interval J(x)
with x ∈ J(x) ⊂ T (c) \ A(T )(c) such that R

k(c)+1
T maps J(x) onto a

component of T diffeomorphically ;

3. For each landing domain J of A(T ), there exists an interval Ĵ with J ⊂
Ĵ ⊂ Dom′(T ) such that if s is the landing time of J into A(T ), then fs

maps Ĵ diffeomorphically onto a component of T .

� Let us prove the first statement by contradiction. It is enough to prove
that RT (c) ∈ A(T ), so assume that this is not the case. For 0 ≤ i ≤ k(c),
let ci ∈ Ω be such that Ri

T (c) ∈ T (ci). Let m ≤ k(c) − 1 be maximal so
that RT (cm) �∈ A(T )(cm+1). Let p ∈ N be minimal such that Rp

T (cm) ∈
A(T ). By the maximality of m, we obtain RT (A(T )(ci)) ⊂ A(T )(ci+1) for
i = m + 1, . . . , k − 1. Hence Ri

T (cm) �∈ A(T ) for all 1 ≤ i ≤ k − m, and so
p > k − m. But Rk−m

T (∂A(T )(cm)) is contained in ∂ Dom(T ), which implies
that Rp

T (∂A(T )(cm)) �∈ T . Since A(T ) � T , the minimality of p gives that cm /∈
C2(A(T )). However, since cm ∈ C2(T ) = C2(A(T )) this gives a contradiction.

Let us now pass to the proof of the second statement. By the first state-
ment, for each c ∈ Ω, R

k(c)
T maps each component of T (c) \ A(T )(c) onto a

component of T \ A(T ) in a diffeomorphic way. For each x ∈ T (c) \ A(T )(c),
we take J(x) to be the maximal interval so that R

k(c)
T (J(x)) is contained in (a

component of) Dom(T ). Clearly, R
k(c)+1
T maps J(x) onto a component of T in

a diffeomorphic way.
The third statement follows from the observation that any branch of the

first landing map to A(T ) can be written as the composition of the first landing
map to T with finitely many maps of the form R

k(c)+1
T |J(x), x ∈ T (c)\A(T )(c).

�

Lemma 4. Let c1, c2 ∈ Ω, let x ∈ A(T )(c1) ∩ Dom(A(T )) be such that
RA(T )(x) ∈ A(T )(c2), and let s be such that RA(T ) = fs near x. Consider the
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chain {Gi}s
i=0 with Gs = T (c2) and G0 	 x. Then the order of the chain is

not greater than #Ω. Moreover, if c1 �∈ C2(A(T )), then G0 ⊂ A(T )(c1).

� First observe that A(T )(c) ⊃ Compc Dom(T (c)) for all c ∈ Ω. It
follows that for each c ∈ Ω, there can be at most one i with 0 < i ≤ s such
that Gi 	 c. Thus the order of the chain {Gi}s

i=0 is at most #Ω.
Now let us assume that c1 �∈ C2(A(T )) and show that G0 ⊂ A(T )(c1).

Let k be the minimal positive integer such that Rk
T = fs near x. Since G0 ⊂

Compx Dom(T ), we may assume that c1 ∈ C2(T ). If G0 � T (c1), then k >

k(c1), and R
k(c1)
T (G0) is contained in a component of Dom(T ) so that G0 ⊂

A(T )(c1). Therefore we may assume that G0 = T (c1). Then k ≤ k(c1), so
f i(x) �∈ T � for all 1 ≤ i ≤ s − 1. It follows that Rk

T (A(T )(c1)) ⊂ A(T )(c2),
which implies that c1 ∈ C2(A(T )). The contradiction completes the proof. �

The following lemma is usually referred to as the Koebe principle. See
[vSV04] for a proof.

Lemma 5. Assume that {Gi}s
i=0 is a chain such that Gs is contained in

a small neighborhood of a nonperiodic and recurrent critical point.

1. For each N > 0 and C > 0 there exists C ′ > 0 such that if the order
of the chain {Gi}s

i=0 is at most N and {Ji}s
i=0 is a chain with Ji ⊂ Gi,

i = 0, . . . , s then if Space(Gs, Js) ≥ C ′ then Space(G0, J0) > C.

2. For each C > 0 there exists K > 1 such that if fs|G0 is a diffeomorphism,
and Space(Gs, Js) ≥ C then |Dfs(x)|/|Dfs(y)| ≤ K for each x, y ∈ J0.
Moreover, K → 1 as C → ∞.

In the next two lemmas we will make a convenient choice for ρ > 0, but
still write A(T ) = Aρ(T ).

Lemma 6. For any ε > 0 and C > 0 there exists ρ0 ∈ (0, 1) such that if
Space(T ) > 1/ρ−1

0 and ρ < ρ0, then Space(A(T )) > C and Cen1(A(T )) < ε.

� By Lemma 4 and the above Koebe principle, it suffices to show that
|A(T )(c)|/|T (c)| is small for every c ∈ Ω, provided that Space(T ) and ρ−1 are
sufficiently large. To this end, let s be such that R

k(c)
T = fs on T (c), and con-

sider the chain {Gi}s
i=0 with Gs = T (fs(c)) and G0 = T (c). The order of this

chain is bounded from above by k(c) ≤ #Ω. Since Space(T (fs(c)), fs(A(T )(c)))
is large, again by the above Koebe principle, we obtain the desired estimate.

�

Lemma 7. For any ε > 0 and C > 0 there exists ρ1 ∈ (0, 1) with the
following property. Assume that C2(A(T )) = C2(T ), Space(T ) > ρ−1

1 and
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ρ < ρ1. Then Gap(A(T )) > C. Moreover, if C2(A2(T )) = C2(T ), then
Cen(A(T )) < ε.

� Assume that Space(T ) is large and that ρ is small. Then by Lemma 6,
for each c ∈ Ω, A(T )(c) is deep inside T (c).

Let us first show that Gap(A(T )) is big. To this end, let J1 and J2 be
distinct components of Dom′(A(T )) and let s1, s2 be their landing times to
A(T ). Without loss of generality, assume s1 ≤ s2. It is enough to show that
the gap between J1 and J2 is much bigger than J2. Let Ĵi, i = 1, 2, be as
in Lemma 3 (3). By the Koebe principle, Ji is deep inside Ĵi, so it suffices
to show that J1 ∩ Ĵ2 = ∅. Let us prove this by contradiction. Assume that
J1 ∩ Ĵ2 �= ∅. Since both J1 and Ĵ2 are pull backs of the nice set T , so either
J1 ⊃ Ĵ2 or J1 ⊂ Ĵ2. Since J1 ∩ J2 = ∅, the first alternative cannot happen.
Therefore, J1 ⊂ Ĵ2. It follows that for all 0 ≤ i ≤ s2, f i(J1) ⊂ f i(Ĵ2)− f i(J2);
hence f i(J1) ∩ Ω = ∅. But fs1(J1) is a component of A(T ), a contradiction.

Now let us also assume that C2(A2(T )) = C2(A(T )), and show that
Cen(A(T )) is small. In Lemma 6, we have already shown that that Cen1(A(T ))
is small. So it remains to show that Cen2(T ) is small. To this end, take
c ∈ C2(T ) and let c′ ∈ Ω be such that RT (c) ∈ T (c′). By assumption we have
RT (c) ∈ A2(T )(c′). Since |A2(T )(c′)|/|A(T )(c′)| is small, the components of
A(T )(c′) − {RT (c)} have almost the same length. If J 	 f(c) is the landing
domain to A(T ) and if s is the landing time, then fs : J → fs(J) extends to
a diffeomorphism onto T (c′) which implies by the Koebe principle that fs|J
is almost linear. Thus the components of J − {f(c)} have almost the same
length. �

Proof of Proposition 3. By Proposition 4, for any C > 0 there exists
an admissible neighborhood T0 of Ω with Space(T0) > C. Let ρ be a small
constant. For n ≥ 0, define inductively Tn+1 = A(Tn). Then, since C2(Tn) ⊃
C2(Tn+1) there exists N ≤ 2#Ω such that

C2(TN−1) = C2(TN ) = C2(TN+1).

By Lemmas 6 and 7, defining I = TN completes the proof.

The following proposition will also be needed in Section 4.

Proposition 5. Let f be a real–analytic interval map with nondegenerate
critical points, and let Ω be a connected component of the graph Cr(f) such
that f is not infinitely renormalizable at any c ∈ Ω. Let Ω1 be the subset of Ω
consisting of all points c such that ω(c) 	 c is minimal, and let Ω2 = Ω \ Ω1.
Then given a sufficiently small admissible neighborhood I of Ω2 there exist a
universal constant C > 0 and an arbitrarily small admissible neighborhood Y

of Ω1 with the following properties:
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• each component of Y is a C-nice interval ;

• RY : D(Y ) → Y extends to a complex box mapping ;

• I ∪ Y is an admissible neighborhood of Ω;

• define D̂(Y ) to be the union of all return domains of Y which intersect⋃
c∈Ω orb(c), which are disjoint from D(Y ) and which return to Y before

entering I, (so if J is a connected component of D̂(Y ) then fn
0 (J)∩I = ∅

for n = 0, . . . , s, where s is the return time to Y of J). Then

inf Gap(J1, J2) > 0,

where the infimum is taken over all distinct components J1, J2 of D̂(Y ).

Proof. As proved in [She04], for each c ∈ Ω1 there exists an arbitrarily
small admissible neighborhood K([c]) of [c] so that RK([c]) : D(K([c])) →
K([c]) extends to a complex box mapping. Moreover, as the proof shows, we
can choose K([c]) so that each component K ′ of K([c]) is C-nice, where C > 0
is a universal constant.

Let us write Ω1 as a disjoint union of [ci]’s. For each i, let Ki be a small
admissible neighborhoods of [ci] as above (all taken from the same puzzle
partition). Then K =

⋃
i Ki is an admissible neighborhood of

⋃
i[ci] and

D(K) =
⋃

i D(Ki). Consequently, there exists an arbitrarily small admissible
neighborhood K of Ω1 such that RK : D(K) → K extends to a complex box
mapping and such that each component of K is a C-nice interval.

Now let us take a small admissible neighborhood P of Ω such that P (c) =
K(c) for all c ∈ Ω1 so that Space(P ) ≥ C. This can be done as in the proof of
Proposition 4. Provided that |K| is small enough, we may choose P such that
P (c) ⊂ I for all c ∈ Ω2.

Arguing as above, we obtain a new admissible neighborhood T ⊂ P of Ω
such that Space(T ) and Gap(T ) are both bounded away from zero. Note that
the components of Y =

⋃
c∈Ω1

T (c) are obtained by pull–back of K if we use
the first return map RK : D(K) → K (since iterates of points in Ω1 never
enter P \ K). So RY : D(Y ) → Y extends to a complex box mapping.

Let J1 and J2 be two distinct components of D̂(Y ). Since T \ Y ⊂ I, the
first entry of Ji to Y is the same as the first entry to T , i = 1, 2. It follows
that Gap(J1, J2) is bounded from below by a positive constant.

Finally let us assume that I is so small that the forward orbit of any
c ∈ Ω1 does not enter I and show that I ∪ Y is nice. Otherwise, there exists a
component U of I ∪ Y and z ∈ ∂U such that fn(z) ∈ I ∪ Y for some n ≥ 1.
If U ⊂ I, then fn(z) ∈ Y (since I is nice); thus U is properly contained in
the domain of the first entry map to Y , which implies that T is not nice, a
contradiction. Similarly, if U ⊂ Y , then U is contained in the domain of the
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first entry map to I, which implies that the forward orbit of c ∈ U ∩Ω1 enters
I, contradicting the assumption on I.

The following theorem is the direct analogue of the Rigidity Theorem in
[SKvS] for the box mappings defined in the previous section. The proof is the
same.

Theorem 4 (Rigidity Theorem for box mappings). Let f : U → V and
f̃ : Ũ → Ṽ be two combinatorially equivalent real-symmetric complex box map-
pings without neutral cycle or escaping critical point. Moreover, suppose that
there exists a q.c. homeomorphism h : C → C such that h conjugates f and f̃

on the boundaries of their domains of definition.
Then there exists a q.c. homeomorphism φ : C → C which conjugates f

and f̃ on their domains and such that φ = h outside U .

4. Instantaneous change of combinatorics in analytic families

In this section we shall use the two theorems from the previous section to
prove that under certain conditions the only structurally stable maps within
analytic families of analytic maps are hyperbolic maps. The main condition
we put on such families is that all the maps in the family are regular (see
the definition below). This condition was introduced in [Koz03] in a similar
context. It seems conceivable that this condition is superfluous; however we
do not know how to prove the theorem below without it.

Definition 2. A C2 interval map f : X → X is nondegenerate if each
critical point c of f is nondegenerate and contained in int(X). A nondegenerate
interval map is called regular if each of its neutral periodic orbits contains a
critical point with an infinite orbit in the interior of its attracting basin.

Definition 3. A critical point c of an interval map f : X → X is called
controlled if either it is contained in the basin of a hyperbolic attracting cycle,
or it is precritical, i.e., there exists n ≥ 1 such that fn(c) ∈ Crit(f).

We shall often consider a real analytic family fλ : X → X of nondegenerate
interval maps parametrized by a parameter λ from an open interval Λ 	 0.
Here by saying this family is real analytic, we mean (as usual) that the map
(λ, x) �→ fλ(x) is real analytic. Note that each of the critical points of fλ

depends real-analytically on λ (in particular, the number of critical points of
fλ is the same for all λ). If c is a critical point of fλ0 for some λ0 ∈ Λ, then
we use c(λ) to denote the corresponding critical point of fλ.

Let us say that such a family fλ, λ ∈ (−1, 1), is a special family passing
through f0, if the following hold:
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1. f0 has no neutral cycle;

2. Hyperbolic attracting cycles of f0 do not bifurcate as λ ∈ (−1, 1) varies;

3. If fk
0 (c) = c′ holds for some k ≥ 1, and c, c′ ∈ Crit(f0), then fk

λ (c(λ)) =
c′(λ) holds for all λ ∈ (−1, 1);

4. If c is a critical point of f0 such that fn
0 (c) converges to a hyperbolic

attracting cycle of f0 as n → ∞, then for all λ, fn
λ (c(λ)) converges to a

hyperbolic attracting cycle of fλ;

5. For any c ∈ Crit(f0) and any n ≥ 1, fn
0 (c) is not contained in the

boundary of the immediate basin of a hyperbolic attracting cycle.

Theorem 5. Let fλ, λ ∈ (−1, 1), be a special family of nondegenerate real
analytic interval maps. Assume that the map f0 has a critical point c0 which
is not controlled such that the itinerary νfλ

(c0(λ)) is nonconstant as λ varies
in [0, 1) and that either of the following holds:

1. fλ is regular for all λ ∈ (−1, 1),

2. For any noncontrolled critical point c of f0, ωf0(c) 	 c is minimal.

Then there is an arbitrarily small λ ∈ (0, 1) such that the number of controlled
critical points of fλ is greater than that for f0.

In the unimodal case this theorem was proved previously in [Koz03]. The
proof of the above theorem follows the same strategy, except that we need to
deal with the possibility of more general types of critical relations (compared
to the unimodal case). Moreover, we use a method of [LAdM03] to construct a
holomorphic motion of the boundary of the box mappings (although one could
also proceed as in [Koz03] or [LvS00]).

One can extend the above theorem to multi-parameter families easily (see
[Koz03]).

Before proving the above theorem, we prove a simple proposition.

Proposition 6. Consider a special family fλ, λ ∈ (−1, 1) of nondegener-
ate interval maps. Let C be the set of critical points of f0 which are contained
in the basin of hyperbolic attracting cycles. Let λ0 ∈ (0, 1). Assume that for
all c ∈ Crit(f0) \ C, and all λ ∈ [0, λ0), the following hold :

• νfλ
(c(λ)) = νf0(c),

• c(λ) is not contained in the basin of a hyperbolic attracting cycle.

Then for all c �∈ Crit(f0)\C, νfλ0
(c(λ0)) = νf0(c). Moreover, if c is a recurrent

critical point of f0 with a minimal ω-limit set, then c(λ0) is a recurrent critical
point of fλ0 with a minimal ω-limit set.



DENSITY OF HYPERBOLICITY IN DIMENSION ONE 163

� Let C1 be the subset of Crit(f0) \ C consisting of all critical points for
which the conclusion of the lemma does not hold. To prove the first statement
of the proposition, we need to show that C1 = ∅.

Arguing by contradiction, assume that there exists c ∈ C1. Let νf0(c) =
{ik}∞k=0 and νfλ0

(c(λ0)) = {jk}∞k=0. By continuity it is easy to see that ik �= jk

if and only if fk
λ0

(c(λ0)) ∈ Crit(fλ0) and fk
0 (c) �∈ Crit(f0). Clearly the number

of k’s with ik �= jk is finite. Indeed, otherwise, the orbit {fk
λ0

(c(λ0))}∞k=1 would
hit Crit(fλ0) infinitely many times, and so the map fλ0 would have a super
attractive critical periodic point and some iterate of c(λ0) would be mapped to
this point by fλ0 , which implies that for all λ sufficiently close to λ0, c(λ) would
be in the basin of a hyperbolic attracting cycle, contradicting the assumption
of the proposition. Therefore, there exists a maximal positive integer k such
that ik �= jk. Let c′(λ0) := fk

λ0
(c(λ0)). Note that c′ ∈ Crit(f0) \ C.

By the maximality of k, c′ �∈ C1. Moreover,

νfλ0
(fλ0(c

′)) = νfλ0
(fk+1

λ0
(c(λ0)) = νf0(f

k+1
0 (c)).

Thus, νf0(f
k+1
0 (c)) = νf0(f0(c′)), i.e., [c′, fk

0 (c)] is a homterval of f0. Since f0

has no wandering interval, it follows that fk
0 (c) is contained in the closure of

the immediate basin of a periodic attractor. By the definition of special family,
this implies that c is contained in the basin of a hyperbolic attracting cycle
of f0, which contradicts the assumption of this proposition. This proves that
C1 = ∅.

To prove the second statement, we observe that the property that a crit-
ical point is recurrent with a minimal ω-limit set can be characterized by the
itinerary of the point. Since νfλ0

(c(λ0)) = νf0(c), the statement follows. �

Remark 4.1. A C3 special family of interval maps is defined as in the
real-analytic case except that we only require the maps to be C3. The above
proposition holds for C3 families of interval maps.

The proof of Theorem 5 will follow from the next proposition.

Proposition 7. Let fλ, λ ∈ (−1, 1) be a special family of real analytic
nondegenerate interval maps. Assume that the number of controlled critical
points of fλ is the same for all λ ∈ (−1, 0]. Then there exists ε > 0 such that
for every critical point c of f0 which is not contained in the basin of periodic
attractors, and for all λ ∈ [0, ε), we have νfλ

(c(λ)) = νf0(c).

Proposition 7 implies Theorem 5. Let C denote the set of critical points
of f0 which are contained in the basin of hyperbolic attracting cycles, and let
C′ = Crit(f0) \ C.

Suppose that the assertion of the theorem does not hold. Then there
exists a maximal λ0 > 0 such that the number of controlled critical points of
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fλ is constant for all λ ∈ [0, λ0). Then for all c ∈ C′, νfλ
(ci(λ)) is the same for

all λ ∈ [0, λ0). By Proposition 6 we obtain that

νfλ0
(c(λ0)) = νf0(c) for all c ∈ C′.

Claim. If fλ0 is regular, then fλ0 has no neutral cycle.

Arguing by contradiction, assume that that fλ0 has a neutral periodic
point p. Since fλ0 is regular, there exists a non pre-periodic critical point c of
fλ0 in the interior of the attracting basin of the orbit of p. For all λ ∈ (−1, 1),
let c(λ) denote the corresponding critical point of fλ. Note that c(0) ∈ C′;
otherwise c(λ0) would be contained in the basin of a hyperbolic attracting
cycle of fλ0 . For all λ ∈ [0, λ0], νfλ

(c(λ)) = νfλ0
(c) is pre-periodic. Then there

exists k ≥ 0 and n ∈ N such that νfλ
(fk(c(λ))) has period n for all λ ∈ [0, λ0].

Therefore, either

fk
λ (c(λ)) = fk+n

λ (c(λ)),(7)

or c(λ) is contained in the basin of a periodic attractor of fλ which has period
≤ 2n. As both sides of (7) are real-analytic in λ and the equation is not
satisfied for λ = λ0, we conclude that (7) has only isolated roots. So there
exists λ1 > 0 such that (7) is not satisfied for all λ ∈ (0, λ1). Moreover, by an
easy continuity argument, the assumption that f0 has no neutral cycle implies
that there exists λ2 > 0 such that fλ has no neutral cycle of period ≤ 2n for
all λ ∈ [0, λ2). Therefore, for a small positive value of λ, c(λ) is contained in
the basin of a hyperbolic attracting cycle of fλ. Since c(0) ∈ C′, fλ has more
controlled critical points than f0, a contradiction. This completes the proof of
the claim.

The map fλ0 satisfies the same assumptions as the map f0. We rename fλ0

by f0. So for small negative values of λ, νfλ
(ci(λ)) = νf0(ci(0)) for all i ∈ I1.

Moreover, by assumption, there exists an arbitrarily small positive value of λ

such that νfλ
(c(λ)) �= νf0(c) for some c ∈ C′. This contradicts Proposition 7.

4.1. Holomorphic families of complex box mappings. The proof of Propo-
sition 7 involves holomorphic families of complex box mappings.

Let Λ ⊂ C be a topological disk, and λ0 ∈ Λ. A holomorphic motion
of a set Z ∈ C based on (Λ, λ0) is a family of injections Hλ : Z → Zλ ⊂ C

such that Hλ0 is the identity map and such that for any z ∈ Z, λ �→ Hλ(z) is
a holomorphic map. By Slodkowski’s theorem (the λ-lemma) [Slo91], such a
holomorphic motion can be extended to be a holomorphic motion of the whole
complex plane based on the same Λ, and Hλ : C → C is a K(r)-qc map, where
r is the hyperbolic distance between λ0 and λ, and moreover, K(r) → 1 as
r → 0.
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We say that Fλ : Uλ → Vλ, λ ∈ Λ is a holomorphic family of a complex
box mapping based on (Λ, λ0) if the following hold:

• For each λ ∈ Λ, Fλ is a complex box mapping (with nondegenerate
critical points);

• There exists a holomorphic motion Hλ : C → C based on (Λ, λ0) such
that Hλ(Uλ0) = Uλ, Hλ(Vλ0) = Vλ and Hλ ◦ Fλ0 = Fλ ◦ Hλ holds on
∂Uλ0 .

We say that the family Fλ, λ ∈ Λ, is real-symmetric if Λ is symmetric
with respect to the real line, λ0 ∈ R, and for all λ ∈ Λ ∩ R, Fλ and Hλ are
real-symmetric. Each holomorphic family of complex box mappings appearing
below is real-symmetric.

The following is a consequence of the Rigidity Theorem 4.

Theorem 6. Let Fλ : Uλ → Vλ be a real-symmetric holomorphic family
of complex box mappings based on (D, 0). Suppose that

• F0 has no escaping critical point ;

• The map F0 has no neutral or attracting cycles;

• There is a critical point c0 of F0 and its itinerary is not constant for all
λ ∈ (−1, 1);

• F0 carries no invariant line field on its filled Julia set.

Then there exist a critical point c and arbitrarily small λ ∈ (0, 1) such that
the itineraries νF0(c) and νFλ

(c(λ)) are different.

Proof. Let Hλ denote the holomorphic motion associated with Fλ and
denote the Beltrami coefficient of Hλ by μλ. Define ν̂λ to be μλ outside of U0

and zero on the filled Julia set of the map F0, and everywhere else define it as
the pullback of μλ by F0. Obviously, μλ depends on λ holomorphically. By the
Measurable Riemann Mapping Theorem [Ahl87], there exists a holomorphic
motion H̃λ : C → C such that H̃λ(x) = Hλ(x) for x ∈ {−1, 1} and such that
the Beltrami coefficient of Hλ is ν̂λ. Since the map F0 preserves the Beltrami
coefficient ν̂λ, the map

F̃λ = H̃λ ◦ F0 ◦ H̃−1
λ : H̃λ(U) → H̃λ(V )

is a complex box mapping. It also depends holomorphically on λ. In order to
complete the proof of Theorem 6 we will need the following lemma.

Lemma 8. Take λ ∈ (−1, 1). Then the maps F0 and Fλ are combinatori-
ally equivalent if and only if Fλ = F̃λ.
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� The “if” part is obvious. So assume that F0 and Fλ are combinatorially
equivalent. By the Rigidity Theorem for box mappings, there exists a q.c.
homeomorphism φλ : C → C which conjugates F0 and Fλ and coincides with
Hλ on C \ U0. The Beltrami coefficient of φλ is equal to ν̂λ. Indeed, this is
clear outside of the Julia set of F0 : U0 → V0, and follows from the absence of
invariant line fields on the Julia set. Thus, φλ = Hλ and Fλ = F̃λ. �

Let Λ̂ = {λ ∈ (−1, 1) : νF0(c) = νFλ
(c(λ)) for all c ∈ Crit(F0)}. The

above lemma implies that Fλ = F̃λ for λ ∈ Λ̂. If Λ has an accumulation point
then by analytic continuation Fλ = F̃λ for all λ ∈ D. Since this contradicts the
third assumption of Theorem 6, it follows that Λ̂ has no accumulation point
in (−1, 1). This completes the proof of Theorem 6.

The proof actually gives the following version of the theorem, which is
sometimes more convenient.

Theorem 7. Let Fλ : Uλ → Vλ be a real-symmetric holomorphic family
of a complex box mapping based on D. Assume that

• F0 has no escaping critical point ;

• The map F0 has no neutral or attracting cycles;

• F0 carries no invariant line field on its filled Julia set ;

• The set {λ ∈ (−1, 1) : Fλ is combinatorially equivalent to F0} has an
accumulation point in (−1, 1).

Then there exists a holomorphic motion Hλ : C → C which conjugates F0 to
Fλ for all λ ∈ D.

Given a special family fλ, λ ∈ (−1, 1) of interval maps, and a complex box
mapping F : U → V induced by f0, we say that this complex box mapping
persists in a neighborhood Λ of 0 in C, if for all λ ∈ Λ, there exists a complex
box mapping Fλ : Uλ → Vλ induced by fλ (for λ ∈ Λ ∩ (−1, 1)) such that
Fλ, λ ∈ Λ, forms a holomorphic family.

The following lemma will be used several times to prove the persistence
of certain complex box mappings.

Lemma 9. Consider a real-analytic family fλ of interval maps. Let c be
a critical point of f0 which is not contained in the basin of periodic attractors,
let U be a neighborhood of Crit(f0) and the periodic attractors of f0 and let
θ0 ∈ (0, π) be a constant. Let I 	 c be a small nice interval. Let Ji, i = 1, 2, . . .

be the domains of the first entry map to I with the property that f j
0 (Ji) ∩ U

= ∅ for all 0 ≤ j < si, where si is denoted the first entry time of Ji. Let
V = Dθ0(I) and let Ui be the components of f−si

0 V containing Ji. Then given
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any holomorphic motion Hλ : C → C based on Λ, there exists a neighborhood
Λ′ ⊂ Λ of 0 in C and for each i there exists a holomorphic motion Hλ,i : C → C

based on Λ′ such that for all λ ∈ Λ′, fsi

λ ◦ Hλ,i = Hλ ◦ fsi

0 holds on Ui.

Proof. Let Q be the set of all points x ∈ X with the property that
fk
0 (x) �∈ U for all k ≥ 0. By [Man93], Q is a hyperbolic set, which persists

under small perturbation. So, there exists a neighborhood Λ0 ⊂ C of zero,
a neighborhood Z ⊂ C of Q with f0(Z) ⊃ Z, and a holomorphic motion
Hλ,0 : C → C, λ ∈ Λ0, such that Hλ,0 ◦ f0 = fλ ◦ Hλ,0 on Z. Let Z ′ � Z be a
smaller neighborhood of Q.

By Lemma 1, f j
0Ui ⊂ Dθ0/2(f

j
0Ji) for all 0 ≤ j ≤ si. There exists a (large)

integer N such that if si ≥ N , then for all 0 ≤ j ≤ si − N , f j
0 (Ji) is contained

in the small neighborhood Z ′ of Q. Let I be the set of all i’s with si ≤ N . Note
that I has only finitely many elements, so we can define desired holomorphic
motions Hλ,i based on some open neighborhood Λ1 of 0 for all i ∈ I. Now
take i �∈ I, and let k(j) be such that fsi−j

0 (Ji) = Jk(j) for all N ≤ j ≤ si.
Then k(N) ∈ I so that Hλ,k(N) is well-defined for λ ∈ Λ1. Since Uk(N) ⊂ Z ′,
by shrinking Λ1 if necessary, we may assume that Hλ,k(N)(Uk(N)) ⊂ Hλ,0(Z).
Now for λ ∈ Λ0 ∩ Λ1, define Hλ,k(N)+1 = f−1

λ ◦ Hλ,k(N) ◦ f0, which gives us a
well-defined holomorphic motion of Uk(N)+1 satisfying the required property.
Moreover, Hλ,k(N)+1(Uk(N)+1) ⊂ Hλ,0(Z), so that we may repeat the same
procedure to define the desired holomorphic motions Hλ,k(j) for all N < j ≤ si.
This completes the proof.

We shall also need the following lemma.

Lemma 10. For any M > m > 0 there exists r ∈ (0, 1) with the following
property. Let Q ⊂ C be a closed set consisting of at least two points and let
dC\Q denote the hyperbolic metric on C \ Q. Let Hλ and H ′

λ be holomorphic
motions based on the unit disk such that Hλ|Q = H ′

λ|Q. If Z, Z ′ are disjoint
subsets of C \ Q so that dC\Q(Z, Z ′) > M , then for all λ ∈ Dr,

dC\Q(Hλ(Z), Hλ(Z ′)) > m.

In particular, Hλ(Z) ∩ H ′
λ(Z ′) = ∅.

The proof of this lemma uses the following fact:

Fact 2 (Lemma 2.3 in [LAdM03]). For any M > m > 0 there exists
δ > 0 with the following property. Let S, S̃ ⊂ C be two hyperbolic Riemann
surfaces and h1, h2 : S → S̃ be (1 + δ)-q.c. maps homotopic rel boundary. Let
Z and Z ′ be subsets of S. If dS(Z, Z ′) > M , then dS̃(h1(Z), h2(Z ′)) > m.

Proof of Lemma 10. Let δ be as in Fact 2. By the λ-lemma, there exists
r ∈ (0, 1) such that the maximal dilation of Hλ and H ′

λ are both bounded from
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above by 1 + δ. Applying Fact 2 to S = C \Q and S̃ = C \Hλ(Q) gives us the
result.

4.2. Proof of Proposition 7. Now let us consider a special family fλ,
λ ∈ (−1, 1) of real analytic nondegenerate interval maps, with the property
that for each c ∈ Crit(f) which is not in the basin of periodic attractors, we
have for every λ ∈ (−1, 0),

νfλ
(c(λ)) = νf0(c).(8)

Our goal is to prove that (8) holds for small positive values of λ.
First let us assume that c is a recurrent critical point of f0 and that ωf0(c)

is minimal. By Theorem 3, we can find a small admissible neighborhood I

of [c] such that RI : D(I) → I extends to a complex box mapping F which
carries no invariant line filled on its Julia set. As this box mapping has only
finitely many branches, there exists a neighborhood Λc ⊂ C of 0 such that we
can find a holomorphic family of complex box mappings Fλ induced by fλ,
λ ∈ Λc, such that F0 = F . By Theorem 7, there exists a holomorphic motion
Hλ : C → C conjugating F to Fλ, for all λ ∈ Λ. In particular, for λ ∈ Λ ∩ R,
Fλ is qc conjugate to F0, from which it follows that (8) holds for λ ∈ Λc ∩ R.

If f0 is infinitely renormalizable at c and c′ ∈ Back(c), then we can take I

to be a union of properly periodic intervals so that D(I) = I. Letting s be the
entry time of c′ into I, we have that fs

0 (c′) is contained in the filled Julia set
of F0. As Hλ(fs

0 (c′)) = fs
λ(c′) holds for negative values of λ, we conclude that

this equation holds for all λ; hence (8) holds for c′ and small positive values
of λ.

Let Ω be a maximal block of critical points, i.e., a connected component
of the graph Cr(f). If each critical points in Ω has a finite orbit, then by
analytic continuation it is easy to see that (8) holds for all c ∈ Ω. If Ω contains
a point c at which f is infinitely renormalizable, then the argument above
shows that (8) holds for all c ∈ Ω. So let us assume that Ω is a nontrivial block
and f is not infinitely renormalizable at any c ∈ Ω. Let Ω1 denote the subset
of Ω consisting of all recurrent critical points with minimal ω-limit set, and
let Ω2 = Ω \ Ω1. Using the holomorphic family of box mappings constructed
above, we get again by Theorem 7 that (8) holds for all c ∈ Ω1. Let us show
that it also holds for all c ∈ Ω2.

To deal with the critical points in Ω2, we use a similar strategy, but the
argument is more complicated for two reasons. Firstly, we have to consider
complex box mappings with infinitely many branches, and secondly the com-
plex box mappings we are able to construct do not contain all noncontrolled
critical points in its filled Julia set.

Let us first choose a small admissible neighborhood I of Ω2 such that
RI : D(I) → I extends to a complex box mapping

F : U → V with V ⊃ I ⊃ Ω2
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satisfying the properties specified in Theorem 3. We will assume that I is so
small that the ω-limit sets of critical points in Ω1 are disjoint from I.

Next we choose an admissible neighborhood Y of Ω1 according to Propo-
sition 5. In particular, RY : D(Y ) → Y extends to a complex box mapping

G : A → B with B ⊃ Y ⊃ Ω1.

Let Y be so small that the iterates of components of D(Y ) do not intersect
I before returning to Y . Let α ∈ (0, π) be a constant close to π so that
B ⊃ B̂ :=

⋃
c∈Ω1

Dα(Y (c)). (That α is close to π means that the components
of B̂ are close to the real line.) Let D̂ = D̂(Y ) be as in that proposition,
i.e., this is the union of all first return domains J of Y which enter Y before
entering I (i.e. fn

0 (J) ∩ I = ∅ for n = 0, . . . , s, where s is the return time to
Y of J), for which J ∩ D(Y ) = ∅ and which intersect ∪c∈Ωorb(c). Note that
the intervals J are subsets of Y , return to Y but do not contain iterates of any
c ∈ Ω1 (see the definition of D(Y ) in Section 2). Shrinking Y further we get
that for each return domain J of Y , either J is a connected component of Y

or Space(Y, J) is greater than a universal constant ρ > 0. By Proposition 2,
RY : D̂ → Y extends to a complex box mapping

Ĝ : Â → B̂ with B ⊃ B̂ ⊃ Y ⊃ Ω1.

For each n, let An denote the union of the components of the domain of
Gn which intersect the real line.

Claim. The Julia set of G : A → B is a Cantor set. In other words, the
maximal diameter of the components of An shrinks to zero as n → ∞.

Proof. From the definition of Ω1 and D(Y ), A (and therefore G−n(B))
has finitely many components. As in Proposition 5 there exists a sequence of
admissible neighborhoods Y (k) of Ω1 consisting of pullbacks of Y = B ∩ R,
so that each component of Y (k) is C-nice. Now, RY (k) : D(Y (k)) → Y (k)
extends to a complex box mapping G(k) : A(k) → B(k) with B(k)∩R = Y (k)
and so that the diameter of each component of B(k) tends to zero as k tends to
zero. Each component of B(k) agrees on the real line with a component B′

i(k)
of G−n(B) for some n. Let B′(k) be the union of such components B′

i(k) and
consider the first return map RB′(k) : A′(k) → B′(k) to B′(k) of G : A → B.
By Proposition 2.3 in [LvS98] there exists N so that R−N

B′(k)(B
′(k)) ⊂ A(k).

Then arguing as in the proof of Proposition 3.1 in [LvS98], and using the fact
that components of Y (k) are C-nice, we get that the maximal diameter of
puzzle-pieces containing points z which eventually enter critical puzzles of G

of every level, is small. By hyperbolicity, the remaining puzzle-pieces also tend
to zero in diameter, completing the proof of the claim.

From this claim it follows that we can choose N so large that AN � B̂.
Let Ỹ ⊂ ∪c∈Ω1AN (c) be a small neighborhood of Ω1 satisfying the following
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property: if U ′ is an iterate of a component of U such that U ′ ∩ Ỹ �= ∅, then
U ′ � AN and, moreover, the Euclidian distance between the boundaries of U ′

and AN is greater than some constant independent of U ′. Such a neighborhood
Ỹ exists because the iterates of critical points of Ω1 never enter I and because
the diameter of iterates of components of U are commensurable with their real
traces.

Fix a small neighborhood T ⊂ R of the critical points Crit(f0) \ Ω and
the attracting cycles, so that the orbits of points in Ω never enter T . Let Q

be the set of all real points whose forward orbit never enters T ∪ I ∪ Ỹ . As in
the proof of Lemma 9, Q is hyperbolic and there exists a holomorphic motion
Hλ,0 : C → C based on a neighborhood Λ0 of 0 in C such that fλ ◦ Hλ,0 =
Hλ,0 ◦ f0 holds on Q.

Statement 1. Let c ∈ Ω. If fn
0 (c) ∈ Q for some n ≥ 0, then fn

λ (c(λ)) ∈
Qλ for all λ ∈ Λ0.

� In fact, for all λ ∈ (−1, 0]∩Λ0 we have νfλ
(c(λ)) = νf0(c) and therefore

fn
λ (c(λ)) = Hλ,0(fn

0 (c)).

Since both sides of the last equation are real-analytic in λ, it actually holds
for all λ ∈ Λ0, which implies the statement. �

By the argument above, the complex box mapping G persists in a neigh-
borhood Λ1 ⊂ Λ0 with a holomorphic motion Hλ,1 such that Hλ,1|Q = Hλ,0.
Moreover, because (8) holds for all λ ∈ (−1, 0), Theorem 7 implies that we may
choose the holomorphic motion appropriately so that Hλ,1 conjugates G0 to
Gλ for all λ ∈ Λ1. In particular,

⋃
c∈Ω1

{fn
λ (c(λ))}∞n=0 moves holomorphically

with respect to λ.

Statement 2. There exists a neighborhood Λ2 ⊂ Λ1 of 0 in C such that
the complex box mapping Ĝ persists in Λ2. Moreover, there exists a holo-
morphic motion Hλ,2 : C → C based on Λ2 such that Hλ,2|Q = Hλ,0|Q and
Hλ,2 ◦ Ĝ = Ĝλ ◦ Hλ,2 hold on Â.

� By Lemma 9, there exists a neighborhood Λ′
2 of 0 in C such that for

every component W of Â, there exists a holomorphic motion Hλ,W based on
Λ′

2 such that f
s(W )
λ ◦ Hλ,W = Hλ,0 ◦ f

s(W )
0 holds on W , where s(W ) is the

positive integer such that Ĝ|W = f
s(W )
0 . Clearly, Hλ,W |W ∩Q = Hλ,0|W ∩Q.

Note that the endpoints of each component of D̂ belong to the set Q. So
by Proposition 2, for each component W of Â one has W ⊂ Dα′(W ∩ R) for a
constant α′ close to α and therefore there exists C > 0 independent of W . We
have dC\Q(∂W, ∂B̂) > C (where dC\Q denotes the hyperbolic metric on C\Q).
By Lemma 10, there exists an open neighborhood Λ2 ⊂ Λ′

2 of 0, such that for
all λ ∈ Λ2, Hλ,W (W ) � Hλ,0(B̂).
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Similarly, one proves that for any two distinct components W and W ′ of
Â, we have Hλ,W (W ) ∩ Hλ,W ′(W ′) = ∅ for all λ ∈ Λ2.

Thus, due to the λ-lemma, we can define a holomorphic motion Ĥλ :
C → C such that Ĥλ|W = Hλ,W |W for each component W of Â, such that
Ĥλ = Hλ,0 holds on Q ∪ ∂B̂.

Let Âλ := Ĥλ(Â) and B̂λ := Ĥλ(B̂). Define Gλ : Âλ → B̂λ to be such
that for each component W of Â, we have Ĝλ|Ĥλ(W ) = f

s(W )
λ . Then Ĝλ is

a holomorphic family of complex box mappings without critical points. By
Theorem 7, we can find a new holomorphic motion Hλ,2 conjugating Ĝ to Ĝλ.

�

Define

D̂
′
= {x ∈ D(Y ) : ∃k ≥ 1, RY (x), . . . , Rk−1

Y (x) ∈ D(Y ), Rk
Y (x) ∈ D̂} ∪ D̂.

Given a component J of D̂
′
, let k ≥ 0 be minimal such that Rk

Y (J) ⊂ D̂ and
let K be the component of D̂ which contains Rk

Y (J). Since D̂ is disjoint from
the postcritical set of G, Gk maps a Jordan disk containing J conformally onto
the component of Â which contains K. Define Â′ to be the union of all Jordan
disks obtained in this way.

Statement 3. There exists a neighborhood Λ3 ⊂ Λ2 of 0 in C, such that

Hλ,i(Â′) ⊂ Hλ,j(B̂)(9)

holds for all λ ∈ Λ3 and i, j ∈ {1, 2}.

� Let J be a component of D̂
′
and W be the corresponding component

of Â′. Consider two cases. First let J be a component of D̂ as well. We know
that J cannot be a connected component of Y because then such a return
domain would belong to D(Y ). Therefore, dC\Q(∂W, ∂B̂) is greater than some
universal constant and the result of the lemma follows from Lemma 10.

Now let J ⊂ D(Y ) and J̃ be the return domain of Y containing J . Then J

is well-inside J̃ . We know that W ⊂ Dα′(J) for a constant α′ close to α, which
implies that d

C\∂J̃(∂W, ∂B̂) is bounded from below by a positive constant

M , where d
C\∂J̃ denotes the hyperbolic metric in C \ ∂J̃ . Since ∂J̃ ⊂ Q,

dC\Q(∂W, ∂B̂) > M . By Lemma 10, the statement follows. �

Since there are finitely many critical points in Ω1, by using continuity we
can prove

Statement 4. There exists a neighborhood Λ4 ⊂ Λ3 of 0 in C such that
for all λ ∈ Λ4 and any c ∈ Ω1,

Hλ,1(AN (c)) ⊂ Hλ,1(B̂) ∩ Hλ,2(B̂).(10)
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Let J denote the collection of all components of Dom′(I). For each J ∈ J ,
let s = s(J) ≥ 0 be the landing time of J into I, i.e., the minimal nonnegative
integer such that f

s(J)
0 (J) ⊂ I. Let W = W (J) be the component of f

−s(J)
0 (V )

which contains J . Note that fs
0 |W is a conformal map onto a component of V

and W (J) ⊂ Dθ1(J).

Statement 5. There exists a neighborhood Λ5 ⊂ Λ4 of 0 in C such that
for each component J of Dom′(I), we can find a holomorphic motion Hλ,J :
C → C such that for λ ∈ Λ5,

Hλ,0 ◦ f
s(J)
0 = f

s(J)
λ ◦ Hλ,J holds on W

and such that Hλ,J |Q = Hλ,0|Q, where s(J), W = W (J) are as above.

� Let J1 denote the subset of J consisting of all J ’s such that

f j(J) ∩ Ỹ = ∅

for all 0 ≤ j ≤ s(J). By Lemma 9, we can find a desired holomorphic motion
Hλ,J for all J ∈ J1 which are based on a common neighborhood Λ′

5 of 0.
Now assume that J �∈ J1. Write Jj = f j(J), Wj = f j(W ). Let s <

s(J) be maximal such that Js ∩ Compc(Ỹ ) �= ∅ for some c ∈ Ω1. From the
definition of Ỹ we have Ws ⊂ AN (c). Since Js+1 ∈ J1, we have a desired
holomorphic motion Hλ,Ws+1 defined on Λ′

5. Moreover, by shrinking Λ′
5 we

may assume that Ws+1,λ := Hλ,Ws+1(Ws+1) is disjoint from orbfλ
(c′(λ)) for

any c′ ∈ Ω1. Therefore, a desired holomorphic motion Hλ,Ws
is defined on Λ′

5.
Since dC\Q(∂Ws, ∂AN ) is universally bounded away from zero, according to
Lemma 10, by shrinking Λ′

5 once more, we may assume that

Ws,λ := Hλ,Ws
(Ws) ⊂ Hλ,1(B̂) ∩ Hλ,2(B̂).

Let s1 < s2 < · · · < sn = s be all the integers such that Jsj
⊂ Y , and

let m ≤ n be minimal such that Jsj
⊂ D(Y ) for all m ≤ j ≤ n. Let P

be the component of G−(n−m)(AN ) which contains Wsm
and P ′ = Gn−m(P ).

Then Gn−m
λ : Hλ,1(P ) → Hλ,1(P ′) is a branched covering which is conjugate to

Gn−m
0 via Hλ,1. Note that Ws,λ := Hλ,Ws

(Ws) is disjoint from the postcritical
set of Gλ. Now, we can define a desired holomorphic motion Hλ,Wsm

based on
Λ′

5. Moreover,

Wsm,λ := Hλ,Wsm
(Wsm

) ⊂ Hλ,1(P ) ⊂ Hλ,1(AN ) ⊂ Hλ,1(B̂) ∩ Hλ,2(B̂).

Next define a holomorphic motion Hλ,Wsm−1
based on Λ′

5 using the family
Ĝλ and the holomorphic motion Hλ,2. We have Wsm−1,λ := Hλ,Wsm−1

(Wsm−1) ⊂
Hλ,2(Â) ⊂ Hλ,2(Â′) ⊂ Hλ,1(B̂) ∩ Hλ,2(B̂).

Let us show by induction that Wsk
⊂ Â′ for k = 1, . . . , m − 1. We have

already seen that Wsm−1 ⊂Â⊂Â′. Assume that Wsn
⊂Â′ for n = k, . . . , m−1.
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If Wsk
= Ĝ(Wsk−1), then since Â′ ⊂ B̂ it follows that Wsk−1 ⊂ Â ⊂ Â′. The

other case is Wsk
= G(Wsk−1). Let l ≥ k be minimal such that Wsl

⊂ Â.
Such l exists because Wsm−1 ⊂ Â. Then Gl−k+1(Wsk−1) = Wsl

and the map
Gl−k+1|Wsk−1∩R is a restriction of a branch of the first entry map to D̂. This

implies that Wsk−1 ⊂ Â′.
By further pull-back, using either Gλ or Ĝλ and using Statement (9), we

define a desired holomorphic motion Hλ,Wsk
based on Λ′

5 for all k = 1, 2, · · · , m.
Finally applying Lemma 9 once again (to landing domains of Y ), we see

that Hλ,J can be defined in a neighborhood Λ5 based on a possibly smaller
neighborhood Λ5 (independent of J). This completes the proof of this state-
ment. �

Statement 6. There exists a holomorphic motion Ĥλ,0 based on a neigh-
borhood Λ6 of 0 in C such that Ĥλ,0|Q = Hλ,0|Q and such that the following
holds: Let Q′ be the union of the forward orbits of all endpoints of the compo-
nents of D(I). Then for all z ∈ Q′ \ I, Ĥλ,0 ◦ f0(z) = fλ ◦ Ĥλ,0(z).

� First we observe that there exists k0 ∈ N and δ > 0 such that for each
x, y ∈ ∂I, we have d(fk(x), y) > δ for all k ≥ k0. Shrinking Λ5 if necessary
and assuming all λ ∈ Λ5, we have d(fk

λ (Hλ,0(x)), Hλ,0(y)) ≥ δ/2 for all k ≥ k0.
For each component J of Dom′(I), let s(J) denote its entry time into I.

By Statement 5, for each J , there exists a holomorphic motion Ĥλ,J based on
Λ5, such that Hλ,J = Hλ,0 on Q and such that Hλ,0 ◦f

s(J)
0 = f

s(J)
λ ◦ Ĥλ,J holds

on ∂J .
Let J be the collection of all components J of Dom′(I) which satisfies

s(J) ≤ k0, and Q′′ denote the forward orbits of the endpoints of components
in J . Note that Q′′ is a hyperbolic set. Thus there exists a holomorphic
motion H ′

λ,0 based on a neighborhood Λ6 of 0, such that H ′
λ,0|Q = Hλ,0|Q and

such that H ′
λ,0 ◦ f0 = fλ ◦ H ′

λ,0 holds on Q′′. In particular, for any distinct
z, z′ ∈ Q′′, H ′

λ,0(z) �= H ′
λ,0(z

′) for all λ.
Now take x, x′ ∈ Q′\I and suppose that they lie on the boundary of J and

J ′ respectively. Let x(λ) := Hλ,J(x) and x′(λ) := Hλ,J ′(x′). If x(λ) = x′(λ)
for some λ ∈ Λ6, Then y(λ) := f

s(J)
λ (x(λ)) and y′(λ) = f

s(J ′)
λ (x′(λ)) both

belong to Hλ,0(∂I). Assume s(J) ≤ s(J ′). Then f
s(J ′)−s(J)
λ (y(λ)) ∈ Hλ,0(∂I),

hence s(J ′) − s(J) ≤ k0. Let K (resp. K ′) denote the component of Dom′(I)
which contains fs(J)(J) (resp. fs(J)(J ′)), and let z = f

s(J)
0 (x) ∈ ∂K, and

z′ = f
s(J)
0 (x′). Then z, z′ ∈ Q′′, while z(λ) = z′(λ), hence z = z′ which implies

that x = x′. �

Statement 7. There exists a neighborhood Λ7 ⊂ Λ6 of 0 in C such that
for all J ∈ J and any c ∈ Ω2 ∩ U ,

fλ(c(λ) �∈ Hλ,J(∂WJ).
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� Since c ∈ U and f0(c) belongs to some WJ , this implies that the
Euclidian distance from f0(c) to the boundary of ∪J∈J WJ is positive. Hence
the distance in the C\Q from f0(c) to the boundary of ∪J∈J WJ is also positive
and we can use Lemma 10 and get the required property. Since we have finitely
many points, the lemma follows. �

We are now ready to finish the proof of Proposition 7. First let us assume
that for any critical point c in Ω2 we have Ω2∩ω(c) �= ∅ (which implies that we
can use Statement 7). Let us prove that the complex box mapping F : U → V

persists in a neighborhood of 0 in C. In fact, replacing the holomorphic motion
Hλ,0 with Ĥλ,0 we may repeat the argument through Statements 1–6, and
obtain for each component W of U , a holomorphic motion Hλ,W , based on
a neighborhood Λ of 0 in C (independent of W ), such that Ĥλ,0 ◦ f

s(W )
0 =

f
s(W )
λ ◦ Ĥλ,W holds on W and such that Hλ,W = Ĥλ,0 on Q′. For any distinct

components W1 and W2 of U , d
C\Q′(W1, W2) is bounded from below by a

positive constant. Hence, according to Lemma 10 we can shrink Λ so that
for all λ ∈ Λ, Hλ,W1(W1) ∩ Hλ,W2(W2) = ∅. Similarly, by shrinking Λ once
again, we may assume that Ĥλ,0(∂V ) ∩ Hλ,W (∂W ) = ∅ for each W � V .
Thus there exists a holomorphic motion Hλ : C → C such that Hλ = Ĥλ,0

outside V and such that Hλ = Hλ,W on each component W of U . Defining
Fλ : Uλ := Hλ(U) → Vλ := Hλ(V ) as the appropriate iterates of fλ, we obtain
a holomorphic family which includes F .

Since ωf0(c) ∩ Ω2 �= ∅ for all c ∈ Ω2 we have Crit(F ) = Ω2 is contained in
the filled Julia set of F . By Theorem 7, it follows that the itinerary of each
c ∈ Ω2 is constant when λ varies in a small neighborhood of 0.

Now assume that we are not in this case. Let Ω21 = {c ∈ Ω2 : ωf0(c)∩Ω2

= ∅}, and let Ω22 = Ω2 \ Ω21.
Let us first prove that νfλ

(c(λ)) does not change in a neighborhood of 0
for c ∈ Ω21. Let n ≥ 0 be maximal such that c′ := fn

0 (c) is again a critical
point in Ω2. It suffices to show that νfλ

(c′(λ)) is constant in a neighborhood
of 0. Note that c′ is a nonrecurrent critical point. If Forw(c′) = {c′}, then f(c′)
is contained in the hyperbolic set Q defined as above, thus by Statement 1,
νfλ

(c′(λ)), and hence νfλ
(c(λ)), does not change in a small neighborhood of 0.

If Forw(c′) �= {c′}, then there exists k ≥ 1 such that Rn
Y (fk

0 (c′)) ∈ D(Y ) for
all n ≥ 0, or the forward orbit of c′ enters a component of Y \D(Y ) infinitely
many times. In the former case, the statement follows from the argument
at the beginning of this section. Assume that we are in the latter case. Let
K ⊂ Y \ D(Y ) be a nice interval which intersects the forward orbit of c′

infinitely many times and let J1, J2, . . . be the return domains of K which
intersect orb(c′). Then RK : Ji → K is a diffeomorphism for each i. Choosing
K appropriately, one can prove, using a similar idea as above, that the first
return map RK :

⋃
i Ji → K extends to a complex box mapping P which has
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no critical point and persists in a neighborhood Λ ⊂ C of 0. By Theorem 7, it
follows that νfλ

(c(λ)) is constant in a neighborhood of 0.
It follows that iterates of all points in Ω21 move holomorphically with

respect to λ. As a result, Statement 7 can be extended:

Statement 8 (7′). There exists a neighborhood Λ8 ⊂ Λ7 of 0 in C such
that for all J ∈ J and any c ∈ Ω2,

fλ(c(λ) �∈ Hλ,J(∂WJ).

� We have already proved this statement for points in Ω2 ∩ U . Let c ∈
Ω2 \U , in particular, c ∈ Ω21. As we just have seen, there exists a holomorphic
motion Hλ,3 : C → C defined on some (Λ, 0) such that fn

λ ◦Hλ,3(c) = Hλ,3◦fn
0 (c)

for all n ≥ 0. By shrinking I if necessary we can assume that I ∩ ω(c) = ∅,
and fn(c) �∈ I for all n > 0. Using Lemma 10 once again we can conclude
that the sets ∂Vλ and fn

λ (cλ) for n > 0 never intersect for λ in some Λ′ ⊂ Λ.
On the other hand, if fλ(cλ) ∈ ∂Wλ,J for some J ∈ J and λ ∈ Λ′, then,
fs+1

λ (cλ) ∈ ∂Vλ, where s is the entry time of J . This is a contradiction. �

Having this generalized statement we can construct a holomorphic family
Fλ : Uλ → Vλ for F0 (no longer assuming that Ω2 ∩ ω(c) �= ∅ for all c ∈ Ω2).
The map F0 can have critical points which escape the domain of the definition
of F0, so we cannot apply Theorem 7. To be able to apply this theorem
we first construct from F0 a new complex box mapping F̂0 : Û → V with
Crit(F̂ ) = Ω22, as follows. For each component U ′ of U which does not intersect
Crit(F ) ∩ Ω21, U ′ is also a component of Û and F̂ |U ′ = F |U ′. For each
c ∈ Ω21 ∩ Crit(F ), let n ≥ 0 be maximal such that c′ := Fn(c) ∈ Crit(F ),
define Û ∩U(c) to be the union of the components of F−n(V (c′)∩U), and for
each component of Û ∩ U(c), define F̂ |U ′ = Fn+1|U ′. Because of Statement 8
we can apply the same procedure for each Fλ, and obtain a holomorphic family
of complex box mappings F̂λ induced by fλ exactly as in the case when Ω2∩ω(c)
�= ∅ for each c ∈ Ω2. Again by Theorem 7, we obtain that νfλ

(c(λ)) does not
change in a neighborhood of 0. This completes the proof of Proposition 7.

5. Perturbations with more critical relations

Let f be a real polynomial. We want to find hyperbolic polynomials of
the same degree arbitrarily close to f .

We may assume (see Lemma 11 below) that all critical points of f (in-
cluding complex ones) are nondegenerate and that f has no neutral periodic
points (again including complex). Such polynomials we will call admissible.

Now we will describe an inductive procedure which will allow us to obtain
a hyperbolic polynomial from the given polynomial in finitely many steps. First
we introduce a few definitions.
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By a critical relation for f we mean a triple (n, ci, cj) such that ci, cj are
critical points of f , fn(ci) = cj and n > 0. As before, if the iterates of a real
critical point c of f converge to a hyperbolic attracting cycle or some iterate
of c lands on a critical point of f , then we say that c is controlled.

We say that a real polynomial f defines an interval map if f(X) ⊂ X and
f(∂X) ⊂ ∂X, where X = [0, 1].

Proposition 8. Suppose f is a real polynomial with K controlled real
critical points and suppose that K is less than the number of real critical points
of f . Then, arbitrarily close to f in the space of real polynomials of the same
degree, one can find an admissible real polynomial g of the same degree with
K + 1 controlled real critical points. Moreover, if f defines an interval map,
then so does g.

This proposition clearly implies the main theorem (density of hyperboli-
city). Indeed, in a few steps we obtain an admissible polynomial with all real
critical points controlled, which means it is Axiom A.

For each real polynomial f and real critical point c, let n(c) ≥ 0 be
maximal such that fn(c)(c) is again a critical point, and let

T (f) =
⋃

c∈Crit(f)

{c, f(c), . . . , fn(c)(c)}.(11)

5.1. Destroy neutral cycles.

Lemma 11. Any real polynomial g can be approximated by an admissible
real polynomial ĝ of the same degree in such a way that the number of controlled
critical points of ĝ is larger than or equal to the number of controlled critical
points of g. Moreover, if g defines an interval map, then so does ĝ.

To prove this lemma, we will need the following:

Lemma 12. For any real polynomial f and a neighborhood W of this poly-
nomial (in the space of polynomials of the same degree) there exist R > 0 and
δ > 0 such that the following holds.

Let g : DR → C be a real-symmetric holomorphic map such that

sup
z∈DR

|g(z) − f(z)| < δ.

Then there exists a real polynomial f̃ ∈ W conjugate to g in DR/2.

Proof. The proof of this lemma is the same as the proof of the Straight-
ening Theorem [DH85]. One should notice that in the case of this lemma it is
possible to construct a real-symmetric q.c. conjugating homeomorphism with
an arbitrarily small dilation.
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Proof of Lemma 11. It is clear that we can approximate g by a real
polynomial g̃ of the same degree which have only nondegenerate critical points.
So we may assume that g has only nondegenerate critical points.

Let W be a small neighborhood of g in the space of real polynomials of
the same degree so that all maps in W have only nondegenerate critical points.
Assume that g has a neutral cycle. We claim that one can find g1 ∈ W so that
the number of controlled real critical points of g1 is large or equal to that of g

and the number of hyperbolic attracting cycles of g1 is larger than that of g.
To this end, let R and δ be as in the previous lemma. Let T = T (g)

be as in (11) and let P be the set of all attracting or neutral periodic points
of g. It suffices to prove that there exists a holomorphic map g̃ : DR → C

such that supz∈DR
|g̃(z) − g(z)| < ε, g̃|T = g|T , g̃′|T = g′|T , and the number

of hyperbolic attracting cycles of g̃ is larger than that of g. To this end,
notice that T and P are both finite sets and they are symmetric with respect
to complex conjugation (since g is real). So there exists a real polynomial
(possibly with a large degree) h(z) with the following properties:

• For all z ∈ T , h(z) = 0, h′(z) = 0;

• For all z ∈ P , h(z) = 0, h′(z) = −P ′(z).

Let g̃ = g(z) + εh(z), where ε > 0 is a small constant such that supz∈D |g(z)−
g̃(z)| < δ. Note that g̃|(T ∪ P ) = g|(T ∪ P ) and g̃′|T = g′|T . Moreover, if
z ∈ P has period s, then

|(g̃s)′(z)| = |(gs)′(z)(1 − ε)s| < 1.

Now, z is a hyperbolic attracting periodic point of g̃. This completes the proof
of the claim.

If g1 has no neutral cycle, then the proof of the lemma is completed.
Otherwise, repeating the same argument for g1, we obtain a real polynomial
g2 ∈ W with more hyperbolic attracting cycles and without decreasing the
number of controlled critical points. Since the number of hyperbolic attracting
cycles of a polynomial of degree d is bounded from above by 2d − 2, we find
the desired approximation within 2d − 2 steps.

Now assume that g defines an interval map. In the above construction of
g̃, let us also require that g̃|∂X = g|∂X. Then g̃ defines an interval map. Since
g1 is conjugate to g̃ via a q.c. map close to the identity, by an appropriate
rescaling, we may assume that g1 defines an interval map as well. This proves
the last statement of the lemma.

5.2. Construction of special families.

Proposition 9. Let f : X → X be a real analytic nondegenerate interval
map without neutral cycle. Assume that no critical point of f is contained in
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the boundary of the basin of a hyperbolic attracting cycle and that f is not
hyperbolic, and that f has a noncontrolled critical point. Then there exists a
real polynomial h such that

fλ = f + λh, λ ∈ (−1, 1),

is a special family of nondegenerate interval maps satisfying the assumption of
Theorem 5.

Let us first deal with the case when f has a recurrent critical point which
has a minimal ω-limit set. This case is easier since we do not need to care
about the regularity of the maps fλ.

Proof of Proposition 9 in the minimal case. Let c be a recurrent critical
point of f such that ω(c) is minimal. Let us fix a small neighborhood U of c.
Let ĝ : X → X be a C∞ function such that

• ĝ = f outside of U ,

• ĝ and f have the same critical points as f ,

• ĝ(c0) ∈ ∂X.

So the itineraries of c0 maps f and ĝ are different. Note that controlled critical
points of f are also controlled critical points of g provided that U was chosen
sufficiently small.

Now we approximate ĝ on X by a real polynomial g1 in the C2 topology
such that g1 = g and g′1 = g′ on ∂X∪T (g), so that all controlled critical points
of ĝ are controlled critical points of g1 : X → X.

There exists ε > 0 such that the function (1 + λ)f − λg1 for λ ∈ [0, ε]
has only nondegenerate critical points. The family gλ = (1 − λε)f + λεg1,
λ ∈ (−1, 1), is the required special family passing through f .

To deal with the remaining case, we need to guarantee all maps fλ we
shall construct are regular. For this purpose, we will use the following.

Lemma 13. Let f : X → X be a C3 nondegenerate interval map without
neutral cycle. There there exists a C3 neighborhood W of f consisting of regular
interval maps.

Proof. The proof of this statement for multimodal maps is the same as in
[Koz03, Lemma 4.6], where instead of the results for the negative Schwarzian
condition of [Koz00], one uses its generalization [vSV04]).

Proof of Proposition 9 in the remaining case. First, we notice that it
suffices to prove that f can be approximated in the C3 topology by C3 interval
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maps g : X → X such that g = f and g′ = f ′ on ∂X ∪ T (f) and such that g

has at least one more critical relation than f . In fact, once this has been done,
we can actually choose the approximation maps g to be real analytic. Then
fλ = (1− λ/2)f + (λ/2)g defines a special family passing through f satisfying
the assumption of Theorem 5.

In the case that f has a nonrecurrent noncontrolled critical point, it is
well-known that the required C3 approximation exists; see for example Lemmas
3.10 and 3.12 in [BM00]. So let us assume that f has a noncontrolled recurrent
critical point c0 (with a nonminimal ω-limit set).

Let us construct a C3 perturbation of f (in the same way as in [Koz03]).
Due to Theorem 3, there exists a box mappings F : U → V for the map f

such that c0 ∈ U , and there are universal constants θ1 ∈ (0, π), C1 > 0, such
that for any connected component U ′ of U , we have that f(U ′) is contained in
Dθ1(f(U ′) ∩ R). Moreover, if U ′ ⊂ Compc0

(V ) then mod(V \ U ′) > C1.
Let a be a real boundary point of the domain Compc0

V . Consider the
following perturbation of the map f :

fλ(x) =

{
f(x) , x �∈ Compc0

V,

f(x) + λ (f(x)−f(a))4

(f(c0)−f(a))3 , x ∈ Compc0
V.

Notice that for all λ the map fλ is C3. Note also that provided that V is small
enough, all controlled critical points of f are still controlled for all maps fλ.

For constants θ1 and C1 there exists λ1 > 0 such that for any λ ∈ Dλ1 ,
the map fλ induces a complex box mapping Fλ with the same domain V as
for the map f0 and a deformed domain Uλ.

Let us prove that there exists an arbitrarily small λ ∈ R such that fλ is not
essentially combinatorially equivalent to f0. Arguing by contradiction, assume
that this is not true. Let Λ = {λ : fλ(c0) ∈ f0(U(c0))}, which is a topological
disk. By choosing the complex box mapping F appropriately, we can assume
that |f(Compc0

U)∩R|/|f(Compc0
V )∩R| is very small, and so Λ � Dλ1 . For

λ ∈ Λ, Uλ 	 c0, so that Fλ : Uλ → V , λ ∈ Λ is a holomorphic family of
complex box mappings. By Theorem 7, it follows that all the maps Fλ, λ ∈ Λ
are q.c. conjugate. In particular, fλ and f0 are essentially combinatorially
equivalent for all λ ∈ Λ∩R. But by Remark 4.1, it follows that the same holds
for λ = λ0 ∈ ∂Λ ∩ R. However, c0 is a nonrecurrent critical point of fλ0 , a
contradiction. This completes the proof.

Proof of Proposition 8. First let us assume that f defines an interval
map f : X → X. By Lemma 11 we may assume that f is admissible. Let us
now consider two cases.

Case 1. There exists c ∈ Crit(f) and n ≥ 1 such that p := fn(c) lies on the
boundary of the immediate basin B of a hyperbolic attracting cycle O. Let q ∈
O be such that [q, p) ⊂ B. Without loss of generality assume that q < p. Let
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h be a polynomial such that h(z) = h′(z) = 0 on T (f)∪ {c, f(c), . . . , fn−2(c)}
and h(fn−1(c)) = 1, where T (f) is as in (11). Then for ε small enough,
fε = f − εh defines an interval map such that all controlled critical points of f

are controlled by fε. Note that c becomes a new controlled critical point. The
conclusion of the proposition follows by Lemma 12.

Case 2. f has no critical point whose orbit hits the boundary of the
immediate basin of a hyperbolic attracting cycle. Then by Proposition 9,
there exists a special family fλ = f0 + λh with f0 = f such that for some λ0,
fλ0 has one more controlled critical point than f0. By Theorem 5, there exists
λn → 0 such that the number of controlled critical points of fλn

is more than
that of f0. Again by Lemma 12, the proposition follows.

If f does not preserve X, then instead of interval endomorphisms, we
consider a wider class of interval maps, i.e. maps of the form g : Y ′ → Y ,
where Y ′ ⊂ Y are compact intervals. In this case, the whole argument we
have used applies except that we need to add to the definition of a controlled
critical point the case of an escaping critical point, i.e., a critical point c is
also called controlled if gn(c) ∈ Y \ Y ′ for some n ≥ 1. More precisely, let Y

be a large compact interval containing so that Y ′ := f−1(Y ) ∩ R is a compact
interval compactly contained in Y . Arguing as before we obtain a sequence
of real polynomials fn such that fn has at least one more controlled critical
point than f and such that fn → f uniformly on any compact set in C. By
Lemma 12, we obtain the proposition.
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