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Weyl’s law for the cuspidal spectrum of SL,

By WERNER MULLER

Abstract

Let I' be a principal congruence subgroup of SL,(Z) and let o be an
irreducible unitary representation of SO(n). Let NL (), o) be the counting

cus

function of the eigenvalues of the Casimir operator acting in the space of cusp
forms for I which transform under SO(n) according to o. In this paper we
prove that the counting function N (), o) satisfies Weyl’s law. Especially,
this implies that there exist infinitely many cusp forms for the full modular
group SLy,(Z).
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Let G be a connected reductive algebraic group over Q and let I' € G(Q)
be an arithmetic subgroup. An important problem in the theory of automor-
phic forms is the question of the existence and the construction of cusp forms
for I. By Langlands’ theory of Eisenstein series [Lal, cusp forms are the build-
ing blocks of the spectral resolution of the regular representation of G(R) in
L?(I'\G(R)). Cusp forms are also fundamental in number theory. Despite their
importance, very little is known about the existence of cusp forms in general.
In this paper we will address the question of existence of cusp forms for the
group G = SL,. The main purpose of this paper is to prove that cusp forms
exist in abundance for congruence subgroups of SL,,(Z), n > 2.
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To formulate our main result we need to introduce some notation. For
simplicity assume that G is semisimple. Let K, be a maximal compact sub-
group of G(R) and let X = G(R)/K be the associated Riemannian symmetric
space. Let Z(gc) be the center of the unviersal enveloping algebra of the com-
plexification of the Lie algebra g of G(R). Recall that a cusp form for I' in the
sense of [La] is a smooth and K.-finite function ¢ : '\G(R) — C which is a
simultaneous eigenfunction of Z(gc) and which satisfies

/ ¢(nx) dn =0,

T'NNp(R)\Ns(R)

for all unipotent radicals Np of proper rational parabolic subgroups P of G. We
note that each cusp form f € C*°(I'\G(R)) is rapidly decreasing on I'\G(R)
and hence square integrable. Let L2 (I'\G(R)) be the closure of the linear
span of all cusp forms. Let (o, V,) be an irreducible unitary representation of
K. Set

L*(T\G(R),0) = (L*(T\G(R)) ® V)"~
and define L2 (I'\G(R), o) similarly. Then L2 (T'\G(R), o) is the space of cusp

forms with fixed Ko-type 0. Let Qgr) € Z(gc) be the Casimir element of
G(R). Then —Qg(r)®1d induces a selfadjoint operator A, in the Hilbert space
L?*(T'\G(R), o) which is bounded from below. If T is torsion free, L?(I'\G(R), o)
is isomorphic to the space L?(I'\X, E,) of square integrable sections of the
locally homogeneous vector bundle E, associated to o, and A, = (V?)*V? —
A Id, where V7 is the canonical invariant connection and A, the Casimir
eigenvalue of o. This shows that A, is a second order elliptic differential
operator. Especially, if o is the trivial representation, then L?(I'\G(R), oq) =
L*(T\X) and A,, equals the Laplacian A of X.

The restriction of A, to the subspace L2 (I'\G(R),o) has pure point
spectrum consisting of eigenvalues \g(c) < A1(0) < --- of finite multiplicity.
We call it the cuspidal spectrum of A,. A convenient way of counting the
number of cusp forms for I' is to use their Casimir eigenvalues. For this pur-
pose we introduce the counting function NL_ (A, o), A > 0, for the cuspidal
spectrum of type o which is defined as follows. Let £(A;(0)) be the eigenspace

corresponding to the eigenvalue \;(c). Then

NLAo)= > dimEX(o)).
(o)<

For nonuniform lattices I' the selfadjoint operator A, has a large continuous
spectrum so that almost all of the eigenvalues of A, will be embedded in the
continous spectrum. This makes it very difficult to study the cuspidal spectrum
of A,.

The first results concerning the growth of the cuspidal spectrum are due
to Selberg [Se|]. Let H be the upper half-plane and let A be the hyperbolic
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Laplacian of H. Let N._(\) be the counting function of the cuspidal spectrum
of A. In this case the cuspidal eigenfunctions of A are called Maass cusp forms.
Using the trace formula, Selberg [Se, p. 668] proved that for every congruence
subgroup I' C SLy(Z), the counting function satisfies Weyl’s law, i.e.
vol(I'\H)
- 47
as A — oo. In particular this implies that for congruence subgroups of SLy(Z)
there exist as many Maass cusp forms as one can expect. On the other hand,

(0.1) NE (V)

cus

A

it is conjectured by Phillips and Sarnak [PS] that for a nonuniform lattice
I' of SLy(R) whose Teichmiiller space 7" is nontrivial and different from the
Teichmiiller space corresponding to the once-punctured torus, a generic lattice
I' € T has only finitely many Maass cusp forms. This indicates that the
existence of cusp forms is very subtle and may be related to the arithmetic
nature of I'.

Let d = dim X. It has been conjectured in [Sa] that for rank(X) > 1 and
I" an irreducible lattice

NI (N vol(T'\ X)

02) llﬁsip /2 (4m)d/20(d/2 4 1)

where T'(s) denotes the gamma function. A lattice T for which (0.2) holds
is called by Sarnak essentially cuspidal. An analogous conjecture was made
in [Mu3, p. 180] for the counting function N (A, o) of the discrete spectrum
of any Casimir operator A,. This conjecture states that for any arithmetic

subroup I' and any K-type o

: Ni.(\o) vol(I'\ X)
(0.3) h)I\n_}Sgp iz - im(o) )2 (dj2 1 1)

Up to now these conjectures have been verified only in a few cases. In addition

to Selberg’s result, Weyl’s law (0.2) has been proved in the following cases:
For congruence subgroups of G = SO(n, 1) by Reznikov [Rez], for congruence
subgroups of G = Rp;q SL2, where F'is a totally real number field, by Efrat
[Ef, p. 6], and for SL3(Z) by St. Miller [Mil].

In this paper we will prove that each principal congruence subgroup I' of
SL,(Z), n > 2, is essentially cuspidal, i.e. Weyl’s law holds for I'. Actually
we prove the corresponding result for all K -types 0. Our main result is the
following theorem.

THEOREM 0.1. For n > 2 let X,, = SL,(R)/SO(n). Let d,, = dim X,,.
For every principal congruence subgroup T' of SL,(Z) and every irreducible
unitary representation o of SO(n) such that o|z. = 1d,

VOl(P\Xn) )\dn/2
(47)dn /2T (d, /2 + 1)

(0.4) NE (X, 0) ~ dim(o)

as A — o0.
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The method that we use is similar to Selberg’s method [Se]. In particular,
it does not give any estimation of the remainder term. For n = 2 a much
better estimation of the remainder term exists. Using the full strength of the
trace formula, we can get a three-term asymptotic expansion of NL _(\) with
remainder term of order O(v/A/log ) [He, Th. 2.28], [Ve, Th. 7.3]. The method
is based on the study of the Selberg zeta function. It is quite conceivable
that the Arthur trace formula can be used to obtain a good estimation of the
remainder term for arbitrary n.

Next we reformulate Theorem 0.1 in the adelic language. Let G = GL,,,
regarded as an algebraic group over Q. Let A be the ring of adeles of Q.
Denote by Ag the split component of the center of G' and let Ag(R)? be
the component of 1 in Ag(R). Let & be the trivial character of Ag(R)°
and denote by II(G(A),&) the set of equivalence classes of irreducible
unitary representations of G(A) whose central character is trivial on
Ac(R)?.  Let L2 (G(Q)Ag(R)°\G(A)) be the subspace of cusp forms in
L*(G(Q)Ag(R)°\G(A)). Denote by I..(G(A),&) the subspace of all 7 in
II(G(A), &) which are equivalent to a subrepresentation of the regular rep-
resentation in L2 _(G(Q)Ag(R)°\G(A)). By [Sk] the multiplicity of any 7 €
e (G(A), &) in the space of cusp forms L2 _(G(Q)Ag(R)°\G(A)) is one. Let
Ay be the ring of finite adeles. Any irreducible unitary representation 7 of
G(A) can be written as ™ = To, @ 7¢, Where T4, and 7y are irreducible unitary
representations of G(R) and G(Ay), respectively. Let H,_ and H,., denote
the Hilbert space of the representation 7, and 7, respectively. Let Ky be
an open compact subgroup of G(Af). Denote by ’Hff'f the subspace of K-
invariant vectors in Hr,. Let G(R)' be the subgroup of all g € G(R) with
|det(g)| = 1. Given 7 € II(G(A), &), denote by A, the Casimir eigenvalue of
the restriction of Ty to G(R)!. For A > 0 let I..s(G(A), &) be the space of
all T € Ilus(G(A), &) which satisfy [Ar| < A. Set ex, = 1, if =1 € Ky and
€k, = 0 otherwise. Then we have

THEOREM 0.2. Let G = GL,, and let d,, = dim SL,(R)/SO(n). Let Ky
be an open compact subgroup of G(Ay) and let (o, V,) be an irreducible unitary
representation of O(n) such that o(—1) =1d if =1 € Ky. Then

Y dim(HE) dim(Ha, © V)"

(05) m€cus(G(A),&0)A
vol(G(Q)Aq(R)N\G(A)/Ky)

(47)4+/20(d,, /2 + 1)

~ dim(o) (1 + g, )A%/2

as A — o0.

Here we have used that the multiplicity of any = € TI(G(A), &) in the
space of cusp forms is one.
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The asymptotic formula (0.5) may be regarded as the adelic version of
Weyl’s law for GL,. A similar result holds if we replace £ by any unitary
character of Ag(R)Y. If we specialize Theorem 0.2 to the congruence subgroup
K (N) which defines I'(N), we obtain Theorem 0.1.

Theorem 0.2 will be derived from the Arthur trace formula combined with
the heat equation method. The heat equation method is a very convenient
way to derive Weyl’s law for the counting function of the eigenvalues of the
Laplacian on a compact Riemannian manifold [Cha]. It is based on the study
of the asymptotic behaviour of the trace of the heat operator. Our approach is
similar. We will use the Arthur trace formula to compute the trace of the heat
operator on the discrete spectrum and to determine its asymptotic behaviour
ast — 0.

We will now describe our method in more detail. Let G(A)! be the sub-
group of all g € G(A) satisfying |det(g)] = 1. Then G(Q) is contained in
G(A)! and the noninvariant trace formula of Arthur [A1] is an identity

(0.6) SOIH) =D T(f), feCEGAY,

XEX o€

between distributions on G(A)!. The left-hand side is the spectral side Jopec(f)
and the right-hand side the geometric side Jgeo(f) of the trace formula. The
distributions J, are defined in terms of truncated Eisenstein series. They
are parametrized by the set of cuspidal data X. The distributions J, are
parametrized by semisimple conjugacy in G(Q) and are closely related to
weighted orbital integrals on G(A)!.

For simplicity we consider only the case of the trivial K.-type. We choose
a certain family of test functions ¢} € C°(G(A)!), depending on ¢ > 0, which
at the infinite place are given by the heat kernel hy € C*°(G(R)!) of the Lapla-
cian on X, multiplied by a certain cutoff function ¢y, and which at the finite
places are given by the normalized characteristic function of an open compact
subgroup Ky of G(Ay). Then we evaluate the spectral and the geometric side
at ¢ and study their asymptotic behaviour as ¢ — 0. Let Iy (G(A), &)
be the set of irreducible unitary representations of G(A) which occur dis-
cretely in the regular representation of G(A) in L?(G(Q)Ag(R)°\G(A)). Given
m € Igis(G(A), &), let m(m) denote the multiplicity with which 7 occurs in
L?(G(Q)A¢(R)°\G(A)). Let HE= be the space of Ku-invariant vectors in
Hr... Comparing the asymptotic behaviour of the two sides of the trace for-
mula, we obtain

Z m(m)eP dim(’Hfff ) dim(HE =)

(0.7) m€llgis(G(A) &)
N vol(G(Q)\G(A)!/Ky)

(47r)dn/2

(1 + g, )t /2
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as t — 0, where the notation is as in Theorem 0.2. Applying Karamatas
theorem [Fe, p. 446], we obtain Weyl’s law for the discrete spectrum with
respect to the trivial K -type. A nontrivial K.-type can be treated in the
same way. The discrete spectrum is the union of the cuspidal and the residual
spectra. It follows from [MW] combined with Donnelly’s estimation of the
cuspidal spectrum [Do], that the order of growth of the counting function
of the residual spectrum for GL,, is at most O(A(4»~1/2) as X\ — oo. This
implies (0.5).

To study the asymptotic behaviour of the geometric side, we use the fine
o-expansion [A10]

(08) geo Z Z aM(Sv V)JM(fv 7)7

MeL~e(M(Qs))m,s

which expresses the distribution Jue.(f) in terms of weighted orbital integrals
Jr (7, f). Here M runs over the set of Levi subgroups £ containing the Levi
component My of the standard minimal parabolic subgroup Py, S is a finite
set of places of Q, and (M (Qg))m,s is a certain set of equivalence classes in
M(Qg). This reduces our problem to the investigation of weighted orbital
integrals. The key result is that

Hm t4/2 (68, 7) = 0,

unless M = G and v = £1. The contributions to (0.8) of the terms where
M = G and v = £1 are easy to determine. Using the behaviour of the heat
kernel h(+1) as t — 0, it follows that

. vo 1
(0.9) Teo(01) ~ I(G((Qgi>rc)il(/§) /%) (1+ex, )t~ "7

ast — 0.

To deal with the spectral side, we use the results of [MS]. Let C1(G(A)!)
denote the space of integrable rapidly decreasing functions on G(A)! (see [Mu2,
§1.3] for its definition). By Theorem 0.1 of [MS], the spectral side is absolutely
convergent for all f € C1(G(A)!). Furthermore, it can be written as a finite
linear combination

Teee )= > Y > amsJinp(fss)

MeL LeL(M) PEP(M) s€WE (an)reg

of distributions JE p(f, s), where £(M) is the set of Levi subgroups containing
M, P(M) denotes the set of parabolic subgroups with Levi component M and
WL (apr)reg is a certain set of Weyl group elements. Given M € £, the main in-
gredients of the distribution J ]@ p(f,s) are generalized logarithmic derivatives
of the intertwining operators

Mgp(\) : A2(P) — A%(Q), P,Q € P(M), A€ ajc,
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acting between the spaces of automorphic forms attached to P and @), respec-
tively. First of all, Theorem 0.1 of [MS] allows us to replace 5% by a similar
function ¢} € C'(G(A)') which is given as the product of the heat kernel at
the infinite place and the normalized characteristic function of K. Consider
the distribution where M = L = G. Then s =1 and

(0.10) JG o(of) = > m(m)e* dim(HE ) dim(HE=).
m€llyis(G(A) o)

This is exactly the left-hand side of (0.7). Thus in order to prove (0.7) we need
to show that for all proper Levi subgroups M, all L € L(M), P € P(M) and
S € WL(ClM)reg,

(0.11) Tip(91,s) = Ot 172

as t — 0. This is the key result where we really need that our group is GL,.
It relies on estimations of the logarithmic derivatives of intertwining operators
for A € daj,. Given m € [ais(M(A), &), let Mg p(m, A) be the restriction of the
intertwining operator Mg, p(A) to the subspace AZ2(P) of automorphic forms of
type . The intertwining operators can be normalized by certain meromorphic
functions rg p(m, A) [A7]. Thus

Mgp(m,A) = rgp(m, A) " Nop(m, N),

where Ngp(m, A) are the normalized intertwining operators. Using Arthur’s
theory of (G, M)-families [A5], our problem can be reduced to the estima-
tion of derivatives of Ngp(m,A) and rgp(m,A) on iaj,. The derivatives
of Ngip(m,A) can be estimated using Proposition 0.2 of [MS]. Let M =
GLy, X - x GL,,. Then 7 = ®;m; with 7; € Il4;(GLy, (A)') and the normal-
izing factors rgp(m, A) are given in terms of the Rankin-Selberg L-functions
L(s,m; x 7j) and the corresponding e-factors e(s,m; x 7;). So our problem
is finally reduced to the estimation of the logarithmic derivative of Rankin-
Selberg L-functions on the line Re(s) = 1. Using the available knowledge of
the analytic properties of Rankin-Selberg L-functions together with standard
methods of analytic number theory, we can derive the necessary estimates.

In the proof of Theorems 0.1 and 0.2 we have used the following key re-
sults which at present are only known for GL,: 1) The nontrivial bounds of
the Langlands parameters of local components of cuspidal automorphic repre-
sentations [LRS] which are needed in [MS]; 2) The description of the residual
spectrum given in [MW]; 3) The theory of the Rankin-Selberg L-functions
[JPS].

The paper is organized as follows. In Section 2 we prove some estima-
tions for the heat kernel on a symmetric space. In Section 3 we establish
some estimates for the growth of the discrete spectrum in general. We are
essentially using Donnelly’s result [Do] combined with the description of the
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residual spectrum [MW]. The main purpose of Section 4 is to prove estimates
for the growth of the number of poles of Rankin-Selberg L-functions in the
critical strip. We use these results in Section 5 to establish the key estimates
for the logarithmic derivatives of normalizing factors. In Section 6 we study
the asymptotic behaviour of the spectral side Jypec(¢7). Finally, in Section 7
we study the asymptotic behaviour of the geometric side, compare it to the
asymptotic behaviour of the spectral side and prove the main results.

Acknowledgment. The author would like to thank W. Hoffmann,
D. Ramakrishnan and P. Sarnak for very helpful discussions on parts of this
paper. Especially Lemma 7.1 is due to W. Hoffmann.

1. Preliminaries

1.1. Fix a positive integer n and let G be the group GL,, considered as an
algebraic group over Q. By a parabolic subgroup of G we will always mean a
parabolic subgroup which is defined over Q. Let Py be the subgroup of upper
triangular matrices of G. The Levi subgroup My of Py is the group of diagonal
matrices in G. A parabolic subgroup P of G is called standard, if P D Fp.
By a Levi subgroup we will mean a subgroup of G which contains My and is
the Levi component of a parabolic subgroup of G defined over Q. If M C L
are Levi subgroups, we denote the set of Levi subgroups of L which contain
M by LE(M). Furthermore, let (M) denote the set of parabolic subgroups
of L defined over Q which contain M, and let P*(M) be the set of groups in
FL(M) for which M is a Levi component. If L = G, we shall denote these sets
by L£(M), F(M) and P(M). Write £ = L(My). Suppose that P € FL(M).
Then

P = NpMp,

where Np is the unipotent radical of P and Mp is the unique Levi component
of P which contains M.

Let M € L and denote by Ajs the split component of the center of M.
Then Aps is defined over Q. Let X(M)g be the group of characters of M
defined over Q and set

ayr = Hom(X (M)q, R).
Then ays is a real vector space whose dimension equals that of Ays. Its dual
space is
ay = X(M)g @R.
Let P and @ be groups in F(My) with P C @. Then there are a canonical
surjection ap — ag and a canonical injection a*Q — ap. The kernel of the first

map will be denoted by ag. Then the dual vector space of ag is ap/ azg.
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Let P € F(My). We shall denote the roots of (P, Ap) by Xp, and the
simple roots by Ap. Note that for GL, all roots are reduced. They are
elements in X (Ap)g and are canonically embedded in a}.

For any M € L there exists a partition (nq,...,n,) of n such that

M = GL,, x--- x GL,, .

Then a}, can be canonically identified with (R")* and the Weyl group W (axs)
coincides with the group S, of permutations of the set {1,...,7}.

1.2. Let F be a local field of characteristic zero. If 7 is an admissible rep-
resentation of GL,,(F'), we shall denote by 7 the contragredient representation
tomw. Let m;, i = 1,...,r, beirreducible admissible representations of the group
GL,,(F). Then * = m ® - - - @7, is an irreducible admissible representation of

M(F) = GLy, (F) x -+ x GLy, (F).
For s € C" let m;[s;] be the representation of GLy,(F") which is defined by

milsil(g) = | det(g)[*'mi(g), g € GLy,(F).

Let
I§(x,8) = IndG0) (mi[s1] © -+ © 7, [5,])

be the induced representation and denote by Hp(w) the Hilbert space of the
representation Ilg(w, s). We refer to s as the continuous parameter of Ig(ﬂ, S).
Sometimes we will write 1§ (mi[s1], ..., 7 [s,]) in place of IS (,s).

1.3. Let G be a locally compact topological group. Then we denote by
I1(G) the set of equivalence classes of irreducible unitary representations of G.

1.4. Let M € L. Denote by Ay/(R)? the component of 1 of Ay/(R). Set
MA)Y = (] ker(x]).

XEX(M)g

This is a closed subgroup of M(A), and M(A) is the direct product of M(A)!
and A M(R)O.

Given a unitary character £ of A/ (R)?, denote by L2(M (Q)\M (A), ) the
space of all measurable functions ¢ on M(Q)\M (A) such that

¢lam) = E(x)p(m), @€ Apn(R)°, m € M(A),

and ¢ is square integrable on M(Q)\M(A)'. Let L (M(Q)\M(A),&) de-
note the discrete subspace of L2(M(Q)\M(A), &) and let L2 (M (Q)\M(A), &)

cus

be the subspace of cusp forms in L?(M(Q)\M(A),&). The orthogonal com-
plement of L2 (M(Q)\M(A),&) in the discrete subspace is the residual sub-

cus

space L2 (M(Q)\M(A),¢). Denote by Ilgs(M(A), &), Hews(M(A),€), and

res
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ILes(M(A), £) the subspace of all 7 € TI(M (A), £) which are equivalent to a sub-
representation of the regular representation of M(A) in L?2(M(Q)\M(A),¢),
L2 (M(Q)\M(A),£), and L2 (M(Q)\M(A),§), respectively.

Let TT4s (M (A)!) be the subspace of all 7 € TI(M (A)') which are equivalent
to a subrepresentation of the regular representation of M(A)! in

LA (M(Q)\M(A)).

We denote by I..(M(A)!) (resp. TLe(M(A)!)) the subspaces of all m €
gis (M (A)!) occurring in the cuspidal (resp. residual) subspace

L2, (M(Q)\M(A)') (vesp. L7 (M(Q)\M(A))).

1.5. Let P be a parabolic subgroup of G. We denote by .A%(P) the space
of square integrable automorphic forms on Np(A)Mp(Q)Ap(R)°\G(A) (see
[Mu2, §1.7]).

Given 7 € Ty (Mp(A), &), let A2(P) be the subspace of A%(P) of auto-
morphic forms of type 7 [A1, p. 925]. Let m € TI(Mp(A)'). We identify 7 with
a representation of Mp(A) which is trivial on Ap(R)?. Hence we can define
A2(P) for any 7 € TI(Mp(A)!). Tt is a space of square integrable functions on

Np(A)YMp(Q)Ap(R)°\G(A) such that for every = € G(A), the function
¢z(m) = ¢(mz), m e Mp(A),

belongs to the m-isotypical subspace of the regular representation of Mp(A) in
the Hilbert space L2(Ap(R)°Mp(Q)\Mp(A)).

2. Heat kernel estimates

In this section we shall prove some estimates for the heat kernel of the
Bochner-Laplace operator acting on sections of a homogeneous vector bundle
over a symmetric space. Let G be a connected, semisimple, algebraic group de-
fined over Q. Let K be a maximal compact subgroup of G(R) and let (o, V;)
be an irreducible unitary representation of K., on a complex vector space V.
Let E, = (G(R) x V,)/Kx be the associated homogeneous vector bundle over
X = G(R)/Ks. We equip E, with the G(R)-invariant Hermitian fibre metric
which is induced by the inner product in V. Let C*°(E,), C°(E,) and L2(E,)
denote the space of smooth sections, the space of compactly supported smooth
sections and the Hilbert space of square integrable sections of EU, respectively.
Then we have

(21)  C¥(E,) = (C®(GR) @ V,) "=, L[*(E,) = (L*(G(R)) ® V)"~

and similarly for C2°(E;,). Let Q € Z(gc) be the Casimir element of G(R) and
let R be the right regular representation of G(R) on C*°(G(R)). Let A, be
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the second order elliptic operator which is induced by —R(€) @ Id in C*°(E,).
Let V be the canonical connection on EU, and let Qg be the Casimir element
of Koo. Let Ay = 0(Qk) be the Casimir eigenvalue of o. Then with respect to
the identification (2.1),

(2.2) (VO)*V? = —R(Q) @ Id + A, Id
[Mia, Prop. 1.1], and therefore
(2.3) A, = (VO)*V7 = A Id.

Hence A,: C®(E,) — L2*(E,) is essentially selfadjoint and bounded from
below. We continue to denote its unique selfadjoint extension by A,. Let
exp(—tA,) be the associated heat semigroup. The heat operator is a smooth-

ing operator on L*(E,) which commutes with the representation of G(R) on
L?(E,). Therefore, it is of the form

(24) () (9) = o T (97 91)(p(91))dg1, g € G(R),
where ¢ € (L2(G(R)) ® V, )X~ and HY: G(R) — End(V,) is in L? N C* and
satisfies the covariance property

(2.5) HY (g) = o(k)H? (K 1gk o (K)™t, for g € G(R), k,k € K.

In order to get estimates for HY, we proceed as in [BM] and relate HY
to the heat kernel of the Laplace operator of G(R) with respect to a left in-
variant metric on G(R). Let g and ¢ denote the Lie algebras of G(R) and
K, respectively. Let g = € @ p be the Cartan decomposition and let 6 be the
corresponding Cartan involution. Let B(Y7,Y2) be the Killing form of g. Set
(Y1,Y2) = —B(Y1,0Y2), Y1,Ys € g. By translation of (-,-) we get a left invari-
ant Riemannian metric on G(R). Let Xy,---, X, be an orthonormal basis for
p with respect to Blp x p and let Y7, -+, Y} be an orthonormal basis for € with
respect to —B|t x ¢. Then we have

p k k
Q=) X?-> V7 and Qg=-) Y
=1 =1 =1
Let
p k
(2.6) P=-0+420k=-> X7 -> Y
=1 =1

Then R(P) is the Laplace operator Ag on G(R) with respect to the left in-

—tAg

variant metric defined above. The heat semigroup e is represented by a

smooth kernel py, i.e.

2.7)  (e7"29f) (g) =/ pe(g7'd) f(g)dg', f e L*(GR)), g€ GR),
G(R)
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where p; € C°(G(R)) N L?(G(R)). In fact, p; belongs to L'(G(R)) (see [N])
so that (2.7) can be written as

e the — R(py).

Q= /KM R(k) ® o (k) dk

be the orthogonal projection of L%(G(R)) ® V,, onto its K-invariant subspace
(L*(G(R)) ® V, )%=, By (2.6) we have

As = —Q(R(Q) ®1d)Q
= Q(R(P) ®1d)Q — 2Q(R(2x) ® 1d)Q
= Q(A¢ ®1A)Q — 2\ 1 5 | -

Let

Hence, we get
eftga — Q(eftAG ® Id)Q . et2)\a

which implies that
(2.8) HY (g) = ' / / pe(k gk o (kk' ™) dk di’ .
Koo v Koo

Let C1(G(R)) be Harish-Chandra’s space of integrable, rapidly decreasing func-
tions on G(R). Then (2.8) can be used to show that

(2.9) HY € (C'(G(R)) @ End(V,)) ="~

[BM, Prop. 2.4].

Now we turn to the estimation of the derivatives of HY. By (2.8), this
problem can be reduced to the estimation of the derivatives of p;. Let V denote
the Levi-Civita connection and p(g,¢’) the geodesic distance of g,¢' € G(R)
with respect to the left invariant metric. Then all covariant derivatives of the
curvature tensor are bounded and the injectivity radius has a positive lower
bound. Let a = dim G(R), | € Ny and T' > 0. Then it follows from Corollary
8 in [CLY] that there exist C, ¢ > 0 such that

%(g,1
(2.10) IV!pi(9)]| < Ct=@ D72 expy (_cp (tg, ))
forall 0 < ¢t < T and g € G(R). By (2.8) and (2.10),
IV H (g)]| < €** / / Vip) (k~tgk")| dkdk’
(2.11)

< op(et) /2/ / ( cp’ gtk kl))dk:dk’
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for all 0 < ¢t < T. Choose the invariant Riemannian metric on X which is
defined by the restriction of the Killing form to 7.X = p. Then the canonical
projection map G(R) — X is a Riemannian submersion. Let d(z,y) denote
the geodesic distance on X. Then it follows that

p(g,e) > d(gKoo, Kxo), g € G(R).

Set r(g9) = d(9gK o, Ko ), g € G(R). Together with (2.11) we get the following
result.

PROPOSITION 2.1. Let a = dimG(R), I € Ny and T > 0. There exist
C,c > 0 such that

2
(212 987 ()] < O+ 2 exp (-1 )

for all0 <t <T and g € G(R).

We note that the exponent of ¢ on the right-hand side of (2.12) is not
optimal. Using the method of Donnelly [Do2], this estimate can be improved
for { < 1. Indeed by Theorem 3.1 of [Mul],

PrROPOSITION 2.2. Letn =dim X and T > 0. There exist C,c > 0 such
that

2
(213) V7 (@)l < Contexp (-0

forall0 <t <T,0<1<1, and g € G(R).

We also need the asymptotic behaviour of the heat kernel on the diagonal.
It is described by the following lemma.

LEMMA 2.3. Let n = dim X and let e € G(R) be the identity element.

Then dim(o)
o(,y — HT) /2 —(n—1)/2
tr HY (e) 4y ot e+ O )

ast — 0.

Proof. Note that for each z € X, the injectivity radius at x is infinite.
Hence we can construct a parametrix for the fundamental solution of the heat
equation for A, as in [Do2]. Let € > 0 and set

Ue={(z,y) € X x X | d(z,y) < €}.

For any | € N we define an approximate fundamental solution P;(z,y,t) on U,
by the formula

—d2(z ! .
Alo.t) = Gty ™ exp () ) <Z @(x,y)t@) ,
=0
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where the ®;(z,y) are smooth sections of E, X E* over U. x U, which are
constructed recursively as in Theorem 2.26 of [BGV]. In particular, we have

Oo(x,x) =1dy,, ze€X.
Let ¢ € C°°(X x X) be equal to 1 on U/4 and 0 on X x X — U, /9. Set

Ql(xv y7t) = ¢(~’Ua y)-Pl(xvyvt)'

If | > n/2, then the section Q; of E,X E* is a parametrix for the heat equation.
Since X is a Riemannian symmetric space, we get

H{ (e) = Idy, (471'75)_"/2 + O(t—("—l)/2)

as t — 0. This implies the lemma. O

3. Estimations of the discrete spectrum

In this section we shall establish a number of facts concerning the growth
of the discrete spectrum. Let M = GL,, x--- x GL,,_, 7 > 1, and let

M(R)! = M(R) N M(A)'.

Then M(R) = M(R)! - Ap(R)Y. Let Kpr0o C M(R) be the standard maximal
compact subgroup. Then Kj/  is contained in M (R)!. Let

Xy = M(R)' /Koo

be the associated Riemannian symmetric space. Let I'yy € M(Q) be an arith-
metic subgroup and let (7, V;) be an irreducible unitary representation of Kz oo
on V.. Set

C®(Ty \M(R)L, 7) := (C®°(Tp \M(R)!) @ V) Koo,

If I'py is torsion free, then I'ps\ X3/ is a Riemannian manifold and the homoge-
neous vector bundle ET over Xjs, which is associated to 7, can be
pushed down to a vector bundle E, — T \Xps. Then C®°(T'y/\M(R)!, 1)
equals C®°(I'p\Xnr, E;), the space of smooth sections of E.. Define
Ce(Tp \M(R)!, 7) and L*(Tp/\M (R)', 7) similarly. Let €237 (g): be the Casimir
element of M (R)! and let A, be the operator in C*°(T'5/\ M (R)!, 7) which is in-
duced by —Qpr): ®1d. As unbounded operator in L*(I'p/\M (R)*, 7) with do-
main C2°(T \M (R)!, 7), A, is essentially selfadjoint. Let L2 (T'p/\M(R)!, 7)

be the subspace of cusp forms of L?(T'j/\M (R)!, 7). Then L2 (Tp/\M(R)!,7)
is an invariant subspace of A, and A, has pure point spectrum in this sub-
space consisting of eigenvalues \g < A; < --- of finite multiplicity. Let E(\;)

be the eigenspace of ;. Set
Ny (A7) =) dimE(N).

cus
Ai<A
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Let d = dim X s and let

1
(4m)4/2T(4 + 1)

Cq=

be Weyl’s constant, where I'(s) denotes the gamma function. Then Donnelly
[Do, Th. 9] has established the following basic estimation of the counting func-
tion of the cuspidal spectrum.

THEOREM 3.1. For every 7 € II(K1,00),

NFM()\, T)

cus

lim sup i/

A—00

S Cd dlm(T) VOI(FM\XM>

Actually, Donnelly proved this theorem only for the case of a torsion free
discrete group. However, it is easy to extend his result to the general case.

We shall now reformulate this theorem in the representation theoretic
context. Let & be the trivial character of A/ (R)° and let 7 € II(M(A),&).
Let m(7) be the multiplicity with which 7 occurs in the regular representation
of M(A) in L?(Ap (R)°M(Q)\M (A)). Then g (M(A), &) consists of all w €
II(M(A), &) with m(mw) > 0. Write

T ="Too QTf,

where 7o € II(M(R)) and m; € II(M(Ay)). Denote by Hr_ (resp. Hy,)
the Hilbert space of the representation 7 (resp. m¢). Let Ky s be an open
compact subgroup of M(Ay) and let 7 € II(Kpr,o). Denote by Hr_(7) the

T-isotypical subspace of H,_ and let HﬁiM’f be the subspace of Ky j-invariant
vectors in Hy,. Denote by A the Casimir eigenvalue of the restriction of m,
to M(R)!. Given X\ > 0, let

Hdis(M(A)7€0))\ = {ﬂ_ < Hdis(M(A)7§0) ‘ ’)‘W‘ < A}
Define I (M (A), &) x and Lo (M(A), &) similarly.

LEMMA 3.2. Let d = dim X ;. For every open compact subgroup Ky ¢ of
M(Ay) and every 7 € II(Kpr,00) there exists C > 0 such that

> m(r) dim(HEmr) dim(Hr (7)) < C(1 + A%?)
Wencus(M(A)7fo)>\

for X > 0.

Proof. Extending the notation of §1.4, we write II(M(R),&p) for the
set of representations in II(M(R)) whose central character is trivial on
Ay (R)Y. Given 7y € TI(M(R),&), let m(7ms) be the multiplicity with
which 7 occurs discretely in the regular representation of M(R) in
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L2(Ap(R)OM(Q)\M (A))&»s. Then

/

- / . Ko,y
(3.1) m(meo) = Zw’encus(M(A),go)m(ﬂ ) dlm(Hﬂ,f ),

where the sum is over all 7’ € Tg(M(A), &) such that the Archimedean
component 7., of 7’ equals To.

Let I..s(M(R),&) be the subset of all mo, € II(M(R),&n) which are
equivalent to an irreducible subrepresentation of the regular representation
of M(R) in the Hilbert space L2 (Ax(R)°M(Q)\M(A))Krms. Given 7o €

II..s(M(R), &), denote by A, the Casimir eigenvalue of the restriction of 7
to M(R)!. For A >0, let

ews (M(R), &) = {Too € Heus(M(R), &o) ’ [Aro| < AL
Then by (3.1), it suffices to show that for each 7 € TI( K/ o) there exists C' > 0
such that
> M(Too) dim(H__ (7)) < C(1 + A¥?).
Too €lcus (M (R),€0) »

To deal with this problem recall that there exist arithmetic subgroups I'jr; C
M(R),i=1,...,l, such that

[~

MQ\M(A)/ Ky = [ |(Tari\M(R))

i=1

(cf. [Mul, §9]). Hence

l
(82)  L’(An(R)’M(Q\M(4)) > = @ L*(Ay(R)Tar\M(R))
i=1

as M(R)-modules. For each i, i =1,...,l, and 7o € II(M(R)) let mr,, (7o)
be the multiplicity with which 7, occurs discretely in the regular represen-
tation of M(R) in L2(Apr(R)°Tar\M(R)). Then m(m) = S2b_ mr,, (Too)
and

> m(7oo) dim(Hr_ (7))

Too €lcus (M (R),€0) A

l
— Z Z mr,, , (Teo) dim(Hr_ (7)).

=1 7 Echs(M(R) a§0)>\

The interior sum can be interpreted as follows. Fix ¢ and set I'ys := I'pz ;.
Let Ay < A2 < --- be the eigenvalues of A, in the space of cusp forms
L2 (Ta/\M(R)! 1) and let £(\;) be the eigenspace of ;. By Frobenius reci-

procity it follows that
dlmg()\z) = Z mr,, (7700)7
=M\
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where the sum is over all 7o, € Il.,s(M(R), &p) such that the Casimir eigenvalue
Ar. equals —A;. Hence we obtain

> mr,, (o) dim(Ha (7)) = Nek (A, 7).
oo €Ecus (M (R),€0) A

Combined with Theorem 3.1 the desired estimation follows. O
Next we consider the residual spectrum.

LEMMA 3.3. Let d = dim X ;. For every open compact subgroup Ky ¢ of
M(Ay) and every T € II(Kpr,o0) there exists C > 0 such that

o m(m)dim(HE) dim(He (1) < C(1+ A0
€ res (M (A),£0)

for X > 0.

Proof. We can assume that M = GL;, x--- x GL,, . Let Ky ; be an
open compact subgroup of M(Ay). There exist open compact subgroups K; s
of GLy,(A¢) such that Ky ¢ x --- x K, f C Ky . Thus we can replace Ky ¢
by Ky x --- x K, ¢. Next observe that Ko = O(n1) X --- x O(n,) and
therefore, 7 is given as 7 = 7 ® - - - ® 7., where each 7; is an irreducible unitary
representation of O(n;). Finally note that every = € II(M(A),&) is of the
form 7 = m @ -+ ® m,. Hence we get m(w) = [[;_; m(m;) and

T T
dim(H,Ir(ff‘f=f) = H dim(Hﬁf_f}f), dim(’Hﬂm (T)) = Hdim(’Hmm(Ti)).
i=1 =1

This implies immediately that it suffices to consider a single factor.

With the analogous notation the proof of the proposition is reduced to the
following problem. For m € N set X,,, = SL,,,(R)/SO(m) and d,,, = dim X,.
Then we need to show that for every open compact subgroup K, ¢ of GL;,(Ay)
and every 7 € II(O(m)) there exists C' > 0 such that

Z m(m) dim(?—[frimwf)dim(Hﬁ& (1)) < C(1 + A@m—1)/2)
TEM o (GLim (A),60)x

for A > 0. To deal with this problem recall the description of the residual spec-
trum of GL,, by Meeglin and Waldspurger [MW]. Let 7 € ILs(GLy,(A)) and
suppose that 7 is trivial on Agr, (R)Y. There exist k|m, a standard parabolic
subgroup P of GL,, of type (I,...,l), | = m/k, and a cuspidal automorphic
representation p of GL; which is trivial on Agr, (R)?, such that 7 is equivalent
to the unique irreducible quotient J(p) of the induced representation

I (pl(k = 1)/2) @ - @ pl(1 — k)/2).
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Here p[s]| denotes the representation g+ p(g)| det g|*, s € C. At the Archimedean
place, the corresponding induced representation

1857 (e, ) = TS5 ® (= 1)/2] © - © pocl(1 — K)/2])

has also a unique irreducible quotient J(ps). Comparing the definitions, we
get J(p)oo = J(poo). Hence the Casimir eigenvalue of moo = J(p)oo equals
the Casimir eigenvalue of J(ps) which in turn coincides with the Casimir
eigenvalue of the induced representation ISLT” (Psc, k). Let A, be the Casimir
eigenvalue of ps. Then it follows that there exists C' > 0 such that |Az — kA,
< C for all m € Ies(GLy (A), &). Using the main theorem of [MW, p. 606],
we see that it suffices to fix I|m, [ < m, and to estimate

(3.3) > m(p) dim (H5 ") dim (M g, (7))
pEMcus(GL1(A),€0) A

First note that by [Sk], we have m(p) = 1 for all p € Il (GL;(A),&). So it

remains to estimate the dimensions. We begin with the infinite place. Observe

that dim(H (7)) = dim(7)[J(poo)|o(m) : 7]- Thus in order to estimate

dim(H 5. (7)) it suffices to estimate the multiplicity [J(poc)|o(m) : 7]- Since

J(poo) is an irreducible quotient of Ing (poc, k), we have

[J(poo)lom) = 7] < [ISL’" (Poos K)logm) : T]-
Let Kj o = O(l) x --- x O(l). Using Frobenius reciprocity as in [Kn, p. 208],
we obtain

L5 (poos k) o(m) © 7]
= Y (P ® @ poo)lKi W] [Tlr 2 ).

(.UEH(K[’OO)
Finally note that w = w1 ® - -+ ® wi, with w; € II(O(1)). Therefore we have
k
[(Poo @+ ® poo)| K, o W] = H[ﬂoo|0(l) t Wi
i=1

At the finite places we proceed in an analogous way. This implies that there
exist open compact subgroups K; r of GL;(Af), i = 1,...,k and wy,...,wy €
II(O(1)) such that (3.3) is bounded from above by a constant times

k

H Z m(p)dim (Hﬁff’f) dim (H,,__ (w;))

i=1 \ p€llcus(GLi(A),&0)x
By Lemma 3.2 this term is bounded by a constant times (1 + A%/2)* where
dy=1(l+1)/2—1. Since m =k -1 and k > 1, we have
l(l;l)k: k< m(m2—|— 1)

This proves the desired estimation in the case of M = GL,,, and as explained
above, this suffices to prove the lemma. O

dik = —92=d, —1.
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Combining Lemma 3.2 and Lemma 3.3, we obtain

ProOPOSITION 3.4. Let d = dim Xys. For every open compact subgroup
Ky of M(Ay) and every 7 € II(Kyr,o0) there exists C > 0 such that

> m(m) dim(HE7) - dim(Hy (7)) < C(1+ AY?)
m€llgis (M (A),60)5
for A > 0.

Next we restate Proposition 3.4 in terms of dimensions of spaces of auto-
morphic forms. Let P € P(M) and let A?(P) be the space of square integrable
automorphic forms on Np(A)Mp(Q)Ap(R)°\G(A). Given 7 € Mg (M(A), &),
let A2(P) be the subspace of A?(P) of automorphic forms of type =
[A1, p. 925]. Let K be the standard maximal compact subgroup of G(R).
Given an open compact subgroup Ky of G(Ay) and o € II(K), let A (P)g,
denote the subspace of Kj-invariant automorphic forms in A2Z(P) and let
AZ(P)k, o be the o-isotypical subspace of AZ(P)g,.

PRrROPOSITION 3.5. Let d = dim Xys. For every open compact subgroup
Ky of G(Ay) and every o € II(K) there exists C > 0 such that

Y dimA2(P)g,. < C(14+AY?)
TFEHdis(M(A)7£U))\
for A > 0.

Proof. Let m € Ilgis(M(A),&). Let Hp(m) be the Hilbert space of the
induced representation I G((ﬁ)) (). There is a canonical isomorphism

(34)  jp i Hp(m) @ Homyya (7, Iglo)a o (60)) = Ar(P),

which intertwines the induced representations. Let T =To @7y. Let Hp(moo)

(resp. Hp(ms)) be the Hilbert space of the induced representation Ig((g)) (o))

resp. . Denote by Hp(7s)s the o-1sotypical subspace of 'Hp (7
1547 (x5)). Denote by H he o-isotypical sub £ H

and by Hp(ms)%s the subspace of K j-invariant vectors of Hp(ms). Then it
follows from (3.4) that

(3.5) dim A%(P) g, » = m(m) dim(Hp(r;) ") dim(Hp(7so)o)-
Using Frobenius reciprocity as in [Kn, p. 208] we get
G(R
U (Tl 0l = > [Foolku 7] [0lKy £ 7]
TEI(Kn,00)

Hence we get

(3.6) dim(Hp(mo)o) < dim(o) Y dim(Hx (7)]olx,, . : 7).
TEI(K 00 )
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Next we consider 7y = ®p<comp. Replacing Ky by a subgroup of finite index
if necessary, we can assume that K; = Il,«ooK),. For any p < oo, denote

by Hp(mp) the Hilbert space of the induced representation ((Q ))(Wp) Let

Hp(mp)Er be the subspace of K-invariant vectors. Then dim Hp(m,)5r =1
for alomost all p and

Furthermore,
(3.7)

Let Ky p = Ky M(Af) Using (3.5)—(3.
the proposition, it suffices to fix 7 € II(K,0) and to estimate

3 m() dim(HE7) dim (M, (7))
w€llgi5 (M (A),€0) A

The proof is now completed by application of Proposition 3.4. O

), it follows that in order to prove

Finally we consider the analogous statement of Lemma 3.3 at the
Archimedean place. For simplicity we consider only the case M = G. Let
K be the standard maximal compact subgroup of G(R). Let I' C G(Q)
be an arithmetic subgroup and o € II(K). Then the discrete subspace
L2 (T\G(R)}, o) of A, decomposes as

Lng(F\G(R)l, ) cus(F\G( ) ) ® L?CS(F\G(R)v 0))
where L2_(T'\G(R)!, o) is the subspace which corresponds to the residual spec-

res

trum of A,. Let

I‘CS (F\G @ Ereb

be the decomposition into eigenspaces of A,. For A > 0 set

NE (A 0) Z dim &,es (A

res
A<

PROPOSITION 3.6. Let d = G(R)'/Ky. Let T' C G(Q) be an arithmetic
subgroup. For every o € 1I(K) there exists C > 0 such that

NE (A 0) < C(1 4 M@=/

res

for X > 0.
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Proof. First assume that I' C SL,(Z). Let I'(N) C T' be a congruence
subgroup. Then

(3.8) NE (X, o) < NEV(X o).
Let
N =1L,p"™, r,>0.
Set
K,(N)={k € GL,(Zy,) | k =1 mod p""Z,}
and
(3.9) K(N) =< Kp(N).

Then K(N) is an open compact subgroup of G(Ay) and
(3.10) Ac(R)’GQ\G(A)/K(N) = | | (D(N)\SLy(R))

(Z/NZ)*

(cf. [A9]). Hence

L (AcR)’GQ\G(A) ™M = P L] (T(N)\SL(R))

(Z/NZ)*

as SL;,(R)-modules. Then

> m(r) dim(HE™) dim(Hr_ (o)) = o(N)NEM (A, 0),
€L e (G(A),€0)

where ¢(N) = #[(Z/NZ)*]. Put M = G in Lemma 3.3. Then by Lemma 3.3
it follows that there exists C' > 0 such that

NENI(X o) < C(1 + Ad=D/2),

res

This proves the proposition for I' C SL,,(Z). Since an arithmetic subgroup
I' ¢ G(Q) is commensurable with G(Z), the general case can be easily reduced
to this one. O

4. Rankin-Selberg L-functions

The main purpose of this section is to prove estimates for the number
of zeros of Rankin-Selberg L-functions. We shall consider the Rankin-Selberg
L-functions over an arbitrary number field, although in the present paper we
shall use them only in the case of Q. We begin with the description of the
local L-factors.

Let F be a local field of characteristic zero. Recall that any irreducible
admissible representation of GL,,(F') is given as a Langlands quotient: There
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exist a standard parabolic subgroup P of type (m, ..., m,), discrete series rep-
resentations d; of GL,,, (F') and complex numbers s1, . .., s, satisfying Re(s;) >
Re(s2) > -+ > Re(s,) such that

(4.1) T =J3 (51[s1] @ - @ 8, [s,]),

where the representation on the right is the unique irreducible quotient of the
induced representation Ig’L”" (01[s1] ® -+ ®d,[sr]) [MW, 1.2]. Furthermore any
irreducible generic representation 7 of GL,,(F) is equivalent to a fully induced
representation II(D;L’" (01[s1] ® -+ - ®,[s,]). If 7 is generic and unitary, it follows
from the classification of the unitary dual of GL,,(F) that the parameters s;
satisfy

(4.2) |Re(si)| <1/2, i=1,...,r

Suppose that 7 is given as a Langlands quotient of the form (4.1). Then the
L-function satisfies

(4.3) L(s, ) = HL(S + 54,05)

[J]. Furthermore, suppose that 7; and 79 are irreducible admissible represen-
tations of G1 = GLy,, (R) and G2 = GL,,,(R), respectively. Let

~ GL"i
T = in (Til [Sil]a s Tirg [Siri])

be the Langlands parametrizations of m;, ¢ = 1,2. Then it follows from the
multiplicativity of the local Rankin-Selberg L-factors [JPS, (9.4)], [Sh6] that

T1 T2

(4.4) L(8,7T1 XFQ)ZHHL(S-FSM-I-SQ]',TM ><7'2j).
i=1j=1

This reduces the description of the local L-factors to the square-integrable case.
Now we distinguish three cases according to the type of the field.

1. F non-Archimedean. Let O denote the ring of integers of F' and ‘B the
maximal ideal of Op. Set ¢ = Op/PB. The square-integrable case can be further
reduced to the supercuspidal one. Finally for supercuspidal representations the
L-factor is given by an elementary polynomial in ¢~*. For details see [JPS] (see
also [MS]). If we put together all steps of the reduction, we get the following
result. Let 7 and 79 be irreducible admissible representations of GL,, (F') and
GL,, (F'), resprectively. Then there is a polynomial Py, r,(z) of degree at most
ny - ng with Py, ,(0) = 1 such that

L(Svﬂ-l X 7T2) = P7T177T2 (q_s)_l‘

In the special case where 71 and 79 are unitary and generic the L-factor has
the following special form.
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LEMMA 4.1. Let w1 and wo be irreducible unitary generic representations
of GLy, (F') and GL,,(F), respectively. There exist complex numbers a;, i =
1,...,n1 - ng, with |a;| < q such that

N2

(4.5) L(s,m xm) =[] (1—aq )"
=1

Proof. Let ¢; and d2 be square-integrable representations of GLy4, (F') and
GLg, (F), respectively. As explained above there is a polynomial Pj, 5,(x) of
degree at most d - dy with Pj, 5,(0) = 1 such that

L(s,81 x 02) = Ps, 5,(¢ %)~ 1.

By (6) of [JPS, p. 445], L(s, 01 X d2) is holomorphic in the half-plane Re(s) > 0.
Hence Ps, 5,(x) has no zeros in the unit disc. Thus there exist complex numbers
b; with |b;| < 1 such that

dy-do
(4.6) L(s, 01 x 63) = [] (1 = bag™®) 7"

i=1
Now let 71 and 7 be unitary and generic. Then L(s, m X m2) can be written as

a product of the form (4.4) and by (4.2) the parameters s;; satisfy | Re(s;;)| <
1/2,i=1,2,j=1,...,r;. With this and (4.6), the lemma follows. O

If F'is Archimedean the L-factors are defined in terms of the L-factors
attached to semisimple representations of the Weyl group Wr by means of the
Langlands correspondence [Lal]. The structure of the L-factors are described,
for example, in [MS, §3]. We briefly recall the result.

2. F = R. First note that GL,,(R) does not have square-integrable
representations if m > 3. To describe the principal L-factors in the remaining
cases d = 1 and d = 2, we define gamma factors by

s

2) . Tels) = 2(2m)~°T(s).

In the case d = 1, the unitary representations of GL;(R) = R* are of the form
Vet (z) = sign(z)|z|" with € € {0,1} and ¢ € {R. Then

L(s,¢er) =Tr(s+t+e€).

For k € Z let Dy, be the k-th discrete series representation of GL2(R) with the
same infinitesimal character as the k-dimensional representation. Then the

(4.7) Ta(s) = 7*/°0 (

unitary square-integrable representations of GLg(R) are unitary twists of Dy,
k € Z, for which the L-factor is given by

L(s, Dy) = T'c(s + |k|/2).
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Let 1. = sign®, € € {0,1}. Then up to twists by unramified characters the
following list describes the Rankin-Selberg L-factors in the square-integrable
case:

L(s, Dy, x Dy,) =Tc(s + k1 — k2|/2) - Te(s + [k1 + k2| /2),
(4.8) L(s, Dy x ¢¢) = L(s,%e x D) =Tc(s+ |k|/2),
L(s,ve, X e,) = Tr((s + €1,2)),
where 0 < €12 < 1 with €12 = €1 + €2 mod 2.

3. F = C. There exist square-integrable representations of GLj(C) only
if k = 1. For r € Z let x, be the character of GL{(C) = C* which is given by
X(z) = (2/Z)", z € C*. Then

(4.9) L(s,xr) = Tc(s +[r|/2).
If xr, and x,, are two characters as above, then we have
L(s,Xr, X Xr,) = Te(s + [r1 +72//2).

Up to twists by unramified characters, these are all possibilities for the
L-factors in the square-integrable case.

To summarize we obtain the following description of the local L-factors in
the complex case. Let 7 be an irreducible unitary representation of GL,,(C).
It is given by a Langlands quotient of the form

™= Jng(Xl[Sl] ® -+ ® Xm[Sml]),

where B is the standard Borel subgroup of GL,, and the y;’s are characters of
GL;(C) = C* which are defined by x(z) = (2/2)", r; € Z,i=1,... ;m. Then

(4.10) L(s,m) = [ [ Tc(s + si + [ril /2).
=1

Let 71 and 79 be irreducible unitary representations of GL,,, (C) and GL,,,(C),
respectively. Let B; C GL,,, be the standard Borel subgroup. There exist
characters y;; of C* of the form x;;(z) = (2/2)", ry; € Z, and complex
numbers s;;, i = 1,... ,mq, j = 1,... ,mo, satisfying

Re(si1) > -+ > Re(sim,;), |Re(sij] <1/2,
such that

GL, .

(4.11) m = Jp " (Xii[si] ® - @ Xim, [Sim,]),  i=1,2.

Then the Rankin-Selberg L-factor is given by

my M2

(4.12) L(s,m X mg) = H H Le(s + s1i + s25 + |r1s +1251/2).
i=1j=1
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If FF =R, the L-factors have a similar form.

The description of the L-factors in the Archimedean case can be unified
in the following way. By the duplication formula of the gamma function we
have

(4.13) Tc(s) = Tr(s)Tr(s + 1).

Let F' be Archimedean. Set ep = 1, if FF = R, and ep = 2, if FF = C. Let
7 € II(GL,,(F")). Then it follows from (4.13) and the definition of the L-factors,

that there exist complex numbers uj(w), j=1,... ,meg, such that
mer

(4.14) Lis,m) = ] Tals + p(m):
=1

The numbers pj(m) are determined by the Langlands parameters of 7. Sim-
ilarly, if m; € II(GL, (F)), @ = 1,2, it follows from the description of the
Rankin-Selberg L-factors that there exist complex numbers p; (71 X m2) such
that

(4.15) L(s,m x m2) = [ [ Tr(s + pjp(m x m2)).
7,k

LEMMA 4.2. Let F be Archimedean. There exists C > 0 such that
D k(e x )P < C [ ma(m) P+ ()]
J.k i J

for all generic m; € II(GLy,, (F)), i = 1,2.

Proof. First consider the case F' = C. Let m; and ms be irreducible unitary
generic representations of GL,,, (C) and GL,,,(C), respectively. Write ; as the
Langlands quotient of the form (4.11). Using (4.10) and (4.12) together with
(4.13), it follows that it suffices to prove that there exist C' > 0 such that

D I+ ok + iy + okl /22 <O [sig + |rigl/2P
Jk 1,J
for all generic m; € II(GL,,(C)), ¢ = 1,2. This follows immediately, if we
use the fact that the parameters s;; satisfy | Re(s;;)| < 1/2 and the r;;’s are
integers.
The proof in the case F' = R is essentially the same. We only have to
check the different possible cases for the L-factors as listed above. O

Next we consider the global Rankin-Selberg L-functions. Let E be a num-
ber field and let Ag be the ring of adeles of E. Given m € N, let I14;s(GL(Ag))
and I (GL,,(Ag)) be defined in the same way as in the case of Q (see §1.4).
Recall that the Rankin-Selberg L-function attached to a pair of automorphic
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representations m of GLy,, (Ag) and m2 of GL,,, (Ag) is defined by the Euler
product

(4.16) L(s,m x mp) = [ [ L(s, 710 x m20),

where v runs over all places of E. The Euler product is known to converge in
a certain half-plane Re(s) > c¢. Suppose that m; and 79 are unitary cuspidal
automorphic representations of GL,,, (Ag) and GL,,,(Ag), respectively. Then
L(s,m % ma) has the following basic properties:

i) The Euler product L(s,m; x m2) converges absolutely for all s in the
half-plane Re(s) > 1.

ii) L(s,m X m2) admits a meromorphic continuation to the entire complex
plane with at most simple poles at 0 and 1.

iii) L(s,m x mg) is of order one and is bounded in vertical strips outside of
the poles.

iv) It satisfies a functional equation of the form
(4.17) L(s,m x mg) = €(s,m1 X mo)L(1 — 8,71 X T3)
with
(4.18) e(s,m X mp) = W(m x mo) (D" N(my X m))/275,

where D is the discriminant of E, W (m x m2) is a complex number of
absolute value 1 and N (7 X m2) € N.

The absolute convergence of the Euler product (4.16) in the half-plane
Re(s) > 1 was proved in [JS1]. The functional equation is established in [Sh1,
Th. 4.1] combined with [Sh3, Prop. 3.1] and [Sh3, Th. 1]. See also [Sh5] for the
general case. The location of the poles has been determined in the appendix
of [MW]. Property iii) was proved in [RS, p. 280].

Now let m € 4is(GLy,, (Ag)) and my € Iyis(GLyy,, (Ag)). Using the de-
scription of the residual spectrum for GL,, [MW], L(s, w1 X m2) can be expressed
in terms of Rankin-Selberg L-functions attached to cuspidal automorphic rep-
resentations. Indeed, by [MW] there exist k; € N with k;|m;, parabolic sub-
groups P; of G; = GL,,, of type (d;,...,d;), di = m;/k;, and unitary cuspidal
automorphic representations ¢; of GLg, (Ag) such that

(4.19) mi = Jp (8il(ki = 1)/2]® - © §[(1 — ki) /2),

where the right-hand side denotes the unique irreducible quotient of the in-
duced representation Ig((sz[(kzz —1)/2|®---®6;[(1—ki)/2]). Set k = k1+ka—2.
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Then it follows from (4.4) that

ki—1ky—1
(4.20) L(s,m X mg) = H H L(s+k/2—1i—j,01 X d2).

i=0 j=0
Using this equality and i)-iv) above, we deduce immediately the correspond-
ing properties satisfied by L(s,m; x m2). Especially, L(s,m X m2) satisfies a
functional equation of the form (4.17) with an e-factor similar to (4.18).

We shall now investigate the logarithmic derivatives of the Rankin-Selberg
L-functions. First we need to introduce some notation. Let m; € I14is(GLyy,, (AR)),
i = 1,2. For each Archimedean place w of E'let p; (71,0 X T2,w), J = 1,. .., Tw,
k=1,...,hy, be the parameters attached to (74, 72,,) by means of (4.15).
Set

(4.21) 7T1><7T2 ZZLU,Jk 7T1w><7T2w)|

wloo 4,k
Let N(m x m2) be the integer that is determined by the e-factor as in (4.18).
Set

(4.22) v(m X ma) = D" N (1 X m2)(2 + c(m X m2)).
We call v(m x m2) the level of (71, m2). Given 7 € II(GL,,(Ag)), set
Too = ®’U|OO7TU) Tf = Qu<ooTy-

LEMMA 4.3. For every € > 0 there exists C > 0 such that
L'(s,mi,f X ma,f)

<C
L(s,myp xmaf) |~

for all s in the half-plane Re(s) > 2+ € and all m; € Il.\s(GLy,, (AR)), i = 1, 2.

Proof. Let m; € Heus(GLy,, (Ag)), i = 1,2, and let v < co. By [Sk], m1,
and 7o, are unitary generic representations. Hence by Lemma 4.1 there exist

complex numbers a;(v), ¢ = 1,... ,m1 - mg, with
(4.23) lai(v)] < N(v)
such that
my-mo
L(s,mpxmp) = ] (1= a(v)N(w)~®)"
i=1

Suppose that Re(s) > 1. By (4.23) we have |a;(v)/N(v)*| < 1. Hence, taking
the logarithmic derivative, we get

L'(s,m0 X M) Z a, v)log N (v)
L(s, T,y X T2p) N(v)*(1 = ai(v)N(v)~*)

00 k
~loaN () S S

i k=1
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Suppose that 0 = Re(s) > 1. Then by (4.23) we get

2. log N(v
QZ Ogol)k

Let (g(s) be the Dedekind zeta function of E. Let € > 0 and set o = 2 + €.
Then for Re(s) > o we get

’L’(s, Tl X T2p)

L(s,m1 4 X T2y)

‘L/(s,ﬂ'Lf X Wgyf)‘ < myms

(plo = 1)'

L(S,ﬂ'l’f X 7T27f) CE(O' — 1) '

LEMMA 4.4. For every € > 0 there exists C' > 0 such that

‘ L/(S, 1,00 X 7T2,oo)

<C(1+1
T | c st et

for all s with Re(s) > 1+ € and all m; € ows(GLp,, (Ag)), i =1,2.
Proof. Let w|oco. By (4.15) we have

(4.24) L(s, M X Ta0) = | [TR(S + 1 (10 X T200))-

j?k
Since 71, and w2, are unitary and generic, the complex numbers
W (T1w X To,,) satisfy
(4.25) Re(p k(1w X T2w)) > —1.
Now recall that by Stirlings formula

F/

F(S) =logs+ O(|s|™)

is valid as |s| — oo, in the angle —7 4+ § < args < m — 4, for any fixed 6 > 0.
Hence

'k (s) 1 _
Fi(s) (s) = —§log7r+logs +0(|s|™h)

holds in the same range of s. Let € > 0. Using (4.24), (4.25) and (4.26), it
follows that there exists C' > 0 such that

L'(8, 710 X T2)

(4.26)

< C+ > log(ls] + |pjk(miw X Taw)]).
ik

L(S, 1w X 7T2,w)

for all w|oo, all s with Re(s) > 1+ € and all m; € I1..«(GL(AR)), i = 1,2.
This implies the lemma. O

Let m; € Iagis(GLm,(AE)), ¢ = 1,2, and T > 0 be given. Denote by
N(T;m,m2) the number of zeros of L(s,m X m2), counted with multiplicity,
which are contained in the disc of radius 7" centered at 0.
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PROPOSITION 4.5. There exists C > 0 such that
N(T';my,m2) < CTlog(T + v(my X m2))
for all T > 1 and all 7; € ais(GLy, (Ag)), i = 1, 2.

Proof. By (4.20) we can assume that 7 and 7y are unitary cuspidal
automorphic representations. Set

(4.27) A(s) = s*(1 — 8)* (D™= N (mry x )™ L(s,m1 x m2),

where a denotes the order of the pole of L(s, 7 X m2) at s = 1. Note that a can
be at most 1. Since m; is unitary, we have 7; = 7;, ¢ = 1,2. Hence by (4.17), it
follows that A(s) satisfies the functional equation

(4.28) A(s) = W(m x m3) (D™ N(m x m)) /> A(1 = 5).

Since L(s,m X mg) is of order one, A(s) is an entire function of order one and
hence, it admits a representation as a Weierstrass product of the form

A(s) = AP T (1 - s/p)e,
p

where A, B € C and the product runs over the set of zeros of A(s). We note
that for s = o + T,

I o — Re(p)
(4.29) Rezp: s—p Zp: (0 —Re(p))? + (Im(p) — T)?

and this series is convergent since A(s) is of order one. Taking the real part of
the logarithmic derivative of A(s), and applying the functional equation (4.28)
to the right-hand side, we get

Re(B)+ReZ%—I—ReZ !
P

s—p

= — Re(B) —ReZ%

1
+R€Zp: m

Now observe that by (4.28), p is a zero of A(s) if and only if 1 — p is a zero of
A(s). Hence the two sums involving s are equal, as they run over the same set
of zeros. It follows that

1
(4.30) Re(B) = —Re(> _ -).

s P

Together with (4.27) this leads to

1 N(s) a a 1
R =R =2 = log(DP"™ N
ezp:s_p eA(S) S+S_1+20g( J (m1 X 2))

L'(8, 71,00 X T2,00) N L'(s,m1,5 X ma,f)

L(5, Moo X M00) | L5715 X o f)
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Let € > 0, and set 0 = 2 + €. By Lemma 4.3, Lemma 4.4 and (4.29), there
exists C' > 0 such that

o —Re 1 _—
2 o Rl T (gg(p) —7y < 5 los(DE N (m X 7))

(4.31)
+ C(1 + log(|T| 4 c(m1 x m2))

<y lOgOT’ + I/(ﬂ'l X 7(2))
for all T' € R and m; € Il.us(GLy,, (AE)), i = 1,2. Let T > 0. Then it follows
from (4.31) that
N(T + 1y, m2) =N (T 71, 72)
o — Re(p)
<2(3+¢€
B4 L RGP+ (m(p) — TP

< Clog(T + v(m x m))
for all m; € e u(GLy,, (Ag)), @ = 1,2. This implies the proposition. O

5. Normalizing factors

In this section we consider the global normalizing factors of intertwining
operators. Our main purpose is to estimate certain integrals involving the
logarithmic derivatives of the normalizing factors. The behaviour of these
integrals is crucial for the estimation of the spectral side. From now on we
assume that the ground field is Q. Denote by A the ring of adeles of Q.

Let M € L. Then there exists a partition (n1,...,n,) of n such that

M =GLp, X -+ x GL,_.
Let Q,P € P(M). Let v be a place of Q and let 7, € II(M(Q,)). Associated
to P, @ and m, is the local intertwining operator

Joip(mu, A)y A € ayc,

between the induced representations Ip(m, ») and Ig(m, x), which is defined by
an integral over Ng(Q,) N N5(Q,), and hence depends upon a choice of a Haar
measure on this group. By [A7] there exist meromorphic functions rg p(my, A),
A € a} ¢, such that the normalized local intertwining operators

Rop(my, A) = roip(me, A) " g p (0, A)
satisfy the conditions of Theorem 2.1 of [A7]. There is a general construction of
normalizing factors which works for any group [A7], [CLL]. For GL,, however,
the intertwining operators can be normalized by L-functions [A7, §4], [AC,
p. 87]. The normalizing factors are given as

(5.1) rop(me ) = [ ralme M@),
agd Ny
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where r,(my,s) is a meromorphic function of one complex variable and X p
(resp. ¥g) denotes the roots of (P, Apr) (resp. (Q,Apr)). Thus to define
the normalizing factors, it is enough to define the functions r, (7, s) for any
root « of (G, Ap) and any m, € II(M(Q,)). To this end note that m, is
equivalent to a representation 7, ® -+ ® m., with m;, € II(GLy,(Q,)) and
the root « corresponds to an ordered pair (i, j) of distinct integers between 1
and r. Fix a nontrivial additive character v, of Q,. Let L(s,m;, X 7;,) and
€(s, T p X Tjw, Yy) be the Rankin-Selberg L-function and the e-factor attached
to (miw, Tj0) and 1. Set

L(S, Tiv X %j,v)

5.2 Ta(Ty, 8) = 7 ~ '
(5.2) 20 = LT s X Ry )e(os o X T 00)

It follows from Theorem 6.1 of [Sh1] that there are Haar measures on the group
Ng(Qy) N N5(Qy), depending on v, such that the normalizing factors (5.1)
have all the right properties (see [A7, §4], [AC, p. 87]). Now suppose that
7 € Ilgis(M(A)). Then the global normalizing factor r¢p(m, A) is defined by
the infinite product

rqp(m,A) = yrg p(my, A),

which converges in a certain chamber. By (5.1) it follows that there exist
meromorphic functions r,(7, s) of one complex variable such that

(5.3) roem N = [ ralmA@)).
Let m =m ® -+ ® mp. If a corresponds to (i, 7) then by (5.2) we have

L(S,T('Z' X %])
L(1+ s,m x 7j)e(s, m x 75)’

(5.4) ro(m,s) =

where L(s,m; x ;) and €(s, m; X ;) are the global L-function and the e-factor,
respectively, considered in the previous section.

The main goal of this section is to study the multidimensional logarithmic
derivatives of the normalizing factors that occur on the spectral side of the
trace formula [A4]. By (5.3) this problem is reduced to the investigation of
the logarithmic derivatives of the analytic functions r,(m, s). Furthermore, by
(5.4) each ro(m, s) may be regarded as the normalizing factor attached to a
standard maximal parabolic subgroup in GL,,, with m < n. So let m1,mg € N
with m; + mo < n. Given m; € lgi(GLyy,, (A)), i = 1,2, set

L(S, T X %2)

5.5 - @ )
(5.5) r(m ® ma, s) L(1+ s,m X To)e(s,m X o)

We shall now study the logarithmic derivatives of these functions. For
this purpose we need some preparation. Suppose that m;, ¢ = 1,2, is given in
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the form (4.20) and assume that k1 < ko. Set k = k1 + ko —2. For j =0,... ,k
let the integers a; be defined by

i+1 i<k —1;
(5.6) a; = k‘l : k‘l—lgiék‘g—l;
k—i+1 : i>ky—1.
Note that a; = ax_;, i = 0,..., k. It follows from (4.20) that

k
(5.7) L(s,m x @) = [ [ L(s + k/2 — i, 81 x 52)™.
=0

Define a polynomial of one variable x by

k
pa) =[] ((@+k/2—i) 01—z —k/2+1i)™.

1=0

Then p(x) has real coeefficients and satisfies p(z) = p(1 — z). Let a be the
order of the pole of L(s,d; x d2) at s = 1. Note that a < 1. Set

(5.8) A(s) = p(s)?N(m X Ta)*/?L(s, m X 7).
Then A(s) satisfies the functional equation
(5.9) A(s) = W(m x )N (m x 72)Y?A(1 —5).

Furthermore A(s) is an entire function of order 1. Therefore it can be written
as a Weierstrass product of the form

A(s) = eAtBs H(l —s/p)e’lP
p

with A, B € C and p runs over the zeros of A(s). Taking the logarithmic
derivative and applying the functional equation (5.9) to the right-hand side,
we get

(AA(S))>’_A(3+1) N(s) N3

G+D) A AL ()

1 1 1
= 2Re(B 2R - — .
o(B) + eZp:p+Zp:{8_p s+ﬁ}

By (4.30) it follows that the first two terms on the right-hand side cancel and
hence we get

A(s) Y A(s+1) Re(p)
(510 (s1m) X7 - 2 e
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Therefore, combining (4.18), (5.5) and (5.8), we obtain

r'(m ® 7o, S)

=log N(m X T
r(7r1®772,.s) g (1 2)

ds+1) o) Re(p)
LSy ) N D repyeE)

In particular, if s =i\, A € R, then it follows from the definition of p(s) that

7"/(71'1 ® FQ,i)x)

=log N T
T’(7T1®7T2,i)\) 8 (FIXTQ)

a;i(k/2—1i+1) ai(k/2—1i—1)
2a Z{A? k:/2—z+ 1)2 _)\2+(k/2—i—1)2}

Re(p)
i Z Re(p)2 + (Im(p) — N2

PROPOSITION 5.1. There exists C > 0 such that
/T r'(m ® 7o, i)

_p | r(m ® ma, i)
for all T > 0 and m; € 4;s(GLy, (A)), i =1,2.

d\ < CTlog(T + v(m x m3))

Proof. By the above formula it suffices to estimate the integral

|Re o)
/ZRe tm(p) — 32 P

We split the series as follows

2= >t

P |Im(p)|<T+1  |Im(p)|>T+1

To estimate the integral of the first sum, observe that for all 3 € R™ and v € R

we have -
I] /°° d\
—  —d\ < = 7.
Laapns ) e

Hence by Proposition 4.5 we get

| Re(p)] B
/ |1m(,§;T+1 Re(p)? + (Im(p) — \)2 d\ < aN(T + 1,m1,72)

< CTlog(T + v(m X 2)).

It remains to consider the integral of the second sum. Observe that by
(5.7) the zeros p of A(s) satisfiy |Re(p)| < k/2 + 1. Set

c=k+3, C=2k+2)>2%
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Then the following inequality holds for all A € R with |A| < T, all § € R* with
|B] < k/2+ 1 and all v € R with |y| > T + 1:

o .y -
s SC{(U_W“V—T)Q " (c—B)2+(+T) }
Thus we get
| Re(p)]
Im(;ﬂ;TH (p)? + (Im(p) — X)?
o — Re(p)
= zp: (0 — Re(p))? + (Im(p) — T)?

o — Re(p)
" zp: (0 —Re(p))? + (Im(p) + T)? }

Combining (5.7) and (4.31), we see that for o = k + 3 there exists C; > 0 such
that

o — Re N
2 R T ((Ifrz(p) —yz = Crlog(ITl+ v(m x 7))

for all T'€ R and m; € I4is(GLy,, (A)), i = 1,2. Combining these observation
we get

' |Re(p) )
/T |Im(,§;T+1 Re(p)2 + (Tm(p) — A2 = CTlog(T + v(my x 72)).

This completes the proof of the proposition. O

The next proposition will be important for the determination of the asymp-
totic behaviour of the spectral side.

PROPOSITION 5.2. There exists C > 0 such that

/ |7 (71 ® T2, iA)r(m1 ® Ta,iN) " He ™ dA

—00

_ W 1+]logt
< Clog(1l + v(m x 71'2))%

for all0 <t <1 and m; € I4;s(GLp, (A)), i =1,2.

Proof. By Proposition 5.1,

A
/ r (71 @ ma, iu)r(m1 @ w2, iu) " du < CA?
0
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as |A\| — oco. Hence, using integration by parts, we see that the integral on the
left-hand side of the claimed inequality equals

) A
Qt/ / |r' (711 ® T, iu)r(my @ T, iu) " |du Ae™ dA.
—o0 J0
Applying Proposition 5.1 we get
oo
/ |7 (71 ® o, i\)r(m ® Wg,iA)_l\e_t)‘z d\

—0o0

< C’t/ log (|A| + v(m x T2)) A2e~dA

—o0
1+ |logt|

Vi
for all 0 < ¢t <1 and m; € I4i5(GLy, (A)), i = 1,2. O

< Chlog(l + v(m x m2))

Let M € L and let @Q,P € P(M). Our next goal is to estimate the
corresponding integrals involving the generalized logarithmic derivatives of the
global normalizing factors rgp(7, A). For this purpose we will use the notion of
a (G, M) family introduced by Arthur in Section 6 of [A5]. For the convenience
of the reader we recall the definition of a (G, M) family and explain some of
its properties.

For each P € P(M), let cp(\) be a smooth function on ia},;. Then the
set

fep(N) | P € P(M)}

is called a (G, M) family if the following holds: Let P, P" € P(M) be adjacent
parabolic groups and suppose that A belongs to the hyperplane spanned by
the common wall of the chambers of P and P’. Then

Cp()\) = Cp/(/\).
Let

(5.11) 0p(\) = vol (af/Z(A%) " T MaY), A€ iap,
aEAp

where Z(A}) is the lattice in a generated by the co-roots
{a¥ | a € Ap}.
Let {cp(N)} be a (G, M) family. Then by Lemma 6.2 of [A5], the function
(5.12) (N = D ep(Nop(N)
PEP(M)

extends to a smooth function on ia},;. The value of cpr(X) at A = 0 is of
particular importance in connection with the spectral side of the trace formula.
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It can be computed as follows. Let p = dim(Ay;/Ag). Set A = tA, t € R,
A € aj;, and let ¢ tend to 0. Then

(5.13) e (0) = ]% z(: | Qg% (%)pcp(tA)) Op(A)~!
PeP(M

[A5, (6.5)]. This expression is of course independent of A.

For any (G, M) family {cp(A\) | P € P(M)} and any L € L(M) there is
associated a natural (G, L) family which is defined as follows. Let Q € P(L)
and suppose that P C ). The function

A € ia}, — cp(A)
depends only on Q. We will denote it by cg(A). Then

{co(V) | Q@ € P(L)}
is a (G, L) family. We write
cc(N) = Y oMbV
QeP(L)

for the corresponding function (5.12).

Let Q € P(L) be fixed. If R € PL(M), then Q(R) is the unique group in
P(M) such that Q(R) C Q and Q(R)NL = R. Let c% be the function on ia},
which is defined by

cB(N) = coum (V).

Then {cg()\) | R € PL(M)} is an (L, M) family. Let c?/[()\) be the function
(5.12) associated to this (L, M) family.

We consider now special (G, M) families defined by the global normalizing
factors. Fix P € P(M), m € H4s(M(A)) and A € ia},. Define

(5.14) I/Q(P,?T,)\,A) = TQ|P(7T,)\)717’Q‘P(7T,)\+A), Q € P(M).

This set of functions is a (G, M) family [A4, p. 1317]. It is of a special form.
By (5.3) we have

vo(Pm MA) = [ ralmAaY) ra(m, Aa”) + Ala)).
aEXoNis

Suppose that L € L(M), Ly € L(L) and S € P(L1). Let
{v5,(P,m, A\ A) | Qe PH (L)}

be the associated (Lj, L) family and let v¥ (P, 7, A, A) be the function (5.12)
defined by this family. Set

vy (P,m,\) == vi (P, \,0).
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If o is any root in X(G, Ap), let o denote the projection of o onto ay. If
F is a subset of 3(G, Ay), let F) be the disjoint union of all the vectors ay,
a € F. Then by Proposition 7.5 of [A4] we have

J(P,m,\) ZVOI LZ(FY))

(5.15)
. (H ra(7r,)\(av))_lr;(w,)\(av))> ,

acF

where F' runs over all subsets of (L, Aps) such that F}’ is a basis of aél. Let
t > 0. Then by (5.15),

/ i (P, A)]e IAIFdx <> “vol(af! /Z(FY))
iay /ay F

/ H ‘Taﬂ,)\(Oz\/))_lra/(ﬂ',)\(a\/)) e tIA® g
ia} /ag

acF
Fix any subset F' of ¥(Lq, Apr) such that F)’ is a basis of aﬁl. Let
{@q | v € F}
be the basis of (af*)* which is dual to F. We can write \ € ia} /ia¥, as
A= zaBa+ M, za €iR, A €iaj, fiag,
acF

Observe that A(aV) = z,. Let I; = dim(Ar,/Ag). Then there exists C' > 0,
independent of 7, such that for all ¢ > 0,

/ TT 7 Aa)) =1, A@¥)) e~ dx

iag /g aclF

<t h/? H / ra(m, 2a)~ (7r,zo¢)}e’“i dzq.
acF

Suppose that M = GL,, x--- x GL,,. Then 7 = m ® --- ® 7, with m; €
IT4is(GLy, (A)). Now recall that a given root o € X(G, Ajps) corresponds to an
ordered pair (i, 7) of distinct integers ¢ and j between 1 and r. Then it follows
from (5.4) and (5.5) that ro(m,s) = r(m ® 7j,s). Let | = dim(Ar/Ag) and
k = dim(Ar/Ar,). Then by Proposition 5.2 and (5.16), there exists C' > 0
such that

(5.16)

/ WS (P eI ax
iay /az,

(5.17) (1 + | log £))*

< CTJlog(1 + v(mi x 7)) 7

,J
for all 0 < ¢ <1 and all 7 € Il (M(A)).
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Next we shall estimate the numbers v(m; x 7j). For mo € II(GL;,(R)), let
the complex numbers p;(7), j = 1,...,m, be defined by (4.14) and set

1/2

c(moo) = Z‘:U’j(ﬂ-oo)F
j=1

Given an open compact subgroup Ky of GL,,(Ay), set
1(GLn(A)x, = {r € TH(GLn(A) | HE £ 0),
where m = o @7y and Hy, denotes the Hilbert space of the representation 7.
LEMMA 5.3. Let Ky; C GLy,, (Ay), i = 1,2, be two open compact sub-
groups. There exists C' > 0 such that
v(m x m2) < C(1+ ¢(m00) + €(T2,00))
for all m; € II(GL,y,, (A)) K, ,, i = 1,2.

Proof. First consider ¢(m1 X m2) which is defined by (4.21). It follows from
Lemma 4.2 that there exists C' > 0 such that

C(ﬂ'l X 7['2) < C(C(?TLOO) + C(TI'Q’OO))

for all m; € TI(GL,, (A)), ¢ = 1,2. It remains to estimate N (m; X m2). For this
we first observe that, as the epsilon factor is a product of local epsilon factors,
we can factor N(m x m2) as

N(7I‘1 X 7T2) = HN(ﬂ'Lp X 7T27p),
p

where p runs over the finite places of QQ. This is a finite product. In fact, if p
is unramified for both 71 and 79, then N(m1, X m2,) = 1. Moreover there is
an integer f(my, X m2,) such that

N(m1p X m2,p) = p! TrX7ar)

(see e.g. [MS]). Since we fix the ramification, there is a finite set S of finite
places of Q, such that

N(7T1 X 7'('2) = pr(ﬁ1,p><7l'2,p)
peS

for all m; € II(GLy, (A))K,,, i = 1,2. This reduces our problem to the esti-
mation of f(m, X m2,). Let f(m;p) be the conductor of m;,, i = 1,2. Then
f(mip) > 0 and by Theorem 1 of [BH] and Corollary (6.5) of [BHK] we have

(5.18) 0 < fmp X mop) < muf(mp) +maf(mp).

Let m € N and let K, be an open compact subgroup of GL,,(Q,). By Lemma
2.2 of [MS] there exists Cp, > 0 such that f(m,) < C), for all 7, € II(GL,,(Q)))
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with 7T£(p # 0. Together with (5.18) this implies that there exists C' > 0 such
that

N(m ><7T2)§C

for all 7; € II(GLyy, (A))k,,, i = 1,2. This completes the proof of the lemma.
O

We continue with the estimation of ¢(7). Given 7o € II(GL,,(R), &),
let \r_ be the Casimir eigenvalue of the restriction of 7o to GL,(R)!. Fur-
thermore for o € II(O(m)) let A\, denote the Casimir eigenvalue of 0. We note
that if [Teo|o(m) : 0] > 0, then —A; + A; > 0 [DH, Lemma 2.6] .

LEMMA 5.4. There exists C > 0 such that
¢(Too) < C(1 = Ap + Ap) /2

for all moo € TI(GLy,(R), §0) and o € TI(O(m)) with [Teo|o@m) : ] > 0.

Proof. Write 7y, as the Langlands quotient 7wy, = Jng (1,s), where T is
a discrete series representation of Mpr(R) and the parameters s1,...,s, € C
satisfy Re(s1) > Re(s2) > --- > Re(s,). We may assume that the central
character of 7 is trivial on Ax(R)? and hence, we can regard 7 as a discrete
series representation of Mg(R)!. Let m} denote the Lie algebra of Mg(R)!.
Note that m} is the direct sum of a finite number of copies of s/(2,R). Let
tC m}% be the standard compact Cartan subalgebra equipped with the canon-
ical norm. Then h = t@ ap is a Cartan subalgebra of gl,,(R). Let A, € it* be
the Harish-Chandra parameter of 7. It follows from the definition of the pa-
rameters f1j(7o) in terms of the Langlands parameters that there exists C' > 0
such that

c(mo)? < C(IA-* + lIs[|*)

for all 7o € II(GL,(R),&). Let v : Z(gl,,(C)) — I(hc) be the Harish-
Chandra homomorphism. By Proposition 8.22 of [Kn| the infinitesimal char-
acter x of the induced representation ISLT"' (7,s) with respect to b is given by
X(Z) = (A +58)(v(2)), Z € Z(gl,,(C)). Since 7o is an irreducible quotient

of IE’L"‘ (7,s), it has the same infinitesimal character. Let Hi,...,H, be an
orthonormal basis of ag and Hy41,..., Hy an orthonormal basis of t. Then
T m
W) =Y H = > Hi -’
i=1 j=r+1

[Wal, p. 168]. Hence, the Casimir eigenvalue A\ of 7, is given by

T

Ao = (A +8)(3(Q)) = Y 87 + 472 = [loll>
i=1
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Since T is unitary, it follows from Theorem 3.3 of Chapter XI of [BW] that
there exists C' > 0, independent of 7, such that || Re(s)|| < C. Hence there
exists C7 > 0 such that

1A+ lIs]* < Cr = An + [|A-]]?

for all 7o € II(GL,(R),&). Now let o € II(O(m)) and suppose that 7o €
(GLy(R), &) is such that [Te|o@m) : o] > 0. Since o occurs in 7o, it also
occurs in IEL’” (1,8). Using Frobenius reciprocity as in [Kn, p. 208], we see

that there exists w € II(O(m) N Mg(R)) such that
[T’O(m)ﬂMR(R) : w] >0 and [U‘O(m)ﬁMR(]R) : w] > 0.

Let A\, and A, denote the Casimir eigenvalues of ¢ and w, respectively. By
[Mu2, (5.15)], the second inequality implies A\, < A,. On the other hand, by
[Wa2, p. 398], the first inequality implies

IA1* < X + llorl*.

By combining our estimations the lemma follows. O

Now let K; be an open compact subgroup of G(Ay¢). Set
KMJ = Kf ﬂM(Af).
Then Ky 5 is an open compact subgroup of M (A¢). There exist open compact

subgroups Kyf; of GLy,(Ay), i = 1,...,r, such that Ky x --- x K¢, is a
subgroup of finite index of K. Set

I(M(A), &)k, = {m € I(M(A), &) | HE» # {0}},

where 7 = moo @ mp. Let m € (M (A),&0)k,. Then 7 =m ® --- ® 7, and 7;
belongs to II(GLy,(A), &)k, , and by Lemma 5.3 it follows that there exists
C > 0 such that

(5.19) [Tlog(1 + v(m x 7)) < C JJlog(2 + c(min0) + c(mjs0))

1,J 1,J
forallm=m ®- - @m € II(M(A),%)k,. Let Kproo = O(ny) x -+ x O(n;)
be the standard maximal compact subgroup of M (R). Let o € II(O(n)). For
m e I(M(A), &) set

[71—00 : U] = Z [TFOO|KM,QC : T][O-‘KM,OO : T]'
TEM(K pm,00)
Put
(M (A),&0)k;.0 ={m € (M (A), &)k, | [Too : 0] > 0}
and

Hais(M(A), §0) i ;0 = Hais (M (A), &) NTI(M (A), §0) k0
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Suppose that 7 € II(M(A), &)k, ,0- Let 7 € II(Kp,00) be such that [o|g,,  : 7]
> 0 and [7oo|re,, . 2 7] > 0.

Let A and A; denote the Casimir eigenvalues of the restriction of 7,
to M(R)! and of 7, respectively. Note that Ar_ = >, Ar, _ and Ar = Y, Ar,
where 7 = ®;7;. Then it follows from (5.19) and Lemma 5.4 that there exists
C > 0 such that

[1os(1 + v(mi x 7)) < CT[log(2 = Ar, . +Ar = A, + Ar)
2% 12

< C(log(2 = Aro +An)"

for all 7 € II(M(A),&o)x,,s. Since there are only finitely many 7 that occur
in o|k,, .., we get

(5.20) Hlog(l + v(m x 7;)) < C1(log(2 + [Ar. ’))TQ

for all m € II(M(A), &) k;,o- Combining (5.17)-(5.20) we obtain

PROPOSITION 5.5. Let M € L, L € L(M) and P € P(M). Letl =
dim(Ar/Ag). Let K¢ be an open compact subgroup of GLy(Ayf) and let o €
I1(O(n)). There exists C > 0 such that

2 2 (1 +|logt)!
/ Wi (P, e dx < € (log(2 + A= )" %
i /0

for all0 <t <1 and m € Mgis(M(A),&0)K;0-

6. The spectral side

We shall use the noninvariant trace formula of Arthur [Al], [A2], applied
to the heat kernel, to determine the growth of the discrete spectrum. To begin
with, we explain the general structure of the spectral side of the Arthur trace
formula. The spectral side is a sum of distributions

STUf), x € CERGAN).

XEX

Here X is the set of cuspidal data which consist of Weyl group orbits of pairs
(Mp,pp), where Mp is the Levi component of a parabolic subgroup and pp
is a cuspidal automorphic representation of Mp(A). The distributions J, are
described by Theorem 8.2 of [A4]. Let C'(G(A)!) be the space of integrable
rapidly decreasing functions on G(A)! [MS, §1.3]. In [MS, Th. 0.1] it was
proved that the spectral side of the trace formula for GL,, is absolutely con-
vergent for all f € C1(G(A)!). In this case the expression of the spectral side
simplifies.
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To describe this in more detail, we need to introduce some notation. Let
M € L and P,Q € P(M). Let A?(P) and A%(Q) be the corresponding spaces
of automorphic functions (see §1.5). Let W (ap,aq) be the set of all linear
isomorphisms from ap to ag which are restrictions of elements of the Weyl
group W (Ap). The theory of Eisenstein series associates to each s € W(ap, ag)
an intertwining operator

Mqp(s,\) : A*(P) — A%(Q), A€apg,

which, for Re(\) in a certain chamber, can be defined by an absolutely conver-
gent integral and admits an analytic continuation to a meromorphic function
of A € ap [La]. Set

Mgp(A) :== Mgp(1, ).
Fix P € P(M) and X € ia},. For Q € P(M) and A € ia},; define
Mo (P, A A) = Mg p(N) ' Mgp(A+ A).
Then
(6.1) {Mo(P,A\,A) | A €iay,, Qe P(M)}

is a (G, M) family with values in the space of operators on A?(P) [A4, p. 1310].
Let L € L(M). Then, as explained in the previous section, the (G, M) family
(6.1) has an associated (G, L) family

{le (P7)\aA) ‘ Ae ia*Lv Ql € P(L)}

and
ML(PAA) = > Mg, (P AN, (M)
Q1€P(L)

extends to a smooth function on ¢a7. Put
My (P, N) =Mp(P, A\, 0).
This operator depends only on the intertwining operators. It equals
M (P,\) =

_1 Moip(A+A)

lim | > vol(a§, /Z(AY,)) Mgp(N) Mon A9 |

A—0
Q.€P(L)

where A and A are constrained to lie in ¢aj, and for each Q1 € P(L), Q is a
group in P(Mp) which is contained in ;. Then 9y (P, \) is an unbounded
operator which acts on the Hilbert space A (P). For m € II(M(A)!) let A2(P)
be the subspace of A2(P) determined by 7 (see §1.5). Let p (P, \) be the
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induced representation of G(A) in .,Tli(P). Let W (aps)eeg be the set of ele-
ments s € W(aps) such that {H € apy | sH = H} = az. For any function
feCHG(A)Y) and s € WE(ap),eq set

Jirp(f.s)
(6.2) _ / tr(9ML (P, A) Mp|p(s,0)pr(P, A, f)) dA
ﬂ.eHdlb(M(A iaj /iag

By Theorem 0.1 of [MS] this integral-series is absolutely convergent with
respect to the trace norm. Furthermore for M € £ and s € VVL(aM)reg set
anrs = [PM)|H W ||Wo | det(s — 1)qr, |~

Then for any f in C*(G(A)!), the spectral side Jopec(f) of the Arthur trace
formula is given by

63) JeeH=> > Y > amsTirp(fs).
MeL LelL(M)PeP(M) seWL(an)reg

Note that all sums in this expression are finite.

We shall now evaluate the spectral side at a function ¢¢, ¢ > 0, which is
given in terms of the heat kernel of a Bochner-Laplace operator. Then our
main purpose is to determine the behaviour of Jypec(¢:) as t — 0.

Let G(R)! = G(A)' NG(R). By definition G(R)! consisits of all g € G(R)
with |det(g)| = 1. Hence G(R)! is semisimple and

G(R) = G(R)' - Ag(R)°.
Let
X =GR)'/K
be the associated Riemannian symmetric space. Given o € I1(K), let EU —
X be the associated homogeneous vector bundle. Let Qgg): be the Casimir
element of G(R)! and let A, be the operator in L2(E,) which is induced by
_R(QG(R)I) & Id Let

(6.4) HY € (CHG(R)") @ End(V,)) ="~

be the kernel of the heat operator e~*A+ where C!(G(R)) is Harish-Chandra’s
space of integrable rapidly decreasing functions. Set

h{ = tr H/ .
We extend h{ to a function on G(R) by
hi(g-2)=hi(9), g€ GR), z € Ac(R)".
Then h{ satisfies
h(9z) = hi(g), g€ G(R), 2 € Ac(R)".
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Let xo be the character of . Then h{ also satisfies
hi = Xo * h{ * Xo.

Let Ky be an open compact subgroup of G(Ay) and let 1f, be the character-
istic function of Ky in G(Ay). Set

XKf = VO](Kf)_l]-Kf-
Define the function ¢; on G(A) by

(6.5) o1(9) = h{ (90X, (95)

for any point
9= 9ggrs 9goo € G(R), gy € G(Ay),

in G(A). Then ¢; satisfies ¢;(g2z) = ¢i(g) for z € Ag(R)?, g € G(A). It
follows from (6.4) and the definition of C'(G(A)!) that the restriction ¢} of ¢,
to G(A)! belongs to C1(G(A)!).

Let 7 be any unitary representation of G(A) which is trivial on Ag(R)°.

Then we can define
m(on = | é1(9)7(9) do.
G(A)/Ac(R)O

Suppose that m = mo, ® 7y, where m, and 7; are unitary representations of
G(R) and G(Ay), respectively. Then o is trivial on Ag(R)Y. So we can set

ool ) = / oo (90) 1 (90) .
G(R)/Ac(R)°

Let Tlx, denote the orthogonal projection of the Hilbert space H, of 7y onto
the subspace Hfff of K s-invariant vectors. Then

(1) = oo (h{) @ 1k,

Now let 7 € TI(M(A)!). We identify 7 with a representation of M(A) which
is trivial on Ap(R)Y. Let I (my), A € ajsc, be the induced representation of
G(A). Let m = moo ® y. Then

IE(m\) = I§ (Moo n) ® IE (770).-

Let Hp(mx)s denote the o-isotypical subspace of the Hilbert space Hp(mso)
of the induced representation. Then Hp(7s ), is an invariant subspace of
IS (Toon, hY). Let A; be the Casimir eigenvalue of the restriction of s to
M(R)!. By Proposition 8.22 of [Kn] it follows that

IS (Moo hY) 1 Hp(mag)o = e HAFIAN 1

Now observe that there is a canonical isomorphism

. —2
jp Hp(m) @ Homagy (7, Tig{6) o (€0)) — A2 (P),
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which intertwines the induced representations. Let I, , denote the orthogo-
nal projection of J_éli(P) onto AZ(P)k, . Then it follows that

(6.6) pr(P,A, @) = e~ CAHAP

)

Suppose that A € (a%)%. Then p,(P, A, g) is trivial on Ag(R)?. This implies
pr(P A, ¢1) = pr(P, N, ¢1), where ¢} is the restriciton of ¢; to G(A)!. Together
with (6.6) we get

J]\L/I,P((b%a s) = Z e

mellgis(M(A)1)

(6.7)
. / e_tH/\Hz tr(ﬁnL(P, A)MP‘P(Sa O)HKf,O') dA.
iay /ag

To study this integral-series, we introduce the normalized intertwining opera-
tors

(68) NQlP(ﬂ-a )‘) = TQ|P<7T7 )‘>71MQ|P(7T7 )‘)7 A€ a}k\/l,(C’

where g p(m, \) are the global normalizing factors considered in the previous
section. Let P € P(M) and A € iaj}, be fixed. For @ € P(M) and A € ia},
define

(69) mQ(P77Ta>\7A) = NQ|P(7T>)‘)_1NQ|P(777)‘+A)7
Then as functions of A € ia},,
{No(P,m, A\ A) | Q € P(M)}

is a (G, M) family. The verification is the same as in the case of the unnor-
malized intertwining operators [A4, p. 1310]. For L € L(M), let

{Mo, (P,m,\,A) | A €iar, Q1 € P(L)}

be the associated (G, L) family.
Let Mg, (P, 7, A, A) be the restriction of Mg, (P, A, A) to XZ(P). Then by
(6.8) and (5.14) it follows that

(6.10) Mo, (P, 7, A\, A) = No, (P, A, A)vo, (P, A, A)
for all A € ia} and all Q1 € P(L).
For @ D P let f)g C ag be the lattice generated by {&Y | © € Ag} Define

620 = vol(aB/L3) ™" T A@Y).

oeAl
For S € F(L) put
Ny (P, 7, \)
(6.11) =lim > (—1) DGR TN (P, A A)OR(A)

A—0
{R|RDS}
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Let 9 (P, 7, \) be the restriction of M (P, \) to Xi(P). Then by (6.10) and
Lemma 6.3 of [A5] we get
(6.12) M(Pm A= Y N(Pm \vi (PN
SeF(L)

Let M (P, 7, A)k,,o denote the restriction of Mg(P,m, A) to A2(P)k, . Then
by (6.7),
(6.13)

JJ@,P(@}, s) = Z el

mellgis(M(A)")
[ PP ) (M (5, 0N (P, A )
SeF(L) 719/
Next we shall estimate the norm of Ms(P, 7, \)k, ». For a given place v

of Q let Jy p(my, A) be the intertwining operator between the induced repre-
sentations Ig(ﬂ'u,\) and Ig(m,)\). Let

Rqip(m, A) = rqp(mo, \) " gp(mo, A, A € alyc,
be the normalized local intertwining operator. These operators satisfy the con-
ditions (R1) — (Rs) of Theorem 2.1 of [A7]. Assume that Ky =[], . K. For
any place v denote by Hp(m,) the Hilbert space of the induced representation
I§(m,). If p < oo let Rgp(mp, M)k, be the restriction of Rgp(mp, A) to the
subspace of K,-invariant vectors Hp(m,)%» in Hp(m,). Let Ro|p(Too, A) o de-
note the restriction of Rg p(moo, A) to the o-isotypical subspace of I§ (7o) in
Hp(7oo). It was proved in [Mu2, (6.24)] that there exist a finite set of places
So, including the Archimedean one, and constants C' > 0 and ¢ € N, such that

q
Hm’s<Pm,A>Kf,ausc( S S0k R p(m M, |
pESo\{oo}k:I

q
S D% Ry (e, mu)

k=1
for all A € ia},, 0 € [I(K) and 7 € II(M(A)). By Proposition 0.2 of [MS],
there exists C' > 0 such that
(614) Hmi‘S'(Pvﬂ-’ )\)K‘f,UH S C

for all A € ia}; and 7 € Il (M(A)'). Observe that Mp p(s,0) is unitary. Let
| =dim(Ar/Ag). Using (6.13), (6.14) and Proposition 5.5 it follows that there
exists C' > 0 such that

(2 + |logt])!

|JJ[\;[,P(¢%75)| SC tl/2

Y dim A2 (P)k, 0 (log(1 + [Aa])" e
rellgio(M(A))

(6.15)
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for all 0 < ¢t < 1. The series can be estimated using Proposition 3.5. Let
Xu = M(R)/K); ., and let m = dim Xjy. It follows from Proposition 3.5 that

for every e > 0 there exists C' > 0 such that the series is bounded by Ct~™/2—¢
for 0 < ¢t < 1. This together with (6.15) yields the following proposition.

PROPOSITION 6.1. Let m = dim Xy, and | = dim Ap/Ag. For every
€ > 0 there exists C' > 0 such that

|JJ\L4,P(¢t1, s)| < ¢~ (m+D/2=e
for all0 <t < 1.

Now we distinguish two cases. First assume that M = G. Then L =
P = G and s = 1. Let R}, be the restriciton of the regular representation

R' of G(A)! in L?(G(Q)\G(A)!) to the discrete subspace. Then ngG(qb%, 1) =
Tr RL.(¢}). Let Ry be the regular representation of G(A) in

LE(Ac(R)" G(Q)\G(4)).
Then the operator Rgi(¢:) is isomorphic to R} (¢f). Thus

JG o(¢1,1) = Tr Rais(¢y).
Given 7 € Iy (G(A), &), let m(m) denote the multiplicity with which 7 occurs
in the regular representation of G(A) in L?(Ag(R)°G(Q)\G(A)). Then using
Corollary 2.2 in [BM] we get

Jg,G(qb%? 1)
(6.16) = Y m(r)dim(HEY) dim(He, © V,) O
mellgis(G(A),€0)
Now assume that M # G is a proper Levi subgroup. Let P = MN. Let
X = G(R)!/Ko. Then
X 2 Xy x Ay (R)?/AG(R)? x N(R).

Since | = dim Ap,/Ag < dim Aps/Ag, it follows that m 41 < dim X — 1. Thus,
using this together with Proposition 6.1, we get

THEOREM 6.2. Let d = dim X. For every open compact subgroup Ky of
G(Ay) and every o € II(O(n)) the spectral side of the trace formula, evaluated
at ¢}, satisfies

opec(91)

(6.17) = m(m) dim (HE!) dim (Hr, ® V,) O etx
m€llyis(G(A),%)

(
+ o1/

ast— 0.
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This theorem can be restated in a slightly different way as follows. There
exist arithmetic subgroups I'; C G(R), ¢ = 1,...,m, such that

m

Ac(R)’GQ\G(A)/ K= | |TA\GR)")

i=1

(cf. [Mul, §9]). Let Ay ; be the operator induced by the negative of the Casimir
operator in C*®°(I';\G(R)},0), i =1,...,m. Let

A<M <A<

be the L?-eigenvalues of A, = @™ 1 Ag i, where each eigenvalue is counted with
its multiplicity. Let d = dim X. If we proceed in the same way as in the proof
of Lemma 3.2, then it follows that (6.17) is equivalent to

(6.18) Jipee (1) Ze—” + Ot (@=1/2y

ast — 0T,
Let I'(IV) C SL,(Z) be the principal congruence subgroup of level N. Let

o < p1 < --- be the eigenvalues, counted with multiplicity, of A, acting in
L*(T'(N)\ SL,(R), o). Then it follows from (6.18) and (3.10) that

(6.19) Jipee (1) = Ze ti Ot~ (4=1/2)

ast— 0.

Our next purpose is to study Jg,e. as a functional on the Schwartz space.
Let Ky be an open compact subgroup of G(Ay) and let o € II(K«). Denote
by CH(G(A)'; K¢, 0) the set of all h € C1(G(A)') which are bi-invariant under
K and transform under K, according to 0. Let Ag be the Laplace operator
of G(R)!. Then we have

PROPOSITION 6.3. For every open compact subgroup Ky of G(Ay) and
every o € II(K) there exist C > 0 and k € N such that

| epee (F)] < CIIAA+A6)" fll L (ay
for all f € CH{G(A)Y; Ky, 0).

Proof. This follows essentially from the proof of Theorem 0.2 in [Mu2]
combined with Proposition 0.2 of [MS]. We include some details. Let M € L,
L e L(M) and P € P(M). By (6.3) it suffices to estimate J]@’P(f, s). Since
Mp|p(s,0) is unitary, it follows from (6.2) that

T p(f9)] < / [9ML (P, N pe (P A, )1,
7TeHdls(]M(A laL/aG
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where || - ||1 denotes the trace norm for operators in the Hilbert space .7(7% (P).
By (6.12) it follows that the right-hand side is bounded by

S [ PR PNl PN
meTlgio (M (a)") 7142/

The function vy (P, 7, )\) can be estimated by Theorem 5.4 of [Mu2]. This
reduces our problem to the estimation of the trace norm of the operator
N (P,m,\)pr(P, A\, f). Let Ky be an open compact subgroup of G(Ay)
and let 0 € II(Ku). Denote by Ilg, , the orthogonal projection of the

Hilbert space Xi(P) onto the finite-dimensional subspace AZ(P)g,,. Let
f €CYG(A)Y; Ky,0). Then

pTl'(P7>\7f):HKf,O'opﬂ'(P?Avf)OHKf,a

for all 7 € TI(M(A)!). Let
D =1d+Aq.

For any k € N let pW(P,/\,DQk)Kfﬁg denote the restriction of the operator
pr(P, A, D**) to the subspace A2(P)k, ,. Then

19T (P, 7, M) pr (P, A, £
(6.20) <IN (P, My ol - llon(PA D)t
Alpx (P, X, D* f)]|.
By (6.9) of [Mu2] we get

dim A2 (P) g
6.21 (PN, D)V 1 <C L Lo
( ) ||p ( ) )Kf,aH — (1+||A’|2+)\72r)k
and since pr (P, \) is unitary, we have
(6.22) o= (P, X, D* )| < [|ID* fll 1y
This, together with (6.14), gives C' > 0 such that

Hme'(PﬂT? )‘)pﬂ(Pa >‘7 f)”l

(6.23) ,k/zdimAgr(P)Kf»U

(1+ A2)k/2
for all A € ia%; and 7 € T4 (M (A)Y). Let d = dim G(R)!/Ky. By Theorem
5.4 of [Mu2] there exists kg € N such that for & > ko we have

< CIID* fl L cayy (1 + AN

(6.24) / w2 (P, ML+ AP TH2 AN < Cr(1 + A2)%
ia} /ag

for all m € Tais(M(A)') with A2(P)k, - # 0. Furthermore, by Proposition 3.4,

Z dim A%(P)Kf,a

(6.25) ST

mellqis(M(A)1)



324 WERNER MULLER

for k > m/2 + 1, where m = dim M(R)!/K /. Combining (6.23)—(6.25),
shows that for each k > m/2 + 16d? + 1 there exists Cj > 0 such that

3 //,HmARwAmARmﬂmwﬂRwAﬂw
mellgis(M(A)1) ¥ 1OL/ 106

< CrllD* £l G ay)-

This completes the proof. O

Now we return to the function ¢; defined by (6.5). It follows from the
definition that the restriction ¢; of ¢; to G(A)! belongs to C}(G(A)!, Ky, o).
We shall now modify ¢; in the following way. Let ¢ € C§°(R) be such that
p(u) =1, if |u| <1/2, and p(u) =0, if |u| > 1. Let d(z,y) denote the geodesic
distance of z,y € X and set

7(goo) = d(goo Koos Koo).
Given t > 0, let ¢; € C5°(G(R)!) be defined by
QOt(goo) = (P(Tz(goo)/tlm)'

Then supp ; is contained in the set {goo € G(R)! | 7(goo) < t'/4}. Extend ¢
to G(R) by

0t(goo?) = ¢t(goo)s  Goo € G(R)L, 2 € AG(R)°,

and then to a function on G(A) by multiplying ¢; by the characteristic function
of K f- Put

(6.26) 0i(9) = @(9)del9), g€ G(A).
Then the restriction ¢} of ¢; to G(A)! belongs to C°(G(A)Y).
PROPOSITION 6.4. There exist C,c > 0 such that
[rpec(6}) = Tupec(9})] < Ce™V?
foro<t<1.

Proof. Let ¥y = ¢4 — <Et and f; =1 — ¢y Let wtl denote the restriction of
¥y to G(A)'. Then by Proposition 6.3 there exists & € N such that

‘JSPeC(d)%) - JSPGC(¢t1)| = ’JSPSC(wth < Ck”(ld +AG)kwtl”L1(G(A)1)-
In order to estimate the L'-norm of v}, recall that by definition

¢t(googf) = ft(goo)hg(goo)XKf (gf)'

Hence

1T +Ac) Y |2 ey = 1Ad A (Fih) | 1 c®))-
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Let g(R)! be the Lie algebra of G(R)! and let X1,..., X, be an orthonormal
basis of g(R)!. Then Ag = — Y, X2. Denote by V the canonical connection
on G(R)!. Then it follows that there exists C' > 0 such that

2k
(Id+A0)f (g < CD IV, g€ GR),
=0

for all f € C*°(G(R)!). By Proposition 2.1 there exist constants C, ¢ > 0 such
that

(6.27) IVIR{ ()] < Ct~ (et 2emer I g € G(R),

for j < 2k and 0 < ¢t < 1. Let x; be the characteristic function of the set
R — (—t'/4 /%), Recall that f;(g) = (1 — ¢)(r*(g)/t"/?) and (1 — ¢)(u) is
constant for |u| > 1. This implies that there exist constants C, ¢ > 0 such that

(6.28) IV fe(9)ll < Ctxul(r(g)), g€ GR),
for j <2k and 0 <t < 1. Combining (6.27) and (6.28) we obtain

2%k
DIV R (@) < Crt=> P (r(g))e o 9/
1=0

< Cze_cl/\/ie—cﬂ“z(y)

for all g € G(R)! and 0 < ¢ < 1. Finally note that for every ¢ > 0, e=<"(9) is
an integrable function on G(R)!. This finishes the proof. O

7. Proof of the main theorem

In this section we evaluate the geometric side of the trace formula at
the function 5% and investigate its asymptotic behaviour as ¢ — 0. Then we
compare the geometric and the spectral sides and prove our main theorem.

Let us briefly recall the structure of the geometric side Jg, of the trace
formula [A1]. The coarse o-expansion of Jye,(f) is a sum of distributions

ol F) = Y2 Jo(f) f € CRGA),

0cO

which are parametrized by the set O of conjugacy classes of semisimple ele-
ments in G(Q). The distributions J,(f) are defined in [A1l]. We shall use the
fine o-expansion of the spectral side [A10] which expresses the distributions
Jo(f) in terms of weighted orbital integrals Jys(, f). To describe the fine
o-expansion we have to introduce some notation. Suppose that S is a finite set
of valuations of Q. Set

G(Qs)' = G(Qs) N G(A),
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where

Qs =[] Q..

veS

Suppose that w is a compact neighborhood of 1 in G(A)!. There is a finite set
S of valuations of Q, which contains the Archimedean place, such that w is
the product of a compact neighborhood of 1 in G(Qg)! with [Togs Ko Let
SY be the minimal such set. Let C2°(G(A)!) denote the space of functions in
C2°(G(A)') which are supported on w. For any finite set S O S¥ set

CX(G(Qs)') = CF(G(A)) N CZ(G(Qs)).

Let us recall the notion of (M, S)-equivalence [A10, p. 205]. For any v € M (Q)
denote by s (resp. 7,,) the semisimple (resp. unipotent) Jordan component of
7. Then two elements v and 7/ in M(Q) are called (M, S)-equivalent if there
exists § € M(Q) with the following two properties.

(i) s is also the semisimple Jordan component of §~14'4.

(ii) 7, and (5—17/6)1“ regarded as unipotent elements in M, (Qg), are
M, (Qg)-conjugate.

Denote by (M(Q))nr,s the set of (M, S)-equivalence classes in M (Q). Note
that (M, S)-equivalent elements v and 7/ in M (Q) are, in particular, M (Qg)-
conjugate. Given v € M(Q), let

Ju(v,f), f€CE(GQs)),

be the weighted orbital integral associated to M and ~ [A11l]. We observe
that Jas(7, f) depends only on the M (Qg)-orbit of v. Then by Theorem 9.1
of [A10] there exists a finite set S, D SY of valuations of Q such that for all
S D S, and any f € C(G(Qs)}),

(71)  Jeeolf) = DWW Y (S )Ty ).

MeL YE(M(Q))n, s

This is the fine o-expansion of the geometric side of the trace formula. The
interior sum is finite.

Recall that the restriction qAb} of ¢ to G(A)! belongs to CX(G(A)') and
hence, Jye, can be evaluated at 5% By construction of 5% there exists a compact
neighborhood w of 1 in G(A)! and a finite set S O S, of valuations of Q such
that

bl € CF(G(Qs)Y), 0<t<1.

Hence we can apply (7.1) to evaluate Jgeo(g,}). In this way our problem is re-
duced to the investigation of the weighted orbital integrals Jps (7, ¢1). Actually
for v € M(Q) we may replace ¢} by ;.
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To begin with we establish some auxiliary results. Given h € G(R), let
Ch=1{9 'hg | g € GR)}
be the conjugacy class of h in G(R).

LEMMA 7.1. Let k € Koo. Then CyyN Ko ts the Koo-conjugacy class of k.

Proof. Let g and ¢ denote the Lie algebras of G(R) and K, respectively.
Let 6 be a Cartan involution of g with fixed point set ¥ and let p be the
(—1)-eigenspace of #. Then the map

(K, X) € Koo x p— K exp(X) € G(R)

is an analytic isomorphism of analytic manifolds. If k1 € K, then kq is a
f-invariant semisimple element. Therefore, its centralizer Gy, is a reductive
subgroup and the restriction of § to Gj, is a Cartan involution. Thus the
restriction of the above Cartan decomposition to the centralizer of k; yields a
Cartan decomposition of Gy, (R). Let g € G(R) such that g~ kg € K. Write
g =K exp(X) with k¥ € K, and X € p. Since g~ kg is f-invariant, we get
exp(—X )k~ kk exp(X) = exp(X)k' ™ kk exp(—X).
Hence exp(2X) € Gp-15(R). From the Cartan decomposition of the latter

group we conclude that exp(2X) = exp(Y) for some Y € p;,-1;;,, and hence
X € pjy-14- This implies that g~ kg = k'~ 1kk'. O

It follows from Lemma 7.1 that Cp N K is a submanifold of C}.

LEMMA 7.2. Let k € Koo —{£1}. Then Ci, N K is a proper submanifold
of Cl.

Proof. Let the notation be as in the previous lemma. First note that the
tangent space of C at k is given by
T;,Cy, = (Ad(k) — 1d)(g)-

Furthermore

Ad(k)(e) Cc &, Ad(k)(p) Cp.
Hence we get
T:(Cr N Ks) = TCr, N € = (Ad(k) — Id)(8),
and so the normal space Ny to Cx N Ko in Cy, at k is given by
Ni = (Ad(k) — Id)(p).

Suppose that Ad(k) = Id on p. Since ¢ = [p, p], it follows that Ad(k) = Id on
g. Hence k belongs to the center of G°, which implies that & = 1. Thus if
k # +1, we have dim N > 0. O
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Next we recall the notion of an induced space of orbits [All, p. 255].
Given an element v € M(Qg), let ¥¢ be the union of those conjugacy classes
in G(Qg) which for any P € P(M) intersect YNp(Qg) in an open set. There
are only finitely many such conjugacy classes.

PROPOSITION 7.3. Let d = dim G(R)! /K. Let M € L and v € M(Q).
Then

lim 12 73 (7, 1) = 0
if either M # G, or M = G and v # +1.

Proof. By Corollary 6.2 of [A11] the distribution Jys(, 5,5) is given by the
integral of $t over v& with respect to a measure du on v which is absolutely
continuous with respect to the invariant measure class. Thus Jy;(7, @) is equal
to a finite sum of integrals of the form

/ Gu(9™ " yng)du(9),
G (Qs)\G(Qs)
where n € Np(Qg) for some P € P(M). Now recall that by (6.5) and (6.26),

¢¢(g) is the product of v¢(geo)hf (9oo) With Xk, (gf) for any g = googy. Hence
our problem is reduced to the investigation of the integral

/ (eh?) (95 100 goo) dia(goo)-
Gomoe (RN\G(R)
Furthermore, by Proposition 2.1 there exists C' > 0 such that

W9 (goo)] < CE2 0 <t <1.

Hence it suffices to show that

(7.2) lim 0195 TMoogoo) di(gos) =0
t=0JG,.. R\GR)

if either M # G, or M = G and v # +1.

By definition of 4%, the conjugacy class of yn in G(Qg) has to intersect
vNp(Qg) in an open subset. This implies that yne # +1, if either M # G,
or M = G and v # £1. Then it follows from Lemma 7.2 that C,,, N K is
a proper submanifold of C,__. Being a proper submanifold, C,, N K is a
subset of C,,_ with measure zero with respect to dg and therefore, also with
respect to du. Next observe that

/ Pt(gog VMoo goo) | f(goo)| dges < 0.
oo (RN\G(R)

Since supp ¢y C supp gy for ' < t, and 0 < ¢; < 1 for all ¢t > 0, there exists
C > 0 such that

Pt(gog VMoo goo) dt(ges)| < C

/Gwoo (RN\G(R)
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for all 0 < ¢t < 1. Furthermore by definition of ¢; we have
lim ¢y (z) = 0

for all z € C,, — (Cyn. N Ku). Since Cyp N Ko has measure zero with
respect to du, (7.2) follows by the dominated convergence theorem. O

We can now state the main result of this section.
THEOREM 7.4. Let d = dim G(R)! /K, let K¢ be an open compact sub-
group of G(Ay) and let o € II(O(n)) such that o(—1) =1d if —1 € K. Then
_ dim(o)

lim /2 J,0 (67) = Gm VUG@\GW) /K (1 4+ 1k, (-1).

Proof. By (7.1) and Proposition 7.3 if follows that
lim #9720, (31) = lim 9/2(a%(5, 1)1 (1) + a¥(S, ~1)F}(~1).
By Theorem 8.2 of [A10] we have
a®(S,£1) = vol(G(Q)\G(A)1).

Furthermore _
op (£1) = hf (£1)xx, (£1).

Since o satisfies o(—1) = Id, if —1 € Ky, it follows from (2.5) that h{(-1) =
h7(1). Finally, by Lemma 2.3 we have

o _ dim(o) 40 —(d=1)/2

hy(+1) = (47r)d/2t +O(t )
as t — 0. This combined with yg,(+1) = 1g,(£1)vol(K;)~!, proves the
theorem. 0

We shall now use the trace formula to prove the main results of this paper.
Recall that the coarse trace formula is the identity

Jopec(f) = Jaeo(f), [ € CZ(G(A)),
between distributions on G(A)! [A1]. Applied to gg% we get the equality

Tapec(01) = Jgeo(01), £ > 0.

Put ex, = 1, if =1 € Ky and €k, = 0 otherwise. Combining Theorem 6.2,
Proposition 6.4 and Theorem 7.4, we obtain

S m(r) dim(HEY) dim(Ha © V,) 0"

(73) 7TeHdis(G(A)vgo)
dim(o _

~ A G @NGA) Ky (1 + 25 )
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as t — 0. Applying Karamat’s theorem [Fe, p. 446], we obtain

S ) dim(HES) dim (e, @ Vy) O™
(74) TEllgis(G(A),€0)
vol(G(Q)\G(A)!/Ky)

(4m)4/2T(d/2 + 1)
as A — oo. By Lemma 3.3 it follows that this asymptotic formula continues to
hold if we replace the sum over Il (G(A), &) x by the sum over I, (G(A), &) .

Finally note that by [Sk] we have m(w) = 1 for all 7 € Il ,s(G(A),&y). This
completes the proof of Theorem 0.2. O

~ dim(o) (1+ 6Kf))\d/2

Now suppose that K is the congruence subgroup K(N) and I'(N) C
SL,,(Z) the principal congruence subgroup of level N. Then by (3.10) we have

vol(G(Q\G(A)'/K(N)) = o(N) vol(T(N)\ SL, (R)).

Furthermore, ey = 1 if and only if —1 € I'(NV). If —1 is contained in I'(V),
then the fibre of the canonical map

D(N)\ SL,(R) — T(N)\ SL,(R)/ SO(n)

is equal to SO(n)/{£1}. Otherwise the fibre is equal to SO(n). We normalize
the Haar measure on SL,(R) so that vol(SO(n)) = 1. Then in either case we
have

vol(I'(V)\ SLy, (R)) (1 + ex(n)) = vol(T'(N)\ SL,(R)/SO(n)).
Let X = SL,(R)/SO(n) and let \g < \; < --- be the eigenvalues, counted with
multiplicity, of the Bochner-Laplace operator A, acting in L2(T'(NV)\ SLy, (R), o).

Combining (6.18), Proposition 6.4, Theorem 7.4 and the above observa-
tions, we get

Yot = dim(a>—"°1((i(f)2;X Va2 4 o(a-ir2)

as t — 0. Using again Karamata’s theorem [Fe, p. 446], we get
vol(I'(N)\ X))

(47)4/2T(d/2 + 1)

as A\ — oo. By Proposition 3.6 it follows that the same asymptotic formula

holds if we replace N(igN)()\, o) by NCIII(SN)()\, o). This is exactly the statement
of Theorem 0.1.

NI\ 6) = dim(o) AY/2 4 o(2Y/2)
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