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Weyl’s law for the cuspidal spectrum of SLn

By Werner Müller

Abstract

Let Γ be a principal congruence subgroup of SLn(Z) and let σ be an
irreducible unitary representation of SO(n). Let NΓ

cus(λ, σ) be the counting
function of the eigenvalues of the Casimir operator acting in the space of cusp
forms for Γ which transform under SO(n) according to σ. In this paper we
prove that the counting function NΓ

cus(λ, σ) satisfies Weyl’s law. Especially,
this implies that there exist infinitely many cusp forms for the full modular
group SLn(Z).
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Let G be a connected reductive algebraic group over Q and let Γ ⊂ G(Q)
be an arithmetic subgroup. An important problem in the theory of automor-
phic forms is the question of the existence and the construction of cusp forms
for Γ. By Langlands’ theory of Eisenstein series [La], cusp forms are the build-
ing blocks of the spectral resolution of the regular representation of G(R) in
L2(Γ\G(R)). Cusp forms are also fundamental in number theory. Despite their
importance, very little is known about the existence of cusp forms in general.
In this paper we will address the question of existence of cusp forms for the
group G = SLn. The main purpose of this paper is to prove that cusp forms
exist in abundance for congruence subgroups of SLn(Z), n ≥ 2.
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To formulate our main result we need to introduce some notation. For
simplicity assume that G is semisimple. Let K∞ be a maximal compact sub-
group of G(R) and let X = G(R)/K∞ be the associated Riemannian symmetric
space. Let Z(gC) be the center of the unviersal enveloping algebra of the com-
plexification of the Lie algebra g of G(R). Recall that a cusp form for Γ in the
sense of [La] is a smooth and K∞-finite function φ : Γ\G(R) → C which is a
simultaneous eigenfunction of Z(gC) and which satisfies∫

Γ∩NP (R)\NP (R)
φ(nx) dn = 0,

for all unipotent radicals NP of proper rational parabolic subgroups P of G. We
note that each cusp form f ∈ C∞(Γ\G(R)) is rapidly decreasing on Γ\G(R)
and hence square integrable. Let L2

cus(Γ\G(R)) be the closure of the linear
span of all cusp forms. Let (σ, Vσ) be an irreducible unitary representation of
K∞. Set

L2(Γ\G(R), σ) = (L2(Γ\G(R)) ⊗ Vσ)K∞

and define L2
cus(Γ\G(R), σ) similarly. Then L2

cus(Γ\G(R), σ) is the space of cusp
forms with fixed K∞-type σ. Let ΩG(R) ∈ Z(gC) be the Casimir element of
G(R). Then −ΩG(R)⊗Id induces a selfadjoint operator ∆σ in the Hilbert space
L2(Γ\G(R), σ) which is bounded from below. If Γ is torsion free, L2(Γ\G(R), σ)
is isomorphic to the space L2(Γ\X, Eσ) of square integrable sections of the
locally homogeneous vector bundle Eσ associated to σ, and ∆σ = (∇σ)∗∇σ −
λσ Id, where ∇σ is the canonical invariant connection and λσ the Casimir
eigenvalue of σ. This shows that ∆σ is a second order elliptic differential
operator. Especially, if σ0 is the trivial representation, then L2(Γ\G(R), σ0) ∼=
L2(Γ\X) and ∆σ0 equals the Laplacian ∆ of X.

The restriction of ∆σ to the subspace L2
cus(Γ\G(R), σ) has pure point

spectrum consisting of eigenvalues λ0(σ) < λ1(σ) < · · · of finite multiplicity.
We call it the cuspidal spectrum of ∆σ. A convenient way of counting the
number of cusp forms for Γ is to use their Casimir eigenvalues. For this pur-
pose we introduce the counting function NΓ

cus(λ, σ), λ ≥ 0, for the cuspidal
spectrum of type σ which is defined as follows. Let E(λi(σ)) be the eigenspace
corresponding to the eigenvalue λi(σ). Then

NΓ
cus(λ, σ) =

∑
λi(σ)≤λ

dim E(λi(σ)).

For nonuniform lattices Γ the selfadjoint operator ∆σ has a large continuous
spectrum so that almost all of the eigenvalues of ∆σ will be embedded in the
continous spectrum. This makes it very difficult to study the cuspidal spectrum
of ∆σ.

The first results concerning the growth of the cuspidal spectrum are due
to Selberg [Se]. Let H be the upper half-plane and let ∆ be the hyperbolic
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Laplacian of H. Let NΓ
cus(λ) be the counting function of the cuspidal spectrum

of ∆. In this case the cuspidal eigenfunctions of ∆ are called Maass cusp forms.
Using the trace formula, Selberg [Se, p. 668] proved that for every congruence
subgroup Γ ⊂ SL2(Z), the counting function satisfies Weyl’s law, i.e.

NΓ
cus(λ) ∼ vol(Γ\H)

4π
λ(0.1)

as λ → ∞. In particular this implies that for congruence subgroups of SL2(Z)
there exist as many Maass cusp forms as one can expect. On the other hand,
it is conjectured by Phillips and Sarnak [PS] that for a nonuniform lattice
Γ of SL2(R) whose Teichmüller space T is nontrivial and different from the
Teichmüller space corresponding to the once-punctured torus, a generic lattice
Γ ∈ T has only finitely many Maass cusp forms. This indicates that the
existence of cusp forms is very subtle and may be related to the arithmetic
nature of Γ.

Let d = dimX. It has been conjectured in [Sa] that for rank(X) > 1 and
Γ an irreducible lattice

lim sup
λ→∞

NΓ
cus(λ)
λd/2

=
vol(Γ\X)

(4π)d/2Γ(d/2 + 1)
,(0.2)

where Γ(s) denotes the gamma function. A lattice Γ for which (0.2) holds
is called by Sarnak essentially cuspidal. An analogous conjecture was made
in [Mu3, p. 180] for the counting function NΓ

dis(λ, σ) of the discrete spectrum
of any Casimir operator ∆σ. This conjecture states that for any arithmetic
subroup Γ and any K∞-type σ

lim sup
λ→∞

NΓ
dis(λ, σ)
λd/2

= dim(σ)
vol(Γ\X)

(4π)d/2Γ(d/2 + 1)
.(0.3)

Up to now these conjectures have been verified only in a few cases. In addition
to Selberg’s result, Weyl’s law (0.2) has been proved in the following cases:
For congruence subgroups of G = SO(n, 1) by Reznikov [Rez], for congruence
subgroups of G = RF/Q SL2, where F is a totally real number field, by Efrat
[Ef, p. 6], and for SL3(Z) by St. Miller [Mil].

In this paper we will prove that each principal congruence subgroup Γ of
SLn(Z), n ≥ 2, is essentially cuspidal, i.e. Weyl’s law holds for Γ. Actually
we prove the corresponding result for all K∞-types σ. Our main result is the
following theorem.

Theorem 0.1. For n ≥ 2 let Xn = SLn(R)/ SO(n). Let dn = dimXn.
For every principal congruence subgroup Γ of SLn(Z) and every irreducible
unitary representation σ of SO(n) such that σ|ZΓ = Id,

NΓ
cus(λ, σ) ∼ dim(σ)

vol(Γ\Xn)
(4π)dn/2Γ(dn/2 + 1)

λdn/2(0.4)

as λ → ∞.
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The method that we use is similar to Selberg’s method [Se]. In particular,
it does not give any estimation of the remainder term. For n = 2 a much
better estimation of the remainder term exists. Using the full strength of the
trace formula, we can get a three-term asymptotic expansion of NΓ

cus(λ) with
remainder term of order O(

√
λ/ log λ) [He, Th. 2.28], [Ve, Th. 7.3]. The method

is based on the study of the Selberg zeta function. It is quite conceivable
that the Arthur trace formula can be used to obtain a good estimation of the
remainder term for arbitrary n.

Next we reformulate Theorem 0.1 in the adèlic language. Let G = GLn,
regarded as an algebraic group over Q. Let A be the ring of adèles of Q.
Denote by AG the split component of the center of G and let AG(R)0 be
the component of 1 in AG(R). Let ξ0 be the trivial character of AG(R)0

and denote by Π(G(A), ξ0) the set of equivalence classes of irreducible
unitary representations of G(A) whose central character is trivial on
AG(R)0. Let L2

cus(G(Q)AG(R)0\G(A)) be the subspace of cusp forms in
L2(G(Q)AG(R)0\G(A)). Denote by Πcus(G(A), ξ0) the subspace of all π in
Π(G(A), ξ0) which are equivalent to a subrepresentation of the regular rep-
resentation in L2

cus(G(Q)AG(R)0\G(A)). By [Sk] the multiplicity of any π ∈
Πcus(G(A), ξ0) in the space of cusp forms L2

cus(G(Q)AG(R)0\G(A)) is one. Let
Af be the ring of finite adèles. Any irreducible unitary representation π of
G(A) can be written as π = π∞⊗πf , where π∞ and πf are irreducible unitary
representations of G(R) and G(Af ), respectively. Let Hπ∞ and Hπf

denote
the Hilbert space of the representation π∞ and πf , respectively. Let Kf be
an open compact subgroup of G(Af ). Denote by HKf

πf the subspace of Kf -
invariant vectors in Hπf

. Let G(R)1 be the subgroup of all g ∈ G(R) with
|det(g)| = 1. Given π ∈ Π(G(A), ξ0), denote by λπ the Casimir eigenvalue of
the restriction of π∞ to G(R)1. For λ ≥ 0 let Πcus(G(A), ξ0)λ be the space of
all π ∈ Πcus(G(A), ξ0) which satisfy |λπ| ≤ λ. Set εKf

= 1, if −1 ∈ Kf and
εKf

= 0 otherwise. Then we have

Theorem 0.2. Let G = GLn and let dn = dim SLn(R)/ SO(n). Let Kf

be an open compact subgroup of G(Af ) and let (σ, Vσ) be an irreducible unitary
representation of O(n) such that σ(−1) = Id if −1 ∈ Kf . Then∑

π∈Πcus(G(A),ξ0)λ

dim
(
HKf

πf

)
dim

(
Hπ∞ ⊗ Vσ

)O(n)

∼ dim(σ)
vol(G(Q)AG(R)0\G(A)/Kf )

(4π)dn/2Γ(dn/2 + 1)
(1 + εKf

)λdn/2

(0.5)

as λ → ∞.

Here we have used that the multiplicity of any π ∈ Π(G(A), ξ0) in the
space of cusp forms is one.



WEYL’S LAW FOR THE CUSPIDAL SPECTRUM OF SLn 279

The asymptotic formula (0.5) may be regarded as the adèlic version of
Weyl’s law for GLn. A similar result holds if we replace ξ0 by any unitary
character of AG(R)0. If we specialize Theorem 0.2 to the congruence subgroup
K(N) which defines Γ(N), we obtain Theorem 0.1.

Theorem 0.2 will be derived from the Arthur trace formula combined with
the heat equation method. The heat equation method is a very convenient
way to derive Weyl’s law for the counting function of the eigenvalues of the
Laplacian on a compact Riemannian manifold [Cha]. It is based on the study
of the asymptotic behaviour of the trace of the heat operator. Our approach is
similar. We will use the Arthur trace formula to compute the trace of the heat
operator on the discrete spectrum and to determine its asymptotic behaviour
as t → 0.

We will now describe our method in more detail. Let G(A)1 be the sub-
group of all g ∈ G(A) satisfying |det(g)| = 1. Then G(Q) is contained in
G(A)1 and the noninvariant trace formula of Arthur [A1] is an identity∑

χ∈X

Jχ(f) =
∑
o∈O

Jo(f), f ∈ C∞
c (G(A)1),(0.6)

between distributions on G(A)1. The left-hand side is the spectral side Jspec(f)
and the right-hand side the geometric side Jgeo(f) of the trace formula. The
distributions Jχ are defined in terms of truncated Eisenstein series. They
are parametrized by the set of cuspidal data X. The distributions Jo are
parametrized by semisimple conjugacy in G(Q) and are closely related to
weighted orbital integrals on G(A)1.

For simplicity we consider only the case of the trivial K∞-type. We choose
a certain family of test functions φ̃1

t ∈ C∞
c (G(A)1), depending on t > 0, which

at the infinite place are given by the heat kernel ht ∈ C∞(G(R)1) of the Lapla-
cian on X, multiplied by a certain cutoff function ϕt, and which at the finite
places are given by the normalized characteristic function of an open compact
subgroup Kf of G(Af ). Then we evaluate the spectral and the geometric side
at φ̃1

t and study their asymptotic behaviour as t → 0. Let Πdis(G(A), ξ0)
be the set of irreducible unitary representations of G(A) which occur dis-
cretely in the regular representation of G(A) in L2(G(Q)AG(R)0\G(A)). Given
π ∈ Πdis(G(A), ξ0), let m(π) denote the multiplicity with which π occurs in
L2(G(Q)AG(R)0\G(A)). Let HK∞

π∞ be the space of K∞-invariant vectors in
Hπ∞ . Comparing the asymptotic behaviour of the two sides of the trace for-
mula, we obtain∑

π∈Πdis(G(A),ξ0)

m(π)etλπ dim(HKf
πf

) dim(HK∞
π∞ )

∼ vol(G(Q)\G(A)1/Kf )
(4π)dn/2

(1 + εKf
)t−dn/2

(0.7)
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as t → 0, where the notation is as in Theorem 0.2. Applying Karamatas
theorem [Fe, p. 446], we obtain Weyl’s law for the discrete spectrum with
respect to the trivial K∞-type. A nontrivial K∞-type can be treated in the
same way. The discrete spectrum is the union of the cuspidal and the residual
spectra. It follows from [MW] combined with Donnelly’s estimation of the
cuspidal spectrum [Do], that the order of growth of the counting function
of the residual spectrum for GLn is at most O(λ(dn−1)/2) as λ → ∞. This
implies (0.5).

To study the asymptotic behaviour of the geometric side, we use the fine
o-expansion [A10]

Jgeo(f) =
∑
M∈L

∑
γ∈(M(QS))M,S

aM (S, γ)JM (f, γ),(0.8)

which expresses the distribution Jgeo(f) in terms of weighted orbital integrals
JM (γ, f). Here M runs over the set of Levi subgroups L containing the Levi
component M0 of the standard minimal parabolic subgroup P0, S is a finite
set of places of Q, and (M(QS))M,S is a certain set of equivalence classes in
M(QS). This reduces our problem to the investigation of weighted orbital
integrals. The key result is that

lim
t→0

tdn/2JM (φ̃1
t , γ) = 0,

unless M = G and γ = ±1. The contributions to (0.8) of the terms where
M = G and γ = ±1 are easy to determine. Using the behaviour of the heat
kernel ht(±1) as t → 0, it follows that

Jgeo(φ̃1
t ) ∼

vol(G(Q)\G(A)1/Kf )
(4π)d/2

(1 + εKf
)t−dn/2(0.9)

as t → 0.
To deal with the spectral side, we use the results of [MS]. Let C1(G(A)1)

denote the space of integrable rapidly decreasing functions on G(A)1 (see [Mu2,
§1.3] for its definition). By Theorem 0.1 of [MS], the spectral side is absolutely
convergent for all f ∈ C1(G(A)1). Furthermore, it can be written as a finite
linear combination

Jspec(f) =
∑
M∈L

∑
L∈L(M)

∑
P∈P(M)

∑
s∈W L(aM )reg

aM,sJ
L
M,P (f, s)

of distributions JL
M,P (f, s), where L(M) is the set of Levi subgroups containing

M , P(M) denotes the set of parabolic subgroups with Levi component M and
WL(aM )reg is a certain set of Weyl group elements. Given M ∈ L, the main in-
gredients of the distribution JL

M,P (f, s) are generalized logarithmic derivatives
of the intertwining operators

MQ|P (λ) : A2(P ) → A2(Q), P, Q ∈ P(M), λ ∈ a∗M,C,
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acting between the spaces of automorphic forms attached to P and Q, respec-
tively. First of all, Theorem 0.1 of [MS] allows us to replace φ̃1

t by a similar
function φ1

t ∈ C1(G(A)1) which is given as the product of the heat kernel at
the infinite place and the normalized characteristic function of Kf . Consider
the distribution where M = L = G. Then s = 1 and

JG
G,G(φ1

t ) =
∑

π∈Πdis(G(A),ξ0)

m(π)etλπ dim(HKf
πf

) dim(HK∞
π∞ ).(0.10)

This is exactly the left-hand side of (0.7). Thus in order to prove (0.7) we need
to show that for all proper Levi subgroups M , all L ∈ L(M), P ∈ P(M) and
s ∈ WL(aM )reg,

JL
M,P (φ1

t , s) = O(t−(dn−1)/2)(0.11)

as t → 0. This is the key result where we really need that our group is GLn.
It relies on estimations of the logarithmic derivatives of intertwining operators
for λ ∈ ia∗M . Given π ∈ Πdis(M(A), ξ0), let MQ|P (π, λ) be the restriction of the
intertwining operator MQ|P (λ) to the subspace A2

π(P ) of automorphic forms of
type π. The intertwining operators can be normalized by certain meromorphic
functions rQ|P (π, λ) [A7]. Thus

MQ|P (π, λ) = rQ|P (π, λ)−1NQ|P (π, λ),

where NQ|P (π, λ) are the normalized intertwining operators. Using Arthur’s
theory of (G, M)-families [A5], our problem can be reduced to the estima-
tion of derivatives of NQ|P (π, λ) and rQ|P (π, λ) on ia∗M . The derivatives
of NQ|P (π, λ) can be estimated using Proposition 0.2 of [MS]. Let M =
GLn1 × · · · ×GLnr

. Then π = ⊗iπi with πi ∈ Πdis(GLni
(A)1) and the normal-

izing factors rQ|P (π, λ) are given in terms of the Rankin-Selberg L-functions
L(s, πi × π̃j) and the corresponding ε-factors ε(s, πi × π̃j). So our problem
is finally reduced to the estimation of the logarithmic derivative of Rankin-
Selberg L-functions on the line Re(s) = 1. Using the available knowledge of
the analytic properties of Rankin-Selberg L-functions together with standard
methods of analytic number theory, we can derive the necessary estimates.

In the proof of Theorems 0.1 and 0.2 we have used the following key re-
sults which at present are only known for GLn: 1) The nontrivial bounds of
the Langlands parameters of local components of cuspidal automorphic repre-
sentations [LRS] which are needed in [MS]; 2) The description of the residual
spectrum given in [MW]; 3) The theory of the Rankin-Selberg L-functions
[JPS].

The paper is organized as follows. In Section 2 we prove some estima-
tions for the heat kernel on a symmetric space. In Section 3 we establish
some estimates for the growth of the discrete spectrum in general. We are
essentially using Donnelly’s result [Do] combined with the description of the
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residual spectrum [MW]. The main purpose of Section 4 is to prove estimates
for the growth of the number of poles of Rankin-Selberg L-functions in the
critical strip. We use these results in Section 5 to establish the key estimates
for the logarithmic derivatives of normalizing factors. In Section 6 we study
the asymptotic behaviour of the spectral side Jspec(φ1

t ). Finally, in Section 7
we study the asymptotic behaviour of the geometric side, compare it to the
asymptotic behaviour of the spectral side and prove the main results.

Acknowledgment. The author would like to thank W. Hoffmann,
D. Ramakrishnan and P. Sarnak for very helpful discussions on parts of this
paper. Especially Lemma 7.1 is due to W. Hoffmann.

1. Preliminaries

1.1. Fix a positive integer n and let G be the group GLn considered as an
algebraic group over Q. By a parabolic subgroup of G we will always mean a
parabolic subgroup which is defined over Q. Let P0 be the subgroup of upper
triangular matrices of G. The Levi subgroup M0 of P0 is the group of diagonal
matrices in G. A parabolic subgroup P of G is called standard, if P ⊃ P0.
By a Levi subgroup we will mean a subgroup of G which contains M0 and is
the Levi component of a parabolic subgroup of G defined over Q. If M ⊂ L

are Levi subgroups, we denote the set of Levi subgroups of L which contain
M by LL(M). Furthermore, let FL(M) denote the set of parabolic subgroups
of L defined over Q which contain M , and let PL(M) be the set of groups in
FL(M) for which M is a Levi component. If L = G, we shall denote these sets
by L(M), F(M) and P(M). Write L = L(M0). Suppose that P ∈ FL(M).
Then

P = NP MP ,

where NP is the unipotent radical of P and MP is the unique Levi component
of P which contains M .

Let M ∈ L and denote by AM the split component of the center of M .
Then AM is defined over Q. Let X(M)Q be the group of characters of M

defined over Q and set

aM = Hom(X(M)Q, R).

Then aM is a real vector space whose dimension equals that of AM . Its dual
space is

a∗M = X(M)Q ⊗ R.

Let P and Q be groups in F(M0) with P ⊂ Q. Then there are a canonical
surjection aP → aQ and a canonical injection a∗Q ↪→ a∗P . The kernel of the first
map will be denoted by a

Q
P . Then the dual vector space of a

Q
P is a∗P /a∗Q.
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Let P ∈ F(M0). We shall denote the roots of (P, AP ) by ΣP , and the
simple roots by ∆P . Note that for GLn all roots are reduced. They are
elements in X(AP )Q and are canonically embedded in a∗P .

For any M ∈ L there exists a partition (n1, . . . , nr) of n such that

M = GLn1 × · · · × GLnr
.

Then a∗M can be canonically identified with (Rr)∗ and the Weyl group W (aM )
coincides with the group Sr of permutations of the set {1, . . . , r}.

1.2. Let F be a local field of characteristic zero. If π is an admissible rep-
resentation of GLm(F ), we shall denote by π̃ the contragredient representation
to π. Let πi, i = 1, . . . , r, be irreducible admissible representations of the group
GLni

(F ). Then π = π1 ⊗· · ·⊗πr is an irreducible admissible representation of

M(F ) = GLn1(F ) × · · · × GLnr
(F ).

For s ∈ Cr let πi[si] be the representation of GLni
(F ) which is defined by

πi[si](g) = |det(g)|siπi(g), g ∈ GLni
(F ).

Let
IG
P (π, s) = IndG(F )

P (F )(π1[s1] ⊗ · · · ⊗ πr[sr])

be the induced representation and denote by HP (π) the Hilbert space of the
representation IG

P (π, s). We refer to s as the continuous parameter of IG
P (π, s).

Sometimes we will write IG
P (π1[s1], . . . , πr[sr]) in place of IG

P (π, s).

1.3. Let G be a locally compact topological group. Then we denote by
Π(G) the set of equivalence classes of irreducible unitary representations of G.

1.4. Let M ∈ L. Denote by AM (R)0 the component of 1 of AM (R). Set

M(A)1 =
⋂

χ∈X(M)Q

ker(|χ|).

This is a closed subgroup of M(A), and M(A) is the direct product of M(A)1

and AM (R)0.
Given a unitary character ξ of AM (R)0, denote by L2(M(Q)\M(A), ξ) the

space of all measurable functions φ on M(Q)\M(A) such that

φ(xm) = ξ(x)φ(m), x ∈ AM (R)0, m ∈ M(A),

and φ is square integrable on M(Q)\M(A)1. Let L2
dis(M(Q)\M(A), ξ) de-

note the discrete subspace of L2(M(Q)\M(A), ξ) and let L2
cus(M(Q)\M(A), ξ)

be the subspace of cusp forms in L2(M(Q)\M(A), ξ). The orthogonal com-
plement of L2

cus(M(Q)\M(A), ξ) in the discrete subspace is the residual sub-
space L2

res(M(Q)\M(A), ξ). Denote by Πdis(M(A), ξ), Πcus(M(A), ξ), and



284 WERNER MÜLLER

Πres(M(A), ξ) the subspace of all π ∈ Π(M(A), ξ) which are equivalent to a sub-
representation of the regular representation of M(A) in L2(M(Q)\M(A), ξ),
L2

cus(M(Q)\M(A), ξ), and L2
res(M(Q)\M(A), ξ), respectively.

Let Πdis(M(A)1) be the subspace of all π ∈ Π(M(A)1) which are equivalent
to a subrepresentation of the regular representation of M(A)1 in

L2(M(Q)\M(A)1).

We denote by Πcus(M(A)1) (resp. Πres(M(A)1)) the subspaces of all π ∈
Πdis(M(A)1) occurring in the cuspidal (resp. residual) subspace

L2
cus(M(Q)\M(A)1) (resp. L2

res(M(Q)\M(A)1)).

1.5. Let P be a parabolic subgroup of G. We denote by A2(P ) the space
of square integrable automorphic forms on NP (A)MP (Q)AP (R)0\G(A) (see
[Mu2, §1.7]).

Given π ∈ Πdis(MP (A), ξ0), let A2
π(P ) be the subspace of A2(P ) of auto-

morphic forms of type π [A1, p. 925]. Let π ∈ Π(MP (A)1). We identify π with
a representation of MP (A) which is trivial on AP (R)0. Hence we can define
A2

π(P ) for any π ∈ Π(MP (A)1). It is a space of square integrable functions on
NP (A)MP (Q)AP (R)0\G(A) such that for every x ∈ G(A), the function

φx(m) = φ(mx), m ∈ MP (A),

belongs to the π-isotypical subspace of the regular representation of MP (A) in
the Hilbert space L2(AP (R)0MP (Q)\MP (A)).

2. Heat kernel estimates

In this section we shall prove some estimates for the heat kernel of the
Bochner-Laplace operator acting on sections of a homogeneous vector bundle
over a symmetric space. Let G be a connected, semisimple, algebraic group de-
fined over Q. Let K∞ be a maximal compact subgroup of G(R) and let (σ, Vσ)
be an irreducible unitary representation of K∞ on a complex vector space Vσ.
Let Ẽσ = (G(R)×Vσ)/K∞ be the associated homogeneous vector bundle over
X = G(R)/K∞. We equip Ẽσ with the G(R)-invariant Hermitian fibre metric
which is induced by the inner product in Vσ. Let C∞(Ẽσ), C∞

c (Ẽσ) and L2(Ẽσ)
denote the space of smooth sections, the space of compactly supported smooth
sections and the Hilbert space of square integrable sections of Ẽσ, respectively.
Then we have

C∞(Ẽσ) = (C∞(G(R)) ⊗ Vσ)K∞ , L2(Ẽσ) = (L2(G(R)) ⊗ Vσ)K∞(2.1)

and similarly for C∞
c (Ẽσ). Let Ω ∈ Z(gC) be the Casimir element of G(R) and

let R be the right regular representation of G(R) on C∞(G(R)). Let ∆̃σ be
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the second order elliptic operator which is induced by −R(Ω)⊗ Id in C∞(Ẽσ).
Let ∇̃σ be the canonical connection on Ẽσ, and let ΩK be the Casimir element
of K∞. Let λσ = σ(ΩK) be the Casimir eigenvalue of σ. Then with respect to
the identification (2.1),

(∇̃σ)∗∇̃σ = −R(Ω) ⊗ Id + λσ Id(2.2)

[Mia, Prop. 1.1], and therefore

∆̃σ = (∇̃σ)∗∇̃σ − λσId.(2.3)

Hence ∆̃σ : C∞
c (Ẽσ) → L2(Ẽσ) is essentially selfadjoint and bounded from

below. We continue to denote its unique selfadjoint extension by ∆̃σ. Let
exp(−t∆̃σ) be the associated heat semigroup. The heat operator is a smooth-
ing operator on L2(Ẽσ) which commutes with the representation of G(R) on
L2(Ẽσ). Therefore, it is of the form

(e−t∆̃σϕ)(g) =
∫

G(R)
Hσ

t (g−1g1)(ϕ(g1))dg1, g ∈ G(R),(2.4)

where ϕ ∈ (L2(G(R)) ⊗ Vσ)K∞ and Hσ
t : G(R) → End(Vσ) is in L2 ∩ C∞ and

satisfies the covariance property

Hσ
t (g) = σ(k)Hσ

t (k−1gk′)σ(k′)−1, for g ∈ G(R), k, k′ ∈ K∞.(2.5)

In order to get estimates for Hσ
t , we proceed as in [BM] and relate Hσ

t

to the heat kernel of the Laplace operator of G(R) with respect to a left in-
variant metric on G(R). Let g and k denote the Lie algebras of G(R) and
K∞, respectively. Let g = k⊕ p be the Cartan decomposition and let θ be the
corresponding Cartan involution. Let B(Y1, Y2) be the Killing form of g. Set
〈Y1, Y2〉 = −B(Y1, θY2), Y1, Y2 ∈ g. By translation of 〈·, ·〉 we get a left invari-
ant Riemannian metric on G(R). Let X1, · · · , Xp be an orthonormal basis for
p with respect to B|p×p and let Y1, · · · , Yk be an orthonormal basis for k with
respect to −B|k × k. Then we have

Ω =
p∑

i=1

X2
i −

k∑
i=1

Y 2
i and ΩK = −

k∑
i=1

Y 2
i .

Let

P = −Ω + 2ΩK = −
p∑

i=1

X2
i −

k∑
i=1

Y 2
i .(2.6)

Then R(P ) is the Laplace operator ∆G on G(R) with respect to the left in-
variant metric defined above. The heat semigroup e−t∆G is represented by a
smooth kernel pt, i.e.(

e−t∆Gf
)
(g) =

∫
G(R)

pt(g−1g′)f(g′)dg′, f ∈ L2(G(R)), g ∈ G(R),(2.7)
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where pt ∈ C∞(G(R)) ∩ L2(G(R)). In fact, pt belongs to L1(G(R)) (see [N])
so that (2.7) can be written as

e−t∆G = R(pt).

Let

Q =
∫

K∞

R(k) ⊗ σ(k) dk

be the orthogonal projection of L2(G(R))⊗Vσ onto its K∞-invariant subspace
(L2(G(R)) ⊗ Vσ)K∞ . By (2.6) we have

∆̃σ = −Q(R(Ω) ⊗ Id)Q

= Q(R(P ) ⊗ Id)Q − 2Q(R(ΩK) ⊗ Id)Q

= Q(∆G ⊗ Id)Q − 2λσ IdL2(Ẽσ) .

Hence, we get

e−t∆̃σ = Q(e−t∆G ⊗ Id)Q · et2λσ

which implies that

Hσ
t (g) = et2λσ

∫
K∞

∫
K∞

pt(k−1gk′)σ(kk′−1) dk dk′.(2.8)

Let C1(G(R)) be Harish-Chandra’s space of integrable, rapidly decreasing func-
tions on G(R). Then (2.8) can be used to show that

Hσ
t ∈

(
C1(G(R)) ⊗ End(Vσ)

)K∞×K∞(2.9)

[BM, Prop. 2.4].

Now we turn to the estimation of the derivatives of Hσ
t . By (2.8), this

problem can be reduced to the estimation of the derivatives of pt. Let ∇ denote
the Levi-Civita connection and ρ(g, g′) the geodesic distance of g, g′ ∈ G(R)
with respect to the left invariant metric. Then all covariant derivatives of the
curvature tensor are bounded and the injectivity radius has a positive lower
bound. Let a = dimG(R), l ∈ N0 and T > 0. Then it follows from Corollary
8 in [CLY] that there exist C, c > 0 such that

‖∇lpt(g)‖ ≤ Ct−(a+l)/2 exp
(
−cρ2(g, 1)

t

)
(2.10)

for all 0 < t ≤ T and g ∈ G(R). By (2.8) and (2.10),

‖∇lHσ
t (g)‖ ≤ e2tλσ

∫
K∞

∫
K∞

‖(∇lpt)(k−1gk′)‖dkdk′

≤ Ct−(a+l)/2

∫
K∞

∫
K∞

exp
(
−cρ2(gk, k′)

t

)
dkdk′

(2.11)
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for all 0 < t ≤ T . Choose the invariant Riemannian metric on X which is
defined by the restriction of the Killing form to TeX ∼= p. Then the canonical
projection map G(R) → X is a Riemannian submersion. Let d(x, y) denote
the geodesic distance on X. Then it follows that

ρ(g, e) ≥ d(gK∞, K∞), g ∈ G(R).

Set r(g) = d(gK∞, K∞), g ∈ G(R). Together with (2.11) we get the following
result.

Proposition 2.1. Let a = dimG(R), l ∈ N0 and T > 0. There exist
C, c > 0 such that

‖∇lHσ
t (g)‖ ≤ Ct−(a+l)/2 exp

(
−cr2(g)

t

)
(2.12)

for all 0 < t ≤ T and g ∈ G(R).

We note that the exponent of t on the right-hand side of (2.12) is not
optimal. Using the method of Donnelly [Do2], this estimate can be improved
for l ≤ 1. Indeed by Theorem 3.1 of [Mu1],

Proposition 2.2. Let n = dimX and T > 0. There exist C, c > 0 such
that

‖∇lHσ
t (g)‖ ≤ Ct−n/2−l exp

(
−cr2(g)

t

)
(2.13)

for all 0 < t ≤ T , 0 ≤ l ≤ 1, and g ∈ G(R).

We also need the asymptotic behaviour of the heat kernel on the diagonal.
It is described by the following lemma.

Lemma 2.3. Let n = dimX and let e ∈ G(R) be the identity element.
Then

trHσ
t (e) =

dim(σ)
(4π)n/2

t−n/2 + O(t−(n−1)/2)

as t → 0.

Proof. Note that for each x ∈ X, the injectivity radius at x is infinite.
Hence we can construct a parametrix for the fundamental solution of the heat
equation for ∆σ as in [Do2]. Let ε > 0 and set

Uε = {(x, y) ∈ X × X
∣∣ d(x, y) < ε}.

For any l ∈ N we define an approximate fundamental solution Pl(x, y, t) on Uε

by the formula

Pl(x, y, t) = (4πt)−n/2 exp
(−d2(x, y)

4t

) (
l∑

i=0

Φi(x, y)ti
)

,
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where the Φi(x, y) are smooth sections of Eσ � E∗
σ over Uε × Uε which are

constructed recursively as in Theorem 2.26 of [BGV]. In particular, we have

Φ0(x, x) = IdVσ
, x ∈ X.

Let ψ ∈ C∞(X × X) be equal to 1 on Uε/4 and 0 on X × X − Uε/2. Set

Ql(x, y, t) = ψ(x, y)Pl(x, y, t).

If l > n/2, then the section Ql of Eσ �E∗
σ is a parametrix for the heat equation.

Since X is a Riemannian symmetric space, we get

Hσ
t (e) = IdVσ

(4πt)−n/2 + O(t−(n−1)/2)

as t → 0. This implies the lemma.

3. Estimations of the discrete spectrum

In this section we shall establish a number of facts concerning the growth
of the discrete spectrum. Let M = GLn1 × · · · × GLnr

, r ≥ 1, and let

M(R)1 = M(R) ∩ M(A)1.

Then M(R) = M(R)1 ·AM (R)0. Let KM,∞ ⊂ M(R) be the standard maximal
compact subgroup. Then KM,∞ is contained in M(R)1. Let

XM = M(R)1/KM,∞

be the associated Riemannian symmetric space. Let ΓM ⊂ M(Q) be an arith-
metic subgroup and let (τ, Vτ ) be an irreducible unitary representation of KM,∞
on Vτ . Set

C∞(ΓM\M(R)1, τ) := (C∞(ΓM\M(R)1) ⊗ Vτ )KM,∞ .

If ΓM is torsion free, then ΓM\XM is a Riemannian manifold and the homoge-
neous vector bundle Ẽτ over XM , which is associated to τ , can be
pushed down to a vector bundle Eτ → ΓM\XM . Then C∞(ΓM\M(R)1, τ)
equals C∞(ΓM\XM , Eτ ), the space of smooth sections of Eτ . Define
C∞

c (ΓM\M(R)1, τ) and L2(ΓM\M(R)1, τ) similarly. Let ΩM(R)1 be the Casimir
element of M(R)1 and let ∆τ be the operator in C∞(ΓM\M(R)1, τ) which is in-
duced by −ΩM(R)1 ⊗Id. As unbounded operator in L2(ΓM\M(R)1, τ) with do-
main C∞

c (ΓM\M(R)1, τ), ∆τ is essentially selfadjoint. Let L2
cus(ΓM\M(R)1, τ)

be the subspace of cusp forms of L2(ΓM\M(R)1, τ). Then L2
cus(ΓM\M(R)1, τ)

is an invariant subspace of ∆τ , and ∆τ has pure point spectrum in this sub-
space consisting of eigenvalues λ0 < λ1 < · · · of finite multiplicity. Let E(λi)
be the eigenspace of λi. Set

NΓM
cus (λ, τ) =

∑
λi≤λ

dim E(λi).
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Let d = dimXM and let

Cd =
1

(4π)d/2Γ(d
2 + 1)

be Weyl’s constant, where Γ(s) denotes the gamma function. Then Donnelly
[Do, Th. 9] has established the following basic estimation of the counting func-
tion of the cuspidal spectrum.

Theorem 3.1. For every τ ∈ Π(KM,∞),

lim sup
λ→∞

NΓM
cus (λ, τ)
λd/2

≤ Cd dim(τ) vol(ΓM\XM ).

Actually, Donnelly proved this theorem only for the case of a torsion free
discrete group. However, it is easy to extend his result to the general case.

We shall now reformulate this theorem in the representation theoretic
context. Let ξ0 be the trivial character of AM (R)0 and let π ∈ Π(M(A), ξ0).
Let m(π) be the multiplicity with which π occurs in the regular representation
of M(A) in L2(AM (R)0M(Q)\M(A)). Then Πdis(M(A), ξ0) consists of all π ∈
Π(M(A), ξ0) with m(π) > 0. Write

π = π∞ ⊗ πf ,

where π∞ ∈ Π(M(R)) and πf ∈ Π(M(Af )). Denote by Hπ∞ (resp. Hπf
)

the Hilbert space of the representation π∞ (resp. πf ). Let KM,f be an open
compact subgroup of M(Af ) and let τ ∈ Π(KM,∞). Denote by Hπ∞(τ) the
τ -isotypical subspace of Hπ∞ and let HKM,f

πf be the subspace of KM,f -invariant
vectors in Hπf

. Denote by λπ the Casimir eigenvalue of the restriction of π∞
to M(R)1. Given λ > 0, let

Πdis(M(A), ξ0)λ = {π ∈ Πdis(M(A), ξ0)
∣∣ |λπ| ≤ λ}.

Define Πcus(M(A), ξ0)λ and Πres(M(A), ξ0)λ similarly.

Lemma 3.2. Let d = dimXM . For every open compact subgroup KM,f of
M(Af ) and every τ ∈ Π(KM,∞) there exists C > 0 such that∑

π∈Πcus(M(A),ξ0)λ

m(π) dim(HKM,f
πf

) dim(Hπ∞(τ)) ≤ C(1 + λd/2)

for λ ≥ 0.

Proof. Extending the notation of §1.4, we write Π(M(R), ξ0) for the
set of representations in Π(M(R)) whose central character is trivial on
AM (R)0. Given π∞ ∈ Π(M(R), ξ0), let m(π∞) be the multiplicity with
which π∞ occurs discretely in the regular representation of M(R) in
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L2(AM (R)0M(Q)\M(A))KM,f . Then

m(π∞) =
∑′

π′∈Πcus(M(A),ξ0)
m(π′) dim(HKM,f

π′
f

),(3.1)

where the sum is over all π′ ∈ Πdis(M(A), ξ0) such that the Archimedean
component π′

∞ of π′ equals π∞.
Let Πcus(M(R), ξ0) be the subset of all π∞ ∈ Π(M(R), ξ0) which are

equivalent to an irreducible subrepresentation of the regular representation
of M(R) in the Hilbert space L2

cus(AM (R)0M(Q)\M(A))KM,f . Given π∞ ∈
Πcus(M(R), ξ0), denote by λπ∞ the Casimir eigenvalue of the restriction of π∞
to M(R)1. For λ ≥ 0, let

Πcus(M(R), ξ0)λ = {π∞ ∈ Πcus(M(R), ξ0)
∣∣ |λπ∞ | ≤ λ}.

Then by (3.1), it suffices to show that for each τ ∈ Π(KM,∞) there exists C > 0
such that ∑

π∞∈Πcus(M(R),ξ0)λ

m(π∞) dim(Hπ∞(τ)) ≤ C(1 + λd/2).

To deal with this problem recall that there exist arithmetic subgroups ΓM,i ⊂
M(R), i = 1, . . . , l, such that

M(Q)\M(A)/KM,f
∼=

l⊔
i=1

(ΓM,i\M(R))

(cf. [Mu1, §9]). Hence

L2(AM (R)0M(Q)\M(A))KM,f ∼=
l⊕

i=1

L2(AM (R)0ΓM,i\M(R))(3.2)

as M(R)-modules. For each i, i = 1, . . . , l, and π∞ ∈ Π(M(R)) let mΓM,i
(π∞)

be the multiplicity with which π∞ occurs discretely in the regular represen-
tation of M(R) in L2(AM (R)0ΓM,i\M(R)). Then m(π∞) =

∑l
i=1 mΓM,i

(π∞)
and ∑

π∞∈Πcus(M(R),ξ0)λ

m(π∞) dim(Hπ∞(τ))

=
l∑

i=1

∑
π∞∈Πcus(M(R),ξ0)λ

mΓM,i
(π∞) dim(Hπ∞(τ)).

The interior sum can be interpreted as follows. Fix i and set ΓM := ΓM,i.
Let λ1 < λ2 < · · · be the eigenvalues of ∆τ in the space of cusp forms
L2

cus(ΓM\M(R)1, τ) and let E(λi) be the eigenspace of λi. By Frobenius reci-
procity it follows that

dim E(λi) =
∑

−λπ∞=λi

mΓM
(π∞),
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where the sum is over all π∞ ∈ Πcus(M(R), ξ0) such that the Casimir eigenvalue
λπ∞ equals −λi. Hence we obtain∑

π∞∈Πcus(M(R),ξ0)λ

mΓM
(π∞) dim(Hπ∞(τ)) = NΓM

cus (λ, τ).

Combined with Theorem 3.1 the desired estimation follows.

Next we consider the residual spectrum.

Lemma 3.3. Let d = dimXM . For every open compact subgroup KM,f of
M(Af ) and every τ ∈ Π(KM,∞) there exists C > 0 such that∑

π∈Πres(M(A),ξ0)λ

m(π) dim(HKM,f
πf

) dim(Hπ∞(τ)) ≤ C(1 + λ(d−1)/2)

for λ ≥ 0.

Proof. We can assume that M = GLn1 × · · · × GLnr
. Let KM,f be an

open compact subgroup of M(Af ). There exist open compact subgroups Ki,f

of GLni
(Af ) such that K1,f × · · · × Kr,f ⊂ KM,f . Thus we can replace KM,f

by K1,f × · · · × Kr,f . Next observe that KM,∞ = O(n1) × · · · × O(nr) and
therefore, τ is given as τ = τ1⊗· · ·⊗ τr, where each τi is an irreducible unitary
representation of O(ni). Finally note that every π ∈ Π(M(A), ξ0) is of the
form π = π1 ⊗ · · · ⊗ πr. Hence we get m(π) =

∏r
i=1 m(πi) and

dim
(
HKM,f

πf

)
=

r∏
i=1

dim
(
HKi,f

πi,f

)
, dim

(
Hπ∞(τ)

)
=

r∏
i=1

dim
(
Hπi,∞(τi)

)
.

This implies immediately that it suffices to consider a single factor.
With the analogous notation the proof of the proposition is reduced to the

following problem. For m ∈ N set Xm = SLm(R)/ SO(m) and dm = dimXm.
Then we need to show that for every open compact subgroup Km,f of GLm(Af )
and every τ ∈ Π(O(m)) there exists C > 0 such that∑

π∈Πres(GLm(A),ξ0)λ

m(π) dim(HKm,f
πf

) dim(Hπ∞(τ)) ≤ C(1 + λ(dm−1)/2)

for λ ≥ 0. To deal with this problem recall the description of the residual spec-
trum of GLm by Mœglin and Waldspurger [MW]. Let π ∈ Πres(GLm(A)) and
suppose that π is trivial on AGLm

(R)0. There exist k|m, a standard parabolic
subgroup P of GLm of type (l, . . . , l), l = m/k, and a cuspidal automorphic
representation ρ of GLl which is trivial on AGLl

(R)0, such that π is equivalent
to the unique irreducible quotient J(ρ) of the induced representation

I
GLm(A)
P (A) (ρ[(k − 1)/2] ⊗ · · · ⊗ ρ[(1 − k)/2]).
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Here ρ[s] denotes the representation g �→ρ(g)|det g|s, s ∈ C. At the Archimedean
place, the corresponding induced representation

IGLm

P (ρ∞, k) := I
GLm(R)
P (R) (ρ∞[(k − 1)/2] ⊗ · · · ⊗ ρ∞[(1 − k)/2])

has also a unique irreducible quotient J(ρ∞). Comparing the definitions, we
get J(ρ)∞ = J(ρ∞). Hence the Casimir eigenvalue of π∞ = J(ρ)∞ equals
the Casimir eigenvalue of J(ρ∞) which in turn coincides with the Casimir
eigenvalue of the induced representation IGLm

P (ρ∞, k). Let λρ be the Casimir
eigenvalue of ρ∞. Then it follows that there exists C > 0 such that |λπ − kλρ|
≤ C for all π ∈ Πres(GLm(A), ξ0). Using the main theorem of [MW, p. 606],
we see that it suffices to fix l|m, l < m, and to estimate∑

ρ∈Πcus(GLl(A),ξ0)λ

m(ρ) dim
(
HKm,f

J(ρ)f

)
dim

(
HJ(ρ)∞(τ)

)
.(3.3)

First note that by [Sk], we have m(ρ) = 1 for all ρ ∈ Πcus(GLl(A), ξ0). So it
remains to estimate the dimensions. We begin with the infinite place. Observe
that dim(HJ(ρ)∞(τ)) = dim(τ)[J(ρ∞)|O(m) : τ ]. Thus in order to estimate
dim(HJ(ρ)∞(τ)) it suffices to estimate the multiplicity [J(ρ∞)|O(m) : τ ]. Since
J(ρ∞) is an irreducible quotient of IGLm

P (ρ∞, k), we have

[J(ρ∞)|O(m) : τ ] ≤ [IGLm

P (ρ∞, k)|O(m) : τ ].

Let Kl,∞ = O(l) × · · · × O(l). Using Frobenius reciprocity as in [Kn, p. 208],
we obtain

[IGLm

P (ρ∞, k)|O(m) : τ ]

=
∑

ω∈Π(Kl,∞)

[(ρ∞ ⊗ · · · ⊗ ρ∞)|Kl,∞ : ω] · [τ |Kl,∞ : ω].

Finally note that ω = ω1 ⊗ · · · ⊗ ωk with ωi ∈ Π(O(l)). Therefore we have

[(ρ∞ ⊗ · · · ⊗ ρ∞)|Kl,∞ : ω] =
k∏

i=1

[ρ∞|O(l) : ωi].

At the finite places we proceed in an analogous way. This implies that there
exist open compact subgroups Ki,f of GLl(Af ), i = 1, . . . , k and ω1, . . . , ωk ∈
Π(O(l)) such that (3.3) is bounded from above by a constant times

k∏
i=1

 ∑
ρ∈Πcus(GLl(A),ξ0)λ

m(ρ) dim
(
HKi,f

ρf

)
dim

(
Hρ∞(ωi)

) .

By Lemma 3.2 this term is bounded by a constant times (1 + λdl/2)k, where
dl = l(l + 1)/2 − 1. Since m = k · l and k > 1, we have

dlk =
l(l + 1)k

2
− k ≤ m(m + 1)

2
− 2 = dm − 1.

This proves the desired estimation in the case of M = GLm, and as explained
above, this suffices to prove the lemma.
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Combining Lemma 3.2 and Lemma 3.3, we obtain

Proposition 3.4. Let d = dimXM . For every open compact subgroup
KM,f of M(Af ) and every τ ∈ Π(KM,∞) there exists C > 0 such that∑

π∈Πdis(M(A),ξ0)λ

m(π) dim(HKM,f
πf

) · dim(Hπ∞(τ)) ≤ C(1 + λd/2)

for λ ≥ 0.

Next we restate Proposition 3.4 in terms of dimensions of spaces of auto-
morphic forms. Let P ∈ P(M) and let A2(P ) be the space of square integrable
automorphic forms on NP (A)MP (Q)AP (R)0\G(A). Given π ∈ Πdis(M(A), ξ0),
let A2

π(P ) be the subspace of A2(P ) of automorphic forms of type π

[A1, p. 925]. Let K∞ be the standard maximal compact subgroup of G(R).
Given an open compact subgroup Kf of G(Af ) and σ ∈ Π(K∞), let Aπ(P )Kf

denote the subspace of Kf -invariant automorphic forms in A2
π(P ) and let

A2
π(P )Kf ,σ be the σ-isotypical subspace of A2

π(P )Kf
.

Proposition 3.5. Let d = dimXM . For every open compact subgroup
Kf of G(Af ) and every σ ∈ Π(K∞) there exists C > 0 such that∑

π∈Πdis(M(A),ξ0)λ

dimA2
π(P )Kf ,σ ≤ C(1 + λd/2)

for λ ≥ 0.

Proof. Let π ∈ Πdis(M(A), ξ0). Let HP (π) be the Hilbert space of the
induced representation I

G(A)
P (A) (π). There is a canonical isomorphism

jP : HP (π) ⊗ HomM(A)(π, I
M(A)
M(Q)AM (R)0(ξ0)) → A2

π(P ),(3.4)

which intertwines the induced representations. Let π = π∞ ⊗ πf . Let HP (π∞)
(resp. HP (πf )) be the Hilbert space of the induced representation I

G(R)
P (R) (π∞))

(resp. I
G(Af )
P (Af ) (πf )). Denote by HP (π∞)σ the σ-isotypical subspace of HP (π∞)

and by HP (πf )Kf the subspace of Kf -invariant vectors of HP (πf ). Then it
follows from (3.4) that

dimA2
π(P )Kf ,σ = m(π) dim(HP (πf )Kf ) dim(HP (π∞)σ).(3.5)

Using Frobenius reciprocity as in [Kn, p. 208] we get

[IG(R)
P (R) (π∞)|K∞ : σ] =

∑
τ∈Π(KM,∞)

[π∞|KM,∞ : τ ] · [σ|KM,∞ : τ ].

Hence we get

dim(HP (π∞)σ) ≤ dim(σ)
∑

τ∈Π(KM,∞)

dim(Hπ∞(τ))[σ|KM,∞ : τ ].(3.6)
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Next we consider πf = ⊗p<∞πp. Replacing Kf by a subgroup of finite index
if necessary, we can assume that Kf = Πp<∞Kp. For any p < ∞, denote
by HP (πp) the Hilbert space of the induced representation I

G(Qp)
P (Qp) (πp). Let

HP (πp)Kp be the subspace of Kp-invariant vectors. Then dimHP (πp)Kp = 1
for alomost all p and

HP (πf )Kf ∼=
⊗
p<∞

HP (πp)Kp .

Furthermore,

I
G(Qp)
P (Qp) (πp)Kp =

(
I

G(Zp)
P (Zp) (πp)

)Kp

↪→
⊕

G(Zp)/Kp

I
Kp

Kp∩P (πp)Kp

∼=
⊕

G(Zp)/Kp

πKp∩P
p .

(3.7)

Let KM,f = Kf ∩ M(Af ). Using (3.5)–(3.7), it follows that in order to prove
the proposition, it suffices to fix τ ∈ Π(KM,∞) and to estimate∑

π∈Πdis(M(A),ξ0)λ

m(π) dim(HKM,f
πf

) dim(Hπ∞(τ)).

The proof is now completed by application of Proposition 3.4.

Finally we consider the analogous statement of Lemma 3.3 at the
Archimedean place. For simplicity we consider only the case M = G. Let
K∞ be the standard maximal compact subgroup of G(R). Let Γ ⊂ G(Q)
be an arithmetic subgroup and σ ∈ Π(K∞). Then the discrete subspace
L2

dis(Γ\G(R)1, σ) of ∆σ decomposes as

L2
dis(Γ\G(R)1, σ) = L2

cus(Γ\G(R)1, σ) ⊕ L2
res(Γ\G(R), σ),

where L2
res(Γ\G(R)1, σ) is the subspace which corresponds to the residual spec-

trum of ∆σ. Let
L2

res(Γ\G(R)1, σ) =
⊕

i

Eres(λi)

be the decomposition into eigenspaces of ∆σ. For λ ≥ 0 set

NΓ
res(λ, σ) =

∑
λi≤λ

dim Eres(λi).

Proposition 3.6. Let d = G(R)1/K∞. Let Γ ⊂ G(Q) be an arithmetic
subgroup. For every σ ∈ Π(K∞) there exists C > 0 such that

NΓ
res(λ, σ) ≤ C(1 + λ(d−1)/2)

for λ ≥ 0.
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Proof. First assume that Γ ⊂ SLn(Z). Let Γ(N) ⊂ Γ be a congruence
subgroup. Then

NΓ
res(λ, σ) ≤ NΓ(N)

res (λ, σ).(3.8)

Let
N = Πpp

rp , rp ≥ 0.

Set
Kp(N) = {k ∈ GLn(Zp) | k ≡ 1 mod prpZp}

and

K(N) = Πp<∞Kp(N).(3.9)

Then K(N) is an open compact subgroup of G(Af ) and

AG(R)0G(Q)\G(A)/K(N) ∼=
⊔

(Z/NZ)∗

(Γ(N)\SLn(R))(3.10)

(cf. [A9]). Hence

L2
res(AG(R)0G(Q)\G(A))K(N) ∼=

⊕
(Z/NZ)∗

L2
res(Γ(N)\SLn(R))

as SLn(R)-modules. Then∑
π∈Πres(G(A),ξ0)λ

m(π) dim(HK(N)
πf

) dim(Hπ∞(σ)) = ϕ(N)NΓ(N)
res (λ, σ),

where ϕ(N) = #[(Z/NZ)∗]. Put M = G in Lemma 3.3. Then by Lemma 3.3
it follows that there exists C > 0 such that

NΓ(N)
res (λ, σ) ≤ C(1 + λ(d−1)/2).

This proves the proposition for Γ ⊂ SLn(Z). Since an arithmetic subgroup
Γ ⊂ G(Q) is commensurable with G(Z), the general case can be easily reduced
to this one.

4. Rankin-Selberg L-functions

The main purpose of this section is to prove estimates for the number
of zeros of Rankin-Selberg L-functions. We shall consider the Rankin-Selberg
L-functions over an arbitrary number field, although in the present paper we
shall use them only in the case of Q. We begin with the description of the
local L-factors.

Let F be a local field of characteristic zero. Recall that any irreducible
admissible representation of GLm(F ) is given as a Langlands quotient: There
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exist a standard parabolic subgroup P of type (m1, . . . , mr), discrete series rep-
resentations δi of GLmi

(F ) and complex numbers s1, . . . , sr satisfying Re(s1) ≥
Re(s2) ≥ · · · ≥ Re(sr) such that

π = JGLm

P (δ1[s1] ⊗ · · · ⊗ δr[sr]),(4.1)

where the representation on the right is the unique irreducible quotient of the
induced representation IGLm

P (δ1[s1]⊗ · · · ⊗ δr[sr]) [MW, I.2]. Furthermore any
irreducible generic representation π of GLm(F ) is equivalent to a fully induced
representation IGLm

P (δ1[s1]⊗· · ·⊗ δr[sr]). If π is generic and unitary, it follows
from the classification of the unitary dual of GLm(F ) that the parameters si

satisfy

|Re(si)| < 1/2, i = 1, . . . , r.(4.2)

Suppose that π is given as a Langlands quotient of the form (4.1). Then the
L-function satisfies

L(s, π) =
∏
j

L(s + sj , δj)(4.3)

[J]. Furthermore, suppose that π1 and π2 are irreducible admissible represen-
tations of G1 = GLm1(R) and G2 = GLm2(R), respectively. Let

πi
∼= J

GLni

Pi
(τi1[si1], . . . , τiri

[siri
])

be the Langlands parametrizations of πi, i = 1, 2. Then it follows from the
multiplicativity of the local Rankin-Selberg L-factors [JPS, (9.4)], [Sh6] that

L(s, π1 × π2) =
r1∏

i=1

r2∏
j=1

L(s + s1i + s2j , τ1i × τ2j).(4.4)

This reduces the description of the local L-factors to the square-integrable case.
Now we distinguish three cases according to the type of the field.

1. F non-Archimedean. Let OF denote the ring of integers of F and P the
maximal ideal of OF . Set q = OF /P. The square-integrable case can be further
reduced to the supercuspidal one. Finally for supercuspidal representations the
L-factor is given by an elementary polynomial in q−s. For details see [JPS] (see
also [MS]). If we put together all steps of the reduction, we get the following
result. Let π1 and π2 be irreducible admissible representations of GLn1(F ) and
GLn2(F ), resprectively. Then there is a polynomial Pπ1,π2(x) of degree at most
n1 · n2 with Pπ1,π2(0) = 1 such that

L(s, π1 × π2) = Pπ1,π2(q
−s)−1.

In the special case where π1 and π2 are unitary and generic the L-factor has
the following special form.
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Lemma 4.1. Let π1 and π2 be irreducible unitary generic representations
of GLn1(F ) and GLn2(F ), respectively. There exist complex numbers ai, i =
1, . . . , n1 · n2, with |ai| < q such that

L(s, π1 × π2) =
n1·n2∏
i=1

(1 − aiq
−s)−1.(4.5)

Proof. Let δ1 and δ2 be square-integrable representations of GLd1(F ) and
GLd2(F ), respectively. As explained above there is a polynomial Pδ1,δ2(x) of
degree at most d1 · d2 with Pδ1,δ2(0) = 1 such that

L(s, δ1 × δ2) = Pδ1,δ2(q
−s)−1.

By (6) of [JPS, p. 445], L(s, δ1×δ2) is holomorphic in the half-plane Re(s) > 0.
Hence Pδ1,δ2(x) has no zeros in the unit disc. Thus there exist complex numbers
bi with |bi| < 1 such that

L(s, δ1 × δ2) =
d1·d2∏
i=1

(1 − biq
−s)−1.(4.6)

Now let π1 and π2 be unitary and generic. Then L(s, π1×π2) can be written as
a product of the form (4.4) and by (4.2) the parameters sij satisfy |Re(sij)| <

1/2, i = 1, 2, j = 1, . . . , ri. With this and (4.6), the lemma follows.

If F is Archimedean the L-factors are defined in terms of the L-factors
attached to semisimple representations of the Weyl group WF by means of the
Langlands correspondence [La1]. The structure of the L-factors are described,
for example, in [MS, §3]. We briefly recall the result.

2. F = R. First note that GLm(R) does not have square-integrable
representations if m ≥ 3. To describe the principal L-factors in the remaining
cases d = 1 and d = 2, we define gamma factors by

ΓR(s) = π−s/2Γ
(s

2

)
, ΓC(s) = 2(2π)−sΓ(s).(4.7)

In the case d = 1, the unitary representations of GL1(R) = R× are of the form
ψε,t(x) = signε(x)|x|t with ε ∈ {0, 1} and t ∈ iR. Then

L(s, ψε,t) = ΓR(s + t + ε).

For k ∈ Z let Dk be the k-th discrete series representation of GL2(R) with the
same infinitesimal character as the k-dimensional representation. Then the
unitary square-integrable representations of GL2(R) are unitary twists of Dk,
k ∈ Z, for which the L-factor is given by

L(s, Dk) = ΓC(s + |k|/2).
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Let ψε = signε, ε ∈ {0, 1}. Then up to twists by unramified characters the
following list describes the Rankin-Selberg L-factors in the square-integrable
case:

L(s, Dk1 × Dk2) = ΓC(s + |k1 − k2|/2) · ΓC(s + |k1 + k2|/2),

L(s, Dk × ψε) = L(s, ψε × Dk) = ΓC(s + |k|/2),

L(s, ψε1 × ψε2) = ΓR((s + ε1,2)),

(4.8)

where 0 ≤ ε1,2 ≤ 1 with ε1,2 ≡ ε1 + ε2 mod 2.

3. F = C. There exist square-integrable representations of GLk(C) only
if k = 1. For r ∈ Z let χr be the character of GL1(C) = C× which is given by
χ(z) = (z/z)r, z ∈ C∗. Then

L(s, χr) = ΓC(s + |r|/2).(4.9)

If χr1 and χr2 are two characters as above, then we have

L(s, χr1 × χr2) = ΓC(s + |r1 + r2|/2).

Up to twists by unramified characters, these are all possibilities for the
L-factors in the square-integrable case.

To summarize we obtain the following description of the local L-factors in
the complex case. Let π be an irreducible unitary representation of GLm(C).
It is given by a Langlands quotient of the form

π = JGLm

B (χ1[s1] ⊗ · · · ⊗ χm[sm]),

where B is the standard Borel subgroup of GLm and the χi’s are characters of
GL1(C) = C× which are defined by χ(z) = (z/z)ri , ri ∈ Z, i = 1, . . . , m. Then

L(s, π) =
m∏

i=1

ΓC(s + si + |ri|/2).(4.10)

Let π1 and π2 be irreducible unitary representations of GLm1(C) and GLm2(C),
respectively. Let Bi ⊂ GLmi

be the standard Borel subgroup. There exist
characters χij of C× of the form χij(z) = (z/z)rij , rij ∈ Z, and complex
numbers sij , i = 1, . . . , m1, j = 1, . . . , m2, satisfying

Re(si1) ≥ · · · ≥ Re(simi
), |Re(sij | < 1/2,

such that

πi = J
GLmi

Bi
(χi1[si1] ⊗ · · · ⊗ χimi

[simi
]), i = 1, 2.(4.11)

Then the Rankin-Selberg L-factor is given by

L(s, π1 × π2) =
m1∏
i=1

m2∏
j=1

ΓC(s + s1i + s2j + |r1i + r2j |/2).(4.12)
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If F = R, the L-factors have a similar form.
The description of the L-factors in the Archimedean case can be unified

in the following way. By the duplication formula of the gamma function we
have

ΓC(s) = ΓR(s)ΓR(s + 1).(4.13)

Let F be Archimedean. Set eF = 1, if F = R, and eF = 2, if F = C. Let
π ∈ Π(GLm(F )). Then it follows from (4.13) and the definition of the L-factors,
that there exist complex numbers µj(π), j = 1, . . . , meF , such that

L(s, π) =
meF∏
j=1

ΓR(s + µj(π)).(4.14)

The numbers µj(π) are determined by the Langlands parameters of π. Sim-
ilarly, if πi ∈ Π(GLmi

(F )), i = 1, 2, it follows from the description of the
Rankin-Selberg L-factors that there exist complex numbers µj,k(π1 × π2) such
that

L(s, π1 × π2) =
∏
j,k

ΓR(s + µj,k(π1 × π2)).(4.15)

Lemma 4.2. Let F be Archimedean. There exists C > 0 such that

∑
j,k

|µj,k(π1 × π2)|2 ≤ C

∑
i

|µi(π1)|2 +
∑

j

|µj(π2)|2


for all generic πi ∈ Π(GLmi
(F )), i = 1, 2.

Proof. First consider the case F = C. Let π1 and π2 be irreducible unitary
generic representations of GLm1(C) and GLm2(C), respectively. Write πi as the
Langlands quotient of the form (4.11). Using (4.10) and (4.12) together with
(4.13), it follows that it suffices to prove that there exist C > 0 such that∑

j,k

|s1j + s2k + |r1j + r2k|/2|2 ≤ C
∑
i,j

|sij + |rij |/2|2

for all generic πi ∈ Π(GLmi
(C)), i = 1, 2. This follows immediately, if we

use the fact that the parameters sij satisfy |Re(sij)| < 1/2 and the rij ’s are
integers.

The proof in the case F = R is essentially the same. We only have to
check the different possible cases for the L-factors as listed above.

Next we consider the global Rankin-Selberg L-functions. Let E be a num-
ber field and let AE be the ring of adèles of E. Given m ∈ N, let Πdis(GLm(AE))
and Πcus(GLm(AE)) be defined in the same way as in the case of Q (see §1.4).
Recall that the Rankin-Selberg L-function attached to a pair of automorphic
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representations π1 of GLm1(AE) and π2 of GLm2(AE) is defined by the Euler
product

L(s, π1 × π2) =
∏
v

L(s, π1,v × π2,v),(4.16)

where v runs over all places of E. The Euler product is known to converge in
a certain half-plane Re(s) > c. Suppose that π1 and π2 are unitary cuspidal
automorphic representations of GLm1(AE) and GLm2(AE), respectively. Then
L(s, π1 × π2) has the following basic properties:

i) The Euler product L(s, π1 × π2) converges absolutely for all s in the
half-plane Re(s) > 1.

ii) L(s, π1 × π2) admits a meromorphic continuation to the entire complex
plane with at most simple poles at 0 and 1.

iii) L(s, π1 × π2) is of order one and is bounded in vertical strips outside of
the poles.

iv) It satisfies a functional equation of the form

L(s, π1 × π2) = ε(s, π1 × π2)L(1 − s, π̃1 × π̃2)(4.17)

with

ε(s, π1 × π2) = W (π1 × π2)(Dm1m2
E N(π1 × π2))1/2−s,(4.18)

where DE is the discriminant of E, W (π1 × π2) is a complex number of
absolute value 1 and N(π1 × π2) ∈ N.

The absolute convergence of the Euler product (4.16) in the half-plane
Re(s) > 1 was proved in [JS1]. The functional equation is established in [Sh1,
Th. 4.1] combined with [Sh3, Prop. 3.1] and [Sh3, Th. 1]. See also [Sh5] for the
general case. The location of the poles has been determined in the appendix
of [MW]. Property iii) was proved in [RS, p. 280].

Now let π1 ∈ Πdis(GLm1(AE)) and π2 ∈ Πdis(GLm2(AE)). Using the de-
scription of the residual spectrum for GLn [MW], L(s, π1×π2) can be expressed
in terms of Rankin-Selberg L-functions attached to cuspidal automorphic rep-
resentations. Indeed, by [MW] there exist ki ∈ N with ki|mi, parabolic sub-
groups Pi of Gi = GLmi

of type (di, . . . , di), di = mi/ki, and unitary cuspidal
automorphic representations δi of GLdi

(AE) such that

πi = JGi

Pi
(δi[(ki − 1)/2] ⊗ · · · ⊗ δi[(1 − ki)/2]),(4.19)

where the right-hand side denotes the unique irreducible quotient of the in-
duced representation IGi

Pi
(δi[(ki−1)/2]⊗· · ·⊗δi[(1−ki)/2]). Set k = k1+k2−2.
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Then it follows from (4.4) that

L(s, π1 × π2) =
k1−1∏
i=0

k2−1∏
j=0

L(s + k/2 − i − j, δ1 × δ2).(4.20)

Using this equality and i)–iv) above, we deduce immediately the correspond-
ing properties satisfied by L(s, π1 × π2). Especially, L(s, π1 × π2) satisfies a
functional equation of the form (4.17) with an ε-factor similar to (4.18).

We shall now investigate the logarithmic derivatives of the Rankin-Selberg
L-functions.First we need to introduce some notation.Let πi∈Πdis(GLmi

(AE)),
i = 1, 2. For each Archimedean place w of E let µj,k(π1,w×π2,w), j = 1, . . . , rw,

k = 1, . . . , hw, be the parameters attached to (π1,w, π2,w) by means of (4.15).
Set

c(π1 × π2) =
∑
w|∞

∑
j,k

|µj,k(π1,w × π2,w)|.(4.21)

Let N(π1 × π2) be the integer that is determined by the ε-factor as in (4.18).
Set

ν(π1 × π2) = Dm1m2
E N(π1 × π2)(2 + c(π1 × π2)).(4.22)

We call ν(π1 × π2) the level of (π1, π2). Given π ∈ Π(GLm(AE)), set

π∞ = ⊗v|∞πv, πf = ⊗v<∞πv.

Lemma 4.3. For every ε > 0 there exists C > 0 such that∣∣∣∣L′(s, π1,f × π2,f )
L(s, π1,f × π2,f )

∣∣∣∣ ≤ C

for all s in the half-plane Re(s) ≥ 2 + ε and all πi ∈ Πcus(GLmi
(AE)), i = 1, 2.

Proof. Let πi ∈ Πcus(GLmi
(AE)), i = 1, 2, and let v < ∞. By [Sk], π1,v

and π2,v are unitary generic representations. Hence by Lemma 4.1 there exist
complex numbers ai(v), i = 1, . . . , m1 · m2, with

|ai(v)| < N(v)(4.23)

such that

L(s, π1,v × π2,v) =
m1·m2∏

i=1

(1 − ai(v)N(v)−s)−1.

Suppose that Re(s) > 1. By (4.23) we have |ai(v)/N(v)s| < 1. Hence, taking
the logarithmic derivative, we get

L′(s, π1,v × π2,v)
L(s, π1,v × π2,v)

= −
∑

i

ai(v) log N(v)
N(v)s(1 − ai(v)N(v)−s)

= − log N(v)
∑

i

∞∑
k=1

ai(v)k

N(v)sk
.
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Suppose that σ = Re(s) > 1. Then by (4.23) we get∣∣∣∣L′(s, π1,v × π2,v)
L(s, π1,v × π2,v)

∣∣∣∣ ≤ m1m2

∞∑
k=1

log N(v)
N(v)(σ−1)k

.

Let ζE(s) be the Dedekind zeta function of E. Let ε > 0 and set σ = 2 + ε.
Then for Re(s) ≥ σ we get∣∣∣∣L′(s, π1,f × π2,f )

L(s, π1,f × π2,f )

∣∣∣∣ ≤ m1m2

∣∣∣∣ζ ′E(σ − 1)
ζE(σ − 1)

∣∣∣∣.
Lemma 4.4. For every ε > 0 there exists C > 0 such that∣∣∣∣L′(s, π1,∞ × π2,∞)

L(s, π1,∞ × π2,∞)

∣∣∣∣ ≤ C(1 + log(|s| + c(π1 × π2)))

for all s with Re(s) ≥ 1 + ε and all πi ∈ Πcus(GLmi
(AE)), i = 1, 2.

Proof. Let w|∞. By (4.15) we have

L(s, π1,w × π2,w) =
∏
j,k

ΓR(s + µj,k(π1,w × π2,w)).(4.24)

Since π1,w and π2,w are unitary and generic, the complex numbers
µj,k(π1,w × π2,w) satisfy

Re(µj,k(π1,w × π2,w)) > −1.(4.25)

Now recall that by Stirlings formula

Γ′

Γ
(s) = log s + O(|s|−1)

is valid as |s| → ∞, in the angle −π + δ < arg s < π − δ, for any fixed δ > 0.

Hence
Γ′

R(s)
ΓR(s)

(s) = −1
2

log π + log s + O(|s|−1)(4.26)

holds in the same range of s. Let ε > 0. Using (4.24), (4.25) and (4.26), it
follows that there exists C > 0 such that∣∣∣∣L′(s, π1,w × π2,w)

L(s, π1,w × π2,w)

∣∣∣∣ ≤ C +
∑
j,k

log(|s| + |µj,k(π1,w × π2,w)|).

for all w|∞, all s with Re(s) ≥ 1 + ε and all πi ∈ Πcus(GLm(AE)), i = 1, 2.

This implies the lemma.

Let πi ∈ Πdis(GLmi
(AE)), i = 1, 2, and T > 0 be given. Denote by

N(T ;π1, π2) the number of zeros of L(s, π1 × π2), counted with multiplicity,
which are contained in the disc of radius T centered at 0.
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Proposition 4.5. There exists C > 0 such that

N(T ;π1, π2) ≤ CT log(T + ν(π1 × π2))

for all T ≥ 1 and all πi ∈ Πdis(GLm(AE)), i = 1, 2.

Proof. By (4.20) we can assume that π1 and π2 are unitary cuspidal
automorphic representations. Set

Λ(s) = sa(1 − s)a
(
Dm1m2

E N(π1 × π2)
)s/2

L(s, π1 × π2),(4.27)

where a denotes the order of the pole of L(s, π1×π2) at s = 1. Note that a can
be at most 1. Since πi is unitary, we have π̃i = πi, i = 1, 2. Hence by (4.17), it
follows that Λ(s) satisfies the functional equation

Λ(s) = W (π1 × π2)
(
Dm1m2

E N(π1 × π2)
)1/2 Λ(1 − s).(4.28)

Since L(s, π1 × π2) is of order one, Λ(s) is an entire function of order one and
hence, it admits a representation as a Weierstrass product of the form

Λ(s) = eA+Bs
∏
ρ

(1 − s/ρ)es/ρ,

where A, B ∈ C and the product runs over the set of zeros of Λ(s). We note
that for s = σ + iT ,

Re
∑

ρ

1
s − ρ

=
∑

ρ

σ − Re(ρ)
(σ − Re(ρ))2 + (Im(ρ) − T )2

(4.29)

and this series is convergent since Λ(s) is of order one. Taking the real part of
the logarithmic derivative of Λ(s), and applying the functional equation (4.28)
to the right-hand side, we get

Re(B) + Re
∑ 1

ρ
+ Re

∑
ρ

1
s − ρ

= − Re(B) − Re
∑ 1

ρ

+ Re
∑

ρ

1
s − (1 − ρ)

.

Now observe that by (4.28), ρ is a zero of Λ(s) if and only if 1 − ρ is a zero of
Λ(s). Hence the two sums involving s are equal, as they run over the same set
of zeros. It follows that

Re(B) = −Re(
∑

ρ

1
ρ
).(4.30)

Together with (4.27) this leads to

Re
∑

ρ

1
s − ρ

= Re
Λ′(s)
Λ(s)

=
a

s
+

a

s − 1
+

1
2

log(Dm1m2
E N(π1 × π2))

+
L′(s, π1,∞ × π2,∞)
L(s, π1,∞ × π2,∞)

+
L′(s, π1,f × π2,f )
L(s, π1,f × π2,f )

.
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Let ε > 0, and set σ = 2 + ε. By Lemma 4.3, Lemma 4.4 and (4.29), there
exists C > 0 such that∑

ρ

σ − Re(ρ)
(σ − Re(ρ))2 + (Im(ρ) − T )2

≤ 1
2

log(Dm1m2
E N(π1 × π2))

+ C(1 + log(|T | + c(π1 × π2))

≤ C1 log(|T | + ν(π1 × π2))

(4.31)

for all T ∈ R and πi ∈ Πcus(GLmi
(AE)), i = 1, 2. Let T > 0. Then it follows

from (4.31) that

N(T + 1;π1, π2)−N(T ;π1, π2)

≤ 2(3 + ε)
∑

ρ

σ − Re(ρ)
(σ − Re(ρ))2 + (Im(ρ) − T )2

≤ C log(T + ν(π1 × π2))

for all πi ∈ Πcus(GLmi
(AE)), i = 1, 2. This implies the proposition.

5. Normalizing factors

In this section we consider the global normalizing factors of intertwining
operators. Our main purpose is to estimate certain integrals involving the
logarithmic derivatives of the normalizing factors. The behaviour of these
integrals is crucial for the estimation of the spectral side. From now on we
assume that the ground field is Q. Denote by A the ring of adèles of Q.

Let M ∈ L. Then there exists a partition (n1, . . . , nr) of n such that

M = GLn1 × · · · × GLnr
.

Let Q, P ∈ P(M). Let v be a place of Q and let πv ∈ Π(M(Qv)). Associated
to P, Q and πv is the local intertwining operator

JQ|P (πv, λ), λ ∈ a∗M,C,

between the induced representations IP (πv,λ) and IQ(πv,λ), which is defined by
an integral over NQ(Qv)∩NP (Qv), and hence depends upon a choice of a Haar
measure on this group. By [A7] there exist meromorphic functions rQ|P (πv, λ),
λ ∈ a∗M,C, such that the normalized local intertwining operators

RQ|P (πv, λ) = rQ|P (πv, λ)−1JQ|P (πv, λ)

satisfy the conditions of Theorem 2.1 of [A7]. There is a general construction of
normalizing factors which works for any group [A7], [CLL]. For GLn, however,
the intertwining operators can be normalized by L-functions [A7, §4], [AC,
p. 87]. The normalizing factors are given as

rQ|P (πv, λ) =
∏

α∈∑
P ∩∑

Q

rα(πv, λ(α̌)),(5.1)
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where rα(πv, s) is a meromorphic function of one complex variable and ΣP

(resp. ΣQ) denotes the roots of (P, AM ) (resp. (Q, AM )). Thus to define
the normalizing factors, it is enough to define the functions rα(πv, s) for any
root α of (G, AM ) and any πv ∈ Π(M(Qv)). To this end note that πv is
equivalent to a representation π1,v ⊗ · · · ⊗ πr,v with πi,v ∈ Π(GLni

(Qv)) and
the root α corresponds to an ordered pair (i, j) of distinct integers between 1
and r. Fix a nontrivial additive character ψv of Qv. Let L(s, πi,v × π̃j,v) and
ε(s, πi,v × π̃j,v, ψv) be the Rankin-Selberg L-function and the ε-factor attached
to (πi,v, π̃j,v) and ψv. Set

rα(πv, s) =
L(s, πi,v × π̃j,v)

L(1 + s, πi,v × π̃j,v)ε(s, πi,v × π̃j,v, ψv)
.(5.2)

It follows from Theorem 6.1 of [Sh1] that there are Haar measures on the group
NQ(Qv) ∩ NP (Qv), depending on ψv, such that the normalizing factors (5.1)
have all the right properties (see [A7, §4], [AC, p. 87]). Now suppose that
π ∈ Πdis(M(A)). Then the global normalizing factor rQ|P (π, λ) is defined by
the infinite product

rQ|P (π, λ) = ΠvrQ|P (πv, λ),

which converges in a certain chamber. By (5.1) it follows that there exist
meromorphic functions rα(π, s) of one complex variable such that

rQ|P (π, λ) =
∏

α∈∑
P ∩∑

Q

rα(π, λ(α̌)).(5.3)

Let π = π1 ⊗ · · · ⊗ πr. If α corresponds to (i, j) then by (5.2) we have

rα(π, s) =
L(s, πi × π̃j)

L(1 + s, πi × π̃j)ε(s, πi × π̃j)
,(5.4)

where L(s, πi × π̃j) and ε(s, πi × π̃j) are the global L-function and the ε-factor,
respectively, considered in the previous section.

The main goal of this section is to study the multidimensional logarithmic
derivatives of the normalizing factors that occur on the spectral side of the
trace formula [A4]. By (5.3) this problem is reduced to the investigation of
the logarithmic derivatives of the analytic functions rα(π, s). Furthermore, by
(5.4) each rα(π, s) may be regarded as the normalizing factor attached to a
standard maximal parabolic subgroup in GLm with m ≤ n. So let m1, m2 ∈ N
with m1 + m2 ≤ n. Given πi ∈ Πdis(GLmi

(A)), i = 1, 2, set

r(π1 ⊗ π2, s) =
L(s, π1 × π̃2)

L(1 + s, π1 × π̃2)ε(s, π1 × π̃2)
.(5.5)

We shall now study the logarithmic derivatives of these functions. For
this purpose we need some preparation. Suppose that πi, i = 1, 2, is given in
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the form (4.20) and assume that k1 ≤ k2. Set k = k1 + k2 − 2. For j = 0, . . . , k

let the integers aj be defined by

ai =


i + 1 : i ≤ k1 − 1;

k1 : k1 − 1 ≤ i ≤ k2 − 1;
k − i + 1 : i ≥ k2 − 1.

(5.6)

Note that ai = ak−i, i = 0, . . . , k. It follows from (4.20) that

L(s, π1 × π̃2) =
k∏

i=0

L(s + k/2 − i, δ1 × δ̃2)ai .(5.7)

Define a polynomial of one variable x by

p(x) =
k∏

i=0

((x + k/2 − i)(1 − x − k/2 + i))ai .

Then p(x) has real coeefficients and satisfies p(x) = p(1 − x). Let a be the
order of the pole of L(s, δ1 × δ̃2) at s = 1. Note that a ≤ 1. Set

Λ(s) = p(s)aN(π1 × π̃2)s/2L(s, π1 × π̃2).(5.8)

Then Λ(s) satisfies the functional equation

Λ(s) = W (π1 × π̃2)N(π1 × π̃2)1/2Λ(1 − s).(5.9)

Furthermore Λ(s) is an entire function of order 1. Therefore it can be written
as a Weierstrass product of the form

Λ(s) = eA+Bs
∏
ρ

(1 − s/ρ)es/ρ

with A, B ∈ C and ρ runs over the zeros of Λ(s). Taking the logarithmic
derivative and applying the functional equation (5.9) to the right-hand side,
we get (

Λ(s)
Λ(s + 1)

)′
· Λ(s + 1)

Λ(s)
=

Λ′(s)
Λ(s)

+
Λ′(−s)
Λ(−s)

= 2 Re(B) + 2 Re
∑

ρ

1
ρ

+
∑

ρ

{
1

s − ρ
− 1

s + ρ

}
.

By (4.30) it follows that the first two terms on the right-hand side cancel and
hence we get (

Λ(s)
Λ(s + 1)

)′
· Λ(s + 1)

Λ(s)
= 2

∑
ρ

Re(ρ)
(s − ρ)(s + ρ)

.(5.10)
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Therefore, combining (4.18), (5.5) and (5.8), we obtain

r′(π1 ⊗ π2, s)
r(π1 ⊗ π2, s)

= log N(π1 × π̃2)

+ a

{
p′(s + 1)
p(s + 1)

− p′(s)
p(s)

}
+ 2

∑
ρ

Re(ρ)
(s − ρ)(s + ρ)

.

In particular, if s = iλ, λ ∈ R, then it follows from the definition of p(s) that

r′(π1 ⊗ π2, iλ)
r(π1 ⊗ π2, iλ)

= log N(π1 × π̃2)

+2a
k∑

i=0

{
ai(k/2 − i + 1)

λ2 + (k/2 − i + 1)2
− ai(k/2 − i − 1)

λ2 + (k/2 − i − 1)2

}
+2

∑
ρ

Re(ρ)
Re(ρ)2 + (Im(ρ) − λ)2

.

Proposition 5.1. There exists C > 0 such that∫ T

−T

∣∣∣∣r′(π1 ⊗ π2, iλ)
r(π1 ⊗ π2, iλ)

∣∣∣∣ dλ ≤ CT log(T + ν(π1 × π̃2))

for all T > 0 and πi ∈ Πdis(GLmi
(A)), i = 1, 2.

Proof. By the above formula it suffices to estimate the integral∫ T

−T

∑
ρ

|Re(ρ)|
Re(ρ)2 + (Im(ρ) − λ)2

dλ.

We split the series as follows∑
ρ

=
∑

| Im(ρ)|≤T+1

+
∑

| Im(ρ)|>T+1

.

To estimate the integral of the first sum, observe that for all β ∈ R+ and γ ∈ R
we have ∫ T

−T

β

β2 + (γ − λ)2
dλ ≤

∫ ∞

−∞

dλ

1 + λ2
= π.

Hence by Proposition 4.5 we get∫ T

−T

∑
| Im(ρ)|≤T+1

|Re(ρ)|
Re(ρ)2 + (Im(ρ) − λ)2

dλ ≤ πN(T + 1, π1, π̃2)

≤ CT log(T + ν(π1 × π̃2)).

It remains to consider the integral of the second sum. Observe that by
(5.7) the zeros ρ of Λ(s) satisfiy |Re(ρ)| ≤ k/2 + 1. Set

σ = k + 3, C = 2(k + 2)2.
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Then the following inequality holds for all λ ∈ R with |λ| ≤ T , all β ∈ R× with
|β| ≤ k/2 + 1 and all γ ∈ R with |γ| > T + 1:

|β|
β2 + (γ − λ)2

≤ C

{
σ − β

(σ − β)2 + (γ − T )2
+

σ − β

(σ − β)2 + (γ + T )2

}
.

Thus we get ∑
| Im(ρ)|>T+1

|Re(ρ)|
Re(ρ)2 + (Im(ρ) − λ)2

≤ C

{∑
ρ

σ − Re(ρ)
(σ − Re(ρ))2 + (Im(ρ) − T )2

+
∑

ρ

σ − Re(ρ)
(σ − Re(ρ))2 + (Im(ρ) + T )2

}
.

Combining (5.7) and (4.31), we see that for σ = k +3 there exists C1 > 0 such
that ∑

ρ

σ − Re(ρ)
(σ − Re(ρ))2 + (Im(ρ) − T )2

≤ C1 log(|T | + ν(π1 × π̃2))

for all T ∈ R and πi ∈ Πdis(GLmi
(A)), i = 1, 2. Combining these observation

we get∫ T

−T

∑
| Im(ρ)|>T+1

|Re(ρ)|
Re(ρ)2 + (Im(ρ) − λ)2

≤ CT log(T + ν(π1 × π̃2)).

This completes the proof of the proposition.

The next proposition will be important for the determination of the asymp-
totic behaviour of the spectral side.

Proposition 5.2. There exists C > 0 such that∫ ∞

−∞
|r′(π1 ⊗ π2, iλ)r(π1 ⊗ π2,iλ)−1|e−tλ2

dλ

≤ C log(1 + ν(π1 × π̃2))
1 + | log t|√

t

for all 0 < t ≤ 1 and πi ∈ Πdis(GLmi
(A)), i = 1, 2.

Proof. By Proposition 5.1,∫ λ

0
|r′(π1 ⊗ π2, iu)r(π1 ⊗ π2, iu)−1|du ≤ Cλ2
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as |λ| → ∞. Hence, using integration by parts, we see that the integral on the
left-hand side of the claimed inequality equals

2t

∫ ∞

−∞

∫ λ

0
|r′(π1 ⊗ π2, iu)r(π1 ⊗ π2, iu)−1|du λe−tλ2

dλ.

Applying Proposition 5.1 we get∫ ∞

−∞
|r′(π1 ⊗ π2, iλ)r(π1 ⊗ π2, iλ)−1|e−tλ2

dλ

≤ Ct

∫ ∞

−∞
log (|λ| + ν(π1 × π̃2))λ2e−tλ2

dλ

≤ C1 log(1 + ν(π1 × π̃2))
1 + | log t|√

t

for all 0 < t ≤ 1 and πi ∈ Πdis(GLmi
(A)), i = 1, 2.

Let M ∈ L and let Q, P ∈ P(M). Our next goal is to estimate the
corresponding integrals involving the generalized logarithmic derivatives of the
global normalizing factors rQ|P (π, λ). For this purpose we will use the notion of
a (G, M) family introduced by Arthur in Section 6 of [A5]. For the convenience
of the reader we recall the definition of a (G, M) family and explain some of
its properties.

For each P ∈ P(M), let cP (λ) be a smooth function on ia∗M . Then the
set

{cP (λ) | P ∈ P(M)}

is called a (G, M) family if the following holds: Let P, P ′ ∈ P(M) be adjacent
parabolic groups and suppose that λ belongs to the hyperplane spanned by
the common wall of the chambers of P and P ′. Then

cP (λ) = cP ′(λ).

Let

θP (λ) = vol
(
aG

P /Z(∆∨
P )

)−1 ∏
α∈∆P

λ(α∨), λ ∈ ia∗P ,(5.11)

where Z(∆∨
P ) is the lattice in aG

P generated by the co-roots

{α∨ | α ∈ ∆P }.

Let {cP (λ)} be a (G, M) family. Then by Lemma 6.2 of [A5], the function

cM (λ) =
∑

P∈P(M)

cP (λ)θP (λ)−1(5.12)

extends to a smooth function on ia∗M . The value of cM (λ) at λ = 0 is of
particular importance in connection with the spectral side of the trace formula.
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It can be computed as follows. Let p = dim(AM/AG). Set λ = tΛ, t ∈ R,
Λ ∈ a∗M , and let t tend to 0. Then

cM (0) =
1
p!

∑
P∈P(M)

(
lim
t→0

(
d

dt

)p

cP (tΛ)
)

θP (Λ)−1(5.13)

[A5, (6.5)]. This expression is of course independent of Λ.
For any (G, M) family {cP (λ) | P ∈ P(M)} and any L ∈ L(M) there is

associated a natural (G, L) family which is defined as follows. Let Q ∈ P(L)
and suppose that P ⊂ Q. The function

λ ∈ ia∗L �→ cP (λ)

depends only on Q. We will denote it by cQ(λ). Then

{cQ(λ) | Q ∈ P(L)}

is a (G, L) family. We write

cL(λ) =
∑

Q∈P(L)

cQ(λ)θQ(λ)−1

for the corresponding function (5.12).
Let Q ∈ P(L) be fixed. If R ∈ PL(M), then Q(R) is the unique group in

P(M) such that Q(R) ⊂ Q and Q(R)∩L = R. Let cQ
R be the function on ia∗M

which is defined by
cQ
R(λ) = cQ(R)(λ).

Then {cQ
R(λ) | R ∈ PL(M)} is an (L, M) family. Let cQ

M (λ) be the function
(5.12) associated to this (L, M) family.

We consider now special (G, M) families defined by the global normalizing
factors. Fix P ∈ P(M), π ∈ Πdis(M(A)) and λ ∈ ia∗M . Define

νQ(P, π, λ,Λ) := rQ|P (π, λ)−1rQ|P (π, λ + Λ), Q ∈ P(M).(5.14)

This set of functions is a (G, M) family [A4, p. 1317]. It is of a special form.
By (5.3) we have

νQ(P, π, λ,Λ) =
∏

α∈ΣQ∩ΣP

rα(π, λ(α∨))−1rα(π, λ(α∨) + Λ(α∨)).

Suppose that L ∈ L(M), L1 ∈ L(L) and S ∈ P(L1). Let

{νS
Q1

(P, π, λ,Λ) | Q1 ∈ PL1(L)}

be the associated (L1, L) family and let νS
L(P, π, λ,Λ) be the function (5.12)

defined by this family. Set

νS
L(P, π, λ) := νS

L(P, π, λ, 0).
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If α is any root in Σ(G, AM ), let α∨
L denote the projection of α∨ onto aL. If

F is a subset of Σ(G, AM ), let F∨
L be the disjoint union of all the vectors α∨

L,
α ∈ F . Then by Proposition 7.5 of [A4] we have

νS
L(P, π, λ) =

∑
F

vol(aL1
L /Z(F∨

L ))

·
( ∏

α∈F

rα(π, λ(α∨))−1r′α(π, λ(α∨))

)
,

(5.15)

where F runs over all subsets of Σ(L1, AM ) such that F∨
L is a basis of a

L1
L . Let

t > 0. Then by (5.15),∫
ia∗

L/a∗
G

|νS
L(P, π, λ)|e−t‖λ‖2

dλ ≤
∑
F

vol(aL1
L /Z(F∨

L ))

·
∫

ia∗
L/a∗

G

∏
α∈F

∣∣∣rαπ, λ(α∨))−1rα′(π, λ(α∨))
∣∣∣e−t‖λ‖2

dλ.

Fix any subset F of Σ(L1, AM ) such that F∨
L is a basis of a

L1
L . Let

{ω̃α | α ∈ F}
be the basis of (aL1

L )∗ which is dual to F∨
L . We can write λ ∈ ia∗L/ia∗G as

λ =
∑
α∈F

zαω̃α + λ1, zα ∈ iR, λ1 ∈ ia∗L1
/ia∗G.

Observe that λ(α∨) = zα. Let l1 = dim(AL1/AG). Then there exists C > 0,
independent of π, such that for all t > 0,∫

ia∗
L/a∗

G

∏
α∈F

∣∣rα(π, λ(α∨))−1r′α(π, λ(α∨))
∣∣e−t‖λ‖2

dλ

≤ Ct−l1/2
∏
α∈F

∫
iR

∣∣rα(π, zα)−1r′α(π, zα)
∣∣e−tz2

α dzα.

(5.16)

Suppose that M = GLn1 × · · · × GLnr
. Then π = π1 ⊗ · · · ⊗ πr with πi ∈

Πdis(GLni
(A)). Now recall that a given root α ∈ Σ(G, AM ) corresponds to an

ordered pair (i, j) of distinct integers i and j between 1 and r. Then it follows
from (5.4) and (5.5) that rα(π, s) = r(πi ⊗ πj , s). Let l = dim(AL/AG) and
k = dim(AL/AL1). Then by Proposition 5.2 and (5.16), there exists C > 0
such that ∫

ia∗
L/a∗

G

|νS
L(P, π,λ)|e−t‖λ‖2

dλ

≤ C
∏
i,j

log(1 + ν(πi × π̃j))
(1 + | log t|)k

tl/2

(5.17)

for all 0 < t ≤ 1 and all π ∈ Πdis(M(A)).
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Next we shall estimate the numbers ν(πi × π̃j). For π∞ ∈ Π(GLm(R)), let
the complex numbers µj(π∞), j = 1, . . . , m, be defined by (4.14) and set

c(π∞) =

 m∑
j=1

|µj(π∞)|2
1/2

.

Given an open compact subgroup Kf of GLm(Af ), set

Π(GLm(A))Kf
:= {π ∈ Π(GLm(A)) | HKf

πf
�= 0},

where π = π∞⊗πf and Hπf
denotes the Hilbert space of the representation πf .

Lemma 5.3. Let Kf,i ⊂ GLmi
(Af ), i = 1, 2, be two open compact sub-

groups. There exists C > 0 such that

ν(π1 × π2) ≤ C(1 + c(π1,∞) + c(π2,∞))

for all πi ∈ Π(GLmi
(A))Kf,i

, i = 1, 2.

Proof. First consider c(π1×π2) which is defined by (4.21). It follows from
Lemma 4.2 that there exists C > 0 such that

c(π1 × π2) ≤ C(c(π1,∞) + c(π2,∞))

for all πi ∈ Π(GLmi
(A)), i = 1, 2. It remains to estimate N(π1 × π2). For this

we first observe that, as the epsilon factor is a product of local epsilon factors,
we can factor N(π1 × π2) as

N(π1 × π2) =
∏
p

N(π1,p × π2,p),

where p runs over the finite places of Q. This is a finite product. In fact, if p

is unramified for both π1 and π2, then N(π1,p × π2,p) = 1. Moreover there is
an integer f(π1,p × π2,p) such that

N(π1,p × π2,p) = pf(π1,p×π2,p)

(see e.g. [MS]). Since we fix the ramification, there is a finite set S of finite
places of Q, such that

N(π1 × π2) =
∏
p∈S

pf(π1,p×π2,p)

for all πi ∈ Π(GLmi
(A))Kf,i

, i = 1, 2. This reduces our problem to the esti-
mation of f(π1,p × π2,p). Let f(πi,p) be the conductor of πi,p, i = 1, 2. Then
f(πi,p) ≥ 0 and by Theorem 1 of [BH] and Corollary (6.5) of [BHK] we have

0 ≤ f(π1,p × π2,p) ≤ m1f(π1,p) + m2f(π2,p).(5.18)

Let m ∈ N and let Kp be an open compact subgroup of GLm(Qp). By Lemma
2.2 of [MS] there exists Cp > 0 such that f(πp) ≤ Cp for all πp ∈ Π(GLm(Qp))
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with π
Kp
p �= 0. Together with (5.18) this implies that there exists C > 0 such

that
N(π1 × π2) ≤ C

for all πi ∈ Π(GLmi
(A))Kf,i

, i = 1, 2. This completes the proof of the lemma.

We continue with the estimation of c(π∞). Given π∞ ∈ Π(GLm(R), ξ0),
let λπ∞ be the Casimir eigenvalue of the restriction of π∞ to GLm(R)1. Fur-
thermore for σ ∈ Π(O(m)) let λσ denote the Casimir eigenvalue of σ. We note
that if [π∞|O(m) : σ] > 0, then −λπ∞ + λσ ≥ 0 [DH, Lemma 2.6] .

Lemma 5.4. There exists C > 0 such that

c(π∞) ≤ C(1 − λπ∞ + λσ)1/2

for all π∞ ∈ Π(GLm(R), ξ0) and σ ∈ Π(O(m)) with [π∞|O(m) : σ] > 0.

Proof. Write π∞ as the Langlands quotient π∞ = JGLm

R (τ, s), where τ is
a discrete series representation of MR(R) and the parameters s1, . . . , sr ∈ C
satisfy Re(s1) ≥ Re(s2) ≥ · · · ≥ Re(sr). We may assume that the central
character of τ is trivial on AR(R)0 and hence, we can regard τ as a discrete
series representation of MR(R)1. Let m1

R denote the Lie algebra of MR(R)1.
Note that m1

R is the direct sum of a finite number of copies of sl(2, R). Let
t ⊂ m1

R be the standard compact Cartan subalgebra equipped with the canon-
ical norm. Then h = t⊕ aR is a Cartan subalgebra of glm(R). Let Λτ ∈ it∗ be
the Harish-Chandra parameter of τ . It follows from the definition of the pa-
rameters µj(π∞) in terms of the Langlands parameters that there exists C > 0
such that

c(π∞)2 ≤ C(‖Λτ‖2 + ‖s‖2)

for all π∞ ∈ Π(GLm(R), ξ0). Let γ : Z(glm(C)) → I(hC) be the Harish-
Chandra homomorphism. By Proposition 8.22 of [Kn] the infinitesimal char-
acter χ of the induced representation IGLm

R (τ, s) with respect to h is given by
χ(Z) = (Λτ + s)(γ(Z)), Z ∈ Z(glm(C)). Since π∞ is an irreducible quotient
of IGLm

R (τ, s), it has the same infinitesimal character. Let H1, . . . , Hr be an
orthonormal basis of aR and Hr+1, . . . , Hm an orthonormal basis of t. Then

γ(Ω) =
r∑

i=1

H2
i −

m∑
j=r+1

H2
j − ‖ρ‖2

[Wa1, p. 168]. Hence, the Casimir eigenvalue λπ of π∞ is given by

λπ∞ = (Λτ + s)(γ(Ω)) =
r∑

i=1

s2
i + ‖Λτ‖2 − ‖ρ‖2.
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Since π∞ is unitary, it follows from Theorem 3.3 of Chapter XI of [BW] that
there exists C > 0, independent of π∞, such that ‖Re(s)‖ ≤ C. Hence there
exists C1 > 0 such that

‖Λτ‖2 + ‖s‖2 ≤ C1 − λπ∞ + ‖Λτ‖2

for all π∞ ∈ Π(GLm(R), ξ0). Now let σ ∈ Π(O(m)) and suppose that π∞ ∈
Π(GLm(R), ξ0) is such that [π∞|O(m) : σ] > 0. Since σ occurs in π∞, it also
occurs in IGLm

R (τ, s). Using Frobenius reciprocity as in [Kn, p. 208], we see
that there exists ω ∈ Π(O(m) ∩ MR(R)) such that

[τ |O(m)∩MR(R) : ω] > 0 and [σ|O(m)∩MR(R) : ω] > 0.

Let λσ and λω denote the Casimir eigenvalues of σ and ω, respectively. By
[Mu2, (5.15)], the second inequality implies λω ≤ λσ. On the other hand, by
[Wa2, p. 398], the first inequality implies

‖Λτ‖2 ≤ λω + ‖ρR‖2.

By combining our estimations the lemma follows.

Now let Kf be an open compact subgroup of G(Af ). Set

KM,f = Kf ∩ M(Af ).

Then KM,f is an open compact subgroup of M(Af ). There exist open compact
subgroups Kf,i of GLni

(Af ), i = 1, . . . , r, such that Kf,1 × · · · × Kf,r is a
subgroup of finite index of Kf . Set

Π(M(A), ξ0)Kf
= {π ∈ Π(M(A), ξ0)

∣∣HKM,f
πf

�= {0}},

where π = π∞ ⊗ πf . Let π ∈ Π(M(A), ξ0)Kf
. Then π = π1 ⊗ · · · ⊗ πr and πi

belongs to Π(GLni
(A), ξ0)Kf,i

and by Lemma 5.3 it follows that there exists
C > 0 such that∏

i,j

log(1 + ν(πi × π̃j)) ≤ C
∏
i,j

log(2 + c(πi,∞) + c(πj,∞))(5.19)

for all π = π1 ⊗ · · · ⊗ πr ∈ Π(M(A), ξ0)Kf
. Let KM,∞ = O(n1) × · · · × O(nr)

be the standard maximal compact subgroup of M(R). Let σ ∈ Π(O(n)). For
π ∈ Π(M(A), ξ0) set

[π∞ : σ] =
∑

τ∈Π(KM,∞)

[π∞|KM,∞ : τ ][σ|KM,∞ : τ ].

Put

Π(M(A), ξ0)Kf ,σ = {π ∈ Π(M(A), ξ0)Kf
| [π∞ : σ] > 0}

and
Πdis(M(A), ξ0)Kf ,σ = Πdis(M(A), ξ0) ∩ Π(M(A), ξ0)Kf ,σ.
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Suppose that π ∈ Π(M(A), ξ0)Kf ,σ. Let τ ∈ Π(KM,∞) be such that [σ|KM,∞ : τ ]
> 0 and [π∞|KM,∞ : τ ] > 0.

Let λπ∞ and λτ denote the Casimir eigenvalues of the restriction of π∞
to M(R)1 and of τ , respectively. Note that λπ∞ =

∑
i λπi,∞ and λτ =

∑
i λτi

,
where τ = ⊗iτi. Then it follows from (5.19) and Lemma 5.4 that there exists
C > 0 such that∏

i,j

log(1 + ν(πi × π̃j)) ≤ C
∏
i,j

log(2 − λπi,∞ + λτi
− λπj,∞ + λτj

)

≤ C
(
log(2 − λπ∞ + λτ )

)r2

for all π ∈ Π(M(A), ξ0)Kf ,σ. Since there are only finitely many τ that occur
in σ|KM,∞ , we get∏

i,j

log(1 + ν(πi × π̃j)) ≤ C1

(
log(2 + |λπ∞ |)

)r2

(5.20)

for all π ∈ Π(M(A), ξ0)Kf ,σ. Combining (5.17)–(5.20) we obtain

Proposition 5.5. Let M ∈ L, L ∈ L(M) and P ∈ P(M). Let l =
dim(AL/AG). Let Kf be an open compact subgroup of GLn(Af ) and let σ ∈
Π(O(n)). There exists C > 0 such that∫

ia∗
L/a∗

G

|νS
L(P, π, λ)|e−t‖λ‖2

dλ ≤ C (log(2 + |λπ∞ |))n2 (1 + | log t|)l

tl/2

for all 0 < t ≤ 1 and π ∈ Πdis(M(A), ξ0)Kf ,σ.

6. The spectral side

We shall use the noninvariant trace formula of Arthur [A1], [A2], applied
to the heat kernel, to determine the growth of the discrete spectrum. To begin
with, we explain the general structure of the spectral side of the Arthur trace
formula. The spectral side is a sum of distributions∑

χ∈X

Jχ(f), χ ∈ C∞
0 (G(A)1).

Here X is the set of cuspidal data which consist of Weyl group orbits of pairs
(MB, ρB), where MB is the Levi component of a parabolic subgroup and ρB

is a cuspidal automorphic representation of MB(A). The distributions Jχ are
described by Theorem 8.2 of [A4]. Let C1(G(A)1) be the space of integrable
rapidly decreasing functions on G(A)1 [MS, §1.3]. In [MS, Th. 0.1] it was
proved that the spectral side of the trace formula for GLn is absolutely con-
vergent for all f ∈ C1(G(A)1). In this case the expression of the spectral side
simplifies.
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To describe this in more detail, we need to introduce some notation. Let
M ∈ L and P, Q ∈ P(M). Let A2(P ) and A2(Q) be the corresponding spaces
of automorphic functions (see §1.5). Let W (aP , aQ) be the set of all linear
isomorphisms from aP to aQ which are restrictions of elements of the Weyl
group W (A0). The theory of Eisenstein series associates to each s ∈ W (aP , aQ)
an intertwining operator

MQ|P (s, λ) : A2(P ) → A2(Q), λ ∈ a∗P,C,

which, for Re(λ) in a certain chamber, can be defined by an absolutely conver-
gent integral and admits an analytic continuation to a meromorphic function
of λ ∈ a∗P,C [La]. Set

MQ|P (λ) := MQ|P (1, λ).

Fix P ∈ P(M) and λ ∈ ia∗M . For Q ∈ P(M) and Λ ∈ ia∗M define

MQ(P, λ,Λ) = MQ|P (λ)−1MQ|P (λ + Λ).

Then

{MQ(P, λ, Λ) | Λ ∈ ia∗M , Q ∈ P(M)}(6.1)

is a (G, M) family with values in the space of operators on A2(P ) [A4, p. 1310].
Let L ∈ L(M). Then, as explained in the previous section, the (G, M) family
(6.1) has an associated (G, L) family

{MQ1(P, λ,Λ) | Λ ∈ ia∗L, Q1 ∈ P(L)}

and
ML(P, λ, Λ) =

∑
Q1∈P(L)

MQ1(P, λ,Λ)θQ1(Λ)−1

extends to a smooth function on ia∗L. Put

ML(P, λ) = ML(P, λ, 0).

This operator depends only on the intertwining operators. It equals

ML(P, λ) =

lim
Λ→0

 ∑
Q1∈P(L)

vol(aG
Q1

/Z(∆∨
Q1

))MQ|P (λ)−1 MQ|P (λ + Λ)∏
α∈∆Q1

Λ(α∨)

 ,

where λ and Λ are constrained to lie in ia∗L, and for each Q1 ∈ P(L), Q is a
group in P(MP ) which is contained in Q1. Then ML(P, λ) is an unbounded
operator which acts on the Hilbert space A2(P ). For π ∈ Π(M(A)1) let A2

π(P )
be the subspace of A2(P ) determined by π (see §1.5). Let ρπ(P, λ) be the
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induced representation of G(A) in A2
π(P ). Let WL(aM )reg be the set of ele-

ments s ∈ W (aM ) such that {H ∈ aM | sH = H} = aL. For any function
f ∈ C1(G(A)1) and s ∈ WL(aM )reg set

JL
M,P (f, s)

=
∑

π∈Πdis(M(A)1)

∫
ia∗

L/ia∗
G

tr(ML(P, λ)MP |P (s, 0)ρπ(P, λ, f)) dλ.(6.2)

By Theorem 0.1 of [MS] this integral-series is absolutely convergent with
respect to the trace norm. Furthermore for M ∈ L and s ∈ WL(aM )reg set

aM,s = |P(M)|−1|WM
0 ||W0|−1|det(s − 1)aL

M
|−1.

Then for any f in C1(G(A)1), the spectral side Jspec(f) of the Arthur trace
formula is given by

Jspec(f) =
∑
M∈L

∑
L∈L(M)

∑
P∈P(M)

∑
s∈W L(aM )reg

aM,sJ
L
M,P (f, s).(6.3)

Note that all sums in this expression are finite.
We shall now evaluate the spectral side at a function φt, t > 0, which is

given in terms of the heat kernel of a Bochner-Laplace operator. Then our
main purpose is to determine the behaviour of Jspec(φt) as t → 0.

Let G(R)1 = G(A)1 ∩G(R). By definition G(R)1 consisits of all g ∈ G(R)
with |det(g)| = 1. Hence G(R)1 is semisimple and

G(R) = G(R)1 · AG(R)0.

Let
X = G(R)1/K∞

be the associated Riemannian symmetric space. Given σ ∈ Π(K∞), let Ẽσ →
X be the associated homogeneous vector bundle. Let ΩG(R)1 be the Casimir
element of G(R)1 and let ∆̃σ be the operator in L2(Ẽσ) which is induced by
−R(ΩG(R)1) ⊗ Id. Let

Hσ
t ∈

(
C1(G(R)1) ⊗ End(Vσ)

)K∞×K∞(6.4)

be the kernel of the heat operator e−t∆̃σ where C1(G(R)) is Harish-Chandra’s
space of integrable rapidly decreasing functions. Set

hσ
t = trHσ

t .

We extend hσ
t to a function on G(R) by

hσ
t (g · z) = hσ

t (g), g ∈ G(R)1, z ∈ AG(R)0.

Then hσ
t satisfies

hσ
t (gz) = hσ

t (g), g ∈ G(R), z ∈ AG(R)0.
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Let χσ be the character of σ. Then hσ
t also satisfies

hσ
t = χσ ∗ hσ

t ∗ χσ.

Let Kf be an open compact subgroup of G(Af ) and let 1Kf
be the character-

istic function of Kf in G(Af ). Set

χKf
= vol(Kf )−11Kf

.

Define the function φt on G(A) by

φt(g) = hσ
t (g∞)χKf

(gf )(6.5)

for any point
g = g∞gf , g∞ ∈ G(R), gf ∈ G(Af ),

in G(A). Then φt satisfies φt(gz) = φt(g) for z ∈ AG(R)0, g ∈ G(A). It
follows from (6.4) and the definition of C1(G(A)1) that the restriction φ1

t of φt

to G(A)1 belongs to C1(G(A)1).
Let π be any unitary representation of G(A) which is trivial on AG(R)0.

Then we can define

π(φt) =
∫

G(A)/AG(R)0
φt(g)π(g) dg.

Suppose that π = π∞ ⊗ πf , where π∞ and πf are unitary representations of
G(R) and G(Af ), respectively. Then π∞ is trivial on AG(R)0. So we can set

π∞(φt) =
∫

G(R)/AG(R)0
π∞(g∞)hσ

t (g∞) dg∞.

Let ΠKf
denote the orthogonal projection of the Hilbert space Hπf

of πf onto
the subspace HKf

πf of Kf -invariant vectors. Then

π(φt) = π∞(hσ
t ) ⊗ ΠKf

.

Now let π ∈ Π(M(A)1). We identify π with a representation of M(A) which
is trivial on AM (R)0. Let IG

P (πλ), λ ∈ a∗M,C, be the induced representation of
G(A). Let π = π∞ ⊗ πf . Then

IG
P (πλ) = IG

P (π∞,λ) ⊗ IG
P (πf,λ).

Let HP (π∞)σ denote the σ-isotypical subspace of the Hilbert space HP (π∞)
of the induced representation. Then HP (π∞)σ is an invariant subspace of
IG
P (π∞,λ, hσ

t ). Let λπ be the Casimir eigenvalue of the restriction of π∞ to
M(R)1. By Proposition 8.22 of [Kn] it follows that

IG
P (π∞,λ, hσ

t ) � HP (π∞)σ = e−t(−λπ+‖λ‖2) Id .

Now observe that there is a canonical isomorphism

jP : HP (π) ⊗ HomM(A)

(
π, I

M(A)
M(Q)AM (R)0(ξ0)

)
→ A2

π(P ),
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which intertwines the induced representations. Let ΠKf ,σ denote the orthogo-
nal projection of A2

π(P ) onto A2
π(P )Kf ,σ. Then it follows that

ρπ(P, λ, φt) = e−(−λπ+‖λ‖2)ΠKf ,σ.(6.6)

Suppose that λ ∈ (aG
P )∗C. Then ρπ(P, λ, g) is trivial on AG(R)0. This implies

ρπ(P, λ, φt) = ρπ(P, λ, φ1
t ), where φ1

t is the restriciton of φt to G(A)1. Together
with (6.6) we get

JL
M,P (φ1

t , s) =
∑

π∈Πdis(M(A)1)

etλπ

·
∫

ia∗
L/a∗

G

e−t‖λ‖2
tr(ML(P, λ)MP |P (s, 0)ΠKf ,σ) dλ.

(6.7)

To study this integral-series, we introduce the normalized intertwining opera-
tors

NQ|P (π, λ) := rQ|P (π, λ)−1MQ|P (π, λ), λ ∈ a∗M,C,(6.8)

where rQ|P (π, λ) are the global normalizing factors considered in the previous
section. Let P ∈ P(M) and λ ∈ ia∗M be fixed. For Q ∈ P(M) and Λ ∈ ia∗M
define

NQ(P, π, λ,Λ) = NQ|P (π, λ)−1NQ|P (π, λ + Λ),(6.9)

Then as functions of Λ ∈ ia∗M ,

{NQ(P, π, λ,Λ) | Q ∈ P(M)}
is a (G, M) family. The verification is the same as in the case of the unnor-
malized intertwining operators [A4, p. 1310]. For L ∈ L(M), let

{NQ1(P, π, λ,Λ) | Λ ∈ ia∗L, Q1 ∈ P(L)}
be the associated (G, L) family.

Let MQ1(P, π, λ,Λ) be the restriction of MQ1(P, λ, Λ) to A2
π(P ). Then by

(6.8) and (5.14) it follows that

MQ1(P, π, λ,Λ) = NQ1(P, π, λ,Λ)νQ1(P, π, λ,Λ)(6.10)

for all Λ ∈ ia∗L and all Q1 ∈ P(L).
For Q ⊃ P let L̂Q

P ⊂ a
Q
P be the lattice generated by {ω̃∨ | ω̃ ∈ ∆̂Q

P }. Define

θ̂Q
P (λ) = vol(aQ

P /L̂Q
P )−1

∏
ω̃∈∆̂Q

P

λ(ω̃∨).

For S ∈ F(L) put

N′
S(P, π, λ)

= lim
Λ→0

∑
{R|R⊃S}

(−1)dim(AS/AR)θ̂R
S (Λ)−1NR(P, π, λ,Λ)θR(Λ)−1.(6.11)
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Let ML(P, π, λ) be the restriction of ML(P, λ) to A2
π(P ). Then by (6.10) and

Lemma 6.3 of [A5] we get

ML(P, π, λ) =
∑

S∈F(L)

N′
S(P, π, λ)νS

L(P, π, λ).(6.12)

Let N′
S(P, π, λ)Kf ,σ denote the restriction of N′

S(P, π, λ) to A2
π(P )Kf ,σ. Then

by (6.7),

JL
M,P (φ1

t , s) =
∑

π∈Πdis(M(A)1)

etλπ

·
∑

S∈F(L)

∫
ia∗

L/a∗
G

e−t‖λ‖2
νS

L(P, π, λ) tr(MP |P (s, 0)N′
S(P, π, λ)Kf ,σ) dλ.

(6.13)

Next we shall estimate the norm of N′
S(P, π, λ)Kf ,σ. For a given place v

of Q let JQ|P (πv, λ) be the intertwining operator between the induced repre-
sentations IG

P (πv,λ) and IG
Q (πv,λ). Let

RQ|P (πv, λ) = rQ|P (πv, λ)−1JQ|P (πv, λ), λ ∈ a∗M,C,

be the normalized local intertwining operator. These operators satisfy the con-
ditions (R1)− (R8) of Theorem 2.1 of [A7]. Assume that Kf =

∏
p<∞ Kp. For

any place v denote by HP (πv) the Hilbert space of the induced representation
IG
P (πv). If p < ∞ let RQ|P (πp, λ)Kp

be the restriction of RQ|P (πp, λ) to the
subspace of Kp-invariant vectors HP (πp)Kp in HP (πp). Let RQ|P (π∞, λ)σ de-
note the restriction of RQ|P (π∞, λ) to the σ-isotypical subspace of IG

P (π∞) in
HP (π∞). It was proved in [Mu2, (6.24)] that there exist a finite set of places
S0, including the Archimedean one, and constants C > 0 and q ∈ N, such that

‖N′
S(P, π, λ)Kf ,σ‖ ≤ C

( ∑
p∈S0\{∞}

q∑
k=1

‖Dk
λRQ|P (πp, λ)Kp

‖

q∑
k=1

‖Dk
λRQ|P (π∞, λ)σ‖

)
for all λ ∈ ia∗M , σ ∈ Π(K∞) and π ∈ Π(M(A)). By Proposition 0.2 of [MS],
there exists C > 0 such that

‖N′
S(P, π, λ)Kf ,σ‖ ≤ C(6.14)

for all λ ∈ ia∗M and π ∈ Πdis(M(A)1). Observe that MP |P (s, 0) is unitary. Let
l = dim(AL/AG). Using (6.13), (6.14) and Proposition 5.5 it follows that there
exists C > 0 such that

|JL
M,P (φ1

t , s)| ≤ C
(2 + | log t|)l

tl/2

·
∑

π∈Πdis(M(A)1)

dimA2
π(P )Kf ,σ

(
log(1 + |λπ|)

)n2

etλπ
(6.15)
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for all 0 < t ≤ 1. The series can be estimated using Proposition 3.5. Let
XM = M(R)/K ′

M,∞ and let m = dimXM . It follows from Proposition 3.5 that
for every ε > 0 there exists C > 0 such that the series is bounded by Ct−m/2−ε

for 0 < t ≤ 1. This together with (6.15) yields the following proposition.

Proposition 6.1. Let m = dimXM and l = dimAL/AG. For every
ε > 0 there exists C > 0 such that

|JL
M,P (φ1

t , s)| ≤ Ct−(m+l)/2−ε

for all 0 < t ≤ 1.

Now we distinguish two cases. First assume that M = G. Then L =
P = G and s = 1. Let R1

dis be the restriciton of the regular representation
R1 of G(A)1 in L2(G(Q)\G(A)1) to the discrete subspace. Then JG

G,G(φ1
t , 1) =

Tr R1
dis(φ

1
t ). Let Rdis be the regular representation of G(A) in

L2
dis(AG(R)0G(Q)\G(A)).

Then the operator Rdis(φt) is isomorphic to R1
dis(φ

1
t ). Thus

JG
G,G(φ1

t , 1) = TrRdis(φt).

Given π ∈ Πdis(G(A), ξ0), let m(π) denote the multiplicity with which π occurs
in the regular representation of G(A) in L2(AG(R)0G(Q)\G(A)). Then using
Corollary 2.2 in [BM] we get

JG
G,G(φ1

t , 1)

=
∑

π∈Πdis(G(A),ξ0)

m(π) dim
(
HKf

πf

)
dim

(
Hπ∞ ⊗ Vσ

)O(n)
etλπ .(6.16)

Now assume that M �= G is a proper Levi subgroup. Let P = MN . Let
X = G(R)1/K∞. Then

X ∼= XM × AM (R)0/AG(R)0 × N(R).

Since l = dimAL/AG ≤ dimAM/AG, it follows that m+ l ≤ dimX − 1. Thus,
using this together with Proposition 6.1, we get

Theorem 6.2. Let d = dimX. For every open compact subgroup Kf of
G(Af ) and every σ ∈ Π(O(n)) the spectral side of the trace formula, evaluated
at φ1

t , satisfies

Jspec(φ1
t )

=
∑

π∈Πdis(G(A),ξ0)

m(π) dim
(
HKf

πf

)
dim

(
Hπ∞ ⊗ Vσ

)O(n)
etλπ

+ O(t−(d−1)/2)

(6.17)

as t → 0+.
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This theorem can be restated in a slightly different way as follows. There
exist arithmetic subgroups Γi ⊂ G(R), i = 1, . . . , m, such that

AG(R)0G(Q)\G(A)/Kf
∼=

m⊔
i=1

(Γi\G(R)1)

(cf. [Mu1, §9]). Let ∆σ,i be the operator induced by the negative of the Casimir
operator in C∞(Γi\G(R)1, σ), i = 1, . . . , m. Let

λ0 ≤ λ1 ≤ λ2 ≤ · · ·

be the L2-eigenvalues of ∆σ = ⊕m
i=1∆σ,i, where each eigenvalue is counted with

its multiplicity. Let d = dimX. If we proceed in the same way as in the proof
of Lemma 3.2, then it follows that (6.17) is equivalent to

Jspec(φ1
t ) =

∑
i

e−tλi + O(t−(d−1)/2)(6.18)

as t → 0+.
Let Γ(N) ⊂ SLn(Z) be the principal congruence subgroup of level N . Let

µ0 ≤ µ1 ≤ · · · be the eigenvalues, counted with multiplicity, of ∆σ acting in
L2(Γ(N)\SLn(R), σ). Then it follows from (6.18) and (3.10) that

Jspec(φ1
t ) = ϕ(N)

∑
i

e−tµi + O(t−(d−1)/2)(6.19)

as t → 0+.

Our next purpose is to study Jspec as a functional on the Schwartz space.
Let Kf be an open compact subgroup of G(Af ) and let σ ∈ Π(K∞). Denote
by C1(G(A)1;Kf , σ) the set of all h ∈ C1(G(A)1) which are bi-invariant under
Kf and transform under K∞ according to σ. Let ∆G be the Laplace operator
of G(R)1. Then we have

Proposition 6.3. For every open compact subgroup Kf of G(Af ) and
every σ ∈ Π(K∞) there exist C > 0 and k ∈ N such that

|Jspec(f)| ≤ C‖(Id +∆G)kf‖L1(G(A)1)

for all f ∈ C1(G(A)1;Kf , σ).

Proof. This follows essentially from the proof of Theorem 0.2 in [Mu2]
combined with Proposition 0.2 of [MS]. We include some details. Let M ∈ L,
L ∈ L(M) and P ∈ P(M). By (6.3) it suffices to estimate JL

M,P (f, s). Since
MP |P (s, 0) is unitary, it follows from (6.2) that

|JL
M,P (f, s)| ≤

∑
π∈Πdis(M(A)1)

∫
ia∗

L/a∗
G

‖ML(P, λ)ρπ(P, λ, f)‖1dλ,
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where ‖ · ‖1 denotes the trace norm for operators in the Hilbert space A2
π(P ).

By (6.12) it follows that the right-hand side is bounded by∑
π∈Πdis(M(A)1)

∫
ia∗

L/ia∗
G

‖N′
S(P, π, λ)ρπ(P, λ, f)‖1|νS

L(P, π, λ)| dλ.

The function νS
L(P, π, λ) can be estimated by Theorem 5.4 of [Mu2]. This

reduces our problem to the estimation of the trace norm of the operator
N′

S(P, π, λ)ρπ(P, λ, f). Let Kf be an open compact subgroup of G(Af )
and let σ ∈ Π(K∞). Denote by ΠKf ,σ the orthogonal projection of the
Hilbert space A2

π(P ) onto the finite-dimensional subspace A2
π(P )Kf ,σ. Let

f ∈ C1(G(A)1;Kf , σ). Then

ρπ(P, λ, f) = ΠKf ,σ ◦ ρπ(P, λ, f) ◦ ΠKf ,σ

for all π ∈ Π(M(A)1). Let
D = Id +∆G.

For any k ∈ N let ρπ(P, λ, D2k)Kf ,σ denote the restriction of the operator
ρπ(P, λ, D2k) to the subspace A2

π(P )Kf ,σ. Then

‖N′
S(P, π, λ)ρπ(P, λ, f)‖1

≤ ‖N′
S(P, π, λ)Kf ,σ‖ · ‖ρπ(P, λ, D2k)−1

Kf ,σ‖1

· ‖ρπ(P, λ, D2kf)‖.
(6.20)

By (6.9) of [Mu2] we get

‖ρπ(P, λ, D2k)−1
Kf ,σ‖ ≤ C

dimA2
π(P )Kf ,σ

(1 + ‖λ‖2 + λ2
π)k

,(6.21)

and since ρπ(P, λ) is unitary, we have

‖ρπ(P, λ, D2kf)‖ ≤ ‖D2kf‖L1(G(A)1).(6.22)

This, together with (6.14), gives C > 0 such that

‖N′
S(P, π, λ)ρπ(P, λ, f)‖1

≤ C‖D2kf‖L1(G(A)1)(1 + ‖λ‖)−k/2 dimA2
π(P )Kf ,σ

(1 + λ2
π)k/2

(6.23)

for all λ ∈ ia∗M and π ∈ Πdis(M(A)1). Let d = dimG(R)1/K∞. By Theorem
5.4 of [Mu2] there exists k0 ∈ N such that for k ≥ k0 we have∫

ia∗
L/a∗

G

|νS
L(P, π, λ)|(1 + ‖λ‖2)−k/2 dλ ≤ Ck(1 + λ2

π)8d2
(6.24)

for all π ∈ Πdis(M(A)1) with A2
π(P )Kf ,σ �= 0. Furthermore, by Proposition 3.4,∑

π∈Πdis(M(A)1)

dimA2
π(P )Kf ,σ

(1 + λ2
π)k/2

< ∞(6.25)
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for k > m/2 + 1, where m = dimM(R)1/KM,∞. Combining (6.23)–(6.25),
shows that for each k > m/2 + 16d2 + 1 there exists Ck > 0 such that∑

π∈Πdis(M(A)1)

∫
ia∗

L/ia∗
G

‖N′
S(P, π, λ)ρπ(P, λ, f)‖1|νS

L(P, π, λ)| dλ

≤ Ck‖D2kf‖L1(G(A)1).

This completes the proof.

Now we return to the function φt defined by (6.5). It follows from the
definition that the restriction φ1

t of φt to G(A)1 belongs to C1(G(A)1, Kf , σ).
We shall now modify φt in the following way. Let ϕ ∈ C∞

0 (R) be such that
ϕ(u) = 1, if |u| ≤ 1/2, and ϕ(u) = 0, if |u| ≥ 1. Let d(x, y) denote the geodesic
distance of x, y ∈ X and set

r(g∞) := d(g∞K∞, K∞).

Given t > 0, let ϕt ∈ C∞
0 (G(R)1) be defined by

ϕt(g∞) = ϕ(r2(g∞)/t1/2).

Then suppϕt is contained in the set
{
g∞ ∈ G(R)1 | r(g∞) < t1/4

}
. Extend ϕt

to G(R) by

ϕt(g∞z) = ϕt(g∞), g∞ ∈ G(R)1, z ∈ AG(R)0,

and then to a function on G(A) by multiplying ϕt by the characteristic function
of Kf . Put

φ̃t(g) = ϕt(g)φt(g), g ∈ G(A).(6.26)

Then the restriction φ̃1
t of φ̃t to G(A)1 belongs to C∞

c (G(A)1).

Proposition 6.4. There exist C, c > 0 such that

|Jspec(φ1
t ) − Jspec(φ̃1

t )| ≤ Ce−c/
√

t

for 0 < t ≤ 1.

Proof. Let ψt = φt − φ̃t and ft = 1 − ϕt. Let ψ1
t denote the restriction of

ψt to G(A)1. Then by Proposition 6.3 there exists k ∈ N such that

|Jspec(φ1
t ) − Jspec(φ̃1

t )| = |Jspec(ψ1
t )| ≤ Ck‖(Id +∆G)kψ1

t ‖L1(G(A)1).

In order to estimate the L1-norm of ψ1
t , recall that by definition

ψt(g∞gf ) = ft(g∞)hσ
t (g∞)χKf

(gf ).

Hence
‖(Id +∆G)kψ1

t ‖L1(G(A)1) = ‖(Id +∆G)k(fth
σ
t )‖L1(G(R)1).
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Let g(R)1 be the Lie algebra of G(R)1 and let X1, . . . , Xa be an orthonormal
basis of g(R)1. Then ∆G = −

∑
i X

2
i . Denote by ∇ the canonical connection

on G(R)1. Then it follows that there exists C > 0 such that

|(Id +∆G)kf(g)| ≤ C
2k∑
l=0

‖∇lf(g)‖, g ∈ G(R)1,

for all f ∈ C∞(G(R)1). By Proposition 2.1 there exist constants C, c > 0 such
that

‖∇jhσ
t (g)‖ ≤ Ct−(a+j)/2e−cr2(g)/t, g ∈ G(R)1,(6.27)

for j ≤ 2k and 0 < t ≤ 1. Let χt be the characteristic function of the set
R − (−t1/4, t1/4). Recall that ft(g) = (1 − ϕ)(r2(g)/t1/2) and (1 − ϕ)(u) is
constant for |u| ≥ 1. This implies that there exist constants C, c > 0 such that

‖∇jft(g)‖ ≤ Ct−kχt(r(g)), g ∈ G(R)1,(6.28)

for j ≤ 2k and 0 < t ≤ 1. Combining (6.27) and (6.28) we obtain

2k∑
l=0

‖∇l(fth
σ
t )(g)‖ ≤ C1t

−a/2−2kχt(r(g))e−cr2(g)/t

≤ C2e
−c1/

√
te−c1r2(g)

for all g ∈ G(R)1 and 0 < t ≤ 1. Finally note that for every c > 0, e−cr2(g) is
an integrable function on G(R)1. This finishes the proof.

7. Proof of the main theorem

In this section we evaluate the geometric side of the trace formula at
the function φ̃1

t and investigate its asymptotic behaviour as t → 0. Then we
compare the geometric and the spectral sides and prove our main theorem.

Let us briefly recall the structure of the geometric side Jgeo of the trace
formula [A1]. The coarse o-expansion of Jgeo(f) is a sum of distributions

Jgeo(f) =
∑
o∈O

Jo(f), f ∈ C∞
c (G(A)1),

which are parametrized by the set O of conjugacy classes of semisimple ele-
ments in G(Q). The distributions Jo(f) are defined in [A1]. We shall use the
fine o-expansion of the spectral side [A10] which expresses the distributions
Jo(f) in terms of weighted orbital integrals JM (γ, f). To describe the fine
o-expansion we have to introduce some notation. Suppose that S is a finite set
of valuations of Q. Set

G(QS)1 = G(QS) ∩ G(A)1,
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where
QS =

∏
v∈S

Qv.

Suppose that ω is a compact neighborhood of 1 in G(A)1. There is a finite set
S of valuations of Q, which contains the Archimedean place, such that ω is
the product of a compact neighborhood of 1 in G(QS)1 with

∏
v/∈S Kv. Let

S0
ω be the minimal such set. Let C∞

ω (G(A)1) denote the space of functions in
C∞

c (G(A)1) which are supported on ω. For any finite set S ⊃ S0
ω set

C∞
ω (G(QS)1) = C∞

ω (G(A)1) ∩ C∞
c (G(QS)1).

Let us recall the notion of (M, S)-equivalence [A10, p. 205]. For any γ ∈ M(Q)
denote by γs (resp. γu) the semisimple (resp. unipotent) Jordan component of
γ. Then two elements γ and γ′ in M(Q) are called (M, S)-equivalent if there
exists δ ∈ M(Q) with the following two properties.

(i) γs is also the semisimple Jordan component of δ−1γ′δ.

(ii) γu and (δ−1γ′δ)u, regarded as unipotent elements in Mγs
(QS), are

Mγs
(QS)-conjugate.

Denote by (M(Q))M,S the set of (M, S)-equivalence classes in M(Q). Note
that (M, S)-equivalent elements γ and γ′ in M(Q) are, in particular, M(QS)-
conjugate. Given γ ∈ M(Q), let

JM (γ, f), f ∈ C∞
c (G(QS)1),

be the weighted orbital integral associated to M and γ [A11]. We observe
that JM (γ, f) depends only on the M(QS)-orbit of γ. Then by Theorem 9.1
of [A10] there exists a finite set Sω ⊃ S0

ω of valuations of Q such that for all
S ⊃ Sω and any f ∈ C∞

ω (G(QS)1),

Jgeo(f) =
∑
M∈L

|WM
0 ||WG

0 |−1
∑

γ∈(M(Q))M,S

aM (S, γ)JM (γ, f).(7.1)

This is the fine o-expansion of the geometric side of the trace formula. The
interior sum is finite.

Recall that the restriction φ̃1
t of φ̃t to G(A)1 belongs to C∞

c (G(A)1) and
hence, Jgeo can be evaluated at φ̃1

t . By construction of φ̃1
t there exists a compact

neighborhood ω of 1 in G(A)1 and a finite set S ⊃ Sω of valuations of Q such
that

φ̃1
t ∈ C∞

ω (G(QS)1), 0 < t ≤ 1.

Hence we can apply (7.1) to evaluate Jgeo(φ̃1
t ). In this way our problem is re-

duced to the investigation of the weighted orbital integrals JM (γ, φ̃1
t ). Actually

for γ ∈ M(Q) we may replace φ̃1
t by φ̃t.
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To begin with we establish some auxiliary results. Given h ∈ G(R), let

Ch = {g−1hg | g ∈ G(R)}
be the conjugacy class of h in G(R).

Lemma 7.1. Let k ∈ K∞. Then Ck ∩K∞ is the K∞-conjugacy class of k.

Proof. Let g and k denote the Lie algebras of G(R) and K∞, respectively.
Let θ be a Cartan involution of g with fixed point set k and let p be the
(−1)-eigenspace of θ. Then the map

(k′, X) ∈ K∞ × p �−→ k′ exp(X) ∈ G(R)

is an analytic isomorphism of analytic manifolds. If k1 ∈ K∞, then k1 is a
θ-invariant semisimple element. Therefore, its centralizer Gk1 is a reductive
subgroup and the restriction of θ to Gk1 is a Cartan involution. Thus the
restriction of the above Cartan decomposition to the centralizer of k1 yields a
Cartan decomposition of Gk1(R). Let g ∈ G(R) such that g−1kg ∈ K∞. Write
g = k′ exp(X) with k′ ∈ K∞ and X ∈ p. Since g−1kg is θ-invariant, we get

exp(−X)k′−1
kk′ exp(X) = exp(X)k′−1

kk′ exp(−X).

Hence exp(2X) ∈ Gk′−1kk′(R). From the Cartan decomposition of the latter
group we conclude that exp(2X) = exp(Y ) for some Y ∈ pk′−1kk′ , and hence
X ∈ pk′−1kk′ . This implies that g−1kg = k′−1kk′.

It follows from Lemma 7.1 that Ck ∩ K∞ is a submanifold of Ck.

Lemma 7.2. Let k ∈ K∞−{±1}. Then Ck ∩K∞ is a proper submanifold
of Ck.

Proof. Let the notation be as in the previous lemma. First note that the
tangent space of Ck at k is given by

TkCk
∼= (Ad(k) − Id)(g).

Furthermore
Ad(k)(k) ⊂ k, Ad(k)(p) ⊂ p.

Hence we get

Tk(Ck ∩ K∞) = TkCk ∩ k = (Ad(k) − Id)(k),

and so the normal space Nk to Ck ∩ K∞ in Ck at k is given by

Nk
∼= (Ad(k) − Id)(p).

Suppose that Ad(k) = Id on p. Since k = [p, p], it follows that Ad(k) = Id on
g. Hence k belongs to the center of G0, which implies that k = ±1. Thus if
k �= ±1, we have dimNk > 0.
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Next we recall the notion of an induced space of orbits [A11, p. 255].
Given an element γ ∈ M(QS), let γG be the union of those conjugacy classes
in G(QS) which for any P ∈ P(M) intersect γNP (QS) in an open set. There
are only finitely many such conjugacy classes.

Proposition 7.3. Let d = dimG(R)1/K∞. Let M ∈ L and γ ∈ M(Q).
Then

lim
t→0

td/2JM (γ, φ̃t) = 0

if either M �= G, or M = G and γ �= ±1.

Proof. By Corollary 6.2 of [A11] the distribution JM (γ, φ̃t) is given by the
integral of φ̃t over γG with respect to a measure dµ on γG which is absolutely
continuous with respect to the invariant measure class. Thus JM (γ, φ̃t) is equal
to a finite sum of integrals of the form∫

Gγn(QS)\G(QS)
φ̃t(g−1γng)dµ(g),

where n ∈ NP (QS) for some P ∈ P(M). Now recall that by (6.5) and (6.26),
φ̃t(g) is the product of ϕt(g∞)hσ

t (g∞) with χKf
(gf ) for any g = g∞gf . Hence

our problem is reduced to the investigation of the integral∫
Gγn∞ (R)\G(R)

(ϕth
σ
t )(g−1

∞ γn∞g∞) dµ(g∞).

Furthermore, by Proposition 2.1 there exists C > 0 such that

|hσ
t (g∞)| ≤ Ct−d/2, 0 < t ≤ 1.

Hence it suffices to show that

lim
t→0

∫
Gγn∞ (R)\G(R)

ϕt(g−1
∞ γn∞g∞) dµ(g∞) = 0(7.2)

if either M �= G, or M = G and γ �= ±1.
By definition of γG, the conjugacy class of γn in G(QS) has to intersect

γNP (QS) in an open subset. This implies that γn∞ �= ±1, if either M �= G,
or M = G and γ �= ±1. Then it follows from Lemma 7.2 that Cγn∞ ∩ K∞ is
a proper submanifold of Cγn∞ . Being a proper submanifold, Cγn∞ ∩ K∞ is a
subset of Cγn∞ with measure zero with respect to dg and therefore, also with
respect to dµ. Next observe that∫

Gγn∞ (R)\G(R)
ϕt(g−1

∞ γn∞g∞) |f(g∞)| dg∞ < ∞.

Since suppϕt′ ⊂ suppϕt for t′ < t, and 0 ≤ ϕt ≤ 1 for all t > 0, there exists
C > 0 such that ∣∣∣∣ ∫

Gγn∞ (R)\G(R)
ϕt(g−1

∞ γn∞g∞) dµ(g∞)
∣∣∣∣ ≤ C
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for all 0 < t ≤ 1. Furthermore by definition of ϕt we have

lim
t→0

ϕt(x) = 0

for all x ∈ Cγn∞ − (Cγn∞ ∩ K∞). Since Cγn∞ ∩ K∞ has measure zero with
respect to dµ, (7.2) follows by the dominated convergence theorem.

We can now state the main result of this section.

Theorem 7.4. Let d = dimG(R)1/K∞, let Kf be an open compact sub-
group of G(Af ) and let σ ∈ Π(O(n)) such that σ(−1) = Id if −1 ∈ Kf . Then

lim
t→0

td/2Jgeo(φ̃1
t ) =

dim(σ)
(4π)d/2

vol(G(Q)\G(A)1/Kf )
(
1 + 1Kf

(−1)
)
.

Proof. By (7.1) and Proposition 7.3 if follows that

lim
t→0

td/2Jgeo(φ̃1
t ) = lim

t→0
td/2(aG(S, 1)φ̃1

t (1) + aG(S,−1)φ̃1
t (−1)).

By Theorem 8.2 of [A10] we have

aG(S,±1) = vol(G(Q)\G(A)1).

Furthermore
φ̃1

t (±1) = hσ
t (±1)χKf

(±1).

Since σ satisfies σ(−1) = Id, if −1 ∈ Kf , it follows from (2.5) that hσ
t (−1) =

hσ
t (1). Finally, by Lemma 2.3 we have

hσ
t (±1) =

dim(σ)
(4π)d/2

t−d/2 + O(t−(d−1)/2)

as t → 0. This combined with χKf
(±1) = 1Kf

(±1) vol(Kf )−1, proves the
theorem.

We shall now use the trace formula to prove the main results of this paper.
Recall that the coarse trace formula is the identity

Jspec(f) = Jgeo(f), f ∈ C∞
c (G(A)1),

between distributions on G(A)1 [A1]. Applied to φ̃1
t we get the equality

Jspec(φ̃1
t ) = Jgeo(φ̃1

t ), t > 0.

Put εKf
= 1, if −1 ∈ Kf and εKf

= 0 otherwise. Combining Theorem 6.2,
Proposition 6.4 and Theorem 7.4, we obtain∑

π∈Πdis(G(A),ξ0)

m(π) dim
(
HKf

πf

)
dim

(
Hπ∞ ⊗ Vσ

)O(n)
etλπ

∼ dim(σ)
(4π)d/2

vol(G(Q)\G(A)1/Kf )(1 + εKf
)t−d/2

(7.3)
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as t → 0. Applying Karamat’s theorem [Fe, p. 446], we obtain∑
π∈Πdis(G(A),ξ0)λ

m(π) dim
(
HKf

πf

)
dim

(
Hπ∞ ⊗ Vσ

)O(n)

∼ dim(σ)
vol(G(Q)\G(A)1/Kf )

(4π)d/2Γ(d/2 + 1)
(1 + εKf

)λd/2

(7.4)

as λ → ∞. By Lemma 3.3 it follows that this asymptotic formula continues to
hold if we replace the sum over Πdis(G(A), ξ0)λ by the sum over Πcus(G(A), ξ0)λ.
Finally note that by [Sk] we have m(π) = 1 for all π ∈ Πcus(G(A), ξ0). This
completes the proof of Theorem 0.2.

Now suppose that Kf is the congruence subgroup K(N) and Γ(N) ⊂
SLn(Z) the principal congruence subgroup of level N . Then by (3.10) we have

vol(G(Q)\G(A)1/K(N)) = ϕ(N) vol(Γ(N)\SLn(R)).

Furthermore, εK(N) = 1 if and only if −1 ∈ Γ(N). If −1 is contained in Γ(N),
then the fibre of the canonical map

Γ(N)\SLn(R) → Γ(N)\SLn(R)/ SO(n)

is equal to SO(n)/{±1}. Otherwise the fibre is equal to SO(n). We normalize
the Haar measure on SLn(R) so that vol(SO(n)) = 1. Then in either case we
have

vol(Γ(N)\SLn(R))(1 + εK(N)) = vol(Γ(N)\SLn(R)/ SO(n)).

Let X = SLn(R)/ SO(n) and let λ0 ≤ λ1 ≤ · · · be the eigenvalues, counted with
multiplicity, of the Bochner-Laplace operator ∆σ acting in L2(Γ(N)\SLn(R),σ).

Combining (6.18), Proposition 6.4, Theorem 7.4 and the above observa-
tions, we get ∑

i

e−tλi = dim(σ)
vol(Γ(N)\X)

(4π)d/2
t−d/2 + o(t−d/2)

as t → 0. Using again Karamata’s theorem [Fe, p. 446], we get

N
Γ(N)
dis (λ, σ) = dim(σ)

vol(Γ(N)\X)
(4π)d/2Γ(d/2 + 1)

λd/2 + o(λd/2)

as λ → ∞. By Proposition 3.6 it follows that the same asymptotic formula
holds if we replace N

Γ(N)
dis (λ, σ) by N

Γ(N)
cus (λ, σ). This is exactly the statement

of Theorem 0.1.
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