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Corrigendum: Self-dual instantons
and holomorphic curves

By Stamatis Dostoglou and Dietmar A. Salamon

Abstract

We correct two mistakes in [1]. The first concerns the exponential decay
in the proof of Theorem 7.4 and the second concerns the bubbling argument
in the proof of Theorem 9.1.

1. Exponential decay

For Theorem 7.1. Replace the hypothesis ‖Bt‖L∞(Ω×Σ) + ε ‖C‖L∞(Ω×Σ)

≤ c0 on p. 615 by the weaker assumption

sup
(s,t)∈Ω

‖Bt(s, t)‖L2(Σ) + ε sup
(s,t)∈Ω

‖C(s, t)‖L2(Σ) ≤ c0.(1)

All the estimates in the proof of Theorem 7.1 continue to hold under this
assumption. To see this, use the inclusion W 1,2(Σ) ↪→ L4(Σ) to obtain in-
equalities of the form

‖Bt‖L4(Σ) ‖C‖L4(Σ) ≤ c
√

u0v0, ‖Bt‖2
L4(Σ) ≤ v0 + cu0,

where u0, v0 are as in the proof of Theorem 7.1.

Corollary 1.1. Let Ω ⊂ C be an open set and K ⊂ Ω be a compact
subset. Then for every constant c0 > 0, there exist constants ε0 > 0 and c > 0
such that the following holds. If 0 < ε ≤ ε0 and Ξ = A + Φ ds + Ψ dt is a
connection on Ω × Σ that satisfies

∂tA − dAΨ + ∗s(∂sA − dAΦ − Xs(A)) = 0,
∂tΦ − ∂sΨ − [Φ,Ψ] + ε−2 ∗ FA = 0,

(2)

and (1) holds, then

‖Bt‖L∞(K×Σ) + ε ‖C‖L∞(K×Σ) ≤ c
(
‖Bt‖L2(Ω×Σ) + ε ‖C‖L2(Ω×Σ)

)
.

Proof. By Theorem 7.1 (in the above strengthened form), the connection
Ξ satisfies (7.4) in [1, p. 615]. The assertion follows by taking p = ∞ and
using [1, Lemma 7.6] with p = 4.
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For Lemma 7.5. On page 620 replace the inequality (7.7) by

‖α‖2 + ‖φ‖2 + ‖ψ‖2

≤ c
(
‖∗s∇sα − ∗sdXs(A)α − ∗sdAφ − dAψ‖2

+ ε2
∥∥∇sψ − ε−2dAα

∥∥2 + ε2
∥∥∇s ∗s φ + ε−2dA ∗s α

∥∥2
)

.

On page 621 replace the last two sentences in the proof of Lemma 7.5 by the
following text.

Hence it follows from Lemma 7.3 and Lemma 7.4 in [10] that there exist con-
stants ε0 > 0, ν0 ∈ N, and c > 0 such that the estimate (7.7) holds with
0 < ε ≤ ε0 and A + Φ ds replaced by Aν + Φν ds where ν ≥ ν0 (here the
estimate for α follows from Lemma 7.4 and the estimates for φ and ψ from
Lemma 7.3). With ε = εν and ν > c this contradicts our assumption.

Proof of Theorem 7.4. The last displayed inequality on p. 622 is correct
as it stands; however its proof uses Corollary 1.1 above.

Replace the first displayed inequality on p. 623 by

‖Bt‖2 + ‖C‖2 ≤ c3

(
‖∇sBt − dXs(A)Bt − dAC‖2 + ε−2 ‖dABt‖

)
.

(The mistake in [1] is the factor ε2 in front of ‖C‖2 in this inequality; it can
be removed because of the improved inequality in Lemma 7.5.) Inspection of
the formula for f ′′(t) shows that this stronger estimate is needed to prove the
inequality f ′′(t) ≥ ρ2f(t) for t ≥ 1 (use the expression after the fourth equal
sign in the formula for f ′′(t) on page 622).

2. An a priori estimate

The following a priori estimate is an adaptation of [2, Lemma 9.1] to the
present context. It is needed in the proof of Theorem 9.1.

Lemma 2.1. There is a constant δ0 > 0 with the following significance.
Let Ω ⊂ R2 be an open set and K ⊂ Ω be a compact subset. Then, for
every c0 > 0 and every p ≥ 2, there are positive constants ε0 and c such
that the following holds. If 0 < ε ≤ ε0 and the maps A : Ω → A(P ) and
Φ,Ψ : Ω → Ω0(Σ, gP ) satisfy (2) and

‖∂tA − dAΨ‖L∞(Ω×Σ) ≤ c0, ‖FA‖L∞(Ω×Σ) ≤ δ0,(3)

then ∫
K

(
‖FA‖p

L2(Σ) + εp ‖∇sFA‖p
L2(Σ) + εp ‖∇tFA‖p

L2(Σ)

)
≤ cε2p,(4)

sup
K

(
‖FA‖L2(Σ) + ε ‖∇sFA‖L2(Σ) + ε ‖∇tFA‖L2(Σ)

)
≤ cε2−2/p.(5)
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Proof. As in [1, Lemma 7.6] one can show that there exist constants
δ0 > 0 and c1 > 0 such that every A ∈ A(P ) with ‖FA‖L∞(Σ) ≤ δ0 satisfies the
inequalities

‖φ‖ ≤ c1 ‖dAφ‖ ,

‖dA (∗sdXs(A)α + ∗̇sα)‖ ≤ c1 (‖α‖ + ‖dAα‖ + ‖dA ∗s α‖)
for s ∈ R, φ ∈ Ω0(Σ; gP ), and α ∈ Ω1(Σ; gP ). Here and in the following all
norms are L2-norms on Σ.

Now let A, Φ, Ψ satisy the hypotheses of the lemma and define

Bs := ∂sA − dAΦ, Bt := ∂tA − dAΨ, C := ∂tΦ − ∂sΨ − [Φ,Ψ].(6)

Then the proof of [1, Th. 7.1] shows that

ε2 (∇s∇sC + ∇t∇tC) = d∗s

A dAC − 2 ∗ [Bt ∧ Bt] + ∗[∗sXs(A) ∧ Bt]

− ∗ dA (∗sdXs(A)Bt + ∗̇sBt) .

Hence, with ∆ := ∂2/∂s2 + ∂2/∂t2 the standard Laplacian, we have

∆ ‖C‖2 = 2 ‖∇sC‖2 + 2 ‖∇tC‖2 + 2〈∇s∇sC + ∇t∇tC, C〉
= 2ε−4 ‖dA ∗s Bt‖2 + 2ε−4 ‖dABt‖2 + 2ε−2 ‖dAC‖2

− 4ε−2〈C, ∗[Bt ∧ Bt]〉 + 2ε−2〈C, ∗[∗sXs(A) ∧ Bt]〉
− 2ε−2〈C, ∗dA (∗sdXs(A)Bt + ∗̇sBt)〉

≥ δ

ε2
‖C‖2 − c

ε2
‖C‖ .

The last inequality holds for ε ≤ ε0, with ε0 sufficiently small, and with suitable
positive constants δ and c, depending only on δ0, c0, and c1 (as well as the
metrics on Σ and the vector fields Xs). Since 2∆ ‖C‖p ≥ p ‖C‖p−2 ∆ ‖C‖2 for
p ≥ 2, this implies

‖C‖p ≤ c

δ
‖C‖p−1 +

2ε2

pδ
∆ ‖C‖p .

Using the inequality ab ≤ ap/p + bq/q with 1/p + 1/q = 1, a := c/δ and
b := ‖C‖p−1 we obtain bq = ‖C‖p, and hence

‖C‖p ≤ cp

δp
+

2ε2

δ
∆ ‖C‖p .(7)

By [2, Lemma 9.2], this implies that∫
BR(z)

‖C‖p ≤ π(R + r)2cp

δp
+

8ε2

r2δ

∫
BR+r(z)

‖C‖p

for every z ∈ C and every pair of positive real numbers R and r such that
BR+r(z) ⊂ Ω. Now observe that ε2 ‖C‖ = ‖FA‖ ≤ δ0Vol(Σ) and use the last
inequality repeatedly, with R replaced by R + r, R + 2r, . . . , R + (p − 1)r, to
obtain the estimate

∫
BR(z) ‖C‖p ≤ cp for every z ∈ C such that BR+pr(z) ⊂ Ω.
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Now choose R and r such that BR+pr(z) ⊂ Ω for every z ∈ K. Cover K by
finitely many balls of radius R to obtain∫

K
‖FA‖p = ε2p

∫
K
‖C‖p ≤ cK,pε

2p.(8)

It follows from (7) that the function z �→ ‖C(z)‖p + cp |z − z0|2 /8δp−1ε2 is
subharmonic in Ω for every z0 ∈ C. Hence, by the mean value inequality
and (8), we have

sup
K

‖FA‖ = ε2 sup
K

‖C‖ ≤ cK,pε
2−2/p(9)

for a suitable constant cK,p. It follows from (8) and (9) that every connection
Ξ = A+Φ ds+Ψ dt on Ω×P that satisfies (2) and (3) also satisfies (1) in every
compact subset of Ω and hence, by Corollary 1.1, satisfies the hypotheses of
[1, Th. 7.1]. Hence it follows from [1, Th. 7.1] with p = ∞ that, for every open
set U with cl(U) ⊂ Ω, there is a constant cU such that every conection Ξ on
Ω × P that satisfies (2) and (3) also satisfies the estimates

ε ‖∇sBt‖L∞(U×Σ) + ε ‖∇tBt‖L∞(U×Σ) ≤ cU ,

ε ‖C‖L∞(U×Σ) + ε2 ‖∇sC‖L∞(U×Σ) + ε2 ‖∇tC‖L∞(U×Σ) ≤ cU ,(10)

‖C‖L2(U×Σ) + ε ‖∇sC‖L2(U×Σ) + ε ‖∇tC‖L2(U×Σ) ≤ cU .

Note that the last inequality is equivalent to (4) for p = 2.
Now consider the function u : U → R defined by

u(s, t)2 :=
1
2

(
‖C(s, t)‖2 + ε2 ‖∇sC(s, t)‖2 + ε2 ‖∇tC(s, t)‖2

)
.

Again all norms are L2-norms on Σ. In the following we shall assume, for
simplicity, that the Hodge ∗-operator ∗s = ∗ is independent of s and that
Xs = 0 for all s. Then, as in the proof of [1, Th. 7.1],

∆u2 = ε−2 ‖dAC‖2 + ‖∇sC‖2 + ‖∇tC‖2 + ‖dA∇sC‖2 + ‖dA∇tC‖2

+ ε2 ‖∇s∇sC‖2 + ε2 ‖∇t∇tC‖2 + 2ε2 ‖∇s∇tC‖2

− 2ε2〈C, [∇sC,∇tC]〉 − 2ε−2〈C, ∗[Bt ∧ Bt]〉
− 4〈∇sC, ∗[Bt ∧∇sBt]〉 − 4〈∇tC, ∗[Bt ∧∇tBt]〉
+ 〈dA∇sC, [Bs, C]〉 + 〈dA∇tC, [Bt, C]〉
− 〈∇sC, ∗[Bs ∧ ∗dAC]〉 − 〈∇tC, ∗[Bt ∧ ∗dAC]〉.

For ε sufficiently small it follows that

∆u2 ≥ δ

ε2
u2 − c

ε2
u,

with suitable positive constants δ and c. To see this examine the last eight
terms in the formula for ∆u2 and use (10). Now it follows as in (7) that

up ≤ c

δ
up−1 +

2ε2

pδ
∆up
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for p ≥ 2. By (9) and (10), we have u ≤ c′/ε for some constant c′. Hence we
can argue as above to show that, for every compact subset K ⊂ U , there is a
constant cK,p > 0 such that

∫
K up ≤ cK,p and supK up ≤ cK,pε

−2. This proves
the lemma.

3. Bubbling analysis

The assertion on p. 634 that the limit connection Ξ0 represents a non-
constant holomorphic sphere S2 → M(P ) does not seem to follow from the
argument in [1]. A modified bubbling argument does result in a nonconstant
holomorphic sphere but only proves a weaker estimate; i.e., we must weaken
the assertion of Theorem 9.1 and the assumption of Theorem 8.1. Then The-
orem 9.2 remains valid.

For Theorem 8.1. The assertion of Theorem 8.1 in [1, p. 623] continues to
hold if the hypothesis (8.1) is replaced by the weaker inequality

ε−1 ‖FA‖L∞ + ‖∂tA − dAΨ‖L∞ ≤ c0.(11)

To see this, replace the last inequality on p. 625 by ‖Cν‖Lp ≤ cε
2/p−1
ν or,

equivalently,
‖FAν

‖Lp ≤ cε1+2/p
ν .

For p = 2 this follows from the first inequality in Step 2 on page 625, for p = ∞
it holds by assumption, and for 2 ≤ p ≤ ∞ it follows by interpolation. Now
replace the constant ε2

ν by ε
1+2/p
ν in the following places.

• In the inequality (8.4) on page 626.

• Replace the inequality ‖A′ − A‖Lp ≤ c2ε
2 by ‖A′ − A‖Lp ≤ c2ε

1+2/p in
the middle of page 626.

• In the first two inequalities after (8.9), in the first inequality after (8.10),
and in the first inequality in the proof of Step 5 (page 628).

• In the first inequality on page 629 and in the last inequality before (8.11).

The next lemma is a local version of Theorem 8.1; it is needed in the proof
of Theorem 9.1. Let Ων ⊂ C be an exhausting sequence of open sets and sν ,
εν > 0, δν > 0 be seqences of real numbers such that sν → s0, εν → 0, δν → 0.
Abbreviate ∗νs := ∗sν+δνs and Xνs := δνXsν+δνs.

Lemma 3.1. Let Ξν = Aν + Φν ds + Ψν dt be a sequence of solutions of
the equation (2), with (∗s, Xs) replaced by (∗νs, Xνs), on Ων × P such that

sup
ν

(
ε−1
ν ‖FAν

‖L2(Ων×Σ) + ‖∂tAν − dAν
Ψν‖L2(Ων×Σ)

)
<∞,(12)

sup
ν

(
ε−1
ν ‖FAν

‖L∞(Ων×Σ) + ‖∂tAν − dAν
Ψν‖L∞(Ων×Σ)

)
<∞.
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Then there are a subsequence, still denoted by Ξν , a sequence of gauge trans-
formations gν : Ων → G(P ), and a connection Ξ0 = A0 + Φ0 ds + Ψ0 dt on
C × P such that

∂tA0 − dA0Ψ0 + ∗s0(∂sA0 − dA0Φ0) = 0, FA0 = 0,

lim
ν→∞

(
‖g∗νAν − A0‖L∞(K×Σ) + sup

(s,t)∈K

∥∥g−1
ν Bνtgν − B0t

∥∥
L2(Σ)

)
= 0

for every compact set K ⊂ C; here Bνt := ∂tAν −dAν
Ψν , B0t := ∂tA0−dA0Ψ0.

Proof. For every compact set K ⊂ C there is a constant νK > 0 such
that, for every (s, t) ∈ K and every ν ≥ νK , there is a unique section ην(s, t) ∈
Ω0(Σ, gP ) such that

FA′
ν

= 0, A′
ν := Aν + ∗νsdAν

ην ,

and

‖dAν
ην‖L∞(Σ) ≤ c1 ‖FAν

‖L∞(Σ) ≤ c2εν(13)

(see Lemma 8.2 in [1]). Choose Φ′
ν(s, t),Ψ

′
ν(s, t) ∈ Ω0(Σ, gP ) such that

dA′
ν
∗νs

(
∂sA

′
ν − dA′

ν
Φ′

ν − Xνs(A′
ν)

)
= dA′

ν
∗νs

(
∂tA

′
ν − dA′

ν
Ψ′

ν

)
= 0.

Note that the sequence Ξ′
ν = A′

ν + Φ′
ν ds + Ψ′

ν dt depends only on ν and not
on the compact set K in question. One proves exactly as in [1, pp. 626, 627]
that the sequence Ξ′

ν satisfies the estimates∥∥Ξ′
ν − Ξν

∥∥
1,p,ε;K

≤ cK,pε
1+2/p
ν ,(14) ∥∥B′

νt

∥∥
L∞(K×Σ)

≤ cK ,(15) ∥∥B′
νt + ∗νs

(
B′

νs − Xνs(A′
ν)

)∥∥
Lp(K×Σ)

≤ cK,pε
1+2/p
ν ,(16)

for every compact set K ⊂ C and every p ≥ 2, with suitable positive constants
cK and cK,p. In addition we wish to prove the estimate

sup
K

∥∥B′
νt − Bνt

∥∥
L2(Σ)

≤ cK
√

εν .(17)

To see this we use the identities

B′
t − Bt = dA′(Ψ′ − Ψ) + ∗sdA∇tη + ∗s[Bt, η],

dA ∗s dA(Ψ′ − Ψ) = dA ∗s Bt − [dABt, η] − [FA,∇tη]

−[(A′ − A) ∧ ([dA∇tη + [Bt, η])](18)

dA ∗s dA∇tη =−dABt − [dA∇tη ∧ dAη] − [[Bt, η] ∧ dAη]

−2[Bt ∧ ∗sdAη] − [dA ∗s Bt, η]

(see (8.5), (8.7), and (8.8) in [1]). Here we have dropped the subscript ν. Since

dABt = ∇tFA, dA ∗s Bt = dABs = ∇sFA,
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we obtain from Lemma 2.1 with p = 2 that, for every compact set K ⊂ C,
there is a constant c′K > 0 such that

sup
K

(
‖dABt‖L2(Σ) + ‖dA ∗s Bt‖L2(Σ)

)
≤ c′K

√
ε.

Hence it follows from (13) and the last equation in (18) that

sup
K

‖dA∇tη‖L2(Σ) ≤ c′′K
√

ε.

Using this estimate and the second equation in (18) we obtain

sup
K

∥∥dA(Ψ′ − Ψ)
∥∥

L2(Σ)
≤ c′′′K

√
ε.

Combining the last two estimates with the first equation in (18) we obtain (17).
Now Ξ′

ν descends to a sequence

ū′
ν : K → M(P )

of approximate holomorphic curves (see (16)) with uniformly bounded deriva-
tives (see (15)). We must prove that the sequence ū′

ν is bounded in W 2,p for
some p > 2. By the elliptic bootstrapping analysis for holomorphic curves
(see [3, App. B]), this is equivalent to a W 1,p-bound on ∂̄J(ū′

ν). To obtain such
a bound we examine the following formula from [1, p. 627]:

B′
t + ∗s(B′

s − Xs(A′)) = ∗s∗̇sdAη − [Xs(A), η] − ∗s(Xs(A′) − Xs(A))

+ [(A′ − A),∇sη] − ∗s[(A′ − A),∇tη](19)

−dA′(Ψ′ − Ψ + ∇sη) − ∗sdA′(Φ′ − Φ −∇tη).

To begin with, observe that, by Lemma 2.1, we have estimates of the form∫
K

(
‖dABt‖p

L2(Σ) + ‖dA ∗s Bt‖p
L2(Σ)

)
≤ cK,pε

p.

Carrying the argument in the proof of Lemma 2.1 one step further we obtain
estimates for the second derivatives of the curvature and hence∫

K

(
‖dA∇sBt‖p

L2(Σ) + ‖dA ∗s ∇sBt‖p
L2(Σ)

)
≤ cK,p;

similarly for ∇t. Differentiate the identities in (18) to obtain∫
K

(
‖dA∇s∇sη‖p

L2(Σ) + ‖dA∇t∇tη‖p
L2(Σ) + ‖dA∇s∇tη‖p

L2(Σ)

)
≤ cK,p,∫

K

(∥∥dA∇s(Ψ′ − Ψ)
∥∥p

L2(Σ)
+

∥∥dA∇t(Ψ′ − Ψ)
∥∥p

L2(Σ)

)
≤ cK,p.

Combining these estimates with (19) we obtain∫
K

∥∥∇s(B′
t + ∗s(B′

s − Xs(A′)))
∥∥p

L2(Σ)
≤ cK,p,
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and similarly for ∇t. This is the required W 1,p-estimate for ∂̄J(ū′
ν). It follows

that ū′
ν is bounded in W 2,p and hence has a C1-convergent subsequence. The

limit of this subsequence is the required holomorphic curve in M(P ). The
assertion of the lemma now follows from (17) and the C1-convergence of ū′

ν .

For Theorem 9.1. On page 630 replace the estimate in the assertion of
Theorem 9.1 by (11) above. In the proof on page 631 replace the factor ε−2

ν

in (9.1) and (9.2) by ε−1
ν . Replace the next displayed formula by

cν = cν(wν) = ε−1
ν

∥∥FAν(wν)

∥∥
L2(Σ)

+
∥∥∂tAν(wν) − dAν(wν)Ψν(wν)

∥∥
L2(Σ)

.

On page 633 the assertion that the limits A∞(θ) and Φ∞(θ) exist can
be proved by a similar argument as in [2, Prop. 11.1]. Alternatively, one can
use the beautiful and elegant argument in [4] for a direct proof of the energy
identity.

On p. 634 replace the second displayed inequality by

sup
|w|≤ρνcν

(
1

ενcν

∥∥∥FÃν(w)

∥∥∥
L2(Σ)

+
∥∥∥∂tÃν(w) − dÃν(w)Ψ̃ν(w)

∥∥∥
L2(Σ)

)
≤ 2.

We prove that the limit connection Ξ0 represents a nonconstant holomorphic
sphere. First, note that

1
ενcν

∥∥∥FÃν(0)

∥∥∥
L2(Σ)

+
∥∥∥∂tÃν(0) − dÃν(0)Ψ̃ν(0)

∥∥∥
L2(Σ)

= 1

and use Corollary 1.1 with ε replaced by ε̃ν := ενcν → 0 to deduce that
the functions ∂tÃν − dÃν

Ψ̃ν and (ενcν)−1FÃν
are uniformly bounded on every

compact subset of C×Σ. Second, use Lemma 3.1 to deduce that the sequence
Ξ̃ν = Ãν + Φ̃νds + Ψ̃ν dt has a C1 convergent subsequence (after gauge trans-
formation). Third, use Lemma 2.1 to deduce that (ενcν)−1‖FÃν(0)‖L2(Σ) → 0
and hence∥∥∂tA0(0) − dA0(0)Ψ0(0)

∥∥
L2(Σ)

= lim
ν→∞

∥∥∥∂tÃν(0) − dÃν(0)Ψ̃ν(0)
∥∥∥

L2(Σ)
= 1.
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