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The stable moduli space of Riemann
surfaces: Mumford’s conjecture

By Ib Madsen and Michael Weiss*

Abstract

D. Mumford conjectured in [33] that the rational cohomology of the sta-
ble moduli space of Riemann surfaces is a polynomial algebra generated by
certain classes κi of dimension 2i. For the purpose of calculating rational co-
homology, one may replace the stable moduli space of Riemann surfaces by
BΓ∞, where Γ∞ is the group of isotopy classes of automorphisms of a smooth
oriented connected surface of “large” genus. Tillmann’s theorem [44] that the
plus construction makes BΓ∞ into an infinite loop space led to a stable ho-
motopy version of Mumford’s conjecture, stronger than the original [24]. We
prove the stronger version, relying on Harer’s stability theorem [17], Vassiliev’s
theorem concerning spaces of functions with moderate singularities [46], [45]
and methods from homotopy theory.
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1. Introduction: Results and methods

1.1. Main result. Let F = Fg,b be a smooth, compact, connected and
oriented surface of genus g > 1 with b ≥ 0 boundary circles. Let H (F )
be the space of hyperbolic metrics on F with geodesic boundary and such
that each boundary circle has unit length. The topological group Diff(F ) of
orientation preserving diffeomorphisms F → F which restrict to the identity
on the boundary acts on H (F ) by pulling back metrics. The orbit space

M (F ) =H (F )
/
Diff(F )

is the (hyperbolic model of the) moduli space of Riemann surfaces of topological
type F .

The connected component Diff1(F ) of the identity acts freely on H (F )
with orbit space T (F ), the Teichmüller space. The projection from H (F )
to T (F ) is a principal Diff1-bundle [7], [8]. Since H (F ) is contractible and
T (F ) ∼= R6g−6+2b, the subgroup Diff1(F ) must be contractible. Hence the
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mapping class group Γg,b = π0Diff(F ) is homotopy equivalent to the full group
Diff(F ), and BΓg,b � BDiff(F ).

When b > 0 the action of Γg,b on T (F ) is free so that BΓg,b � M (F ).
If b = 0 the action of Γg,b on T (F ) has finite isotropy groups and M (F ) has
singularities. In this case

BΓg,b � (EΓg,b ×T (F ))
/
Γg,b

and the projection BΓg,b →M (F ) is only a rational homology equivalence.
For b > 0, the standard homomorphisms

Γg,b → Γg+1,b , Γg,b → Γg,b−1(1.1)

yield maps of classifying spaces that induce isomorphisms in integral cohomol-
ogy in degrees less than g/2 − 1 by the stability theorems of Harer [17] and
Ivanov [20]. We let BΓ∞,b denote the mapping telescope or homotopy colimit
of

BΓg,b −→ BΓg+1,b −→ BΓg+2,b −→ · · · .

Then H∗(BΓ∞,b; Z) ∼= H∗(BΓg,b; Z) for ∗ < g/2 − 1, and in the same range
the cohomology groups are independent of b.

The mapping class groups Γg,b are perfect for g > 2 and so we may ap-
ply Quillen’s plus construction to their classifying spaces. By the above, the
resulting homotopy type is independent of b when g = ∞; we write

BΓ+
∞ = BΓ+

∞,b .

The main result from [44] asserts that Z × BΓ+
∞ is an infinite loop space, so

that homotopy classes of maps to it form the degree 0 part of a generalized
cohomology theory. Our main theorem identifies this cohomology theory.

Let G(d, n) denote the Grassmann manifold of oriented d-dimensional sub-
spaces of Rd+n, and let Ud,n and U⊥

d,n be the two canonical vector bundles on
G(d, n) of dimension d and n, respectively. The restriction

U⊥
d,n+1|G(d, n)

is the direct sum of U⊥
d,n and a trivialized real line bundle. This yields an

inclusion of their associated Thom spaces,

S1 ∧ Th (U⊥
d,n) −→ Th (U⊥

d,n+1) ,

and hence a sequence of maps (in fact cofibrations)

· · · → Ωn+dTh (U⊥
d,n) → Ωn+1+dTh (U⊥

d,n+1) → · · ·

with colimit

Ω∞hV = colimn Ωn+dTh (U⊥
d,n).(1.2)
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For d = 2, the spaces G(d, n) approximate the complex projective spaces, and

Ω∞hV � Ω∞CP∞
−1 := colimn Ω2n+2Th (L⊥

n )

where L⊥
n is the complex n-plane bundle on CPn which is complementary to

the tautological line bundle Ln.
There is a map α∞ from Z × BΓ+

∞ to Ω∞CP∞
−1 constructed and exam-

ined in considerable detail in [24]. Our main result is the following theorem
conjectured in [24]:

Theorem 1.1. The map α∞ : Z × BΓ+
∞ −→ Ω∞CP∞

−1 is a homotopy
equivalence.

Since α∞ is an infinite loop map by [24], the theorem identifies the general-
ized cohomology theory determined by Z×BΓ+

∞ to be the one associated with
the spectrum CP∞

−1. To see that Theorem 1.1 verifies Mumford’s conjecture
we consider the homotopy fibration sequence of [37],

Ω∞CP∞
−1

ω−−−→ Ω∞S∞(CP∞
+ ) ∂−−−→ Ω∞+1S∞(1.3)

where the subscript + denotes an added disjoint base point. The homotopy
groups of Ω∞+1S∞ are equal to the stable homotopy groups of spheres, up to
a shift of one, and are therefore finite. Thus H∗(ω; Q) is an isomorphism. The
canonical complex line bundle over CP∞, considered as a map from CP∞ to
{1} × BU, induces via Bott periodicity a map

L : Ω∞S∞(CP∞
+ ) −→ Z × BU,

and H∗(L; Q) is an isomorphism. Thus we have isomorphisms

H∗(Z × BΓ+
∞; Q) ∼= H∗(Ω∞CP∞

−1; Q) ∼= H∗(Z × BU; Q) .

Since Quillen’s plus construction leaves cohomology undisturbed this yields
Mumford’s conjecture:

H∗(BΓ∞; Q) ∼= H∗(BU; Q) ∼= Q[κ1, κ2, . . . ] .

Miller, Morita and Mumford [26], [31], [32], [33] defined the classes κi in
H2i(BΓ∞; Q) by integration (Umkehr) of the (i + 1)-th power of the tan-
gential Euler class in the universal smooth Fg,b-bundles. In the above setting
κi = α∗

∞L∗(i! chi).
We finally remark that the cohomology H∗(Ω∞CP∞

−1; Fp) has been calcu-
lated in [11] for all primes p. The result is quite complicated.

1.2. A geometric formulation. Let us first consider smooth proper maps
q : Md+n → Xn of smooth manifolds without boundary, for fixed d ≥ 0,
equipped with an orientation of TM − q∗TX , the (stable) relative tangent
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bundle. Two such maps q0 : M0 → X and q1 : M1 → X are concordant (tradi-
tionally, cobordant) if there exists a similar map qR : W d+n+1 → X × R trans-
verse to X×{0} and X×{1}, and such that the inverse images of X×{0} and
X × {1} are isomorphic to q0 and q1 respectively, with all the relevant vector
bundle data. The Pontryagin-Thom theory, cf. particularly [35], equates the
set of concordance classes of such maps over fixed X with the set of homo-
topy classes of maps from X into the degree −d term of the universal Thom
spectrum,

Ω∞+dMSO = colimn Ωn+dTh (Un,∞) .

The geometric reformulation of Theorem 1.1 is similar in spirit.

We consider smooth proper maps q :Md+n → Xn much as before, together
with a vector bundle epimorphism δq from TM×Ri to q∗TX×Ri, where i � 0,
and with an orientation of the d-dimensional kernel bundle of δq. (Note that δq

is not required to agree with dq, the differential of q.) Again, the Pontryagin-
Thom theory equates the set of concordance classes of such pairs (q, δq) over
fixed X with the set of homotopy classes of maps

X −→ Ω∞hV ,

with Ω∞hV as in (1.2). For a pair (q, δq) as above which is integrable, δq = dq,
the map q is a proper submersion with target X and hence a bundle of smooth
closed d-manifolds on X by Ehresmann’s fibration lemma [4, 8.12]. Thus the
set of concordance classes of such integrable pairs over a fixed X is in natural
bijection with the set of homotopy classes of maps

X −→
∐

BDiff(F d)

where the disjoint union runs over a set of representatives of the diffeomor-
phism classes of closed, smooth and oriented d-manifolds. Comparing these
two classification results we obtain a map

α :
∐

BDiff(F d) −→ hV

which for d = 2 is closely related to the map α∞ of Theorem 1.1. The map α

is not a homotopy equivalence (which is why we replace it by α∞ when d = 2).
However, using submersion theory we can refine our geometric understanding
of homotopy classes of maps to hV and our understanding of α.

We suppose for simplicity that X is closed. As explained above, a homo-
topy class of maps from X to hV can be represented by a pair (q, δq) with a
proper q : M → X, a vector bundle epimorphism δq : TM × Ri → q∗TX × Ri

and an orientation on ker(δq). We set

E = M × R

and let q̄ : E → X be given by q̄(x, t) = q(x). The epimorphism δq determines
an epimorphism δq̄ :TE ×Ri → q̄ ∗TX ×Ri. In fact, obstruction theory shows
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that we can take i = 0, and so we write δq̄ : TE → q̄ ∗TX. Since E is an open
manifold, the submersion theorem of Phillips [34], [16], [15] applies, showing
that the pair (q̄, δq̄) is homotopic through vector bundle surjections to a pair
(π, dπ) consisting of a submersion π : E → X and dπ : TE → π∗TX. Let
f : E → R be the projection. This is proper; hence (π, f) : E → X × R is
proper.

The vertical tangent bundle T πE = ker(dπ) of π is identified with ker(δp) ∼=
ker(δq) × TR, so has a trivial line bundle factor. Let δf be the projection to
that factor. In terms of the vertical or fiberwise 1-jet bundle,

p1
π :J1

π(E, R) −→ E

whose fiber at z ∈ E consists of all affine maps from the vertical tangent
space (T πE)z to R, the pair (f, δf) amounts to a section f̂ of p1

π such that
f̂(z) : (T πE)z → R is surjective for every z ∈ E.

We introduce the notation hV(X) for the set of pairs (π, f̂), where π is
a smooth submersion E → X with (d + 1)-dimensional oriented fibers and
f̂ : E → J1

π(E, R) is a section of p1
π with underlying map f :E → R, subject to

two conditions: for each z ∈ E the affine map f̂(z) : (T πE)z → R is surjective,
and (π, f) :E → X × R is proper. Note that E is not fixed here.

Concordance defines an equivalence relation on hV(X). Let hV[X] be the
set of equivalence classes. The arguments above lead to a natural bijection

hV[X] ∼= [X, Ω∞hV] .(1.4)

We similarly define V(X) as the set of pairs (π, f) where π :E → X is a smooth
submersion as before and f : E → R is a smooth function, subject to two
conditions: the restriction of f to any fiber of π is regular (= nonsingular), and
(π, f) :E → X ×R is proper. Let V[X] be the correponding set of concordance
classes. Since elements of V(X) are bundles of closed oriented d-manifolds over
X × R, we have a natural bijection

V[X] ∼= [X,
∐

BDiff(F d)].

On the other hand an element (π, f) ∈ V(X) with π : E → X determines a
section j1

πf of the projection J1
πE → E by fiberwise 1-jet prolongation. The

map

V(X) −→ hV(X) ; (π, f) 
→ (π, j1
πf)(1.5)

respects the concordance relation and so induces a map V[X] → hV[X], which
corresponds to α in (1.2).

1.3. Outline of proof. The main tool is a special case of the celebrated
“first main theorem” of V.A. Vassiliev [45], [46] which can be used to approxi-
mate (1.5). We fix d ≥ 0 as above. For smooth X without boundary we enlarge
the set V(X) to the set W(X) consisting of pairs (π, f) with π as before but
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with f : E → R a fiberwise Morse function rather than a fiberwise regular
function. We keep the condition that the combined map (π, f) :E → X ×R is
proper. There is a similar enlargement of hV(X) to a set hW(X). An element
of hW(X) is a pair (π, f̂) where f̂ is a section of “Morse type” of the fiberwise
2-jet bundle J2

πE → E with an underlying map f such that (π, f) :E → X ×R
is proper. In analogy with (1.5), we have the 2-jet prolongation map

W(X) −→ hW(X) ; (π, f) 
→ (π, j2
πf) .(1.6)

Dividing out by the concordance relation we get representable functors:

W[X] ∼= [X, |W| ] , hW[X] ∼= [X, |hW| ](1.7)

and (1.6) induces a map j2
π : |W| → |hW|. Vassiliev’s first main theorem is a

main ingredient in our proof (in Section 4) of

Theorem 1.2. The jet prolongation map |W| → |hW| is a homotopy
equivalence.

There is a commutative square

|V| ��

��

|W|

��
|hV| �� |hW| .

(1.8)

We need information about the horizontal maps. This involves introducing
“local” variants Wloc(X) and hWloc(X) where we focus on the behavior of the
functions f and jet bundle sections f̂ near the fiberwise singularity set:

Σ(π, f) = {z ∈ E | dfz = 0 on (T πE)z} ,

Σ(π, f̂) = {z ∈ E | linear part of f̂(z) vanishes}.
The localization is easiest to achieve as follows. Elements of Wloc(X) are de-
fined like elements (π, f) of W(X), but we relax the condition that (π, f) :E →
X×R be proper to the condition that its restriction to Σ(π, f) be proper. The
definition of hWloc(X) is similar, and we obtain spaces |Wloc| and |hWloc| which
represent the corresponding concordance classes, together with a commutative
diagram

|V| ��

j2
π

��

|W| ��

j2
π

��

|Wloc|

j2
π

��

|hV| �� |hW| �� |hWloc|.

(1.9)

The next two theorems are proved in Section 3. They are much easier than
Theorem 1.2.
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Theorem 1.3. The jet prolongation map |Wloc| → |hWloc| is a homotopy
equivalence.

Theorem 1.4. The maps |hV| → |hW| → |hWloc| define a homotopy
fibration sequence of infinite loop spaces.

The spaces |hW| and |hWloc| are, like |hV| = Ω∞hV, colimits of certain
iterated loop spaces of Thom spaces. Their homology can be approached by
standard methods from algebraic topology.

The three theorems above are valid for any choice of d ≥ 0. This is not
the case for the final result that goes into the proof of Theorem 1.1, although
many of the arguments leading to it are valid in general.

Theorem 1.5. For d = 2, the homotopy fiber of |W| → |Wloc| is the space
Z × BΓ+

∞.

In conjunction with the previous three theorems this proves Theorem 1.1:

Z × BΓ+
∞ � |hV| � Ω∞hV � Ω∞CP∞

−1 .

The proof of Theorem 1.5 is technically the most demanding part of the
paper. It rests on compatible stratifications of |W| and |hW|, or more precisely
on homotopy colimit decompositions

|W| � hocolimR |WR| , |Wloc| � hocolimR |Wloc,R|(1.10)

where R runs through the objects of a certain category of finite sets. The spaces
|WR| and |Wloc,R| classify certain bundle theories WR(X) and Wloc,R(X). The
proof of (1.10) is given in Section 5, and is valid for all d ≥ 0. (Elements of
WR(X) are smooth fiber bundles Mn+d → Xn equipped with extra fiberwise
“surgery data”. The maps WS(X) → WR(X) induced contravariantly by
morphisms R → S in the indexing category involve fiberwise surgeries on
some of these data.)

The homotopy fiber of |WR| → |Wloc,R| is a classifying space for smooth
fiber bundles Mn+d → Xn with d-dimensional oriented fibers F d, each fiber
having its boundary identified with a disjoint union∐

r∈R

Sµr × Sd−µr−1

where µr depends on r ∈ R. The fibers F d need not be connected, but in
Section 6 we introduce a modification Wc,R(X) of WR(X) to enforce this ad-
ditional property, keeping (1.10) almost intact. Again this works for all d ≥ 0.

When d = 2 the homotopy fiber of |Wc,R| → |Wloc,R| becomes homotopy
equivalent to

∐
g BΓg,2|R|. A second modification of (1.10) which we undertake

in Section 7 allows us to replace this by Z × BΓ∞,2|R|+1, functorially in R. It
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follows directly from Harer’s theorem that these homotopy fibers are “indepen-
dent” of R up to homology equivalences. Using an argument from [25] and [44]
we conclude that the inclusion of any of these homotopy fibers Z×BΓ∞,2|R|+1

into the homotopy fiber of |W| → |Wloc| is a homology equivalence. This
proves Theorem 1.5.

The paper is set up in such a way that it proves analogues of Theorem 1.1
for other classes of surfaces, provided that Harer type stability results have been
established. This includes for example spin surfaces by the stability theorem
of [1]. See also [10].

2. Families, sheaves and their representing spaces

2.1. Language. We will be interested in families of smooth manifolds,
parametrized by other smooth manifolds. In order to formalize pullback con-
structions and gluing properties for such families, we need the language of
sheaves. Let X be the category of smooth manifolds (without boundary, with
a countable base) and smooth maps.

Definition 2.1. A sheaf on X is a contravariant functor F from X to
the category of sets with the following property. For every open covering
{Ui|i ∈ Λ} of some X in X , and every collection (si ∈ F (Ui))i satisfying
si|Ui ∩ Uj = sj |Ui ∩ Uj for all i, j ∈ Λ, there is a unique s ∈ F (X) such that
s|Ui = si for all i ∈ Λ.

In Definition 2.1, we do not insist that all of the Ui be nonempty. Con-
sequently F(∅) must be a singleton. For a disjoint union X = X1 
 X2, the
restrictions give a bijection F(X) ∼= F(X1)×F(X2). Consequently F is deter-
mined up to unique natural bijections by its behavior on connected nonempty
objects X of X .

For the sheaves F that we will be considering, an element of F(X) is
typically a family of manifolds parametrized by X and with some additional
structure. In this situation there is usually a sensible concept of isomorphism
between elements of F(X), so that there might be a temptation to regard
F(X) as a groupoid. We do not include these isomorphisms in our definition
of F(X), however, and we do not suggest that elements of X should be confused
with the corresponding isomorphism classes (since this would destroy the sheaf
property). This paper is not about “stacks”. All the same, we must ensure
that our pullback and gluing constructions are well defined (and not just up
to some sensible notion of isomorphism which we would rather avoid). This
forces us to introduce the following purely set-theoretic concept. We fix, once
and for all, a set Z whose cardinality is at least that of R.

Definition 2.2. A map of sets S → T is graphic if it is a restriction of
the projection Z × T → T . In particular, each graphic map with target T is
determined by its source, which is a subset S of Z × T .
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Clearly, a graphic map f with target T is equivalent to a map from T to
the power set P (Z) of Z, which we may call the adjoint of f . Pullbacks of
graphic maps are now easy to define: If g :T1 → T2 is any map and f :S → T2

is a graphic map with adjoint fa :T → P (Z), then the pullback g∗f : g∗S → T1

is, by definition, the graphic map with adjoint equal to the composition

T1
g �� T2

fa

�� P (Z).(2.1)

If g is an identity, then g∗S = S and g∗f = f ; if g is a composition, g = g2g1,
then g∗S = g1

∗g2
∗S and g∗f = g1

∗g2
∗f . Thus, with the above definitions, base

change is associative.

Definition 2.3. Let pr :X×R → X be the projection. Two elements s0, s1

of F(X) are concordant if there exist s ∈ F(X × R) which agrees with pr∗s0

on an open neighborhood of X× ] − ∞, 0] in X × R, and with pr∗s1 on an
open neighborhood of X × [1,+∞[ in X × R. The element s is then called a
concordance from s0 to s1.

It is not hard to show that “being concordant” is an equivalence relation
on the set F(X), for every X. We denote the set of equivalence classes by
F [X]. Then X 
→ F [X] is still a contravariant functor on X . It is practically
never a sheaf, but it is representable in the following weak sense. There exists
a space, denoted by |F|, such that homotopy classes of maps from a smooth
X to |F| are in natural bijection with the elements of F [X]. This follows from
very general principles expressed in Brown’s representation theorem [3]. An
explicit and more functorial construction of |F| will be described later. To us,
|F| is more important than F itself. We define F in order to pin down |F|.

Elements in F(X) can usually be regarded as families of elements in F(	),
parametrized by the manifold X. The space |F| should be thought of as a space
which classifies families of elements in F(	).

2.2. Families with analytic data. Let E be a smooth manifold, without
boundary for now, and π :E → X a smooth map to an object of X . The map
π is a submersion if its differentials TEz → TXπ(z) for z ∈ E are all surjective.
In that case, by the implicit function theorem, each fiber Ex = π−1(x) for
x ∈ X is a smooth submanifold of E, of codimension equal to dim(X). We
remark that a submersion need not be surjective and a surjective submersion
need not be a bundle. However, a proper smooth map π : E → X which is a
submersion is automatically a smooth fiber bundle by Ehresmann’s fibration
lemma [4, Thm. 8.12].

In this paper, when we informally mention a family of smooth manifolds
parametrized by some X in X , we typically mean a submersion π : E → X.
The members of the family are then the fibers Ex of π. The vertical tangent
bundle of such a family is the vector bundle T πE → E whose fiber at z ∈ E is
the kernel of the differential dπ :TEz → TXπ(z).



MUMFORD’S CONJECTURE 853

To have a fairly general notion of orientation as well, we fix a space Θ

with a right action of the infinite general linear group over the real numbers:
Θ × GL → Θ. For an n-dimensional vector bundle W → B let Fr(W ) be the
frame bundle, which we regard as a principal GL(n)-bundle on B with GL(n)
acting on the right.

Definition 2.4. By a Θ-orientation of W we mean a section of the asso-
ciated bundle (Fr(W ) × Θ)/GL(n) −→ B.

This includes a definition of a Θ-orientation on a finite dimensional real
vector space, because a vector space is a vector bundle over a point.

Example 2.5. If Θ is a single point, then every vector bundle has a unique
Θ-orientation. If Θ is π0(GL) with the action of GL by translation, then a Θ-
orientation of a vector bundle is simply an orientation. (This choice of Θ is
the one that will be needed in the proof of the Mumford conjecture.) If Θ is
π0(GL)× Y for a fixed space Y , where GL acts by translation on π0(GL) and
trivially on the factor Y , then a Θ-orientation on a vector bundle W → B is
an orientation on W together with a map B → Y .

Let S̃L(n) be the universal cover of the special linear group SL(n). If
Θ = colimnΘn where Θn is the pullback of

EGL(n) �� BGL(n) BS̃L(n) ,��

then a Θ-orientation on a vector bundle W amounts to a spin structure on W .
Here EGL(n) can be taken as the frame bundle associated with the universal
n-dimensional vector bundle on BGL(n).

We also fix an integer d ≥ 0. (For the proof of the Mumford conjecture,
d = 2 is the right choice.) The data Θ and d will remain with us, fixed but
unspecified, throughout the paper, except for Section 7 where we specialize to
d = 2 and Θ = π0GL.

Definition 2.6. For X in X , let V(X) be the set of pairs (π, f) where
π :E → X is a graphic submersion of fiber dimension d+1, with a Θ-orientation
of its vertical tangent bundle, and f : E → R is a smooth map, subject to the
following conditions.

(i) The map (π, f) :E → X × R is proper.

(ii) The map f is fiberwise nonsingular, i.e., the restriction of f to any fiber
Ex of π is a nonsingular map.

For (π, f) ∈ V(X) with π : E → X, the map z 
→ (π(z), f(z)) from E to
X×R is a proper submersion and therefore a smooth bundle with d-dimensional
fibers. The Θ-orientation on the vertical tangent bundle of π is equivalent to
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a Θ-orientation on the vertical tangent bundle of (π, f) : E → X × R, since
T πE ∼= T (π,f)E×R. Consequently 2.6 is another way of saying that an element
of V(X) is a bundle of smooth closed d-manifolds on X×R with a Θ-orientation
of its vertical tangent bundle. We prefer the formulation given in Definition 2.6
because it is easier to vary and generalize, as illustrated by our next definition.

Definition 2.7. For X inX , let W(X) be the set of pairs (π, f) as in Def-
inition 2.6, subject to condition (i) as before, but with condition (ii) replaced
by the weaker condition

(iia) the map f is fiberwise Morse.

Recall that a smooth function N → R is a Morse function precisely if its
differential, viewed as a smooth section of the cotangent bundle TN∗ → N , is
transverse to the zero section [12, II§6]. This observation extends to families.
In other words, if π : E → X is a smooth submersion and f : E → R is any
smooth map, then f is fiberwise Morse if and only if the fiberwise differential
of f , a section of the vertical cotangent bundle T πE∗ on E, is fiberwise (over
X) transverse to the zero section. This has the following consequence for the
fiberwise singularity set Σ(π, f) ⊂ E of f .

Lemma 2.8. Suppose that f : E → R is fiberwise Morse. Then Σ(π, f)
is a smooth submanifold of E and the restriction of π to Σ(π, f) is a local
diffeomorphism, alias étale map, from Σ(π, f) to X.

Proof. The fiberwise differential viewed as a section of the vertical cotan-
gent bundle is transverse to the zero section. In particular Σ = Σ(π, f) is a
submanifold of E, of the same dimension as X. But moreover, the fiberwise
Morse condition implies that for each z ∈ Σ, the tangent space TΣz has trivial
intersection in TEz with the vertical tangent space T πEz. This means that
Σ is transverse to each fiber of π, and also that the differential of π|Σ at any
point z of Σ is an invertible linear map TΣz → TXπ(z), and consequently that
π|Σ is a local diffeomorphism.

Definition 2.9. For X in X let Wloc(X) be the set of pairs (π, f), as in
Definition 2.6, but replacing conditions (i) and (ii) by

(ia) the map Σ(π, f) → X × R defined by z 
→ (π(z), f(z)) is proper,

(iia) f is fiberwise Morse.

2.3. Families with formal-analytic data. Let E be a smooth manifold and
pk : Jk(E, R) → E the k-jet bundle, where k ≥ 0. Its fiber Jk(E, R)z at z ∈ E

consists of equivalence classes of smooth map germs f : (E, z) → R, with f

equivalent to g if the k-th Taylor expansions of f and g agree at z (in any local
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coordinates near z). The elements of Jk(E, R) are called k-jets of maps from
E to R. The k-jet bundle pk :Jk(E, R) → E is a vector bundle.

Let u : TEz → E be any exponential map at z, that is, a smooth map
such that u(0) = z and the differential at 0 is the identity TEz → TEz. Then
every jet t ∈ Jk(E, R)z can be represented by a unique germ (E, z) → R whose
composition with u is the germ at 0 of a polynomial function tu of degree ≤ k

on the vector space TEz. The constant part (a real number) and the linear
part (a linear map TEz → R) of tu do not depend on u. We call them the
constant and linear part of t, respectively. If the linear part of t vanishes,
then the quadratic part of tu, which is a quadratic map TEz → R, is again
independent of u. We then call it the quadratic part of t.

Definition 2.10. A jet t ∈ Jk(E, R) is nonsingular (assuming k ≥ 1) if its
linear part is nonzero. The jet t is Morse (assuming k ≥ 2) if it has a nonzero
linear part or, failing that, a nondegenerate quadratic part.

A smooth function f : E → R induces a smooth section jkf of pk, which
we call the k-jet prolongation of f , following e.g. Hirsch [19]. (Some writers
choose to call it the k-jet of f , which can be confusing.) Not every smooth
section of pk has this form. Sections of the form jkf are called integrable.
Thus a smooth section of pk is integrable if and only if it agrees with the k-jet
prolongation of its underlying smooth map f :E → R.

We need a fiberwise version Jk
π (E, R) of Jk(E, R), fiberwise with respect

to a submersion π : Ej+r → Xj with fibers Ex for x ∈ X. In a neighborhood
of any z ∈ E we may choose local coordinates Rj × Rr so that π becomes the
projection onto Rj and z = (0, 0). Two smooth map germs f, g : (E, z) → R
define the same element of Jk

π (E, R)z if their k-th Taylor expansions in the
Rr coordinates agree at (0, 0). Thus Jk

π (E, R)z is a quotient of Jk(E, R)z and
Jk

π (E, R)z is identified with Jk(Eπ(z), R). There is a short exact sequence of
vector bundles on E,

π∗Jk(X, R) −→ Jk(E, R) −→ Jk
π (E, R).

Sections of the bundle projection pk
π : Jk

π (E, R) → E will be denoted f̂ , ĝ, ...,
and their underlying functions from E to R by the corresponding letters f , g,
and so on. Such a section f̂ is nonsingular, resp. Morse, if f̂(z), viewed as an
element of Jk(Eπ(z), R), is nonsingular, resp. Morse, for all z ∈ E.

Definition 2.11. The fiberwise singularity set Σ(π, f̂) is the set of all z ∈
E where f̂(z) is singular (assuming k ≥ 1). Equivalently,

Σ(π, f̂) = f̂−1(Σπ(E, R)) ,

where Σπ(E, R) ⊂ J2
π(E, R) is the submanifold consisting of the singular jets,

i.e., those with vanishing linear part.
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Again, any smooth function f :E → R induces a smooth section jk
πf of pk

π,
which we call the fiberwise k-jet prolongation of f . The sections of the form
jk
πf are called integrable. If k ≥ 1 and f̂ is integrable with f̂ = jk

πf , then

Σ(π, f̂) = Σ(π, f).

Definition 2.12. For an object X in X , let hV(X) be the set of pairs
(π, f̂) where π :E → X is a graphic submersion of fiber dimension d + 1, with
a Θ-orientation of its vertical tangent bundle, and f̂ is a smooth section of
p2

π :J2
π(E, R) → E, subject to the following conditions:

(i) (π, f) :E → X × R is proper.

(ii) f̂ is fiberwise nonsingular.

Definition 2.13. For X in X let hW(X) be the set of pairs (π, f̂), as in
Definition 2.12, which satisfy condition (i), but where condition (ii) is replaced
by the weaker condition

(iia) f̂ is fiberwise Morse.

Definition 2.14. For X in X let hWloc(X) be the set of pairs (π, f̂), as
in Definition 2.12, but with conditions (i) and (ii) replaced by the weaker
conditions

(ia) the map Σ(π, f̂) → X × R ; z 
→ (π(z), f(z)) is proper,

(iia) f̂ is fiberwise Morse.

The six sheaves which we have so far defined, together with the obvious
inclusion and jet prolongation maps, constitute a commutative square

V ��

j2
π

��

W ��

j2
π

��

Wloc

j2
π

��

hV �� hW �� hWloc.

(2.2)

2.4. Concordance theory of sheaves. Let F be a sheaf on X and let X

be an object of X . In 2.3, we defined the concordance relation on F(X) and
introduced the quotient set F [X]. It is necessary to have a relative version
of F [X]. Suppose that A ⊂ X is a closed subset, where X is in X . Let
s ∈ colimUF(U) where U ranges over the open neighborhoods of A in X .
Note for example that any z ∈ F(	) gives rise to such an element, namely
s = {p∗U (z)} where pU :U → 	 . In this case we often write z instead of s.
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Definition 2.15. Let F(X, A; s) ⊂ F(X) consist of the elements t in F(X)
whose germ near A is equal to s. Two such elements t0 and t1 are concordant
relative to A if they are concordant by a concordance whose germ near A is
the constant concordance from s to s. The set of equivalence classes is denoted
F [X, A; s].

We now construct the representing space |F| of F and list its most im-
portant properties. Let ∆ be the category whose objects are the ordered sets
n := {0, 1, 2, . . . , n} for n ≥ 0, with order-preserving maps as morphisms. For
n ≥ 0 let ∆n

e ⊂ Rn+1 be the extended standard n-simplex,

∆n
e := {(x0, x1, . . . , xn) ∈ Rn+1 | Σxi = 1}.

An order-preserving map m → n induces a map of affine spaces ∆m
e → ∆n

e .
This makes n 
→ ∆n

e into a covariant functor from ∆ to X .

Definition 2.16. The representing space |F| of a sheaf F on X is the
geometric realization of the simplicial set n 
→ F(∆n

e ).

An element z ∈ F(	) gives a point z ∈ |F| and F [	] = π0|F|. In ap-
pendix A we prove that |F| represents the contravariant functor X 
→ F [X].
Indeed we prove the following slightly more general

Proposition 2.17. For X in X , let A ⊂ X be a closed subset and let
z ∈ F(	). There is a natural bijection ϑ from the set of homotopy classes of
maps (X, A) → ( |F|, z) to the set F [X, A; z].

Taking X = Sn and A equal to the base point, we see that the homotopy
group πn(|F|, z) is identified with the set of concordance classes F [Sn, 	; z].
We introduce the notation

πn(F , z) := F [Sn, 	; z] .

A map v : E → F of sheaves induces a map |v| : |E| → |F| of representing
spaces. We call v a weak equivalence if |v| is a homotopy equivalence.

Proposition 2.18. Let v : E → F be a map of sheaves on X . Suppose
that v induces a surjective map

E [X, A; s] −→ F [X, A; v(s)]

for every X in X with a closed subset A ⊂ X and any germ s ∈ colimUE(U),
where U ranges over the neighborhoods of A in X. Then v is a weak equiva-
lence.

Proof. The hypothesis implies easily that the induced map π0E → π0F is
onto and that, for any choice of base point z ∈ E(	), the map of concordance
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sets πn(E , z) → πn(F , v(z)) induced by v is bijective. Indeed, to see that v

induces a surjection πn(E , z) → πn(F , v(z)), simply take (X, A, s) = (Sn, 	, z).
To see that an element [t] in the kernel of this surjection is zero, take X = Rn+1,
A = {z ∈ Rn+1 | ‖z‖ ≥ 1} and s = p∗t where p : Rn+1 � {0} → Sn is the
radial projection. The hypothesis that [t] is in the kernel amounts to a null-
concordance for v(t) which can be reformulated as an element of F [X, A; v(s)].
Our assumption on v gives us a lift of that element to E [X, A; s] which in turn
can be interpreted as a null-concordance of t.

Applying the representing space construction to the sheaves displayed in
diagram (2.2), we get the commutative diagram (1.9) from the introduction.

2.5. Some useful concordances.

Lemma 2.19 (Shrinking lemma). Let (π, f) be an element of V(X),
W(X) or Wloc(X), with π : E → X and f : E → R. Let e : X × R → R be a
smooth map such that, for any x ∈ X, the map ex : R → R defined by t 
→ e(x, t)
is an orientation preserving embedding. Let E(1) = {z ∈ E | f(z) ∈ eπ(z)(R)}.
Let

π(1) = π|E(1) and f (1)(z) = eπ(z)
−1f(z)

for z ∈ E(1). Then (π, f) is concordant to (π(1), f (1)).

Proof. Choose an ε > 0 and a smooth family of smooth embeddings
u(x,t) : R → R, where t ∈ R and x ∈ X, such that u(x,t) = id whenever t < ε

and u(x,1) = ex whenever t > 1 − ε. Let

E(R) =
{
(z, t) ∈ E × R

∣∣ f(z) ∈ u(π(z),t)(R)
}

.

Then (z, t) 
→ (π(z), t) defines a smooth submersion π(R) from E(R) to X × R,
and

z 
→ u(π(z),t)
−1f(z)

defines a smooth map f (R) :E(R) → R. Now (π(R), f (R)) is a concordance from
(π, f) to (π(1), f (1)), modulo some simple re-labelling of the elements of E(R) to
ensure that π(R) is graphic. (As it stands, E is a subset of Z×X, compare 2.2,
and E(R) is a subset of (Z × X) × R. But we want E(R) to be a subset of
Z × (X × R); hence the need for relabelling.)

Lemma 2.19 has an obvious analogue for the sheaves hV, hW and hWloc,
which we do not state explicitly.

Lemma 2.20. Every class in W[X] or hW[X] has a representative (π, f),
resp. (π, f̂), in which f :E → R is a bundle projection, so that

E ∼= f−1(0) × R .
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Proof. We concentrate on the first case, starting with an arbitrary (π, f)
in W[X]. We do not assume that f : E → R is a bundle projection to begin
with. However, by Sard’s theorem we can find a regular value c ∈ R for f . The
singularity set of f (not to be confused with the fiberwise singularity set of f)
is closed in E. Therefore its image under the proper map (π, f) : E → X × R
is closed. (Proper maps between locally compact spaces are closed maps).
The complement of that image is an open neighborhood U of X × {c} in
X × R containing no critical points of f . It follows easily that there exists
e :X ×R → R as in Lemma 2.19, with e(x, 0) = c for all x and (x, e(x, t)) ∈ U

for all x ∈ X and t ∈ R. Apply Lemma 2.19 with this choice of e. In the
resulting (π(1), f (1)) ∈ W(X), the map f (1) : E(1) → R is nonsingular and
proper, hence a bundle projection. (It is not claimed that f (1) is fiberwise
nonsingular.)

We now introduce two sheaves W0 and hW0 on X . They are weakly
equivalent to W and hW, respectively, but better adapted to Vassiliev’s inte-
grability theorem, as we will explain in Section 4.

Definition 2.21. For X in X let W0(X) be the set of all pairs (π, f) as
in Definition 2.7, replacing however condition (iia) there by the weaker

(iib) f is fiberwise Morse in some neighborhood of f−1(0).

Definition 2.22. For X in X let hW0(X) be the set of all pairs (π, f̂) as
in Definition 2.13, replacing however condition (iia) by the weaker

(iib) f̂ is fiberwise Morse in some neighborhood of f−1(0).

From the definition, there are inclusions W → W0 and hW → hW0.
There is also a jet prolongation map W0 → hW0 which we may regard as an
inclusion, the inclusion of the subsheaf of integrable elements.

Lemma 2.23. The inclusions W → W0 and hW → hW0 are weak equiv-
alences.

Proof. We will concentrate on the first of the two inclusions, W → W0.
Fix (π, f) in W0(X), with π :E → X and f :E → R. We will subject (π, f) to
a concordance ending in W(X). Choose an open neighborhood U of f−1(0) in
E such that, for each x ∈ X, the critical points of fx = f |Ex on Ex ∩U are all
nondegenerate. Since E � U is closed in E and the map (π, f) :E → X × R is
proper, the image of E � U under that map is a closed subset of X ×R which
has empty intersection with X × 0. Again it follows that a map e :X ×R → R
as in 2.19 can be constructed such that e(x, 0) = 0 for all x and (x, e(x, t)) ∈ U

for all (x, t) ∈ X × R. As in the proof of Lemma 2.19, use e to construct
a concordance from (π, f) to some element (π(1), f (1)) which, by inspection,
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belongs to W(X). If the restriction of (π, f) to an open neighborhood Y1 of a
closed A ⊂ X belongs to W(Y1), then the concordance can be made relative
to Y0, where Y0 is a smaller open neighborhood of A in X.

3. The lower row of diagram (1.9)

This section describes the homotopy types of the spaces in the lower row
of (1.9) in bordism-theoretic terms. One of the conclusions is that the lower
row is a homotopy fiber sequence, proving Theorem 1.4. We also show that the
jet prolongation map |Wloc| → |hWloc| is a homotopy equivalence (the fact as
such does not belong in this section, but its proof does). In the standard case
where d = 2 and Θ = π0(GL), the space |hV| will be identified with Ω∞CP∞

−1.

3.1. A cofiber sequence of Thom spectra. Let GW(d+1, n) be the space of
triples (V, 
, q) consisting of a Θ-oriented (d + 1)-dimensional linear subspace
V ⊂ Rd+1+n, a linear map 
 : V → R and a quadratic form q : V → R, subject
to the condition that if 
 = 0, then q is nondegenerate. GW(d + 1, n) classifies
(d + 1)-dimensional Θ-oriented vector bundles whose fibers have the above
extra structure; i.e., each fiber V comes equipped with a Morse type map

 + q :V → R and with a linear embedding into Rd+1+n.

The tautological (d + 1)-dimensional vector bundle Un on GW(d + 1, n)
is canonically embedded in a trivial bundle GW(d + 1, n) × Rd+1+n. Let

U⊥
n ⊂ GW(d + 1, n) × Rd+1+n

be the orthogonal complement bundle, an n-dimensional vector bundle on
GW(d + 1, n). The tautological bundle Un comes equipped with the extra
structure consisting of a map from (the total space of) Un to R which, on each
fiber of Un, is a Morse type map. (The fiber of Un over a point (V, q, 
) ∈
GW(d + 1, n) is identified with the (d+1)-dimensional vector space V and the
map can then be described as 
 + q.)

Let S(Rd+1) be the vector space of quadratic forms on Rd+1 (or equiva-
lently, symmetric (d + 1) × (d + 1) matrices) and ∆ ⊂ S(Rd+1) the subspace
of the degenerate forms (not a linear subspace). The complement Q(Rd+1) =
S(Rd+1) � ∆ is the space of nondegenerate quadratic forms on Rd+1. Since
quadratic forms can be diagonalized,

Q(Rd+1) =
d+1∐
i=0

Q(i, d + 1 − i)

where Q(i, d + 1− i) is the connected component containing the form qi given
by

qi(x1, x2, . . . , xd+1) = −(x2
1 + · · · + x2

i ) + (x2
i+1 + · · · + x2

d+1).
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The stabilizer O(i, d + 1 − i) of qi for the (transitive) action of GL(d + 1) on
Q(i, d + 1 − i) has O(i) × O(d + 1 − i) as a maximal compact subgroup and
GL(d + 1) has O(d + 1) as a maximal compact subgroup. Hence the inclusion

(O(i) × O(d + 1 − i))
∖
O(d + 1) −→ Q(i, d + 1 − i) ; coset of g 
→ qig

is a homotopy equivalence, and therefore the subspace

Q0(Rd+1) = {q0, q1, . . . , qd+1} · O(d + 1)
∼=

∐d+1
i=0 (O(i) × O(d + 1 − i))

∖
O(d + 1)

(3.1)

of Q(Rd+1) is a deformation retract, Q(Rd+1) � Q0(Rd).

For the submanifold Σ(d + 1, n) ⊂ GW(d + 1, n) consisting of the triples
(V, 
, q) with 
 = 0 we have

Σ(d + 1, n) ∼=
(
O(d + 1 + n)/O(n) × Q(Rd+1) × Θ

)/
O(d + 1) .(3.2)

The restriction of Un to Σ(d+1, n) comes equipped with the extra structure of
a fiberwise nondegenerate quadratic form. There is a canonical normal bundle
for Σ(d + 1, n) in GW(d + 1, n) which is easily identified with the dual bundle
U∗

n|Σ(d + 1, n). Hence there is a homotopy cofiber sequence

GV(d + 1, n) � � �� GW(d + 1, n) �� Th (U∗
n|Σ(d + 1, n))

where GV(d + 1, n) = GW(d + 1, n) � Σ(d + 1, n) and Th (. . . ) denotes the
Thom space. This leads to a homotopy cofiber sequence of Thom spaces

Th (U⊥
n |GV(d + 1, n)) −→ Th (U⊥

n ) −→ Th (U⊥
n ⊕ U∗

n|Σ(d + 1, n)).

(A homotopy cofiber sequence is a diagram A → B → C of spaces, where C is
pointed, together with a nullhomotopy of the composite map A → C such that
the resulting map from cone(A → B) to C is a weak homotopy equivalence.)

We view the space Th (U⊥
n ) as the (n + d)-th space in a spectrum hW,

and similarly for the other two Thom spaces. Then as n varies the sequence
above becomes a homotopy cofiber sequence of spectra

hV −→ hW −→ hWloc.

We then have the corresponding infinite loop spaces

Ω∞hV = colimn Ωd+nTh (U⊥
n |GV(d + 1, n)) ,

Ω∞hW = colimn Ωd+nTh (U⊥
n ) ,

Ω∞hWloc = colimn Ωd+nTh (U⊥
n ⊕ U∗

n|Σ(d + 1, n)).

(We use CW-models for the spaces involved. For example, Ωd+nTh (U⊥
n ) can

be considered as the representing space of the sheaf on X which to a smooth
X associates the set of pointed maps from X+ ∧ Sd+n to Th (U⊥

n ). The repre-
senting space is a CW-space.)
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The homotopy cofiber sequence of spectra above yields a homotopy fiber
sequence of infinite loop spaces

Ω∞hV −→ Ω∞hW −→ Ω∞hWloc ,(3.3)

that is, Ω∞hV is homotopy equivalent to the homotopy fiber of the right-hand
map. (A homotopy fiber sequence is a diagram of spaces A → B → C, where
C is pointed, together with a nullhomotopy of the composite map A → C

such that the resulting map from A to hofiber(B → C) is a weak homotopy
equivalence.) In particular there is a long exact sequence of homotopy groups
associated with diagram (3.3) and a Leray-Serre spectral sequence of homology
groups.

Suppose that a topological group G acts on a space Q from the right. We
use the notation QhG for the “Borel construction” or homotopy orbit space
Q ×G EG, where EG is a contractible space with a free G-action.

Lemma 3.1. There is a homotopy equivalence of infinite loop spaces

Ω∞hWloc � Ω∞S1+∞(Σ(d + 1,∞)+)

where (Σ(d + 1,∞) is a disjoint union of homotopy orbit spaces,

Σ(d + 1,∞) �
d+1∐
i=0

ΘhO(i,d+1−i).

Proof. Since Un|Σ(d+1, n) comes equipped with a fiberwise nondegenerate
quadratic form, U∗

n|Σ(d + 1, n) is canonically identified with Un|Σ(d + 1, n).
Consequently the restriction

U⊥
n ⊕ U∗

n

∣∣ Σ(d + 1, n)

is trivialized, so that Th (U⊥
n ⊕ U∗

n

∣∣ Σ(d + 1, n)) � Sd+1+n(Σ(d + 1, n)+) .

Hence
Ω∞hWloc � Ω∞S1+∞(Σ(d + 1,∞)+)

where Σ(d + 1,∞) =
⋃

Σ(d + 1, n). Using the description (3.2) of Σ(d + 1, n)
and the equivariant homotopy equivalence Q(Rd+1) � Q0(Rd+1), see (3.1), we
get

Σ(d + 1, n) �
(
O(d + 1 + n)/O(n)) × Q0(Rd+1) × Θ

) /
O(d + 1).

The union
⋃

n O(d + 1 + n)/O(n) is a contractible free O(d + 1)-space, so
that Σ(d + 1,∞) is homotopy equivalent to the homotopy orbit space of the
canonical right action of O(d + 1) on the space

Q0(Rd+1) × Θ ∼=
(

d+1∐
i=0

(O(i) × O(d + 1 − i))
∖
O(d + 1)

)
× Θ .
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That in turn is homotopy equivalent to the disjoint union over i of the homo-
topy orbit spaces of O(i) × O(d + 1 − i) � O(i, d + 1 − i) acting on the left of
(O(d + 1) × Θ)

/
O(d + 1) ∼= Θ.

Let G(d, n;Θ) be the space of d-dimensional Θ-oriented linear subspaces
in Rd+n. It can be identified with a subspace of GV(d+1, n), consisting of the
(V, 
+ q) where V contains the subspace R× 0× 0 of R×Rd ×Rn, and 
+ q is
the linear projection to that subspace (so that q = 0). The injection is covered
by a fiberwise isomorphism of vector bundles

T⊥
n −→ U⊥

n

∣∣ GV(d + 1, n)

where T⊥
n is the standard n-plane bundle on G(d, n;Θ).

Lemma 3.2. The induced map of Thom spaces

Th (T⊥
n ) −→ Th (U⊥

n |GV(d + 1, n))

is (d + 2n − 1)-connected. Hence Ω∞hV � colimn Ωd+nTh (T⊥
n ).

Proof. It is enough to show that the inclusion of G(d, n;Θ) in GV(d+1, n)
is (d+n−1)-connected. Viewing both of these spaces as total spaces of certain
bundles with fiber Θ reduces the claim to the case where Θ is a single point.
Note also that GV(d + 1, n) has a deformation retract consisting of the pairs
(V, 
 + q) with q = 0 and ‖
‖ = 1. This deformation retract is homeomorphic
to the coset space O(d) × O(n)

∖
O(1 + d + n), when we assume that Θ =

	. We are therefore looking at the inclusion of (O(d) × O(n))
∖
O(d + n) in

(O(d) × O(n))
∖
O(1 + d + n), which is indeed (d + n − 1)-connected.

In the standard case where d = 2 and Θ = π0GL, we may compare
the Grassmannian of oriented planes G(2, 2n;Θ) with the complex projective
n-space. The map

CPn −→ G(2, 2n;Θ)

that forgets the complex structure is (2n − 1)-connected. The pullback of
T⊥

2n under this map is the realification of the tautological complex n-plane
bundle L⊥

n and the associated map of Thom spaces is (4n− 1)-connected. The
spectrum CP∞

−1 with (2n + 2)-nd space Th (L⊥
n ) is therefore weakly equivalent

to the Thom spectrum hV. We can now collect the main conclusions of this
section, 3.1, in

Proposition 3.3. For d = 2 and Θ = π0GL, the homotopy fiber se-
quence (3.3) is homotopy equivalent to

Ω∞CP∞
−1 −→ Ω∞hW −→ Ω∞S1+∞(( 3∐

i=0

BSO(i, 3 − i)
)
+

)
,

where SO(i, 3 − i) = SO(3) ∩ O(i, 3 − i).
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3.2. The spaces |hW| and |hV|. In Section 2.3 we described the jet bun-
dle J2(E, R) and its fiberwise version as certain spaces of smooth map germs
(E, z) → R, modulo equivalence. For our use in this section and the next it is
better to view it as a construction on the tangent bundle. For a vector space
V , let J2(V ) denote the vector space of maps

f̂ : V → R , f̂(v) = c + 
(v) + q(v)

where c ∈ R is a constant, 
 ∈ V ∗ and q :V → R is a quadratic map. This is a
contravariant continuous functor on vector spaces, so extends to a functor on
vector bundles with J2(F )z = J2(Fz).

When F = TE is the tangent bundle of a manifold E, then there is an
isomorphism of vector bundles

J2(E, R) ∼= J2(TE).

Indeed after a choice of a connection on TE, the associated exponential map
induces a diffeomorphism germ expz : (TEz, 0) → (E, z). Composition with
expz is an isomorphism from J2(E, R)z to J2(TEz).

Lemma 3.4. Let π : E → X be a smooth submersion. Any choice of con-
nection on the vertical tangent bundle T πE induces an isomorphism

J2
π(E, R) −→ J2(T πE).

This is natural under pullbacks of submersions.

Proof. In addition to choosing a connection on T πE, we may choose a
smooth linear section of the vector bundle surjection dπ : TE → π∗TX and a
connection on TX. This leads to a splitting

TE ∼= T πE ⊕ π∗TX

and determines a direct sum connection on TE. The associated exponential
diffeomorphism germ exp: (TEz, 0) −→ (E, z) is fiberwise, i.e., it restricts to a
diffeomorphism germ

((T πE)z, 0) → (Eπ(z), z)(3.4)

for each z ∈ E. Indeed, the chosen connection on T πE restricts to a connection
on the tangent bundle of Eπ(z), and any geodesic in Eπ(z) for that connection
is clearly a geodesic in E as well. The argument also shows that the diffeo-
morphism germ (3.4), and the isomorphism J2

π(E, R)z −→ J2(T πE)z which it
induces, depend only on the choice of a connection on T πE, but not on the
choice of a splitting of dπ : TE → π∗TX and a connection on TX. (However,
making use of all the choices, we arrive at a commutative diagram of vector
bundles
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J2(TE) i∗ �� ��

∼=
��

J2(T πE)

∼=
��

J2(E, R) i∗ �� �� J2
π(E, R)

where the horizontal epimorphisms are induced by inclusions.) Finally, if

ϕ∗E
ϕ̄ ��

ϕ∗π

��

E

π

��

Y
ϕ �� X

is a pullback diagram of submersions, then a choice of connection on T πE

determines a connection on ϕ̄∗T πE ∼= Tϕ∗πϕ∗E. The resulting exponential
diffeomorphism germs are related by a commutative diagram

((Tϕ∗πϕ∗E)z, 0) ��

dπϕ̄
��

(ϕ∗Eϕ∗π(z), z)

ϕ̄

��

((T πE)ϕ̄(z), 0) �� (Eπϕ̄(z), ϕ̄(z)) .

This proves the naturality claim.

We can re-define hW(X) in Definition 2.13 as the set of certain pairs
(π, f̂) much as before, with π :E → X, where f̂ is now a Morse type section of
J2(T πE). The above lemma tells us that the new definition of hW is related to
the old one by a chain of two weak equivalences. (In the middle of that chain
is yet another variant of hW(X), namely the set of triples (π, f̂ ,∇) where π

and f̂ are as in Definition 2.13, while ∇ is a connection on T πE.)
Our object now is to construct a natural map

τ :hW[X] −→ [X, Ω∞hW].(3.5)

Here [ , ] in the right-hand side denotes a set of homotopy classes of maps.
We assume familiarity with the Pontryagin-Thom relationship between

Thom spectra and their infinite loop spaces on the one hand, and bordism
theory on the other. One direction of this relies on transversality theorems;
the other uses collapse maps to normal bundles of submanifolds in euclidean
spaces. See [43] and especially [35]. Applied to our situation this identifies
[X, Ω∞hW] with a group of bordism classes of certain triples (M, g, ĝ). Here
M is smooth without boundary, dim(M) = dim(X) + d, and g, ĝ together
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constitute a vector bundle pullback square

TM × R × Rj
ĝ ��

��

TX × U∞ × Rj

��
M

g �� X × GW(d + 1,∞)

(3.6)

such that the X-coordinate of g is a proper map M → X. The Rj factor in
the top row, with unspecified j, is there for stabilization purposes. The map ĝ

should be thought of as a stable vector bundle map from TM ×R to TX×U∞,
covering g, where U∞ is the tautological vector bundle of fiber dimension d+1
on GW(d + 1,∞).

Let now (π, f̂) ∈ hW(X), where f̂ is a section of J2(T πE) → E with
underlying map f : E → R. See Definition 2.13. After a small deformation
which does not affect the concordance class of (π, f̂), we may assume that f is
transverse to 0 ∈ R (not necessarily fiberwise) and get a manifold M = f−1(0)
with dim(M) = dim(X) + d. The restriction of π to M is a proper map
M → X, by the definition of hW(X). The section f̂ yields for each z ∈ E a
map

f̂(z) = f(z) + 
z + qz : (T πE)z → R

with the property that the quadratic term qz is nondegenerate when the linear
term 
z is zero. For z ∈ M the constant f(z) is zero, so the restriction T πE|M is
a (d + 1)-dimensional vector bundle on M with the extra structure considered
in Section 3.1. Thus T πE|M is classified by a map from M to the space
GW(d + 1,∞): there is a bundle diagram

T πE|M ��

��

U∞

��
M

κ �� GW(d + 1,∞).

Let g : M −→ X × GW(d + 1,∞) be the map z 
→ (π(z), κ(z)). We now have
a canonical vector bundle map

ĝ :TM × R ∼= TE|M ∼= π∗TX|M ⊕ T πE|M −→ TX × U∞

and we get a triple (M, g, ĝ) which represents an element of [X, Ω∞hW] in
the bordism-theoretic description. It is easily verified that the bordism class
of (M, g, ĝ) depends only on the concordance class of the pair (π, f̂). Thus we
have defined the map τ of (3.5).

Theorem 3.5. The natural map τ : hW[X] → [X, Ω∞hW] is a bijection
when X is a closed manifold.
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Proof. We define a map σ in the other direction by running the construc-
tion τ backwards. We use the bordism group description (3.6) of [X, Ω∞hW].
Let (M, g, ĝ) be a representative, with g :M → X × GW(d + 1,∞) and

ĝ :TM × R × Rj −→ TX × U∞ × Rj .

By obstruction theory, see Lemma 3.6 below, we can suppose that j = 0.
We write E = M × R and πE : E → X for the composition of the projection
E → M with the first component of g. The map ĝ, now with j = 0, has a
first component TM ×R → TX. We (pre-)compose it with the evident vector
bundle map from TE ∼= TM × TR to TM × R which covers the projection
from E ∼= M × R to M . The result is a map of vector bundles

π̂E :TE −→ TX,

covering πE and surjective in the fibers. Since E is an open manifold, Phillips’
submersion theorem [34], [15], [16] applies to show that (πE , π̂E) is homotopic
through fiberwise surjective bundle maps to a pair (π, dπ) where π :E → X is
a submersion and dπ :TE → TX is its differential.

This homotopy lifts to a homotopy of vector bundle maps which are iso-
morphic on the fibers, starting with ĝ : TE → TX × U∞ and ending with a
map from TE to TX × U∞ which refines the differential dπ : TE → TX. Its
restriction to T πE ⊂ TE is a vector bundle map T πE → U∞, still isomorphic
on the fibers, which equips each fiber (T πE)z of T πE with a Morse type map


z + qz : (T πE)z → R.

Let f :E → R be the projection onto the R factor, and let

f̂(z) = f(z) + 
z + qz ∈ J2(T πE).

The map f is proper, since X and hence M are compact. Consequently the
pair (π, f̂) represents an element in hW[X]. Its concordance class depends
only on the bordism class of (M, g, ĝ); the verification uses a relative version
of Lemma 3.6. This describes a map

σ : [X, Ω∞hW] −→ hW[X].

It is obvious from the constructions that τ ◦ σ = id. In order to evaluate
the composition σ ◦ τ , it suffices by Lemma 2.20 to evaluate it on an element
(π, f̂) where f : E → R is regular, so that E ∼= M × R with M = f−1(0). For
(y, r) ∈ M × R, the map

f̂(y, r) : (T π(M × R))(y,r) −→ R

is a second degree polynomial of Morse type. The homotopy

f̂t(y, r) = f̂(y, tr) + (1 − t)r ,

suitably reparametrized, shows that (π, f̂) is concordant to (π, f̂0), which rep-
resents the image of (π, f̂) under σ ◦ τ . Therefore σ ◦ τ = id.
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Lemma 3.6. Let T and U be k-dimensional vector bundles over a man-
ifold M . Let iso(T, U) → M be the fiber bundle on M whose fiber at x ∈ M

is the space of linear isomorphisms from Tx to Ux. The stabilization map
iso(T, U) → iso(T × R, U × R) induces a map of section spaces which is
(k − dim(M) − 1)-connected.

Proof. We use the following general principle. Suppose that Y → M and
Y ′ → M are fibrations and that f :Y → Y ′ is a map over M . Suppose that for
each x ∈ M , the restriction Yx → Y ′

x of f to the fibers over x is c-connected.
Then the induced map of section spaces, Γ (Y ) → Γ (Y ′), is (c−m)-connected
where m = dim(M).

The proof of this proceeds as follows: Fix s ∈ Γ (Y ′). The homotopy fiber
of Γ (Y ) → Γ (Y ′) over s is easily identified with the section space Γ (Y ′′) of
another fibration Y ′′ → M , defined by

Y ′′
x = hofibers(x) (Yx → Y ′

x) .

By assumption each Y ′′
x is (c − 1)-connected. Hence by obstruction theory or

a simple induction over skeletons, Γ (Y ′′) is (c − 1 − m)-connected. Since this
holds for arbitrary s, all homotopy fibers of Γ (Y ) → Γ (Y ′) are (c − 1 − m)-
connected. Consequently Γ (Y ) → Γ (Y ′) is (c − m)-connected.

Now for the application: The inclusion GL(k) → GL(k + 1) is (k − 1)-
connected. Hence the stabilization map iso(T, U) → iso(T × R, U × R) is
(k − 1)-connected on the fibers, and induces a ((k − 1)−m)-connected map of
section spaces.

The following is an ingredient in a fiberwise version of the Pontryagin-
Thom construction which we will need in a moment.

Definition 3.7. Let p :Y → X be a smooth submersion, C ⊂ Y a smooth
submanifold, and suppose that p|C is a submersion. A vertical tubular neigh-
borhood for C in Y consists of a smooth vector bundle q : N → C with zero
section s, and an open embedding e :N → Y such that es = inclusion:C → Y

and pe = pq :N → X.

Now we give a detailed description of a map |hW| → Ω∞hW which
induces (3.5). It relies entirely on the Pontryagin-Thom collapse construction.

We begin by describing a variant hW(r) of hW, depending on an integer
r > 0. Fix X inX . An element of hW(r)(X) is a quadruple (π, f̂ , w, N) where
π : E → X and f̂ are as in Definition 2.13. The remaining data are a smooth
embedding

w :E −→ X × R × Rd+r

which covers (π, f) : E → X × R, and a vertical tubular neighborhood N for
the submanifold w(E) of X × R × Rd+r, so that the projection N → w(E) is
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a map over X ×R. The forgetful map taking an element (π, f̂ , w, N) to (π, f̂)
is a map of sheaves

hW(r) −→ hW

on X . This is highly connected if r is large, by Whitney’s embedding theo-
rem and the tubular neighborhood theorem, so that the resulting map from
colimr hW(r) to hW is a weak equivalence of sheaves. (The sequential direct
limit is formed by sheafifying the “naive” direct limit, which is a presheaf on
X . It is easy to verify that passage to representing spaces commutes with
sequential direct limits up to homotopy equivalence.)

Let Z(r) be the sheaf taking an X in X to the set of maps

X × R −→ Ωd+rTh (U⊥
r ).

Then the representing space of Z(r) approximates Ω∞hW, in the sense that
colimr |Z(r)| � Ω∞hW. The Pontryagin-Thom collapse construction gives us
a map of sheaves

τ (r) :hW(r) −→ Z(r).(3.7)

In detail: let (π, f̂ , w, N) be an element of hW(r)(X), where f̂ is a section
of J2(T πE) → E; see Lemma 3.4. The differential dw determines, for each
z ∈ E, a triple (Vz, 
z, qz) ∈ GW(d + 1, r). Here Vz is dw((T πE)z), viewed as
a subspace of the vertical tangent space at w(z) of the projection

X × R × Rd+r −→ X ,

which we in turn may identify with Rd+1+r, and 
z + qz is the nonconstant
part of f̂(z). In particular z 
→ (Vz, 
z, qz) defines a map κ :E → GW(d+1, r).
This extends canonically to a pointed map

Th (N) −→ Th (U⊥
r )

because N is identified with κ∗U⊥
r . But Th (N) is a quotient of X ×R× Sd+r

where we regard Sd+r as the one-point compactification of Rd+r. Thus we have
constructed a map

X × R × Sd+r −→ Th (U⊥
r )

or equivalently, a map X × R −→ Ωd+rTh (U⊥
r ). Viewed as an element of

Z(r)(X), that map is the image of (π, f̂ , w, N) under τ (r) in (3.7). Taking
colimits over r, we therefore have a diagram

|hW| colimr |hW(r)|�
j

�� �� colimr |Z(r)| � �� Ω∞hW

which amounts to a map τ : |hW| → Ω∞hW. (A homotopy inverse i for the
map labelled j is unique up to “contractible choice” provided it is chosen
together with a homotopy ji � id.)
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Theorem 3.8. The map τ : |hW| → Ω∞hW is a homotopy equivalence.

Proof. This follows from Theorem 3.5 and a theorem of J. H. C. Whitehead
which tells us that it suffices to check that τ induces isomorphisms on all
homotopy groups. The only problem is that Theorem 3.5 is a statement about
free (as opposed to based) homotopy classes. However, τ turns out to be a map
between spaces with monoid structure (up to homotopy), and in this situation
one easily passes between based and unbased homotopy classes. Here are some
details. The monoid structure on |hW| is induced by a monoid structure on
W itself given by “disjoint union”:

W(X) ×W(X)
µ−→ W(X) ; ((π, f̂), (ψ, ĝ)) 
→ (π 
 ψ, f̂ 
 ĝ)

where the source of π 
 ψ is the disjoint union of the sources of π and ψ. (See
the remark just below.)

To make the monoid structure explicit in the case of the target, we intro-
duce hW ∨ hW and the corresponding infinite loop space

Ω∞(hW ∨ hW) = colimn Ωd+n
(
Th (U⊥

n ) ∨ Th (U⊥
n )

)
.

The two maps from hW ∨ hW to hW which collapse one of the two wedge
summands lead to a weak equivalence Ω∞(hW∨hW) � Ω∞(hW)×Ω∞(hW)
and the fold map hW ∨ hW → hW induces an addition map

Ω∞(hW) × Ω∞(hW) � Ω∞(hW ∨ hW) −→ Ω∞(hW).

It is clear that τ can be upgraded to respect the additions. Now Theorem 3.5
with X = 	 implies that τ induces a bijection

π0|hW| −→ π0(Ω∞hW)

and consequently that π0|hW| is a group, since π0(Ω∞hW) is. Next, we use
Theorem 3.5 with X = Sn. The monoid structures imply the isomorphisms

πn|hW| ∼= [Sn, |hW| ]
/
[	, |hW| ] ,

πn(Ω∞hW) ∼= [Sn,Ω∞hW]
/
[	,Ω∞hW]

for arbitrary choices of base points. Thus the map τ induces an isomorphism
of homotopy groups, and Whitehead’s theorem implies that it is a homotopy
equivalence, since the spaces in question are CW-spaces.

Remark 3.9. To avoid set-theoretical problems related to disjoint unions,
one should regard µ in the above proof as a map from a certain subsheaf
W×̄W of W ×W to W. An element ((π, f̂), (ψ, ĝ)) of (W ×W)(X) belongs
to (W×̄W)(X) if the sources E(π) and E(ψ) of π and ψ, respectively, are
disjoint. Let µ take ((π, f̂), (ψ, ĝ)) to (π ∪ ψ, f̂ ∪ ĝ) with

π ∪ ψ :E(π) ∪ E(ψ) −→ X .

Note that the inclusion W×̄W −→ W ×W is a weak equivalence.
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The arguments above work in a completely similar fashion to identify |hV|.
In fact the map τ in Theorem 3.8 restricts to a map from |hV| to Ω∞hV and
the analogue of Theorem 3.5 holds. Keeping the letter τ for this restriction,
we therefore have

Theorem 3.10. The map τ : |hV| → Ω∞hV is a homotopy equivalence.

3.3. The space |hWloc|. We start with a description of [X, Ω∞hWloc] as
a bordism group. This is very similar to the description of [X, Ω∞hW] used
in the construction of the map (3.5).

Lemma 3.11. For X in X , the group [X, Ω∞hWloc] can be identified
with the group of bordism classes of triples (M, g, ĝ) consisting of a smooth M

without boundary, dim(M) = dim(X) + d, and a vector bundle pullback square

TM × R × Rj
ĝ ��

��

TX × U∞ × Rj

��
M

g �� X × GW(d + 1,∞)

with j � 0, such that the map g−1(X × Σ(d + 1,∞)) → X induced by g is
proper.

Proof. The standard bordism group description of the homotopy set
[X, Ω∞hWloc] has representatives which are vector bundle pullback squares

TY × R × Rk
ĝY ��

��

TX × Σ(d + 1,∞) × Rk

��
Y

gY �� X × Σ(d + 1,∞)

(3.8)

for some k � 0, where the map Y → X determined by gY is proper, ∂Y = ∅
and dim(Y ) = dim(X) − 1. See Lemma 3.1. We produce reciprocal maps
relating this bordism group to the one in Lemma 3.11.

We first identify U∞|Σ(d+1,∞) with its dual using the canonical quadratic
form q, and then with the normal bundle N of Σ(d + 1,∞) in GW(d + 1,∞).
Let (M, g, ĝ) be a triple as above, Lemma 3.11. We may assume that g is
transverse to X × Σ(d + 1,∞). Then Y = g−1(X × Σ(d + 1,∞)) is a smooth
submanifold of M , of codimension d + 1, with normal bundle NY . Restriction
of g and ĝ yields a vector bundle pullback square

(TY ⊕ NY ) × R × Rj ��

��

TX × N × Rj

��
Y �� X × Σ(d + 1,∞) .
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But since NY is also identified with the pullback of N , this amounts to a vector
bundle pullback square as in (3.8).

Conversely, given data Y , gY and ĝY as in (3.8), let M be the (total space
of the) pullback of N to Y . There is a canonical map M → N ⊂ GW(d+1,∞),
and another from M to X, hence a map g :M → X×GW(d+1,∞). Moreover
ĝY determines the ĝ in a triple (M, g, ĝ) as above. It is easy to verify that the
two maps of bordism groups so constructed are well defined and that they are
reciprocal isomorphisms.

We now turn to the construction of a localized version of (3.5), namely, a
natural map

τ loc :hWloc[X] −→ [X, Ω∞hWloc].(3.9)

Let (π, f̂) ∈ hWloc(X), where π : E → X is a submersion with (d + 1)-
dimensional fibers and f̂ is a section of J2(T πE) → E with underlying map
f : E → R. See Definitions 2.14 and 3.4. We may assume that f is transverse
to 0 and get a manifold M = f−1(0). Proceeding exactly as in the construction
of the map (3.5), we can promote this to a triple (M, g, ĝ) where (g, ĝ) is a
vector bundle pullback square

TM × R × Rj
ĝ ��

��

TX × U∞ × Rj

��
M

g �� X × GW(d + 1,∞) .

This time, however, we cannot expect that the X-component of g, which is
π|M , is proper. But its restriction to

g−1(X × Σ(d + 1,∞)) = Σ(π, f̂) ∩ M

is proper, thanks to condition (ia) in Definition 2.14. Therefore (M, g, ĝ) rep-
resents an element in [X, Ω∞hWloc]. This is the image of (π, f̂) under τ loc.

Theorem 3.12. For compact X in X , the map τ loc from hWloc[X] to
[X, Ω∞hWloc] is a bijection.

Proof. There is a map σ loc in the other direction. The construction of
σ loc is analogous to that of σ in the proof of Theorem 3.5. It is clear that
τ loc ◦ σ loc is the identity. The verification of σ loc ◦ τ loc = id uses Lemma 3.13
below.

Lemma 3.13. Let (π, f̂) ∈ hWloc(X), with π : E → X. Let U be an open
neighborhood of Σ(π, f̂) in E. Then (π|U, f̂ |U) ∈ hWloc(X) is concordant to
(π, f̂).
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Proof. The concordance is an element (π�, f̂ �) in hWloc(X × R). Let
E� ⊂ E ×R be the union of E× ]−∞, 1/2[ and U ×R. Let π�(z, t) = (π(z), t)
and f̂ �(z, t) = (f̂(z), t) for (z, t) ∈ E�. Some renaming of the elements of E� is
required to ensure that π� be graphic.

Next we give a short description of a map |hWloc| → Ω∞hWloc which
induces (3.9). This is analogous to the construction of the map named τ in
Theorem 3.8.

Fix an integer r > 0 and X in X . To the data (π, f̂) in Definition 2.14,
with π :E → X and f :E → R, we add the following: a smooth embedding

w :E −→ X × R × Rd+r

which covers (π, f) : E → X × R, a vertical tubular neighborhood N for the
submanifold w(E) of X × R × Rd+r, and a smooth function ψ : E → [0, 1]
such that ψ(z) = 1 for all z ∈ Σ(π, f̂). We require that the restriction of
(π, f) :E → X × R to the support of ψ be a proper map.

Making X into a variable now, we can interpret the forgetful map taking
(π, f̂ , w, N, ψ) to (π, f̂) as a map of sheaves

hW(r)
loc −→ hWloc

on X . This map is highly connected if r is large. Let Z(r)
loc be the sheaf taking

an X in X to the set of maps

X × R −→ Ωd+rcone
(
Th (U⊥

r |GV(d + 1, r)) ↪→ Th (U⊥
r )

)
.

Here the cone is a reduced mapping cone, regarded as a quotient of a subspace
of

Th (U⊥
r ) × [0, 1] ,

with Th (U⊥
r ) × {1} corresponding to the base of the cone. The Pontryagin-

Thom collapse construction gives us a map of sheaves

τ
(r)
loc :hW(r)

loc −→ Z(r)
loc .(3.10)

In detail: let (π, f̂ , w, N, ψ) be an element of hW(r)
loc (X). We assume that f̂ is

a section of J2(T πE) → E; see 3.4. The differential dw determines, for each
z ∈ E, a triple (Vz, 
z, qz) ∈ GW(d + 1, r), as in the proof of Theorem (3.8).
This gives us a map

κ :E → GW(d + 1, r) × [0, 1] ,

with first coordinate determined by dw and second coordinate equal to ψ. The
map κ fits into a vector bundle pullback square

N
κ̂ ��

��

U⊥
r × [0, 1]

��
E

κ �� GW(d + 1, r) × [0, 1].
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Now we obtain a map from X × R × Sd+r to the mapping cone

cone
(
Th (U⊥

r |GV(d + 1, r)) ↪→ Th (U⊥
r )

)
,

viewed as a subquotient of Th (U⊥
r )× [0, 1], by z 
→ κ̂(z) for z ∈ N and z 
→ 	

for z /∈ N . It can also be written in the form

X × R −→ Ωd+rcone
(
Th (U⊥

r |GV(d + 1, r)) ↪→ Th (U⊥
r )

)
so that it is an element of Z(r)

loc (X). This defines the map τ
(r)
loc . Taking colimits

over r, we therefore have a diagram

|hWloc| colimr |hW(r)
loc |

��� �� colimr |Z(r)
loc |

� �� Ω∞hWloc

which amounts to a map τ loc : |hWloc| → Ω∞hWloc. The following is a straight-
forward consequence of Theorem 3.12 (cf. the proof of Theorem 3.8):

Theorem 3.14. The map τloc : |hWloc| → Ω∞hWloc is a homotopy equi-
valence.

The combination of Theorems 3.14, 3.8, 3.10 and Proposition 3.3 amounts
to a proof of Theorem 1.4 from the introduction.

Remark 3.15. We are left with the task of saying exactly how the lower
row of diagram (1.9) should be regarded as a homotopy fiber sequence. De-
fine a sheaf hVloc on X by copying Definition 2.12, the definition of hV, but
leaving out condition (i). Then |hVloc| is contractible by an application of
Proposition 2.17. Any choice of nullhomotopy for the inclusion |hV| → |hVloc|
determines a nullhomotopy for |hV| → |hWloc|, since |hVloc| ⊂ |hWloc|. A
nullhomotopy for |hV| → |hWloc| constructed like that is understood in Theo-
rem 1.4.

3.4. The space |Wloc|. The goal is to prove Theorem 1.2, i.e., to show
that the inclusion of Wloc in hWloc is a weak equivalence. We begin with the
observation that the analogue of Lemma 3.13 holds for Wloc:

Lemma 3.16. Let (π, f) ∈ Wloc(X), with π : E → X. Let U be an open
neighborhood of Σ(π, f) in E. Then (π|U, f |U) ∈ Wloc(X) is concordant to
(π, f).

Corollary 3.17. For X in X , there are natural bijections between the
set Wloc[X] and either of the two sets below :

(i) The set of bordism classes of triples (Σ, p, g), where Σ is a smooth man-
ifold without boundary, p : Σ → X × R is a proper smooth map whose
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X-coordinate Σ → X is an étale map (= local diffeomorphism), and g

is a map from Σ to Σ(d + 1,∞);

(ii) The set of bordism classes of triples (Σ0, v, c) where Σ0 is a smooth
manifold without boundary, v : Σ0 → X is a proper smooth codimen-
sion 1 immersion with oriented normal bundle and c is a map from Σ0

to Σ(d + 1,∞).

The bordism relation in both cases involves certain maps to X × [0, 1]:
étale maps in the case of (i), codimension one immersions in the case of (ii).

Proof. An element (π, f) of Wloc(X) determines by Lemma 2.8 a triple
(Σ, p, g) as in (i), where Σ is Σ(π, f) and p(z) = (π(z), f(z)) for z ∈ Σ ⊂ E.
The map g classifies the vector bundle T πE|Σ together with the nondegener-
ate quadratic form determined by (one-half) the fiberwise Hessian of f . Con-
versely, given a triple (Σ, p, g) we can make an element (π, f) in Wloc(X).
Namely, let E → Σ be the (d + 1)-dimensional vector bundle classified by g,
with the canonical quadratic form q :E → R. Let (π, f) :E → X×R agree with
q + p̄, where p̄ denotes the composition of the vector bundle projection E → Σ

with p : Σ → X × R. The resulting maps from Wloc[X] to the bordism set in
(i), and from the bordism set in (i) to Wloc[X], are inverses of one another:
One of the compositions is obviously an identity, the other is an identity by
Lemma 3.16.

Next we relate the bordism set in (i) to that in (ii). A triple (Σ, p, g) as
in (i) gives rise to a triple (Σ0, v, c) as in (ii) provided p is transverse to X × 0.
In that case we set Σ0 = p−1(X × 0) and define v and c as the restrictions of
p and g, respectively. Conversely, a triple (Σ0, v, c) as in (ii) does of course
determine a triple (Σ, p, g) as in (i) with Σ = Σ0×R. The resulting maps from
the bordism set in (i) to that in (ii), and vice versa, are inverses of one another:
One of the compositions is obviously an identity, the other is an identity by a
shrinking lemma analogous to (but easier than) Lemma 2.20.

It is well-known that the bordism set (ii) in Corollary 3.17 is in natural
bijection with

[X, Ω∞S1+∞(Σ(d + 1,∞)+)] ∼= [X, Ω∞hWloc].

Indeed, Pontryagin-Thom theory allows us to represent elements of the homo-
topy set [X, Ω∞S1+∞(Σ(d + 1,∞)+)] by quadruples (Σ0, v, v̂, c) where Σ0 is
smooth without boundary, dim(Σ0) = dim(X)−1, the maps v and v̂ constitute
a vector bundle pullback square

TΣ0 × R × Rj v̂ ��

��

TX × Rj

��
Σ0

v �� X
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(for some j � 0) with proper v, and c is any map from Σ0 to Σ(d+1,∞). By
Lemma 3.6 we can take j = 0 and by immersion theory [42], [18], [16] we can
assume v̂ = dv, that is, v is an immersion and v̂ is its (total) differential.

Consequently Wloc[X] is in natural bijection with [X, Ω∞hWloc]. It is
easy to verify that this natural bijection is induced by the composition

|Wloc| � � �� |hWloc|
τ loc �� Ω∞hWloc

where τ loc is the map of (3.10), (3.9) and Theorem 3.14. We conclude that the
composition is a homotopy equivalence (cf. the proof of Theorem 3.8). Since
τloc itself is a homotopy equivalence, it follows that the inclusion |Wloc| ↪→
|hWloc| is a homotopy equivalence. This is Theorem 1.3 from the introduction.

4. Application of Vassiliev’s h-principle

This section contains the proof of Theorem 1.2. It is based upon a special
case of Vassiliev’s first main theorem, [45, ch.III] and [46].

Let A ⊂ J2(Rr, R) denote the space of 2-jets represented by f : (Rr, z) → R
with f(z) = 0, df(z) = 0 and det(d2f(z)) = 0, where d2f(z) denotes the
Hessian. This set has codimension r+2 and is invariant under diffeomorphisms
Rr → Rr.

Let N r be a smooth compact manifold with boundary and let ψ : N → R
be a fixed smooth function with j2ψ(z) /∈ A for z in a neighborhood of the
boundary. (Use local coordinates near z. The condition means that near ∂N ,
all singularities of ψ with value 0 are of Morse type, i.e., nondegenerate.) Define
spaces

Φ(N, A, ψ) = {f ∈ C∞(N, R) | f = ψ near ∂N, j2f(z) /∈ A for z ∈ N},
hΦ(N, A, ψ) = {f̂ ∈ ΓJ2(N, R) | f̂ = j2ψ near ∂N, f̂(z) /∈ A for z ∈ N},

where ΓJ2(N, R) denotes the space of smooth sections of J2(N, R) → N . Both
are equipped with the standard C∞ topology. The special case of Vassiliev’s
theorem that we need is the statement that the map

j2 :Φ(N, A, ψ) −→ hΦ(N, A, ψ)(4.1)

induces an isomorphism in cohomology with arbitrary untwisted coefficients.
(Equivalently by the universal coefficient theorem, it induces an isomorphism
in integral homology.)

We briefly indicate how (4.1) relates to the jet prolongation map from |W|
to |hW| or equivalently (by Lemma 2.23) to the map |W0| → |hW0|. Let (N, ψ)
be as above with dim(N) = d + 1. We assume in addition that ψ(N) ⊂ A and
ψ(∂N) ⊂ ∂A, where A ⊂ R is a compact interval with 0 ∈ int(A), and that ψ

is nonsingular near ∂A. For X in X , let W0
ψ(X) ⊂ W0(X) consist of the pairs

(π, f) as in 2.21, with π : E → X, such that E contains an embedded copy of
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N × X, the map f agrees with (z, x) 
→ ψ(z) on a neighborhood of ∂N × X

in N × X, and f−1(0) ⊂ N × X. Restricting f to N × X defines a map from
W0

ψ(X) to the set of smooth maps X → Φ(N, ψ, A). Making X into a variable,
we have a map of sheaves which easily leads to a weak homotopy equivalence

|W0
ψ| � Φ(N, ψ, A).

Analogous definitions, with W0 replaced by hW0 and ψ by its jet prolongation
j2
πψ, lead to a weak homotopy equivalence

|hW0
ψ| � hΦ(N, ψ, A).

Arranging these two homotopy equivalences in a commutative square, we de-
duce from (4.1) that the jet prolongation map |W0

ψ| → |hW0
ψ| is a homology

equivalence.
Given an element (π, f) ∈ W0(X) with π : E → X, it is of course not

always possible to find a pair (N, ψ) and an embedding N × X → E over X

with the good properties above. However, the problem can always be solved
locally. Namely, each x ∈ X has an open neighborhood U in X such that
π−1(U) admits such an embedding, N×U → π−1(U), for suitable (N, ψ). This
fact, its analogue for the sheaf hW0 and a general gluing technique, developed
in Section 4.1 below, allow us then to conclude that |W0| → |hW0| induces an
isomorphism in homology.

4.1. Sheaves with category structure. Our goal here is to develop an
abstract gluing principle, summarized in Proposition 4.6 and relying on Defi-
nition 4.1. It is a translation into the language of sheaves of something which
homotopy theorists are very familar: the homotopy invariance property of ho-
motopy colimits. See Section B.2 for background and motivation. Since it is
relatively easy to reduce the homotopy colimit concept to the classifying space
construction for categories, our translation effort begins with a discussion of
sheaves taking values in the category of small categories, and a “classifying
sheaf” construction for such sheaves.

Let F :X → C at be a sheaf with values in small categories. Taking nerves
defines a sheaf with values in the category of simplicial sets,

N•F :X → Sets•

with N0F = ob(F) the sheaf of objects and N1F = mor(F) the sheaf of
morphisms. We have the associated bisimplicial set N•F(∆•

e) and recall [36]
that the realization of its diagonal is homeomorphic to either of its double
realizations,

| k 
→ NkF(∆k
e) | ∼=

∣∣ 
 
→ | k 
→ NkF(∆	
e) |

∣∣ =
∣∣ 
 
→ B(F(∆	

e))
∣∣

∼=
∣∣ k 
→ | 
 
→ NkF(∆	

e) |
∣∣ =

∣∣ k 
→ |NkF|
∣∣ .

(4.2)
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There is a topological category |F| with object space |N0F| and morphism
space |N1F|. (To be quite precise, |F| is a category object in the category of
compactly generated Hausdorff spaces.) Since |NkF| = Nk|F| by A.3, the last
of the five expressions in (4.2) is the classifying space B|F| of the topological
category |F|.

We next give another construction of B|F| related to Steenrod’s coordi-
nate bundles (i.e., bundles viewed as 1-cocycles). We shall consider locally
finite open covers Y = (Yj)j∈J of spaces X in X , indexed by a fixed infinite
set J . The local finiteness condition means that each x ∈ X has a neighbor-
hood U such that {j ∈ J | Yj ∩ U �= ∅} is a finite subset of J . We use a fixed
indexing set J , independent of X inX , to ensure good gluing properties: sup-
pose that X is the union of two open subsets, X = X ′ ∪X ′′, with intersection
A = X ′ ∩X ′′, and that (Y ′

j )j∈J and (Y ′′
j )j∈J are open coverings of X ′ and X ′′,

respectively. The coverings agree on A if Y ′
j ∩A = Y ′′

j ∩A for all j ∈ J . In that
case, (Y ′

j ∪ Y ′′
j )j∈J is an open covering of X which induces the open coverings

(Y ′
j )j∈J and (Y ′′

j )j∈J of X ′ and X ′′, respectively.
For each finite nonempty subset S ⊂ J we write

YS =
⋂
j∈S

Yj .

Associated to the cover Y there is a topological category, denoted XY in
[41, §4], with

ob(XY ) =
∐
S

YS , mor(XY ) =
∐
R

∐
S⊃R

YS ,

the source map given by the identities YS → YS and the target map given
by the inclusions YS → YR for S ⊃ R. A continuous functor from XY to
a topological group G, viewed as a topological category with one object, is
equivalent to a collection of maps

ϕRS :YS −→ G ,

one for each pair R ⊂ S of finite subsets of J , subject to certain “cocycle”
conditions expressing the fact that the functor preserves compositions. The
cocycle conditions are listed in Definition 4.1 below, but in the more general
setting where the group of maps from YS to G is replaced by the category
F(YS).

Definition 4.1. For X inX an element of βF(X) is a pair (Y , ϕ••) where
Y is a locally finite open cover of X, indexed by J , and ϕ•• associates to each
pair of finite, nonempty subsets R ⊂ S of J a morphism ϕRS ∈ N1F(YS)
subject to the following cocycle conditions:

(i) Every ϕRR is an identity morphism;

(ii) For R ⊂ S ⊂ T , we have ϕRT = (ϕRS |YT ) ◦ ϕST .
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Condition (ii) includes the condition that the right-hand composition is de-
fined ; in particular, taking S = T one finds that the source of ϕRS is the object
ϕSS , and taking R = S one finds that the target of ϕST is ϕSS |YT .

The sets βF(X) define a sheaf βF :X → Sets and hence a space |βF|.
The following key theorem is one of our main tools used in the proof of both
Theorem 1.2 and Theorem 1.5. Its proof is deferred to Appendix A.

Theorem 4.2. The spaces |βF| and B|F| are homotopy equivalent.

Consider the example where F(X) is the set of continuous maps from
X to a topological group G, made into a group by pointwise multiplication.
An element (Y , ϕ••) of βF(X) is a collection of gluing data for a principal
G-bundle P → X with chosen trivializations over each YR. Namely,

P =
∐
R

{R} × YR × G

/
∼

where R runs through the finite nonempty subsets of J , and the equivalence
relation identifies (R, x, g1) with (S, x, g2) if R ⊂ S and ϕRS(x)g2 = g1.

The topological category |F| is a topological group and comes with a
continuous homomorphism |F| → G which is clearly a weak homotopy equiva-
lence. So B|F| � BG. Thus Theorem 4.2 reduces to the well-known statement
that concordance classes of principal Steenrod G-bundles are classified by BG.

Consider next the case where F(X) = map(X,C ) for a small topological
category C . That is, ob(F(X)) and mor(F(X)) are the sets of continuous maps
from X to ob(C ) and mor(C ), respectively. Then an element of β(F(X)) is
a covering Y of X together with a continuous functor from XY to C . If
k 
→ NkC is a good simplicial space in the sense of [39], then the canonical
map B|F| → BC is a weak equivalence since it is induced by weak equivalences
Nk|F| ∼= |NkF| → NkC . Therefore Theorem 4.2 applied to this situation
implies that homotopy classes of maps X → BC are in natural bijection with
concordance classes of pairs consisting of a covering Y and a continuous functor
from XY to C . This statement may have folklore status. It appears explicitly
in lectures given by tom Dieck in 1972, but it seems that tom Dieck attributes
it to Segal. (We are indebted to R. Vogt who kindly sent us copies of a few
pages of lecture notes taken by himself at the time.) Moerdijk has developed
this theme much further in [30].

In our applications of Theorem 4.2, the categories F(X) will typically be
partially ordered sets or will have been obtained from a functor

F• :C op −→ sheaves on X ,

where C is a small category. Given such a functor one can define a category
valued sheaf C op∫F• on X . Its value on a connected manifold X is the cat-
egory whose objects are pairs (c, ω) with c ∈ ob(C ), ω ∈ Fc(X) and where a
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morphism (b, τ) → (c, ω) is a morphism f : b → c in C with f∗(ω) = τ . Then

|β(C op∫F•) | � B|C op∫F•| � hocolim
c∈C

|Fc|

(see §B.2 for details).

Definition 4.3. The sheaf β(C op∫F•) :X −→ Cat will also be written

hocolim
c∈C

Fc .

Spelled out, an element of (hocolimc Fc)(X) consists of

(i) a covering Y of X indexed by J ,

(ii) a functor θ from the poset of pairs (S, z), where S ⊂ J is finite nonempty
and z ∈ π0(YS), to C ,

(iii) and finally elements ωS,z ∈ Fθ(S,z)(YS,z), where YS,z denotes the con-
nected component of YS corresponding to z ∈ π0(YS). The elements ωS,z

are related to each other via the maps

Fθ(T,z)(YT,z) −→ Fθ(S,z̄)(YT,z) ←− Fθ(S,z̄)(YS,z̄)

for each S ⊂ T and z ∈ π0(YT ) with image z̄ ∈ π0(YS).

We close with an application of Theorem 4.2 which will be used below to
extend the special case of Vassiliev’s theorem mentioned earlier.

Definition 4.4. Let E ,F :X → Cat be sheaves and g : E → F a map
between them. We say that g is a transport projection, or that it has the
unique lifting property for morphisms, if the following square is a pullback
square of sheaves on X :

N1E
d0 ��

g

��

N0E
g

��
N1F

d0 �� N0F
where d0 is the source operator.

Definition 4.5. A natural transformation u :F → G of sheaves on X has
the concordance lifting property if, for X inX and s ∈ F(X), any concordance
h ∈ G(X × R) starting at u(s) lifts to a concordance H ∈ F(X × R) starting
at s.

Let g : E → F be a map of set-valued sheaves on X . An element a ∈ F(	)
gives rise to an element again denoted a ∈ F(X) for each X ∈ X . The fiber
of g over a is the sheaf Ea defined by

Ea(X) = {s ∈ E(X) | g(s) = a}.



MUMFORD’S CONJECTURE 881

Proposition 4.6. Let g : E → F and g′ : E ′ → F be transport projections
and let u : E → E ′ be a map of sheaves over F which respects the category
structures. Suppose that the maps N0E → N0F and N0E ′ → N0F obtained
from g and g′ have the concordance lifting property and that, for each object
a of F(	), the restriction N0Ea → N0E ′

a of u to the fibers over a is a weak
equivalence (resp. induces an integral homology equivalence of the representing
spaces). Then βu : βE → βE ′ is a weak equivalence (resp. induces an integral
homology equivalence of the representing spaces).

Proof. According to Theorem 4.2 it suffices to prove that u induces a
homotopy (homology) equivalence from B|E| to B|E ′|. By (4.2) and Lemma B.1
it is then also enough to show that

Nk(u) :NkE −→ NkE ′

becomes a homotopy equivalence (homology equivalence) after passage to rep-
resenting spaces, for each k ≥ 0. We note that the simplicial spaces obtained
from a bisimplicial set by realizing in either direction are good in the sense
of [39].

Since g and g′ are transport projections, an obvious inductive argument
shows that, for each k, the diagrams

NkE ��

g

��

N0E
g

��
NkF �� N0F

,
NkE ′ ��

g′

��

N0E ′

g′

��
NkF �� N0F

are pullback squares. Passage to representing spaces turns them into homotopy
cartesian squares by A.6, since the maps N0E → N0F and N0E ′ → N0F have
the concordance lifting property. Hence it suffices to consider the case k = 0,

N0u :N0E −→ N0E ′.

Again, N0E → N0F and N0E ′ → N0F have the concordance lifting property
and N0u induces a weak equivalence (homology equivalence) of the fibers. By
Proposition A.6, the fibers turn into homotopy fibers upon passage to repre-
senting spaces. Consequently N0u : N0E → N0E ′ is a homotopy equivalence
(homology equivalence).

4.2. Armlets. We begin by defining sheaves WA and hWA on X with
values in partially ordered sets, and natural transformations

Posets

forget

��
��

X

WA ��

W0 �� Sets

Posets

forget

��
��

X

hWA ��

hW0 �� Sets
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where W0 and hW0 are the sheaves introduced in Section 2.5, weakly equiva-
lent to W and hW, respectively.

Definition 4.7. An armlet for an element (π, f) ∈ W0(X) is a compact
interval A ⊂ R such that 0 ∈ int(A) and f is fiberwise transverse to the
endpoints of A.

Definition 4.8. An armlet for an element (π, f̂) ∈ hW0(X) is a compact
interval A ⊂ R such that 0 ∈ int(A) and

(i) f is fiberwise transverse to the endpoints of A;

(ii) f̂ is integrable on an open neighborhood of f−1(R � int(A)).

We introduce a partial ordering on elements of W0(X) or hW0(X) equip-
ped with armlets, namely for elements of W0(X):

(π, f, A) ≤ (π′, f ′, A′) if (π, f) = (π′, f ′) and A ⊂ A′

and similarly for elements of hW0(X).

Definition 4.9. For a connected X in X we let WA (X) denote the par-
tially ordered set of elements (π, f, A) with A an armlet for (π, f) ∈ W0(X).
Similarly, hWA (X) is the partially ordered set of elements (π, f̂ , A) where
(π, f̂) ∈ hW0(X) and A is an armlet for (π, f̂). If X is not connected we
(must) define

WA (X) =
∏

i WA (Xi) , hWA (X) =
∏

i hWA (Xi)

where the Xi are the path components of X.

Any sheaf F :X → Sets can be considered to be a sheaf with a trivial
category structure, so that each F(X) is the object set of a category which
has only identity morphisms. In this case an element (Y , ϕ••) of βF(X)
reduces to a pair consisting of a locally finite open covering of X, indexed by
J , and a single element ϕ ∈ F(X), namely, the unique element restricting to
ϕSS ∈ F(YS) for every finite nonempty subset S of J . Thus βF ∼= β 	 ×F
where 	 denotes the terminal sheaf, again viewed as a sheaf with category
values. In particular there is a forgetful projection βF −→ F which is a weak
equivalence, since |β 	 | is contractible by Theorem 4.2.

Proposition 4.10. The forgetful maps βWA → W0 and βhWA → hW0

are weak equivalences of sheaves.

The proof of Proposition 4.10 will be broken up into the proofs of the
following three lemmas.
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Lemma 4.11. Let X be in X and (π, f) ∈ W0(X). Every x ∈ X has an
open neighborhood U in X such that the image of (π, f) in W0(U) admits an
armlet.

Proof. Write π : E → X and Ex = π−1(x). By Sard’s theorem, we can
find numbers a < 0 and b > 0 such that fx : Ex → R is transverse to a and b

(in other words, a and b are regular values of fx). Let A = [a, b]. Let C ⊂ E

be the closed subset consisting of all z ∈ E where f has a fiberwise singularity
and f(z) = a or f(z) = b. Then π|C is proper and so π(C) is a closed subset
of X. Let U = X � π(C).

Lemma 4.12. With the assumptions of Lemma 4.11, there exists an el-
ement of βWA (X) which, under the forgetful transformation βWA → W0,
maps to (π, f).

Proof. Choose a locally finite covering of X by open subsets Yj , where
j ∈ J , such that the restriction of (π, f) to each Yj admits an armlet Aj ⊂ R.
For a finite nonempty subset S ⊂ J with nonempty YS let AS =

⋂
j∈S Aj . Then

AS is an armlet for the restriction of (π, f) to YS . Therefore, given nonempty
finite R, S ⊂ J with R ⊂ S and YS �= ∅, we can define ϕRS ∈ N1WA (YS) to
be the relation

(π, f, AS)|YS ≤ (π, f, AR)|YS .

The data ϕRS then constitute an element of βWA (X) which clearly projects
to (π, f) ∈ W0(X).

It follows from the two previous lemmas that the forgetful map from
βWA [X] to W0[X] is surjective for any X in X . What we really need in
order to prove the first half of Proposition 4.10 is the relative surjectivity as
in Proposition 2.18. This comes from the next lemma, in which we assume
that our fixed indexing set J is uncountable. (The assumption is not needed
in Proposition 4.10 because the homotopy type of |β...| is independent of the
cardinality of J as long as J is infinite.)

Lemma 4.13. For X in X , let (π, f) ∈ W0(X). Let C be a closed subset
of X and suppose that a germ of lifts of (π, f) across βWA −→ W0 has
been specified near C. Then there exists an element in βWA (X) which lifts
(π, f) ∈ W(X) and extends the prescribed germ of lifts near C.

Proof. Let U be a sufficiently small open neighborhood of C in X so that
the prescribed germ of lifts is represented by an actual lift of (π, f)|U across
βWA (U) −→ W0(U). This gives us a locally finite covering Y ′ of U , and for
each nonempty finite S ⊂ J and each z ∈ π0(Y ′

S), a compact interval A′
S,z ⊂ R

such that 0 ∈ int(A′
S,z). We have A′

S,z ⊂ A′
R,z̄ if R ⊂ S and z̄ is the image

of z under π0(Y ′
S) → π0(Y ′

R). Making U smaller if necessary, we can assume
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that the covering Y ′ is locally finite in the strong sense that every x ∈ X has
a neighborhood in X which intersects only finitely many of the Y ′

j .
Now we make a locally finite covering of X by open subsets Yj as follows.

For j ∈ J such that Y ′
j is nonempty, let Yj = Y ′

j . For all other j ∈ J (and there
are many such since J is uncountable) define Yj in such a way that Yj avoids a
fixed neighborhood of C and the restriction of (π, f) to each path component
z ∈ π0(Yj) admits an armlet Aj,z.

It remains to find enough armlets. We need one armlet AS,z ⊂ R for each
nonempty finite S ⊂ J and every component z ∈ π0(YS). These armlets must
satisfy AS,z ⊂ AR,z̄ if R ⊂ S and z̄ is the image of z under π0(YS) → π0(YR).
But, reasoning as in the proof of Lemma 4.12, we find that it is enough to say
what AS,z = Aj,z should be when S is a singleton {j}. We have already said
it in the cases where Yj �= Y ′

j ; in the other cases we say Aj,z := A′
j,z.

The proof of the second half of Proposition 4.10 goes like the proof of the
first half, except for one additional observation which is related to condition
(ii) in Definition 4.8. For X inX let hcW0(X) consist of all (π, f̂) ∈ hW0(X),
with π : E → X etc., such that f̂ is integrable on some open U ⊂ E and π

restricted to E � U is proper.

Lemma 4.14. The inclusion of sheaves hcW0 ↪→ hW0 is a weak equiva-
lence.

Proof. Let (π, f̂) ∈ hW0(X), with π :E → X. Choose an open U ⊂ E such
that π restricted to E � U is proper and such that the closure of U has empty
intersection with f−1(0). Using the convexity of the fibers of J2

π(E, R) → E,
especially over points z ∈ U , one may deform f̂ (leaving f unchanged) in such
a way that it becomes integrable on U . This shows that hcW0[X] → hW0[X]
is surjective. The argument can easily be refined to prove a relative statement
as in the hypothesis of Proposition 2.18.

4.3. Proof of Theorem 1.2. According to Lemma 2.23 and Proposition 4.10
it remains to show that

j2
π :βWA → βhWA

is a weak equivalence. To this end we introduce a new sheaf

T A :X −→Posets.

Suppose given a smooth submersion π :E → X with (d+1)-dimensional fibers
and a Θ-orientation on T πE, as in Definitions 2.6 and 2.7. We consider pairs
(ψ, A) where ψ : E → R is a smooth function such that (π, ψ) : E → X × R
is proper, A ⊂ R is a compact interval with 0 ∈ int(A), and ψ is fiberwise
transverse to ∂A. There is no restriction on the fiberwise singularities that ψ

might have.
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Definition 4.15. For a connected X in X , the set T A (X) consists of
triples (π, ψ, A) as above, modulo the equivalence relation which has (π, ψ, A)
equivalent to (π, ζ, A) if ψ−1(A) = ζ−1(A) and the support of ψ−ζ is contained
in the interior of ψ−1(A).

As for WA , we get T A :X → Posets. Moreover there is an obvious
commutative diagram of sheaves

WA
j2

π ��

p
���

��
��

��
hWA

q
����

��
��

�

T A

(4.3)

where p(π, f, A) and q(π, f̂ , A) are the equivalence classes of (π, f, A); in the
second case f is the underlying function of f̂ .

Let (π, ψ, A) be a representative of an element of T A (X) with π :E → X,
ψ : E → R and A ⊂ R. The manifold ψ−1(A) is independent of the choice of
representative for the equivalence class, and π|ψ−1(A) is a proper submersion;
hence a smooth fiber bundle by Ehresmann’s fibration Lemma [4]. Moreover,
near the boundary ∂ψ−1(A) = ψ−1(∂A), the function ψ is independent of the
choice of representative.

Lemma 4.16. The maps p and q in (4.3) have the concordance lifting
property.

Proof. We only give the proof for p, since the proof for q is much the same.
Suppose given a concordance [π, ψ, A] ∈ T A (X ×R) and a lift to WA (X × 0)
of its restriction to X × 0. The projection

ψ−1(A) π �� X × R(4.4)

is a smooth manifold bundle. Hence there exists a diffeomorphism N × R ∼=
ψ−1(A) over X ×R, where N = ψ−1(A)∩π−1(X × 0). But what we need here
is a diffeomorphism

u :N × R −→ ψ−1(A)

over X × R such that ψ(u(z, t)) = ψ(u(z, 0)) for all (z, t) near ∂N × R, and
of course u(z, 0) = z for all z ∈ N . Constructing such a diffeomorphism u is
equivalent to constructing a smooth vector field ξ = du/dt on ψ−1(A) which

(i) covers the vector field (x, t) 
→ (0, 1) ∈ TXx × TRt on X × I,
(ii) satisfies 〈dψ, ξ〉 ≡ 0 near ψ−1(∂A).

(Actually ξ is also prescribed on a neighborhood of ψ−1(X × C) where C =
R� ]0, 1[ , due to the details in Definition 2.3.) This problem has local solutions
which can be pieced together by means of a partition of unity on ψ−1(A). Hence
u with the required properties exists.
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Now we define the lifted concordance (π, f, A) ∈ WA (X × I) in such
a way that f(u(z, t)) = f(u(z, 0)) for (z, t) ∈ N × R, bearing in mind that
f(u(z, 0)) = f(z) is prescribed for all z ∈ N and f must equal ψ outside
u(N × I) = ψ−1(A).

Proposition 4.17. The fiberwise jet prolongation map

j2
π : |βWA | −→ |βhWA |

induces an isomorphism on integral homology.

Proof. This will be deduced from Proposition 4.6 and diagram (4.3).
Both maps p and q in (4.3) are transport projections in the sense of 4.4. We
must determine the fibers of p and q and check that j2

π induces a homology
equivalence between fibers over the same point.

We first determine the fiber p−1(τ) of

p :WA −→ T A

over an element τ = [F, ψ, A] ∈ T A (	). That is, for each X in X we are
interested in the subset of WA (X) which maps to the element [π, ψ ◦ prF , A]
of T A (X), where π and prF are the projections F ×X → X and F ×X → F ,
respectively. This subset consists of (π, f, A) ∈ WA (X) with π and A as above,
where f :F × X → R satisfies the conditions

(i) supp(f − ψ ◦ prF ) ⊂ int(ψ−1(A)) × X,
(ii) f(ψ−1(A) × X) ⊂ A.

Because of (i), we can identify the fiber of p over τ with a subsheaf of the sheaf
taking X in X to the set of smooth maps from X to

Φ(ψ−1(A),A, ψ),

using the notation of (4.1). Similarly, the fiber q−1(τ) of q in (4.3) over the
same element τ ∈ T A (	) can be identified with a subsheaf of the sheaf taking
X in X to the set of smooth maps from X to

hΦ(ψ−1(A),A, ψ).

The inclusions of these subsheaves are weak equivalences by inspection. (That
is to say, condition (ii) means nothing after passage to concordance classes.)
Thus the representing spaces |p−1(τ)| and |q−1(τ)| have canonical comparison
maps to Φ(ψ−1(A),A, ψ) and hΦ(ψ−1(A),A, ψ), respectively, which are ho-
motopy equivalences. With these as identifications, the jet prolongation map
from |p−1(τ)| to |q−1(τ)| turns into a special case of (4.1), and so is a homology
equivalence by Vassiliev’s first main theorem.

Combining Lemma 2.23, Proposition 4.10 and Proposition 4.17, we get
that

j2
π : |W| −→ |hW|
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induces an isomorphism in homology. Both |W| and |hW| are spaces with
a monoid structure up to homotopy (cf. the proof of Theorem 3.8) and j2

π

respects this additional structure. The target |hW| is an infinite loop space
by Theorem 3.8, hence it is group complete. (That is, the monoid π0|hW| is a
group.) Since H∗(j2

π; Z) is an isomorphism, especially when ∗ = 0, the source
|W| is also group complete. It is well known that the connected components of
a space with a group complete monoid structure up to homotopy are simple,
and that a map between simple spaces is a homology equivalence if and only
if it is a homotopy equivalence. This completes the proof of Theorem 1.2.

5. Some homotopy colimit decompositions

The organization and the main results of this section can be summarized
in a commutative diagram of sheaves on X and maps of sheaves

W �� Wloc

Wµ

�
		

�� Wµ
loc

�
		

�
��

L ��

�
		

Lloc

hocolim
T in K

LT

�

		

�
��

�� hocolim
T in K

Lloc,T

�
		

�
��

hocolim
T in K

WT �� hocolim
T in K

Wloc,T .

(5.1)

The symbol � indicates weak equivalences. The homotopy colimits in the
diagram are homotopy colimits in the category of sheaves on X , as in Defini-
tion 4.3. But their representing spaces can be regarded as homotopy colimits in
the category of spaces according to Lemma B.9. The top row of diagram (5.1)
is the inclusion map W → Wloc. The bottom row is what we eventually want
to substitute for the top row in order to prove Theorem 1.5.

The following preliminary remarks about (5.1) might help the reader
through this rather demanding section.

The elements of W(X) and Wloc(X) are families, parametrized by X,
of (d + 1)-manifolds Ex equipped with, among other things, Morse functions
fx : Ex → R. The same description applies to Wµ(X), Wµ

loc(X), L(X) and
Lloc(X) in the second and third row of (5.1), except that we ask for more
structure around the critical points. In particular, in the important case of
L(X) we insist on proper Morse functions fx whose critical points z ∈ Ex are
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separately enclosed in certain standard neighborhoods. Each of these standard
neighborhoods Nz ⊂ Ex is a (d + 1)-manifold with boundary; the restricted
map fx|Nz is proper, regular on ∂Nz and has no critical points in the interior
of Nz except z. These data will enable us later on to move the critical values
of f up or down, independently of each other.

In going from the third row of (5.1) to the fourth row, we are adding “lo-
cal” decisions which, for each critical point in sight, specify whether the corre-
sponding critical value should eventually be moved towards −∞, +∞ or 0. For
more precision, suppose that we are dealing with a family (π, f) : E → X × R
of (d+1)-manifolds and proper Morse functions, plus standard neighborhoods
for the critical points, i.e., an element of L(X). Let Σ(π, f) be the fiberwise
singularity set. Recall that the projection Σ(π, f) → X is étale. On some
connected components (alias sheets) of Σ(π, f), the map f might neither be
bounded above nor below. This makes a reasonable partition of Σ(π, f) into
a positive, a negative and a neutral part globally impossible. But the prob-
lem can be solved locally in X. Namely, for any x ∈ X there exist an open
neighborhood Ux of x in X, and a partition of Σ(π, f) ∩ π−1(Ux) into three
closed parts: a “positive” part where f is bounded below, a “negative” part
where f is bounded above, and a “neutral” part where f is bounded below
and above. (The partition is usually not unique.) The neutral part will always
be a finite covering space of Ux and, by making Ux smaller, we can assume
that it is trivialized, i.e. identified with T × Ux for a finite set T with some
extra structure. By fixing T and adding these trivialization and partition data
to the definition of L(X) or Lloc(X), we obtain the definitions of LT (X) and
Lloc,T (X). The local existence statement just described translates into homo-
topy colimit decompositions, i.e., the equivalence between the third and fourth
rows of (5.1). This should not come as a surprise, since our definition of the
sheaf-theoretic homotopy colimit, Definition 4.3, involves open coverings and
therefore obviously has a “local” flavor.

Finally to pass from the fourth row in (5.1) to the fifth, we produce con-
cordances which remove critical point sheets labelled positive or negative and
which move the remaining critical values towards 0. By considering a regular
level, we are led to weak equivalences LT � WT and Lloc,T � Wloc,T where
WT (X) and Wloc,T (X) are defined in terms of bundles of closed d-manifolds
on X and fiberwise surgery data.

5.1. Description of main results. We now give a description of the lower
row in diagram (5.1). This begins with a definition of the category K by
which the homotopy colimits are indexed.

Definition 5.1. An object of K is a finite set S equipped with a map to
the set {0, 1, 2, . . . , d + 1}. A morphism from S to T is a pair (k, ε) where
k is an injective map, over {0, 1, . . . , d + 1}, from S to T and ε is a function
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T �k(S) → {−1,+1}. The composition of two morphisms (k1, ε1) :S → T and
(k2, ε2) :T → U is (k2k1, ε3) :S → U where ε3 agrees with ε2 outside k2(T ) and
with ε1 ◦ k2

−1 on k2(T � k1(S)).

Many times below we encounter riemannian vector bundles ω : V → Y

equipped with a fiberwise isometry � :V → V over Y such that �2 = id:V → V .
We call a vector bundle with this additional structure a Morse vector bundle,
and if Y = 	, a Morse vector space.

Definition 5.2. Let T be an object of K . For X in X , let Wloc,T (X) be
the set of smooth, (d + 1)-dimensional Morse vector bundles ω : V −→ T × X

equipped with a Θ-orientation and subject to the following conditions.

(i) For (t, x) ∈ T × X, the dimension of the fixed point space of −� acting
on the fiber V(t,x) is equal to the label of t in {0, 1, . . . , d + 1};

(ii) The composition V → T × X → X is a graphic map.

A smooth map g : X → Y induces a map Wloc,T (Y ) → Wloc,T (X), given by
pullback of vector bundles V on T × Y along id × g : T × X → T × Y . (The
underlying set should be the graphic pullback of V → Y along g.) This makes
Wloc,T into a sheaf on X .

In Definition 5.2, the involution on V leads to an orthogonal vector bundle
splitting V = V � ⊕ V −�, where V � consists of the vectors fixed by � and V −�

consists of the vectors fixed by −�. We write D(V �) and S(V −�) for the disk
and sphere bundles associated with V � and V −�, respectively. The vertical
tangent bundle of the projection

D(V �) ×T×X S(V −�) −→ X

inherits a preferred Θ-orientation from V , described in detail at the end of
Section 5.5.

Definition 5.3. For T in K , a sheaf WT on X is defined as follows. For
X in X , an element of WT (X) consists of

(i) a smooth graphic bundle q : M → X of closed d-manifolds, with a
Θ-orientation of its fiberwise tangent bundle;

(ii) an element (V, �) of Wloc,T (X);

(iii) a smooth embedding over X respecting the fiberwise tangential Θ-orien-
tations,

e :D(V �) ×T×X S(V −�) −→ M .
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The sheaves in Definitions 5.2 and 5.3 depend contravariantly on the
variable T in K . This is clear in the case of Definition 5.2: A morphism
(k, ε) : S → T in K induces a map from Wloc,T (X) to Wloc,S(X) given by
pullback of vector bundles along the map k × id from S ×X to T ×X. (More
precisely, for (V, �) ∈ Wloc,T (X) with bundle projection ω : V → T × X, we
let (k, ε)∗(V, �) = (V ′, �′) where V ′ = ω−1(k(S) × X) with bundle projection
ω′ = ω ◦ (k × id)−1.)

The case of Definition 5.3 is much more interesting. Let (k, ε) :S → T be
a morphism inK . If k is bijective, there is an obvious identification WT

∼= WS

and this is the induced map. Therefore we may assume that k is an inclusion
S ↪→ T . Then we can reduce to the case where T �S has exactly one element, a.
This case has two subcases: ε(a) = +1 and ε(a) = −1.

Definition 5.4. Let (k, ε) : S → T be a morphism in K where k is an
inclusion and T � S = {a} with ε(a) = +1. We describe the induced map

WT (X) −→ WS(X).

Let (q, V, �, e) be an element of WT (X), with q : M → X. Map this to an
element of WS(X) by keeping q :M → X, restricting V to S×X and restricting
� and e accordingly.

Definition 5.5. Let (k, ε) : S → T be a morphism in K where k is an
inclusion and T � S = {a} with ε(a) = −1. For X in X , the induced map

WT (X) −→ WS(X)

is defined as follows. Let (q, V, �, e) be an element of WT (X), with q :M → X.
Map this to the element (q′, V ′, �′, e′) of WS(X) where

(i) q′ : M ′ → X is obtained from q : M → X by fiberwise surgery on the
embedded bundle of thickened spheres e

(
D(V �|Xa) ×Xa

S(V −�|Xa)
)
,

where Xa means a × X;

(ii) (V ′, �′) is the restriction of (V, �) to S × X;

(iii) e′ is obtained from e by restriction.

Remark 5.6. For now, the main point is that the fiberwise surgery in (i)
amounts to removing the interior of the embedded thickened sphere bundle and
gluing in a copy of D(V −�|Xa) ×Xa

S(V �|Xa) instead. More details will be
given later, at the end of Section 5.5. Note that when V −� = 0, the embedded
thickened sphere bundle whose interior we have to remove is empty. In this
case the fiberwise surgery consists in adding a (disjoint) copy of the sphere
bundle S(V )|Xa to M . If V � = 0, the fiberwise surgery removes a (disjoint)
copy of S(V )|Xa.
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There is a forgetful map of sheaves WT → Wloc,T . It has the concordance
lifting property, so that by Corollary A.8, the representing spaces of its fibers
are the homotopy fibers of the induced map of representing spaces

|WT | → |Wloc,T |.

It is easy to see that the representing space of any fiber of WT → Wloc,T is a
classifying space for certain bundles of compact Θ-oriented d-manifolds with a
prescribed boundary; cf. Section 5.6.

5.2. Morse singularities, Hessians and surgeries. We begin by recalling
some well known facts about elementary and multi-elementary Morse func-
tions. The reader is referred to [28, Ch. I] and [29] for more details in the
nonparametrized situation. By an elementary Morse function we shall mean
a proper smooth map E → R which is regular on ∂E and has exactly one
critical point in E �∂E which is nondegenerate. By a multi-elementary Morse
function we mean a proper smooth map E → R which is regular on ∂E and
has finitely many critical points in E � ∂E, all nondegenerate and all with the
same critical value.

Let V = (V, 〈 , 〉, �) be a Morse vector space. The function

fV :V → R , fV (v) = 〈v, �v〉(5.2)

is a Morse function on V with exactly one critical point. If we write V =
V � ⊕ V −�, then the fomula for fV becomes

fV (v) = ‖v+‖2 − ‖v−‖2

where v+ and v− are the components of v in V � and V −�, respectively. The
gradient of fV is everywhere perpendicular to the gradient of v 
→ ‖v+‖2‖v−‖2,
so that the latter function is constant on the trajectories of the gradient flow
of fV . This motivates the following definition.

Definition 5.7. sdl(V, �) = {v ∈ V
∣∣ ‖v+‖2‖v−‖2 ≤ 1}.

If V � = 0 or V −� = 0, then sdl(V, �) = V . For arbitrary V and �, the
formula

v 
→ (‖v−‖v+, ‖v−‖−1v−, fV (v))(5.3)

defines a smooth embedding of sdl(V, �) � V � in D(V �) × S(V −�) × R, with
complement 0× S(V −�)× [0,∞[. It respects boundaries and is a map over R,
where we use the restriction of fV on the source and the function (x, y, t) 
→ t

on the target.
Dually, the formula

v 
→ (‖v+‖v−, ‖v+‖−1v+, fV (v))(5.4)
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defines a smooth embedding of sdl(V, �) � V −� in D(V −�) × S(V �) × R, with
complement 0×S(V �)× ]−∞, 0]. It respects boundaries and is a map over R.

The map fV in (5.2) restricted to sdl(V, �) is a good local model for ele-
mentary Morse functions. Let M be any smooth compact manifold and let

e :D(V �) × S(V −�) → M � ∂M(5.5)

be a codimension zero embedding (“surgery data”). Then in M×R we have an
embedded copy of D(V �) × S(V −�) × R. We can remove its interior and glue
in sdl(V, �) instead, using formula (5.3) to identify the boundary of sdl(V, �)
with the boundary of D(V �) × S(V −�) × R. The result is a smooth manifold
Trc(e) of dimension dim(M) + 1. For example, if M = S1 and dim(V �) = 1,
the cylinder M × R is replaced by an (infinite) pair of pants.

Definition 5.8. The long trace of e, denoted Trc(e), is the pushout of the
two smooth codimension zero embeddings

sdl(V, �) � V � (e×id)◦(5.3)�� (M × R) � e(0 × S(V −�)) × [0,∞[ ,
sdl(V, �) � V � � � �� sdl(V, �).

(5.6)

For example, if V −� = 0, then sdl(V, �) = V and sdl(V, �) � V � is empty,
so that Trc(e) becomes the disjoint union of M × R and V = V �. Note that
M can be empty in this case. If V � = 0, then M contains a codimension zero
copy of S(V ). The long trace is obtained by removing S(V ) × [0,∞[ from the
copy of S(V ) × R in M × R and adding a single point instead, so that Trc(e)
becomes the disjoint union of (M � im(e)) × R and V = V −�.

Definition 5.8 determines a structure of smooth manifold on Trc(e) and
shows that Trc(e) comes with a (smooth) elementary Morse function, the height
function, which is the projection to R on the complement of the saddle and
equal to v 
→ 〈v, �v〉 on the glued-in copy of sdl(V, �). The unique critical point
is the origin of V � ⊂ Trc(e). The corresponding critical value is 0.

Roughly speaking, every elementary Morse function can be identified with
the height function on Trc(e) for some M and e. This will be illustrated in
Section 5.4.

The long trace construction has some obvious generalizations. For exam-
ple, we can allow simultaneous surgeries on a finite number of pairwise disjoint
thickened spheres. In this case the surgery data consist of a finite set T , a
Morse vector bundle V on T where dim(V ) = dim(M) + 1, and a smooth
embedding

e :D(V �) ×T S(V �) −→ M � ∂M .

Then Trc(e) is defined as the manifold obtained from M × R by deleting the
embedded copy of

D(V �
t ) × S(V −�

t ) × R
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for each t ∈ T , and substituting sdl(Vt, �) for it using formula (5.3) to do
the gluing. There is a canonical height function on Trc(e) which is a Morse
function with one critical point for each t ∈ T . The only critical value is 0 (if
T �= ∅).

We shall use a parametrized version of this construction. Let q : M → X

be a bundle of smooth compact n-manifolds, let V → T × X be a riemannian
vector bundle of fiber dimension n + 1 with isometric involution �, and let

e :D(V �) ×T×X S(V −�) −→ M � ∂M

be a smooth embedding over X. We can regard e as a family of embeddings
ex for x ∈ X, each from a disjoint union of finitely many thickened spheres to
a fiber Mx of q. The manifolds Trc(ex) for x ∈ X are the fibers of a smooth
bundle

E = Trc(e) −→ X .(5.7)

It comes equipped with a smooth height function f : Trc(e) −→ R which is
fiberwise Morse; if T �= ∅, then the unique critical value is 0.

So far we have looked at ways to create nondegenerate critical points,
starting with a regular function such as a projection M × R → R. For us
the opposite process, that of removing or “regularizing” nondegenerate critical
points of a Morse function N → R, will be more important. This corresponds
to going through the long trace construction in reverse. In order to carry over
the Θ-orientation it is convenient to first observe that the regularized manifold
is diffeomorphic to N � V � and hence inherits a Θ-orientation from N . We
owe this observation to S. Galatius. Here are the details.

Choose once and for all a diffeomorphism ψ from R to ]−∞, 0 [ such that
ψ(t) = t for t < −1/2, and a smooth nondecreasing function ϕ : [0, 1] → [0, 1]
such that ϕ(x) = x for x close to 0 and ϕ(x) = 1 for x close to 1. Let

ψx(t) = ϕ(x)t + (1 − ϕ(x))ψ(t)

for x ∈ [0, 1]. Then ψ0 = ψ embeds R in R with image ]−∞, 0 [, whereas each
ψx for x > 0 is a diffeomorphism R → R. We define proper (regular) functions

f+
V : sdl(V, �) � V � → R , f−

V : sdl(V, �) � V −� → R

by the formulae

f+
V (v) = ψ−1

x (t) , f−
V (v) = (−ψx)−1(−t)(5.8)

where t = fV (v) and x = ‖v−‖2‖v+‖2. These functions agree with fV on open
subsets that contain the entire boundary and the sets

{w ∈ sdl(V, �) | fV (w) ≤ −1} , {w ∈ sdl(V, �) | fV (w) ≥ +1} ,
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respectively. Using f±
V instead of fV the embeddings (5.3), (5.4) are replaced

by the diffeomorphisms

σ+
V : sdl(V, �) � V � −→ D(V �) × S(V −�) × R,

σ−
V : sdl(V, �) � V −� −→ D(V −�) × S(V �) × R

(5.9)

given by

σ+
V (v) = (‖v−‖v+, ‖v−‖−1v−, f+

V (v)), σ−
V (v) = (‖v+‖v−, ‖v+‖−1v+, f−

V (v)).

Let f : N → R be an elementary Morse function with unique critical value 0.
By the Morse-Palais lemma, we can choose a Morse vector space V and a
codimension zero embedding λ : sdl(V, �) → N�∂N with the property fλ = fV .
Define

N rg = N � λ(V �) , f rg :N rg → R,

by f rg(x) = f(x) for x /∈ im(λ) and f rg(λ(w)) = f+
V (w) for w ∈ sdl(V, �) � V �.

The function f rg is smooth, proper and regular. Any Θ-orientation on TN can
obviously be restricted to TN rg. Note that the construction applied to Trc(e)
of Definition 5.8 gives back M × R, up to a canonical diffeomorphism.

We finish this section with a naturality property of sdl(V, �), used in
Proposition 5.28.

Proposition 5.9. Suppose given a smooth map e : R → R and a, b ∈ R
such that e(a) = b. Assume 0 < e′(x) ≤ 1 for all x ∈ R. Then there is a smooth
embedding τ : sdl(V, �) → sdl(V, �) with τ(0) = 0 and τ ′(0) =

√
e′(a) · idV such

that
(fV + b) ◦ τ = e ◦ (fV + a).

(It is not claimed that the embedding τ respects the boundary of sdl(V, �).
The construction works just as well in a parametrized setting.)

Proof. Without loss of generality, a = b = 0; otherwise replace e by e1

where e1(x) = e(x + a) − b, and note that e1(0) = 0 and that fV ◦ τ = e1 ◦ fV

implies (fV + b) ◦ τ = e ◦ (fV + a). Assuming e(0) = 0 therefore, we have to
define τ in such a way that fV ◦τ = e◦fV . We remark that e is an orientation-
preserving embedding since e′(x) > 0 for all x.

First define u : R → R by u(x) = e(x)/x for x �= 0 and u(0) = e′(0). Then
u is smooth, as can be seen from

e(x) =
∫ x

0
e′(t) dt = x

∫ 1

0
e′(xs) ds .

We have 0 < u(x) ≤ 1 for x ∈ R and e(x) = u(x) · x. Let

τ(w) = (u(fV (w)))1/2w
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for w ∈ sdl(V, �). Then fV (τ(w)) = u(fV (w)) · fV (w) = e(fV (w)), so that
fV ◦ τ = e ◦ fV . It remains to show that τ is an embedding. Write q(w) =
(u(fV (w)))1/2 so that τ(w) = q(w) · w. The product rule gives

τ ′(w)(h) = (q′(w)(h)) · w + q(w) · h
for h in the tangent space TwV . For w = 0 and h �= 0 the right-hand side is
clearly nonzero. For w �= 0 the right-hand side can only vanish if h is a scalar
multiple of w. It is therefore enough to try h = w. This gives τ ′(w)(w) on the
left-hand side, which is the derivative of t 
→ τ(tw) at 1 ∈ R. If this vanishes,
then the derivative of

t 
→ fV (τ(tw))

at 1 ∈ R also vanishes. But fV (τ(tw)) = e(fV (tw)), and since e′ is everywhere
nonzero, it follows that f ′

V (w)(w) = 0 by the chain rule. Since fV is a quadratic
form, this forces fV (w) = fV (tw) = 0. But then τ(tw) = (u(0))1/2tw which,
as a function of t, certainly has a nonzero derivative at 1 ∈ R, contradiction.
Hence τ ′(w) is invertible for every w. Since τ also maps each line segment
through 0 ∈ V to itself, it follows immediately that τ is an embedding.

5.3. Right-hand column. Our most important examples of Morse vector
bundles are as follows. Let (π, f) be an element of Wloc(X), cf. Definition 2.9,
with π : E → X. The restriction of the vertical tangent bundle T πE to the
fiberwise singularity set Σ = Σ(π, f) comes with an everywhere nondegenerate
symmetric bilinear form 1

2H, where H is the vertical Hessian of f , that is,
the second derivative in the fiber direction. See [28, I, §2]. We can choose
an orthogonal direct sum decomposition of T πE|Σ into a positive definite
subbundle and a negative definite subbundle. (The choice is usually not unique,
but the space of all such choices is contractible.) By changing the sign of 1

2H on
the negative definite subbundle, we make T πE|Σ into a Morse vector bundle,
with an isometric involution which is −id on the preferred negative definite
summand and +id on the positive definite summand. Note in addition that
π|Σ is an étale map Σ → X and that the restriction of (π, f) to Σ is a proper
map from Σ to X × R.

Definition 5.10. Let Lloc be the following sheaf on X . For X in X , an
element of Lloc(X) is a triple (p, g, V ) where

(i) p is a graphic and étale map from some smooth Y to X ;

(ii) g is a smooth function Y → R ;

(iii) V
ω−→ Y is a (d + 1)-dimensional Θ-oriented Morse vector bundle.

Conditions: The map (p, g) : Y → X × R is proper and pω : V → X is a
graphic map.
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Definition 5.11. An element of Wµ
loc(X) consists of an element (π, f) of

Wloc(X) with π : E → X, an element (p, g, V ) of Lloc(X) with p : Y → X and
a diffeomorphism Y → Σ(π, f) over X × R covered by a vector bundle iso-
morphism from V to T πE|Σ(π, f). Condition: the vector bundle isomorphism
preserves the Θ-orientations and carries the function fV on V to w 
→ 1

2H(w, w)
on T πE|Σ(π, f).

Lemma 5.12. The forgetful map Wµ
loc → Wloc is a weak equivalence.

Proof. This is a straightforward application of Proposition 2.18.

There is also a forgetful map Wµ
loc → Lloc. We now describe a homotopy

inverse for this. Fix X in X and let (p, g, V ) be an element of Lloc(X),
with p : Y → X. Let E = V and let π : E → R agree with the composition
V → Y → X. Then T πE is identified with ω∗V (where ω : V → Y is the
vector bundle projection) and so has a preferred Θ-orientation. Let f :E → R
be given by

f(v) = g(y) + fV (v), fV (v) = 〈v, �v〉(5.10)

for y ∈ Y and v in the fiber of V over y. Then (π, f) together with the data
(p, g, V ) and the identifications Y → Σ(π, f) and V → T πE|Σ(π, f) is an
element of Wµ

loc(X). This defines a map Lloc(X) → Wµ
loc(X).

Proposition 5.13. The map Lloc → Wµ
loc defined above is a weak equiv-

alence; consequently the forgetful map Wµ
loc → Lloc is also a weak equivalence.

Proof. We are going to use the relative surjectivity criterion of Proposi-
tion 2.18. To deal with the absolute case first, we assume given X in X and
(π, f, p, g, V, ...) ∈ Wµ

loc(X), with π : E → R and f : E → R and V → Y . Let
Σ = Σ(π, f) be the fiberwise singularity set of f . Choose a vertical tubular
neighborhood of Σ in E (see Definition 3.7 and Lemma 2.8). As a vector
bundle, this is identified with the normal bundle of Σ in E, which is identified
with T πE|Σ, hence with V → Y . Therefore we may write V ⊂ E from now
on. By Proposition 3.16, the element (π, f, p, g, V, ...) in Wµ

loc(X) is concordant
to (π(1), f (1), p, g, V, ...) where π(1) and f (1) are the restrictions of π and f to
V ⊂ E, respectively. The next step is to improve f (1).

Let ψ : R → [0, 1] be a smooth nonincreasing function such that ψ(t) = 1
for t < 1 + ε and ψ(t) = 0 for t > 2 − ε, for some small ε > 0. For t ∈ R let
f (t) be given by

v 
→
{

fp(v) + ψ(t)−2(f(ψ(t)v) − fp(v)) for ψ(t) > 0 and v ∈ V

fp(v) + 1
2H(pv)(v, v) for ψ(t) = 0 and v ∈ V

where H(pv) denotes the vertical Hessian of f at p(v). Let π(t) = π(1) for t in
[1, 2]. Then t 
→ (π(t), f (t)) defines a concordance from (π(1), f (1), p, g, V, ...) to
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(π(2), f (2), p, g, V, ...). With Θ-orientations aside, (π(2), f (2), p, g, V, ...) clearly
lifts to Lloc(X). In the presence of Θ-orientations, a third concordance is
needed to achieve agreement between two Θ-orientations on the vertical tan-
gent bundle of V → X. The two Θ-orientations already agree on the zero
section of V (as a vector bundle on Y ). Since the inclusion of the zero section
of V is a homotopy equivalence, it is easy to find a homotopy between the
two Θ-orientations, and this constitutes the third concordance. We have now
established the absolute case of the relative surjectivity condition of 2.18 for
our map Lloc → Wloc. The relative case is not much more difficult and we
leave it to the reader.

We next come to the homotopy colimit decompositions of the right-hand
column of (5.1), based on the following key observation.

Lemma 5.14. Let (p, g, V ) ∈ Lloc(X), with p : Y → X. For every x ∈ X

and every b > 0 there exists a neighborhood U of x in X such that, on every
component of p−1(U), the function g is either bounded below by −b or bounded
above by b.

Proof. Choose a descending sequence of open balls Ui for i = 0, 1, 2, 3, . . .

forming a neighborhood basis for x in X. If the statement is false, then there
exists b > 0 and connected subsets Ki ⊂ Y for i = 0, 1, 2, 3, . . . such that
p(Ki) ⊂ Ui and g(Ki) ⊃ [−b, b] for all i. Choose zi ∈ Ki such that g(zi) = 0.
The sequence z0, z1, z2, . . . in Y must have a convergent (infinite) subsequence,
because (p, g) :Y → X ×R is proper and the two image sequences in X and R
converge. Let z∞ ∈ Y be the point which the subsequence converges to. Then
p(z∞) = x and g(z∞) = 0. Now p : Y → X is étale. Hence, for sufficiently
large i, there are unique neighborhoods U ′

i of z∞ in Y such that p maps U ′
i

diffeomorphically to Ui. It follows that zi ∈ U ′
i for infinitely many i and hence

Ki ⊂ U ′
i for infinitely many i. But it is also clear that the diameter of g(U ′

i)
tends to zero as i tends to infinity; hence the lim inf of the diameters of the
intervals g(Ki) is zero, which contradicts our assumption.

Definition 5.15. Fix S in K . We define a sheaf Lloc,S on X . For X in
X , an element of Lloc,S(X) is an element (p, g, V ) of Lloc(X), where p has
source Y , together with a continuous function δ : Y −→ {−1, 0,+1}, and a
diffeomorphism

h :S × X −→ δ−1(0) ⊂ Y

over {0, 1, . . . , d + 1} × X. Condition: Every x ∈ X has a neighborhood U in
X such that g admits a lower bound on p−1(U)∩δ−1(+1) and an upper bound
on p−1(U) ∩ δ−1(−1).
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In Definition 5.15, the function δ clearly has to be constant on each compo-
nent of Y . Note that the Morse vector bundle structure on V → Y determines
a map Y → {0, 1, . . . , d + 1} given by the Morse index: y 
→ dim(V −�

y ). This
is what we mean when referring to Y as a space over {0, 1, . . . , d + 1} × X.

A morphism (k, ε) :R → S in K induces a map Lloc,S → Lloc,R taking an
element (p, g, V, δ, h) of Lloc,S(X) to (p, g, V, δ′, h′) where h′(r, x) = h(k(r), x)
for (r, x) ∈ R × X and

δ′(y) =
{

ε(s) if y = h(s, x) where s ∈ S � k(R), x ∈ X

δ(y) otherwise.
(5.11)

This makes the rule T 
→ Lloc,T into a contravariant functor from K to the
category of sheaves on X . Moreover, for each T in K there is a forgetful map
Lloc,T → Lloc, and the maps Lloc,T → Lloc,S induced by morphisms S → T in
K are over Lloc. This leads to a canonical map of sheaves

v : hocolim
T in K

Lloc,T −→ Lloc .(5.12)

Proposition 5.16. The map v in (5.12) is a weak equivalence.

Proof. Let Lδ
loc be the following sheaf on X with category structure.

An object of Lδ
loc(X) is an element (p, g, V ) of Lloc(X), with p : Y → X, to-

gether with a continuous function δ :Y → {−1, 0,+1} subject to the following
condition:

Every x ∈ X has a neighborhood U in X such that g admits a lower
bound on p−1(U) ∩ δ−1(+1), an upper bound on p−1(U) ∩ δ−1(−1), and
both an upper and a lower bound on p−1(U) ∩ δ−1(0).

Given two such objects, (p, g, V, δa) and (p, g, V, δb) with the same underly-
ing (p, g, V ), we write (p, g, V, δa) ≤ (p, g, V, δb) if δ−1

a (+1) ⊂ δ−1
b (+1) and

δ−1
a (−1) ⊂ δ−1

b (−1). Then there is a unique morphism from (p, g, V, δa) to
(p, g, V, δb), otherwise there is none. Thus the category Lδ

loc(X) is a poset.
The map v in (5.12) can now be factorized as follows:

hocolim
T in K

Lloc,T
v1 �� βLδ

loc

v2 �� Lloc(5.13)

Here v2 is induced by the forgetful map Lδ
loc → Lloc. (Compare Proposi-

tion 4.10.) To describe v1 we recall that hocolimT Lloc,T was defined as

β(K op∫Lloc,•).

For connected X, an object in (K op∫Lloc,•)(X) consists of an object T in
K and an element a in Lloc,T (X). A morphism from (T, a) to (S, b) is a
morphism S → T inK taking a to b. An object (T, a) in (K op∫Lloc,•)(X) with
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a = (p, g, V, δ, h) determines an object (p, g, V, δ) in Lδ
loc(X). This canonical

association is a functor, for each X, and as such induces v1. The next two
lemmas complete the proof.

Lemma 5.17. The map v1 of (5.13) is a weak equivalence.

Proof. For an object (p, g, V, δ) of Lδ
loc(X), the subset Y0 = δ−1(0) of Y

is closed and g : Y0 → R is bounded locally in X. Thus p : Y0 → X is a proper
étale map, hence a covering. The object lifts to (K op∫Lloc,•)(X) if and only if
that covering is trivial (a product covering) over each connected component of
X. This shows that the functor (K op∫Lloc,•)(X) −→ Lδ

loc(X) is always fully
faithful, and that it is an equivalence of categories when X is simply connected.

In particular, we have an equivalence of categories for the extended sim-
plices, X = ∆k

e where k ≥ 0. Therefore |K op∫Lloc,•)| −→ |Lδ
loc| is a weak

homotopy equivalence, cf. Section 4.1.

Lemma 5.18. The map v2 of (5.13) is a weak equivalence.

Proof. The proof is completely analogous to the proof of Proposition 4.10.
We note that given objects (p, g, V, δ1) and (p, g, V, δ2) in Lδ

loc(X) with the
same underlying (p, g, V ) ∈ Lloc(X), there always exists an object (p, g, V, δ3)
in Lδ

loc(X) such that

(p, g, V, δ3) ≤ (p, g, V, δ1)
(p, g, V, δ3) ≤ (p, g, V, δ2).

Namely, let δ3(z) = +1 if and only if δ1(z) = +1 = δ2(z); let δ3(z) = −1 if and
only if δ1(z) = −1 = δ2(z), and let δ3(z) = 0 in the remaining cases.

Now we apply Proposition 2.18 to v2. Given (p, g, V ) ∈ Lloc(X), we can
by Lemma 5.14 find a locally finite covering of X by open subsets Uj , where
j ∈ J , such that (p, g, V ) |Uj has a lift ϕjj to ob(Lδ

loc)(Uj) for all j. With
the observation just above, it is easy to extend the collection of the ϕjj to a
collection of objects ϕRR ∈ ob(Lδ

loc)(UR), in such a way that ϕRR ≤ ϕQQ|UR

whenever Q ⊂ R, giving a morphism in Lδ
loc(UR). The collection of these

ϕRR is then an element of βLδ
loc(X). This establishes the absolute case of the

hypothesis in 2.18, and the verification is much the same in the relative case.

Definition 5.19. Fix T in K . We define a map from Lloc,T to Wloc,T by

Lloc,T (X) � (p, g, V, δ, h) 
→ h∗(V ) ∈ Wloc,T (X).

(Here h∗(V ) should be interpreted as the restriction of V to h(T ×X) and the
bundle projection should be composed with h−1. Then h∗(V ) → X is graphic.)
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There is an equally simple map in the other direction, Wloc,T → Lloc,T .
Indeed, we can identify Wloc,T (X) with the subset of Lloc,T (X) consisting of
the elements (p, g, V, δ, h) ∈ Lloc,T (X) which have h = idT×X and δ ≡ 0, g ≡ 0.

Lemma 5.20. The inclusion Wloc,T → Lloc,T is a weak equivalence.

Proof. We use Proposition 2.18. Given (p, g, V, δ, h) ∈ Lloc,T (X) with
p : Y → X, choose a smooth ψ : [−∞, 1/2[→ [0,∞[ such that ψ(s) = 0 for
s close to 0 and ψ(s) tends to +∞ for s → 1/2. Choose another smooth
ϕ : R → [0, 1] such that ϕ(s) = 1 for s close to 0 and ϕ(s) = 0 for s close to 1.
Then define a concordance

(p̄, ḡ, V̄ , δ̄, h̄) ∈ Lloc,T (X × R)

in the following way. The source of p̄ is the union of Y × ] − ∞, 1/2[ and
h(T ×X)× ]0,∞[ . The formula for p̄ is p̄(y, s) = (p(y), s). (To ensure that p̄ is
graphic, we should define the source of p̄ and ḡ as a subset of the pullback of
p : Y → X along the projection X×R −→ X. See Definition 2.2.) The formula
for ḡ is ḡ(y, s) := g(y) · ϕ(s) if y is in h(T × X) and ḡ(y, s) := g(y) + δ(y)ψ(s)
otherwise. The vector bundle V̄ is the pullback of V under the projection. The
formula for h̄ is h̄(t, x, s) := (h(t, x), s) and the formula for δ̄ is δ̄(y, s) = δ(y).
By inspection, (p̄, ḡ, V̄ , δ̄, h̄) is a concordance from (p, g, V, δ, h) ∈ Lloc,T (X)
to an element (p′, g′, V ′, δ′, h′) ∈ Lloc,T (X) where h′ is a homeomorphism and
g′ ≡ 0. With some renaming we can arrange h′ to be an identity map, so
that (p′, g′, V ′, δ′, h′) ∈ Wloc,T (X). If a closed subset C of X is given, and the
restriction of (p, g, V, δ, h) to some open neighborhood U of C is already in
Wloc,T (U), then the concordance just constructed is constant on U , giving the
relative surjectivity condition in Proposition 2.18.

Since the composition Wloc,T → Lloc,T → Wloc,T is the identity, we get

Corollary 5.21. The map Lloc,T → Wloc,T of Definition 5.19 is a weak
equivalence.

Summarizing, we have established the weak equivalences of the right-hand
column of diagram (5.1), and conclude:

Theorem 5.22. There is a homotopy equivalence

|Wloc| � hocolim
T in K

|Wloc,T |.

5.4. Upper left-hand column: Couplings.

Definition 5.23. An element of Wµ(X) is an element (π, f, p, g, V, . . . ) of
Wµ

loc(X) such that (π, f) ∈ W(X).
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Definition 5.24. A coupling between an element (π, f) of W(X) with
π : E → X and an element (p, g, V ) of Lloc(X) with ω : V → Y is a smooth
embedding λ : sdl(V, �) → E over X which satisfies fλ(v) = fV (v)+g(ω(v)) for
v ∈ sdl(V, �), has im(λ) ⊃ Σ(π, f) and respects Θ-orientations of the vertical
tangent bundles along fiberwise singularity sets.

Remark 5.25. The condition fλ(v) = fV (v) + g(ω(v)) implies that the
embedding λ takes the zero section of V to the fiberwise singularity set Σ(π, f).
The condition im(λ) ⊃ Σ(π, f) forces an identification of the vector bundle
ω : V → Y with T πE|Σ(π, f) −→ Σ(π, f). These are the vertical tangent
bundles along fiberwise singularity sets referred to in Definition 5.24. Both are
Θ-oriented vector bundles.

Remark 5.26. The embedding λ : sdl(V ) → E need not have a closed im-
age, because the étale map Y → X need not be a closed map. But im(λ) is
locally compact, therefore locally closed in E.

Definition 5.27. For X in X , an element of L(X) is a triple consisting
of an element in W(X), an element in Lloc(X) and a coupling λ between the
two.

Proposition 5.28. The forgetful map L → Wµ is a weak equivalence.

Proof. Again we use the relative surjectivity criterion of Proposition 2.18
and again we begin with the absolute case. Fix X in X and (π, f, p, g, V, ...)
in Wµ(X), with π : E → X. We want to lift the concordance class of (π, f) to
a class in L[X]. As in the proof of Proposition 5.13, we begin by choosing a
vertical tubular neighborhood of Σ = Σ(π, f) in E. As a vector bundle, this is
identified with the normal bundle of Σ in E, which is identified with T πE|Σ,
hence with V → Y . From now on we can write V ⊂ E and ω : V → Σ. By
the Morse-Palais lemma [22], we can arrange that f(v) = fV (v) + fω(v) for
all v in a neighborhood U of the zero section of V . Without loss of generality,
the neighborhood U contains all v ∈ sdl(V, �) for which |fω(v)| ≤ 1 and
|fV (v)| ≤ 2. (If not, replace f by (ψπ) · f where ψ : X → [1,∞[ is a suitable
smooth function. Multiply the inner product on V by ψ, too. The elements
(π, f, p, g, V, ...) and (π, ψ · f, p, (ψp) · g, V, ...) are clearly concordant.)

Now choose a smooth embedding e : R → R with im(e) = ]− 1, 1[ and 0 <

e′ ≤ 1 throughout. Then (π, f, p, g, V, ...) is concordant to (π�, f �, p�, g�, V �, ...),
where π� is the restriction of π to E� = f−1(im(e)) and f � is e−1f on E�. Let
Σ� = Σ ∩ E� and V � = V |Σ�. Let

K =
{

v ∈ sdl(V �, �)
∣∣ |fV (v) + fω(v)| < 1

}
.

For v ∈ K we have |fω(v)| < 1 and |fV (v)| < 2, so K ⊂ U by our assumptions
and consequently f |K = fV |K + fω|K. It follows that K ⊂ E�. Using
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Proposition 5.9, but writing λ for τ , we can construct an embedding

λ : sdl(V �, �) −→ K

relative to and over Σ�, such that

(fV + fω) ◦ λ = e ◦ (fV + e−1fω) = e ◦ (fV + f �ω) .

This can also be viewed as an embedding of sdl(V �, �) in E�. We have

f �λ = e−1fλ = e−1(fV + fω)λ = e−1e(fV + f �ω) = fV + f �ω

on sdl(V �, �). That is, λ is a coupling, in the sense of Definition 5.24, of
(π�, f �) ∈ W(X) with (p, g, V �) ∈ Lloc(X) where p = π�|Σ� and g = f �|Σ�.
Note that λ identifies V � with T πE|Σ�, as explained in the remarks following
Definition 5.24, so that V � inherits a Morse vector bundle structure and a
Θ-orientation from T πE|Σ�. (The new Morse structure on V � does not quite
agree with the restriction of the Morse structure on V which we used earlier
in this proof. In fact the two riemannian structures agree up to a scalar factor
given by a strictly positive function Σ� → R.) The coupling λ promotes the
element (π�, f �, p�, g�, V �, ...) to an element of L(X), except for the matter of
Θ-orientations which we can handle as in the proof of Proposition 5.13. This
establishes the absolute case of the relative surjectivity condition.

The relative case is only slightly more difficult. We sketch it. Again fix X

in X and (π, f, p, g, V, ...) in Wµ(X), with π : E → X. Let C ⊂ X be closed.
We want to find an element in L(X) whose image in W(X) is concordant rel C

to (π, f, p, g, V, ...). This can be constructed as in the absolute case, except for
one small change which consists in replacing the embedding e : R → R above
by a smooth family of smooth embeddings ex : R → R, depending on x ∈ X.
Then we have the option to choose ex = idR for x in a small neighborhood of
C, while having im(ex) = ] − 1, 1[ for x outside a slightly larger neighborhood
of C.

The forgetful map L → Lloc is not surjective in general, nor does it have
the concordance lifting property. However certain “easy” concordances in Lloc

can be lifted across the forgetful map L → Lloc, and this fact will be needed
later.

Lemma 5.29. Let (π, f, p, g, V, λ) be an element of L(X). Let (p̄, ḡ, V̄ )
in Lloc(X × R) be a concordance whose initial position is (p, g, V ) ∈ Lloc(X).
Suppose there exists a pullback diagram

Ȳ ��

p̄

��

Y

p

��
X × R

proj. �� X
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where the map Ȳ → Y restricts to id : Y → Y over X ∼= X × 0. Then
(p̄, ḡ, V̄ ) lifts to a concordance (π̄, f̄ , . . . ) ∈ L(X × R) whose initial position
is (π, f, p, g, V, λ) ∈ Lloc(X). If the concordance (p̄, ḡ, V̄ ) is relative to a closed
subset A of X, then (π̄, f̄ , . . . ) can also be taken relative to A.

Proof. The statement involves R in two ways: as a target for functions
such as f and g, and as a time-like axis which parametrizes concordances. To
reduce confusion, we will write Rτ instead of R if we mean the time axis.

The restriction of (π, f) to ∂(im(λ)) is a submersion ∂(im(λ)) → X×R.
This follows from the equation fλ = fV + gω (where ω : V → Y is the projec-
tion) and either (5.3) or (5.4).

It is therefore possible to find an outward collar for im(λ) in E (the source
of π) which is “over” X × R. We mean by that a smooth codimension zero
embedding u of ∂(im(λ))× [0, 1] in E � int(im(λ)) which extends the inclusion
of ∂(im(λ)) ∼= ∂(im(λ)) × {1}, and which satisfies π(u(z, t)) = π(u(z, 1)) as
well as f(u(z, t)) = f(u(z, 1)) for all z ∈ ∂(im(λ)) and t ∈ [0, 1]. Note that
u(∂(im(λ)) × {0}) is the far end of the collar.

We now construct our concordance (π̄, f̄ , . . . ) as follows. Let Ē = E ×Rτ

and let π̄ = π × id : Ē → X × Rτ . Elements of Ē should be relabelled to
ensure that π̄ is graphic, but we will not pay much attention to that now.
Since Ȳ is identified with Y ×Rτ , we may also identify V̄ with V ×Rτ , so that
ω̄ : V̄ → Ȳ is identified with ω × id : V × Rτ → Y × Rτ . Now we can define λ̄

by λ̄(v, t) = (λ(v), t) ∈ E × Rτ = Ē. We then choose a Θ-orientation on the
vertical tangent bundle of Ē which agrees with the prescribed Θ-orientations
over E × 0 ⊂ Ē and the image of λ̄. Since the inclusion of (E × 0) ∪ im(λ̄) in
Ē is a homotopy equivalence, this can be done.

It remains to define f̄ on Ē. For z ∈ E outside im(λ) ∪ im(u) and any
t ∈ Rτ we let f̄(z, t) = f(z). For z = λ(v) ∈ im(λ) we must define

f̄(z, t) = fV (v) + ḡ(ω(v), t) = f(z) + ḡ(ω(v), t) − g(ω(v)) .

This leaves the case z ∈ im(u), say z = u(λ(v), s) with v ∈ ∂(sdl(V, �)) and
s ∈ [0, 1]. In that case we say f̄(z, t) = f(z)+ ḡ(ω(v), ψ(s)t)− g(ω(v)), using a
smooth function ψ : [0, 1] → [0, 1] which has ψ(s) = 0 for s near 0 and ψ(s) = 1
for s near 1.

Definition 5.30. For T in K , we define a sheaf L′
T as the pullback of

L
forget �� Lloc Lloc,T .

forget��

The forgetful maps L′
T → L for T in K determine a canonical map u

from the sheaf hocolimT L′
T to L.
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Proposition 5.31. The map u : hocolim
T in K

L′
T −→ L is a weak equiva-

lence.

Proof. The proof is completely analogous to that of Proposition 5.16.
There is a factorization of u having the form

hocolim
T in K

L′
T

u1 �� βLδ u2 �� L(5.14)

where Lδ is defined as the pullback of L −→ Lloc ←− Lδ
loc. One shows that u1

and u2 are weak equivalences.

5.5. Lower left-hand column: Regularization. In order to make this section
more accessible, we assume to begin with that Θ = 	 and discuss the general
case afterwards.

Let (π, f, p, g, V, δ, h, λ) be an element of L′
T (X) with

(π, f) :E → X × R , (p, g) :Y → X × R , V
ω−→ Y ,

δ :Y → {−1, 0,+1} , h :T × X ∼= δ−1(0) , λ : sdl(V, �) −→ E .
(5.15)

We adopt the notation Y+ = δ−1(+1), Y− = δ−1(−1), Y0 = δ−1(0) and let
V+, V−, V0 be the restrictions of the Morse bundle V to these three (open and
closed) subspaces of Y .

Definition 5.32. LT is the subsheaf of L′
T consisting of the elements

(π, f, p, g, V, δ, h, λ) as above with g|Y0 ≡ 0.

Proposition 5.33. The inclusion LT → L′
T is a weak equivalence.

Proof. This is a direct application of Proposition 2.18 in conjunction with
Lemma 5.29.

For an element (π, f, . . . ) of LT (X) as above we define the regularization
(πrg, f rg) with πrg :Erg → X and f rg :Erg → R by

Erg = E � λ(V �
+ ∪ V �

0 ∪ V −�
− ) ,

πrg = π|Erg ,

f rg(z) =


f(z) if v /∈ im(λ)
f+

V (v) if z = λ(v) and v ∈ V+ ∪ V0

f−
V (v) if z = λ(v) and v ∈ V− .

(5.16)

The maps f+
V and f−

V were defined in (5.8). We note that Erg is an open
subset of E despite Remark 5.26. (The condition on lower and upper bounds
in Definition 5.15 ensures that λ(V �

+), λ(V −�
− ), λ(V �

0 ) and λ(V −�
0 ) are closed
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subsets of E.) Moreover, πrg : Erg → X is a smooth submersion and f rg is
regular on each fiber of πrg. Hence

(πrg, f rg) :Erg −→ X × R

is a smooth proper submersion, and by Ehresmann’s fibration lemma we have

Proposition 5.34. The map (πrg, f rg) :Erg −→ X ×R is a smooth bun-
dle of closed d-manifolds.

It follows that the inverse image of 0 under f rg is a bundle q : M → X

of closed d-manifolds. Since the restriction of f rg ◦ λ to sdl(V0, �) is f+
V0

, the
restriction of λ gives an embedding

e : (f+
V0

)−1(0) −→ M .(5.17)

The source of e is identified with D(V �
0 ) ×T×X S(V −�

0 ) by formula (5.9). The
diffeomorphism h :T ×X → Y0 gives the required element h∗(V0) ∈ Wloc,T (X).

Starting from an element in LT (X), we have now produced an element of
WT (X) consisting of q :M → X and the embedding e.

It is convenient to introduce two subsheaves L!
T and L!!

T of LT . For L!
T

we add to the data in 5.32 the condition that g ≥ 1 on Y+ and g ≤ −1 on Y−.
For the sheaf L!!

T we add the stronger condition that δ ≡ 0, so that Y+ and Y−
are empty (and g ≡ 0).

Lemma 5.35. The inclusions L!
T → LT and L!!

T → L!
T are weak equiva-

lences.

Proof. A direct application of 5.29 shows that the inclusion L!
T → LT is

a weak equivalence. For the inclusion L!!
T → L!

T we use Lemma 2.19. Given
an element (π, f, . . . ) of L!

T (X) as in (5.15), we choose a suitable smooth
e :X ×R → R such that each ex : R → R defined by ex(t) = e(x, t) is a smooth
orientation-preserving embedding, with ex(0) = 0. In addition we require that
0 < e′x ≤ 1 for all x ∈ X, with a view to Proposition 5.9, and that the image
of ex does not contain any nonzero critical values of the Morse function f |Ex.
(For example, if −1 < ex < 1, then im(ex) does not contain any nonzero critical
values of f |Ex.) Define E(1) ⊂ E, π(1) and f (1) exactly as in Lemma 2.19. Let
V (1) = V0. Define λ(1) : sdl(V (1), �) → E(1) by composing λ : sdl(V, �) → E

with an embedding τ : sdl(V0, �) → sdl(V0, �) over X as in Proposition 5.9, so
that fV (τ(v)) = ex(fV (v)) for x ∈ X, y ∈ Y0 with p(y) = x and v ∈ Vy. We get
an element (π(1), f (1), . . . ) of L!!

T (X) which is concordant in L!
T to (π, f, . . . ).

Therefore L!!
T [X] → L!

T [X] is surjective. The same argument gives surjectivity
in the relative case, L!!

T [X, A; s] → L!
T [X, A; s], assuming A ⊂ X is closed and

s ∈ colimUL!
T (U) where U runs over the open neighborhoods of A in X. The

only detail to watch here is that we need ex = idR for x in a sufficiently small
neighborhood of A. We complete the proof by applying Proposition 2.18.
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Proposition 5.36. The map LT → WT defined above is a weak equiva-
lence.

Proof. By Lemma 5.35, it is enough to verify that the composition

L!!
T → LT → WT

is a weak equivalence. But this is almost obvious from Section 5.2. Namely, the
long trace construction gives us a map of concordance sets WT [X] → L!!

T [X]
which is inverse to L!!

T [X] → WT [X]. This works equally well in a relative
setting, so that Proposition 2.18 can be used. The only thing to watch here
is the Θ-orientation issue. For this, fix an element (q, V, e) of WT (X) with
q :M → X and write

e : (f+
V )−1(0) −→ M .

Let E be the long trace of e, with projection π : E → X. Then E contains a
copy of C = M 
im(e) sdl(V, �), where im(e) is identified with (f+

V )−1(0). A Θ-
orientation of T πE|C is already specified. The inclusion C → E is a homotopy
equivalence, so that there is no obstruction to extending the Θ-orientation of
T πE|C to a Θ-orientation of T πE.

Remark 5.37. Some of the constructions above involve choices of pushouts
in the category of sets. These choices can be fixed in advance to ensure that
T 
→ WT really is a functor. For example, adding the following to Definition 5.3
turns out to be enough: a choice of push-out M 
im(e) sdl(V, �) (in the category
of sets) with graphic projection to X.

We end the section with the promised discussion of Θ-orientations. We
start again with the data list (5.15) for an element of L′

T (X). The coupling λ

identifies T πE|im(λ) with ω∗V |sdl(V, �). The differential

dπf :T πE −→ f∗(TR)

is surjective over E � Σ ⊂ E, where Σ = Σ(π, f). Over im(λ) � Σ it has
a preferred splitting, since T πE|im(λ) is a Riemannian vector bundle. We
redefine LT by adding the following two items to Definition 5.32:

(A) A vector bundle splitting of df : T πE|E � Σ → f∗(TR)|E � Σ which
extends the preferred splitting over im(λ) � Σ;

(B) The condition that λ (and its fiberwise differential) preserve the given Θ-
orientations of the vertical tangent bundles, and not just their restrictions
to the fiberwise singularity sets as in Definition 5.24.

Proposition 5.38. The forgetful map LT → L′
T is a weak equivalence.
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Proof. Write the map as a composition of two maps, say LT → L

T → L′

T

where L

T is the old LT as in Definition 5.32, a subsheaf of L′

T . Proposition 2.18
makes it straightforward to verify that

LT → L

T

is a weak equivalence. Proposition 2.18 and Lemma 5.29 together imply that
L


T → L′
T is a weak equivalence.

Given an element of LT (X), consisting of data as in (5.15) and items
(A) and (B) just above, we produce a d-manifold bundle q : M → X and an
embedding

e :D(V �
0 ) ×T×X S(V −�

0 ) −→ M

as before. We note that T πE|Erg has a canonical splitting,

T πE|Erg ∼= ker(df rg) × R .

Indeed, over points z ∈ Erg not in im(λ) we can use the data of item (A) and
over points z ∈ im(λ)∩Erg we can use the Riemannian vector bundle structure
on the fiberwise tangent bundle of im(λ) → X. The matching condition in (A)
ensures that this gives a continuous splitting. Since M ⊂ Erg, we deduce a
canonical vector bundle splitting

T πE|M ∼= T qM × R .

The Θ-orientation on T πE therefore induces a Θ-orientation on T qM × R,
which amounts to a Θ-orientation on T qM itself.

In the same way, the codimension 1 inclusion of

{v ∈ sdl(V0, �) | f+
V (v) = 0}

in sdl(V, �) with preferred normal line bundle leads to a Θ-orientation on the
vertical tangent bundle of

{v ∈ sdl(V0, �) | f+
V (v) = 0} ∼= D(V �

0 ) ×T×X S(V −�
0 ) .

This is our standard choice of a Θ-orientation on the vertical tangent bundle of
the source of e. With this choice e clearly respects the Θ-orientations. Hence
(q, V0, e) is a triple satisfying the requirements for an element of WT (X) in
Definition 5.3. The instructions of Remark 5.37 for making T 
→ WT into a
functor carry over without change to the case of general Θ-orientations.

Proposition 5.39. The map LT → WT defined above is a weak equiva-
lence.

Proof. The proof of Proposition 5.36 goes through.
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This completes the construction of diagram (5.1) in the general case.

5.6. The concordance lifting property.

Lemma 5.40. For fixed T in K , the forgetful map WT → Wloc,T has the
concordance lifting property.

Proof. We first consider the easier case where Θ = 	. Suppose the concor-
dance of z ∈ Wloc,T (X) is given by the Morse vector bundle V → T×X×R, and
let W = V | T ×X × 0. There is an isomorphism j :V → W ×R that restricts
to the identity over X × T× ]−∞, ε[ and is constant over X × T× ]1− ε,∞[ .
If (M, q, e) ∈ WT (X) lifts z, then (M × R, q × R, ê) with

ê :D(V �) ×T×X×R S(V −�)
j �� D(W �) ×T×X S(W−�) × R e×R �� M × R

is a lifting of the concordance.
In the general case, with Θ-orientations, we begin with the construc-

tion of a lifted concordance as above, first without worrying about tangential
Θ-orientations. We then have to make a choice of Θ-orientation on the fiber-
wise tangent bundle of a manifold bundle of the form

q × R :M × R −→ X × R .

This is prescribed over the union of U and im(ê), where U is a neighborhood
(germ) of M× ] −∞, 0] and e is an embedding as in Definition 5.3. Since the
inclusion of

M× ] −∞, 0] ∪ im(ê)

in M × R is a homotopy equivalence, the problem can be solved.

Now fix an element (V, �) in Wloc,T (	). That is, V is a (d+1)-dimensional
Θ-oriented Morse vector bundle on T with dim(Vt

−�) equal to the label of t in
{0, 1, . . . , d+1}. The following is true by definition and trivial reformulations.

Lemma 5.41. The fiber of the forgetful map WT → Wloc,T over (V, �) in
Wloc,T (	) is weakly equivalent to the sheaf which takes an X in X to the set
of all pairs (q, e) where

(i) q : M → X is a smooth graphic bundle of closed d-manifolds with a
Θ-orientation of the vertical tangent bundle T qM ;

(ii) e : D(V �) ×T S(V −�) × X −→ M is a smooth embedding over X which
is fiberwise Θ-orientation preserving.

Corollary 5.42. The fiber of the forgetful map WT → Wloc,T over
(V, �) ∈ Wloc,T (	) is weakly equivalent to the sheaf which takes an X in X to
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the set of all smooth graphic bundles q :M → X of tangentially Θ-oriented com-
pact d-manifolds with collared boundary, where the boundary bundle ∂M → X

is identified with

−(S(V �) ×T S(V −�)) × X −→ X.

(The minus sign indicates the “opposite” Θ-orientation; see Remark 5.43.)

Proof. One removes the interior of im(e) to get from the triple (M, q, e)
in Lemma 5.41 to the kind of bundle described in the corollary. This process
is clearly reversible.

Remark 5.43. For a vector bundle W → B of dimension k with a
Θ-orientation, i.e., a section σ of (Fr(W ) × Θ)/GL(k) → B, the opposite
Θ-orientation −σ can be defined as follows. Compose σ with the action of
r : Rk+1 → Rk+1 on Θ, where r(x1, x2, x3, . . . , xk) = (x1, x2, x3, . . . ,−xk).

Remark 5.44. The description of the (homotopy) fiber in Corollary 5.42
uses only the part of T lying over {1, 2, . . . , d} ⊂ {0, 1, 2, . . . , d, d + 1}, since
spheres of dimension −1 are empty.

5.7. Introducing boundaries. Here we are concerned with a slight gener-
alization of diagram (5.1). It is obtained by replacing all families of (d + 1)-
manifolds in sight by families of (d+1)-manifolds with a prescribed boundary.
For the purposes of this section we indicate the change by a superscript “∂”
as in ∂W; later, in Sections 6 and 7, the superscript will be dropped.

We assume d > 0 and fix a closed nonempty smooth (d − 1)-manifold C

with a Θ-orientation of the tangent bundle TC. The “prescribed boundary”
which we have in mind will be C×R. We assume also that C is nullbordant in
the following sense: there exists a compact smooth d-manifold K with collared
boundary ∂K = C and a Θ-orientation of TK which extends the specified one
on TC×R ∼= TK|C. (Here we use the outward normal field along C to identify
TC ×R with TK|C.) For example, C could be Sd−1 and K could be Dd, with
suitable Θ-orientations.

Definition 5.45. An element of ∂W(X) is a pair (π, f) as in 2.7, with
π : E → X and f : E → R, except for the following: we require that a diffeo-
morphism germ over X ×R be specified which identifies a neighborhood of ∂E

in E with a neighborhood of X ×C × 0×R in X ×C × [0,∞[×R , respecting
the Θ-orientations.

The same change made in the definitions of the sheaves Wloc, Wµ, Wµ
loc,

L and LT produces ∂Wloc, ∂Wµ, ∂Wµ
loc

∂L and ∂LT , respectively. (There is also
a small change in Definition 5.24: we require im(λ)∩∂E = ∅.) No changes are
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needed in the definitions of Lloc and Lloc,T ; that is, we put ∂Lloc = Lloc and
∂Lloc,T = Lloc,T . The case of ∂WT is slightly different:

Definition 5.46. An element of ∂WT (X) is a triple (q, V, e) as in Defini-
tion 5.3, except for the following. We require a diffeomorphism germ over X

which identifies a neighborhood of ∂M in M with a neighborhood of X×C×{0}
in X ×C × [0,∞[ , respecting the Θ-orientations. We require im(e)∩ ∂M = ∅.

The ∂-variant of diagram (5.1) is

∂W �� ∂Wloc

∂Wµ

�
		

�� ∂Wµ
loc

�
		

�
��

∂L ��

�
		

Lloc

hocolim
T in K

∂LT

�
		

�
��

�� hocolim
T in K

Lloc,T

�
		

�
��

hocolim
T in K

∂WT �� hocolim
T in K

Wloc,T .

(5.18)

To prove that all the maps labelled “�” are indeed weak equivalences, one
could proceed roughly as in the no-boundary situation. Another method is
to show that diagrams (5.18) and (5.1) can be related by a chain of natural
transformations all of which are weak equivalences. We now explain how this
works for the top left-hand terms, and give some indications for the remaining
terms.

The first thing we need to know is that ∂W(	) is nonempty. Indeed,
an element in ∂W(	) is given by K × R, where K is the nullbordism for C

mentioned earlier, with the projection map K×R → R and a Θ-orientation on
TK × TR which can be described as the opposite of the one specified earlier.
(It has to extend the preferred Θ-orientation on TC × R × TR under the
identification TC×R ∼= TK|C which is determined by the inward normal field
along C. See also Remark 5.43.)

As in the proof of Theorem 3.8, the formula

((π, f), (ψ, g)) 
→ (π 
 ψ, f 
 g)

defines maps W×W → W and W× ∂W → ∂W. From Section 4 we know that
|W| � |hW| and from Section 3 we know that the monoid π0|hW| is a group.
It follows that π0W = W[	] is a group under the above addition law.
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We now claim that for fixed z ∈ ∂W(∗), the restriction of the action map
to W × z is a weak equivalence

u :W × z → ∂W .

Indeed the inverse map, essentially from ∂W to W, is given by gluing in the
“nullbordism” K × R. More precisely, we define

v : ∂W → W
by taking (π, f) ∈ ∂W(X) with π : E → R to (π 
 pX , f 
 pR) ∈ W(X), where
pX and pR are the projections from X ×K ×R to X and R, respectively. The
common source of π 
 pX and f 
 pR is the pushout E 
X×C×R (X × K × R).

Taking representing spaces, we obtain |u| from |W×z| � |W| to |∂W| and
|v| from |∂W| to |W|, both well defined up to homotopy. It is easy to verify
that the homotopy classes of |v||u| and |u||v| are both given by translation with
the concordance class [v(z)] ∈ W[	]. Since W[	] is a group, this shows that |u|
and |v| are homotopy equivalences, i.e. u and v are weak equivalences.

Rows 2 and 3 of diagrams (5.1) and (5.18) can be compared in the same
fashion. For rows 4 and 5 some extra ideas are required. For example, to
compare hocolimTWT and hocolimT

∂WT we use the sheaf

hocolim
(S,T )

WS ×WT

where S and T are objects of K with S ∩T = ∅. The disjoint union maps and
substitutions U = S 
 T induce

hocolim
(S,T )

WS ×WT −→ hocolim
U

WU .

But the map given by specialization to the coordinates,

hocolim
(S,T )

WS ×WT −→ ( hocolim
S

WS) × ( hocolim
T

WT )

is a weak equivalence, so that we end up with an addition law on |hocolimSWS |.
In the same way, we can make an action (up to homotopy) of |hocolimSWS |
on |hocolimS

∂WS |. Then a choice of an element z ∈ ∂W∅(	) leads, via the
action, to a map

hocolim
S

WS × z −→ hocolim
S

∂WS

which, by the same reasoning as before, turns out to be a weak equivalence.

Corollary 5.42 has a variant “with boundaries” which looks as follows.

Corollary 5.47. The fiber of the forgetful map ∂WT → Wloc,T over
(V, �) ∈ Wloc,T (	) is weakly equivalent to the sheaf which takes an X in X
to the set of all smooth graphic bundles q : M → X of tangentially Θ-oriented
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compact d-manifolds with collared boundary, where the bundle ∂M → X is
identified with

−(C 
 S(V �) ×T S(V −�)) × X −→ X.

6. The connectivity problem

6.1. Overview and definitions. Throughout this section we work with the
sheaves ∂W, ∂WS introduced in Section 5.5 (which depend on the choice of
a (d − 1)-manifold C, as specified there). But we drop the superscripts and
simply write W, WS . We need the following extra condition on Θ. (This is
satisfied by the examples listed in 2.5, except for the case Θ = π0GL×Y when
Y is not path-connected.)

Assumption 6.1. The action of π0GL on π0Θ is transitive.

The previous section gave us decompositions of W and Wloc into pieces
WS and Wloc,S , respectively, and a description of the homotopy fibers of the
forgetful maps

WS −→ Wloc,S

as certain bundle theories; cf. Corollary 5.47. For a given S in K , the
d-manifolds involved are typically not connected. In this section we remedy
this by showing that upon taking the homotopy colimit over S, we can in fact
assume that the relevant d-manifolds are connected.

Definition 6.2. For X in X let Wc,S(X) ⊂ WS(X) consist of the triples
(q, V, e) as in Definition 5.46, with q : M → X etc., such that the bundle
projection M � im(e) −→ X has connected fibers.

Then Wc,S is a subsheaf of WS and |Wc,S | is a union of connected compo-
nents of |WS |. The forgetful map from Wc,S to Wloc,S still has the concordance
lifting property. By analogy with Corollary 5.47, we have the following analysis
of its fibers.

Corollary 6.3. The fiber of the forgetful map Wc,S → Wloc,S over V in
Wloc,S(	) is weakly equivalent to the sheaf which takes an X in X to the set of
all smooth graphic bundles q :M → X of tangentially Θ-oriented smooth com-
pact connected d-manifolds, where the boundary of each fiber Mx is identified
with

−(C 
 S(V �) ×S S(V −�)).

It would therefore be nice to have a statement saying that the inclusion
of hocolimS Wc,S in hocolimS WS is a weak equivalence. Unfortunately such
a statement is nonsensical if we insist on letting S run through the entire
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categoryK . We have a contravariant functor S 
→ WS fromK to the category
of sheaves on X , but we do not have a subfunctor S 
→ Wc,S . It is not the
case that the map

(k, ε)∗ :WT → WS

induced by a morphism (k, ε) :S → T in K will always map the subsheaf Wc,T

to the subsheaf Wc,S . Let us take a more careful look at this phenomenon.
We may assume that k is an inclusion and that T � S has exactly one

element t, with label λ(t) ∈ {0, 1, . . . , d, d + 1} and sign ε(t) ∈ {±1}. Fix
(q, V, e) in WT (X), with q :M → X and let (q′, V ′, e′) be the image of (q, V, e)
in WS(X), with q′ :M ′ → X. For each x ∈ X there is a canonical embedding

Mx � im(ex) −→ M ′
x � im(e′x).

The complement of its image is identified with

D(V �
(t,x)) × S(V −�

(t,x)) if ε(t) = +1, and
S(V �

(t,x)) × D(V −�
(t,x)) if ε(t) = −1,

where V(t,x) is the fiber of V over (t, x) ∈ T × X. We have a problem when
the complement is nonempty but has empty boundary, because then it will
contribute an additional connected component. This happens precisely when
(λ(t), ε(t)) = (d + 1,+1) and when (λ(t), ε(t)) = (0,−1). In all other cases,
there is no problem.

Now our indexing category K is equivalent to a product K ′ ×K ′′. The
categories K ′ and K ′′ can be described as full subcategories of K ; namely,
K ′ is spanned by the objects S whose reference map S → {0, 1, 2, . . . , d + 1}
has image contained in {0, d + 1} and K ′′ is spanned by the objects S whose
reference map S → {0, 1, 2, . . . , d + 1} has image contained in {1, 2, . . . , d}.

For homotopy colimits of functors from a product category to spaces (or
to sheaves on X ) there is a Fubini principle. In our case it states that

hocolim
T in K

WT � hocolim
Q in K ′

hocolim
S in K ′′

WQ�S .(6.1)

Lemma 6.4. For any morphism (k, ε) : P → Q in K ′, the commutative
square

hocolim
S in K ′′

WQ�S
(k,ε)∗ ��

��

hocolim
S in K ′′

WP�S

��
hocolim
S in K ′′

Wloc,Q�S
(k,ε)∗ �� hocolim

S in K ′′
Wloc,P�S

is homotopy cartesian (after passage to representing spaces).
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Theorem 6.5. The inclusion

hocolim
S in K ′′

Wc, S −→ hocolim
S in K ′′

WS

is a weak equivalence.

Theorem 6.5 is the main result of the section. We develop a surgery
method to prove it. The idea is to make nonconnected d-manifolds connected
by means of multiple surgeries on embedded (thickened) 0-spheres, i.e., by
replacing (fiberwise) disjoint unions by connected sums.

6.2. Categories of multiple surgeries. In this section we fix a compact,
smooth, nonempty d-manifold M with a Θ-orientation of TM . Unless other-
wise stated, Rd+1 will be regarded as a Morse vector space with the standard
inner product and involution �(x1, . . . , xd, xd+1) = (x1, . . . , xd,−xd+1). We
shorten D((Rd+1)�) × S((Rd+1)−�) to Dd × S0. This is normally identified
with what we have previously called

(f+
V )−1(0) ⊂ sdl(V, �)

in the case V = Rd+1; cf. (5.8). Hence any Θ-orientation on the tangent bundle
of Rd+1 will induce one on the tangent bundle of Dd × S0. We refer to the
discussion leading up to Proposition 5.39.

We make a slight change in the definitions of WS and Wloc,S . Namely,
where Definitions 5.2 and 5.3 ask for a Morse vector bundle ω : V → S × X

with a Θ-orientation on V itself, we will now just insist on a Θ-orientation on
the Morse vector bundle ω∗V with base space V . This change does not affect
the homotopy types of |WS | and |Wloc,S |.

Definition 6.6. Let CM be the topological category defined as follows.
An object consists of a finite set T , a Θ-orientation on the tangent bundle
of Rd+1 × T and a smooth embedding eT of Dd × S0 × T in M � ∂M which
respects the Θ-orientations and satisfies the following condition: Surgery on
eT results in a connected d-manifold. A morphism from (S, eS) to (T, eT ) is an
injective map k :S → T such that k∗eT = eS .

The category CM has a natural topology: ob(CM ) is topologized as a
subspace of the disjoint union, over all T , of the spaces

(space of smooth embeddings Dd × S0 × T −→ M � ∂M)

× (space of Θ-orientations on the tangent bundle of Rd × T ).

The total morphism set mor(CM ) is topologized as a subset of ob(CM )×ob(CM )
via the map (source,target).

Proposition 6.7. The space BCM is contractible.
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The proof requires a lemma.

Lemma 6.8. Let σ :N → X be a submersion of smooth manifolds without
boundary, with dim(N) > dim(X). Suppose that for each x ∈ X there exists a
contractible open neighborhood W of x in X, a finite set Q and a map Q×W →
N over X inducing a surjection from Q to π0(Ny) for every y ∈ W . Then there
exist a locally finite covering of X by contractible open sets Wj , where j ∈ J ,
and finite sets Qj , and a smooth embedding

a :
∐
j

Qj × Wj −→ N

over X, such that for each j ∈ J and x ∈ Wj , the restriction of a to Qj × Wj

induces a surjection Qj → π0(Nx).

Example 6.9. The submersion R2 � (0, 0) −→ R ; (x, y) 
→ x satisfies the
hypothesis of Lemma 6.8. The submersion R � 0 → R ; x 
→ x does not, and
neither does the projection from (R × {0, 1}) � (0, 0) to R.

Proof of Lemma 6.8. Note first that the statement is not completely
trivial. Using the hypothesis, we could start with a locally finite covering of X

by contractible open sets Wj , and choose finite sets Qj and maps aj :Qj×Wj →
N over X inducing surjections Qj → π0(Ny) for every y ∈ Wj . This would
give us a map

a :
∐
j

Qj × Wj −→ N

which is an immersion. Unfortunately there is no guarantee that it is an
embedding. To solve this problem we will partition a “large”, dense open
subset U of N into “levels” indexed by the real numbers, and arrange that
a maps distinct connected components of

∐
Qj × Wj to distinct levels of U .

Then a is an embedding.
The jet transversality theorem, applied to sections of the vertical tangent

bundle of N , implies that we can find a k � 0 and a smooth f : N → R such
that the fiberwise k-jet prolongation jk

σf : N → Jk
σ (N, R) is nowhere 0. Let

U ⊂ N consist of all z ∈ N such that f |Nσ(z) is regular at z. Then U is open
in N and Ux := U ∩ Nx is dense in Nx, for each x ∈ X. Hence the inclusions
Ux → Nx induce surjections π0(Ux) → π0(Nx). The hypotheses on σ now give
us a covering of X by contractible open subsets Wj , and for each Wj a finite
set Qj and a map aj : Qj × Wj → U over X such that the induced composite
map Qj → π0(Ux) → π0(Nx) is onto for every x ∈ Wj . We can assume that
the Wj are the open stars of the vertices in a sufficiently fine triangulation of
X, in which case the covering is locally finite. But in addition we can easily
arrange that faj is constant on q ×Wj for each q ∈ Qj , and that the resulting
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map
∐

j Qj → R is injective. Then the map a which equals aj on Qj × Wj

satisfies all our requirements.

In the proof of Theorem 6.5, we will use a sheaf version CM of CM . For
connected X in X let CM (X) be the category whose objects are the pairs
(T, eT ) where T is a finite set together with a Θ-orientation on the tangent
bundle of Rd+1 × T , and

eT :Dd × S0 × T × X −→ (M � ∂M) × X

is a smooth embedding over X, respecting the tangential Θ-orientations and
subject to the condition that fiberwise surgery on eT results in a bundle of
connected manifolds. A morphism from (S, eS) to (T, eT ) is an injective map
k : S → T such that k∗eT = eS .

Since ob(CM (∆k
e)) = C∞(∆k

e , ob(CM )) as sets, one gets a functor of topo-
logical categories |CM | → CM which induces a degreewise homotopy equiva-
lence of the nerves and therefore a homotopy equivalence B|Cop

M | ∼= B|CM | →
BCM . (Here it is best to define BCM as the fat realization [39] of the nerve of
CM , ignoring the degeneracy operators.)

Proof of Proposition 6.7. We show that βCop
M is weakly equivalent to the

terminal sheaf taking every X in X to a singleton. By Proposition 2.18, this
reduces to the following

Claim. Let X in X be given with a closed subset A and a germ s in
colimU βCop

M (U), where U ranges over the neighborhoods of A in X. Then
s extends to an element of βCop

M (X).

To verify this, choose an open neighborhood U of A in X such that the germ
s can be represented by some s0 ∈ βCop

M (U). The information contained in s0

includes a locally finite covering of U by open subsets Uj for j ∈ J . (Making U

smaller if necessary, we can assume that this is locally finite in the strong sense
that every x ∈ X has a neighborhood which meets only finitely many Uj .) It
also includes a choice of object ψRR ∈ ob(CM (UR)) for each finite nonempty
subset R of J . (There are also morphisms ψRS ∈ mor(CM (US)), but they are
of course determined by their sources ψRR|US and targets ψSS .)

Next, choose an open X0 ⊂ X such that U ∪ X0 = X and the closure of
X0 in X avoids A. Let N be the open subset of (M � ∂M) × X0 obtained
by removing from (M � ∂M)×X0 the closures of the embedded disk bundles
determined by the various ϕRR|UR ∩ X0. By making U and X0 and the Uj

smaller if necessary, but taking care that the Uj remain the same near A, we
can arrange that the projection N → X0 satisfies the hypothesis of Lemma 6.8.

Thus there exists a locally finite covering of X0 by contractible open sets
U ′

j , and finite sets Qj and an embedding a of
∐

j Qj ×U ′
j in N , over X0 , such

that a induces surjections Qj → π0(Nx) for each j and x ∈ U ′
j . (Again, making
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X0 smaller if necessary, we can assume that this is locally finite in the strong
sense that every x ∈ X has a neighborhood which meets only finitely many
U ′

j .) We can also choose a smooth embedding b of
∐

j Qj × U ′
j in N , over X0,

inducing constant maps Qj → π0(Nx) for each j and all x ∈ U ′
j , and such that

im(a)∩im(b) = ∅. (For example, the distinct sheets of b restricted to Qj×U ′
j can

be chosen very close to a selected sheet of a.) Since the U ′
j are contractible, the

normal bundles of a and b can be trivialized (as d-dimensional vector bundles),
and so the “union” of a and b extends to a smooth and fiberwise Θ-orientation
preserving embedding

c :Dd × S0 ×
∐

j(Qj × U ′
j) −→ N

over X0, with suitably chosen Θ-orientations on the vertical tangent bundles
of the projections Rd+1×Qj ×U ′

j −→ Qj ×U ′
j . (This requires assumption 6.1.)

For each j with nonempty U ′
j , the restriction of c to the summand

Dd × S0 × Qj × U ′
j

is an object ϕjj of CM (U ′
j). Assuming that J is uncountable, we can arrange

that U ′
j is empty whenever Uj is nonempty.

We are now ready to define an explicit element in βCop
M (X) which extends

the germ s. Let Yj = Uj if Uj is nonempty, Yj = U ′
j if U ′

j is nonempty, and
Yj = ∅ for all other j ∈ J . Then the Yj form a locally finite open covering
of X. For finite R ⊂ J with nonempty YR, we can write YR = US ∩ U ′

T for
disjoint subsets S, T of R with S ∪ T = R. Let ϕRR ∈ ob(CM (YR)) be the
coproduct (which exists by construction) of ψSS |YR and the ϕjj |YR for j ∈ T .
The covering j 
→ Yj together with the data ϕRR for finite nonempty R ⊂ J is
an element in βCop

M (X) which extends the germ s.

We call a diagram S → T ← U inK ′′, given by morphisms (k1, ε1) :S → T

and (k2, ε2) :U → T , special if k2(U) contains k1(S), all elements of T � k1(S)
have label 1 ∈ {0, 1, 2, . . . , d + 1}, and ε1 ≡ +1, ε2 ≡ −1. In that situation we
also define Wc, U→T by means of the pullback diagram

Wc, U→T ��

��

Wc,U

inclusion
��

WT
(k2,ε2)∗ �� WU .

The special diagrams S → T ← U with a fixed S are the objects of a category
DS where the morphisms are commutative diagrams in K ′′ of the form

S ��

=

��

T

��

U��

��
S �� T ′ U ′��

(6.2)
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with special rows. In such a diagram, every element z of T ′ which is not in the
image of T must be in the image of U ′. Indeed, writing (k, ε) : T → T ′ for the
morphism in the middle column, we have ε(z) = +1 by the commutativity of
the left-hand square, and ε(z) = +1 implies that z is in the image of U ′ by the
commutativity of the right-hand square. Therefore the rule taking a special
diagram S → T ← U to Wc, U→T is a contravariant functor on DS . There is
also a natural transformation from that functor on DS to the constant functor
with value WS , determined by the composition

Wc, U→T −→ WT −→ WS

for S → T ← U in DS .

Lemma 6.10. This natural transformation induces a homotopy equiva-
lence

hocolim
S→T←U in DS

|Wc, U→T | −→ |WS | .

Proof. We will proceed by showing that all homotopy fibers of the map
are contractible, and for that we use Lemma 6.11 below. This means that we
must select a point in |WS |, corresponding to a certain d-manifold N with an
embedding e of a disjoint union of thickened spheres, and we must then show
that

(∗) hocolim
S→T←U in DS

hofiber(N,e)

[
|Wc, U→T | → |WS |

]
is contractible. Let M = N � int(im(e)). For a fixed S → T ← U in DS , it is
easy to produce a chain of natural homotopy equivalences from

hofiber(N,e)

[
|Wc, U→T | → |WS |

]
to the space of morphisms in CM whose underlying set map is the inclusion
T0 → T1, where T1 is the complement of the image of S in T and T0 is the
complement of the image of U in T . (There are two kinds of connectedness
conditions to be compared at this point. One kind requires that certain surg-
eries on M produce a connected manifold. The other requires that certain
surgeries on M � int(K) produce a connected manifold, where K ⊂ M is a
disjoint union of copies of Dd × S0. But clearly, removing int(K) does not
influence the π0 in question.) The homotopy colimit (∗) is therefore homotopy
equivalent to

hocolim
v : T0→T1

(space of morphisms in CM with underlying set map v).

This homotopy colimit is the classifying space of the edgewise subdivision of
CM : given the diagram (6.2) and a morphism in CM with underlying set map
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v :T0 → T1, we get a diagram in CM with underlying set maps

T0
v �� T1

��
T ′

0

		

v′
�� T ′

1

as explained in the paragraph following (6.2). In general, the edgewise sub-
division esA of a category A has ob(esA ) = mor(A ), and morphisms from
v = (T0 → T1) to v′ = (T ′

0 → T ′
1) are diagrams like the one above. The nerve

of esA is, by [13, Lm.2.4], isomorphic as a simplicial set to the edgewise sub-
division of the nerve of A , and by [40] this implies that the realizations are
homeomorphic. It follows that the classifying space of the edgewise subdivision
of CM is homotopy equivalent to the classifying space of CM , and therefore
contractible.

Lemma 6.11. Let A be a (small) category, F a functor from A to spaces,
p a natural transformation from F to a constant functor with value B (a CW-
space), and b ∈ B. Then there is a chain of weak homotopy equivalences

hofiberb

[
hocolima F(a)

p∗−→ B
]

� hocolima

(
hofiberb[F(a) → B]

)
.

Proof. By the homotopy invariance property of homotopy direct limits,
we may assume that pa :F(a) → B is a (Serre) fibration for every a in A . In
that situation the map hocolima F(a) −→ B is a quasifibration and its fiber
over b is

hocolima

(
fiberb[F(a) → B]

)
� hocolima

(
hofiberb[F(a) → B]

)
.

Let D be the category of all special diagrams S → T ← U in K ′′, so that
a morphism in D is a commutative diagram

S ��

��

T

��

U��

��
S′ �� T ′ U ′��

in K ′′ with special rows. As before, the rule taking an object S → T ← U of
D to |Wc, U→T | is a contravariant functor. There is an embedding

hocolimS |DS | −→ |D |.(6.3)

Indeed, the left-hand side can be regarded as the geometric realization of a
simplicial set whose n-simplices are pairs of diagrams in K ′′ of the form

S0 → S1 → · · · → Sn ; Sn → T ← U

where the second diagram is special. Such a diagram can also be viewed as a
string of n composable morphisms in D by replicating T and U .
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Proof of Theorem 6.5. Let

X = hocolim
S→T←U in D

|Wc, U→T | , XS = hocolim
S→T←U in DS

|Wc, U→T |.

There are maps

[0, 2] × hocolim
S in K ′′

XS
v �� [0, 2] × X

g �� hocolim
S in K ′′

|WS |

where v is induced by (6.3) and g is induced by the three functors f0, f1, f2

from D to K ′′ defined by (S → T ← U) 
→ S, T, U respectively, and the
two obvious natural transformations f0 → f1, f2 → f1. (Each fi induces a
map from X to hocolimS |WS | and the two natural transformations induce two
homotopies, which we concatenate to obtain a single map from [0, 2] × X to
hocolimS |WS |.)

Let h = gv and write ht for the restriction of gv to t × hocolimSXS . It
follows from Lemma 6.10 and the homotopy invariance property of homotopy
colimits that h0 is a homotopy equivalence. By construction, h2 lands in the
subspace hocolimS |Wc,S | of hocolimS |WS |. Hence h2h

−1
0 is a homotopy class

of maps from hocolimS |WS | to hocolimS |Wc,S | which is right inverse to the
inclusion. But it is also left inverse to the inclusion, because X contains a
copy of hocolimS |Wc,S | on which both h2 and h0 are the identity.

6.3. Annihiliation of d-spheres. The goal is to prove Lemma 6.4. Most of
the proof is based on some elementary product decompositions.

Lemma 6.12. Let T = T1 ∪ T2 be a disjoint union, where T1 is an object
of K ′ and T2 is an object of K . There are weak equivalences

WT −→ Wloc,T1 ×WT2 , Wloc,T −→ Wloc,T1 ×Wloc,T2 ,

natural in T2 for fixed T1.

Proof. The second map is induced by the inclusions T1 → T and T2 → T ,
and is obviously a weak equivalence.

The first coordinate of the first map is again induced by the inclusion
T1 → T . The second coordinate, WT −→ WT2 , is defined as follows. Let
(q, V, e) be an element of WT (X) as in Definition 5.3, with q : M → X. For
a ∈ T1 , the bundle

D(V �
a ) ×Xa

S(V −�
a )

(where Xa = a×X and Va = V |Xa) is either empty or a bundle of d-spheres. In
any case it has empty boundary and its image under e is a union of connected
components of M . Let M ′ be obtained from M by deleting these components,
for all a ∈ T1. Let V ′ be the restriction of V to T2 × X and let e′ be the
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restriction of e to ∐
b∈T2

D(V �
b ) ×Xb

S(V −�
b ) .

Then (q′, V ′, e′) ∈ WT2(X). This determines the map WT −→ WT2 . Again it
should be clear that the resulting map

WT −→ Wloc,T1 ×WT2

is a weak equivalence: it is easy to write down an inverse for the induced map
on homotopy groups.

Proof of Lemma 6.4. Applying Lemma 6.12 we can rewrite the commuta-
tive diagram in Lemma 6.4 in the form

|Wloc,Q| × | hocolim
S in K ′′

WS | (k,ε)∗ ��

id×	

��

|Wloc,P | × | hocolim
S in K ′′

WS |

id×	

��
|Wloc,Q| × | hocolim

S in K ′′
Wloc,S | (k,ε)∗ �� |Wloc,P | × | hocolim

S in K ′′
Wloc,S |

where 
 : hocolimS WS −→ hocolimS Wloc,S is the forgetful map. For y in
Wloc,Q(	) and z ∈ hocolimS WS(	), the homotopy fiber of the left-hand vertical
arrow over (y, z) is therefore identified with hofiberz(
) and the homotopy
fiber of the right-hand vertical arrow over the image point ((k, ε)∗y, z) is also
identified with hofiberz(
). However, with these identifications the map

u : hofiberz(
) −→ hofiberz(
)

induced by the horizontal arrows in the diagram is not always the identity.
To understand what it is, we can assume that Q � P has exactly one element
a. Associated with this we have a label λ(a) ∈ {0, d + 1} and a value ε(a) in
{−1,+1}. By inspection, if (λ(a), ε(a)) is (0,+1) or (d + 1,−1), then the map
u is the identity. To describe what happens in the remaining cases, we note
that by choosing y we have also selected an element

(p, W, g) ∈ Wloc,{a}(	)

where W is a vector space with inner product. We identify W with Rd+1, so the
map u is given by disjoint union with S(W ) = Sd, assuming that (λ(a), ε(a))
is (d + 1,+1) or (0,−1). More precisely, for each S in K ′′ and X in X , we
have a map

ū :WS(X) → WS(X)

given by (q, V, e) 
→ (q�, V, e) where q : M → X is a bundle of d-manifolds
etc., and q� is obtained from q by disjoint union with a trivial sphere bundle
Sd × X → X. This is natural in the variables X and S. It covers the identity
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map of Wloc,S(X) and so induces u above. Hence it only remains to show that
ū is a weak equivalence.

Lemma 6.13. The map

ū : hocolim
S in K ′′

WS −→ hocolim
S in K ′′

WS

given by disjoint union of all d-manifolds in sight with Sd is a weak equivalence.

Proof. We reason as in Section 5.7. This will require two variants of WS

as in Definition 5.3, one where we use −C as the prescribed boundary and
another where we use C 
 −C, in other words, the boundary of C × [0, 1]. To
distinguish these, we write ∂WS for the first and ∂∂WS for the second.

Concatenation defines a map from ∂∂WS × ∂∂WT to ∂∂WS�T and another
map from ∂∂WS × ∂WT to ∂WS�T . Hence

hocolim
S in K ′′

| ∂∂WS |

becomes a homotopy monoid. Its homotopy unit is the element C × [0, 1] in
∂∂W∅(	). This homotopy monoid acts on

hocolim
S in K ′′

| ∂WS |.

The map ū is given by translation with the single element z of

| ∂∂W∅| ⊂ hocolim
S in K ′′

| ∂∂WS |

defined by Sd 
 (C × [0, 1]). It is therefore enough to show that z is in the
connected component of the homotopy unit, defined by C×[0, 1]. This amounts
to saying that Sd
 (C× [0, 1]) can be transformed into C× [0, 1] by elementary
surgeries of index 1, 2, . . . , d only. In fact a single surgery of index 1, that is,
a surgery on a thickened 0-sphere in Sd 
 (C × [0, 1]), is enough. (Let one
component of the thickened 0-sphere be in Sd and the other in C × [0, 1]. Here
at last we are using the assumption that C �= ∅.)

7. Stabilization and proof of the main theorem

7.1. Stabilizing the decomposition.

Conventions. Throughout this section we assume d = 2 and Θ = π0GL
with the translation action of GL, so that Θ-orientations are ordinary orien-
tations. We continue to write W and WS for ∂W and ∂WS , respectively. The
fixed boundary C is S1 
 −S1; cf. Section 5.7.

In Section 6, we modified the homotopy colimit decomposition of |W|
obtained in Section 5 in order to banish nonconnected d-manifolds from the
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picture, as far as possible. Here we make a second modification to our homo-
topy colimit decomposition which, roughly speaking, ensures that all surfaces
in sight are of large genus, in addition to being connected. We achieve this by
repeatedly concatenating with a standard surface of genus 1, with boundary
S1 
 −S1. This standard surface can be viewed as an element z ∈ Wc,∅(	).

For every X in X , the unique map X → 	 induces Wc,∅(	) → Wc,∅(X)
and so allows us to think of z as an element of Wc,∅(X). For S in K define
z−1WS and z−1Wc,S as the colimits, in the category of sheaves on X , of the
diagrams

WS
z·−→ WS

z·−→ WS
z·−→ WS

z·−→ · · · ,

Wc,S
z·−→ Wc,S

z·−→ Wc,S
z·−→ Wc,S

z·−→ · · · ,

respectively. The arrows labelled z· are given by concatenation with z. These
colimits are obtained by sheafifying the naive colimits, which are presheaves.
(The categorical colimit F∞ of a system of sheaves

F0 → F1 → F2 → F3 → · · ·
on X can be defined explicitly by F∞(X) = limU ( colimi Fi(U)), for X in X ,
where U runs through the open subsets of X which have compact closure in
X.) The sheafification process does not alter the values on compact objects
of X , such as spheres. Hence the representing spaces of these colimits are
homotopy equivalent to the colimits of the individual representing spaces:

|z−1WS | � z−1|WS | , |z−1Wc,S | � z−1|Wc,S | .
For an object T in K ′′, Corollary 6.3 implies that the homotopy fiber of
the localization map |Wc,T | −→ |Wloc,T | over any base point is homotopy
equivalent to

∐
g BΓg, 2+2|T |. The stabilization process replaces the disjoint

union with Z × BΓ∞, 2+2|T | and so we have

Lemma 7.1. For T in K ′′, any homotopy fiber of |z−1Wc,T | −→ |Wloc,T |
is homotopy equivalent to Z × BΓ∞, 2+2|T | .

The stabilized version of Lemma 6.4 is that the commutative diagram

hocolim
S in K ′′

|z−1WQ�S |
(k,ε)∗ ��

��

hocolim
S in K ′′

|z−1WP�S |

��

hocolim
S in K ′′

|Wloc,Q�S |
(k,ε)∗ �� hocolim

S in K ′′
|Wloc,P�S |

(7.1)

is homotopy cartesian, for any morphism (k, ε) : P → Q in K ′. Stabilizing
Theorem 6.5 gives the homotopy equivalence

hocolim
T in K ′′

|z−1Wc, T | −→ hocolim
T in K ′′

|z−1WT |.(7.2)
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Finally we shall need

Lemma 7.2.

|W| � | z−1W| � hocolim
T in K

|z−1WT | � hocolim
Q in K ′

hocolim
S in K ′′

|z−1WQ�S |.

Proof. The space |W| is group complete by Theorem 1.2 and Theorem 1.4
which together imply that |W| is an infinite loop space. Hence the inclusion
of |W| in z−1|W| � |z−1W| is a homotopy equivalence. The second homotopy
equivalence in the chain follows from |z−1WT | � z−1|WT | and

hocolim
T in K

z−1|WT | � z−1
(

hocolim
T in K

|WT |
)
.

The third equivalence is the Fubini principle for homotopy colimits; cf. (6.1).

7.2. The Harer-Ivanov stability theorem.

Lemma 7.3. The canonical map from Z × BΓ∞,2 to the homotopy fiber
(over the base point) of the forgetful map

hocolim
S in K ′′

|z−1Wc,S | −→ hocolim
S in K ′′

|Wloc,S |

induces an isomorphism in homology with integer coefficients.

Proof. For the object S = ∅ of K ′′, we have |z−1Wc,S | � Z × BΓ∞,2 and
|Wloc,S | = 	. This gives a canonical map from Z × BΓ∞,2 to the homotopy
fiber of

hocolim
S in K ′′

|z−1Wc,S | −→ hocolim
S in K ′′

|Wloc,S |.

We now check that the hypothesis of Corollary B.3 is satisfied. Let (k, ε) :S →
T be a morphism in K ′′. We have to verify that, in the commutative square
of spaces

|z−1Wc,T | ��

(k,ε)∗

��

|Wloc,T |

(k,ε)∗

��

|z−1Wc,S | �� |Wloc,S |,

the induced map from any of the homotopy fibers in the upper row to the
corresponding homotopy fiber in the lower row induces an isomorphism in
homology. The homotopy fibers in question are related by a map

Z × BΓ∞, 2+2|T | −→ Z × BΓ∞, 2+2|S|

given geometrically by attaching cylinders D1 × S1 or double disks D2 × S0

to those pairs of boundary circles which correspond to elements of T � k(S).
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This map is an integral homology equivalence by the Harer-Ivanov stability
theorem. Apply Corollary B.3.

Corollary 7.4. The canonical map from Z × BΓ∞,2 to the homotopy
fiber (over the base point) of the forgetful map

hocolim
S in K

|z−1WS | −→ hocolim
S in K

|Wloc,S |

induces an isomorphism in homology with integer coefficients.

Proof. Use the homotopy cartesian diagram (7.2), the homotopy equiva-
lence (7.1) and the last homotopy equivalence of Lemma 7.2.

Proof of Theorem 1.5. By Lemma 7.2 and diagram 5.1, we have

hocolim
S in K

|z−1WS | � |W| , hocolim
S in K

|Wloc,S | � |Wloc| .

Therefore Corollary 7.4 implies that the homotopy fiber of |W| → |Wloc| re-
ceives a map from Z × BΓ∞,2 which induces an isomorphism in integer ho-
mology. But |W| and |Wloc| are infinite loop spaces by Theorem 1.2, and
the map |W| → |Wloc| is an infinite loop map. Hence its homotopy fiber
is an infinite loop space, and each of its components has an abelian funda-
mental group. Each of these fundamental groups is therefore isomorphic to
H1(BΓ∞,2 ; Z) = 0. Summing up, we see that all connected components of the
homotopy fiber in question are simply connected, and the homotopy fiber is
therefore Z × BΓ+

∞,2.

A. More about sheaves

A.1. Concordance and the representing space. Let F be a sheaf onX . We
shall construct a natural transformation ϑ : [X, |F| ] −→ F [X], and an inverse
ξ :F [X] → [X, |F| ] for ϑ.

We start with the construction of ξ. Fix X in X and an element u in
F(X). Choose a smooth triangulation of X, with vertex set T which we assume
equipped with a total ordering. Suppose that S ⊂ T is a distinguished subset
(the vertex set of a simplex in the triangulation). Let

∆e(S) = {w :S → R | Σsw(s) = 1}
∆(S) = {w ∈ ∆e(S) | w ≥ 0}.

The triangulation gives us characteristic embeddings cS : ∆(S) → X, one for
each distinguished S ⊂ T. By induction on S, we can choose smooth embed-
dings

ce,S : ∆e(S) → X ,

extending the cS and compatible with the face structure in the sense that if S

is distinguished and R ⊂ S, then
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(i) ce,S agrees with ce,R on ∆e(R) ⊂ ∆e(S).

These choices can be made in such a way that there is a smooth homotopy
(ht :X → X)t∈[0,1] , with h0 = id and

(ii) ht maps each simplex cS(∆(S)) to itself,

(iii) ht maps each extended simplex ce,S(∆e(S)) to itself,

(iv) each simplex cS(∆(S)) has an open neighborhood VS in X with

h1(VS) ⊂ cS(∆(S)).

A triangulation of X with totally ordered vertex set T and a choice of homotopy
(ht) and embeddings ce,S satisfying (i), (ii), (iii) and (iv) will come up in several
places below. We call it an extended triangulation. Let

uS = ce,S
∗(u) ∈ F(∆e(S)).

The total ordering of T leads to an identification of each ∆e(S) with a standard
extended simplex. Consequently each uS becomes a simplex of the simplicial
set n 
→ F(∆n

e ). We then have a unique map ξ(u) : X → |F| such that, for
each S as above with |S| = n + 1, the diagram

∆(S)
∼= ��

cS

��

∆n

char(uS)
��

X
ξ(u) �� |F|

commutes, where char(uS) is the characteristic map associated to uS ∈ F(∆n
e ).

It is straightforward to show that the resulting homotopy class of maps from
X to |F| depends only on the concordance class of u ∈ F(X).

We remark that ξ :F [X] → [X, |F| ] so defined is a natural transformation.
Indeed if f : X → Y is a smooth embedding, then f∗ξ = ξf∗ by inspection.
Any morphism g : X → Y in X can be factored as pf , where f : X → Y × Rk

is a smooth embedding for some k and p : Y × Rk → Y is the projection. Let
s : Y → Y ×Rk be any smooth section of p. Then s∗ξ = ξs∗, and consequently
p∗ξ = ξp∗ since p is inverse to s in the homotopy category of X . Therefore
g∗ξ = f∗p∗ξ = f∗ξp∗ = ξf∗p∗ = ξg∗.

The construction of an inverse ϑ for ξ uses a simplicial approximation
principle which we now recall. To introduce notation for that, we suppose first
that L is a simplicial complex with a totally ordered vertex set T. For n ≥ 0
let Ls

n be the set of order-preserving maps f : {0, 1, . . . , n} → T such that im(f)
is a simplex of L. Then n 
→ Ls

n is a simplicial set Ls and the realization |Ls|
is homeomorphic to L.

Next, let K be any simplicial complex and let Q be a simplicial set. The
simplicial approximation principle states that, for any homotopy class of maps
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from K to |Q|, there exist a subdivision L of K, with a total ordering of its
vertex set, and a simplicial map Ls → Q such that the induced map from
|Ls| ∼= L ∼= K to |Q| is in the prescribed homotopy class.

Next we construct ϑ : [X, |F| ] −→ F [X]. Let g :X → |F| be given. By the
above approximation principle, we may assume that X comes with a smooth
(extended) triangulation, with totally ordered vertex set T, and that g is the
realization of a simplicial map from Xs to the simplicial set n 
→ F(∆n

e ). In
particular, each distinguished subset S ⊂ T with |S|−1 = n determines a non-
degenerate n-simplex yS of Xs and then an element g(yS) ∈ F(∆n

e ). We now
use the smooth homotopy (ht) which comes with the extended triangulation.
Then for each n ≥ 0 and each distinguished subset R ⊂ T with |R| − 1 = n,
the composition

c−1
e,Rh1 :VR → ∆e(R) ∼= ∆n

e

is defined for a sufficiently small open VR containing cR(∆(R)) and contained in
h−1

1 (cR(∆R)). The pullback of g(yR) ∈ F(∆n
e ) under this defines zR ∈ F(VR).

The elements zR are compatible and so, by the sheaf property, determine a
unique element ϑ(g) of F(X). Again, it is straightforward to verify that the
concordance class of ϑ(g) depends only on the homotopy class of g.

Proposition A.1. The maps ξ and ϑ are inverses of each other.

Proof. Let u ∈ F(X). We have ϑξ(u) = h∗
1(u). Since h1 is smoothly

homotopic to h0 = idX , this implies that ϑξ(u) is indeed concordant to u.
Therefore

ϑξ = id:F [X] −→ F [X].

To show that ξϑ is the identity on [X, |F| ], we can assume that g :X → |F| is
induced by a simplicial map from Xs to the simplicial set F(∆•

e) and that the
homotopy (ht) has ht = 0 for t close to 0 and ht = h1 for t close to 1. Define
H :X × R → X by

H(x, t) =


ht(x) t ∈ [0, 1]
h1(x) t ≥ 1
h0(x) t ≤ 0 .

We introduce the notation FR for the sheaf Y 
→ F(Y × R) on X , and note
that the embeddings y 
→ (y, 0) and y 
→ (y, 1) of Y in Y × R determine
maps of sheaves ev0 , ev1 :FR → F . We get a simplicial map G from Xs to
FR(∆•

e), and consequently a map |G| :X → |FR|. Namely, for a nondegenerate
n-simplex yS of Xs let G(yS) ∈ FR(∆n

e ) be the pullback of g(yS) ∈ F(∆n
e )

along
(ce,S)−1 ◦ H ◦ (ce,S × idR) : ∆n

e × R −→ ∆n
e ,

where we identify ∆n
e with ∆e(S) as usual. Lemma A.2 below implies that

g = |ev0G| and ξϑ(g) = |ev1G| are homotopic.
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Lemma A.2. The evaluation maps |ev0|, |ev1| : |FR| → |F| are homotopic.

Proof. For an order-preserving map f : n → 1 let f̄ : ∆n
e → ∆n

e × R be the
unique affine embedding which takes a vertex v of ∆n to (v, f(v)). The formula
(u, f) 
→ f̄∗(u) determines a simplicial homotopy, i.e., a simplicial map from
n 
→ F(∆n

e × R) × mor∆(n, 1) to n 
→ F(∆n). The homotopy connects ev0

with ev1.

Proof of Proposition 2.17. The special case where the closed subset A is
empty is covered by Proposition A.1. The proof of the general case follows
the same lines. To construct ξ[u] for u ∈ F(X, A; z), we choose a smooth
triangulation of X where each simplex which meets A is contained in a fixed
open neighborhood Y of A with u|Y = z. Conversely, for a relative homotopy
class of maps X → |F| taking A to z, we can find a smooth triangulation of X

with totally ordered vertex set and a simplicial map from Xs to n 
→ F(∆n
e )

taking every nondegenerate simplex of Xs which meets A to z, and representing
the relative homotopy class.

A.2. Categorical properties.

Proposition A.3. The construction F 
→ |F| takes pullback squares of
sheaves to pullback squares of compactly generated Hausdorff spaces. In par-
ticular it respects products.

Proof. The functor F → |F| is a composition of two functors: one from
sheaves to simplicial sets, and another from simplicial sets to compactly gener-
ated Hausdorff spaces. It is obvious that the first of these respects pullbacks.
The second also respects pullbacks by [9, §3, Thm. 3.1].

Definition A.4. The categorical coproduct F1�F2 of two sheaves F1 and
F2 on X can be defined by (F1 � F2)(X) =

∏
i F1(Xi) � F2(Xi) where Xi

denotes the path component of X corresponding to an i ∈ π0(X).

Since ∆n
e is path connected, we have

Proposition A.5. |F1 � F2| ∼= |F1| � |F2|.

Proposition A.6. Suppose given sheaves E ,F ,G on X and morphisms
(alias natural transformations) u : E → G, v : F → G. Let E ×G F be the
fiber product (pullback) of u and v. If u has the concordance lifting property,
Definition 4.5, then the projection E ×G F → F has the concordance-lifting
property and the following square is homotopy cartesian:

|E ×G F| ��

��

|F|
v

��
|E| u �� |G|.
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We begin with a special case of Proposition A.6, the case where F = 	.
Suppose that u : E → G has the concordance lifting property. Let z be a point
in G(	) and let Ez be the fiber of u over z (in the category of sheaves). Let
hofiberz |u| denote the homotopy fiber of |u| : |E| → |G| over the point z.

Lemma A.7. For any y ∈ Ez(	), the homotopy set πn(Ez, y) is in canoni-
cal bijection with πn(hofiberz |u|, y) .

Proof. The concordance lifting property gives that elements of πn(Ez, y)
are represented by pairs (s, h) ∈ E(Sn) × G(Sn × R), where s has the value y

near the base point of Sn and h is a concordance (relative to a neighborhood
of the base point) from u(s) to the constant z. It follows that πn(Ez, y) is a
relative homotopy group (set) of the map |u| : |E| → |G|, which in turn is a
homotopy group (set) of the homotopy fiber of |u| over z.

Corollary A.8. In the situation of Lemma A.7, the sequence

|Ez| � � �� |E| |u| �� |G|

is a homotopy fiber sequence.

Proof. The composite map from |Ez| to |G| is constant. This leads to a
canonical map from |Ez| to the homotopy fiber of |u| : |E| → |G| over z. It is
easy to verify directly that this induces a surjection on π0. For each y ∈ Ez(	),
the induced map of homotopy sets

πn(Ez, y) −→ πn(hofiberz |u|, y)

is the one from Lemma A.7. It is therefore always a bijection.

Proof of Proposition A.6. We fix z ∈ F(	) and obtain v(z) ∈ G(	). The
fiber of

E ×G F −→ F
over z is identified with the fiber of u : E → G over v(z). Using Corollary A.8
we can conclude that the homotopy fiber of |E ×G F| −→ |F| over z maps to
the homotopy fiber of |u| : |E| → |G| over v(z) by a homotopy equivalence.

A.3. Cocycle sheaves and classifying spaces. This section contains the
proof of Theorem 4.2. To prepare for this we start with a variation on the
standard nerve construction. Recall that Dn is the poset of nonempty subsets
of n = {0, 1, 2, . . . , n}. There are functors vn :Dn → n given by vn(S) =
max(S) ∈ n.

Lemma A.9. Let C be a small category. Then the map of simplicial sets

(n 
→ hom(nop,C )) −→ (n 
→ hom(Dnop,C ))

given by composition with v• induces a homotopy equivalence of the geometric
realizations.



930 IB MADSEN AND MICHAEL WEISS

Proof. The simplicial set (n 
→ hom(Dnop,C )) is obtained by applying
Kan’s functor ex, which is right adjoint to the barycentric subdivision, to
(n 
→ hom(nop,C )). The statement is therefore a special case of [21, 3.7].

We note that the simplicial set (n 
→ hom(nop,C )) is precisely the nerve
of C , denoted N•C in Section 4.

Let J be any infinite set and emb(n, J) the set of injective maps. This
defines a ∆-set (or incomplete simplicial set) n 
→ emb(n, J); cf. [38].

Lemma A.10. Let J be an infinite set and let K• be a simplicial set. The
geometric realization |K•| is homotopy equivalent to the geometric realization
of the ∆-set n 
→ Kn × emb(n, J).

Proof. There is a projection p from the realization of n 
→ Kn × emb(n, J)
as a ∆-set to the realization |K•| of K• as a simplicial set. We will show that
p has contractible fibers. Let y be a point in the m-skeleton |K•|m of |K•|, but
not in the (m − 1)-skeleton. Then p−1(y) is homeomorphic to the classifying
space of the poset R whose elements are the nonempty finite subsets of J

equipped with a total ordering and an order-preserving surjection to m. For
each finite subsetR′ ofR, there exists T ∈ R which is disjoint from all T ′ ∈ R′,
so that T ′ ≤ T ′ ∪ T ≥ T in R where T ′ ∪ T has the concatenated ordering.
Hence BR′ is contractible in BR, and so BR ∼= p−1(y) is contractible.

It is easy to refine this argument to an induction proof showing that p

restricts to a homotopy equivalence p−1(|K•|m) → |K•|m for m = 0, 1, 2, . . . .
We omit the details.

In the following we use double vertical bars ||...|| for the geometric realiza-
tion of ∆-sets.

Corollary A.11. Let J be the fixed infinite set from Definition 4.1. The
space B|F| is homotopy equivalent to the geometric realization ||F̂•||, where F̂•
is the ∆-set defined by F̂n = hom(Dnop,F(∆n

e )) × emb(n, J).

Proof. We consider the map of bisimplicial sets

hom(nop,F(∆m
e ) −→ hom(Dnop,F(∆m

e )).

The geometric realization in the n-direction is a homotopy equivalence for each
m by Lemma A.9, and the map of geometric realizations of the bisimplicial
sets is then also a homotopy equivalence. But then the geometric realization
of the map between the corresponding diagonal simplicial sets is a homotopy
equivalence.

We turn to the construction of a comparison map Ψ from F̂• in Corol-
lary A.11 to the simplicial set n 
→ βF(∆n

e ). An n-simplex in F̂• is a pair

ϕ :Dnop −→ F(∆n
e ) , λ ∈ emb(n, J).
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The pair (ϕ, λ) carries exactly the same information as an element in βF(∆n
e )

whose underlying J-indexed open covering is given by j 
→ ∆n
e if j = λ(t) for

some t ∈ n and j 
→ ∅ otherwise. To make these data compatible with face
operators, we need to replace the nonempty open sets in the open covering by
smaller ones, according to the rule

j = λ(t) 
→ { (x0, x1, . . . , xn) ∈ ∆n
e | xt > 0}.(A.1)

The remaining data can be restricted and we now have an element Ψ(ϕ, λ) in
βF(∆n

e ), and hence a map

Ψ :B|F| � ||F̂•|| −→ |βF|.(A.2)

We proceed to the construction of a natural map

Λ :βF [X] −→ [X, ||F̂•|| ](A.3)

which will define a homotopy inverse to Ψ .
Let (Y , ϕ••) be an element of βF(X) with Y = (Yj)j∈J . We choose a

smooth triangulation of X with the extra structure from Section A.1, with
totally ordered vertex set T. We assume T ⊂ J . For each v ∈ T let

stare(v) =
⋃
S�v

ce,S(∆e(S))

where S runs through the simplices having v as a vertex. We assume that the
covering of X by these open sets is subordinate to the covering Y in the sense
that

stare(v) ⊂ Yκ(v) , v ∈ T,

for some map κ : J → J . Then for distinguished subsets Q, R, S of T with
Q ⊂ R ⊂ S, the pullback under ce,S of the morphism ϕκ(Q)κ(R) in F(Yκ(R)) is
a morphism in F(∆e(S)). Together these morphisms define an element

xS ∈ hom(D(S)op,F(∆e(S))) .

With the embedding S ⊂ T → J , the element xS becomes an n-simplex
(where n + 1 = |S|) of F̂•. As these simplices xS are compatibly constructed
they determine a map from X to ||F̂•||. It follows from Lemma A.10 that the
homotopy class of that map does not depend on the way in which the vertex set
of the triangulation is embedded in J , and then it is altogether clear that the
homotopy class depends only on the concordance class of (Y , ϕ••) ∈ βF(X).
Hence we have defined Λ :βF [X] → [X, ||F̂•|| ].

Theorem A.12. The maps Ψ and Λ of (A.2) and (A.3) define reciprocal
homotopy equivalences between B|F| and |βF|.
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Proof. Suppose that an element of βF [X] is represented by a pair (Y , ϕ••),
where Y is a J-indexed open covering of X. Then, by construction and inspec-
tion, ΨΛ of that element is represented by a pair (Y ′, ϕ′

••) for which κ :J → J

can be found such that Y ′
j ⊂ Yκ(j) for j ∈ J and ϕ′

RS is the restriction of
ϕκ(R)κ(S) to Y ′

S , for finite nonempty R, S ⊂ J with R ⊂ S. (What makes the
inspection slightly difficult is that the identification ϑ : [X, |βF| ] → βF [X] of
Section A.1 is also involved.) Thus we have a situation where one element of
βF(X) “refines” another. Lemma A.13 below then guarantees that the two
elements are concordant. Hence ΨΛ = id on homotopy sets βF [X].

Next we show that Λ : βF [X] → [X, ||F̂•|| ] is onto for any X in X . Any
element of [X, ||F̂•|| ] can be represented by a simplicial map f :Xs → F̂• where
Xs is the simplicial set associated to some smooth triangulation of X with
totally ordered vertex set T. We assume that T ⊂ J and that the triangulation
comes with the “extended” data of A.1. For j ∈ T ⊂ J let Yj be a sufficiently
small open neighborhood of the union of all simplices having j as a vertex. For
all other j ∈ J let Yj = ∅. For distinguished Q, R, S ⊂ T with Q ⊂ R ⊂ S

the data in f provide a morphism in F(∆e(S)), corresponding to the inclusion
Q ⊂ R (of nonempty subsets of the totally ordered S). Pull this back along

c−1
S h1 :VS → ∆(S) ⊂ ∆e(S)

where VS ⊂ X is some open neighborhood of the simplex cS(∆(S)) such that
h1(VS) is contained in the simplex. The result is a morphism in F(VS). Keeping
Q and R fixed, note the compatibility of these morphisms as S runs through
the distinguished subsets of T containing R. By the sheaf property this leads
to a single morphism in

F(
⋃

S⊃R

VS)

which we can restrict to obtain ϕQR ∈ F(YR). Indeed if the Yj are small
enough, then YR will be contained in the union of the VS for S ⊃ R. We
have therefore constructed an open covering Y = (Yj)j∈J of X and elements
ϕQR ∈ F(YR) such that (Y , ϕ••) ∈ βF(X). Following the instructions above
for finding a representative for Λ of (Y , ϕ••), we get a map which is homo-
topic to f by the argument which we saw in the second part of the proof of
Proposition A.1. The conclusion is that Λ is indeed surjective.

The final step is to note that Ψ , as a map from |F̂•| to |βF|, induces a sur-
jection π1(|F̂•|, z) → π1(|βF|, Ψ(z)) for any choice of base vertex z ∈ |F̂•|. We
leave this verification to the reader: Given an element u in π1(|βF|, Ψ(z)),
an element v of π1(|F̂•|, z) can be obtained by applying the procedure Λ

above to u in a relative form. The relative case of Lemma A.13 below implies
Ψ(v) = u.
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It is a formality to show that a map q :C → D between CW-spaces which
induces bijections [X, C] → [X, D] for every X in X and surjections

π1(C, z) → π1(D, q(z))

for every z ∈ C induces bijections πn(C, z) → πn(D, q(z)) for n ≥ 0 and z ∈ C.
Such a map is therefore a homotopy equivalence. We have just verified that
this criterion applies with q = Ψ , showing that Ψ : ||F̂•|| → |βF| is a homotopy
equivalence.

Lemma A.13. Let (Y , ϕ••) and (Y ′, ϕ′
••) be elements of βF(X). Suppose

that there exists a map κ :J → J such that Y ′
j ⊂ Yκ(j) for all j ∈ J , and ϕ′

RS is
the restriction of ϕκ(R)κ(S) to Y ′

S , for all finite nonempty R, S ⊂ J with R ⊂ S.
Then (Y , ϕ••) and (Y ′, ϕ′

••) are concordant. If (Y , ϕ••) and (Y ′, ϕ′
••) are in

βF(X, A; z) for some closed A ⊂ X and some z ∈ βF(	), and if κ(j) = j for
all j ∈ J such that the closure of Yj has nonempty intersection with A, then
the concordance can be taken relative to A.

Proof. We assume first that the fixed indexing set J is uncountable, rather
than just infinite, and concentrate on the absolute case, A = ∅.

The case where κ = idJ is straightforward. Hence (Y ′, ϕ′
••) is concordant

to (Y ′′, ϕ′′
••) where Y ′′

j = Yκ(j) and ϕ′′
RS = ϕκ(R)κ(S). It remains to find a

concordance from (Y ′′, ϕ′′
••) to (Y , ϕ••). Alternatively, to keep notation under

control, we may assume from now on that (Y ′, ϕ′
••) = (Y ′′, ϕ′′

••); in other words
Y ′

j = Yκ(j) for all j ∈ J .
The sets {j ∈ J | Y ′

j �= ∅} and {i ∈ J | Yi �= ∅} are countable, since the
coverings Y ′ and Y are locally finite and X admits a countable base. Hence
there exists a bijection λ :J → J such that Yλ(j) ∩Yj = ∅ = Yλ(j) ∩Yκ(j) for all
j ∈ J ; for example, λ can be chosen so that Yλ(j) = ∅ if Yj �= ∅ or Yκ(j) �= ∅.
Now let

Wj =
(
Yj× ] −∞, 1/2[

)
∪

(
Yλ(j)× ]1/4, 3/4[

)
∪

(
Yκ(j)× ]1/2,∞[

)
.

The Wj for j ∈ J constitute an open covering W of X × R. For any finite
nonempty S ⊂ J , we have a decomposition of WS into disjoint open sets

YS× ] −∞, 1/2[ , Yλ(S)× ]1/4, 3/4[ , Yκ(S)× ]1/2,∞[ ,
YQ∪λ(S�Q)× ]1/4, 1/2[ , Yλ(Q)∪κ(S�Q)× ]1/2, 3/4[ ,

where Q runs through the nonempty proper subsets of S. Therefore, given
finite nonempty R, S ⊂ J with R ⊂ S, there is a unique morphism ψRS

in F(WS) whose restrictions to the various summands of WS in the above
decomposition are the pullbacks of ϕRS , ϕλ(R)λ(S), ϕκ(R)κ(S), etc. etc., under
the projections to YS , Yλ(S), Yκ(S), YQ∪λ(S�Q) and Yλ(Q)∪κ(S�Q), respectively.
(Here the two “etc.” are short for ϕTU where U = Q ∪ λ(S � Q) and T =
(R ∩ Q) ∪ λ(R � Q) in the first case, while U = λ(Q) ∪ κ(S � Q) and T =
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λ(R ∩ Q) ∪ κ(R � Q) in the second case.) Clearly (W , ψ••) is a concordance
from (Y , ϕ••) to (Y ′, ϕ′

••).
Next we look at the relative case, A �= ∅, but continue to assume that J

is uncountable. As in the absolute case we may assume that Y ′
j = Yκ(j) for all

j ∈ J . Choose a bijection λ : J → J such that λ(j) = j whenever κ(j) = j,
and such that Yj ∩ Yλ(j) = ∅ = Yκ(j) ∩ Yλ(j) for the remaining j. Again let

Wj =
(
Yj× ] −∞, 1/2[

)
∪

(
Yλ(j)× ]1/4, 3/4[

)
∪

(
Yκ(j)× ]1/2,∞[

)
.

The Wj for j ∈ J constitute an open covering W of X × R. For a finite
nonempty S ⊂ J which is contained in the fixed point set of κ, we simply have
WS = YS × R. For a finite nonempty S ⊂ J which does not contain any fixed
points of κ, we have a decomposition of WS into disjoint open sets

YS× ] −∞, 1/2[ , Yλ(S)× ]1/4, 3/4[ , Yκ(S)× ]1/2,∞[ ,
YQ∪λ(S�Q)× ]1/4, 1/2[ , Yλ(Q)∪κ(S�Q)× ]1/2, 3/4[ ,

as before, where Q runs through the nonempty proper subsets of S. For finite
nonempty S ⊂ J which contains some fixed points of κ and some nonfixed
points of κ, write S = S1 ∪S2 where S1 = {j ∈ S | κ(j) = j} and S2 = S � S1.
Then WS2 decomposes into disjoint open sets as above, whereas WS1 = YS1×R.
Hence WS = WS1 ∩ WS2 still decomposes as a disjoint union of open sets

YS× ] −∞, 1/2[ , Yλ(S)× ]1/4, 3/4[ , Yκ(S)× ]1/2,∞[ ,
YQ∪λ(S�Q)× ]1/4, 1/2[ , Yλ(Q)∪κ(S�Q)× ]1/2, 3/4[ ,

where Q runs through the nonempty proper subsets of S2 only. We can there-
fore define morphisms ψRS in F(WS) much as in the absolute case and obtain
a relative concordance (W , ψ••) from (Y , ϕ••) to (Y ′, ϕ′

••).
Now we must consider the case(s) where J is countably infinite. We can

reason as before provided that X is a closed manifold, because in that case the
sets {j ∈ J | Y ′

j �= ∅} and {i ∈ J | Yj �= ∅} are finite. While this is not exactly
what we want, it allows us to make a comparison between the case where J

is countable and the case where it is uncountable. Choose an uncountable
set Ju containing J as a subset. Corresponding to J and Ju we have two
variants of βF . We keep the notation βF for the J-variant, and write βuF
for the Ju-variant. There is a natural inclusion βF(X) → βuF(X), because
any J-indexed open covering of X can be regarded as a Ju-indexed covering
of X where all open sets with labels in Ju � J are empty. By all the above,
|βF| → |βuF| induces an isomorphism of homotopy groups or homotopy sets,
for any choice of base vertex in |βF|, the point being that spheres are closed
manifolds. By Proposition 2.17, this implies that the inclusion-induced map
of concordance sets

βF [X, A; z] −→ βuF [X, A; z]

is always a bijection, and not just when X is closed. We have therefore reduced
the case of a countable J to the case of an uncountable one.
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B. Realization and homotopy colimits

B.1. Realization and squares.

Lemma B.1. Let u• : E• −→ B• be a map between incomplete simplicial
spaces (or good simplicial spaces). Suppose that the squares

Ek
uk ��

di

��

Bk

di

��
Ek−1

uk−1 �� Bk−1

are all homotopy cartesian (k ≥ i ≥ 0). Then the following is also homotopy
cartesian:

E0
u0 ��

incl.
��

B0

incl.
��

|E•|
|u•| �� |B•|.

Lemma B.2. Let u• : E• −→ B• be a map between incomplete simplicial
spaces (or good simplicial spaces). Suppose that, in each square

Ek
uk ��

di

��

Bk

di

��
Ek−1

uk−1 �� Bk−1

the canonical map from any homotopy fiber of uk to the corresponding homo-
topy fiber of uk−1 induces an isomorphism in integer homology. Then in the
square

E0
u0 ��

incl.
��

B0

incl.
��

|E•|
|u•| �� |B•|,

the canonical map from any homotopy fiber of u0 to the corresponding homo-
topy fiber of |u•| induces an isomorphism in integer homology.

Proofs. It is shown in [39, 1.6] and [25, Prop.4] that the geometric real-
ization procedure for simplicial spaces respects degree-wise quasifibrations and
homology fibrations under reasonable conditions. The two lemmas follow from
these statements upon converting the maps uk into fibrations.

Corollary B.3. Let C be a small category and let u : G1 → G2 be a
natural transformation between functors from C to spaces. Suppose that, for
each morphism f : a → b in C , the map f∗ from any homotopy fiber of ua
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to the corresponding homotopy fiber of ub induces an isomorphism in integer
homology. Then for each object a of C , the inclusion of any homotopy fiber of
ua in the corresponding homotopy fiber of u∗ : hocolimG1 → hocolimG2 induces
an isomorphism in integer homology.

Proof. Apply Lemma B.2 with Ek :=
∐

G1(D(k)) and Bk =
∐

G2(D(k)),
where both coproducts run over the set of contravariant functors D from the
poset k to C . Then |E•| is hocolimG1 and |B•| is hocolimG2.

B.2. Homotopy colimits. Any functor D from a small (discrete) category
C to the category of spaces has a colimit, colimD. This is the quotient space
of the coproduct ∐

a in C

D(a)

obtained by identifying x ∈ D(a) with f∗(x) ∈ D(b) for any morphisms f : a → b

in C and elements x ∈ D(a). It is well known that the colimit construction is
not well behaved from a homotopy theoretic point of view. Namely, suppose
that w : D1 → D2 is a natural transformation between functors from C to
spaces and that wa : D1(a) → D2(a) is a homotopy equivalence for any object
a in C . Then this does not in general imply that the map induced by w from
colimD1 to colimD2 is again a homotopy equivalence. (It is easy to make
examples with C equal to the poset of proper subsets of a two-element set, so
that the colimits become pushouts.)

Call a functor D from C to spaces cofibrant if, for any diagram of functors
(from C to spaces) and natural transformations

D v �� E Fw��

where wa :F(a) → E(a) is a homotopy equivalence for all a ∈ C , there exists a
natural transformation v′ :D → F and a natural homotopy D(a)×[0, 1] → E(a)
(for all a) connecting wv′ and v. It is not hard to show the following. If
v :D1 → D2 is a natural transformation between cofibrant functors such that
va :D1(a) → D2(a) is a homotopy equivalence for each a ∈ C , then v has a
natural homotopy inverse (with natural homotopies) and therefore the induced
map colimD1 → colimD2 is a homotopy equivalence.

This suggests the following procedure for making colimits homotopy in-
variant. Suppose that D from C to spaces is any functor. Try to find a natural
transformation D′ → D specializing to homotopy equivalences D′(a) → D(a)
for all a in C , where D′ is cofibrant. Then define the homotopy colimit of
D to be colimD′. If it can be done, hocolimD is at least well defined up to
homotopy equivalence.

This point of view is carefully presented in [5]. Some of the ideas go back
to [27]. As we will see in a moment, there is a construction for D′ which
depends naturally on D.
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The standard foundational reference for homotopy colimits and homotopy
limits is the book [2] by Bousfield and Kan. But the first explicit construction
of homotopy colimits in general appears to be due to Segal [41].

Again let D be a functor from a discrete small category C to the category
of spaces. Following Segal we introduce a topological category denoted C ∫D,
the transport category of D:

ob(C ∫D) =
∐

a∈ob(C )

D(a) , mor(C ∫D) =
∐

f∈mor(C )

D(σ(f)) .

Here σ(f) denotes the source of a morphism f in C . We will write morphisms
in C ∫D as pairs (f, x) where f ∈ mor(C ) and x ∈ D(σ(f)). The composition
(g, y) ◦ (f, x) of two such morphisms is defined if and only if g ◦ f is defined in
C and f∗(x) = y, in which case (g, y)◦ (f, x) = (g ◦ f, x). The classifying space
B(C ∫D) is a model for the homotopy colimit of D.

To relate B(C ∫D) to our earlier discussion we define a functor D′ from C

to spaces as follows. For a ∈ ob(C ) let C ↓a be the category of C -objects over
a, [23, II.6]. Let

D′(a) := B ((C ↓a)∫D)

for objects a in C , where we view D as a functor on C ↓a. Then D′ is cofibrant
and the canonical map D′(a) → D(a) is a homotopy equivalence for every a

in C . Moreover,
B(C ∫D) ∼= colimD′.

Note in passing that if D(a) is a singleton for each a in C, then the transport
category C ∫D is identified with C and so hocolimD = BC .

Proposition B.4. Let w :D1 → D2 be a natural transformation between
functors from C to spaces. Suppose that wa : D1(a) → D2(a) is a homotopy
equivalence for any object a in C . Then the map hocolimD1 −→ hocolimD2

induced by w is a homotopy equivalence, where hocolimDi = B(C ↓Di).

This is just a partial summary of our conclusions above. We proceed to
a reformulation, B.6 below, in which homotopy colimits are not mentioned
explicitly.

Definition B.5. Let p : E → C be a continuous functor between small
topological categories, where ob(C ) and mor(C ) are discrete. We say that p

is a transport projection if the following is a pullback square of spaces:

mor(E ) source ��

p

��

ob(E )

p

��
mor(C ) source �� ob(C )
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Proposition B.6. Let p :E → C and p′ :E ′ → C be transport projections
as in Definition B.5. Let u :E → E ′ be a continuous functor over C . Suppose
also that, for each object c in C , the restriction Ec → E ′

c of u to the fibers over
c is a homotopy equivalence. Then Bu :BE → BE ′ is a homotopy equivalence.

Proof. Note that E ∼= C ↓ D and E ′ ∼= C ↓ D where D(c) = Ec and
D′(c) = E ′

c for an object c in C . Note also that Ec and E ′
c are topological

categories in which every morphism is an identity, that is, they are just spaces.

Next we mention two useful naturality properties of homotopy colimits.
To make a homotopy colimit, we need a pair (C ,D) consisting of a small
category C and a functor D from C to spaces. By a morphism from one such
pair (C s,Ds) to another, (C t,Dt), we understand a pair (F , ν) consisting of a
functor F :C s → C t and a natural transformation ν from Ds to DtF .

Remark B.7. Such a morphism induces a map (F , ν)∗ from hocolimDs to
hocolimDt.

Let (F0, ν0) and (F1, ν1) be morphisms from (C s,Ds) to (C t,Dt). Let θ

be a natural transformation from F0 to F1 such that ν1 = Dt(θ) ◦ ν0.

Remark B.8. Such a θ induces a homotopy θ∗ from (F0, ν0)∗ to (F1, ν1)∗.

Proof. Let I = {0, 1}, be viewed as an ordered set with the usual or-
der and then as a category. Then BI ∼= [0, 1]. Let p : C × I → C be
the projection. The data (F0, ν0), (F1, ν1) and θ together define a morphism
from (C s ×I ,Ds ◦ p) to (C t,Dt). By Remark B.7, this induces a map from
hocolim (Ds ◦ p) ∼= (hocolimDs) × BI to hocolimDt.

Let C be a small category and let a 
→ Fa be a covariant functor from C

to the category of sheaves on X .

Lemma B.9. |hocolima Fa| � hocolima |Fa|.

Proof. Definition 4.3 and Theorem 4.2 give |hocolima Fa| � B|C ∫F| and
Propositions A.3, A.5 imply B|C ∫F| ∼= B(C ∫ |F•| ), where |F•| denotes the
functor a 
→ |Fa| from C to spaces.

Corollary B.10. Let C be a small category. Let

a 
→ Ea and a 
→ E ′
a

be covariant functors from C to the category of sheaves on X . Let ν =
{νa : Ea → E ′

a} be a natural transformation such that every νa : Ea → E ′
a is

a weak equivalence. Then the induced map hocolima Ea → hocolima E ′
a is a

weak equivalence (between sheaves on X ).
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