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Isoparametric hypersurfaces with
four principal curvatures

By THOoMAS E. CEciL, Quo-SHIN CHI, and GARY R. JENSEN*

Abstract

Let M be an isoparametric hypersurface in the sphere S™ with four distinct
principal curvatures. Miinzner showed that the four principal curvatures can
have at most two distinct multiplicities m1, mo, and Stolz showed that the pair
(m1,m2) must either be (2,2), (4,5), or be equal to the multiplicities of an
isoparametric hypersurface of FKM-type, constructed by Ferus, Karcher and
Miinzner from orthogonal representations of Clifford algebras. In this paper,
we prove that if the multiplicities satisfy mo > 2mj — 1, then the isoparametric
hypersurface M must be of FKM-type. Together with known results of Takagi
for the case m; = 1, and Ozeki and Takeuchi for m; = 2, this handles all
possible pairs of multiplicities except for four cases, for which the classification
problem remains open.

1. Introduction

A hypersurface M in a real space-form M"(c) of constant sectional cur-
vature c is said to be isoparametric if it has constant principal curvatures. An
isoparametric hypersurface M in R™ can have at most two distinct principal
curvatures, and M must be an open subset of a hyperplane, hypersphere or a
spherical cylinder S* x R*~*~1. This was shown by Levi-Civita [18] for n = 3
and by B. Segre [27] for arbitrary n. Similarly, E. Cartan [3] proved that an
isoparametric hypersurface M in hyperbolic space H" can have at most two
distinct principal curvatures, and M must be either totally umbilic or else be
an open subset of a standard product S* x H*~*~1 in H» (see also [8, pp. 237,
238]). However, Cartan [3]-[6] showed in a series of four papers written in the
late 1930’s that the situation is much more interesting for isoparametric hyper-
surfaces in S™. Cartan proved several general results and found examples with
three and four distinct principal curvatures, as well as those with one or two.
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partially supported by NSF Grant No. DMS-0604236.
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Despite the beauty of Cartan’s theory, it was relatively unnoticed for thirty
years, until it was revived in the 1970’s by Nomizu [23], [24] and Miinzner [22].

Cartan showed that isoparametric hypersurfaces come as a family of par-
allel hypersurfaces, i.e., if x : M — S™ is an isoparametric hypersurface, then
so is any parallel hypersurface x; at oriented distance ¢ from the original hy-
persurface x. However, if A = cott is a principal curvature of M, then x; is
not an immersion, since it is constant on the leaves of the principal foliation
T, and x; factors through an immersion of the space of leaves M /T into S™.
In that case, x; is a focal submanifold of codimension m + 1 in S™, where m is
the multiplicity of .

Miinzner [22] showed that a parallel family of isoparametric hypersurfaces
in S™ always consists of the level sets in S™ of a homogeneous polynomial
F defined on R"*! satisfying certain differential equations which are listed
at the beginning of Section 2. He showed that the level sets of F' on S™ are
connected, and thus any connected isoparametric hypersurface can be extended
to a unique compact, connected isoparametric hypersurface.

Miinzner also showed that regardless of the number of distinct principal
curvatures of M, there are only two distinct focal submanifolds in a parallel
family of isoparametric hypersurfaces, and each isoparametric hypersurface
in the family separates the sphere into two ball bundles over the two focal
submanifolds. From this topological information, Miinzner was able to prove
his fundamental result that the number g of distinct principal curvatures of an
isoparametric hypersurface in S™ must be 1,2, 3,4, or 6. As one would expect,
classification results on isoparametric hypersurfaces have been dependent on
the number of distinct principal curvatures.

Cartan classified isoparametric hypersurfaces with g < 3 principal curva-
tures. If g = 1, then M is umbilic and it must be a great or small sphere. If
g = 2, then M must be a standard product of two spheres

SE(r)y x "R sy c 8, P4 57 =1.

In the case g = 3, Cartan [4] showed that all the principal curvatures must
have the same multiplicity m = 1, 2,4 or 8, and the isoparametric hypersurface
must be a tube of constant radius over a standard Veronese embedding of a
projective plane FP? into S3"*! where F is the division algebra R, C, H
(quaternions), O (Cayley numbers) for m = 1,2,4, 8, respectively. Thus, up
to congruence, there is only one such family for each value of m.

The classification of isoparametric hypersurfaces with four or six principal
curvatures has stood as one of the outstanding problems in submanifold geom-
etry for some time, and it was listed as Problem 34 on Yau’s list of important
open problems in geometry in 1992 (see [36] or [15]). In this paper, we will
provide a partial solution to this classification problem in the case g = 4, but
first we will describe the known results in the two cases.
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In the case g = 6, there exists one homogeneous family with six principal
curvatures of multiplicity one in S7, and one homogeneous family with six prin-
cipal curvatures of multiplicity two in S'? (see Miyaoka [20] for a description).
These are the only known examples. Miinzner showed that for g = 6, all of the
principal curvatures must have the same multiplicity m, and then Abresch [1]
showed that m must be 1 or 2. In the case m = 1, Dorfmeister and Neher [10]
showed in 1985 that an isoparametric hypersurface must be homogeneous, but
it remains an open question whether this is true in the case m = 2.

For g = 4, there is a much larger and more diverse collection of known
examples. Cartan produced examples of isoparametric hypersurfaces with four
principal curvatures in S° and SY. These examples are homogeneous, and have
the property that all of the principal curvatures have the same multiplicity.
Cartan asked if all isoparametric hypersurfaces must be homogeneous, and if
there exists an isoparametric hypersurface whose principal curvatures do not
all have the same multiplicity.

Nomizu [23] generalized Cartan’s example in S® to produce a collection
of isoparametric hypersurfaces whose principal curvatures have two distinct
multiplicities (1, k), for any positive integer k, thereby answering Cartan’s sec-
ond question in the affirmative. At approximately the same time as Nomizu’s
work, Takagi and Takahashi [31] used the work of Hsiang and Lawson [17]
on submanifolds of cohomogeneity two to determine all homogeneous isopara-
metric hypersurfaces of the sphere. Takagi and Takahashi showed that every
homogeneous isoparametric hypersurface is a principal orbit of the isotropy
representation of a rank two symmetric space, and they presented a complete
list of examples. This list included some examples with 6 principal curvatures,
as well as those with 1,2, 3 or 4 distinct principal curvatures.

In a separate paper, Takagi [30] proved that in the case g = 4, if one of the
principal curvatures of M has multiplicity one, then M must be homogeneous.

In a two-part paper, Ozeki and Takeuchi [25] produced two infinite series
of inhomogeneous isoparametric hypersurfaces with multiplicities (3,4k) and
(7,8k), for any positive integer k. They also classified isoparametric hyper-
surfaces for which one principal curvature has multiplicity two, proving that
they must be homogeneous. In the process, Ozeki and Takeuchi developed
a formulation of the Cartan-Miinzner polynomial F' in terms of the second
fundamental forms of the focal submanifolds that is very useful in our work.

Next, Ferus, Karcher and Miinzner [13] used representations of Clifford al-
gebras to construct for any positive integer my an infinite series of isoparamet-
ric hypersurfaces with four principal curvatures having multiplicities (mq,m2),
where mo is nondecreasing and unbounded in each series. In fact, mg =
kEd(m1) —my — 1, where 6(m;y) is the positive integer such that the Clifford
algebra C,,, 1 has an irreducible representation on R*(™) (see [2]), and k is
any positive integer for which mg is positive. Isoparametric hypersurfaces ob-
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tained by this construction of Ferus, Karcher and Miinzner are said to be of
FKM-type. The FKM-series with multiplicities (3,4k) and (7, 8k) are precisely
those constructed by Ozeki and Takeuchi. For isoparametric hypersurfaces of
FKM-type, one of the focal submanifolds is always a Clifford-Stiefel manifold
(see Pinkall-Thorbergsson [26]).

The set of FKM-type isoparametric hypersurfaces contains all known ex-
amples with ¢ = 4 with the exception of two homogeneous examples, with
multiplicities (m1, m2) equal to (2,2) and (4,5) (see [25, part I, p.27] for more
detail on these two exceptions). Over the years, many restrictions on the mul-
tiplicities were found by Miinzner [22], Abresch [1], Grove and Halperin [16],
Tang [32] and Fang [12]. This series of papers culminated in the recent work of
Stolz [29], who showed that the multiplicities of an isoparametric hypersurface
with g = 4 must be the same as those in the known examples of Ferus, Karcher
and Miinzner or the two homogeneous exceptions. This certainly adds weight
to the conjecture that the known examples are actually the only isoparamet-
ric hypersurfaces with ¢ = 4. In this paper, we prove that this conjecture is
true, if the two multiplicities satisfy mgy > 2my — 1. Specifically, we prove (see
Theorem 47):

CLASSIFICATION THEOREM. Let M be an isoparametric hypersurface in
the sphere S™ with four distinct principal curvatures, whose multiplicities mq,
my satisfy mo > 2my — 1. Then M is of FKM-type.

Taken together with the classifications of Takagi for the case m; = 1 and
Ozeki and Takeuchi for my = 2, this handles all possible pairs (m1, m2) of mul-
tiplicities, with the exception of (4,5) and 3 pairs of multiplicities, (3,4), (6,9),
(7,8) corresponding to isoparametric hypersurfaces of FKM-type. For these 4
pairs, the classification problem for isoparametric hypersurfaces remains open.

The first part of this work (through §9) gives necessary and sufficient
conditions in terms of a natural second order moving frame for an isoparametric
hypersurface to be of FKM-type. The second part shows that these conditions
are satisfied if mo > 2my — 1.

Next we will provide a detailed outline of the paper. For more information
on isoparametric hypersurfaces and the extensive theory of isoparametric sub-
manifolds of codimension greater than one in the sphere, which was introduced
by Carter and West [7] and Terng [33], the reader is referred to the excellent
survey article by Thorbergsson [35], who proved that all isoparametric sub-
manifolds of codimension greater than one in the sphere are homogeneous [34].

We think of an isoparametric hypersurface as an immersion x: M"~1 — 8™,
About any point of M there is a neighborhood U on which there is defined
an orthonormal frame field X, €g, €4, €p, €n, e, for which €y is normal to the
hypersurface and the other sets of vectors are principal directions for the four
respective principal curvatures of X. The index range of a, p has length m, and
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that of a, p has length N, where m = m; and N = my are the multiplicities for
our isoparametric hypersurface. The dual coframe on U is the set of 1-forms
0%, 0P, 0%, 0 defined on U by the equation (sum on repeated indices)

dx = 0%, + 0Pe, + 0% + O¢, .

The curvature surfaces are the integral submanifolds of the distribution ob-
tained by setting any three sets of these forms equal to zero. The Levi-Civita
connection forms of a curvature surface are given, essentially, by the forms
¢ = deg - ey, 0§ = deg - €p, etc. The second fundamental tensors of the
focal submanifolds are given in terms of our frame field by the four sets of
tensors Fha, Fhp, Fja, and Fj, defined in (4.18) in which the coframe field
w® wP,w® wt is defined in (4.13) as constant multiples of 6%, 6P, <, 6*, respec-
tively. We derive the identities imposed on these tensors and their derivatives
by the Maurer-Cartan structure equations of the orthogonal group O(n + 1),
the isometry group of S™.
If our isoparametric hypersurface is of FKM-type, then a simple calcula-
tion shows that the following equations hold for an appropriate choice of the
Darboux frame field.

(L.1) Farm = Fla:

(1'2) FI?—&—ma"'_Faa—&-mb:Ov

(1.3) F e T FY =0,

(1.4) 0 — i = Li(w° +w™),  Lf. = —Lh = —L,

where a,b,c=1,...,m and a +m, b+ m run through the range of the indices

p,q. The matrices of the operators of the Clifford system in terms of our frame
field have as entries certain constants and the functions Fha, Fap, Fpa, Fg,, and
Lj,. Thus, using these matrices, we can define these operators for an arbitrary
isoparametric hypersurface. If equations (1.1)—(1.4) hold for the isoparametric
hypersurface, then by an elementary, but extremely long, calculation we show
that these operators form a Clifford system whose FKM construction produces
the given isoparametric hypersurface. This calculation is contained in the proof
of Theorem 24.

In Proposition 19 we prove that (1.1) implies (1.2)—(1.4) on U provided

that x satisfies the spanning property (Definition 8), which is:

(a) There exists a vector > xq€q such that

{Z F! 2oyuea s (y,) € RV} =span{e,... en}.

a,Q, [

(b) There exists a vector >, yue, such that

{Z F! voyueq : (2o) € RV} =span{er,... en}

a,o, [



6 THOMAS E. CECIL, QUO-SHIN CHI, AND GARY R. JENSEN

Combining these results, we see that if an isoparametric hypersurface satisfies
the spanning property and (1.1) on U, then it is of FKM-type. The next step
is to see when (1.1) will be true.

The parallel hypersurface at an oriented distance t from X is given by
X = costXx + sint €y. Its unit normal vector is eg = —sintx + cost ey and its
principal directions are still given by the remaining vectors in the frame field.
At some value of ¢ the rank of x is less than n — 1, in which case the image
of x is a focal submanifold of the isoparametric family. Any multiple of w/4
added to this value of t again gives a focal submanifold.

From Miinzner’s result that there are only two focal submanifolds, it fol-
lows that as t changes by a multiple of 7/2, we return to the same focal
submanifold. If x is a focal submanifold, then we may assume that ey, e, is
a normal frame field along x and the vectors ey, eq, €, are the principal vec-
tors for the second fundamental form I/, , of principal curvatures 0, 1 and —1,
respectively. Moving a distance ¢t = /2 from x along the geodesic in the direc-
tion of ey, we arrive at ey, which must then be a position vector on the same
focal submanifold. At e, the normal frame field is x,e,, and the principal
vectors, of principal curvatures 0, 1 and —1 are e,, e, and e, respectively.

There is a simple relationship between the four sets of tensors at e, de-
noted with the same letters barred, and these tensors at x. For our purposes,
the most important is

Ft =FF

aat+m:*

Use these tensors to define real bihomogeneous polynomials

pa(w7 Z/) = Z Fo;jaxayua ﬁa(xa y) = Z Fgaway,u-
a, [ a, [

In Proposition 11 we prove that if x satisfies the spanning property on U and if
at each point of U the p, are contained in the ideal I generated by p1, ..., pm in
the polynomial ring R[z,y,], then the frame field can be chosen so that (1.1)
holds on U.

The key to linking the set of polynomials p, with the set of polynomials
pq comes from a formula for the isoparametric function derived by Ozeki and
Takeuchi [25] (recorded in (10.1) below). In Proposition 27 (see also Propo-
sition 28) we use this formula to prove that the zero locus of pi,...,p, in
RPN x RPN~ is identical to that of p1,. .., pm.

Algebraic geometers have developed a substantial body of information
about the relationship between two polynomial ideals whose zero varieties coin-
cide. Let I be the ideal generated by p1, . .., pp, in the polynomial ring Rzq, y,]
and let IC be the ideal they generate in the polynomial ring Clza,yul. For
1 < s < m, define the affine bi-cones

Ve={(z,y) e RN xR : py(z,9) =0, a=1,...,s},
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‘/SC:{(xay)ECN XCN:pa(x,y):O, (l:].,...,S}.

We denote V;,, and V,C, which are in fact what we are after, by V7 and VIC,
respectively. Let J; be the complex subvariety of VSC where the Jacobian
matrix of p1,...,ps is of rank less than s. In our Classification Theorem 47 we
prove the following. Fix a point in U. Assume N > m + 2. If the codimension
of J, is greater than 1 in V.C for all s < m, then, at the point, through an
inductive procedure, we establish

(I) p1,...,pm form a regular sequence in Clzq,y,),
(II) dimg V7 = dimc V,C,
(IIT) IC is a prime ideal of codimension m,
(IV) The spanning property holds for x.

The primeness (more generally, reducedness) of I€ is precisely the condition
which allows us to conclude that the p, € I.

The final step in our argument is then provided by Proposition 46 which
states that for N > m+2,if N > 2m, then indeed codim (J5) > 2 for all s <m
at every point of U, so that IC is prime; as a result, if N = 2m — 1, then I€ is
a reduced ideal. The proof of this estimate requires a detailed analysis of the
second fundamental forms I/, of x. In the case m = 1, we give a simpler proof
that M is of FKM-type, thereby providing another proof of Takagi’s result.
Our approach also recovers Ozeki-Takeuchi’s result when m = 2 and N > 3.

The paper is very much self-contained, and we have made an effort to
make the exposition as clear as possible. We would like to thank N. Mohan
Kumar for substantial help with the algebraic geometry and John Little for his
comments on previous versions of this paper. We are grateful to the referee,
whose many helpful comments have improved the exposition and quality of the

paper.

2. Second order frames

An immersed connected oriented hypersurface X : M"~! — S is called
1soparametric if X has constant principal curvatures. Such a hypersurface al-
ways occurs as part of a family, the level surfaces of an isoparametric function
f, which is a smooth function on S™ such that |V f|?> = a(f) and Af = b(f),
for some smooth functions a,b: R — R.

Denote the principal curvatures of x by k;, with multiplicity m;, for i =
1,...,g, and assume that k; > --- > k,. Minzner [22, part I] showed that
the multiplicities satisfy m; = m; o (subscripts mod g). He then showed that
the isoparametric function f must be the restriction to S™ of a homogeneous
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polynomial F : R — R of degree ¢ satisfying the differential equations

lgrad F|* = g*r?72, 7 =|x|,

—my 5

Ap="2"T 59 r9=2

where my and mg are the two (possibly equal) multiplicities. The polynomial
F is called the Cartan-Miinzner polynomial of the family of isoparametric
hypersurfaces, and F' takes values between —1 and 1 on the sphere S™. For
—1 <t < 1, the level set F~1(t) in S™ is one of the isoparametric hypersurfaces
in the family. The level sets M, = F~1(1) and M_ = F~!(—1) are the two
focal submanifolds of the family, having codimensions mq + 1 and mgy + 1 in
S™, respectively.

We now develop the local geometry of isoparametric hypersurfaces using
the method of moving frames in the sphere. In the process, we will reprove
some of the results obtained by Miinzner, although this is not our primary
goal.

We assume now that g = 4, even though many of the results in Sections
2—4 have analogues for arbitrary values of g. Let ¢y be the unit normal vector
field along x defining the orientation of M. Any point of M has an open
neighborhood U on which there exists a Darboux frame field %X, ¢e;,é9 : U —
SO(n+1), 1 <i<n-—1, for which each vector e; is a principal direction. We
adopt the index ranges

i,5,ke{l,...,n—1},

a,byece{l,....,m}, p,qre€{mi+1,...,m;+ms},
a, B,y €{mi+m3+1,...,m +ma+ ms},

v, 0 €{mi+me+ms+1,...,n— 1}

(2.1)

Arrange the frame so that the e, span the principal space for ki, the e, span
the principal space for ko, the e, span the principal space for k3, and the e,
span the principal space for k4. We shall call such a Darboux frame field

(2'2) X, €a,€p7€a,€méo

on U a second order frame field along X, (a first order Darboux frame field
is one for which €y is normal and the remaining vectors are tangent, but not
necessarily principal directions). For such a frame field

(2.3) dx = 0'e; and de; = G{ej — 0% + 00¢g

where 0%, 60 = —0}, (9;'» = —0? are 1-forms on U and @', ...,6" ! is an orthonor-
mal coframe field on U with respect to the metric induced by x on M. Notice
that 09 = d% - &y = 0. We use the Einstein summation convention unless the
contrary is stated explicitly. This means that repeated indices in a product
are to be summed over the range defined in (2.1). In some instances the re-
peated indices are both up, or both down, but still they are to be summed as
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in the standard case of one up and one down. The 1-forms in (2.3) satisfy the
Maurer-Cartan structure equations of SO(n + 1):

df' = —05 N ¢,

0 __ 0 j

(2.4) o) = —09 n 67,
T ) 7 0 7 k
o = 0" N 67 — 05 N6 — 6}, A6

We also have

(2.5) déo = 9661

where the 1-forms 60} = —0? are linear combinations of the coframe forms,
namely

(2.6) 09 = h;¢

where these coefficient functions on U satisfy h;; = hj; as a consequence of
taking the exterior derivative of the equation §° = 0. The second fundamental
form of x is

(2.7) IT = —dx - dég = hij0°6°.

Having chosen the e; to be principal vectors, we know that the symmetric
matrix h;; is a diagonal matrix. In fact, we have

(2.8) 00 = k0%, 600 = k36, 60 = ko0, 0 = ks0".

Set 9; =5 hékek, where the smooth function coeflicients satisfy h;k = —h{k,
for all 4,5,k = 1,...,n — 1. Take the exterior differential of equations (2.8),
using the structure equations of SO(n + 1), to find

Oh = hh, 0% + hb 0%, since bl =0 = hE ,

O = hgpt” + hg, 0", since hg, = —hg;, = 0 = hgg,
Ol = hiy,0F 4 hl,0%, since hly = —hy, = 0 = hl,

Op = hpa0® + hyy, 0", since hy, = —hP =0 = hgg,
0 = hh,0" + hh, 0%, since hy, = —hﬁq =0=hj,
O = I 0% + Rl 07, since hy = —hy5 = 0= hi,.

The coefficient functions further satisfy

(k3 — k1)hb, = (k2 — k1)hg, = (k2 — k3)hp,,
(210) (k?) - kl) (k4 kl) Zp = (k4 - k3>hga7
(kg — k1)hg,, = (ka — k1)l = (ks — k2)hl,,
(ko — k3)hy,, = (ks — k3)hly, = (ko — k2)hi,

At a point of M the set of principal vectors for a principal curvature k; is a
subspace of dimension m;, defined by the equations 67 = 0, for all j not in
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the range of the given principal curvature. This m;-plane distribution on M
is called a curvature distribution on M.

LEMMA 1. The curvature distributions are completely integrable. Their
integral submanifolds are called curvature surfaces. A curvature surface cor-
responding to k; is totally geodesic in M and its induced metric has constant
sectional curvature 1 + kzjz

Proof. This is a simple application of the structure equations and the first
three equations in (2.9). O

Remark 2. One can show that each curvature surface corresponding to k;
is also totally geodesic in the curvature sphere of M corresponding to k; (see

Theorems 4.11-4.13 of [8, pp. 149, 150]).

Additional conditions are imposed by the structure equations on the co-
efficients upon the exterior differentiation of equations (2.9).

3. Parallel hypersurfaces

Let X, €q, €p, €a;eu, €0 be a second order frame field (2.2) along X on U.
We may arrange to have ky > ko > k3 > k4. It will be convenient to set
k; = cots;, for i = 1,...,4, where 0 < s1 < s9 < s3 < s4 < w. For any fixed
real number ¢, let
(3.1) X = costX +sint €.
From (2.3), (2.5) and (2.8) we have

(3.2) dx =(cost — sint cot s1)8%, + (cost — sint cot s3)67 e,
' + (cost —sintcot s2)0%€q + (cost — sint cot s4)0"e,,.

We conclude that x is an immersion of M except when £ = s; mod m, for some
i =1,2,3,4. Suppose t is not one of these exceptional values. Then the unit
normal vector field along x preserving the orientation of M is
(3.3) ep = —sintx + cost €y
and again from (2.3), (2.5) and (2.8) we have
(3.4) deg = — (sint + costcot s1)8%, — (sint + cost cot s3)6%¢),

. — (sint + cost cot 52)0%eq — (sint + cost cot s4)0"e,.

Since (sint 4 costcot s)/(cost — sint cot s) = cot(s — t), for any s and ¢, we
find that the second fundamental form of x is

Il = —dx-degy
(3.5) =cot(s; —t) w'w® + cot(s3 — t) wWPwP

+ cot(sg — t) w*w® + cot(sg — t) wHwh.
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We conclude that the principal curvatures of x are constant, equal to cot(s; —t)
with multiplicity m;, for ¢ = 1,2, 3,4, and that

(36) X;€q,€p, €as €5 €0

is a second order frame field along x on U.

4. Focal submanifolds

We consider now what happens when ¢ is one of the exceptional values.
To be specific, suppose that ¢ = s1. Then x is as defined in (3.1) and eg
is as defined in (3.3) with ¢ = s;. For the frame field (3.6) along x on U,
equation (3.2) becomes

(4.1) dx = wPe, + wq + we,
whose rank is n — 1 — m at every point of M and where

(42)  of = Sin((?g - 81)917’ Lo Sin(‘?g - 81)0a7 o Sin(?4 - 81)9/{
sin s3 sin so sin sy4

Therefore, the image x(M) is a submanifold of codimension m; + 1 in S™. It
is called the focal submanifold for the principal curvature cot s;. In the same
way, there are focal submanifolds for each of the principal curvatures. For
a point v € x(M), the set L = x '{v} is a curvature surface of x for the
principal curvature cot s1. Restricted to this curvature surface, the forms 6¢
give a coframe field on it.

If eg is defined by (3.3), then (4.1) shows that x, ey, eq, €y, €q, €0 is a Dar-
boux frame field along x, with ey, e,, e, tangent and ep,e, normal vectors.
Take a point p in the curvature surface L and let N denote the normal space
to x at p. Let S™ denote the unit sphere in N. The next lemma shows that
eo(L) covers an open neighborhood of ey(p) in this sphere.

LEMMA 3. The rank of eg : L — S™* is my at every point of the curvature
surface L. Therefore, eq(L) covers an open neighborhood of eg(p) in S™ .

Proof. Consider the frame field eg, €4, X, €y, €q, €, along eg on L. Since 67,
6% and 0" are all zero pulled back to L, it follows from (2.9) that 6}, 65 and
6 are also zero pulled back to L. Therefore, restricted to L, and using (2.8),
in which now ki = cot s1, we have

(4.3) deg = —sin s 0%, + cos s1 0jeq = — csc sy 0%,

which has rank equal to m; at every point of L. O

We can now calculate the second fundamental form of the submanifold x
at the point x(p) = v with respect to any unit normal vector there.
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LEMMA 4. At any point of M and with respect to any unit normal vector
at the point, the principal curvatures of the focal submanifold x are
(4.4) cot(sg — s1), cot(ss—s1), cot(ss— s1)

with multiplicities ma, m3, my, respectively.

Proof. From (3.4) we have for ¢ = s;

1 cos(s3 — s
deg = — — 9%, — M&pep
sin s1 sin s3
(45) cos( ) cos( )
S9 — § S4— S
— 7.2 ! 0%, — 7'4 ! H“eu.
sin s sin s4

Combining this with (4.2) we have for the second fundamental form at p with
respect to the normal vector e

1., = —dx-deg
= cot(sg — s1)wPw? + cot(sa — s1)w*w® + cot(sq — s1)wHwh
where WP, w®, w#, defined in (4.3), form an orthonormal coframe with respect
to the metric induced by x on the focal submanifold for the principal curvature
cot s1. By Lemma 3 we know that ey(L) covers some open subset of the unit
sphere in the normal space to x at p. Since the characteristic polynomial of 11,
is an analytic function of n in the unit sphere of the normal space, it follows

that the eigenvalues of 1, must be given by (4.4) for every unit normal vector
at p. (See [8, Proof Cor. 2.2, p. 249]). O

Miinzner [22, Part I] proved Lemma 4 and used it to prove the following
important consequence (see also [8, p. 249]).

COROLLARY 5. The angles s; = s1 + (i — 1)w/4, for i = 2,3,4 and the
multiplicities satisfy mi1 = ms and mo = my. To simplify the notation we set
m1 =mg=m and my = my = N.

Given these facts, our index conventions (2.1) become
i, ke{l,...,n—1}, a,b,ce{l,...,m},
(4.6) p,g,r€{m+1,....2m}, a,B,y€{2m+1,...,2m+ N},
wv,o € {2m+N+1,...,n—1},
so that 2m + 2N = n — 1, and n must be odd. Combining Lemma 4 and
Corollary 5 yields the following.
COROLLARY 6. At any point of M and with respect to any unit normal
vector of x at the point, the principal curvatures of x are
(4.7) 1, 0, -1

with multiplicities N, m and N, respectively.
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In the light of Corollary 5, the principal curvatures k; = cot s; of X satisfy
k1 —1 1 1+ &k
= y 3= —7, k4 =
k1 +1 k1 1—Fk
We will have occasion to use the following differences of these principal curva-
tures.

(4.8) ko

1+ k3 1+ k3
ko —ky = — ks —ky = —
2 1 1+k‘1’ 3 1 kl )
1+ k3 1+ ki
4.9 ky—ky=—-Lt  ky—ko= -t
(4.9) M T I T, s k(14 k1)
1+ k% 1+ k7
ky— ko =2 ky —k
4 2 152 4 — K3 (1 — k)

We use equations (4.9) to rewrite equations (2.10) as

1 1

hP, = —mhga, hay, = » P
[N - 1 B - 1 B
T 1P ap T, P
(4.10) 9 9
(o Z— —
hap = mhéﬁm N = mhﬁaa
le 2]fl
fow = T, Mew oo = T e
Now, with s; = s1 + (i — 1)7/4, equation (4.1) takes the form
(4.11) d ! 0Pe, + ! 0%q + ! o
) X = — e, + ——0%, + ———0¥¢,,,
sinsg V/25sin s9 “ V/25sin s4 a
and with ¢t = s equation (3.4) becomes
1 1 1
4.12 deg = ——0%, — ———0% o + ——6¢,,.
( ) 0 sins; ¢ V/2sin s9 “ V2 sin sy a
If we define a new coframe field on U C M by
wa:—,l 0°, wP = 1 6P
(4.13) sin 511 k1 sin 511
=0 W=
(1+Fky)sins; (k1 — 1) sin sy

then, because

V2

1+k
(4.14) sin sy = ! sin $1

V2

equations (4.11) and (4.12) become

sin s, sinsg = k1sin sy, sinsy =

(4.15) dx = wPe, + wq +whey,, deg = weq —weq +whey,.
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One conclusion we can draw from (4.15) is that
(416) X, €0, €qa, €p; Cas €y

is a Darboux frame field along x on U, with eg, e, normal vectors and e, e, e,
tangent vectors spanning the principal spaces of curvature 0, 1 and —1, re-
spectively of I1.,. We shall call this a second order frame field along the focal
submanifold x on U. For each point of U, define linear subspaces of R"*! by

(4.17) Vi =span{en}, V_ =span{e,}, Vo =span{ep}.

These are the +1, —1 and 0 principal curvature spaces, respectively, for the
normal vector eg at this point. If we express the Maurer-Cartan forms (2.9) in
terms of our coframe field (4.13) as

00 => Fow® =Y Fhw', 07=Y Faw’—2% Fhot
o H D Iz
(1s) 05 =D Fpuw' —2) Fhwt, 0= Flw’-2) Fiw®,
a W p «
O =D Ffu" + 23 Flut 04 =D Fluw' +3 Flp
a « a P

then comparison with (2.9), using (4.10) and (4.13), gives

(R N, [T N,
(4.19) Fou = —hpesinsy,  Fj, = —hy, sin sy,
) [T N T [T
Fla = —hggsinsy,  FL, = hy, cossy.

Notice that the distribution obtained by setting any three sets of {w®}, {wP},
{w®} and {w*} equal to zero is completely integrable and its integral subman-

ifolds are the respective curvature surfaces.
Equations (2.3) become, for the Darboux frame field (4.16),

dx = wPe, + weq + whey,

deg = wleq — wq + whey,

deq = —weq + ey + 0ley + 0%eq + Ol
(420 de, = —wPx + Ohey + Oleq + O ea + Oliey,
deq = —wx + weq + 0%, + 0le, + 0%es + Ole,,,
de, = —wh'x — whey + HZea + QZeq + Hz‘ea + 9,’1611-
The Cartan-Miinzner polynomial F : R"*! — R defining the isoparametric
function f = F|g» : 8™ — [—1,1] has =1 as the only two singular values, and
focal points at a distance 7/2 along a normal geodesic from each other lie on

the same focal submanifold. If our second order Darboux frame field (4.16) is
along the focal submanifold

x:UCM— M, =f1{1}cs"
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then the tube (3.1) with ¢ = 7/2 shows that the image of z =eg : U — M, is
the same focal submanifold. If we let ey = x, then by (4.15)

dx = deg = weq — weq + whe,,
(4.21) 0 ‘ o g
deg = dx = wPep + weq + whey,

which shows that e,, €4, €, are tangent to M at X = eg, while €y, e, are normal
to My at x. The second fundamental form at X with respect to ey is

II., = —dx - deg = —deq - dx = 11, = Zwawa - Zw“w“

which implies that V, is the +1 eigenspace and V_ is the —1 eigenspace of
II;, at %x. Therefore, the principal curvature spaces of &y at X are

(4.22) Vi=Vy, V_=V_, Vy=span{e,}.

It follows that a second order Darboux frame field along X on U is
(4.23) X =e€g, €0 =X, €4 = €atm, Catm = €a; €a = €q, €y = €.
From (4.21) we see that

(4.24) o9 atm  —atm _ , a o a -

=w , @ =w? O%=-w* of=uwk

is the coframe field dual to (4.23).
Of the forms in (4.18) for the frame field (4.23) and its coframe field (4.24),
we consider

a+m
:dea eu —9“ Flw*+ FY L wm
to conclude that
(425) F“ = Fo/jaer’ Foljaer = Ft‘;a'

Therefore, if v =) (zaea + yueu) € V4 @ V_, then

(4‘26) pa(v) = Z ataly = Z aa-{-mxayu = pa+m(v)
[
where the polynomials p, and pgy., are defined by these equations.

5. Consequences of the structure equations

We continue working with a second order frame field (4.16) along the
focal submanifold x defined in (3.1) with t = s;. Equations (4.19) show that
differentiating equations (2.9) is equivalent to differentiating equations (4.18),
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which we now proceed to do. In preparation for this we first take the exterior
differential of the coframe field (4.13) to obtain

dw® = -6y N Wb — Fow? Nw® — FlwP Awh — AFL w® AW,
P 9P A W RN @ A ot B A ot
(5.1) dw? = =00 Nw? + Fpw® Aw® + Flw® Aw + 4FL w0 A WH,
dw® = —03 AwP — FRw* AP + FLw* Awt — FILwP AWt
dwt = =0 ANw” — Fpw* AwP — FLw® Aw® + FlowP Aw®.

We define the covariant derivatives of the tensors Flffl, Fﬁa, Fk, and ng,

respectively, to be the 1-forms

i b
o' = dES, — Fo08 — FS60 + FP 65,

pai qa’p

52 F;aiwf = dF}, — Fi,08 — Fh00 + Fl 00,

Flw' = dFf, — F}00 — F0q + Fr,00,

Fi w' = dFl, — Ff 05 — FL.00 + F200.
Any other second order frame field along x is given in terms of (4.15) by
(5.3) X, €0, €a, €ps €y €4
where
(5.4) €q = Ageb, ép = Ageq, €y = AZ@@, ey = AZe,,

with (A%), (A9) : U — O(m) and (A7), (A%) : U — O(N) smooth maps. If the
coefficients with respect to this new frame field are denoted by the same letters
covered by a hat, then the transformation rules are tensorial. For example,

(5.5) Fo = ASFLASAL Fo, = AGFD  ALAG AL

p‘lar L'pab = qcd
and so forth. If we take the exterior differential of the equations (4.18) and
use (5.1) and (5.2) together with the Maurer-Cartan structure equations (2.4)
we obtain the following sets of equations (compare [25, I, p. 536 and II, p. 45]).

FgFgy + FgpFay — (EhFly + ElLFL) =0,

q pa~ gb
FgFl + Fy o, + 2(Fly Flty + FL4 ) = 830,
(5.6) Fﬁ‘Fqﬁ“ + F‘%Fpﬂ“ + Z(ngng T Fcl:ngp) = OpgOap
FlFpy + EFpy + 2(FLFe, + FLFY) = Gabdpuw,
Flo Foo + FloFyo + 2(Fl, Foy + FlyFuy) = SpgOps
FloFi, + Fh Foy — (Fh, Fi, + Fi FY) = 0.
ﬁlb - _F;ang - 2F5)F£a’
(5.7) FS&, = FWEE £ 2F1 F1

FS.5 = 2Fl Fh — 2F% Fl,.



ISOPARAMETRIC HYPERSURFACES 17

F¥, = FoFY + 2F5 FN

pab pa’ ab aa?
(5.8) Fz/ibq = _F&ng _2F£quCrz’
EY, = 2Ff,FY, — 2F8 Y
1 1
Fclztab = _§FﬁaFﬁ> + §F5»Fﬁz’
(5.9) Fl 5= FlFn +2F) Fr,
Flo, = FL P +2F) FL,.

1 1
ngq = §F1$LaF;éL_ iFé‘aF&,

5.10

(5.10) Fl = —FC’janﬁa — 2F} s
Fl, = —FLFY —2FWFY .

(5.11) Fg, =—Fk,=—2F! =—2Fk .

6. Second fundamental forms of a focal submanifold

Consider the focal submanifold x of (3.1) with ¢ = s; with a second order
frame field (4.16) along it on U. For each point of x, Corollary 6 tells us the
principal curvatures of the second fundamental forms Il., of x. In order to
derive the consequence of this knowledge, we begin by finding the expression
of Il,, of x in terms of the orthonormal coframe field w?, w®, w* and from that
obtain the matrices of the corresponding shape operators with respect to the
orthonormal tangent frame field e, e, €,,. For our frame, equations (2.3) have

become, in part,
(6.1) dx = wPe, + wq + wW'ey,
' deq = (k1eg — x)0% + 0ley + 0Pe, + 0%¢, + Ohe,,.

The shape operator S, is the symmetric operator on the tangent space at x
given by

(6.2) II,, = —deq -dx =dxo S, - dx.

That is, S, is the tangential component of —de,. Combining the second equa-

tion in (6.1) with (4.18), we find

So = (2Fh eu — Fopep)w™ + (2Fh eq + Fhep)wt + (—Fea + e )wP.

Recall the curvature spaces Vp, V., V_ defined in (4.17). Define linear operators
Ay =2Ff et - Vo =V,
(6.3) B, = —F;&eawp Vo — Vi,

Co = Flpepw® : Vo — V_,
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and their transposes
tA, = 2F e w® : Vi — V|
(6.4) By = —Fpepw® : Vi — Vo,
tc, = Flepwh : Vo — V.

With respect to the orthogonal direct sum decomposition Vi @& V_ @ V; of the
tangent space to x at the point, the operator S, has the block form

0 A, B,
(6.5) Sao=|'4. 0 C,
‘B, 'C, 0

Restriction of the second fundamental forms Il., and I1., to Vi @ V_ defines
quadratic forms

po(z,y) = Ie (2, y), (z,y)) = Z:Ei - nym
(6.6) @ 2

1
Palz,y) = ZUea((:v,y), (7,y)) = FlaTaYu,

where x = zq,e4 € Vi and y = yue, € Vo
Note that by Corollary 6, the minimal polynomial of S, is z(z? — 1), and
therefore

(6.7) Sa =S5
for all a at every point of U.

PROPOSITION 7. If m < N, then the operators A, in (6.3) must be lin-
early independent at every point of U.

Proof. Suppose that the operators A, are linearly dependent at a point
p € U. This means that there exists a unit vector u = (u®) € R™ such that

(6.8) uFt =0

for all p and «, at the point p. Then multiplying the second equation in (5.6)
by u%u®, summing on a and b and using (6.8) gives

QF&uaFgub = 0ap3-
Therefore,

{ﬁZF&u“eP:a:2m+1,2m+2,...,2m+N}
a7p

is an orthonormal set of IV vectors in the m-dimensional subspace Vj defined
in (4.17), which contradicts the assumption that m < N. O
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We need a condition which is stronger than the linear independence of
the A,.

Definition 8 (Spanning Property). The focal submanifold x satisfies the
spanning property at a point of M if
(a) There exists a vector X = )" xq.eq € Vi such that the set of vectors

> Flazae, :a=1,...,m} in V_ are linearly independent; and

b) There exists a vector ¥ = y.e, € V_ such that the set of vectors
n IR
{ZOW Flayuea :a=1,...,m} in V} are linearly independent.

Remark 9. Condition (a) is equivalent to

(a’) There exists X = )" xzqoeq € Vi such that
{Z Fl.xayueq 1Y =yue, € V_} =span{er,... en}
a,q, [

and (b) is equivalent to

(b') There exists Y =} yue, € V_ such that

{Z Flwayueq : X = xqeq € Vi } =spanfeq, ..., en}.

a,o,

Remark 10. If x satisfies the spanning property at a point of M, then it
satisfies it on some open neighborhood of the point by a standard argument
on the rank of the N x m matrix (FhaZq)-

Let x, eg, €q, €p, €a, €, be a second order frame field (4.16) along x on U,
where x(U) C M, is a focal submanifold. Let the same letters with bars
denote the second order frame field (4.23) along X = e¢p on U. At each point
of U define bihomogeneous polynomials p, and p, in R[zq,y,] by

(6.9) Pa(,y) = ZFgaxozym Palz,y) = Z Féfaxayu
o o

where F¥, and F%, are as defined in (4.18) for the respective frame fields.

ProrosiTiON 11. If at each point of U there exist polynomials fqp in the
polynomial ring R(zq,y,] such that

(610) Da = Z fabpb
b

and if the spanning property holds for x on U, then there exists a second order
frame field x, eg, €4, €p, €q, €, along x on U with respect to which

(6.11) E" EH

aat+m T T oa

for all a, o, i, at each point of U.



20 THOMAS E. CECIL, QUO-SHIN CHI, AND GARY R. JENSEN

Proof. If we let pgim(x,y) = Za,u FY ot mTayp, then by (4.26), patm = Pa
and therefore (6.10) implies that at each point of U

(6.12) Patm =Y, fabb-
b

If we expand the right side of this equation in terms of the bihomogeneous
components of the f,; and collect all terms of the same bi-degrees, then all
terms must cancel except those of bi-degree (1,1), since py+m, has bi-degree
(1,1). This results in an expression for p,i,, as a linear combination of the py,
with constant coefficients, since each p, has bi-degree (1,1). Hence, we may
assume that the fg, in (6.12) are constant polynomials. Now (6.12) implies
that

(6.13) FYim =Y faFl
b

for all o, p at each point of U. We claim that the functions f,; : U — R are
smooth. In fact, if we let Agy,, = 2 ZOW Fc’jaereaw“ : V_ — V, and let A, be
the operators defined in (6.3), then (6.13) implies that Aq4m = >, fapAs. The
spanning property implies that the operators A; are linearly independent in
End(V_,V,), and therefore at each point of U an inner product can be defined
on this space of endomorphisms, depending smoothly on the point of U, such
that {Ap} is an orthonormal set. Then fu, = (Agt+m, Ap) : U — R is smooth.
Fix a = ag and for each p define vectors in R™

Wy = (B (oo JF ) V= (B Fl ).

o1 s Fom o mAls s Fogmam

If we define the m x m matrix B = (fu), then by (6.13), we have

(6.14) V, = BW,

for each p. The sixth equation in (5.6) says that for any p and v
V-V, =W, -W,.

Combining these equations, we have

(6.15) W, -W, =BW,-BW,

for all p,v. It follows that B is orthogonal, provided that the set {W)} spans
R"™. By the spanning property, this is true for some choice of g, for some
choice of frame field. Therefore, assuming we have made that choice, we have
a smooth map

B = (fw):U — O(m).
Alter the second order frame field along x by
éa-i-m = Z 6b—l—mfba

b
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leaving the other vectors in the frame unchanged. If we let Fé{a, etc. be the
coefficients with respect to this new frame field, then by (5.5), we have Fha =
Fla and, also using (6.13), we have

F5a+m = Zngerfba = Zfchéjcfba = ZFgcéca = F/ja
b b,c c

which proves (6.11). O

7. The Ferus-Karcher-Miinzner construction
Let Py, Py,...,P,, be a Clifford system on R%. Recall that this means
that these are symmetric operators on R% satisfying
(71) P’LPj+PjP7,:2(Sl]17 1,7 =0,1,...,m.

It follows that each operator P; is also orthogonal. For this section we modify
the index conventions (4.6) by

(7.2) ioj.k € {0,... m}
andnow N=I]—-m—landn+1=2. If A= (Az) € SO(m+1), and if we let
(7.3) Qi = AlP;

then Qo, Q1,...,Qm is also a Clifford system on R?. Since Qg = I, the
eigenvalues of Qg must be +1. If F are the eigenspaces of Qg, then R? =
E. & E_ is an orthogonal direct sum and E1 each has dimension [, because
for any a, the operator (), interchanges £, and E_.

Because P, ..., P, are linearly independent,
(7.4) M, ={xecS* ' 'cR*:Px-x=0, i=0,...,m}
is a submanifold of S%~1 of codimension m+1. If x € M, then Qox, ..., Qmx

is an orthonormal set of unit normal vectors to My in S?~!. Therefore, this is
a global frame field for the normal bundle of M, and the unit normal bundle
of M is isomorphic to the trivial bundle

(7.5) M= M, x S™.
Consider the principal bundle

SO(m +1) — §™

7.6
( ) A AO

where for any A € SO(m + 1) we let A; denote the it column of A. For a
section A of (7.6), denote its pull-back to S™ of the Maurer-Cartan form of
SO(m + 1) by

(7.7) AN A =1 = (7)),
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an o(m + 1)-valued form on S™. Then dA; = AjTij, and thus, for the Clifford
systems

(78) Qi=AlP;,

depending on A € SO(m + 1), we have

(7.9) dQ; = Q;7}

for each i. Observe that 73,...,7" is a local coframe field in S™. For each

(x,Ap) € M = M, x S™, there is an orthogonal direct sum
(7.10) R = span{x} & My (x) & To(x, Ag) & T (x, Ag) & T (x, Ao),

which is determined by the second fundamental form of My (see Section 4.5
of [13, p. 488]). In Lemmas 12-14 below, we provide the details of the rela-
tionship between this decomposition and the second fundamental form of M, .
The subspaces of the decomposition are

M7 (x) = span{QoX, . . ., Qux} = span{PpX, . .., Pyx},
To(x, Ag) = span{Q,Qox : for all a},
Ti(x,A0) =FE_NTxM; ={X € E_: X -Q;x=0for all i}
= {XeR?:QyX =—-X and X - Px =0, for all i},
T_(x,A0) =ELNTxMy ={X € Ey : X -Q;x=0, for all i}
={X eR?:QyX =X and X - Pix = 0, for all i}.

(7.11)

Then dim M{(x) = m + 1, dimTy(x, 4g) = m, dimT4(x,49) = N and
dimT_(x, Ag) = N, where N =1 — (m + 1). Notice that

(7.12) Qo : To(x, Ag) — M1 (x)

because QoQ.Qox = —Qux € M_ﬁ, for any a.

For any point in M = M, x S™, there is an open neighborhood about
it of the form U x V|, where U C My and V C S™, such that the section A
of (7.6) is defined on V' and such that there exist smooth orthonormal bases
eq of T (x, Ag) and e, of T_(x, Ag) on U x V. This means that at each point

of UxV
(7 13) QOea = —€q and [P Qix = 0’
. QOe,u =€y and €u - QiX =0.

Compose x : My — S?~1 with the projection M = M, x S™ — M, so that
we may regard it as a mapping x : M — S?~1. Then

(7'14) X, e = QiX, €p = Qp—mQOXa €ay €4

is a Darboux frame field along x on U x V, where the e; are normal vectors
and the rest are tangent to x.
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LEMMA 12. For any x € M4

(715) QinQkX -x=0
for alli,j,k and
(7.16) Ly, = QaQpQceo - X

s skew-symmetric in a, b, c.
Proof. 1f i, j, k are distinct, then

QiQ;Qrx -x =x - QrQ;Qix = —x - Q;Q;Qrx

which implies (7.15). If the indices are not distinct, then the product is a single
+@Q; and @Q;x - x = 0 by definition of M.

If any two of a,b, ¢ are the same, then the product Q,QpQ. is a single
operator +@Q,, for some a, and we know that Q.eo - x = 0. If a,b,c are
distinct, then QQ,Q»Q. changes sign if any two indices are switched. Therefore,
Ly, is skew-symmetric in a, b, c. O

LEMMA 13. For the Darbouz frame field (7.14) along x,
( ) Qix-x=0, for all i,

( ) Qiej-ep =0, foralli,j,k,

(7.19) Qiep-eq =0, foralli,p,q,
(7.20)

(7.21)

Qaea -eg =0, for all a,a, f3,
Qaey e, =0, forall a,p,v,

at each point of U X V.

Proof. The first equation follows from the definition of M, . For the second
equation

Qiej - er = QiQ;x - Qpx = QrQ:iQ;x - x =0
by Lemma 12. For the third equation
Qaep c€q = Qan—mQOX : Qq—mQOX = _Qq—mQan—mX x=0
by Lemma 12 and

QOep T€q = QOQp—mQOX : Qq—mQOX = —-X- Qp—qu—mQOX =0

by Lemma 12. Equations 4 and 5 follow from the observation made above that
Q. interchanges F_ and F,. O

LEMMA 14. For the frame field (7.14),

(7.22) dx = wPe, + weq + whe,
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(7.23) deg = weq — w¥eq + whey,

where WP, w®, w* are linearly independent one-forms on U with coefficients be-
ing functions on U XV, and

(7.24) W =78 — W™,
A smooth coframe field on U X V is given by w®, wP,w®, wk.
Proof. The expression (7.22) for dx follows from the fact that x : U — R

is an immersion and then w4 = dx -e4, for A=m+1,...,2l — 1. Combining
this with (7.9), we have

deg = dQo x + Qodx
(7.25) = 7§ Qax + W M QoQaQox + w*Qoen + w'Qoey

a+m)

= (10 —w eq —wq +whe,

which proves (7.23). O

For t € R, the tube of radius t about M is given by the immersion
(7.26) X:M — S%71 % =costx +sintep.
A unit normal vector field along X is
(7.27) €y = —sintx + costegy
and a Darboux frame field along x is given by
(7.28) X, €a; €p; €y €41y €0
From (7.22) we compute
dx = sintweq + costwPe,
+ (cost — sint)w%ey + (cost + sint)wte,,,
(7.29) . ( ' ) « ( ) 1
déy = costw’e, —sintwle,
— (cost + sint)w®eq + (cost — sint)whe,,
which shows that
0* = sintw®, 0P = costw?,
(7.30) . .
0% = (cost —sint)w®, 6 = (cost+ sint)w”

is an orthonormal coframe field in M for the metric dx - dx induced by x. The
second fundamental form of x is then

Il;, =—dx - déy
cott—i—lea o cott—1
cott —1 cott+1

= cot(—1)0%0% + cot(% — )PP + cot(% — )00 + cot(%7T e

=—cott0%0® + tant 6POP + o+ o+
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from which we conclude that the principal curvatures are the constants cot(—t)
and cot(m/2 — t), each with multiplicity m and the constants cot(mw/4 — t)
and cot(3mw/4 — t), each with multiplicity V. In addition, the Darboux frame
field (7.28) along X is of second order. Therefore, the x for ¢t € R is an
isoparametric family of hypersurfaces in S?~! and x is a focal submanifold.
This is the Ferus-Karcher-Minzner construction, (FKM construction) [13], of
an isoparametric hypersurface from a given Clifford system.

We next calculate equations (4.18) for the FKM construction for a given
Clifford system.

LEMMA 15. For the Darbouzx frame field (7.14) along x, the coefficients
of the forms 04 = de4 - ep in (4.18) are given by

Fﬁz = Qp-mQaX - €q, Fﬁa = Qp-mQax- ()
(7.31) y 1 . 1
Fla= _§Qa€,u ‘€, Fap = _§Qp—m€u * €

Proof. These coefficients are determined by 67, 65 and 65. From (7.9)
and (7.22) we have

32) deg = dQu x + Qudx
. = —715e0 + Tgeb + wb+mQaeb+m + w¥Qqeq + wW'Qaey

and from (7.9) and (7.23) we have

(7 33) dea+m = an ey + Qade(]
‘ = —T0X + Té’eb+m + wbQuep — w*Qquea + W'Qqey.

Using Lemma 13 and (4.18) we have

] o I
Fb+maw — K

uw _ pb+m
b+maw - 6(1

= deq - eptm
(7.34) o u
= W Qulq * Cpym + WQaey - ppm,
which implies that
Fl,Oé+ma = Qqta - €btm = Qata - QpQox

= QOea : QaQbX = —€q- QaQbX = Qanx T €

which is the first formula in (7.31), and similarly,

_Fé:_ma = Qae,u - QpQox = Qae,u -Qpx = €u - Qalpx
which gives the second formula in (7.31). In the same way,

(7 35) Fba—&-m awb+m - 2F5aw# = 93 = dea " Ca
= Wb+mQaeb+m “eq T+ quaeu e
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which implies that —2F%q = Qqe€,, - €, which is the third formula in (7.31).
Next,

(7.36) Fo oy’ = 2F " = 034 = deasm - €a

= Waneb ceq T+ quaeu * €

which implies that —2F*

aa+m

= Qqeu - €q, which is the fourth formula in (7.31).
O

COROLLARY 16. With respect to a Darboux frame (7.14) along an FKM
construction x : M — S%=1 the coefficients (7.31) satisfy the equations

(737) thaer = Fga’ (;X+mb = _Flyoé+ma? F5+mb Flfima
Proof. From (7.31),
1
F(S(H»m = _§Qaeu Tl = F(éjaa
(7.38) o e D
a+mb + b+ma — (QaQb + Qan)X €a = U,
F! a+mb + FIZ{—ma = (Qa@b + Qan)X Cey = 0. O

PROPOSITION 17. For the Darbouz frame field (7.14), at any point of
U xV C M, the operators Qq, Q. are given by

(7.39) Qox =ep,  Qoeo =X, Qoea = —Catm,
QOea—I—m = —€q, Qota = —€q, QOeu = €u,
and for each a
an = eav

Qa0 = €a+m

Qaep = 6apX — Lipecym + For aam bCa T I3 et b
Qaeb+m = dapeo + Lgpec + Fb+m aCa Flﬁ&—ma

Qata = Fg—s—m b€b T Film aCbim — 24 ey,

Qaey = a+m bEb — Fl;u+m oo+m — 2FY jea;
where the coefficients are as defined in (7.16) and (7.31).

(7.40)

Proof. The expansion (7.39) of Qq can be verified by inspection. Also easy
are the calculations Qzx = e, and Que0 = QuQoxX = €q+m. 10 calculate @,
on the remaining basis vectors, we use the fact that the basis is orthonormal.
In the following calculations we use (7.1), (7.15), (7.14), (7.16) and (7.31).

Qaeb X = QaQbX X = 5(11)7
Qatp - €0 = QaQpX - Qox = QoQaQpx - x =0
Qaep - ec = QulpX - Qex = QcQuQpx -x = 0,
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Qaet - €crm = QuQpx - QeQox = QuQuQcQox - x = Li, = —L,
Qatp - €a = QaQpX - €0 = Flt 1,
Qaev - €y = QaQvx - €, = Fl,
give the expansion of Q,ep.
Qahrm - X = QaQpQox - x =0,
Qahrm €0 = QaQpQoXx - QoX = dap,
Qalorm - €c = QuQpQoX - Qex = QcQuQpQox - x = L,
Qabtm - €ctm = QalpQox - Qclox = —QcQa@px - x = 0,
Qatoim - €a = Qu@QpQoX - eq = —QuQpX - eq = I}y 0
Qatoim - ey = QuQpQox - ey = QuQpx - €, = —FJ',
give the expansion of Quéepim,. Using also (7.13), we find
Quea X =¢€q  Qux =0,
Qaa - €0 = Qaea - Qox = Qaeq - x =0,
Qata - €p = Qoo - QX = €q - QuQpXx = Fly 1y,
Qoo €3 =0,
Qaa - ey = Qaea - €y = —2Ff,
give the expansion of Q,e.
Qaep-Xx=¢€, - Qux =0,
Qaep - €0 = Qaey - Qox = —Qqey - x =0,
Qaep ey = Quey - Qux =€, - QuQpx = FL' .
Qaeu - ehim = Qaey - QvQox = ey - QuQuvx = —FJ',
Qaey - q = —2FF
Qaep -, =0

give the expansion of Qe,.

LEMMA 18. For the Darbouz frame field (7.14) along x,

(7.41) 92 = 73 + Lgcwc+m + F ™ + Féﬂrmbw“,
9Zi% =704 Ly’ + F o™ + Fy o

and therefore

(7.42) b — gt = L1 (wF + ).

Proof. Using (7.9) and (7.22), we find
0° = dey - ey = d(Qqux) - €
(7'43) = (TéQix + praep + waQaea + W“Qaeu) * €

b + a
=T, + w" mQaec—l-m ey T w Qaea cep+ quaeu *€p

27
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which combined with (7.40) gives the first formula in (7.41). The second
formula is derived in the same way. O

8. Necessary conditions to be FKM

Let X, €q, €p, €, €, €0 be a second order frame field (2.2) in U C M along
an isoparametric hypersurface x : M — S™. We continue using the index
conventions in (4.6). Let x = coss; X + sins; €y be a focal submanifold and
let eg = —sins; X + cossyeg so that x,eq,eq, €, €q,€, is a Darboux frame
field (4.16) along x on U. Let w®, wP,w®, w" be its coframe field (4.13) on U.
We look for conditions on this Darboux frame field which imply that x comes
from an FKM construction.

PROPOSITION 19. Suppose that x satisfies the spanning property (Def. 8)
onU. If

(8.1) F5a+m:Fga

on U, then

(8'2) Fl?+ma+Fc?+mb =0

(8.3) Fb’ﬂrma—kFéﬂrmb:O

(8.4) 0y — Ggifr’f = L. (w4 w™), where LY. = —LZC =—-L%
onU.

Remark 20. By Corollary 16 and Lemma 18, equations (8.1)—(8.4) hold
for the Darboux frame field (7.14) defined along an FKM x.

Proof. The summation convention is not used in this proof. If we subtract
the fourth equation in (5.2), with p = a + m, from the third equation in (5.2),
we obtain

(8'5) Z(Fsai B Fga-i-mi)wi = Z Fcfb(egi% B 92)
b

(2

Putting (8.1) into the second equation of (5.9) gives

(86) Fgaﬂ = Z(ngFbﬁ—l-ma + QFZ;bFl?jrma)
b
and putting (8.1) into the second equation of (5.10) gives
(87) Féja-{—mﬁ = _Z(ngFf-‘rmb—'_Qng (?—i-mb)'
b
Subtracting (8.7) from (8.6) we get

(8.8)

_ & B
Flus = Flapns = 2 (FoF o + Flrns) + 255 (o + Fms))
b
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Likewise, using the third equation in (5.9) and in (5.10), gives
(8.9)

Fcljau - Fga—&-mu = Z (Fo/jb(FI;/—&-ma + F, +mb) +2 (Flﬁ-ma +Fcl;+mb))
b

_ Qa—i—m

. a .
Expressing 0) — 6,7 in terms of our coframe field, we have

(8.10) O — O = (Lo + L oy ™) —|—ZL W —|—ZL

Cc

where the coeflicients are smooth functions on U, each skew-symmetric in a, b.
By the spanning property, as expressed in (a’) of Remark 9, we may assume
the basis of V; chosen so that for some «, the set of vectors

{Z FF e, all pu}
a

spans Vj. Fix this choice of a. Substitute (8.10) into (8.5) and compare the
coefficients of w® on each side to obtain

(811) Fgaoa - Fga—i-ma ZFSI)L?&
b
Compare this to (8.8), in which we set 5 = «, to obtain
(8.12) Dl B o+ Fiins) = Lia) =0
b

for all @ and p. By the spanning property, then, the vectors

2(3(Fl?+ma + F +mb) Lga)eb
b

for each a and u, are orthogonal to every vector in V{. Therefore,

(813) 3(Fl;1+ma + F +mb) ga'

The left side of this equation is symmetric in a, b, while the right side is skew-
symmetric in a,b. Therefore, for our choice of «, (8.2) holds and

(8.14) o

for all a,b. Now, (8.8) becomes, for our choice of o and for any [,

(8‘15) F(Zaﬁ aa—i—mﬁ - Z Fab b+ma Faﬁ—l—mb)

Substitute (8.10) into (8.5) and compare the coefficient of w® with (8.15) to
obtain

&) g _
Z F (Fb-‘rma Fa+mb gﬂ) =0
b
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for all a, 8, and . Again, the spanning property then implies that

8
Fb+ma + F a+mb — gﬁ
for all a, b, and 3. Hence, as before, each side of this equation must be zero.
Therefore, (8.2) and (8.14) hold for all a, b, and «.

We can prove (8.3) and
(8.16) o, =0

for all a, b and p in a similar way, by first fixing an appropriate g and comparing
coefficients of w# in (8.5) after substitution of (8.10) into it. In this case (b)
of the spanning property is used.

With (8.2) and (8.3) now true, we see that (8.8) and (8.9) become

(8.17) Rl =F o Fl,=Fl
and (8.14) and (8.16) substituted into (8.10) give
(8.18) 0 — Opim = (Liuw” + L oy p™™™).

C

Substitute this into (8.5) and compare coefficients of w® and wt™ to get

ZFSIJL?C = Fa Fo/ja-‘rmc?
(8.19) b
Z ngLgH»m - ngzc—l—m - F5a+mc+m'

Subtracting gives
(820) Z Fgc( b~ Lngrm) = Fcljab B Féja—l—mb B Faab+m + Faa+mb+m'
c

We want to show now that the right hand side of this equation is zero on U.
To that end, we begin with the first equation in (5.9), which says

(821) aab:__z c+ma C+mb+ Z c+mb c+ma

Also, (5.11) says

1
(8.22) F " "

I I
aat+mb 9 a+mba’ F

aab+m 9 b+maa
and the first equation in (5. 10) states

(823) Faa+mb+m = Z a+mcha+mc - Z b+mec a+mc
Hence, by (8.2) and (8.3), the right hand side of (8.20) is
Foljab F5a+mb_Faab+m+Faa+mb+m

1
— o a I3 U
- __Z c+maFc+mb+ Z c+mec+ma_ EFa—i-mba_ Fb—i—maa
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o _ 1 I
+5 E a+m ch+mc - E b+mc a+mc - (Fa+m ba Fb+m aa)

§ : § : a
+5 a+mc +mb+Fb+mc c+mb c+ma Fa+mc)

1
5
and so we want to show that this last term is zero on U when (8.1), (8.2)
and (8.3) hold. By the second equation in (5.2),

17 c+m 123
Z a+mbi% dFaer b Z ct+m beaer Z a+m C‘9b + Z at+m be
and
— © ct+m
Z b+m azw de+ma Z c+m aab+m Z b+mc a ot Z Fb+ma v

Sum these two equations and use (8.2) and (8.3) to get

Z(th—f—mbi + Fb—‘rmaz) ' Z (Flﬁl—&—mc(eginﬂlz - 96) Folzl—l—mc(egi:z - 95)) :

% c

— FM

n
F, b+m aa)

a+m ba

By (8.18), the right hand side of this equation is in the span of the set of
1-forms {w¢ w™™ :c=1,...,m}, and therefore the coefficients of w® and w*
on the left hand side must vanish, to give

Fli

b+mav

(8.24) F*

a+m ba

— 0’ )l

a+m bl/

+ R =0

+m ac

and we have finally proved that the right hand side of (8.20) is zero on U, and
therefore

(8.25) > Eh(Lie = Licyp) =0
b
on U, for all a, ¢, a, and pu. Multiplying this equation by the X = > x,e, of
(a) of the spanning property, we conclude that
(826) gc - Lgc—i-m =0
on U for all a, b, c. Substitution of this into (8.18) gives

(8.27) — gt = ZL,,C w® + wetm).

To complete the proof of (8.4), it remains to show that
(8.28) Ry
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on U, for all a,b,c. By (5.2), (8.1) and (8.27), and the known skew-symmetry
Ly, =1}

ac’

(8.29) Z L i —Z "W +ZFM Lb (w€ +wtm).

Comparing the coefficients of w®, we have

(830) Fga—l-mc = Féjac + Z ngLZc'
b

Interchanging a and ¢ and then summing, we have

(831) Fu c+ma aac aca + Z ng Lbc + Llc)a)'

aat+mece

+ F

By the first equation in (5.9),

(8.32) e+ Fliog = 0.
Hence
(833) Fo/ja-i-mc + Folj

ctma — Z Féjb(LZc + Lga)
b
on U for all a and p. In (8.29) compare the coefficients of W™ to get
b
Féja—&-mc-{—m = Féjac—&-m + Z ngLac‘
b

Interchange a and ¢ and sum, to get

b b
(834) Fu + Foljc+ma+m Fgachm aca+m Z FH L + Lca)'

aat+mct+m

By the first equation in (5.10),

F(l)ja—l—mc—ﬁ—m + Féjc—i—ma-{—m =0
and the last equation in (5.11) says that
Foljachm = Foljc+ma and Facaer = Foljaerc'

Therefore, (8.34) is

(835) Fgcﬂ—ma—f—Fga—&-mc = _ZFSI)(‘LZC—'_LZ&)‘

Combining this with (8.33), we conclude that

(8.36) ZF“ (Lb.+L2) =0

for all a, ¢, a, u. The spanning property then implies (8.28). O
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Resume use of the summation convention.

PROPOSITION 21. If equations (8.1) through (8.4) hold on U, then

(8'37) Fca—i-ma gd + FcojrmbLZd = Q(FgaF;+mb + FoﬁszFd#era)’
(838) Fcu—l—ma gd + Fc#—i-mb Zd - 2(Fl;x+mdFo/ja + Ft?erngb)?

1 1
(839) F5b+ma = LgaFgc - §F5+meg+ma + §F5+maFg+mb'

Proof. These identities come from differentiating (8.1) through (8.3). Us-
ing our definition of covariant derivative in (5.2), we have

(8.40) dFél‘*‘ma + Fbﬁ—i-m aeg - Fca—&-m aegjg; - Fba-i-m o = Fba-i-m aiwi’

« 6] « « c+m « c_ pa i
dFa+mb + Fa+m beﬁ —Letm bea-i—m - Fa+m cgb - Fa+m bW -

Summing these two equations and using (8.2) and (8.4), we get

(8.41)  (F°

d d )
c—i—maLgd + Fg+mbL2d)(w +w +m) = (Flgkmai + Fc(Lermbi)wl'

Equating the coefficients of w?, we have
(8.42) FomaLlia + Foymplad = Foymad T Faimoa-

From (5.7) we see that the right side of (8.42) is

(8.43) _FlﬁrmaFoljd_2Fl¢+mnga - F(iLerngd - 2F5+mdF5b
= 2Fclll+m nga + 2F5+m aFt‘)ij

where the last equality comes from using (8.3). Now (8.37) follows from (8.42)
and (8.43). Equating the coefficients of w®™ in (8.41) leads again to (8.37).
Equating the other coefficients leads to the identities

(8'44) Fl?—i—maﬂ + Fg—&-m bg — 0 and Fl;x-i-mau + c?—i—mbu =0.

We next find the consequences of taking the covariant derivative of equa-
tion (8.3). Again by (5.2), we have

dF) o+ Fpm a0 — Fl 0 — FY 6 =Fl

(8 45) ctma’b+m b+mc’a b+mai
: " v W ok ctm c__ i i
dFa—l—mb + Fa+m b01/ Fc+m b9a+m Fa+m 6017 - Fa+m b

Summing these equations and using (8.3) and (8.4), we get

d d )
(846) (Fézrma gd + Féf#mb gd)(w tw +m) = (FI;qumai + inﬁrm bi)wz'
Equating the coefficients of w? we have
(8‘47) Fcu-i-made + Féu—l—mb ccld = Flﬁrm ad + Fﬁ-&-m bd*

By (5.8), the right side of (8.47) is
(8.48) Fvmal g T 25 mal e + Flmu Py + 2F 0 aF -
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Using (8.2) in (8.48), we then arrive at (8.38). Equating coefficients of w+™
in (8.46) also leads to (8.38). Equating coefficients of w® and of w* gives

=0 and F/

b+mav

+ FH

a+m ba

+ F* 0.

atmby —

(8.49) !

b+maa

Finally, substitute the first equation of (5.9) into (8.30) to arrive at (8.39). O

We define the covariant derivatives of the Ly, to be the coefficients L,
of the 1-form

(850) dLgc + Lgceg - 3095 - gdeg - Lgciwi'
Remark 22. If the Lj. are skew-symmetric in all three indices, then the

functions L, are skew-symmetric in a, b, c.

PROPOSITION 23. If equations (8.1) through (8.4) hold, then the L., are
skew-symmetric in all four indices, and

1 1
gcd = 5(5ad6bc - 5a05bd) + §(Lge gd - ge le)c)

(8.51)

+ Ft?+m aFl?—‘rmb - Fél—l-mecélma;

a *1(5(5—(55)4-1/1 e_'_l(La e_ae)

(852) bcd+m — o \fac bd ad®bc bedc g \Hee bd debc

+ Fz?—&—ma ca—l—mb - F5+meg+ma;
(853) gca = ge (g+mc + 2(F£aF£+mb - ngFclA—&-ma);
(8'54) gc,u = LgeF£+mc + 2(’{:Zfb’{:wcojrma - F(ga ca—i-m b)?
(855) 25ac(5bd - 5ad6bc - 5ab5dc - Lge 26 + Lge ge

+ 2(Fl?+mcha+ma + Fl?—l—maFda—l—mc);

(856) Lgcd—i-m + Lgdc—i—m =0.

Proof. This proposition is a consequence of taking the exterior derivative
of (8.4). Notice that (8.56) follows directly from (8.52).
Using (4.18) and the structure equations (2.4), we find

d(8f — 01™) = W AW — WA WP

b+m
+(FCOé+maF§+mb + FéL+maF5+mb)(wc+m A wd-‘rm — WA wd)
d d d d
LG8 — Loty + LegLie(w® +w™™) + 2(FRFY = FhFY )W
F2FF o = FhaFomp) ] A (8 4+ w™).
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By (5.1),

d(Ljo(w® +w™)) = (dL, — Ljbe — Li, Lgw™™

- LngL?+m cwa - LngéLercwu) N (wc + wc—i—m).

The exterior differential of (8.4) is obtained by equating the preceding two
equations and using (8.50), to get

o A ()
:[—5aewb — Spewt™

d
+ ( 3cLbe + Fg—i—maFg—I—mb + Feu-ﬁ—m aFcu—&-m b)wc

(857) a rd a rd a a 1Y 14 ct+m
+ (Ldece + deLbe + Fc+maFe+mb + Fc+maFe+mb)w
+ ( gc ca+me + 2F5aF£+mb - 2F£+maF5b)wa

(LG Fl e + 2F o Pl — 2FLLFEL W] A (0 + w0 ).

aa” e+mb

Equating the skew-symmetrized coefficients of w®Aw¢ in this equation, we have

gec - gce = LchlC)le - ?leLzlc - 5a65bc + 5&05be
(858) 67 67 o @

etmat ctmb ~ Lt ctmat etmd

+Ft, JFY —FY R

etma” c+mb ctma” e+mb-

Rewrite (8.58) with b and e interchanged and add the result to (8.58). Using
the facts that Lzle, LY., F2 ., and Fe“ tmyp are all skew-symmetric in b and e,
we get from this sum

bee T Les = LpaLeq + LegLipg + Saedbe + dabdec — 20aclbe
(859) + Flf—li-mcFecima + Fba—&—m aFea+mc
+ F£+m aFlfL—i—mc + Fl;u—&—m aFcH-Fm c’

Equating the coefficients of w® A w®t™ in (8.57), we find
(860) gec - gce+m = Lchge - LgdLgc - geLgc'

Rewrite this equation with b and ¢ interchanged and add the result to (8.60).
From the skew-symmetry of Ly, and L, in a,b,c, it follows from this sum
that

(8.61) Ly, .+ Li,=0

€

from which we conclude that Lj, ; is skew-symmetric in all four indices. Putting
(8.61) into (8.59), interchanging d and e and using the first equation in (5.6),
we arrive at (8.55). Putting (8.61) into (8.58) and using the first equation
of (5.6), we get (8.51). Substitute (8.51) into (8.60) to obtain (8.52). Go
back to (8.57) and equate coefficients of w® A w® to obtain (8.53), and equate
coefficients of wH A w® to obtain (8.54). O
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9. A sufficient condition to be FKM

Let X, €q, €p, €a, €, €0 be a second order frame field (2.2) in U C M along
an isoparametric hypersurface X : M — S™ C R"l. We continue using the
index conventions in (4.6). Let x = coss; X + sin s1 €y be a focal submanifold
and let g = —sin s1 X + cos s1 €g so that

(9.1) X, €0, €q, €p, €y €y

is a Darboux frame field (4.16) along x on U. Let
(9.2) w WP w, wh

be its coframe field (4.13) on U.

THEOREM 24. Ifx satisfies the spanning property (Definition 8) and con-

dition (8.1), FY, .., = Fla, on U, then it comes from an FKM construction.

Proof. 1t is sufficient to prove the theorem locally, on some open neigh-
borhood, because isoparametric hypersurfaces are algebraic. For each point in
U, the vectors of our Darboux frame field (9.1) form an orthonormal basis of
Rt Linear operators Qg, @, on R"! depending on the point in U, can
thus be defined by (7.39) and (7.40), which we recopy here for easier reference

(9 3) Qox = ep, Qoeo = X, Qoea = —€a+m;
QoCatm = —€a, Qota = —€a, Q()eu = €u,
and for each a
Qux = e,

Qa€0 = €a+m>

_ 1%
Qaeb = dapX — Lgpectm + Folompea + Foveps

(9.4)
Qaeber = 5ab60 + Lzbec + Fl>a+m aa — Flﬁ,—m aCus
Qoo = ;{—&—m peb + Fba—&—m a€b+m — 2F5aeﬂ’
Qaeﬂ = Fcil—&—m bEb — Flﬁﬁ—m abbtm — 2F0ljlleO”

where the coefficients are defined as in (4.18) and (8.4). We first outline the
quite elementary proof of the theorem, and then follow that with a proof of
the details. The first detail is:

(I). At each point of U these operators are symmetric, orthogonal and
satisfy

(9.5) Qle + Q]Ql = 2(51']'[, fori,7=0,1,...,m.

Given that, next one proves the second detail:
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(IT). There exist a (constant) Clifford system P,..., P, on R"*! and a
smooth map

(9.6) B:U —SO(m+1)

such that at every point of U,
m .
(9.7) Qj:ZB;Pi, for j=0,1,...,m

It will then follow that x maps U onto an open subset of the focal submanifold
M defined in (7.4) by this Clifford system, and that the Darboux frame
field (7.14) coming from the FKM construction applied to Py, ..., P, coincides
with our frame field (9.1). Therefore, our x : U — S™ coincides with the FKM
construction applied to this Clifford system.

We turn now to the proof of detail (I). The verification that each @; is
symmetric can be done almost by inspection. It is equally clear that Qg is
orthogonal, since it sends the orthonormal basis (9.1) to an orthonormal basis.
The operator @, sends the orthonormal basis (9.1) to the set of vectors given on
the right hand side of (9.4). Among these vectors, Q,x, Qq€p is an orthonormal
pair orthogonal to the remaining vectors because Lj, are skew-symmetric in
a,b,cand F . and F mp are skew-symmetric in a and b.

In the following Verlﬁcatlon that

{Qaeln Qaeberv Qauta, Qaeu :b,a, M}

is orthonormal, we do not use the Einstein summation convention as a will
always be a repeated index which is not summed. We proceed through all the
cases.

Qaep - Qaed = dqpOad + Z LZCLZC

Z +mb a+md+z a+mb aerd_dbd
by (8.55) with ¢ changed to b and b changed to a.

Qaeb Qaeder - E a+med+ma E : a+mb d+ma =0

by the first equation in (5.6).

Qatp - Qua = Z LZcha—l—ma 2 Z a+m bFu =0
c

by (8.37) with d changed to a.
Qaep - Qae,u = - Z LchéL+ma 2 Z Fc?ernga =0
C 6
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by (8.38) with d changed to a.

Qaebrm * QaCdrm = dapdaa + Y LipLiy
c
+ > FmaFdimat Y FlimaFtima = Obd
a 1
by (8.55) with ¢ changed to b and b changed to a.
Quvim * Qaa = Y LypFl o +2> Flt  Fh =0
c p
by (8.37) with d changed to a.
Qalhim - Qaty = Z LayFoyme =2 Z L
c a
by (8.38) with d changed to a.
Quea~ Ques =2 Fimalyima+4Y FlaFly, = dag
b Iz
by the second equation in (5.6).
Qata - Qaey = ZFg+me5+mb - ZFZ?—l-maFlﬁl—ma =0
b b
by (8.2) and (8.3).

Qaeu ’ Qaey =2 Z Flﬁi—maFéj-i-ma + 42 Fc'LuLaFolz/a = 5#’/
b «

by the fourth equation in (5.6). This completes the verification that each Q;
is an orthogonal transformation.

We proceed now to verify (9.5). For this we return to using the Einstein
summation convention. Clearly Q3 = I. To verify that QoQ, + QaQo = 0, for
all a, we set S = QpQs + QaQo and evaluate it on the basis vectors.

Sx = Q()ea + Qan = —€g+m t €atm = 0.
Seg=Qoeatm + QuX = —€q + e, = 0.

Sep = Q0(5abx + LZcechm + Fg—&-m pa F5+m beu) + Qa(_eb—l-m)
=0abeo — Lbsee — Fyppea + FYL ey
—5abeo — Lzbec — Fﬁ_maea + Flﬁ&—maell = 0.
Seprm = Qo(daveo + Liyee + Fyl oo — Fé‘+maeu) + Qu(—ep)
=0abX — Lgpetm — FpmaCa — Flﬁm aCu
—0apX — Lgc€c+m - Fo?—&-m bCa — Ftitmb

Seq = QO(Fg-s-m p€b + Flfé—s-m aCb+m — 2F5aeu) + Qa(—ea)

ey =0.
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= 7F§+m bCb+m — Fba-l—maeb - 2Fc€ae#
—F ves — Byl aCorm + 2F e, = 0.
Sey = QO(F5+m pEb — Flfim aCb+m — 2Ff,eq) + Qatp
= _F5+m pCo+m T Flﬁi—maeb + 2F} ea
HF € = Fy i gorm — 2Fhqeq = 0.

Therefore, S = 0, which is what we wanted to prove.

Next we verify that Q,Qq + QiQa = 20441 for all a and d. For this
verification we let T' = Q,Qq + Q4Q. and evaluate it on the basis vectors.
Tx=Qqeq + Qia = GaaX + Liecim + Fymaca + FLl\ o sen
+ddaX + L ectm + Féﬂrmaea + F5‘+mae# = 2044X;
Teo = Qaldrm + QdCatrm = dadgeo + Lggec + Fi oo — Fiip, o€
+0dac0 + Lggec + Ftmata — Fiyy geu = 20ad€o;
Tep = Qa(0arX + Licecrm + Fiimpea + Fliinyen)
+Qa(0apX + L ecrm + F'yppea + Fysmpen)
= (L5, + Lbg)eo + (6padae + Opadae + Ly L. + Lb LG,
b Faime + FaymoFdrme T FipmpFarme + FopmpFiime)€e

o a o @ " " w u
+(Fd+m bFe+ma + Fa+mb et+md Fd+mee+ma - Fa+mee+md)ee+m

b b

+(de ca—i-ma + Lac ca—&-md - 2F£L+me5a - 2F5+m ngd)ea
b b

_(deFcM-I—ma + Lach+md + 2F§+me5a +2 ;{-‘rm ngd)eﬂ

= 204d0%c€e = 2044€h;

where the coefficient of e, comes from (8.55), the coefficient of e, is zero by
the first equation of (5.6), the coefficient of e, is zero by (8.37) (with the roles
of b and d reversed) and the coefficient of e, is zero by (8.38) (with the roles
of b and d reversed).
Teypm = (LG, + Liy)x

+(Flg+mch(zl+mc + Fl?—l—maFg—s—mc - FI;LL+mdF5+mc - Fb‘qumaFi}mc)eC

+(6db5ae + 5ab(5d6 + LgbLge + LgbLge

+Fl?+m ng—i—ma + Fl?jrma eaerd + Flﬁi-mdFéu—l—ma + F(fim aFequm d)€e+m

+( nganrmc + LZch(lx—i-mc + 2Flﬁ,—m dFolja + 2Flﬁ,—m aFcljd)eOé

+( ZbF(;ﬁi-mc + Lngg—f—mc - 2Fba+m dFolja - 2Fba+m aFéjd)eM

= 25ad5beee+m = 26ad€b+m7

where the coefficient of €., comes from (8.55), the coefficient of e, is zero by
the first equation of (5.6), the coefficient of e, is zero by (8.37) (with the roles

of b and d reversed) and the coeflicient of e, is zero by (8.38) ( with the roles
of b and d reversed).

Teq= (Fc(ll—i-ma + F(?—i—md)x + (F(;l-‘,—md + Fc?—i—ma)eo
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(Fb-‘rm dL pt+ Fb+ma 2F Fi—l—mc 2F Fc!il—i-mc)
(Fd+m bLb + F +mbL Fu Fcu—i-ma + 2FaaFc+m d)ec+m
+2(Fb+mde+ma + Fb+m an+md + QFSdF“ FgaFll;d)

+(Fplm de+ma + Flﬁrmanﬁrmd Fba-l-mde—i-ma Fb-!-mtlFlﬁ‘rmd)eM
=200300d€3 = 20ad€q,

where the coefficients of x and eg are clearly zero, the coefficients of e. and
of ecym are zero by (8.37) (in which the roles of a,b,c,d are here played by
a,d,b,c), the coefficient of es comes from the second equation of (5.6) and the
coefficient of e, is clearly zero.

Teu - (Fg—‘rma + F) a+m d) (F(i:—md + Fj—‘rm (l)eo
( (Fu F+mb+F5aFd+mb) +Féu+mdLb +Ff+made)eb
( d+mc ac + 2F5de+ma + F(f—‘rm cL + 2F Fb—l—md)eb-l-m

F(FY o Farme = Flemalbima + FormpFdvmo = Foymalbima)€a
+2(Fd+me +mb+2F FV +F+med+mb+2Fa ad)

= 20ad0uey = 20q4€,,

where the coefficients of x and eq are clearly zero, the coefficients of e, and ey,
are zero by (8.38) (in which the roles of b and d are reversed), the coefficient
of e, is zero by (8.2) and (8.3), and the coeflicient of e, comes from the fifth
equation of (5.6). This completes the proof of detail (I).

In order to prove (II), we must find a Clifford system Py, ..., P, which
is related to Qo,...,Q@m by (9.7). We do this by finding the map B : U —
SO(m +1) of (9.6). Let

(9.8) V= w4 Wt
Use (5.1) together with (8.2)—(8.4) to find

(9.9) dv® = —vf AV

where

(9.10) vy = 0f + LGw ™ + Fw + FI ol = =),
Set

(9.11) 1/1? = —1/8 = b= —(wb —|—wb+m).

We shall verify below that

(9.12) dQ; = ZQk for j =0,.
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Differentiating this, we find that
. m .
(9.13) dV;:—ZV}C/\VJk, fori,j =0,...m.
k=0

In fact, (9.9) is the case i = a, j = 0 and also implies the case i =0, j = a. To
verify the remaining cases in (9.13), we take the exterior derivative of (9.12)
when j = a, and then use (9.12) and (9.9) to find

0=ddQq = dQo A V2 + Qodv? + dQy N V1 + Qpdr®
(9.14) = Qo A Y + Qov AV + (Qovy + Q) A i + Quav,
= Qup(dv? + V2 AVE+ VP AV + Qo(vd AV + 1) AV,
which implies (9.13) because the coefficient of Qg is zero and the @) are linearly
independent at each point of U, as can be seen from the fact that Qpx = ¢

are linearly independent at each point. Define the o(m + 1)-valued 1-form v
to be

(9.15) v = <O ”f?>.

oY
Then (9.9) and (9.13) imply that dv = —vAv. Therefore, on a simply connected
subset of U, which we continue to call U, there exists a smooth map

(9.16) A:U — SO(m+1)

such that A~'dA = v. Denote the entries of A by the functions A;, i,] =
0,...,m, so that the entries of dA = Av are given by

(9.17) dAL =" Ay,
k=0
Let
(9.18) Pi=Y AlQj, fori=0,....,m
j=0

which, at each point of U, is a set of symmetric, orthogonal transformations of
R"*! satisfying the conditions P;P;+ P; P; = 20;;1, since Q;Q; +Q;Q; = 20;;1
and A € SO(m + 1). By (9.12) and (9.17),

(9.19) AP =) ((dA)Q; + A%dQ;) = > (AjQuvf + AiQuvf) =0
j=0 4,k=0
since 1/;- + Vf = (0. Therefore, each P; is constant on U and F, ..., P,, define

a Clifford system on R™™! and (9.7) holds with B = A~L.
All that remains of the proof of detail (II) is to verify (9.12), for which
we need the Maurer-Cartan equations (4.20) for our Darboux frame field. We
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first verify (9.12) for j = 0, then for j = a, in both cases by evaluating each
side on the basis vectors. Differentiating equations in (9.3) and using (4.20),
we get

(dQo)x =d(Qox) — Qo dx
=deg — Qo(w™ ™ eqim + weq + whe,)
=w, — wq +whe, +w e, +we, — whey,
=1v%4 = V*QyX.
(dQo)eo = d(Qoeo) — Qo deg
=dx — Qo(weq — w%q + whe,)
=v%4im = V' Qqep.
(dQo)ea =d(Qoea) — Qodeq = —deqtm — Qo deq
= V% + (Wit — w3+m)€b + (wh — Wil ebtm
+(ws — wiim)ea — (Whi, +wh)ey,
= Vb<5abx + Lopectm + Fylima€a + Fbu—l—ma M)
= l/beea.
(dQo)ea+m = d(Qoeatm) — Qo dearm = —deq — Qo d€a+m
= (" +w™™)eq + (watm — wa)eb + (Warm — wo ™) ebrm
+(Watm — Wa)ea — (Wetm +wh)ey
=10(6ape0 — LEpe. + F& mb€a — F5+m bEn) = VP Quearm.
(dQo)ea =d(Qoen) — Qo deq = —dey, — Qo deq
=W —wl)eq + (WS — wE ™) eqrm — 2whe,
=V (Fb-f—ma Fb+ma€a+m 2Fo/jbeu) = Vbeea
(dQo)e, = d(Qoey) — Qo dey, = dey, — Qo dey,
= (0, + 9“+m)(ea + ea+m) + 205 €a
(Féjrma(ea + eatm) = 2Ffyea) = v Qbeu
This completes the verification of (9.12) for the case j = 0.

We now verify the equations in (9.12) for the cases j = a by applying each
side to the basis vectors. By (9.4) and (4.20),

(dQq)x=d(QuX) — Qudx = dea — Qo(w b+meb+m +wq +whey,)
=—v% gy + (92 — Lb R erbw F5+mbwu)€b
+(02+m - Fba-l—ma Flﬁi—ma )€b+m
+(93 - Fl?jrm awb+m + 2Fo/jawu)€ (HM + b+ma b+m + 2Fo'ljawa)eﬂ
=—vieg + Vgeb = (VSQO + Vng)X.
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(dQa)eo = d(Qqeo) — Qadeg = degim — Qa(w’ep — weq + whe,,)
= (—w™™ — W + (00 Fe ™ — Fwh)es
(Ot — Lo’ + Fb+m a0 B ") eem
+(054,, — Fo +mbw + 2FF wheq
+(0 ., — FV +mbw 2FE w%)e,
=%+ («921% Loy + Fpp o™ + F 0P )ebm
— v Ve = (0Q0 + 12 Qu)eo,
where the coefficients of ey, e, and e, are zero by (4.18), and (9.10) is used in
the coeflicient of epy .
In order to verify (9.12) when both sides are applied to ep, we must verify
that

(9.20)
d(Qaep) — Qadey = (an)eb = v3Qoep + V5Qcep
= V x + (dpav® + Lbc Vg)edrm + El pvsea + F+mbu eu-

Using (9.4) and (4.20), and gathering together the coefficients of each basis
vector, we get

d(Qaeb) - Qadeb
= (Lo ™ = Ft o™ = Fiy 0" = 05)x

(
+ (Fampw™ — Fu—i-m ' — 9a+m)€0

d d
+ ( b‘gc—i-m +m be + F, a+m be
d
- Lacangm Fy a+m d9b - a+md0b )ed
(9.21) + (b ™ — dLG, — L5 4 FO 05 + FF, 9ot

+ Ggew? + LE 08 — F2 a0 + C+ma9 )ectm
+ (5abw — Loy + dFG iy + F, a+m 05
Er 00— 05 — 05t + 2F 01 Ve,
+ (5abw Loy0tsm + Foompth +dEL,
+ F B = Fot o0+ Fln o057+ 2E8,07 ey

a+mc c+ma

The coefficient of x is v by (9.10). The coefficient of eq is zero. Substitut-
ing (4.18) into the coefficient of e4, we get

(“FgemvFeima = Favmaleims + oy Fooma + Fomaleemp)@™™
~(LocFeyma+ LacFeimy = 20y Fg — 20y aFy) 0
(Lo F a + LaeF Ly + 2F, +me + 2F5 a0
which is zero since the coefficient of w®T™ is zero by the first equation in (5.6),

the coefficient of w® is zero by (8.37) and the coefficient of w* is zero by (8.38).
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Thus, the coefficient of ey is zero, in agreement with the right hand side
of (9.20).
By (4.18), (8.50) and (9.8) with (9.10), the coefficient of e.4,, becomes
—LGvd 4 1265
—(Lgpg — LapLea + Folom chaerd + Fa+m b a = GacOba + Gbebaa)w”
+(_Labd+m + chL + LebL c+m aFd+mb
Fvﬁ&-m aFd+mb + abOed — Obelad)w drm
+(_Labo¢ + Lded(,l-f—ma 2F¢f—|—m ngc—i-m 2Fcu+m ang)

+(_L2bu + chFéLera +2F +meo/’ch+m + 2F7} El )wu'

c+mat ab

We now verify that zero is the coefficient of each of w?, W™ W™, Wk,

The coefficient of w? can be seen to be zero by taking (8.51) (with indices
in the order ¢, a,b,d) and subtracting half of (8.55) (with indices as is).

The coefficient of w?™ can be seen to be zero by using (8.60), then
adding (8.51) (with indices in the order ¢, a,b,d), then adding half of (8.55)
(with indices as is), and then using (8.55) again (with the roles of d and ¢
reversed).

The coefficient of w® can be seen to be zero from (8.53) and (8.37).

The coefficient of w* is zero by (8.54).

Hence, we have shown that the coefficient of ey, in (dQq)ep is as given
n (9.20).

Using (5.2), (8.4) and (9.10), we can rewrite the coefficient of e, in (dQ,)ey
(9.21) as

«a d c
a+mbc + LadFderc - Fa+m bFu Fd+m bL c)w
) ct+m

Fimpva +

a+mbB3 + 5ab5aﬂ Fﬁ — AFN, Fly — F+m bFﬁ

c+m a” c+mb aa™ (Bb ctma

(3

( at+mbetm Fa-s-megc—i-m 2FaaFcM+mb
+ (£ o’
+ (£

ac™ ac

a+mbp 2L Fi. + F Fl F-‘rmeéu—i-ma) a

ctma” c+mb

We see the coefficient of w® as zero by using the first equation in (5.7) and then
using (8.37). The coefficient of w®™ is zero by the second equation in (5.7).
The coefficient of w? is zero by the third equation in (5.7) and then by the
second equation in (5.6). The coefficient of w* is seen to be zero by use of (5.11)
and then by (8.39) (with the roles of a and b interchanged).

Using (5.2) and (9.10), we can rewrite the coefficient of e, in (dQq)ep
(9.21) as

Fl Vet (Bl Loa Py + FatpmpFlie — Fd+mde )
+ (Fa+mbc+m + Fm bF5C+m 2F o Fo b)wc+m
+(F e + 2LZchc+m + F +ma crmb — Fc+mef+ma) “
+ (Fa+m wt OabOpv — c+ma c+mb AFNF — Fc—i—meCV—l-ma,) w”.
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The coefficient of w€ is seen to be zero by use of the first equation in (5.8) and
then by (8.38). The coefficient of w“™"™ is zero by the second equation in (5.8).
The coefficient of w® is zero by (8.39). The coefficient of w* is seen to be zero
by use of the third equation in (5.8) and then by the fourth equation in (5.6).
This completes the verification of (9.20).

The next case is to verify (9.12) when both sides are applied to epi,,. We
must verify that

d(Qaeb—i-m) - Qad€b+m = (an)eb—i-m = Vngeb—l-m + Vcheb—i-m

_.a b c ,d o c 1] c
= vl +vae0 + Lgyvgec + Fplpy Voo — Fy o, Valu

(9.22)

by (9.4). Using (9.4) to compute Qgép+rm, and (4.20) to compute dep.,, we see
that the left hand side becomes

(—Fpmaw™ + Flﬁl—ma
+ (Lo + o™ + L o0 — 05 e
+ (6apw® + LG, + LG05 + Fi o805 — Fiy 1 o0

+ 5acwb+m - gng_tgz - Fg—i—m cel?—&-m - Fcﬁi—m 695+m)€c

d d d
+ (LngCer + Fba—i-maeaer - Flﬁs—m a0H+m - Lgdelf—l—m

wh — ngrm)X

(9.23)
— Fg+maag+m + F5+ma0{j+m)ed+m

+ (_5abwa + Lgbeg + dFl;I—i-ma + Fbﬂ—i-maeg - Flﬁl—maeg
— F i pm — FormaOhim + 2F8a00, )ea

+ (Gapw” + Lgy02 + Fym ofh — dFY 0 — B pmatl

- Fz;ﬁrm ceg-i-m + Féﬂrm aagiz + 2F5a91?+m)eﬂ'
We want to verify that this is equal to the right side of (9.22), where v§ is
given by (9.10). We do this by comparing the coefficients of the basis vectors

X, €0, 667 6C+m7 €a, 6/1,‘
The coefficient of x is 0 by (4.18).
The coefficient of eq is

00 + Lo, wt™ + B2 w® + FY

b+ma
by (8.4), (9.8) and (9.10).
The coefficient of e, in (dQg)ep+m in (9.23) is, by (4.18) and (8.50) and
the skew-symmetry of L{ ; in all four indices,

B(OF + L™ + R w0 + FE o) 4 (w0 4 w7y

W = L (w0 + ™) + (05T — 08) = o

a+m a

+(Lieg 4 SabOed — 6aadbe + LoeLig — F&m Fivma — Ftvm o FL d

a+mc* b+m d)w

+(Labd+m T SacObd — Saddbe + LgyLgq + LgeLpg

o o @ "
_Fb+maFd+mc - F F,

d+m
b+ma” d+m c)w
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(LS — LGS 0 — 2 i 9Fl R )

e+ma b+ma™ ac a+me” ab+m
c c i [o 17 [e} H 1%
+(Labu - LebFe+ma + 2Fb+maFac + 2Fa+mcFab+m)w

c . d a
= dea + 14 5176

by (9.8) and (9.10) and the following. By (8.45) for L{ ,, the coefficient of w?
becomes

1
dabded — 5(5ac5bd + 6ad0be)

FN

I /2
F, d+ma

n
F, c+mb

1
+ Q(LZeLZd - LZCLZC) + FY b+md

ctma

which is zero by (8.49) combined with the first equation of (5.6). In the coef-

ficient of w™ ™ substitute (8.46) for L{ =1L and gather together

c
bcd+m abd+m>

terms using skew-symmetries, to get
3 a 7d 1 a re 1 a 7d « «
5(5ac(5bd - (5ad5bc) + LbeLce + §Lde be + cheLbe - a+mch+mb

5+m cha—l—md + Fc7+m bF5+mc + F(f_’_m bF5+mc
which is zero by the first equation in (5.6) and then by (8.49). The coefficient

of w® is zero by (8.47). The coefficient of w* is zero by (8.48).
The coefficient of egyp, in (dQq)eptm in (9.23) is, by (4.18),

1% o I I Iy o I I c
(_Fb+maFd+mc + Fb+m aFd+mc - Fd+m¢1Fb+mC + Fd+m an+m c)w

«

(Lo Fma — 2F) Ly Flog + Lo Fmy — 2F 0 F N W@

o " c
d + 2Fb+maFad+m - daF

c+mb + 2Fc?{—i-’rnaF(ijb-i-m)('d‘u =0

because the coefficient of w® is 0 by the first equation in (5.6), the coefficient
of w* is 0 by (8.37) and (8.1), and the coefficient of w* is 0 by (8.38) and (8.1).
The coefficient of e, in (dQq)ep+m in (9.23) is, by (4.18) and (5.2),

Fim (06 + Louw™™ + F2 P + F2 0t

ct+ma

+(Fmae + F o Bl + 2FE FL

(&
b+ma’ ac a b+mc)w

d
+(Flsx+mad+m + Lga ca—f-md + Léa ca—s—mb + Fb*jrmanger)w m
TL(*(Sab(Sa,@ + Fba—l—maﬁ + Fg—&—m chﬂ+mc - Fba—s—m chﬂ—i-ma + 4F5aF§b+m)wB

+(_2Lnggc + FI?—&-m ap Ft?—‘rm CFlﬁi-mC o Fﬁ"m CF“

ct+m a)wu

_ o c
- Fb-i—mcya

by (9.10), because the other terms are zero as follows. The coefficient of w®

d+m

is zero by the first equation in (5.7). The coefficient of w is zero by the
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second equation in (5.7) and (8.37). The coefficient of w? is zero by the third
equation of (5.7) and the third equation of (5.6). The coefficient of w* is zero
by the third equation in (5.11) and (8.39).

Finally, the coefficient of e,, in (dQq)ep4m from (9.23) is, by (4.18) and (5.2)

©w c c d+m « « v v
- Fb+mc(0a - Ladw + Fc-l—maw + Fc+maw )
« M o] c
+ (FberaFgc - Fb+m ac + 2Fgan+m c)w
_7C W _7cC 1 a 1) I n!Y] d+m
+ ( Lade-l—mc Lade—l—mc + Fb+m aFa d+m Fb+mad+m)w

+ (—2LS, F* — F

Iz « I « «a
b+maa + Fa+mch+mc + Fb+mch+m a)w

_ M _ M v 14 v . uw oo o
+ (6&175MV Fb+m av Fa+m ch+mc + Fb+m ch+ma 4Faa ab+m)w

ke c
- Fb+m Ya

and by (9.10), because the other terms are zero as follows. The coefficient of
w® is zero by the first equation in (5.8). The coefficient of w™™ is zero by the
second equation in (5.8) and by (8.38). The coefficient of w® is zero by (5.11)
and (8.39). The coefficient of w” is zero by the fourth equation in (5.6).

That concludes the verification of (9.22).

The next case is to verify (9.12) when both sides are applied to e,. We
must verify that

d(Qaea) - Qadea = (an)ea = Vngea + V;cha
(924) a « b a b un b
=v%a + Fylim cVae + FoimpVaterm — 2F v e,

Using (9.4) and (4.20), and gathering together the coefficients of each basis
vector, we get
(dQa)ea = (—Fgypq”™™ + 2k, wh — 62)x
+ (= F2, w0’ + 2F Wk — g2t ™)eq
+ (dFm e + Folomuts + Fovm obbrm — 2F5,0,
F Sgew® — LG0T — FP 05— FI 0M)e,

at+mc’ o at+mc’ o

+ ( c(zXer b9§+m + dF(:a—I—ma + Flﬁrm a‘glfjr_m - 2Fga9;(i+m
— Saew® + LE0% — FP 0% 4+ F* 0 eerm

ct+tma”’ o ctma’ o
b
+ (Fc(szrm bgl? + Fba+m agﬁ 904

(9.25)
B8
b+m 2F5@95 B Fa+mb
— 05T 2F ) 08 e
(B0l + B a0l — 2F%, 04 — 2dFL,

- Fcl;—i-mbegé + Flﬁﬁ—m aeg+m + 2F5@‘9g)6u'



48 THOMAS E. CECIL, QUO-SHIN CHI, AND GARY R. JENSEN

The coefficient of x is zero and the coefficient of eq is zero, both by (4.18).
For the coefficient of e, use (4.18), (5.2) and (8.4), and add and subtract
appropriate terms, to rewrite it as
b b d
Fba+m c(ea - Ladw m + Fl)ﬁ+m awﬁ + Flﬁl—m awu)
b d
+(Fo?+m cd Flfé—l—m cLad + Fl;l—&—m dLCCLb - F(f—&—m cFo/jd)w

+(Fa+mcd+m - 2Fﬂ Fﬂ - Fu F” )wd—i-m

a aa+m= d+mc atmc ad+m

(e F i = FmaF e + Fmop — AFL F 4 60805)0°

b+ma b+mc a+mc, aa™ Bc
[e% IZ « 12 [e} c Tk 1
+(_Fb+m CFbera + Fb+man+mc =+ Fa-i—mcu - 2LabFa b+m)w

_ o b
- Fb+mcya

by (9.10), because the other terms are zero as follows. The coefficient of w?
is zero by the first equation of (5.7) and (8.37). The coefficient of w™™ is
zero by the second equation of (5.7). The coefficient of w? is zero by the third
equation of (5.7) and then the second equation of (5.6). The coefficient of w*
is zero by (5.11) and then (8.39).

The coefficient of ey, in (dQ,)eq from (9.25) is, by (4.18),

b b d
cojrmb(ga + Ldaw m + Flﬁ»mawﬁ + Fb‘u+m awu)

H(Fmad + 2F4F g+ Flm oFhg)w?
HF madim — Ly Fdimp + ol gy — LoaFeymp) 0™
+(Fmas + Fagm chB+mb +AFL ey — Oacdap — Fcojrmebﬁera)w/B
F(Fmap — FarmoF ety T 2Lap Flhy — Fomp s o)

= Fctx-i-meg?

by (9.10), because the other terms are zero as follows. The coefficient of w?
is zero by the first equation in (5.7). The coefficient of w*™ is zero by the
second equation in (5.7) and then (8.37). The coefficient of w” is zero by the
third equation in (5.7) and then the second equation in (5.6). The coefficient
of wt is zero by (5.11) and then (8.39).

The coefficient of eg in (dQq)eq in (9.25) is, by (4.18),

(FI;1+manﬁ+mc + 2FY, F, + 25, FY, + FlgrmanO;mc)wc

aa” Be Ba™ ac

+( (;,l-i-m bFf+mb + 2F5aFgc+m + 2F5aF£zLC+m + Ff«kmeca-i-m b)wc+m
B B
_2( (?—i-megb + FI?—&-m ang-&-m + Fa—i—meo/jb + Fb+m aFéjb-Q—m)w‘u

= Jop(w® +w*™) = So0"
by (9.8), because the coefficient of w® is d,4804c by the second equation of (5.6),

and the coefficient of w*™ is also d,304c by (8.1), (8.2) and the second equation
of (5.6); and the coefficient of w* is zero by (8.1) and (8.2).
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The coefficient of e, from (dQq)eq in (9.25) is, by (4.18) and (5.2),

—2F¥ (0% + Lbw* ™ + Ff,

+(72F5ac + Fba—l—ma,Flﬁ,-mc - Flffi-mana-i-mc)w

WP+ Fymaw”)

c

b
+(_2Faljac+m + 2F’c/;cha - c?+m chM-t,-mb + F5+mec(X+mb)wC+m
+2<_Falja,8 + Fl76+maF5b - O(Llerngb + Fl?+mang+m)wﬂ
+2(_Foljau + ngFl;/—l-ma - Fé:-mb c;/b + Flﬁ&-maFa’zjb—l—m)wV
= —2F5bl/g,

by (9.8), because the coefficient of w€ is zero by the first equation in (5.9), the
coefficient of w*™ is zero by (5.11) and then (8.39), the coefficient of w” is
zero by (8.1), (8.2) and the second equation in (5.9); and the coefficient of w”
is zero by (8.1), (8.3) and the third equation in (5.9).

This completes the verification of (9.24), which verifies that (9.12) holds
when both sides are applied to e,.

The final case is to verify (9.12) when both sides are applied to e,. We
must verify that

(9‘26) d(Qaeu) - Qa(deu) = (an)eu = I/SQ()@N + Vngeu

__a 14 b 13 b Kb
=—v, + Fb+mc1/(lec — Fc+mb’/aec+m —2F,V,€aq-

Using (9.4) and (4.20), and gathering together the coefficients of each basis
vector, we get for the left hand side

(9.27) (dQa)eu= (FJ,,, "™ + 2Fl,w® — 09)x
—(FY o’ + 2F W™ 4+ 09T )eg
+(dF5+mc + F:erbeg - Flf;m aeg+m — 2F,.0, + 500“}“

aa’o
c pb+m « « v v
_Labe,u - Fa+m ceu - Fa—l—m ce,u)ec

+(F5+mbeg+m —dFl,,, . - Fg;maegm — 2FH 05T 4§ et
+Lgbeg — Flimafs + FYnad)ecim

b
(o 05— B O — 2dF, — 2F0 05 — 2, 400

P+ 2F 0 e

aa”’ @

+(F5+mb9;)/ - Flft+ma0(,;+m - 2Fo/ja6;
—Fc;,-‘rm bez + FZ;/—&—m aefj_m + 2Féy/a‘9f:)€l/'

The coefficient of x is zero by (4.18). The coefficient of eg is zero by (4.18)
and (8.1).

After applying (5.2) and (4.18) and adding and then subtracting some
terms in the definition of 22 in (9.10), we can rewrite the coefficient of e, as
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b b d
Flffi-mc(ea + Ldaw m + Fbﬂ-i-mawﬂ + Fl;j-l—mawy)
b d
+<F5+m cd Flﬁ,—m cLad + L(Cszl:L—i-md + Fc?+m cFSd)w

d
+(F£L+mcd+m + 2F5aFg+mc + Fg+mcF5d+m)w o

+(F5+m ca + FlfLeranojrmc + 2L(61bF5b+m - th+mcFl)Oé+m a)wa

1 14 v v Iz v v
+<Fa+m cv Fb+man+mc - 4F(§jaFac + 5a06#1/ - Fb+m ch+m a)w
_ M b
- Fb—i—mcya

by (9.10) and the following. The coefficient of w? is zero by the first equation
in (5.8) and then (8.38). The coefficient of w9*™ is zero by (8.1) and (5.8).
The coefficient of w® is zero by (5.11) and then (8.39). The coefficient of w*
is zero by the third equation in (5.8) and then (8.1) and the fourth equation
in (5.6).

Using (5.2) and (4.18), we can rewrite the coefficient of ecqr, in (dQq)e,
from (9.27) as

b b d v v
_Fét+mb(9a + Ldaw m + Fl;x—i—mawa + Fb—i—maw )

+(_Fcu+mab + 2F5a ca+mb + Fcojrmang)wb

—|—(LZGFC“+mb - Ff+mad+m + LZbF:+mb + Fca+maF5d+m)wd+m
(o Foma = Fermaa T P mpFerms T 2 Lap)w®
+(Ff+mel;/+ma — F oy — F5+mecV+mb —AFNFy oo+ OacOpu)w”

= _FH b

c+m vYa>

by (9.10) and the following. The coefficient of w’ is zero by the first equa-
tion in (5.8). The coefficient of w™ is zero by the second equation in (5.8)
and then (8.1) and (8.38). The coefficient of w® is zero by (5.11), then (8.2)
and (8.3) and (8.39). The coefficient of w" is zero by the third equation in (5.8),
then (8.1) and (8.3) and then the fourth equation in (5.6).

Using (5.2) and (4.18), we can rewrite the coefficient of e, in (dQq)e,
in (9.27) as

b b v v
_2F5b(90 + Lcawc+m + Flfi»m awﬁ + Fb+m aw )

+(_2Fgac - Fl;:-maFl;Xerc + Flﬁ»m aFlﬁ:-mc)wc
b
+(_2F(5ac+m + 2f?(gcha + F(;:-mb ca—l—mb - Fé:-mb (?—&-m b)wc—l-m

(o7

—|—2(—FH +F5bFI;/+ma _F(i:,me(Zb_'—Flﬁ»ma (;/b-i-m)w

aav

— Kb
= =2F,v,,

+2(_Fuaﬁ + ngFIi-ma - ngFg-i-mb + ng*‘mFba"'ma)Wﬁ

v

by (9.10) and the following. The coefficient of w® is zero by the first equation
in (5.9). The coefficient of W™ is zero by (5.11), then (8.2) and (8.3) and
then (8.39). The coefficient of w” is zero by the second equation in (5.9) and



ISOPARAMETRIC HYPERSURFACES 51

then (8.1)-(8.3). The coefficient of w” is zero by the third equation in (5.9),
then (8.1) and (8.3).
Using (4.18), we can rewrite the coefficient of e, in (dQ.)e, in (9.27) as

(_Flf;m aFé/erc - QFSGFSC - Fé/eraFéjrmc - 2F(ZaFéjc)wc
+(_Fclf+mb t;/+mb - 2F£aFgc+m - Fcltj+m chM—i-mb - 2F(lx/aF£c+m)wc+m
+2(_F5+mb gb - Flﬁl—ma 5b+m - c’f+me5b - Féjrmanger)wa

= —0u(w® + Wity = — 0"

by (8.1), (8.3) and the fourth equation in (5.6). This completes the verification
of (9.12) when both sides are applied to e, and therefore also completes the
verification of (9.12). O

10. The quadratic forms

For the remainder of the paper, we will again refer to the two multiplicities
as m1 and mg, rather than m and N, respectively, and we will no longer use the
Einstein summation convention. Our task now is to solve (8.1) through (8.4).
It is known that m; = mg only when m; = mo = 1, which is of FKM-
type, or m; = mg = 2, which is not of FKM-type [1]. Therefore we assume
m1 # msy henceforth. Our convention is that m; < meo and we denote by
M (respectively, M_) the focal submanifold whose co-dimension is my + 1
(respectively, mg 4 1) in the ambient sphere. We change the Cartan-Miinzner
polynomial F' to —F if necessary so that always M, = f~!(1) with respect to
the isoparametric function f. In view of Theorem 24, we look for conditions
on my and mgy that imply the validity of (8.1) and the spanning property.

As in Section 4 let x € M, and let ey be a unit normal vector to M at x
for which the shape operator S, assumes the eigenspaces Vy, V4 and V_ with
eigenvalues 0,1, and —1, respectively. For an orthonormal basis eq,...,en,
of the normal space to M, at x we introduce the quadratic homogeneous
polynomials

pi(y) == Se,y -y
for 0 < ¢ < my, where y is tangent to M, at x. When such y has no Vg

component, we shall write z instead of y. Regarding V., & V_ as a subspace of
R? by parallel translation, consider the set

D:={zecV,oV_:|z|=1,p;(z) =0,0 <i<m}.

PROPOSITION 25. D= (V, & V_) N M,.



52 THOMAS E. CECIL, QUO-SHIN CHI, AND GARY R. JENSEN

Proof. This follows from the formula of [25, I, pp.524-526], that reads

ma
Ftx+y+w) =t'+ 2y — 6|w)t2 + 80> pi(y)w)t

=0
(10.1) e B 48wy
1=0 =0

maq
+2) (Vi - Vij)ww; — 6ly[*[wl* + [w|".
i,j=0
Here, the homogeneous polynomials of degree three, ¢;(y), are the components
of the third fundamental form of My, w = Y™\ w;e;, and y is tangent to M.
For the convenience of the reader, let us briefly recall that Ozeki and Takeuchi
expanded F(tx +y + w) in terms of ¢ and substituted it into its governing
partial differential equations mentioned in Section 2 to get

F(tx+y+w)=t'+ At> + Bt + C,

where A is derived on p. 525, B is on p. 526, and C = Cy + - - - + C4, in which
Cs (given on p. 526) is the homogeneous part of C' of degree s in the normal
coordinates wy, ..., Wn,. When onesetst =0, w=0andy=z€ V@ V_in
the formula (10.1) one gets

F(z) — |z/* —QZ

Hence when |z| = 1, we have F'(z) = 1 if and only if p;(z) = 0 for 0 < i < m;.
O

Remark 26. Tt is not obvious that the set D is non-empty. In Theorem 47
of Section 12, we will prove that D is non-empty when msy > 2m; — 1. Propo-
sition 28 below still holds in the case where D is empty. In that case, the zero
locus of each set of polynomials in Proposition 28 is empty.

In view of Proposition 25 we set p; to be the restriction of ipi to the space
Vi@ V_ for 1 < i < my, and set pg to be the restriction of py to this space.
These are the quadratic polynomials pg, p, defined in (6.6). Recall from (4.26)
and (6.6), that relative to a second order Darboux frame we have variables
z = (zo) and y = (y,) in terms of which these polynomials are

(10.2) po(z,y) = (2a)® = Y _(p)?  palz,y) Z Tl
a=1 n=1 a,u=1

For notational ease, as the context should remove any possibility of confusion,
we will stick to the range 1 < a,u < mg for x, and y, from now on even
though a and p live in the designated ranges as given in (4.6).



ISOPARAMETRIC HYPERSURFACES 53

As mentioned in Section 4, we know e also lies in My with the normal

space span(X, €m,+1,---,€2m, ). The 0,41, —1 eigenspaces of the shape oper-
ator Sx at ey are, respectively, span(ey,...,en,), Vi and V_. With respect
to the normal basis x,e,,m1 +1 < p < 2my, at eg, we let py,...,p,, be

the counterparts of po, ..., pm,, respectively, as in (6.9). Then Proposition 25
immediately gives the following simple but crucial observation.

PROPOSITION 27. D={z €V, ®V_: |z| =1,p;(z) = 0,0 < i <my}.
Now D can be viewed from a different angle. Observe that all

Z = (xla"'7xm27y17"‘7ym2) € D

must satisfy > 02 (z4)% + Zg‘il(y#)Q = 1. It follows that z € §™=2~1 x gm=~1
due to the fact that py(z) = 0, where S™~1 is the standard sphere of radius
1/4/2. The real projective variety out of S™2~1 x §m2~1 js RP™>~1 x RP™>~1,
Note that the solution to p, = 0, 1 < a < my, lives naturally in RP™>~! x
RP™~! which is parametrized by [z1 : -+ : Zp,] X [Y1 © - ¢ Ymy]. As a
consequence the projectivized D in RP™ 1 x RP™~1 via the map $™ ! x
Sm—l __, RP™—1 x RP™ ! is exactly

(10.3) D:={[z] e RP™ ' x RP™ 1 :p,(z) =0,1 <a<m}.

Note that D # 0 if and only if D # (). Since the +1 and —1 eigenspaces of
the shape operator Sx at ey are V. and V_, respectively, it follows from (10.2)
that py = po. Hence, Proposition 27 can be rephrased as follows.

PROPOSITION 28. The zero locus of p1, . .., pm, in RP™ ™t x RP™~1 js
identical with that of Dy, ..., Dy, -

LEMMA 29. If mg > my + 2, then the quadratic forms pi,...,pm, are
linearly independent and irreducible, both over the real numbers R and over
the complex numbers C.

Proof. The quadratic form p,(z,y) is given by

wn=(3, %) 6) () -sae-

where A, is the matrix with respect to e, e, of the operator defined in the
first equation of (6.3). Recall that the rank of p, is defined to be the rank of
the matrix of the associated bilinear form. Hence rank (p,) = 2rank(A,).

Let S, = U+V be the shape operator given in (6.5), where U is the matrix
that retains the A, and ‘4, blocks and is zero elsewhere. Then rank S, <
rank U +rank V. Since rank S, = 2mo, rank U = 2rank A, and rank V' < 2m,
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we get,
2(mg —my) < 2rank A, = rank (p,)

for all a, as proved by Ozeki and Takeuchi [25, II, p45].

If p, is reducible, then p, = fg is a product of linear forms f = aqro+a,y,
and g = baTa + buy,. If we let a =Y(aya,) and b = (b, b,) € R?™ then the
symmetric matrix of the quadratic form 4p,(x,y) must be (a’b+b'a)/2, which
has rank < 2, as each column is a linear combination of a and b. In particular,
if mg —my > 2, then rank (p,) > 4 > 2 and hence, p, is irreducible over R.
Notice that this discussion is unchanged if we work over the complex numbers,
which shows that they are irreducible over C as well. Linear independence of
Di,---,Dm, over R is equivalent to linear independence of Ay, ..., A,,,, which
follows under our hypotheses from Proposition 7. Being real polynomials, they
are also linearly independent over C. O

11. Commutative algebra and algebraic geometry

We will explore in more depth the fact that p,,1 < a < my, are irre-
ducible when mo > mj + 2 and are bihomogeneous, i.e., are homogeneous
in 1,...,%m, and in y1, ..., Ym,, of bi-degree (1,1) in this section. We shall
pursue commutative algebra only to the extent that serves our need, and shall
stress the geometry behind the algebra. A few ad hoc proofs and examples will
be given to convey to the reader, who might be unfamiliar with the subject,
some intuition about the concepts encountered. Henceforth, n is just an index
that has nothing to do with the dimension of the ambient sphere in which the
isoparametric hypersurface sits.

Definition 30. Let F be either R or C and let Flxy,..., 25, y1,...,Ys)

be the polynomial ring in variables zi,...,xs,y1,...,ys over F. Given bi-
homogeneous polynomials p1, ..., py,, we say that the ideal I := (p1,...,pyn) in
Flzy,...,2s,y1,...,Ys] is reduced if

(i) The bi-projective variety
P, Vr = {([z],[y]) € FP* ! x FP* 1 : py(x,y) =0,1 <a <n}
is not empty, and
(ii) Whenever f € F[z1,...,2s,91,...,Ys] satisfies f|p,, = 0 then
f=pifi+-+pufa
for some fi1,..., fn € Flx1,...,Zs,y1,...,Ys)-

We call the affine variety V7 := {(z,y) € C*xC* : py(x,y) = 0,1 < a < n}
a bi-affine cone.
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For instance, when F = C, the radical of I, denoted by rad(I), is always
reduced, if PyV; # (0. This is Hilbert’s Nullstellensatz indeed [11]. In particu-
lar, since a prime ideal equals its radical, the ideal I will be reduced if I is a
prime ideal. P;V; is not empty automatically in this case, because otherwise
Vi = (C* x {0}) U ({0} x C*) would not be irreducible. We will extensively
probe the primeness of I subsequently. (See [14] and [21] for bi-projective ge-
ometry.) Before we proceed, let us introduce some notation. When p is a real
polynomial, we denote by p€ the same polynomial whose variables are over
the complex numbers. We call p© the complezification of p. Likewise, when
p1,- - ,Pn are bi-homogeneous in R[zy,...,zs,y1,...,ys], we denote by V' the
resulting real bi-affine cone and by V© the complex bi-affine cone defined by
the complexifications of p1,- -« , pn.

LEMMA 31. Suppose V is a bi-affine cone in R® x R® defined by the real
polynomials p1,- - -, pn, such that its complex counterpart VC is irreducible and
such that dimg (V) = dimc(VC). If a real polynomial p(z1,...,Ts,y1,---,Ys)
satisfies ply = 0, then pClyc = 0.

Here, by the dimension of V we mean the maximal dimension of all the
irreducible components of V.

Proof. Suppose pC|yc is not identically zero on V€. Then pC cuts out
a subvariety X, all of whose irreducible components are of co-dimension 1 in
V€ [28, p. 59]. Clearly, V C X. Then we have

dimg (V) < dime(X) = dimg(VE) — 1,

in contradiction to the assumption that dimg (V) = dimg(VC). The inequality
holds true because any real analytic parametrization o : t = (t1,--- ,tx) —
(1, ,Ts, Y1, -+ ,Ys) € V around a smooth point, at ¢ = 0, of V, satisfies
pi(o(t)) = =pn(o(t)) = p(o(t)) = 0. The convergent power series defining
o remain so when t1,---,t; are allowed to be complex variables, and then
o(t) is a holomorphic map, nonsingular at ¢ = 0, such that pC(c(t)) = --- =
pC(a(t)) = p€(o(t)) = 0 because a holomorphic function vanishing on the
real part is identically zero. That is, o(t), with ¢ complex, is a holomorphic
map, nonsingular at ¢ = 0, into X. Therefore, we conclude that dimg(X) >

dimg (V). O
ProprosITION 32. If p1,...,pn € Rlz1,...,25,y1,...,ys] are bihomo-
geneous polynomials of positive degree in each set of variables, and ifp?, e ,pg’,

their complexifications, are such that
(1) VC€:={zec C*x C*:pC(2) = 0,1 < a < n} is irreducible,

2) rad(I) = I, where I := (p©,...,pC), and
1 n
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(3) dimg (V)=dimg(VC), where V:={z € R® x R® : p,(2)=0,1<a<n},
then the real ideal (p1,...,pn) is reduced.

Proof. I is a prime ideal by the first two assumptions. Therefore, the re-
mark immediately after Definition 30 ensures that P,VC is not empty. More-
over, dimg(VC) > s by the first assumption and the fact that the reducible
(C* x {0}) U ({0} x C*) is contained in VC. Hence P,V is not empty either
by the third assumption. So the first condition in Definition 30 holds. Let f
be a real polynomial vanishing on PV so that f vanishes on V as well; by
Lemma 31 its complexification f€ vanishes on VC. It follows from the re-
ducedness of I that there are complex bi-homogeneous polynomials hy,..., h,
such that

f€=pChi+ -+ pShn.

Let f1,..., fn be, respectively, the real parts of hq,...,h, when they are re-
stricted to the real variables. Since f and py,...,p, arereal, f =pifi+---+

Pnfn- O

We now review some important notions and properties from commutative
algebra, leaving detailed expositions to [11] and [19].

Definition 33. Let R be a commutative ring with identity. We say that
n elements x1,...,x, € R form a regular sequence if (z1,...,x,) # R, x1 is
not a zero divisor in R and x;4; is not a zero divisor in the quotient ring R/I;,
where I; is the ideal (z1,...,2;), for 1 <i<n—1.

Ezample 34. A single nonconstant p € Clz1, ..., 21| clearly forms a regu-
lar sequence.

Ezample 35. Let p; and py in C|zy,..., 21| be relatively prime homoge-
neous polynomials of degree > 1. Then p; and po form a regular sequence.
This follows simply from the fact that psf = p1g implies f = p1h for some h.
Moreover, (p1,p2) is not the entire polynomial ring due to the homogeneity of
p1 and po.

Definition 36. Let P be a prime ideal in a commutative ring R with iden-
tity. We define the codimension of P to be

codim(P) = sup{s : there is a prime chain P; C --- C Py C Py = P},
where the set inclusions are all proper. For an arbitrary ideal I we define
codim(/) = inf {codim(P)},
IcP
and define the depth of I to be

depth(I) = sup{n : there is a regular sequence x1,...,x, € I}.
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We define the dimension of R to be
dim(R) = sup{s : there is a prime chain Ps C --- C Py C Py C R}.

Lastly, R is Cohen-Macaulay if, for every maximal ideal M of R (and such
ideals are necessarily prime), we have

depth(M) = codim(M).

Ezample 37. Consider R := C|z,y, z] with p; = zz and py = yz. The
ideal I := (p1,p2) has the property rad(I) = I so that R/I is the coordinate
ring of the zero locus of p; and ps, which is made up of the (x, y)-plane and the
z-axis. It is not hard to see that dim(R/I) = 2 # 1, the ambient dimension
minus the number of equations. So the ring R/I is not Cohen-Macaulay.
In fact, at the origin the maximal ideal M = (z,y,2)/I is the first term
in a maximal descending prime chain (z,y,z)/I, (y,z)/I and (z)/I so that
codim(M) = 2. However, depth(M) = 1, since x + z mod(]), for instance,
forms a maximal regular sequence in M.

The following ingredient, on the other hand, generates many Cohen-
Macaulay rings.

FACT([11, p. 455]). If p1,...,p, form a regular sequence in the ring
R := CJz1,..., 2] with ideal I = (p1,...,pn), then codim(I) = n, the ring
R/I is Cohen-Macaulay, and dim(R/I) = L — n.

Remark 38. The FACT can be interpreted geometrically. In the case
when rad(I) = I, for instance, the quotient ring R/I is the coordinate ring
of an affine variety. This quotient ring being Cohen-Macaulay says that each
point of the affine variety is the zero locus of L —n coordinate functions from
R/I (technically, in a maximal regular sequence vanishing at the point), and
thus the codimension in the variety of each point is the expected value L — n.
The affine variety is then called a complete intersection. It is of dimension
L —n on all of its irreducible components.

We now come to the major recipe for inductively constructing Cohen-
Macaulay rings in this paper.

ProproSITION 39. If p1,...,pn are linearly independent homogeneous
polynomials of equal degree > 1 in the ring C|z1,...,z1] such that the ideal
(p1,- -y Pn—1) is prime and such that p1,...,pn—1 form a regular sequence, then
D1, Pn form a reqular sequence. In particular, the FACT above implies that
the quotient ring Clz1,...,21]/(p1,-..,pn) is Cohen-Macaulay.

Proof. We know V,,_1 is irreducible since I,,_1 := (p1,--- ,Pn—1) is prime.
Thus p,, cannot vanish identically on V,,_;. Otherwise the Nullstellensatz ap-
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plied to p,, on the prime I,,_; would imply

DPn :plfl + - +pn71fn71

for some fi,..., fn—1 € Clz1,...,21]. As shown in Proposition 11, we may
assume that fq,..., f,_1 are constant polynomials, because all of p1,...,p,
are homogeneous of the same degree > 1. But this would imply that p1,...,p,

are linearly dependent, which is not the case by assumption.
Suppose there are f, f1,..., fn—1 € Clz1,...,2z1] such that

pnf =p1fi+ -+ Pt fu-1

Then fl|y,_, = 0 since p,, does not vanish identically on the irreducible V;,_;.
So once more the Nullstellensatz applied to f on I, implies that

f=pig1+ -+ Dn-1Gn—1

for some g1,...,gn—1 € Clz1,..., 2]
Lastly, (p1,...,pn) # Clz1,..., 2] since p1,...,p, are all homogeneous
of the same degree > 1. This confirms that py, ..., p, form a regular sequence.

O

For our later applications on the variety level, Proposition 39 is not quite
sufficient, because the ring C[z1, ..., 21]/(p1, . . ., pn) in the proposition, though
being Cohen-Macaulay, may have nilpotent elements, in which case the ring is
not the coordinate ring of an affine variety. If the ring contains no nilpotent
elements, then it is called reduced.

Example 40. Let p; = y — 22 and po = y in C[z,y]. The zero locus
of p1 and py is {(0,0)}. However, the Cohen-Macaulay ring Clz,y]/(p1,p2)
has a nilpotent element, namely, x mod((p1,p2)). Geometrically, the parabola
y = x? intersects y = 0 with multiplicity 2.

What we must do now is to find conditions under which the quotient ring
in Proposition 39 is reduced, in which case the variety associated with the ring
is called a Cohen-Macaulay variety.

PROPOSITION 41. Let J, be the subvariety of the variety
Vi={2€Cl:pi(2)=0,...,pn(2) = 0}

where the Jacobian matriz of p1,...,pn is not of rank n. If codim(J,) > 1 in
Vy, then the affine coordinate ring Clzi,...,2z50]/(P1,...,Pn) is reduced.

Proof. This is just Serre’s criterion of reducedness [11, p. 457]. O

Remark 42. If we assume in Proposition 39 that J,_1, the subvariety of
Vo1 = {2z : p1(2) = -+ = pp—1(2) = 0} where the Jacobian of p1,...,pn—1



ISOPARAMETRIC HYPERSURFACES 59

is not of rank n — 1, is of codimension > 2 in V,,_1, then we can give a
somewhat more geometric account of Proposition 41 as follows. (In fact, in
our applications to follow, codim(J,—1) > 2 always holds true.) Let R =
Clz1,...,21), let I = (p1,...,pn—1) and let J = (p,). We must show R/(I+J)
has no nilpotents. That is, whenever f € R satisfies

fF=pifit-Apufacl+J

for some k and fi, ..., fn, we must have f € I +.J. We may assume f* is not
in I, or else we are done since then f € I by the primeness of I. It follows that
f is nonzero on V,,_1 and is zero on Vj,.

Let V,, = W7 U--- U W; be the irreducible decomposition of V,, in V,,_.
We know codim(W;) = 1 in V,,_; for all i. Then by codim(J,) > 1 in V,, the
polynomial p,, cuts out W; with multiplicity 1 for each i (it comes down to
the implicit function theorem in calculus). That is, p, = 0 defines the divisor
Wi+ +Wsin V.

Now since f vanishes on V,,, the divisor defined by f = 0 assumes multi-
plicity > 1 on each W;. At this point the principle that says that the poles get
cancelled by the zeros seems to suggest that the rational function f/p, is reg-
ular everywhere on V,,_j. This is certainly true if V,,_; is smooth [28, p. 129],
because the germs of local regular functions on V,,_; then form a unique fac-
torization domain; more generally, the normality of the variety suffices for the
conclusion [28, p. 111]. From this it follows that (f/pn)|v,_, = g for some
regular g on V,,_;. In other words, (f — png)|v,_, = 0. Therefore,

f—=png=p1g1+- - +Pn-1gn- €1

by the primeness of I. We conclude that f € I + J, proving the reducedness
of R/(I+J).

It remains to ensure the normality of V,,_1, which is true if the co-
dimension of J,_1 is at least 2. This is a consequence of Serre’s criterion
of primeness [11, p. 457], because V,,_; is a Cohen-Macaulay variety since
codim(/) = n — 1. In any event we resort to Serre’s criterion one way or
another.

The next proposition plays a vital role in the applications to follow.

PROPOSITION 43. Assume the notation in Proposition 41. If furthermore
codim(J,) > 2 in V,, and V,, is connected, then (pi,...,ppn) is a prime ideal.

Proof. Proposition 41 asserts that V, is a connected Cohen-Macaulay va-
riety. Now X,,, the complement of .J, in V,,, is smooth on the one hand. On
the other hand, X, is also connected on account of Hartshorne’s connectedness
theorem [11, p. 454], that says that a connected Cohen-Macaulay variety re-
mains connected when a subvariety of codimension > 2 is removed. Being both
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smooth and connected, X,, must be irreducible. However, since codim(.J,,) > 2,
Jn cannot be an irreducible component of V,, due to the fact that a Cohen-
Macaulay variety is of equal dimension on all of its irreducible components.
V,, is then irreducible. As a consequence (pi,...,p,) is a prime ideal because
Proposition 41 establishes the reducedness of (p1,...,pn). O

Ezample 44. This example shows that codim(J,) > 2 in V,, is a must in
Proposition 43. Let p; = z and py = 22 — y% + 2% in C[z,y,2]. Then V5 =
{(z,£2,0)} and Jo = {(0,0,0)}, which is of codimension 1 in V5. But V; is
reducible albeit connected. It also illustrates that the codimension 2 condition
in Hartshorne’s connectedness theorem cannot be improved to codimension 1.

12. The classification theorem

We now return to the isoparametric case. For a given second order Dar-
boux frame field (4.16) along x on U C M, recall that we have, for 1 < a < my,
bihomogeneous polynomials

m2
Pa = E Féfa:b'ayﬂ
a,pu=1

of bi-degree (1, 1) in the polynomial ring R[z1, ..., Tm,, Y1, - - -, Ym,], irreducible
and linearly independent if mo > m; + 2 by Lemma 29. Before proving the

theorem, we first introduce a generalized spanning property. Forn =1,...,mq,
we define the linear map S : R™* — R"

for a fixed z, and the linear map Sj, : R™ — R”

(12.2) S¥(x) = (p1(z,y), ..., palz,Y))

for a fixed y.

Definition 45. We say that the n-spanning property holds if there is an
x € R™ such that S? is surjective and there is a y € R™ such that S}, is
surjective.

Note that when n = m;q, this definition agrees with that of the spanning
property in Definition 8 for the second fundamental form (see Remark 9). As
for the spanning property, the n-spanning property is an open condition.

We now set up an induction procedure toward our solution to (8.1) and
the spanning property.

Induction hypothesis S(n).

(I) p1,-..,pn,n < my, being irreducible and linearly independent imply that
p?, ...,pC form a regular sequence.
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(II) Vp, == {z = (z,9) € R™ x R™ : py(2) = 0,a = 1,...,n} and V,C :=
{z = (z,y) € C™ x C™ : pC(2) = 0,a = 1,...,n} satisfy dimg(V},) =
dimg(V,€) = 2my — n, where dimg V;, is the maximal dimension of all
the irreducible components of V;,.

(IT1) I, :== (»%,...,p%) is a prime ideal.
(IV) The n-spanning property is true.

Let J, be the subvariety of VnC where the Jacobian matrix of plc, ceey pg is of
rank < n. Proposition 43 points out that codim(.J,) > 2 plays a decisive role
in determining the primeness of I,. We will establish in the next section the
following estimate.

PROPOSITION 46. Assume mo >mi+2. If mg>2myq, then codim(J,)>2
for allm < my. If mg = 2my — 1, then codim(J,) > 2 for alln < mj — 1
whereas codim(J,,,) > 1.

Assuming this proposition for the time being, let us prove the classification
theorem of this paper.

THEOREM 47 (Classification). If mg > 2my — 1, then the isoparametric
hypersurface is of FKM-type.

Proof. When m; = 1, then a = 1, p = 2 and equations (5.6) through (5.10)
simplify sufficiently that one easily shows that there exists a second order frame
field for which

Fo/ja—i-ml = 5a+m2,u = Fga?
Fo, =0=F},
for all o, u. The first line of these equations implies (8.1) and the spanning
property. Hence, Theorem 24 implies Takagi’s result [30] that all such isopara-
metric hypersurfaces are of FKM-type.

Suppose ma > max(m +2,2m;). Our strategy is to show that the induc-
tion procedure can be completed for n < my. When n = m; what we achieve
out of the induction is that (8.1) and the spanning property hold true. It
follows from Theorem 24 that the isoparametric hypersurface is of FKM-type.

S(1) is true. (I) holds because p¥ is irreducible by Lemma 29, and p¥
cannot generate the polynomial ring since it is of degree 2. (II) is valid because
p1 is bihomogeneous of bi-degree (1,1), and so one can easily solve for one
variable in terms of the remaining ones regardless of whether the variables
are real or complex. (III) is verified because (p¥) is a prime ideal due to the
irreducibility of p$. (IV) is also clear since p; # 0.

Suppose S(n — 1) is true for n — 1 < m;. We show S(n) is true if n < m;.
Now, (I) comes from Proposition 39, so that the same proposition allows us to
conclude that C[x1, ..., Zmy, Y1, - -+ Uma)/(PF, . .., pS) is Cohen-Macaulay.
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We wish to establish (IT) next. To this end, note first that V,C is of
equal dimension 2ms — n on all irreducible components, because Vnc is the
intersection of the irreducible V€| and the irreducible hypersurface defined
by p$ = 0. It follows that the real variety V;, has the property

dimg (V,,) < dimg(V,C) = 2my — n,

because as established in Lemma 31, V}, is a real subvariety of V¢ and any
real subvariety is of dimension at most half the (real) dimension of V,C. We
claim that there is a component of V;, having dimension 2mo — n so that

dimg (V,) = dima(V,0),
which will establish (II). To prove the claim, consider
V, — R™ x R™ "5 R™,

where ¢ is the natural embedding and 7 is the projection onto the first sum-
mand. Note that (x,%) € (71 o t)~!(z) precisely when y belongs to the kernel
of the linear map S}, which has dimension > mg —n > 0; in particular, m o
is surjective. The set £ of x where the dimension of the kernel of S} achieves
the minimum value ¢ is Zariski open. Since 7 o ¢ is surjective, one of the
irreducible components W of V,, must be mapped onto an open subset of £
by Sard’s theorem. Around a regular value x of w1 o ¢ in £ we know V, is a
product with fiber R?, which is therefore contained in the irreducible W. Then
since t > mg — n,

dim(W) = mg +t > mgo + mg —n = 2mg — n.

Therefore
dimg (V;,) = 2mg — n = dimg(V,©),

which proves (II).
Now that dim W = 2ms — n, the fact that V,, is a product with fiber R?
around the regular value z gives

dim((ry 0 )7 (2)) = ma — n.

That is, S spans R™. Likewise, there is some y # 0 in R™2 such that S}, spans
R" if we consider the projection m : R" x R™ — R™ onto the second
summand. In conclusion, we have shown that (IV) is true.

To finish the induction, we must show that I,, is a prime ideal so that
(ITT) holds. Proposition 43 and Proposition 46 tell us that this is true if V,C is
connected, which is the case because Vnc is a cone. In fact, if z and w are any
two points in V,C, then the real lines from z to the origin and from the origin
to w are in V,C, thus showing that V,€ is path connected.

Thus, by Propositions 43 and 46, the induction procedure is completed.
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Setting n = m; in the induction, we obtain the spanning property in
Definition 8 by induction item (IV). Note also that P,V,,, is D defined in (10.3),
and P,V,,, is not empty by induction item (II), which says that dimg (V,,) =
2mgy — mq > mg, and thus V,,, contains more than {0} x R™2 UR™ x {0}.

We are only left with handling (8.1). By Proposition 28 we know p,, 1 <
a < my, vanish on PyV,,, so that p,|y,, =0, which warrants that ﬁglvﬁ =0
in view of the induction item (II) and Lemma 31, so that pC € I,,, by the
induction item (III). Hence there are complex polynomials 74,1 < a,b < mq,
such that

mi
=C C
Po = Z TabPyp -
b=1

As shown in the proof of Proposition 11, we may assume that the 7, are
constant polynomials, since each of the polynomials ]_)g and pgj is of bi-degree
(1,1). Restricting to the real variables we obtain

mi
Po=_ JabDb
b=1

for some real constants f,,. The above argument establishes this at every point
of the open set U on which the frame is defined. By Proposition 11, after a
possible change of second order frame field along x on U, equation (8.1) holds
on U. Theorem 24 then finishes the proof in the case mg > max(mj +2,2my).

When mo > my 4+ 2 and mg = 2m; — 1, we can only conclude that Vn?l
is a reduced variety since codim(J,,,) > 1. Now, p¥,... ,pgl is still a reg-
ular sequence. From the proof of (II) above, the (real) V;,, is of dimension
2mo — mq. Let W be an irreducible component of Vwcfl that contains an irre-
ducible component V of V,,,, of dimension 2mo —m;. By Proposition 28 all p;
vanish on V. Then all @C vanish on W by Lemma 31. Hence, we may pick
a generic smooth point z of W for the Nullstellensatz to be true at z. That
is, W is (transversally) cut out by the ideal (pf,...,pS ) localized and still
reduced at z, because, in algebraic terms, localization at the maximal ideal
corresponding to p in the polynomial ring preserves Cohen-Macaulayness [11,
p. 456]. In other words, we obtain ﬁ? = ZT;I sz-jp](-j for some local functions s;;
at z, i.e., sij = ri;/q; with r;; and ¢; polynomials and ¢;(z) # 0. Equivalently,

ma
Py i = ZTUP]C-
j=1
Let the (z,y)-coordinates of z be (hi,... ,hm,,k1,... ,km,) and set X, =

To — hq and Y, = y, — k,. Now, since p, = Za# F(ﬁfa:cayﬂ, we substitute
(Xa, Y,) into the above Nullstellensatz equation to compare the 1st-order terms
of (Xa,Y,) to conclude k,Fh, = >, TuapFlh, and haFhy = 3, SuabElhy for
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some constants r,qp and s,,,. We may assume that none of the h, or k, are
zero by performing a generic linear transformation. Then, one more time

mi
= m
Faa - Z fabFab
b=1

for some constants fu;.

When (mi,ma) = (2,3), Ozeki-Takeuchi [25, II] proved that p;,pe are
still irreducible and relatively prime, so that they form a regular sequence.
Moreover, we will show in Remark 53 that codim(J2) = 1. We are done by the
preceding arguments. O

Remark 48. In contrast, for m1 = mo = 2 of non-FKM-type, we have
two pairs of (p1,p2) depending on which one of the two focal submanifolds is
referred to as M. One pair of (p1,p2) = (0,0). The other pair is (2zx2y; —
221y, —2w1Yy1 — 2x2Yy2), out of which the real bi-projective variety P,V5 is
empty whereas the complex bi-projective variety PbVQC consists of four points
[1:4+/—1] x [1: £4/—1]. This case fails miserably to satisfy Proposition 32 .

13. The estimate

We now prove Proposition 46 to complete the classification theorem in
the preceding section. Recall for V,C, its subvariety J,, is where the Jacobian
matrix of p&, ..., pC fails to be of rank n. From now on S* and S} in (12.1)
and (12.2) will be set in the complex category.

LEMMA 49. Notation is as in (6.5). For any choice of a € {1,...,m1},
there is an orthonormal basis in Vi and an orthonormal basis in V_ such that
relative to these bases,

(1) B, = C, with rank =1 < my, and

(2) Ay = (é 2), where A is an r X r matriz in the block form A =

diag(A1, Ag, As,---), in which Ay =0 and A;,1 > 2, are nonzero skew-
symmetric matrices in the block form A; = diag(©;,0;, ) with ©; a

2-by-2 matriz of the form < 0 fz)

—fi 0
Proof. We know B, : Vj — V., so that B,!B, : V., — V. Pick an
orthonormal basis X1, ..., Xm,—r, Y1,...,Y; of Vi for some r such that
(13.1) B,'By: Xy — 0,

Yy s (04)?Ys,
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where 1 <t < mg—7r, 1 < s <7, and o5 > 0. Now '‘By(X;) = 0 be-
cause Ker(B,) N Im(‘B,) = 0; hence X; € Ker(‘B,). That is, Ker(‘B,) is
the eigenspace of B,'B, with eigenvalue zero. On the other hand, we know
(Ker('B,))* = Im(B,). So the eigenspace decomposition of B,'B, is

Vi = Ker('B,) @ Im(B,)

with X1,..., X;n,—r spanning the first summand and Y7,...,Y, spanning the
second. As a result, it follows that r = rank(B,). Likewise,

Vo = Ker(B,) @ Im('By,).
Knowing from above that !B, (X;) = 0 we set
(13.2) ‘By: Yy — oWy

for some W;. An easy calculation shows W;-W; = ¢;; so that Wy, ..., W, form
an orthonormal basis of Im(*B,). In conclusion,

Vo = Ker(B,) ® Im(tBa),

where Wy, ..., W, span the second summand and we let Z1,...,Z,,,_» be an
orthonormal basis generating the first. We find by (13.1) that

(13.3) By:Z;— 0,

Wy — 05Y5.
We calculate to see that ‘B, B, : Vo — Vj satisfies
(13.4) '‘BuBa: Zy — 0,

Wy — (05)2W3.

Now consider
Cy:Vo— V_.

In the same manner as above for By, we get Vy = Ker(C,) @ Im('C,) with
(13.5) Co:Z — 0,

. * *\ %
We — oY,

mi—p

where Z3,...,Z} span Ker(C,) and Wy, ..., W span Im(‘C,) for some p.
However,

‘CoCo = "'ByBa
by the first equation of (5.6); we thus obtain Ker(B,) = Ker(C,) and Im(*B,) =

Im(‘C,). In particular, p = r and we may take Zi,..., Zy,,_» to be identi-
cal to Z{,..., 2}, _., and Wy,..., W, to be identical to WT,...,W. There-

fore (13.3) and (13.5) imply that we can pick a basis of V and a basis of V_
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relative to which the matrices of these operators, denoted by the same letters
as the operators, satisfy
(13.6) By, = Cq,
because from
'C,Cyo: ZF — 0,
W (03)P W

and Wy = W, we know (04)% = (0)?, and hence we may assume o5 = o by
adjusting the basis in V_.
The second and the fourth equations of (5.6) together with (13.6) yield

(13.7) AJA, ="A,A, = I — 2B,'B,.
We have three more equations

(13.8) Bu'B.'A, + AyB,'B, = 0,
(13.9) By'ByAg +'AuB.'B, = 0,
(13.10) 'By'AuBay + "By Ao B, = 0,

which can be derived from (13.6) and the three diagonal blocks of (6.7). Let

)
A\ o

where « is of size (ma — r) X (ma — r) and p is of size r x r. Let 0 =
diag(oi,...,0,) be the diagonal matrix with the indicated diagonal entries so
that by (13.2) and (13.3), B, and ‘B, are of the same form

(13.11) (8 3) ,

with B,'B, = <8 002> of the same block sizes as A,. From (13.8) we obtain
(13.12) B=~=0,

(13.13) o? () = —po?.

Moreover from (13.7) we see

(13.14) dla=1I,

(13.15) pp="tup =1 — 202

Similarly, (13.9) yields

(13.16) o’ = —tuo?,

and (13.10) gives

(13.17) oluo = —ouo.
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With (13.13) and (13.16) we deduce
pij = —(0i/05)* i,
and
pji = —(03/05)* pij-
We therefore conclude
pig =0 if o5 # 0y,
and
Wij = —pj;  if 05 = oj.

a 0
o= <0 u>
with afa = I and p is in blocked form
p = diag(Aq, Ag, Ag, - -+ ),

where all the A; are skew-symmetric such that the number of A; is the num-
ber of different non-zero eigenvalues of B,'B,. Then (13.17) is automatically
satisfied. Now by the skew-symmetry of p and (13.15) we derive

(13.18) A? = —(1 —202)I.

In view of (13.14) and the skew-symmetry of u we can perform an orthonormal

In other words,

basis change so that a = I and

. 0 r 0
Ai:dlag((—rl 01>’<—7“2 02>,)

Thus (13.18) implies r¥ =73 = --- =1 — 207, and so
0 1 0 1
o _9s2
A; 1 — 207 diag( <_1 O) , <_1 O> yoen)
if1l-— 201.2 > 0. We set A1 =0 so that o1 = 1/\/5 We are done. O

COROLLARY 50. dim(Ker(4,)) = dim(A;) < r =rank(B,) < m;.

Remark 51. When (m1, ma)=(2,ms), me >3, Ozeki and Takeuchi showed
[25, 11, p. 49], that r as given in Lemma 49 is 1, essentially by exploring the fact
that p; and ps form a regular sequence in the spirit of Example 35 above. It

follows immediately from Lemma 49 that we have A = 0 and so A1 = <é 8)

as given in [25, I, p. 51]. With this it is not hard to see that Ay = <§ 8)
0

of the same block sizes as A7 with B = (I

_I) , where I in B is of size [ x [
and my = 2 + 1.
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Proof of Proposition 46. We must estimate the codimension in V€ of
Jn = {(z,y) € VT 1 dpT A--- Ndpy = 0}.

We first estimate the dimension of the subvariety Z,, of C™ x C™2  defined
to be the locus of points where the Jacobian matrix of p¥, ..., pC is of rank
< n. At (z,y) € Z,, the differentials dplc, e dpg are linearly dependent, i.e.,
there exists [c1 : -+ : ¢,] € CP"!, depending on (z,y), such that

0= Z cadpC = Z(Z caF i yu)des + Z(Z caFl,w0)dy,,
a=1

Q@ a,p © a,o

which requires that the coefficients of dz, be zero and that the coefficients of
dy,, also be zero. Thus

Zn ={(z,y) € C™ x C™ : Jley : -+ : cn],antAax = anAay = 0}.
In order to estimate dimZ,, let us define, for a fixed [c1 : - -+ : ¢,] € CP" 1,
Z(a,...,cn) = {(m,y) e C™ x C™M: an tAax = anAay = 0}

Consider the incidence space Y;, in CP"~! x C™2 x C™: given by

(13.19) Yo={(ler::calizy) : (2,9) € Zer o) }-

The standard projection of Y;, to C™2 x C™2 maps Y,, onto Z,,. Let m be the
standard projection of Y;, to CP™ . Then with respect to m we have

(13.20) dim(Z,) < dim(Y;,) < dim(base) + dim(fiber),

where dim(fiber) is the maximal dimension of all fibers. We first estimate the
dimension of the fibers 7~ {[c1 : -+ : ¢n]} = Z(¢, ... c,)- In fact, it comes down
to estimating the dimension of

Tieryoen) =Y €C™ 1> calay = 0}

for a fixed [c1 : -+ - : ¢p], because
(13.21) dim(ker (3 cq'4,)) = dim(ker (3 cqda)),

thus giving us the estimate

dim(Z,

LyeesCmn

Remark 52. Let us examine the case (m1,ma) = (2, ma), ma > 3, before
we proceed. By the above standard matrix form of A; and of As in Remark 51
we see that for iy = (‘z,s) € C™2, where s € C,

A1 H(z,8) =Y2,0) AgY(z,s) =(Bz,0).
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Hence Zgjf caAqy = 0 precisely when z = 0 or z is an eigenvector of B, with
eigenvalue ey/—1, where ¢ is £. In other words, when [c; : ¢2] = [ev/—1: 1] in
CP!, then

(13.22)  Ze, o) = {((u, —evV=1u,t), (v,ev/~1v,5)) : u,v € Cl, 5,t € C},
and Z, ,) = {((0,0,1),(0,0,s)) : s, € C} for other values of [c; : co]. Thus

(13.23) Zy = Zy=11yY L y=11)s
and so that
(13.24) dim(Z3) =204+ 2 =mg + 1.

We continue on now to estimate the dimension of Z(., . ).

Case (1). ci,...,cy are either all real or all purely imaginary. Say it is
the latter, so that ¢, = \/—1dj, with di real. Then for y € T(., . )

Z dpAry = 0.
k=1

However, the second fundamental form S has the property
d18€1+"'+dn56” = d%'f_"‘d%Se,

e=(die; + -+ dpep)/\/d2 + -+ d2.

where

We may therefore rename e to be e; in the normal basis, and so by restricting
to the A-block in the matrix of S we see that S,y = 0 comes down to, after
the renaming, A1y = 0. Corollary 50 then establishes that

dim(T(cl,...,cn)) <r<m
and

dim(Z,, . c,)) < 2dim T, . .y < 2m;.

1yeees

Case (2). c1,...,cy are not all real and not all purely imaginary. Write
ek = ag + V=10,
where not all oy and not all 85 are zero. Then
¢18e, + 4 nSe, = (186, + -+ + anSe,) + V=1(B15e, + -+ + BnSe,)-

As in Case (1), we know a1Se, + - - - + apSe, is a multiple of S, for some unit
vector e. Hence without loss of generality we may assume, after renaming e to
be ey, that

Clsel +-+ CnSe,l = alsel + v _1(B1561 + 4+ ﬂnSen)'
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On the other hand 3S,, + - - - + 8,5, is a multiple of Sy for some unit vector
f perpendicular to e;. We rename f to be e2 so that we may assume without
loss of generality that

61561 + -+ cnSen = (Ozl + —1ﬂ1)561 + vV —1ﬁ2552.

By restricting to the A-block in S again we see that (3, caAq)y = 0 is reduced
to

BoAogy = V—=1(a1 + V—-151) Ary.

We may assume both coefficients are nonzero, or else we would be back to
Case (1). Hence we are now handling

(13.25) (A2 — zAl)y =0

I 0

0 A> . Write

for some nonzero z € C. By Lemma 49, we may assume A; = <

o A
=2 1)

of the same block sizes as Aj. By the second equation of (5.6), which is
Ao'Ay + A1'Ag + 2(Bo'By + B1'By) = 0,
we obtain
(13.26) O+'0=0
when we invoke (13.11). If we write
y=(u,v), weC™ " pveC"
then part of (13.25) reads,
(13.27) (21 — ©)u = Av.
Consider the map G : C™ — C"27" given by
G: (u,v) — (21 — O)u — Av.
The kernel of G consists of all y = *(u,v) satisfying (13.27). If z is not an
eigenvalue of ©, then the rank of G is at least the rank of zI — ©, which is
mg —r. Thus, the rank of G is my —r, so that the kernel of G has dimension r.
On the other hand if z is an eigenvalue of ©, then because © is skew-symmetric
by (13.26), the rank of 2/ —© is at least (ma—r)/2 due to the fact that a nonzero
eigenvalue of © is purely imaginary, and its conjugate is also an eigenvalue of
©. It follows that the rank of G is no less than (mg — r)/2, so that its kernel

is of dimension < (mg + 7)/2. The upshot is that, since r < m; and since
dim(Ty,, ., ) is an integer, we have arrived at the estimate

dim(Te,.....c,)) < [(ma +7)/2] < [(m2 +m1)/2] = (mg +m1 = 1)/2,



ISOPARAMETRIC HYPERSURFACES 71

where [p] is the greatest integer in the number p; the last equality is true
because ms +mj is an odd number when 2 < m; < mso by a result of Miinzner
[22, II]. Therefore,

(13.28)  dim(fiber) = dim(Z(,, . .)) < 2dim(T(,,, .,)) < m2+mi — L.

This estimate is sharp in light of (13.24). Note that mg + m; — 1 is greater
than the upper bound 2m; for dim(Z, . .,) in Case (1), since ma > my + 2,
by assumption.

We next stratify the incidence space Y, of (13.19) in another way as
follows. We let s < mg be the largest integer for which ) " | ¢;A; is of rank
s for some, and hence for generic, [c1 : - - : ¢,], the set of which constitutes a
Zariski open set U of CP™!. A look at Corollary 50 shows that s > my —my,
so that for [¢; : -+ :¢] in U,

n
rank(z ciAi) =8> ma—m,
i=1

and thus, by (13.21),

n n

1 1
n

= 2(mg — rank(z cil;)) =2(mg —s) < 2my.
1

It follows that over U, (13.20) extends to
(13.29) dim(fiber) + dim(base) < 2mj + (n — 1).

On the other hand, over a subvariety W, contained in CP™ !, of dimension
< n—2, the rank of Y~ | ¢;A; is less than s. In view of (13.28), we have that
over W

dim(fiber) + dim(base) < dim(fiber) +n — 2

(13.30)
<mi+me—14+n—2=mi+mg+n-—23.

The part of Y, over U, call it A, is irreducible because each fiber over U is
a Euclidean space of a fixed dimension, whereas the part over W call it B,
is Zariski closed in Y;,. It follows that the closure of A, call it A, in Y, is
an irreducible component of Y;,, and the closure of B not in A constitutes the
remaining irreducible components in Y;,. Therefore, the larger of the two upper
bounds in (13.29) and (13.30) will be an upper bound for the dimension of Y;,.
However, 2m1+n —1 < mq +me +n — 3, because mo > m1 + 2. We conclude
that over CP"~!

(13.31) dim(Y,) <mj+mo+n—3

if mo > mq + 2.
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Now, Lemma 29 says that p?, -, pC are linearly independent. Consider
the map

fi(z,y) € C™ x C™ w (pF(2,y),....p5 (z,y)) € C"

Note that Z, is the singular point set of f and J, = f~1(0) N Z,.

Let us make a general remark about a refined version of Sard’s theorem
before proceeding. In the following, the irreducible objects X in the projec-
tivized domain of f, which is CP™~1 x CP™~! with PV,C removed, are all
quasi-projective, i.e., are all Zariski open subsets of projective varieties. f|x
can be considered as a rational map into CP"~!. So, by [21, p. 50], there
is a Zariski open set O of f(X) in C" (with the origin excluded) such that
dim(f|5 (y)) = dim(X) — dim(f(X)) is a constant for all y € O; we call it the
generic fiber dimension of f|x. Furthermore, codim(f(X)\ O) > 2 in f(X).

Recall from (13.19) that the projection II : Y,, — C™2 x C™ is Z,.
Observe that at (z,y), the dimension of the kernel of the Jacobian matrix
of p?, ... ,pg at (x,y) is 1 more than the dimension of the projective space
I-1((x,y)). C™= x C™: is stratified into locally closed sets (i.e., Zariski open
sets in their respective closures) X _1, Xo, X1, -, X;,,—1 such that df has rank
n—j—1on X; (X; may be empty). Note that II has fiber dimension j over
Xj. Let k be the first j > 0 for X; to be nonempty. Then Z,, = U;.‘:_]in and

U?:_é 11X is a Zariski closed set of Z,,. Let Up be an irreducible component
of Z,,. The smooth part of Uy consists of irreducible components of X;. Then
the generic rank of f|y, is n — k — 1, so that dim(f(Up)) = n — k — 1. Set
S:=UpN (U?:_g +1Xj). §is Zariski closed of codimension at least 1 in Up. The
generic fiber Fy of II over Uy has dimension k.

We now use an inductive procedure. Suppose U; of codimension ¢ in Uy
has been defined and the generic hyperplanes L; chosen (L is the empty set),
in such a way that S; := U; NS is of codimension at least 1 in U;, so that the
generic fiber dimension of I over Uj; is k. Let W be an irreducible component
of U;. Observe that since dim(W') = dim(U;) so that W N S; is of codimension
at least 1 in W, we have that f(/W NS;) is of codimension at least 1 in f(W);
or else the generic fiber dimension of f|y over f(W) would be reduced to a
smaller number.

Now, if f(W) # {0}, we pick a generic hyperplane L;;1, transversal to
L;,0 < j <, through the origin and transversal to f(IW) and f(WNS;). (This
is possible. Since f and the hyperplanes L1, Lo, --- , L; are all homogeneous,
we may consider the cuts to be done in the projective setting, and thereby get
that L;;1 is a hyperplane through the origin.) This warrants that the cone
Liy1(p1,- -+ ,pn) = 0 intersects W and W N S; transversally to cut out Qs of
codimension 1 in W and Qw N S; of codimension at least 1 in Qw, as we go
through each of the irreducible components W with f(W) # 0. Let U; 41 be
the union of all such Q. U;11 is of codimension ¢ + 1 in Uy. Furthermore,
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Si+1 = Ui+1NS = U (QwNS;) is of codimension at least 1 in U; 1. Therefore,
the generic fiber F;y; of II over U;;; has dimension k& = dim(Fp).

On the other hand, if an irreducible component L of U; satisfies f(L) = 0,
then codim(L) = i in Uy. We claim the generic fiber of IT over L is of dimension
n — i — 1. This is because when i = 0, f(Up) = 0 implies df has rank 0, so
that II has generic fiber dimension n — 1 over Up; Kk = n — 1 in this case. If
f(Uy) # 0, we go to Uy. If f(L) = 0 for some irreducible component of Uy,
then since df = 0 on L at its generic points, which are also generic in Uy, and
since df # 0 on Uy generically, we see df has rank 1 at a generic point of L.
That is, II has generic fiber dimension n — 2 over L; k = n — 2 in this case.
Then we move to Us, etc. Accordingly, we set T; to be the union of all such L;
we have k = n — i — 1 for a nonempty 7;. In particular, T; are all empty for
0 <i<n—k—1. The first possibly nontrivial one is thus T;, _p_1.

Continuing in this fashion, the next-to-last f(U,,_x_2) consists of finitely
many lines through the origin. Then the last cut by the generic hyperplane
L, —k—1 picks up the origin of C". But then f(U,_x—_1) =0 means T),__1 =
U, _r_1. The cutting procedure ends.

Consequently, with dim(F,,_x—1) = k and codim(U,,_x—1) =n—k — 1 in
Up, we have

dim(Unfkfl) < dim(Zn) - (n —k— 1)
<dim(Y,) —dim(F,—g-1) —(n —k —1)
<mi+mg—2
by (13.31). Now, since the variety J,, is the union of all U,,_y_1 as Uy goes

through all the irreducible components of Z,,, we deduce dim(.J,,) < mq+mo—2.
Hence, if my > my + n (respectively, mg > mq +n — 1), then

dim(J,) < my+mg —2 < 2my —n — 2 < dim(V,C) — 2

(respectively, < dim(V,€) — 1). So, if mg > 2m;, then J, is of codimension at
least 2 for all n < my. Further, if mo = 2mq — 1, then .J,, is of codimension at
least 2 for all n < my — 1, and J,,, is of codimension at least 1. This implies
the statements of Proposition 46. O

The classification result Theorem 47 is therefore established.
Remark 53. The standard matrix form of A; and of Ay in the case (m1, mg)

= (2,mg), ma > 3, given in Remark 51, leads to

(@yj + Tiegies)s P2 = =2 (TY4; — Tias¥s),
1 j=1

p1 =2

l l
]:
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where mgy = 21 + 1. Then Jo = V,C N Zo, which by (13.22) and (13.23) is
l
(13.32) Jo = {((u,—evV=Tu,t), (v,ev/=1v,5)) € Zo = Y _ujv; = 0},
j=1

where u,v € C!, t,5s € C, and ¢ = £. It follows that dim(.J3) = dim(Z3) — 1
= mg, by (13.24). Thus, codim (J) > 2 in V,C (which is of dimension 2my—2),
provided mo > 4.

For ms = 3, J2 has codimension 1 in VQC. Indeed, in this case the bi-
projective variety PbV2C defined by p; = ps = 0 in CP? x CP? is made up of
four irreducible components,

P,V = CP{ x CP{ UCP! x CP!
U{[0:0:1]} x CP2PUCP? x {[0:0: 1]}

where CP! < CP? by [u : s] + [u: ey/—1u : s]. Hence (p1, p2) is not a prime
ideal in C|x1,x2,y1,y2] and Proposition 43 says then that codim (J3) < 1 in
V,C. In fact, in this case codim (J3) = 1 in V,C, and x2(y? +y3) € (p1,p2), but
neither 9 nor yf + y3 is in the ideal.

In view of the known classification of Takagi [30] for m; = 1, Ozeki-
Takeuchi [25, II] for m; = 2, and Stolz’s result [29] on the multiplicities
m1 < mgy that states that (mi,ma) # (2,2) or (4,5) must be that of an
isoparametric hypersurface of FKM-type, we obtain from Theorem 47 that all
isoparametric hypersurfaces with four principal curvatures in spheres, whose
multiplicities are not (2,2) or (4, 5), are of FKM-type, except possibly for those
whose multiplicities are one of the following 3 pairs (3,4), (6,9), (7,8). The
(4,5) case also remains unclassified.
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