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Proof of the Lovász conjecture

By Eric Babson and Dmitry N. Kozlov

Abstract

To any two graphs G and H one can associate a cell complex Hom (G, H)
by taking all graph multihomomorphisms from G to H as cells.

In this paper we prove the Lovász conjecture which states that

if Hom (C2r+1, G) is k-connected, then χ(G) ≥ k + 4,

where r, k ∈ Z, r ≥ 1, k ≥ −1, and C2r+1 denotes the cycle with 2r+1 vertices.
The proof requires analysis of the complexes Hom (C2r+1, Kn). For even n,

the obstructions to graph colorings are provided by the presence of torsion in
H∗(Hom (C2r+1, Kn); Z). For odd n, the obstructions are expressed as vanishing
of certain powers of Stiefel-Whitney characteristic classes of Hom (C2r+1, Kn),
where the latter are viewed as Z2-spaces with the involution induced by the
reflection of C2r+1.

1. Introduction

The main idea of this paper is to look for obstructions to graph colorings in
the following indirect way: take a graph, associate to it a topological space, and
then look for obstructions to colorings of the graph by studying the algebraic
invariants of this space.

The construction of such a space, which is of interest here, has been sug-
gested by L. Lovász. The obtained complex Hom (G, H) depends on two graph
parameters. The algebraic invariants of this space, which we proceed to study,
are its cohomology groups, and, when it can be viewed as a Z2-space, its
Stiefel-Whitney characteristic classes.

1.1. The vertex colorings and the category of graphs. All graphs in this
paper are undirected. The following definition is a key in turning the set of all
undirected graphs into a category.

Definition 1.1. For two graphs G and H, a graph homomorphism from G

to H is a map φ : V (G) → V (H), such that if (x, y) ∈ E(G), then (φ(x), φ(y)) ∈
E(H).
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Here, V (G) denotes the set of vertices of G, and E(G) denotes the set of
its edges.

For a graph G the vertex coloring is an assignment of colors to vertices
such that no two vertices which are connected by an edge get the same color.
The minimal needed number of colors is denoted by χ(G), and is called the
chromatic number of G.

Deciding whether or not there exists a graph homomorphism between two
graphs is in general at least as difficult as bounding the chromatic numbers
of graphs because of the following observation: a vertex coloring of G with n

colors is the same as a graph homomorphism from G to the complete graph on
n vertices Kn. Because of this, one can also think of graph homomorphisms
from G to H as vertex colorings of G with colors from V (H) subject to the
natural condition.

Since an identity map is a graph homomorphism, and a composition of
two graph homomorphisms is again a graph homomorphism, we can consider
the category Graphs whose objects are all undirected graphs, and morphisms
are all the graph homomorphisms.

We denote the set of all graph homomorphisms from G to H by Hom 0(G, H).
Lovász has suggested the following way of turning this set into a topological
space.

Definition 1.2. We define Hom (G, H) to be a polyhedral complex whose
cells are indexed by all functions η : V (G) → 2V (H) \ {∅}, such that if (x, y) ∈
E(G), for any x̃ ∈ η(x) and ỹ ∈ η(y) we have (x̃, ỹ) ∈ E(H).

The closure of a cell η consists of all cells indexed by η̃ : V (G) → 2V (H) \
{∅}, which satisfy η̃(v) ⊆ η(v), for all v ∈ V (G).

We think of a cell in Hom (G, H) as a collection of nonempty lists of vertices
of H, one for each vertex of G, with the condition that any choice of one vertex
from each list will yield a graph homomorphism from G to H. A geometric
realization of Hom (G, H) can be described as follows: number the vertices of G

with 1, . . . , |V (G)|, the cell indexed with η : V (G) → 2V (H) \ {∅} is realized as
a direct product of simplices ∆1, . . . ,∆|V (G)|, where ∆i has |η(i)| vertices and
is realized as the standard simplex in R|η(i)|. In particular, the set of vertices
of Hom (G, H) is precisely Hom 0(G, H).

The barycentric subdivision of Hom (G, H) is isomorphic as a simplicial
complex to the geometric realization of its face poset. So, alternatively, it
could be described by first defining a poset of all η satisfying conditions of
Definition 1.2, with η ≥ η̃ if and only if η(v) ⊇ η̃(v), for all v ∈ V (G), and
then taking the geometric realization.

The Hom complexes are functorial in the following sense: Hom (H,−) is
a covariant, while Hom (−, H) is a contravariant functor from Graphs to Top.
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If φ ∈ Hom 0(G, G′), then we shall denote the induced cellular maps as φH :
Hom (H, G) → Hom (H, G′) and φH : Hom (G′, H) → Hom (G, H).

1.2. The statement of the Lovász conjecture. Lovász has stated the fol-
lowing conjecture, which we prove in this paper.

Theorem 1.3 (Lovász conjecture). Let G be a graph, such that
Hom (C2r+1, G) is k-connected for some r, k ∈ Z, r ≥ 1, k ≥ −1; then χ(G) ≥
k + 4.

Here C2r+1 is a cycle with 2r+1 vertices: V (C2r+1) = Z2r+1, E(C2r+1) =
{(x, x + 1), (x + 1, x) |x ∈ Z2r+1}.

The motivation for this conjecture stems from the following theorem which
Lovász proved in 1978.

Theorem 1.4 (Lovász, [16]). Let H be a graph, such that Hom (K2, H)
is k-connected for some k ∈ Z, k ≥ −1; then χ(H) ≥ k + 3.

One corollary of Theorem 1.4 is the Kneser conjecture from 1955; see [8].

Remark 1.5. The actual theorem from [16] is stated using the neighbor-
hood complexes N (H). However, it is well known that N (H) is homotopy
equivalent to Hom (K2, H) for any graph H; see, e.g., [2] for an argument. In
fact, these two spaces are known to be simple-homotopy equivalent; see [14].

We note here that Theorem 1.3 is trivially true for k = −1: Hom (C2r+1, G)
is (−1)-connected if and only if it is nonempty, and since there are no homo-
morphisms from odd cycles to bipartite graphs, we conclude that χ(G) ≥ 3.
It is also not difficult to show that Theorem 1.3 holds for k = 0 by using the
winding number. A short argument for a more general statement can be found
in subsection 2.2.

1.3. Plan of the paper. In Section 2, we formulate the main theorems and
describe the general framework of finding obstructions to graph colorings via
vanishing of powers of Stiefel-Whitney characteristic classes.

In Section 3, we introduce auxiliary simplicial complexes, which we call
Hom+(−,−). For any two graphs G and H, there is a canonical support map
supp : Hom+(G, H) → ∆|V (G)|−1, and the preimage of the barycenter is pre-
cisely Hom (G, H). This allows us to set up a useful spectral sequence, filtering
by the preimages of the i-skeletons.

In Section 4, we compute the cohomology groups H∗(Hom (C2r+1, Kn); Z)
up to dimension n − 2, and we find the Z2-action on these groups. These
computations allow us to prove the Lovász conjecture for the case of odd k,
k ≥ 1.
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In Section 5, we study a different spectral sequence, this one converging
to H∗(Hom (C2r+1, Kn)/Z2; Z2). Understanding certain entries and differentials
leads to the proof of the Lovász conjecture for the case of even k as well.

The results of this paper were announced in [1], where no complete proofs
were given. The reader is referred to [13] for a survey on Hom complexes, which
also includes a lot of background material which is omitted in this paper. As
the general reference in Combinatorial Algebraic Topology we recommend [10].

Acknowledgments. The second author acknowledges support by the Uni-
versity of Washington, Seattle, the Swiss National Science Foundation, and
the Swedish National Research Council.

2. The idea of the proof of the Lovász conjecture

2.1. Group actions on Hom complexes and Stiefel-Whitney classes. Con-
sider an arbitrary CW complex X on which a finite group Γ acts freely. By
the general theory of principal Γ-bundles, there exists a Γ-equivariant map
w̃ : X → EΓ, and the induced map w : X/Γ → BΓ = EΓ/Γ is unique up to
homotopy.

Specifying Γ = Z2, we get a map w̃ : X → S∞ = EZ2, where Z2 acts on
S∞ by the antipodal map, and the induced map w : X/Z2 → RP∞ = BZ2. We
denote the induced Z2-algebra homomorphism H∗(RP∞; Z2) → H∗(X/Z2; Z2)
by w∗. Let z denote the nontrivial cohomology class in H1(RP∞; Z2). Then
H∗(RP∞; Z2) � Z2[z] as a graded Z2-algebra, with z having degree 1. We
denote the image w∗(z) ∈ H1(X/Z2; Z2) by �1(X). This is the first Stiefel-
Whitney class of the Z2-space X. Clearly, �k

1(X) = w∗(zk), since w∗ is a Z2-
algebra homomorphism. We will be mainly interested in the height of the
Stiefel-Whitney class, i.e., largest k, such that �k

1(X) �= 0; it was called coho-
mology co-index in [3].

Turning to graphs, let G be a graph with Z2-action given by φ : G → G,
φ ∈ Hom 0(G, G), such that φ flips an edge, that is, there exist a, b ∈ V (G),
a �= b, (a, b) ∈ E(G), such that φ(a) = b (which implies φ(b) = a). For any
graph H we have the induced Z2-action φH : Hom (G, H) → Hom (G, H). In case
H has no loops, it follows from the fact that φ flips an edge that this Z2-action
is free.

Indeed, since φH is a cellular map, if it fixes a point from some cell η :
V (G) → 2V (H)\{∅}, then it maps η onto itself. By definition, φ maps η to η◦φ,
and so this means that η = η ◦ φ. In particular, η(a) = η ◦ φ(a) = η(b). Since
η(a) �= ∅, we can take v ∈ V (H), such that v ∈ η(a). Now, (a, b) ∈ E(G),
but (v, v) /∈ E(H), since H has no loops, which contradicts the fact that
η ∈ Hom (G, H).

Therefore, in this situation, Hom (G,−) is a covariant functor from the
induced subcategory of Graphs, consisting of all loopfree graphs, to Z2-spaces
(the category whose objects are Z2-spaces and morphisms are Z2-maps).
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We order V (C2r+1) by identifying it with [1, 2r + 1] by the map q : Z →
Z2r+1, taking x 
→ [x]2r+1. With this notation Z2 acts on C2r+1 by mapping
[x]2r+1 to [−x]2r+1, for x ∈ V (C2r+1). Let γ ∈ Hom 0(C2r+1, C2r+1) denote the
corresponding graph homomorphism. This action has a fixed point 2r+1, and
it flips one edge (r, r + 1).

Furthermore, let Z2 act on Km for m ≥ 2, by swapping the vertices
1 and 2 and fixing the vertices 3, . . . , m; here, Km is the graph defined by
V (Km) = [1, m], E(Km) = {(x, y) |x, y ∈ V (Km), x �= y}. Since in both
cases the graph homomorphism flips an edge, they induce free Z2-actions on
Hom (C2r+1, G) and Hom (Km, G), for an arbitrary graph G without loops.

2.2. Nonvanishing of powers of Stiefel-Whitney classes as obstructions
to graph colorings. The connection between the nonnullity of the powers of
Stiefel-Whitney characteristic classes and the lower bounds for graph colorings
is provided by the following general observation.

Theorem 2.1. Let G be a graph without loops, and let T be a graph with
Z2-action which flips some edge in T . If, for some integers k ≥ 0, m ≥ 1, we
have �k

1(Hom (T, G)) �= 0, and �k
1(Hom (T, Km)) = 0, then χ(G) ≥ m + 1.

Proof. We have already shown that, under the assumptions of the theorem,
Hom (T, H) is a Z2-space for any loopfree graph H. Assume now that the graph
G is m-colorable, i.e., there exists a homomorphism φ : G → Km. It induces
a Z2-map φT : Hom (T, G) → Hom (T, Km). Since the Stiefel-Whitney classes are
functorial and �k

1(Hom (T, Km)) = 0, the existence of the Z2-map φT implies
that �k

1(Hom (T, G)) = 0, which is a contradiction to the assumption of the
theorem.

Lemma 2.2. If a Z2-space X is k-connected, then there exists a Z2-map
φ : Sk+1

a → X; in particular, �k+1
1 (X) �= 0.

Proof. To construct φ, subdivide Sk+1
a simplicially as a join of k+2 copies

of S0, and then define φ on the join of the first i factors, starting with i = 1,
and increasing i by 1 at the time. To define φ on the first factor {a, b}, simply
map a to an arbitrary point x ∈ X, and then map b to γ(x), where γ is the
free involution of X. Assume φ is defined on Y - the join of the first i factors.
Extend φ to Y ∗ {a, b} by extending it first to Y ∗ {a}, which we can do, since
X is k-connected, and then extending φ to the second hemisphere Y ∗ {b}, by
applying the involution γ.

Since the Stiefel-Whitney classes are functorial, we have φ∗(�k+1
1 (X)) =

�k+1
1 (Sk+1

a ), and the latter is clearly nontrivial.

Let T be any graph and consider the following equation

�
n−χ(T )+1
1 (Hom (T, Kn)) = 0, for all n ≥ χ(T ) − 1.(2.1)
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Theorem 2.3.

(a) The equation (2.1) is true for T = Km, m ≥ 2.

(b) The equation (2.1) is true for T = C2r+1, r ≥ 1, and odd n.

Proof. The case T = Km is from [2, Th. 1.6] and has been proved there.
The case T = C2r+1 will be proved in Section 6.

Lemma 2.4. For a fixed value of n, if equation (2.1) is true for T = C2r+1,
then it is true for any T = C2r̃+1, if r ≥ r̃.

Proof. If r ≥ r̃, there exists a graph homomorphism φ : C2r+1 → C2r̃+1

which respects the Z2-action. This induces a Z2-map

φKn
: H∗(Hom (C2r+1, Kn)) → H∗(Hom (C2r̃+1, Kn)),

yielding

φ̃Kn
: H∗(Hom (C2r+1, Kn)/Z2; Z2) → H∗(Hom (C2r̃+1, Kn)/Z2; Z2).

Clearly, φ̃Kn
(�1(Hom (C2r+1, Kn))) = �1(Hom (C2r̃+1, Kn)). In particular,

�i
1(Hom (C2r+1, Kn)) = 0, implies �i

1(Hom (C2r̃+1, Kn)) = 0.

Note that for T = C2r+1 and n = 2, the equation (2.1) is obvious, since
Hom (C2r+1, K2) = ∅. We give a quick argument for the next case n = 3. One
can see by inspection that the connected components of Hom (C2r+1, K3) can
be indexed by the winding numbers α. These numbers must be odd, so that
α = ±1,±3, . . . ,±(2s + 1), where

s =

{
(r − 1)/3, if r ≡ 1 mod 3,


(r − 2)/3� , otherwise;

in particular s ≥ 0. Let φ : Hom (C2r+1, K3) → {±1,±3, . . . ,±(2s + 1)} map
each point x ∈ Hom (C2r+1, K3) to the point on the real line, indexing the
connected component of x. Clearly, φ is a Z2-map. Since

H1({±1,±3, . . . ,±(2s + 1)}/Z2; Z2) = 0,

the functoriality of the characteristic classes implies �1(Hom (C2r+1, K3)) = 0.

Conjecture 2.5. Equation (2.1) is true for T = C2r+1, r ≥ 1, and all n.

2.3. Completion of the sketch of the proof of the Lovász conjecture. Con-
sider one of the two maps ι : K2 → C2r+1 mapping the edge to the Z2-invariant
edge of C2r+1. Clearly, ι is Z2-equivariant. Since Hom (−, H) is a contravariant
functor, ι induces a map of Z2-spaces ιKn

: Hom (C2r+1, Kn) → Hom (K2, Kn),
which in turn induces a Z-algebra homomorphism ι∗Kn

: H∗(Hom (K2, Kn); Z) →
H∗(Hom (C2r+1, Kn); Z).
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Theorem 2.6. Assume n is even; then 2 · ι∗Kn
is a 0-map.

Theorem 2.6 is proved in Section 4. The results of this paper were an-
nounced in [1], and the preprint of this paper has been available since February
2004. In the summer 2005 an alternative proof of Theorem 2.6 appeared in
the preprint [19], and a proof of Conjecture 2.5 was announced by C. Schultz.

Proof of Theorem 1.3 (Lovász conjecture).The case k = −1 is trivial,
so take k ≥ 0. Assume first that k is even. By the Remark 2.2, we have
�k+1

1 (Hom (C2r+1, G)) �= 0. By Theorem 2.3(b), we have

�k+1
1 (Hom (C2r+1, Kk+3)) = 0.

Hence, applying Theorem 2.1 for T = C2r+1 we get χ(G) ≥ k + 4.
Assume now that k is odd, and that χ(G) ≤ k + 3. Let φ : G → Kk+3 be

a vertex-coloring map. Combining the Remark 2.2, the fact that Hom (C2r+1,−)
is a covariant functor from loopfree graphs to Z2-spaces, and the map ι : K2 →
C2r+1, we get the following diagram of Z2-spaces and Z2-maps:

Sk+1
a

f−→ Hom (C2r+1, G)
φC2r+1

−→ Hom (C2r+1, Kk+3)
ιKk+3−→ Hom (K2, Kk+3) ∼= Sk+1

a .

This gives a homomorphism on the corresponding cohomology groups in di-
mension k + 1, h∗ = f∗ ◦ (φC2r+1)∗ ◦ (ιKk+3)∗ : Z → Z. It is well-known, see,
e.g., [7, Prop. 2B.6, p. 174], that a Z2-map Sn

a → Sn
a cannot induce a 0-map

on the nth cohomology groups (in fact it must be of odd degree). Hence, we
have a contradiction, and so χ(G) ≥ k + 4.

Let us make a couple of remarks.

Remark 2.7. As is apparent from our argument, we are actually proving
a sharper statement than the original Lovász conjecture. First of all, the con-
dition “Hom (C2r+1, G) is k-connected” can be replaced by a weaker condition
“the coindex of Hom (C2r+1, G) is at least k + 1”. Furthermore, for even k,
that condition can be weakened even further to “�k+1

1 (Hom (C2r+1, G)) �= 0”.
Conjecture 2.5 would imply that this weakening can be done for odd k as well.

Remark 2.8. It follows from [2, Prop. 5.1] that the Lovász conjecture is
true if C2r+1 is replaced by any graph T , such that T can be reduced to C2r+1,
by a sequence of folds.

3. Hom+ and filtrations

3.1. The + construction. For a finite graph H, let H+ be the graph
obtained from H by adding an extra vertex b, called the base vertex, and
connecting it by edges to all the vertices of H+ including itself, i.e., V (H+) =
V (H) ∪ {b}, and E(H+) = E(H) ∪ {(v, b), (b, v) | v ∈ V (H+)}.
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Definition 3.1. Let G and H be two graphs. The simplicial complex
Hom+(G, H) is defined to be the link in Hom (G, H+) of the homomorphism
mapping every vertex of G to the base vertex in H+.

So the cells in Hom+(G, H) are indexed by all η : V (G) → 2V (H) satisfying
the same condition as in the Definition 1.2. The closure of η is also defined
identically to how it was defined for Hom . Note, that Hom+(G, H) is simpli-
cial, and that Hom+(G,−) is a covariant functor from Graphs to Top. One
can think of Hom+(G, H) as a cell structure imposed on the set of all partial
homomorphisms from G to H.

Hom+(K2, Λ)

= ×

Λ

Λ+

K2 × �Λ

Hom (K2, Λ+)

3

2

1

Figure 3.1: The hom plus construction.

For an arbitrary graph G, let Ind (G) denote the independence complex
of G, i.e., the vertices of Ind (G) are all vertices of G, and simplices are all the
independent sets of G. The dimension of Hom+(G, H), unlike that of Hom (G, H)
is easy to find:

dim(Hom+(G, H)) = |V (H)| · (dim Ind (G) + 1) − 1.

Recall that for any graph G, the strong complement �G is defined by
V (�G) = V (G), E(�G) = V (G) × V (G) \ E(G). Also, for any two graphs G

and H, the direct product G × H is defined by V (G × H) = V (G) × V (H),
E(G × H) = {((x, y), (x′, y′)) | (x, x′) ∈ E(G), (y, y′) ∈ E(H)}.

Sometimes, it is convenient to view Hom+(G, H) as an independent com-
plex of a certain graph.

Proposition 3.2. The complex Hom+(G, H) is isomorphic to Ind (G ×
�H). In particular, Hom+(G, Kn) is isomorphic to Ind (G)∗n, where ∗ denotes
the simplicial join.
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Proof. By the definition, V (G × �H) = V (G) × V (H). Let S ⊆ V (G) ×
V (H), S = {(xi, yi) | i ∈ I, xi ∈ V (G), yi ∈ V (H)}. Then S ∈ Ind (G × �H) if
and only if, for any i, j ∈ I, we have either (xi, xj) /∈ E(G) or (yi, yj) ∈ E(H),
since the forbidden constellation occurs when (xi, xj) ∈ E(G) and (yi, yj) /∈
E(H).

Identify S with ηS : V (G) → 2V (H) defined by: for v ∈ V (G), set ηS(v) :=
{w ∈ V (H) | (v, w) ∈ S}. The condition for ηS ∈ Hom+(G, H) is that, if
(v1, v2) ∈ E(G), and w1 ∈ ηS(v1), w2 ∈ ηS(v2), then (w1, w2) ∈ E(H), which is
visibly identical to the condition for S ∈ Ind (G × �H). Hence Hom+(G, H) =
Ind (G × �H).

To see the second statement note first that �Kn is the disjoint union of
n looped vertices. Since taking direct products is distributive with respect to
disjoint unions, and a direct product of G with a loop is again G, we see that
G× �Kn is a disjoint union of n copies of G. Clearly, its independent complex
is precisely the n-fold join of Ind (G).

3.2. Cochain complexes for Hom (G, H) and Hom+(G, H). For any CW
complex K, let K(i) denote the i-th skeleton of K. Let R be a commutative
ring with a unit. In this paper we will have two cases: R = Z and R = Z2. For
any η ∈ K(i), we fix an orientation on η, and let Ci(K;R) := R[η | η ∈ K(i)],
where R[α |α ∈ I] denotes the free R-module generated by α ∈ I. Furthermore,
let Ci(K;R) be the dual R-module to Ci(K;R). For arbitrary α ∈ Ci(K;R)
let α∗ denote the element of Ci(K;R) which is dual to α. Clearly, Ci(K;R) =
R[η∗ | η ∈ K(i)], and the cochain complex of K is

· · · ∂i−1

−→ Ci(K;R) ∂i

−→ Ci+1(K;R) ∂i+1

−→ . . . .

For η ∈ K(i), η̃ ∈ K(i+1), we have the incidence number [η : η̃], which is
0 if η /∈ η̃. In this notation ∂i(η∗) =

∑
η̃∈K(i+1) [η : η̃] η̃∗. For arbitrary α ∈

Ci(K;R), resp. α∗ ∈ Ci(K;R), we let [α], resp. [α∗], denote the corresponding
element of Hi(K;R), resp. H i(K;R).

When coming after the name of a cochain complex, the brackets [−] will
denote the index shifting (to the left); that is for the cochain complex C∗, the
cochain complex C∗[s] is defined by Ci[s] := Ci+s, and the differential is the
same (we choose not to change the sign of the differential).

We now return to our context. Let G and H be two graphs, and let us
choose some orders on V (G)={v1, . . . , v|V (G)|} and on V (H)={w1, . . . , w|V (H)|}.
Through the end of this subsection we assume the coefficient ring to be Z; the
situation over Z2 is simpler and can be described by tensoring with Z2.

Vertices of Hom+(G, H) are indexed with pairs (x, y), where x ∈ V (G),
y ∈ V (H), such that if x is looped, then so is y. We order these pairs
lexicographically: (vi1 , wj1) ≺ (vi2 , wj2) if either i1 < i2, or i1 = i2 and
j1 < j2. Orient each simplex of Hom+(G, H) according to this order on the
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vertices. We call this orientation standard, and call the oriented simplex η+. If
η̃+ ∈ Hom

(i+1)
+ (G, H) is obtained from η+ ∈ Hom

(i)
+ (G, H) by adding a vertex v,

then [η+ : η̃+] is (−1)k−1, where k is the position of v in the order of the
vertices of η̃+.

Let us now turn to C∗(Hom (G, H)). We can fix an orientation, which we
also call standard, on each cell η ∈ Hom (G, H) as follows: orient each simplex
η(i) according to the chosen order on the vertices of H; then, order these
simplices in the direct product according to the chosen order on the vertices
of G. To simplify our notation, we still call this oriented cell η, even though
a choice of orders on the vertex sets of G and H is implicit.

We remark for later use, that permuting the vertices of the simplex η(i)
by some σ ∈ S|η(i)| changes the orientation of the cell η by sgn (σ), whereas
swapping the simplices with vertex sets η(i) and η(i + 1) in the direct product
changes the orientation by (−1)(|η(i)|−1)(|η(i+1)|−1) = (−1)dim η(i)·dim η(i+1).

If η̃ ∈ Hom (i+1)(G, H) is obtained from η ∈ Hom (i)(G, H) by adding a ver-
tex v to the list η(t), then [η : η̃] is (−1)k+d−1, where k is the position of v

in η̃(t), and d is the dimension of the product of the simplices with the ver-
tex sets η(1), . . . , η(t − 1); that is, d = 1 − t +

∑t−1
j=1 |η(j)|. To see this, note

that [η : η̃] = 1 if the first vertex in the first simplex is inserted. The general
case follows from the previously described rules for changing the sign of the
orientation under permuting simplices in the product and permuting vertices
within simplices.

3.3. The support map and the relation between Hom (G, H) and Hom+(G, H).
For each simplex of Hom+(G, H), η : V (G) → 2V (H), define the support of η to
be supp η := V (G)\η−1(∅). A concise way to phrase the definition of supp dif-
ferently is to consider the map tG : Hom+(G, H) → Hom+(G, �K1) � ∆|V (G)|−1

induced by the homomorphism t : H → �K1. Then, for each η ∈ Hom+(G, H)
we have supp η = tG(η), where the simplices in ∆|V (G)|−1 are identified with
the subsets of V (G).

Let C̃∗ be the subcomplex of C∗(Hom+(G, H)) generated by all η∗+, for
η : V (G) → 2V (H), such that supp η = V (G) (cf. filtration in subsection 3.5).
Set

X∗(G, H) := C̃∗[|V (G)| − 1].(3.1)

Note that both Ci(Hom (G, H)) and Xi(G, H) are free Z-modules with the bases
{η∗}η and {η∗+}η indexed by η : V (G) → 2V (H)\{∅}, such that

∑|V (G)|
j=1 |η(j)| =

|V (G)| + i.
At this point we introduce the following notation: for η :V (G)→2V (H) \ {∅},

set
c(η) :=

∑
i is even

1≤i≤|V (G)|

|η(i)|.
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For any η : V (G) → 2V (H) \ {∅}, set ρ(η+) := (−1)c(η)η. Obviously, the
induced map ρ∗ : Xi(G, H) → Ci(Hom (G, H)) is a Z-module isomorphism for
any i.

Proposition 3.3. The map ρ∗ : X∗(G, H) → C∗(Hom (G, H)) is an iso-
morphism of the cochain complexes.

Proof. Indeed, let η̃ : V (G) → 2V (H) \ {∅} be obtained from η by adding
a vertex v to the list η(t), and let k be the position of v in η̃(t). By our
previous computation: [η+ : η̃+] = (−1)k+d+t, whereas [η : η̃] = (−1)k+d−1,
where d = 1 − t +

∑t−1
j=1 |η(j)|. This shows that

[ρ(η+) : ρ(η̃+)] = (−1)c(η)+c(η̃)[η : η̃] = (−1)c(η)+c(η̃)+t+1[η+ : η̃+],

but

c(η) + c(η̃) + t + 1 =
∑

i is even

|η(i)| +
∑

i is even

|η̃(i)| + t + 1 ≡ 0 (mod 2)

for any t; hence [ρ(η+) : ρ(η̃+)] = [η+ : η̃+].

3.4. Relating Z2-actions on Hom (G, H) and Hom+(G, H). Assume that we
have γ ∈ Hom 0(G, G), and 0 ≤ r ≤ |V (G)|/2, such that

γ(i) =

{
2r + 1 − i, if 1 ≤ i ≤ 2r;
i, if 2r + 1 ≤ i ≤ |V (G)|,

where V (G) is identified with the numbering [1, V (G)]. In particular, we have
γ2 = 1.

The homomorphism γ induces Z2-action both on Hom (G, H), and on
Hom+(G, H). We shall see how ρ∗ behaves with respect to this Z2-action. For
any η : V (G) → 2V (H) \ {∅}, γ takes η to η ◦ γ. By a slight abuse of notation
we let γ denote the induced actions both on C∗(Hom (G, H)) and on X∗(G, H).

Let (u1, . . . , uq) be the vertices of the simplex η+ listed in increasing or-
der. By definition, γ(η+) = (γ(u1), . . . , γ(uq)), where γ((v, w)) := (γ(v), w),
for v ∈ V (G), w ∈ V (H). Clearly, γ(η+) has the same set of vertices as
(η ◦ γ)+, so we just need to see how their orientations relate. To order the
vertices of γ(η+) we need to invert the order of the blocks with cardinalities
|η(1)|, . . . , |η(2r)| without changing the vertex orders within the blocks. The
sign of this permutation is (−1)c, where c =

∑
1≤i<j≤2r |η(i)| · |η(j)|, and so

we conclude that

γ(η∗+) = (−1)c(η ◦ γ)∗+.(3.2)

Consider now the oriented cell η. It is a direct product of simplices
∆1, . . . ,∆|V (G)| of dimensions |η(1)|−1, . . . , |η(|V (G)|)|−1, with the standard
orientation as defined above. The cell γ(η) is the direct product of γ(∆1) =
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∆2r, γ(∆2) = ∆2r−1, . . . , γ(∆2r) = ∆1, γ(∆2r+1) = ∆2r+1, . . . , γ(∆|V (G)|) =
∆|V (G)|, with the order of the vertices (hence the orientation) within each sim-
plex being the same as in η.

We see that γ(η) is, up to the orientation, the same cell as η ◦γ. To relate
their orientations, we need to permute the simplices ∆2r, . . . ,∆1 back in order,
which, by the previous observations, changes the orientation by (−1)d̃, where

d̃ =
∑

1≤i<j≤2r

dim ∆i · dim ∆j =
∑

1≤i<j≤2r

(|η(i)| − 1)(|η(j)| − 1)

= c − (2r − 1)
2r∑

i=1

|η(i)| +
(

2r

2

)
.

Reducing modulo 2, we conclude that

γ(η∗) = (−1)d(η ◦ γ)∗,(3.3)

where d = c +
∑2r

i=1 |η(i)| + r.
Let us now see how ρ∗ interacts with γ. We have

ρ∗(γ(η∗+)) = (−1)cρ∗((η ◦ γ)∗+) = (−1)c+c(η◦γ)(η ◦ γ)∗,(3.4)

where the first equality is by (3.2) and the second one is by definition of ρ, and

γ(ρ∗(η∗+)) = (−1)c(η)γ(η∗) = (−1)d+c(η)(η ◦ γ)∗,(3.5)

where the first equality is by definition of ρ and second one is by (3.3). Com-
paring (3.4) with (3.5), and using the computation

c(η) + c(η ◦ γ) =
∑

i is even
1≤i≤|V (G)|

|η(i)| +
∑

i is even
1≤i≤|V (G)|

|η ◦ γ(i)|

=
2r∑

i=1

|η(i)| + 2 ·
∑

i is even
2r+1≤i≤|V (G)|

|η(i)|,

we see that, for any η

ρ∗(γ(η∗+)) = (−1)rγ(ρ∗(η∗+)).(3.6)

3.5. The filtration of C∗(Hom+(G, H); Z) and the E∗,∗
0 -tableau. We shall

now filter C∗(Hom+(G, H); Z). Define the subcomplexes of C∗(Hom+(G, H); Z),
F p = F pC∗(Hom+(G, H); Z), as follows:

F p : · · · ∂q−1

−→ F p,q ∂q

−→ F p,q+1 ∂q+1

−→ . . . ,

where

F p,q = F pCq(Hom+(G, H); Z) = Z
[
η∗+

∣∣∣ η+ ∈ Hom
(q)
+ (G, H), |supp η| ≥ p + 1

]
,

and ∂∗ is the restriction of the differential in C∗(Hom+(G, H); Z). Then,

Cq(Hom+(G, H); Z) = F 0,q ⊇ F 1,q ⊇ · · · ⊇ F |V (G)|−1,q ⊇ F |V (G)|,q = 0.
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Proposition 3.4. For any p,

F p/F p+1 =
⊕

S⊆V (G)
|S|=p+1

C∗(Hom (G[S], H); Z)[−p].(3.7)

Hence, the 0th tableau of the spectral sequence associated to the cochain complex
filtration F ∗ is given by

Ep,q
0 = Cp+q(F p, F p+1) =

⊕
S⊆V (G)
|S|=p+1

Cq(Hom (G[S], H); Z).(3.8)

Proof. By construction

F p,q/F p+1,q = Z
[
η∗+

∣∣∣ η+ ∈ Hom
(q)
+ (G, H), |supp η| = p + 1

]
=

⊕
S⊆V (G)
|S|=p+1

Xq−p(G[S], H; Z)
ρ∗

=
⊕

S⊆V (G)
|S|=p+1

Cq−p(Hom (G[S], H); Z),

where X∗ is as defined in (3.1), and ρ∗ is the map defined in subsection 3.3.

Note, that in particular we have F |V (G)|−1,q/F |V (G)|,q = F |V (G)|−1,q =
Cq(Hom (G, H); Z)[1 − |V (G)|].

4. Z2-action on H∗(Hom+(C2r+1, Kn); Z)

In this section we shall derive some information about the Z[Z2]-modules
H∗(Hom (C2r+1, Kn); Z), for r ≥ 2, n ≥ 4. For r = 2 our computation will be
complete.

We adopt the following convention: we think of C2r+1 as a unit circle on
the plane with 2r +1 marked points with numbers 1, . . . , 2r +1 following each
other in the clockwise increasing order. The directions left, resp. right on this
circle will denote counterclockwise, resp. clockwise.

Furthermore, before we start our computation, we introduce the follow-
ing terminology. For S ⊂ V (C2r+1), we call those connected components
of C2r+1[S] which have at least 2 vertices the arcs. For x, y ∈ Z, we let
[x, y]2r+1 denote the arc starting from x and going clockwise to y, that is
[x, y]2r+1 = {[x]2r+1, [x + 1]2r+1, . . . , [y − 1]2r+1, [y]2r+1}.

4.1. The simplicial complex of partial homomorphisms from a cycle to
a complete graph. Here and in the next subsection we summarize some previ-
ously published results which are necessary for our present computations. To
start with, recall that the homotopy type of the independence complexes of
cycles was computed in [9].
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Proposition 4.1 ([9, Prop. 5.2]). For any integer m ≥ 2,

Ind (Cm) �
{

Sk−1 ∨ Sk−1, if m = 3k;
Sk−1, if m = 3k ± 1.

Combining Propositions 3.2 and 4.1 we get the following formula.

Corollary 4.2. For any integers m ≥ 2, n ≥ 1,

Hom+(Cm, Kn) �
{∨

2n copies Snk−1, if m = 3k;
Snk−1, if m = 3k ± 1.

(4.1)

The following estimates will be needed later for our spectral sequence
computations.

Corollary 4.3. H̃ i(Hom+(C2r+1, Kn)) = 0 for r ≥ 2, n ≥ 4, and i ≤
n + 2r − 2, except for the two cases (n, r) = (4, 3) and (5, 3).

Proof. Note, that if 2r + 1 = 3k + ε, with ε ∈ {−1, 0, 1}, then

H̃ i(Hom+(C2r+1, Kn)) = 0, for i ≤ nk − 2.

Assume first 2r +1 = 3k. The inequality nk− 2 ≥ n+2r− 2 is equivalent
to n ≥ 3 + 2/(k − 1), and the latter is always true since k ≥ 3 and n ≥ 4.

Assume now 2r + 1 = 3k + 1. This time, nk− 2 ≥ n + 2r− 2 is equivalent
to n ≥ 3 + 3/(k − 1). If k ≥ 4, this is always true, since n ≥ 4. If k = 2, this
reduces to saying that n ≥ 6. This yields the two exceptional cases: r = 3 and
n = 4, 5.

Finally, assume 2r + 1 = 3k − 1. Here, nk − 2 ≥ n + 2r − 2 is equivalent
to n ≥ 3 + 1/(k − 1), which is always true, since k ≥ 2, n ≥ 4.

Corollary 4.2 can be strengthened to include the information on the
Z2-action.

Proposition 4.4. For any positive integers r and n,

Hom+(C2r+1, Kn)/Z2 �
{∨

2n−1 copies Snk−1, if 2r + 1 = 3k;
Skn/2−1 ∗ RPkn/2−1, if 2r + 1 = 3k ± 1.

(4.2)

Proof. By Proposition 3.2 we know that Hom+(C2r+1, Kn) is isomorphic
to Ind (C2r+1)∗n. We analyze Z2-action on Ind (C2r+1) in more detail.

Assume first 2r + 1 = 3k − 1; in particular, k is even. It was shown in
[9, Prop. 5.2] that X = Ind (C2r+1) \ {1, 4, . . . , 2r − 3, 2r} is contractible (here
“\” just means the removal of an open maximal simplex). It follows from the
standard fact in the theory of transformation groups, see e.g., [5, Th. 5.16,
p. 222], that X/Z2 is contractible as well. Hence Ind (C2r+1) is Z2-homotopy
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equivalent to the unit sphere Sk−1 ⊂ Rk with the Z2 acting by fixing k/2
coordinates and multiplying the other k/2 coordinates by −1.

Assume 2r + 1 = 3k + 1. The link of the vertex 2r + 1 is Z2-homotopy
equivalent to a point. Hence, deleting the open star of the vertex 2r + 1
produces a complex X, which is Z2-homotopy equivalent to Ind (C2r+1). It
was shown in [9, Prop. 5.2], that X \ {2, 5, . . . , 2r − 4, 2r − 1} is contractible.
By an argument, similar to the previous case, we conclude that Ind (C2r+1) is
Z2-homotopy equivalent to the unit sphere Sk−1 ⊂ Rk with the Z2 acting by
fixing k/2 coordinates and multiplying the other k/2 coordinates by −1.

In both cases we see that Hom+(C2r+1, Kn) is Z2-homotopy equivalent to
suspkn/2Skn/2−1, with the Z2-action and the latter space being induced by the
antipodal action on Skn/2−1. It follows that Hom+(C2r+1, Kn)/Z2 is homotopy
equivalent to suspkn/2RPkn/2−1.

Consider the remaining case 2r+1 = 3k. It was shown in [9, Prop. 5.2] that
Ind (C2r+1) becomes contractible if one removes the simplices {1, 4, . . . , 2r−1}
and {2, 5, . . . , 2r}. It follows that Ind (C2r+1) is Z2-homotopy equivalent to
the wedge of two unit spheres Sk−1 with the Z2 acting by swapping the
spheres. Thus Hom+(C2r+1, Kn) is Z2-homotopy equivalent to a wedge of
2n (nk − 1)-dimensional spheres, with the Z2-action swapping them in pairs.
Thus, Hom+(C2r+1, Kn)/Z2 is homotopy equivalent to a wedge of 2n−1 (nk−1)-
dimensional spheres.

We summarize the estimates needed later.

Corollary 4.5. H̃ i(Hom+(C2r+1, Kn)/Z2) = 0 for r ≥ 2, n ≥ 5, and
i ≤ n + r − 2, except for the case r = 3.

Proof. If 2r + 1 = 3k, the inequality nk − 2 ≥ n + r − 2 is equivalent
to n ≥ 3r/(2r − 2), which is true for n ≥ 3, r ≥ 2. If 2r + 1 = 3k − 1,
then nk/2 ≥ n + r − 2 is equivalent to (n − 3)(k − 2) ≥ 0, again true for our
parameters.

If 2r+1 = 3k+1, then nk/2 ≥ n+r−2 is equivalent to (n−3)(k−2) ≥ 2.
This is true for all parameters n ≥ 5, k ≥ 2, except for k = 2.

4.2. The cell complex of homomorphisms from a tree to a complete graph.
In the next proposition we summarize several results proved in [2], [12].

Proposition 4.6 ([2, Props. 4.3, 5.4, and 5.5], [12]). Let T be a tree with
at least one edge.

(i) The map iKn
: Hom (T, Kn) → Hom (K2, Kn) induced by any inclusion

i : K2 ↪→ T is a homotopy equivalence.

(ii) Hom (K2, Kn) is a boundary complex of a polytope of dimension n− 2, in
particular Hom (T, Kn) � Sn−2.



980 ERIC BABSON AND DMITRY N. KOZLOV

(iii) Given a Z2-action determined by an invertible graph homomorphism γ :
T → T , if γ flips an edge in T , then Hom (T, Kn) �Z2 Sn−2

a ; otherwise
Hom (T, Kn) �Z2 Sn−2

t .

Here Sm
a denotes the m-sphere equipped with an antipodal Z2-action,

whereas Sm
t is the m-sphere equipped with the trivial one.

Let F be any graph, with F1, . . . , Ft being the list of all those connected
components of F which have at least two vertices. For any ∅ �= S ⊆ [1, t], and
V = {vi}i∈S , such that vi ∈ V (Fi), for any i ∈ S, set

α+(F, V ) :=
∑

η

η∗+, α(F, V ) :=
∑

η

η∗,

where both sums are taken over all η : V (F ) → 2[1,n] \ {∅}, such that

• η(vi) = [1, n − 1], for all i ∈ S;

• |η(w)| = 1, for all w ∈ V (F ) \ V .

Note that, for fixed S and V , (−1)c(η) does not depend on the choice of η as
long as η satisfies these two conditions. From our previous notation we have
α+(F, V ) ∈ X |S|(n−2)(F, Kn), and α(F, V ) ∈ C |S|(n−2)(Hom (F, Kn)). When
|S| = 1, V = {v}, we shall simply write α+(F, v) and α(F, v).

Assume now that F is a forest. For w ∈ V (Fi), such that (vi, w) ∈
E(F ), set W := {v1, . . . , vi−1, w, vi+1, . . . , vt} = (V ∪ {w}) \ {vi}. We have
a graph homomorphism K2 → (v, w), which induces a Z2-equivariant map ϕ∗ :
H∗(Hom (K2, Kn)) → H∗(Hom (F, Kn)). We know that Hom (K2, Kn) ∼=Z2 Sn−2

a ,
and that the dual of any (n−2)-dimensional cell of Hom (K2, Kn) is a generator
of Hn−2(Hom (K2, Kn); Z). Comparing orientations of the cells of Hom (K2, Kn)
we see that [α(K2, 1)] = (−1)n−1[α(K2, 2)], where 1 and 2 denote the vertices
of K2. Applying ϕ∗ we conclude that

[α(F, V )] = (−1)n−1[α(F, W )].

Since ρ∗ is a cochain isomorphism and ρ∗(α+(F, V )) = (−1)c(η)α(F, V ), we
have

[α+(F, V )] =


−[α+(F, W )], if v and w have different

parity in the order on V (F );
(−1)n−1[α+(F, W )], if they have the same parity.

(4.3)

4.3. The E∗,∗
1 -tableau for Ep,q

1 ⇒ Hp+q(Hom+(C2r+1, Kn); Z).1 We fix
integers r ≥ 2 and n ≥ 4. Let (F p)p=0,...,|V (G)|−1 be the filtration on

1The calculations performed in the subsections 4.3–4.8 have been verified and generalized
in [15].
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2r − 2 2r2r − 1

0

0p
q

n − 2

2n − 4

n − 3

D1

D2

D0

H∗(Hom (C2r+1, Kn))

d1 d1 d1 d1

d2

d1

d1d1d1d1

d1 d1 d1

Figure 4.1: The E∗,∗
1 -tableau, for Ep,q

1 ⇒ Hp+q(Hom+(C2r+1, Kn); Z).

C∗(Hom+(C2r+1, Kn); Z) defined in subsection 3.5, and consider the correspond-
ing spectral sequence. The entries of the E1-tableau are given by Ep,q

1 =
Hp+q(F p, F p+1). Since all proper subgraphs of C2r+1 are forests, we can
now use the formula (3.8) to obtain almost complete information about the
E1-tableau. See Figure 4.1, where all the entries outside of the shaded area
are equal to 0

Let ∅ �= S ⊂ V (C2r+1), and let S1, . . . , Sl(S) be the connected components
of C2r+1[S], with |S1| ≥ |S2| ≥ · · · ≥ |Sd(S)| > |Sd(S)+1| = · · · = |Sl(S)| = 1,
where l(S) ≥ 1, but possibly d(S) = 0 or d(S) = l(S). By Proposition 4.6
together with property (3) from [2, §2.4] we see that

Hom (C2r+1[S], Kn) �
d(S)∏
i=1

Sn−2.(4.4)

Combining this with the formula (3.8) we conclude

Hp+q(F p, F p+1) =
⊕

S⊂V (C2r+1)
|S|=p+1

Hq

d(S)∏
i=1

Sn−2; Z

 ,(4.5)

for p ≤ 2r − 1.
Since the spectral sequence converges to H̃∗(Hom+(C2r+1, Kn); Z), and,

since by Corollary 4.3, H̃ i(Hom+(C2r+1, Kn); Z) = 0 for i ≤ n+2r−2, we know
that the entries on the diagonals p + q = n + 2r − 2, and p + q = n + 2r − 3,
should eventually all become 0.
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4.4. The cochain complex (D∗
0, d1) = (E∗,0

1 , d1), for Ep,q
1 ⇒

Hp+q(Hom+(C2r+1, Kn); Z). Let (D∗
i , d1) denote the cochain complex in the

i(n − 2)-th row of E∗,∗
1 , for any i = 0, . . . ,

⌊
2r + 1

3

⌋
. Next we show that

(D∗
0, d1) is isomorphic to the cochain complex of a simplex.

Lemma 4.7. E0,0
2 = Z, and E1,0

2 = E2,0
2 = · · · = E2r,0

2 = 0.

Proof. Let ∆2r denote an abstract simplex with 2r + 1 vertices indexed
by [1, 2r + 1], and identify simplices of ∆2r with the subsets of [1, 2r + 1]. Let
(C∗(∆2r; Z), d∗) be the cochain complex of ∆2r corresponding to the order on
the vertices given by this indexing. By (4.5), each S ⊆ V (C2r+1), |S| = p + 1,
contributes one independent generator (over Z) to Ep,0

1 . Identifying these with
the generator in C∗(∆2r; Z) of the corresponding p-simplex in ∆2r, we see that
(D∗

0, d1) and (C∗(∆2r; Z), d∗) are isomorphic as cochain complexes.
Indeed, for such an S, τS :=

∑
ϕ∈Hom 0(C2r+1[S],Kn) ϕ∗

+ is a representative of

the corresponding generator in Ep,0
1 . This is true even for S = V (C2r+1), since

Hom (C2r+1, Kn) is connected for n ≥ 4, as was shown in [2, Prop. 2.1]. Clearly,

d1(τS) =
∑

ϕ∈Hom 0(C2r+1[S],Kn)

∑
v/∈S

∑
ψ|S=ϕ

[ϕ+ : ψ+]ψ∗
+

=
∑
v/∈S

[S : S ∪ {v}]
∑

ψ∈Hom 0(C2r+1[S∪{v}],Kn)

ψ∗
+ =

∑
v/∈S

[S : S ∪ {v}]τS∪{v},

where the second equality is true since [ϕ+ : ψ+] only depends on S and v,
not on the specific choice of ϕ and ψ. This shows that the following diagram
commutes:

Cp(∆2r; Z) dp

−−−→ Cp+1(∆2r; Z)

τ·

� �τ·

Ep,0
1

d1−−−→ Ep+1,0
1 ,

where τ· : C∗(∆2r; Z) → E∗,0
1 is the linear extension of the map taking S to τS ,

for S ⊆ V (C2r+1). It follows that (D∗
0, d1) is isomorphic to (C∗(∆2r; Z), d∗);

therefore E0,0
2 = Z, and E1,0

2 = E2,0
2 = · · · = E2r,0

2 = 0.

4.5. The cochain complexes (D∗
t , d1) = (E∗,(n−2)t

1 , d1), for 
(2r + 1)/3� ≥
t ≥ 2, and Ep,q

1 ⇒ Hp+q(Hom+(C2r+1, Kn); Z). We shall perform only a partial
analysis of the cohomology groups of (D∗

t , d1), which will however be sufficient
for our purpose.

For S ⊂ V (C2r+1) and v ∈ S, let a(S, v) denote the arc of S to which
v belongs (assuming this arc exists). Furthermore, for an arbitrary arc a



PROOF OF THE LOVÁSZ CONJECTURE 983

of S, let a = [a•, a•]2r+1. Let |a| denote the number of vertices on a, and set
â := [a• − 1, a• + 1]2r+1 (so |â| = |a| + 2, if |a| ≤ 2r − 1).

For any V ⊆S⊆V (C2r+1), as in section 4.2, set σS,V := α+(C2r+1[S], V ).
By our previous observations, E

0,t(n−2)
1 = 0. Furthermore, for any 1 ≤ i ≤

2r−1, E
i,t(n−2)
1 is a free Z-module with the basis {[σS,V ]}, where S ⊂ V (C2r+1),

|S| = i + 1, |V | = t, and v = a•(S, v) (i.e., [v − 1]2r+1 /∈ S) for all v ∈ V . Since
σS,v is a cocycle in Xn−2(C2r+1[S], Kn; Z), we have

d1([σS,v]) =
∑
w/∈S

(−1)z(w)[σS∪{w},v],(4.6)

where

z(w) =

{
|S ∩ [1, w − 1]| , if v /∈ [1, w − 1];
n + |S ∩ [1, w − 1]| , if v ∈ [1, w − 1].

Note, that if i ≤ 2r − 2 and [w]2r+1 = [v − 1]2r+1, then v �= a•(S ∪ {w}, w), so
[σS∪{w},v] may differ by a sign from one of the elements in our chosen basis.
We shall not need the analog of the equation (4.6) for the case |V | ≥ 2.

Let A∗
1 be the subcomplex of D∗

1 defined by:

A∗
1 : 0 −→ Ẽ2r−2,n−2

1
d1−→E2r−1,n−2

1
d1−→E2r,n−2

1 −→ 0,

where the Z-modules indexed with 0, . . . , 2r − 3 are equal to 0, and Ẽ2r−2,n−2
1

is generated by {[σS,v]}, such that S and v satisfy all the previously required
conditions and, in addition, C2r+1[S] is connected.

In general, let A∗
t be the subcomplex of D∗

t generated by all {[σS,V ]}, such
that ⋃

v∈V

â(S, v) = V (C2r+1).(4.7)

In words: the gaps between those arcs of S which have points in V are of length
at most 2. For future reference, we note, that (4.7) implies that |S| + 2|V | ≥
2r + 1, i.e., |S| − 1 ≥ 2r − 2t; hence Aj

t = 0 for j < 2r − 2t.

Lemma 4.8. H∗(D∗
t ) = H∗(A∗

t ).

Proof. Let us set up another spectral sequence for computing the coho-
mology of the relative complex (D∗

t , A
∗
t ). We filter by

∑
v∈V |a(S, v)|. More

precisely, F p(D∗
t , A

∗
t ) = Z[[σS,V ]

∣∣ ∑
v∈V |a(S, v)| ≥ p]. We see that

F p(D∗
t , A

∗
t )/F p+1(D∗

t , A
∗
t ) = Z[[σS,v]

∣∣ ∑
v∈V

|a(S, v)| = p];

hence

Ep,q
1 (D∗

t , A
∗
t ) = Hp+q(F p(D∗

t , A
∗
t )/F p+1(D∗

t , A
∗
t )) =

⊕
a1,...,at

Hp+q(M∗
a1,...,at

),

where the sum is taken over all possible t-tuples of arcs a1, . . . , at such that
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(1) ai ∩ âj = ∅, for any i �= j, i, j ∈ [1, t];

(2) |a1| + · · · + |at| = p;

(3)
⋃

v∈V â(S, v) �= V (C2r+1),

and M∗
a1,...,at

is the cochain subcomplex generated by all {[σS,v]}, such that
the arcs with vertices in V are precisely a1, . . . , at, i.e., {a(S, v) | v ∈ V } =
{a1, . . . , at}.

Restricting the formula (4.6) to M∗
a , we see that M∗

a is isomorphic to
the cochain complex C∗(∆2r−p−2; Z). More generally, we see that M∗

a1,...,at
is

isomorphic to C∗(∆2r−p̃; Z), where p̃ =
∣∣∣⋃v∈V â(S, v)

∣∣∣.
As mentioned, p̃ ≤ 2r; hence M∗

a1,...,at
is acyclic for any a1, . . . , at satisfying

the above conditions. We conclude that (D∗
t , A

∗
t ) is acyclic. The long exact

sequence for the relative cohomology implies that H∗(A∗
t ) = H∗(D∗

t ).

Now, we can show that E
i,t(n−2)
2 = 0 for t ≥ 2, i < 2r − (t − 1)(n − 2),

that is E∗,∗
2 is 0 in the region strictly above row n − 2 and strictly below the

diagonal x + y = 2r + n − 2; see Figure 4.2. Indeed, this is immediate when
2r−2t ≥ 2r−(t−1)(n−2), which after cancellations reduces to (n−4)(t−1) ≥ 2.
The only cases when this inequality is false are (t, n) = (2, 5), and n = 4.

i

j

2r

n − 2

2n − 4

3n − 6

Figure 4.2: The possibly nonzero entries in the E∗,∗
2 -tableau, for Ep,q

2 ⇒
Hp+q(Hom+(C2r+1, Kn); Z).

4.6. The case n = 5, for Ep,q
1 ⇒ Hp+q(Hom+(C2r+1, Kn); Z). Assume now

that n = 5, t = 2.

Lemma 4.9. E2r−4,6
2 = 0.

Proof. By a dimensional argument, this is true if 2r + 1 < 8, and so
we can assume that r ≥ 4. By our previous arguments we need to see that
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d1 : A2r−4,6
1 → A2r−3,6

1 is an injective map. The generators of A2r−4,6
1 can be

indexed with unordered pairs {v, w}, v, w ∈ V (C2r+1), such that

[v − 1, v + 2]2r+1 ∩ [w − 1, w + 2]2r+1 = ∅,
whereas the generators of A2r−3,6

1 can be indexed with ordered pairs (v, w),
v, w ∈ V (C2r+1), such that

[v − 1, v + 2]2r+1 ∩ [w − 1, w + 1]2r+1 = ∅.
With this notation, we have

d1({v, w}) = ε1(v, w) + ε2(v, [w + 1]2r+1) + ε3(w, v) + ε4(w, [v + 1]2r+1),
(4.8)

where ε1, ε2, ε3, ε4 ∈ {−1, 1}.
Take 0 �=

∑
v,w αv,w{v, w} ∈ ker d1. Choose v, w such that αv,w �= 0,

and the minimum of the two distances between the arcs {v, [v + 1]2r+1} and
{w, [w +1]2r+1} is minimized. By symmetry we may assume [w− v− 1]2r+1 ≤
[v − w − 1]2r+1. Then, it follows from (4.8) that α[v+1]2r+1,w �= 0 as well.

Either {[v + 1]2r+1, w} is not a well-defined pair or the minimal distance
between the two arcs is smaller for this pair, than for {v, w}: [w−v−1]2r+1 ≥
[w−v−2]2r+1. Both ways we get a contradiction to the assumption that there
exists {v, w}, such that αv,w �= 0. We conclude that d1 : A2r−4,6

1 → A2r−3,6
1 is

injective, hence E2r−4,6
2 = 0.

This shows, that when n ≥ 5, there are no higher differentials di, i ≥ 2,
in our spectral sequence, originating in the region above row n − 2 and below
diagonal x + y = 2r + n− 2. Hence, to figure out what happens to the entries
E2r,n−2

∞ and E2r,n−3
∞ , it is sufficient to consider rows n − 2 and n − 3.

4.7. The case n = 4, for Ep,q
1 ⇒ Hp+q(Hom+(C2r+1, Kn); Z). For n = 4

the nonzero rows of E∗,∗
1 are too close to each other, so we are to do the

computation by hand in a somewhat detailed way. Since the reduction from
(D∗

t , d1) to (A∗
t , d1) described in subsection 4.5 was valid when n = 4, we may

concentrate on the study of the latter complex. Let us first deal with (A∗
2, d1).

Lemma 4.10. H2r−2(A∗
2) = H2r−3(A∗

2) = Z, and H i(A∗
2) = 0, for i �=

2r − 2, 2r − 3.

Proof. We filter A∗
2 by

F pA∗
2 = Z

[
[σS,{v1,v2}]

∣∣ min(|a(S, v1)|, |a(S, v2)|) ≥ p
]
.

Clearly, · · · ⊆ F p ⊆ F p+1 ⊆ . . . . Inspecting the case p ≤ r − 2, we see that in
this situation

C∗(F pA∗
2/F p−1A∗

2) =
2r+1⊕
i=1

Bi,

where each Bi is isomorphic to C∗(∆1), hence is acyclic.
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3

6

2

2r − 2 2r − 1 2r2r − 32r − 4

?

?

d4

Figure 4.3: A part of the E∗,∗
1 -tableau, for n = 5, and Ep,q

1 ⇒
Hp+q(Hom+(C2r+1, Kn); Z).

It follows that H∗(A∗
2) = H∗(F r−1A∗

2/F r−2A∗
2). Let σi = σSi,Vi

, where
Si = [i + 1, i + r − 1]2r+1 ∪ [i + r + 2, i − 1]2r+1, Vi = {i + 1, i + r + 2}, and
let τi = σS̃i,Vi

, where S̃i = Si ∪ {[i + r]2r+1}. Clearly, d1(σi) = ±τi ± τi+r,
and to verify the statement of the lemma we need to show that the number of
those σi, for which d1(σi) = ±(τi + τi+r), is even. By (4.3) and (4.6) we see
that d1(σi) = ±(τi − τi+r) if i + r �= 2r, 2r + 1; i.e., the only cases we need to
consider are i = r and i = r + 1.

If i = 2r+1, the different sign comes from (4.6), and the sign contribution
is 2r +2. This is an even number, hence again d1(σi) = ±(τi − τi+r). If i = 2r,
the different sign comes from (4.3), but since n = 4 is even, the sign remains
the same.

Next, we consider (A∗
t , d1), for t ≥ 3. First, we introduce some additional

notation. Since the sign will not matter in our argument, we write σS instead of
σS,V , it is then defined only up to a sign. For S ⊂ V (C2r+1), S̄ = V (C2r+1)\S;
the connected components of C2r+1[S̄] are called gaps. Each gap consists of
either one or two elements; we call the first ones singletons, and the second
ones double gaps. Let m(S) be the leftmost element of the gap which contains
min(S̄ ∩ [2, 2r]2r+1). For s ∈ S̄, let ←−s be the leftmost element of the first gap
to the left of the gap containing s, and let −→s be the leftmost element of the
first gap to the right of the gap containing s. For x, y ∈ V (C2r+1), let d(x, y)
denote |[x, y]2r+1| − 1.

Lemma 4.11. E2r−2t,2t
2 = E2r−2t+1,2t

2 = 0.
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Proof.2 Clearly Ai
t = 0, unless 2r − 2t ≤ i ≤ 2r − t. Note that if σS

is a generator of A2r−2t+1
t , then S has exactly one singleton. We decompose

A2r−2t+1
t = B1 ⊕ B2 ⊕ B3 ⊕ B4, where each Bi is spanned by the generators

σS , for which certain conditions are satisfied; see Figure 4.4:

(B1)
←−−−
m(S) is the singleton and d(

←−−−
m(S), m(S)) = 3, or m(S) is the singleton

and d(
←−−−
m(S), m(S)) = 4;

(B2)
←−−−
m(S) is the singleton, and d(

←−−−
m(S), m(S)) ≥ 4;

(B3) m(S) and
←−−−
m(S) are in double gaps;

(B4) m(S) is the singleton, and d(
←−−−
m(S), m(S)) ≥ 5.

m(S)
B1

B2

m(S)
or

m(S) m(S)

B3

B4
m(S)

Figure 4.4: The four cases in the proof of Lemma 4.11.

Let (Ã∗
t , d1) be the complex spanned by B1, B2, B3, and Ai

t, for 2r −
2t + 2 ≤ i ≤ 2r − t. The relative complex (A∗

t /Ã∗
t , d1) has only cochains in

dimensions 2r − 2t and 2r − 2t + 1. It is easy to see that the projection d1 :
A2r−2t

t → A2r−2t+1
t /Ã2r−2t+1

t = B4 is an isomorphism, with the inverse given
by σS 
→ σS\{m(S)−1}, where σS is a generator from B4. Hence (A∗

t /Ã∗
t , d1) is

acyclic, and we are led to study the complex (Ã∗
t , d1).

Next, we show that H2r−2t+1(Ã∗
t ) = 0, which is the same as saying that

d1 is injective on B = B1 ⊕B2 ⊕B3. Let σ �= 0 be in ker d1(B). We think of σ

as a linear combination of the generators from the descriptions of B1, B2, and
B3, and let M be the set of generators which have a nonzero coefficient in σ.

Assume M contains a generator σS from B3, and choose σS so that
d(m(S),

−−−→
m(S)) is minimized. The coboundary d1(σS) contains a copy of

σS∪{m(S)}. At most three other generators will contain σS∪{m(S)} in the co-
boundary, depending on which element we remove from S ∪{m(S)} instead of
m(S). Since we have chosen d(m(S),

−−−→
m(S)) to be minimal, we cannot remove

2It is possible to rephrase this argument in terms of matchings on chain complexes; see [11].
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m(S) + 2. Hence, we must remove an element extending the singleton gap
which is not m(S) + 1. This gives a generator of B4, yielding a contradiction.

From now on we may presume that M contains no generators from B4

or B3. Assume now that M contains a generator σS from B2. Again, choose σS

so that d(m(S),
−−−→
m(S)) is minimized, and note that d1(σS) contains a copy of

σS∪{m(S)}. Examining the generators which contain σS∪{m(S)} in the cobound-
ary, we see again that, since removing m(S) + 2 from S ∪ {m(S)} would con-
tradict the minimality; we must remove an element extending the singleton
gap

←−−−
m(S). This way we will produce a generator of B4, except for one case:

when
←−−−
m(S) = 1, and we remove vertex 2. In this case we produce a generator

from B3, hence again a contradiction.
Finally, assume M consists only of generators from B1. Choose σS so that

m(S) is maximized. Assume first that m(S) is in a double gap, and consider the
copy of σS∪{m(S)} in d1(σS). There are three possibilities. Removing m(S)+2
gives a generator of B2, whereas removing m(S) − 4 gives a generator of B4.
Removing m(S)− 2 gives either a generator of B3, if m(S) = 4, or a generator
σT of B1, such that m(T ) = m(S) + 1. In either case we get a contradiction.

Assume now that m(S) is a singleton, and examine the copy of σ
S∪{←−−−m(S)}

in d1(σS). There is only one possibility for deletion: remove m(S) + 1. This
will produce a generator σT of B1, with m(T ) = m(S), but such that m(T ) is
in a double gap, the case already dealt with.

This finishes the proof that H2r−2t+1(Ã∗
t ) = 0, which, combined with

the acyclicity of (A∗
t /Ã∗

t , d1), and the fact that H∗(A∗
t ) = H∗(D∗

t ), yields
E2r−2t,2t

2 = E2r−2t+1,2t
2 = 0.

4.8. Finishing the computation of Hn−2(Hom (C2r+1, Kn);R) and of
Hn−3(Hom (C2r+1, Kn);R), for R = Z2 or Z. Let us now turn our atten-
tion to the cochain complex A∗

1. The generators of Ẽ2r−2,n−2
1 correspond to

arcs of length 2r − 1 and can be indexed with the elements of V (C2r+1): we
set τv,2 := σV (C2r+1)\{v−2,v−1},v, for any v ∈ V (C2r+1). In the same way the
generators of E2r−1,n−2

1 correspond to arcs of length 2r, we denote them by
setting τv,1 := σV (C2r+1)\{v−1},v, for any v ∈ V (C2r+1). It follows from (4.6)
that

d1([τv,2]) = (−1)v+1[τv,1] + (−1)v[τv−1,1],

for v = 3, . . . , 2r + 1, where the second sign follows from (4.3);

d1([τ2,2]) = (−1)n+1[τ2,1] − [τ1,1],

where the first sign is determined by the fact that there are n+2r− 3 vertices
before the one inserted at position 2r + 1;

d1([τ1,2]) = (−1)n+1[τ1,1] + (−1)n[τ2r+1,1],



PROOF OF THE LOVÁSZ CONJECTURE 989

where we use again that there are n + 2r − 3 vertices before the inserted one,
and, for determining the second sign, we use the fact that positions 1 and 2r+1
have different parity in [1, 2r + 1] \ {2r}.

Summarizing, we have the following matrix for the first differential in A∗
1:

M =



(−1)n+1 0 0 0 . . . 0 (−1)n

−1 (−1)n+1 0 0 . . . 0 0
0 −1 1 0 . . . 0 0
0 0 1 −1 . . . 0 0

. . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . −1 1


Assume first that n ≥ 5, and (n, r) �= (5, 3).

Case 1: n is odd. It is easy to see that the kernel of the differential
d1 : Ẽ2r−2,n−2

1 → E2r−1,n−2
1 is one-dimensional and is spanned by

[τ1,2] + [τ2,2] + [τ3,2] − [τ4,2] + [τ5,2] − [τ6,2] + · · · + [τ2r+1,2],

while the image is {[
2r+1∑
i=1

ciτi,1

] ∣∣∣∣∣
2r+1∑
i=1

ci = 0

}
.

It follows that E2r−2,n−2
2 = Z. Recall that, by Corollary 4.3, the coho-

mology groups of Hom+(C2r+1, Kn) vanish in dimension n + 2r − 2 and less.
Hence, since d2 : E2r−2,n−2

2 → E2r,n−3
2 must be an isomorphism, we have

E2r,n−3
1 = E2r,n−3

2 = Z. On the other hand, the map d1 : E2r−1,n−2
1 → E2r,n−2

1

is surjective, and E2r−1,n−2
2 = E2r,n−2

2 = 0, so that E2r,n−2
1 = Z.

Case 2: n is even. In this case the map d1 : Ẽ2r−2,n−2
1 → E2r−1,n−2

1

is injective. It follows that E2r−2,n−2
2 = 0, and hence E2r,n−3

1 = E2r,n−3
2 = 0.

The image on the other hand is not the whole E2r−1,n−2
1 , but only{[

2r+1∑
i=1

ciτi,1

] ∣∣∣∣∣
2r+1∑
i=1

ci ≡ 0 (mod 2)

}
.

The fact that E2r−1,n−2
2 = E2r,n−2

2 = 0 and the surjectivity of the map d1 :
E2r−1,n−2

1 → E2r,n−2
1 imply that E2r,n−2

1 = Z2. Again, we used the fact that
H̃ i(Hom+(C2r+1, Kn)) vanish in dimension n + 2r − 2 and less.

If (n, r) = (5, 3), then the argument above essentially holds, with the
exception that d1 : E2r−1,n−2

1 −→ E2r,n−2
1 does not have to be surjective.

Instead, Im d1 = Z and E2r,n−2
1 /Im d1 = Z. Thus Hn−2(Hom (C7, K5); Z) =

E2r,n−2
1 = Z2.

Assume, finally, that n = 4. If 2r + 1 = 5, then the computations above
hold. If 2r + 1 ≥ 7, the argument above still shows that the image of the map
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(n, r) R Hn−2 Hn−3

2 � | n, n ≥ 5, (n, r) �= (5, 3) Z Z Z

(n, r) = (5, 3) Z Z2 Z
2 | n, n ≥ 6, or
n = 4, r ≤ 3 Z Z2 0

n = 4, r ≥ 4 Z Z ⊕ Z2 0
n ≥ 5, (n, r) �= (5, 3), or
n = 4, r ≤ 3 Z2 Z2 Z2

(n, r) = (5, 3), or
n = 4, r ≥ 4 Z2 Z2

2 Z2

Table 4.1.

d1 : E2r−1,2
1 → E2r,2

1 is Z[d1(τ1,r)], and 2d1(τ1,r) = d1(2τ1,r) = 0. If 2r + 1 ≥ 9,
we can compute E2r,2

1 and E2r,1
1 completely, since H i(Hom+(C2r+1, Kn)) vanish

in dimension n + 2r − 2 and less. In this case, the image of the map d1 :
E2r−1,2

1 → E2r,2
1 is Z2, and the map d2 : E2r−3,4

2 → E2r,2
2 is an isomorphism.

Since, as we have shown earlier, E2r−3,4
2 = Z, we conclude that E2r,2

1 = Z⊕Z2,
and E2r,1

1 = 0.
It follows that, for all (n, r), H i(Hom (C2r+1, Kn);R) = 0, if i ∈

[1, n− 4], and R = Z or Z2.3 We summarize our computations of the next two
cohomology groups in Table 4.1, where H i = H i(Hom (C2r+1, Kn);R), and the
case (n, r) = (4, 3) is conjectural.

Proof of Theorem 2.6. For n ≥ 6, and n = 4, r ≤ 3, this follows from the
fact that the target group of the map is Z2. For n = 4, r ≥ 4, we have shown
above that 2d1(τ1,r) = 0. By the construction, τ1,r = σV (C2r+1)\{r−1},r, so that
d1(τ1,r) = ±σV (C2r+1),r. Let V (K2) = {1, 2}, and pick a nontrivial element
α ∈ Hn−2(Hom (K2, Kn); Z) by setting α := η∗, η(1) := [1, n − 1], η(2) := {n}.
Clearly, ι∗Kn

(α) = ±σV (C2r+1),r, where ι(1) = r, ι(2) = r +1. Thus, we see that
2 · ι∗Kn

(α) = ±2d1(τ1,r) = 0.

4.9. The Z2-action on the cohomology groups of Hom (C2r+1, Kn) for odd n.
Throughout this subsection we assume that n is odd, and that (n, r) �= (5, 3).
We tensor all our groups with C to simplify the representations. We denote
by χi the one-dimensional representation of Z2 given by the multiplication
by (−1)i.

Lemma 4.12. E2r,n−2
1 = χr, as a Z2-module.

3This has been strengthened to yield connectivity in [4]; later a shorter proof appeared
in [6].
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Proof. Recall that σV (C2r+1),2r+1 :=
∑

η η∗+, where the sum is taken over
all η, such that η(2r + 1) = [1, n− 1], and |η(i)| = 1, for all i = 1, . . . , 2r. Note
that σV (C2r+1),2r+1 is a representative of the generator of E2r,n−2

1 . Clearly,
{η◦γ} = {η} as a collection of cells. To orient the cells in the standard way we
need to reverse γ as the permutation of V (C2r+1). The sign of this is (−1)r;
hence γ([σV (C2r+1),2r+1]) = (−1)r[σV (C2r+1),2r+1].

Lemma 4.13. E2r−1,n−2
1 = rχ0 + rχ1 + χn+r+1, as a Z2-module.

Proof. τ1,1, . . . , τ2r+1,1 can be taken as the representatives of the generators
of E2r−1,n−2

1 . We see first that

γ([τ1,1]) = (−1)n+r+1[τ1,1].(4.9)

Indeed, γ([τ1,1]) = sgnπ · [σ[1,2r],2r], where π is the permutation induced by γ

on the vertices of each support simplex of τ1,1; i.e.,

π = (n + 2r − 2, n + 2r − 3, . . . , n + 1, n, 1, . . . , n − 1).

Since π consists of inverting the sequence (1, . . . , n+2r−2), and then inverting
the subsequence (1, . . . , n − 1), we see that

sgn π = (−1)
n+2r−2
2 �+
n−1

2 � = (−1)r−1+
n

2 �+
n−1
2 � = (−1)r+n,

where we used the fact that the sign of inverting a sequence [1, . . . , m] is
(−1)
m

2 �, and that, for any natural number m, we have
⌊

m
2

⌋
+

⌊
m−1

2

⌋
= m−1.

Additionally, [σ[1,2r],2r] = −[σ[1,2r],1] by (4.3); hence 4.9 follows.
Next, we shall see that

γ([τ2r+2−i,1]) = (−1)r[τi+1,1],(4.10)

for i = 1, . . . , 2r. Again, γ([τ2r+2−i,1]) = sgnπ · [σV (C2r+1)\{i},i−1], where π

consists of inverting the sequence (1, . . . , n + 2r − 3), and then inverting some
subsequence of length n − 1 back. It follows that

sgn π = (−1)
n+2r−3
2 �+
n−1

2 � = (−1)r−1+
n−1
2 �+
n−1

2 � = (−1)r+1.

On the other hand, by (4.3), [σV (C2r+1)\{i},i−1] = −[σV (C2r+1)\{i},i+1]; hence we
get (4.10). The actual sign has no bearing on our final conclusion.

Since the permutation action of Z2 on a 2-dimensional space decomposes
as χ0+χ1, the formulae (4.9) and (4.10) together yield the claim of the lemma.

Lemma 4.14. E2r−2,n−2
1 = rχ0 + rχ1 + χr+1, as a Z2-module.

Proof. τ1,2, . . . , τ2r+1,2 can be taken as the representatives of the generators
of E2r−2,n−2

1 . We see first that

γ([τr+2,2]) = (−1)r+1[τr+2,2].(4.11)
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We have γ([τr+2,2]) = sgnπ ·[σV (C2r+1)\{r,r+1},r−1], where π consists of inverting
the sequence of length n+2r−4, and then inverting some subsequence of length
n − 1 back. It follows that

sgn π = (−1)
n+2r−4
2 �+
n−1

2 � = (−1)r−2+
n

2 �+
n−1
2 � = (−1)r+n+1.

Furthermore, by (4.3) [σV (C2r+1)\{r,r+1},r−1] = (−1)n[σV (C2r+1)\{r,r+1},r+2], where
(−1)n is composed of 2r−3 steps changing the sign, and one step changing the
sign by (−1)n+1, since 1 and 2r+1 have the same parity in V (C2r+1)\{r, r+1}.
Summarizing we get (4.11).

Second we note that

γ([τ2r+2−i,1]) = ±[τi+2,1],(4.12)

for i ∈ V (C2r+1) \ {r + 2}. Indeed, as before we see that γ([τ2r+2−i,1]) =
±[σV (C2r+1)\{i,i+1},i−1] = ±[σV (C2r+1)\{i,i+1},i+2].

Equations (4.11) and (4.12) show that the Z2-representation splits into
χr+1 and the r-fold permutation action, yielding the claim of the lemma.

Corollary 4.15.The group Z2 acts trivially on Hn−2(Hom (C2r+1, Kn); Z)
= Z, and as a multiplication by −1 on Hn−3(Hom (C2r+1, Kn); Z) = Z.

Proof. It follows from Lemmas 4.12, 4.13, and 4.14 that E2r,n−3
1 = χr+1,

as a Z2-module. The result follows now from equation (3.6).

5. Cohomology groups of Z2-quotients of products of spheres

From now on, unless explicitely stated otherwise, we shall only work with
Z2-coefficients.

We begin by introducing another piece of terminology: for a positive inte-
ger d, let d-symbols be elements of the set {∗,∞}, where ∗ will denote an open
d-cell, and ∞ denote a 0-cell. We assume throughout this section that d ≥ 2.
For example, Sd is decomposed into ∗ and ∞, whereas a direct product of t

d-dimensional spheres decomposes into cells, indexed by all possible t-tuples of
d-symbols. We let dim ∗ = d, dim∞ = 0, and we set the dimension of a tuple
of d-symbols as the sum of the dimensions of the constituting symbols.

5.1. Cohomology groups of Z2-quotients of products of an odd number of
spheres. Let X be a direct product of 2t + 1 d-dimensional spheres, and let Z2

act on X by swapping spheres numbered 2i+1 and 2i, for i ∈ [1, t], and acting
on the first sphere by an antipodal map. We shall decompose X/Z2 into cells,
and describe its cohomology groups.

Clearly, X/Z2 is a total space of a fiber bundle over RPd with fiber homeo-
morphic to a direct product of 2t d-dimensional spheres. Consider the standard
cell decomposition of RPd with one cell in each dimension i ∈ [0, d].
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Proposition 5.1. The space X/Z2 can be decomposed into cells indexed
with (i, x, y), where x and y are t-tuples of d-symbols, 0 ≤ i ≤ d. The dimension
of this cell is dim(i, x, y) = i + dimx + dim y.

The coboundary is given by the equation

di+dim x+dim y((i, x, y)∗) = (i + 1, x, y)∗ + (i + 1, y, x)∗,(5.1)

where the cochains are considered with Z2 coefficients.

Proof. Divide X into cells, by taking the product cell structure, where
spheres 2 to 2t + 1 have one 0-cell and one d-cell, whereas the first sphere is
subdivided as a join of d + 1 0-spheres, with Z2 acting antipodally on each
of these 0-spheres. The cells can then be indexed with triples (i, x, y)+ and
(i, x, y)−. The coboundary is given by

d((i, x, y)∗+) = (i + 1, x, y)∗+ + (i + 1, x, y)∗−.(5.2)

This cell structure is Z2-equivariant, and no cells are preserved by the involu-
tion. This means that it induces a cell structure on X/Z2. Let (i, x, y) denote
the orbit {(i, x, y)+, (i, y, x)−}. After taking the quotient, (5.2) becomes (5.1).

From Proposition 5.1, the generators of H∗(X/Z2; Z2) are indexed with

• (i, x, x), for any 0 ≤ i ≤ d, and a t-tuple of d-symbols x, here (i, x, x)∗ is
the cocycle;

• (0, x, y), for any t-tuples of d-symbols x �= y, here (0, x, y)∗ + (0, y, x)∗ is
the cocycle; (0, x, y) and (0, y, x) index the same generator;

• (d, x, y), for any t-tuples of d-symbols x �= y, here (d, x, y)∗ is the cocycle;
(d, x, y) and (d, y, x) index the same generator.

In other words, the cohomology generators are indexed by pairs (〈A〉, i),
where A is a 2 × t array of d-symbols, and i ∈ [0, d], if A is fixed by Z2, while
i ∈ {0, d}, if A is not fixed by Z2. Here Z2 acts on the set of all 2× t arrays of
d-symbols by swapping the two rows, and 〈−〉 denotes an orbit of this action.

For future reference, we note the following property: these generators
behave functorially, under the maps which insert additional pairs of spheres.
More specifically, assume q ≥ t, and let f : [1, t] ↪→ [1, q] be an injection. Let
f̃ : Sd × · · · × Sd︸ ︷︷ ︸

2q+1

→ Sd × · · · × Sd︸ ︷︷ ︸
2t+1

be the following map: f̃ is the identity on

the first sphere, it maps isomorphically the spheres indexed 2i and 2i + 1, for
i ∈ Im f , to the spheres indexed by 2f−1(i) and 2f−1(i) + 1, and it maps the
remaining spheres to the base point. Then, the induced map on the cohomology
f̃∗ maps the generator (〈A〉, i) to the generator (〈Ã〉, i), where Ã is the 2 × q
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array obtained from A as follows: the column f(i) in Ã is equal to the column i

in A, and, for j /∈ Im f , the column j in Ã consists of two ∞’s.

5.2. Cohomology groups of Z2-quotients of products of an even number of
spheres. Let X be a direct product of 2t d-dimensional spheres, and let Z2

acting on X be swapping spheres 2i − 1 and 2i, for i ∈ [1, t]. A customary
notation for X/Z2 is SP 2(Sd × · · · × Sd︸ ︷︷ ︸

t

). Again, we shall decompose X/Z2

into cells, and describe its cohomology groups.

Proposition 5.2. The space X/Z2 can be decomposed into cells indexed
with two types of labels:

Type 1. the unordered pairs {x, y}, where x and y are t-tuples of d-symbols,
x �= y; the dimension is dimx + dim y;

Type 2. (x, x, k), where x is a t-tuple of d-symbols, and 0 ≤ k ≤ dimx; the
dimension is dimx + k.

With Z2 coefficients, the coboundary is equal to 0 for all generators, except
for (x, x, 0)∗, when dimx ≥ 1, in which case ddim x(x, x, 0)∗ = (x, x, 1)∗. In
particular, the generators of H̃ i(X/Z2; Z2) are indexed with the same symbols
as the cells in our decomposition, except for (x, x, 0) and (x, x, 1).

Proof. Start with a usual subdivision of a direct product of 2t d-spheres,
with the cells indexed by pairs (x, y) of t-tuples of d-symbols. For x �= y, the
set (x, y) ∪ (y, x)/Z2 is a cell in X/Z2, which we label {x, y}.

To do the same for x = y, we need to take a finer subdivision of (x, x).
Let (x, x, k)+, resp. (x, x, k)−, be the set of all points ᾱ ∈ R2 dim x, ᾱ =
(αi)i∈[2 dim x], such that αj = αj+dim x, for k+1 ≤ j ≤ dimx, and αk > αk+dim x,
resp. αk < αk+dim x. Obviously, (x, x, k)+ and (x, x, k)− are cells, which are
mapped to each other by the Z2-action. These cells are different for k ≥ 1,
whereas (x, x, 0)+ = (x, x, 0)− is fixed pointwise.

Set (x, x, 0) := (x, x, 0)+, and (x, x, k) := (x, x, k)+ ∪ (x, x, k)−/Z2, for
k ≥ 1. The statements about the coboundary map and the indexing of the
cohomology generators follow immediately from our construction.

When we rephrase Proposition 5.2 in the language of arrays, the generators
of H∗(X/Z2; Z2) are indexed with Z2-orbits 〈A〉 of 2 × t arrays of d-symbols,
with an additional index 2 ≤ i ≤ dimA/2, if A is fixed by the Z2-action. Here
dimA is the sum of the dimensions of all entries of A.

Again, we have functoriality in the following sense: if q ≥ t, and f : [1, t] ↪→
[1, q] is an injection, define f̃ : Sd × · · · × Sd︸ ︷︷ ︸

2q

→ Sd × · · · × Sd︸ ︷︷ ︸
2t

analogously to

the one in subsection 5.1. Then f̃∗ maps 〈A〉, resp. (〈A〉, i), to 〈Ã〉, resp.
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(〈Ã〉, i), where Ã is a 2 × q array of d-symbols obtained from A by inserting
the columns consisting entirely of ∞’s in the places indexed by [1, q] \ Im f .

6. Spectral sequence for H∗(Hom+(C2r+1, Kn)/Z2; Z2)

Next, we would like to show Theorem 2.3(b). We assume that

�n−2
1 (Hom (C2r+1, Kn)) �= 0,

and arrive at a contradiction by doing computations in a spectral sequence,
which we now proceed to set up.

6.1. Z2-equivariant cell decomposition of Hom+(C2r+1, Kn). For conve-
nience, we give following names to the vertices of C2r+1: c := [0]2r+1, ai :=
[r + i]2r+1, and bi := [r + 1 − i]2r+1, for i ∈ [1, r]. That is, γ : C2r+1 → C2r+1

fixes c, and γ(ai) = bi, for any i ∈ [1, r]. Identify V (C2r+1) with the vertices of
an abstract simplex ∆2r of dimension 2r. It is also convenient to have optional
notation for c, namely ar+1, br+1 := c; see Figure 6.1.

We subdivide the simplex ∆2r by adding r more vertices, which we denote
c1, c2, . . . , cr, and defining a new abstract simplicial complex ∆̃2r on the set
{c, a1, . . . , ar, b1, . . . , br, c1, . . . , cr} = V (∆̃2r). The simplices of ∆̃2r are all the
subsets of V (∆̃2r) which do not contain the subset {ai, bi}, for any i ∈ [1, r].
We set C = {c, c1, . . . , cr}. The complex ∆̃2r comes equipped with a simplicial
Z2-action, which fixes C and swaps ai and bi, for all i ∈ [1, r]. For S ⊆ V (∆̃2r)
we let 〈S〉 denote the Z2-orbit of S.

One can think of this new complex ∆̃2r as the one obtained from ∆2r by
representing it as a topological join {c}∗[a1, b1]∗· · ·∗[ar, br], with the additional
simplicial structure defined by inserting an extra vertex ci into the middle of
each [ai, bi], and then taking the join of {c} and the subdivided intervals. For
σ̃ ∈ ∆̃2r we obtain ϑ(σ̃) ∈ ∆2r by replacing every ci in σ̃ by {ai, bi}, i.e.,
ϑ(σ̃) = (σ̃ \ {c1, . . . , cr}) ∪

⋃
ci∈σ̃{ai, bi}.

c = [0]7 = a4 = b4

γ

a3 = [6]7

a2 = [5]7

a1 = [r + 1]2r+1 = [4]7

b3 = [1]7

b2 = [2]7

b1 = [r]2r+1 = [3]7

Figure 6.1: Summary of notations.
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The simplicial complex ∆̃2r has an additional property: if a simplex of ∆̃2r

is γ-invariant, then it is fixed pointwise. This allows us to introduce a simplicial
structure (strictly speaking - a structure of triangulated space) on ∆̃2r/Z2 by
taking the orbits of the simplices of ∆̃2r as the simplices of ∆̃2r/Z2.

6.2. The chain complex of the subdivision of Hom+(C2r+1, Kn). Since
we are working over Z2, from now on we shall drop the + notation for the
simplices of Hom+(C2r+1, Kn); e.g., we shall write η∗ instead of η∗+ (here we
refer to notation introduced in §3.2).

Let us now describe a cochain complex C̃∗(Hom+(C2r+1, Kn); Z2), which
comes from a triangulation of the simplicial complex Hom+(C2r+1, Kn). The
cochain complex consists of vector spaces over Z2, whose generators are pairs
(η, σ)∗, where η ∈ Hom+(C2r+1, Kn), and σ ∈ ∆̃2r, such that ϑ(σ) = supp η.
Such a pair indexes the cochain which is dual to the cell η ∩ supp−1(σ). The
coboundary of (η, σ)∗ is the sum of the following generators:

(1) (η̃, σ)∗, if supp η̃ = supp η, η ∈ ∂η̃, and dim η̃ = dim η + 1;

(2) (η, σ ∪ {x})∗, if x ∈ V (∆̃2r) \ σ, and ϑ(σ) = ϑ(σ ∪ {x});

(3) (η̃, σ ∪ {x})∗, if x ∈ V (∆̃2r) \ σ, η̃|ϑ(σ) = η, and all the values of η̃ on
ϑ(σ ∪ {x}) \ ϑ(σ) have cardinality 1.

The degree of (η, σ)∗ in C̃∗(Hom+(C2r+1, Kn)) is given by

deg(η, σ)∗ = |σ| − 1 +
∑

v∈supp η

(|η(v)| − 1) = deg η + |σ| − |ϑ(σ)|.

Z2 acts on C̃∗(Hom+(C2r+1, Kn)) and we let C̃∗
Z2

(Hom+(C2r+1, Kn)) denote
its subcomplex consisting of the invariant cochains. By construction of the
subdivision, C̃∗

Z2
(Hom+(C2r+1, Kn)) is a cochain complex for a triangulation of

the space Hom+(C2r+1, Kn)/Z2.

6.3. The filtration of C̃∗
Z2

(Hom+(C2r+1, Kn); Z2). This time, we consider

the natural filtration (F̃ 0 ⊇ F̃ 1 ⊇ . . . ) on the cochain complex

C̃∗
Z2

(Hom+(C2r+1, Kn); Z2)

by the cardinality of σ. Namely, F̃ p = F̃ pC∗
Z2

(Hom+(C2r+1, Kn); Z2), is a cochain
subcomplex of C∗

Z2
(Hom+(C2r+1, Kn); Z2) defined by:

F̃ p : · · · ∂q−1

−→ F̃ p,q ∂q

−→ F̃ p,q+1 ∂q+1

−→ . . . ,

where

F̃ p,q = Z2

[
(η, σ)∗

∣∣ (η, σ) ∈ Cq
Z2

(Hom+(C2r+1, Kn); Z2), |σ| ≥ p + 1
]

,

and ∂∗ is the restriction of the differential in C∗
Z2

(Hom+(C2r+1, Kn); Z2).
The following formula is the analog of (3.7).
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Proposition 6.1. For any p,

F̃ p/F̃ p+1 =
⊕

σ

C∗(Hom (C2r+1[ϑ(σ)], Kn)/Z2; Z2)[−p]⊕
〈τ〉

C∗(Hom (C2r+1[ϑ(τ)], Kn); Z2)[−p],
(6.1)

where the first sum is taken over all σ ⊆ C, |σ| = p + 1, and the second sum is
taken over all orbits 〈τ〉, such that τ ⊆ V (∆̃2r), |τ | = p + 1, τ \ C �= ∅.

Hence, the 0th tableau of the spectral sequence associated to the cochain
complex filtration F̃ ∗ is given by

Ep,q
0 =

⊕
σ

Cq(Hom (C2r+1[ϑ(σ)], Kn)/Z2; Z2)⊕
〈τ〉

Cq(Hom (C2r+1[ϑ(τ)], Kn); Z2),
(6.2)

with the summations over the same sets as in (6.1).

6.4. The analysis of the spectral sequence converging to
H∗(Hom+(C2r+1, Kn)/Z2; Z2).

The E∗,∗
1 -tableau of this spectral sequence is given by

Ep,q
1 = Hp+q(F̃ p, F̃ p+1).

It follows immediately from the formula (6.2) that each Ep,q
1 splits as a vector

space over Z2 into direct sums of Hq(Hom (C2r+1[S], Kn); Z2), and of
Hq(Hom (C2r+1[S], Kn)/Z2; Z2). More precisely,

Ep,q
1 =

⊕
σ⊆C

Hq(Hom (C2r+1[ϑ(σ)], Kn)/Z2; Z2)⊕
〈τ〉, τ 
⊆C

Hq(Hom (C2r+1[ϑ(τ)], Kn); Z2).
(6.3)

The generators of Ep,q
1 stemming from σ ⊆ C will be called symmetric,

whereas the generators stemming from 〈τ〉 for τ �⊆ C will be called asymmetric.
For i ∈ [1, r], we shall denote the arc {ai, ai−1, . . . , a1, b1, b2, . . . , bi} by �i.

For 2 ≤ i ≤ r, we denote the arc {ai, ai+1, . . . , ar, c, br, br−1, . . . , bi} by �i. For
2 ≤ i < j ≤ r, let

(
i,j

denote the arc {ai, ai+1, . . . , aj}, let
)
i,j

denote the arc
{bj , bj−1, . . . , bi}, and let

()
i,j

denote the symmetric pair of arcs
(
i,j

and
)
i,j

.

Proposition 6.2. The map

qn−3 : Hn−3(Hom (C2r+1, Kn)/Z2; Z2) → Hn−3(Hom (C2r+1, Kn); Z2),(6.4)

is a 0-map.
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Proof. First of all, since we are working over the field Z2, the map qn−3 is
dual to the map on homology

qn−3 : Hn−3(Hom (C2r+1, Kn); Z2) −→ Hn−3(Hom (C2r+1, Kn)/Z2; Z2);

hence it is enough to prove that qn−3 is a 0-map.
We start by proving that qn−3 = 0 over integers. The map qn−3 commutes

with the Z2-action. Recall that we have proven that

Hn−3(Hom (C2r+1, Kn); Z) = Hn−2(Hom (C2r+1, Kn); Z) = Z,

and so it follows that Hn−3(Hom (C2r+1, Kn); Z) = Z. Let ξ be a generator of the
group Hn−3(Hom (C2r+1, Kn); Z). By our previous computations γKn(ξ) = −ξ,
since Hn−3(Hom (C2r+1, Kn); C) = χ1 as a Z2-module (it is a dual Z2-module to
Hn−3(Hom (C2r+1, Kn); C)), and since Hn−3(Hom (C2r+1, Kn); Z) is torsion-free.
On the other hand, the Z2-action on Hn−3(Hom (C2r+1, Kn)/Z2; Z) is trivial;
hence

−qn−3(ξ) = qn−3(−ξ) = qn−3(γKn(ξ)) = γKn(qn−3(ξ)) = qn−3(ξ).

We conclude that qn−3(ξ) = 0.
Second, by the universal coefficient theorem the map

τ : Hn−3(Hom (C2r+1, Kn); Z) ⊗ Z2 −→ Hn−3(Hom (C2r+1, Kn); Z2)

is injective and functorial. In our concrete situation, this map is also surjective;
hence the claim results from the following commutative diagram:

Hn−3(Hom (C2r+1, Kn); Z) ⊗ Z2
0-map−−−→ Hn−3(Hom (C2r+1, Kn)/Z2; Z) ⊗ Z2

τ

�iso

�
Hn−3(Hom (C2r+1, Kn); Z2)

qn−3

−−−→ Hn−3(Hom (C2r+1, Kn)/Z2; Z2).

Lemma 6.3. Er+1,n−3
2 = Z2.

Proof. To start with, the only contribution to Er,n−3
1 comes from σ = C, so

the fact that qn−3 in (6.4) is a 0-map implies that the differential d1 : Er,n−3
1 →

Er+1,n−3
1 is a 0-map as well.

Consider the cochain complex

A∗ : Er+1,n−3
1

d1−→ Er+2,n−3
1

d1−→ · · · d1−→ E2r,n−3
1 .

The generators of Er+i,n−3
1 come from τ = C∪I, for I ⊆ {a1, . . . , ar, b1, . . . , br},

|I| = i. We can identify the generator indexed by 〈τ〉 with the simplex of
RPr−1 ∼= {a1, b1} ∗ · · · ∗ {ar, br}/Z2, indexed by 〈I〉, where the Z2-action swaps
ai and bi, for i ∈ [1, r].

By inspecting the description of the differential d1 we see that A∗ is iso-
morphic to the chain complex C∗(RPr−1; Z2). It follows that Er+1,n−3

2 =
H0(RPr−1; Z2) = Z2.
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n− 2

n− 3 Z2

0

0

. . .

r − 2 r r + 1

0

p
q r − 10

0

. . .

0

d2

Lemma 6.3

Lemma 6.5

Lemma 6.4

Lemma 6.6

Figure 6.2: The E∗,∗
2 -tableau, Ep,q

2 ⇒ Hp+q(Hom+(C2r+1, Kn)/Z2; Z2).

In the proof of the next lemma we shall often use the chain homotopy
between 0 and the identity.

Let (C∗, d) be a cochain complex, and assume there exist linear maps φn :
Cn → Cn−1, ∀n, such that

φn+1(d(α)) + d(φn(α)) = α, for all α ∈ Cn.(6.5)

Then C∗ is acyclic.

The proof is immediate, since modulo the coboundaries, every α ∈ Cn is
equal to φn+1(d(α)); hence d(α) = 0 implies α = 0 modulo the coboundaries.

Lemma 6.4. Er−1,n−2
2 = 0.

Proof. Set

A∗ : E0,n−2
1

d1−→ E1,n−2
1

d1−→ · · · d1−→ E2r,n−2
1 .

Clearly, to show Er−1,n−2
2 = 0 is the same as to show that Hr−1(A∗) = 0.

For dimensional reasons, every generator in A∗ is indexed either by σ ⊂
V (∆̃2r) with an arc selected in ϑ(σ) (which we call the indexing arc), or the
whole set V (C2r+1) (namely, those coming from Hn−2(Hom (C2r+1, Kn)/Z2)
and from Hn−2(Hom (C2r+1, Kn))). To simplify the terminology, we shall call
the set V (C2r+1) an arc as well. Filter the cochain complex A∗ = G2r+1 ⊇
G2r ⊇ · · · ⊇ G2 ⊇ G1 = 0, where Gl is spanned by the generators whose
indexing arc has length at least l. We shall compute Hr−1(A∗) by considering
the corresponding spectral sequence Ẽp,q

0 := Cp+q(Gp/Gp−1).
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In the same pattern already encountered, the cochain complex
(Gp/Gp−1, d0) splits into a direct sum of subcomplexes which are indexed by
different arcs. For an arc a, let B∗

a denote the corresponding summand. Hence
Ẽp,q

1 =
⊕

a Hp+q(B∗
a), where the sum is taken over all arcs a of length p.

Next, by considering all possible arcs case-by-case, we compute the entries
Ẽp,r−1−p

1 , for p = 2, . . . , 2r + 1. To start with, since ϑ(σ) = V (C2r+1) implies
|σ| ≥ r+1, Ẽ2r+1,−r−2

0 = Cr−1(G2r+1/G2r) = 0 for dimensional reasons; hence

Ẽ2r+1,−r−2
1 = 0.

We shall only consider the cases where we cannot use dimensional reasons
to immediately conclude that Br−1

a = 0.

Case 1. Let a =�r. Then, Br−2
a = 0 for dimensional reasons, and

Br−1
a = Z2 coming from σ = {c1, . . . , cr}. The differential d : Br−1

a → Br
a is

a 0-map since fn−2 : Hn−2(RPn−2; Z2) → Hn−2(Sn−2; Z2) is a 0-map, where
f : Sn−2 → Sn−2/Z2 = RPn−2 denotes the covering map. Hence, in this case,
Hr−1(B∗

a) = Z2.

Case 2. Let a =�2. Again, Br−2
a = 0 for dimensional reasons, and Br−1

a =
Z2 coming from σ = {c2, . . . , cr, c}. However, this time d(Br−1

a ) �= 0, since it
is induced by the map fn−2 : Hn−2(Hom (G, Kn)/Z2) → Hn−2(Hom (G, Kn)),
which, as we have seen, is not a 0-map; here G is the tree on three vertices
and Z2 action is swapping the leaves. Hence Hr−1(B∗

a) = 0.

Case 3. Let a =�k, for 1 ≤ k ≤ r−1. Let α ∈ Bm
a be a generator indexed

by σ ⊂ V (∆̃2r). If σ ⊂ C, and x ∈ {a1, . . . , ar, b1, . . . , br} \ {ak+1, bk+1}, then
the differential maps α to the generator indexed by 〈σ ∪ {x}〉 (again �k is
selected) as a 0-map, for the reason described in Case 1. This means that
the complex B∗

a splits into two direct summands, one containing all generators
indexed by σ ⊂ C, and the other those indexed by 〈σ〉, such that σ \ C �= ∅.

In both summands, define φm(α) to be the generator indexed by 〈σ \{c}〉,
if c ∈ σ, and φm(α) = 0 otherwise. The equation (6.5) is satisfied, and so both
summands are acyclic, hence so is B∗

a, in particular Hr−1(B∗
a) = 0.

Case 4. Let a =�k, for 3 ≤ k ≤ r. We do the same as in Case 3
with c, replaced with ck−2. However, in this complex, if σ ⊂ C, and x ∈
{a1, . . . , ar, b1, . . . , br} \ {ak−1, bk−1}, then the differential maps α to the gen-
erator indexed with 〈σ ∪ {x}〉 (again �k is selected) as an identity; hence the
complex does not split and equation (6.5) can be applied to the whole complex,
yielding Hr−1(B∗

a) = 0.

Case 5. Let a =
(
2,r

. For each indexing orbit 〈σ〉 choose the represen-
tative σ such that a1 /∈ σ. Define φ∗ as in Case 3, taking b1 instead of c.
Equation (6.5) is rather straightforward. We just need to pay attention to
what the differential does to the generator indexed by σ = C \ {c1, c}.
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It follows from the description of the cell decomposition and the coho-
mology of SP 2(Sn−2), given as a special case in subsection 5.2, that the map
fn−2 : Hn−2(SP 2(Sn−2); Z2) → Hn−2(Sn−2 × Sn−2; Z2), induced by the quo-
tient map, takes the nonzero element to the sum of the two generators of
Hn−2(Sn−2 × Sn−2; Z2) corresponding to each of the two spheres. In B∗

a this
means that the differential of σ will contain the generator of 〈σ ∪ {b1}〉, with
the indexing arc

(
2,r

, but not the generator of 〈σ ∪ {b1}〉, with the indexing
arc

)
1,r

. Thus we conclude again that B∗
a is acyclic, and Hr−1(B∗

a) = 0.

Case 6. Let a =
(
1,r

. Br−2
a = 0 for dimensional reasons. The space Br−1

a

is spanned by the 2r−1 generators which we can index with sets {a1, ξ2, . . . , ξr},
where ξi ∈ {ai, ci}, for 2 ≤ i ≤ r. Denote by ā the generator indexed by the
set {a1, a2, . . . , ar}. The coboundary of every generator α �= ā contains some
generator β indexed by {bi, a1, ξ2, . . . , ξr}. Since α is uniquely reconstructible
from β, and the coboundary of ā does not contain such generators as β, we
see that an element in ker(d : Br−1

a → Br
a) cannot contain α with a nonzero

coefficient. Thus, the only chance for this kernel to be nontrivial would be
when ā lies in it, but, obviously, d(ā) �= 0. Hence, once again, B∗

a is acyclic,
and Hr−1(B∗

a) = 0.

Case 7. Let a be an assymetric arc, such that a ∩ {ar, br, c} = ∅. The
complex B∗

a is isomorphic to a simplicial complex of a cone with an apex in
the vertex c. Hence B∗

a is acyclic, and Hr−1(B∗
a) = 0.

Case 8. Let a be such that a ∩ {a1, a2, b1, b2} = ∅. The complex B∗
a is

isomorphic to a simplicial complex of a cone with an apex in the vertex c1.
Hence B∗

a is acyclic, and Hr−1(B∗
a) = 0.

Case 9. Let a = {c, ai, ai+1, . . . , ar, br, br−1, . . . , bj}, for 2 ≤ i < j, where
possibly j = r + 1, which means a does not contain any bi’s. The complex B∗

a

is isomorphic to a simplicial complex of a cone with an apex in the vertex b1.
Hence B∗

a is acyclic, and Hr−1(B∗
a) = 0.

Case 10. Let a = {ai, ai−1, . . . , a1, b1, b2, . . . , bj}, for r ≥ i > j ≥ 1. The
complex B∗

a is isomorphic to a simplicial complex of a cone with an apex in
the vertex a1. Hence B∗

a is acyclic, and Hr−1(B∗
a) = 0.

We can now summarize our computations as follows: Ẽp,r−1−p
1 = 0, for

p = 2, . . . , 2r − 1, whereas Ẽ2r,−r−1
1 = Z2. The generator of Ẽ2r,−r−1

1 comes
from a =�r, which in turn comes from �n−2

1 (Hom (K2, Kn)). The map d1 :
Ẽ2r,−r−1

1 → Ẽ2r+1,−r−1
1 is the same as

(ιKn
)n−2 : Hn−2(Hom (K2, Kn)/Z2; Z2) → Hn−2(Hom (C2r+1, Kn)/Z2; Z2),

where ι : K2 ↪→ C2r+1 is either of the two Z2-equivariant inclusion maps which
take the vertices of K2 to {a1, b1}.
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Since we assumed that �n−2
1 (Hom (C2r+1, Kn)) �=0, and the Stiefel-Whitney

characteristic classes are functorial, we see that d1 : Ẽ2r,−r−1
1 → Ẽ2r+1,−r−1

1

has rank 1, hence Ẽ2r,−r−1
2 = 0. Thus Ẽp,r−1−p

2 = 0, for p = 2, . . . , 2r + 1, and
we conclude that Er−1,n−2

2 = 0.

Lemma 6.5. Er−i,n−3+i
2 = 0, for all i = 2, 3, . . . , r.

Proof. First of all, we note that the generators in the columns indexed
by r − 1 and less come from H∗(Hom (C2r+1[S], Kn)/Z2; Z2) and from
H∗(Hom (C2r+1[S], Kn); Z2), with S �= V (C2r+1) in both cases.

For each row q, q > n − 2, we shall show that the subcomplex A∗
q =

(E∗,q
1 , d1) is acyclic in the entry n + r − q − 3.

We begin by dealing with the case q = n − 1 separately; that is we
analyze the entry Er−2,n−1

2 . It follows from Propositions 5.1, 5.2, and for
dimensional reasons, that the entries E0,n−1

1 , E1,n−1
1 , . . . , Er−1,n−1

1 are gener-
ated by the contributions whose indexing collections of arcs are (�i, �j), for
1 ≤ i < j − 1 ≤ r − 1.

The contributing spaces are homotopy equivalent to Sn−2 ×X/Z2, where
X is a direct product of 2t + 1 (n − 2)-dimensional spheres, and Z2-action is
as in Section 5. The generators appearing in the first r entries of the (n− 1)th
row are coming from the (n − 2)-cocycle of Sn−2 and the 1-cocycle of RPn−2.
The analysis of the differentials shows that the complex E0,n−1

1
d1→ E1,n−1

1
d1→

· · · d1→ Er−1,n−1
1 computes the nonreduced homology of a simplex with r − 2

vertices (which could be identified with the set {c2, . . . , cr−1}). It follows that
the entry Er−2,n−1

2 , which computes the first homology group is equal to 0.
We assume from now on that q ≥ n. Similar to subsection 4.5 we filter

the complexes A∗
q . To describe the filtration, we sort all generators into five

groups. The first group (Gr1) contains all asymmetric generators, i.e., those
coming from 〈σ〉, for σ �⊆ C. The symmetric generators, coming from σ ⊆ C,
are divided into four groups, depending on whether the indexing collection of
arcs

(Gr2) contains both an �-arc, and an �-arc,

(Gr3) contains an �-arc, but not an �-arc,

(Gr4) contains an �-arc, but not an �-arc,

(Gr5) contains no �-arc, and no �-arc.

The groups are ordered as above. We filter the complex A∗
q by first sorting the

generators by the groups, and then, within each group we filter additionally
by the total length of the indexing arcs.

Let Ẽ∗,∗
∗ denote the tableaux of the spectral sequence computing the co-

homology of A∗
q . In complete analogy to the situation in subsection 4.5, Ẽ∗,∗

0
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splits into pieces indexed by various collections of arcs, which we shall call
layers.

We start by analyzing the contributions of the asymmetric generators.
Consider the subcomplex B∗ in the splitting indexed by a collection A of t

arcs of total length l. Since the asymmetric generators come from the direct
products of (n−2)-spheres, the only nontrivial cases are q = t(n−2), for t ≥ 2.

Assume first there is a gap between some pair of arcs of length at least 3,
and let x ∈ V (C2r+1) be one of the internal points of a gap. If x = c, then B∗

is isomorphic to the chain complex of a cone with apex in c. Without loss of
generality, we can assume that x = bi, for some i. By the previous assumption,
bi−1, bi+1 /∈ A. If ai /∈ A, but either ai−1, or ai+1 (or both) is in A, then B∗

is isomorphic to a chain complex of a cone with apex bi. If ai−1, ai, ai+1 /∈ A,
then B∗ is isomorphic to a chain complex of a cone with apex ci. Finally,
assume ai ∈ A. Define φk : Bk → Bk−1 as follows: for a generator σ ∈ Bk:

φk(σ) =


σ \ {bi}, if bi ∈ σ, i.e., if σ ∩ {ai, bi, ci} is {bi}, or {bi, ci};
σ \ {ci}, if σ ∩ {ai, bi, ci} = {ai, ci};
0, if σ ∩ {ai, bi, ci} is ∅, or {ci}, or {ai}.

Let B̃∗ be the subcomplex of B∗ generated by all σ, such that ai ∈ σ. Clearly,
(6.5) is fulfilled both for B̃∗ and for B∗/B̃∗. It implies that they are both
acyclic, hence so is B∗.

If all gaps are of length at most 2, then l + 2t ≥ 2r + 1. On the other
hand, Bp = 0 for p ≤ l/2 − 1, since |ϑ(σ)| ≤ 2|σ| − 1, for σ �⊆ C. Recall that
q = t(n − 2); it follows that the entry n + r − q − 3 is 0, since

l/2 − 1 − (n + r − t(n − 2) − 3) > r − t − 1 − n − r + tn − 2t + 3

= tn − 3t − n + 2 = (t − 1)(n − 3) − 1 ≥ 1.

Hence B∗ is acyclic in the required entry, for all B∗ in the group (Gr1).

Next, we move on to the symmetric generators. For σ ⊆ C we call |C \ σ|
the total length of gaps. Let B∗ be a subcomplex in the splitting corresponding
to a layer from the group (Gr2). The contributing space here is Sn−2 ×X/Z2,
where X is a direct product of 2t + 1 (n − 2)-spheres and Z2-action is as in
Section 5.

If t = 0, since the column number is at most r − 3, the gap between the
�-arc and the �-arc is at least 3. This means that B∗ is isomorphic to a
cochain complex of the simplex; hence is acyclic.

Assume now t ≥ 1. By examining the cohomology groups of Sn−2×X/Z2,
and taking into account that each of the t pairs of spheres must contribute
nontrivially, we see that the dimension of the contributing cocycle of Sn−2 ×
X/Z2 is at least n − 2 + t(n − 2) = (t + 1)(n − 2); hence the total length
of gaps is at least t(n − 2) + 1. Assume the total length of gaps is at most
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2(t + 1), as otherwise B∗ is isomorphic to a cochain complex of the simplex.
By assumptions, t ≥ 1 and n ≥ 5, and so unless (t, n) = (1, 5), we have

t(n − 2) + 1 − (2t + 2) = t(n − 4) − 1 > 0,

yielding a contradiction.
Consider the remaining case (t, n) = (1, 5). This is the first situation in

which we need to analyze the particular entries of Ẽ∗,∗
1 . Since we must have

a precise equality, the total length of gaps is 4, and the only nontrivial case
is provided by generators indexed with �i, �j , and

(
i+3,j−3

. The contribut-
ing cohomology generator must be indexed (0, ∗,∞), so just the set of arcs
determines everything.

Let αi,j denote such a generator, and let βi,j denote the generator whose
indexing set of arcs is �i, �j , and

(
i+2,j−3

, and which is also indexed by

(0, ∗,∞). Both αi,j ’s, and βi,j ’s are generators in Ẽ∗,∗
1 . Consider a linear

combination
∑

i,j pi,jαi,j lying in the kernel of d1. Since d1(αi,j) contains βi,j ,
βi+1,j , and no other βi′,j′ ’s we see that pi,j �= 0 implies pi−1,j �= 0. This leads
obviously to pi,j = 0 for all i, j; hence B∗ is acyclic in the required entry.

Now consider B∗ corresponding to a layer from group (Gr3). The con-
tributing space here is X/Z2, where X is a direct product of 2t + 1 (n − 2)-
spheres and the Z2-action is as above. Since we are in the row n or higher,
we must have t ≥ 1. The total length of gaps cannot be larger than 2t + 1,
since otherwise B∗ is isomorphic to a cochain complex of the simplex. On the
other hand, since the dimension of the contributing cohomology generator is
at least t(n − 2), the total length of gaps must be at least (t − 1)(n − 2) + 1.
Comparing these two we see that

(t − 1)(n − 2) + 1 − (2t + 1) = (t − 1)(n − 4) − 2 > 0,

with exceptions: t = 1, n is any, t = 2, n = 5, 6, and (t, n) = (3, 5).
Consider first t = 1. Since we can have at most 3 gaps, we must have

precisely 3 gaps, so the contributing cohomology generators of Sn−2 × Sn−2 ×
Sn−2/Z2 must have dimension n. Inspecting the cohomology description of
this space from Section 5 we see that there are no generators in dimensions
between n − 2 and 2n − 4. Since 2n − 4 > n we verify this case.

Assume now (t, n) = (2, 5). The only nontrivial case is when the total
length of gaps is 4 or 5, and c is in the gaps. Let αi,j denote the generator
where the gaps are {c, i, i + 1, j}, r − 2 ≥ j ≥ i + 4, i ≥ 2, and βi,j denote
the generator where the gaps are {c, i, j, j + 1}, r − 3 ≥ j ≥ i + 3, i ≥ 2.
Let γi,j denote the generator where the gaps are {c, i, j}, r − 2 ≥ j ≥ i + 3,
i ≥ 2. Clearly d1(αi,j) = γi,j + γi+1,j , and d1(βi,j) = γi,j + γi,j+1. We see that,
restricted to the generators αi,j , βi,j , and γi,j , we have a chain complex of the
graph in Figure 6.3.
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r − 2

5

j

i 2 r − 5

Figure 6.3

The kernel is generated by the elementary squares, to it is enough to see
that each square is a coboundary. Indeed, the elementary square with the lower
left corner (i, j) is a coboundary of the generator with gaps {c, i, i+1, j, j +1}.

Finally, assume (t, n) = (2, 6) or (3, 5). These are the tight cases, in the
sense that the lengths of all gaps are predetermined: the top gap consists of
just c, and the other 2, resp. 3, gaps are of length 2. Assume that the kernel of
d1 is not zero, and let α be an element in ker d1. Let g be a generator, which is
contained in α with a nonzero coefficient, such that this g maximizes the height
of the top gap over all generators appearing with a nonzero coefficient in α.
Removing the lower element of the top gap of g gives a generator which cannot
be cancelled out by the coboundaries of other elements in α, due to the assumed
maximality property. This yields a contradiction, and hence ker d1 = 0.

We move on to group (Gr4), and let B∗ correspond to a generator indexed
by �j , and t side arcs. We can have at most 2t + 2 gaps. The dimension of
the contributing cohomology generator is at least t(n − 2) + n − 2. Thus the
total length of the gaps is at least t(n − 2) + 1. Comparing these inequalities
we get

t(n − 2) + 1 − (2t + 2) = t(n − 4) − 1 > 0,

with the only exception t = 1, n = 5.
Let (t, n) = (1, 5). The interesting dimension here is 6; thus the total

length of gaps must be exactly 4. The generators αi are indexed with the
collection of arcs {

(
3,i

, �i+3}, for 4 ≤ i ≤ r − 3. Since d1(αi) contains the
generator indexed with {

(
2,i

, �i+3}, and this generator is different for different
αi, we see that the only linear combination of αi’s in the kernel of d1 is the
trivial one. Hence, we conclude that the contribution to Ẽ∗,∗

2 is 0.
Finally, we consider the case of generators indexed with collections of arcs

avoiding all �- and �-arcs. Let us assume there are t such arcs. To avoid
a cochain complex of a simplex, the total length of the gaps must be at most
2t + 1. On the other hand, since the dimension of the generator is at least
t(n − 2), the total length of the gaps must be at least (t − 1)(n − 2) + 1.
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Comparing, we see that

(t − 1)(n − 2) + 1 − (2t + 1) = (t − 1)(n − 4) − 2 > 0,

with the exceptions t = 1, any n, n = 5, t ≤ 3, and n = 6, t = 2.
If t = 1, the only nontrivial case occurs in the row n. Then, in the entry

of interest we have only one generator: the one indexed by the arcs
()

3,r
. Its

coboundary will contain the generator
()

2,r
; hence it is different from 0.

Let (t, n) = (2, 5). Since we are in the row 6, for dimensional reasons, the
total length of gaps in the contributing generator is 4. Thus, we have two types
of generators: α1

i indexed with arc collections {
()

2,i
,
()

i+3,r
}, 3 ≤ i ≤ r − 4,

and α2
i indexed with arc collections {

()
3,i

,
()

i+2,r
}, 4 ≤ i ≤ r − 3. Considering

the value of d1 on the generator indexed with {
()

3,i
,
()

i+3,r
}, we see that for

i > 3, modulo coboundaries, any generator α1
i is a linear combination of the

generators α2
j . The coboundary of α1

3 contains the generator indexed with
{
()

2,3
,
()

5,r
}; hence no element in the kernel of d1 can contain α1

3 with a nonzero
coefficient. Finally, a nonzero linear combination of α2

j ’s cannot lie in the kernel
of d1, since d1(α2

j ) contains the generator indexed with {
()

2,j
,
()

j+2,r
}, which is

different for different j. Again, we conclude that the contribution to Ẽ∗,∗
2 is 0.

Let (t, n) = (3, 5). For dimensional reasons, the total length of the gaps
is precisely 7, thus we have the generators αi,j indexed with arc collections
{
()

3,i
,
()

i+3,j
,
()

j+3,r
}, for 4 ≤ i, i + 4 ≤ j ≤ r − 4. Since d1(αi,j) contains

the generator indexed with {
()

2,i
,
()

i+3,j
,
()

j+3,r
}, and these generators are

different for different αi,j ’s, we see that d1 is injective on the space spanned
by αi,j ’s. Therefore, in this case the contribution to Ẽ∗,∗

2 is 0. The case
(t, n) = (2, 6) is completely analogous.

Lemma 6.6. Er+i,n−i−1
2 = 0, for all i = 3, . . . , n − 1.

Proof. Since |C| = r + 1, the entries Er+i,n−i−1
1 , for i = 3, . . . , n− 1, come

from Hn−i−1(Hom (C2r+1[ϑ(τ)], Kn)), for τ �⊆ C. We have shown before that
these cohomology groups vanish in dimension n − 4 and less, which implies
Er+i,n−i−1

1 = 0; hence Er+i,n−i−1
2 = 0.

We conclude that Er+1,n−3
∞ = Z2, contradicting the fact that

Hr+n−2(Hom+(C2r+1, Kn)/Z2; Z2) = 0.

Therefore, our original assumption that �n−2
1 (Hom (C2r+1, Kn)) �= 0 is wrong,

and Theorem 2.3(b) is proved.
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E-mail address: dkozlov@inf.ethz.ch
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