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An exact sequence for KM
∗ /2

with applications to quadratic forms
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1. Introduction

Let k be a field of characteristics zero. For a sequence a = (a1, . . . , an) of
invertible elements of k consider the homomorphism

KM
∗ (k)/2 → KM

∗+n(k)/2

in Milnor’s K-theory modulo elements divisible by 2 defined by multiplication
with the symbol corresponding to a. The goal of this paper is to construct
a four-term exact sequence (18) which provides information about the kernel
and cokernel of this homomorphism.

The proof of our main theorem (Theorem 3.2) consists of two indepen-
dent parts. Let Qa be the norm quadric defined by the sequence a (see be-
low). First, we use the techniques of [13] to establish a four term exact se-
quence (1) relating the kernel and cokernel of multiplication by a with Milnor’s
K-theory of the closed and the generic points of Qa respectively. This is done
in the first section. Then, using elementary geometric arguments, we show
that the sequence can be rewritten in its final form (18) which involves only
the generic point and the closed points with residue fields of degree 2.
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As an application we establish, for fields of characteristics zero, the validity
of three conjectures in the theory of quadratic forms - the Milnor conjecture
on the structure of the Witt ring, the Khan-Rost-Sujatha conjecture and the
J-filtration conjecture. All these results require only the first form of our exact
sequence. Using the final form of the sequence we also show that the kernel
of multiplication by a is generated, as a KM

∗ (k)-module, by its components of
degree ≤ 1.

This paper is a natural extension of [13] and we feel free to refer to the
results of [13] without reproducing them here. Most of the mathematics used
in this paper was developed in the spring of 1995 when all three authors were
at Harvard. In its present form the paper was written while the authors were
members of the Institute for Advanced Study in Princeton. We would like to
thank both institutions for their support.

2. An exact sequence for KM
∗ /2

Let a = (a1, . . . , an) be a sequence of elements of k∗. Recall that the n-fold
Pfister form 〈〈a1, . . . , an〉〉 is defined as the tensor product

〈1,−a1〉 ⊗ · · · ⊗ 〈1,−an〉
where 〈1,−ai〉 is the norm form in the quadratic extension k(

√
ai). Denote

by Qa the projective quadric of dimension 2n−1 − 1 defined by the form qa =
〈〈a1, . . . , an−1〉〉 − 〈an〉. This quadric is called the small Pfister quadric or the
norm quadric associated with the symbol a. Denote by k(Qa) the function
field of Qa and by (Qa)0 the set of closed points of Qa. The following result is
the main theorem of the paper.

Theorem 2.1. Let k be a field of characteristic zero. Then for any se-
quence of invertible elements (a1, . . . , an) the following sequence of abelian
groups is exact∐

x∈(Qa)(0)

KM
∗ (k(x))/2

Trk(x)/k→ KM
∗ (k)/2

·a→ KM
∗+n(k)/2 → KM

∗+n(k(Qa))/2.(1)

The proof goes as follows. We first construct two exact sequences of the form

0 → K → KM
∗+n(k)/2 → KM

∗+n(k(Qa))/2(2)

and ∐
x∈(Qa)(0)

KM
∗ (k(x))/2

Trk(x)/k→ KM
∗ (k)/2 → I → 0(3)

and then construct an isomorphism I → K such that the composition

KM
∗ (k)/2 → I → K → KM

∗+n(k)/2

is multiplication by a.
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Our construction of the sequence (2) makes sense for any smooth scheme
X and we shall do it in this generality. Recall that we denote by Č(X) the
simplicial scheme such that Č(X)n = Xn+1 and that faces and degeneracy
morphisms are given by partial projections and diagonal embeddings respec-
tively. We will use repeatedly the following lemma which is an immediate
corollary of [13, Lemma 7.2] and [13, Cor. 6.7].

Lemma 2.2. For any smooth scheme X over k and any p ≤ q the homo-
morphism

Hp,q(Spec(k),Z/2) → Hp,q(Č(X),Z/2)

defined by the canonical morphism Č(X) → Spec(k), is an isomorphism.

Proposition 2.3. For any n ≥ 0 there is an exact sequence of the form

0 → Hn,n−1(Č(X),Z/2) → KM
n (k)/2 → KM

n (k(X))/2.(4)

Proof. The computation of motivic cohomology of weight 1 shows that

Hom(Z/2,Z/2(1)) ∼= H0,1(Spec(k),Z/2) ∼= Z/2.

The nontrivial element τ : Z/2 → Z/2(1) together with multiplication mor-
phism Z(n − 1) ⊗ Z/2(1) ∼→ Z/2(n) defines a morphism

τ : Z/2(n − 1) → Z/2(n).

The Beilinson-Lichtenbaum conjecture implies immediately the following re-
sult.

Lemma 2.4. The morphism τ extends to a distinguished triangle in DM eff
−

of the form

Z/2(n − 1) ·τ→ Z/2(n) → Hn,n(Z/2)[−n],(5)

where Hn(Z/2(n)) is the nth cohomology sheaf of the complex Z/2(n).

Consider the long sequence of morphisms in the triangulated category of
motives from the motive of Č(X) to the distinguished triangle (5). It starts as

0 → Hn,n−1(Č(X),Z/2) → Hn,n(Č(X),Z/2) → H0(Č(X), Hn,n(Z/2)).

By Lemma 2.2 there are isomorphisms

Hn(Č(X),Z/2(n)) = Hn,n(Spec(k),Z/2) = KM
n (k)/2.

On the other hand, since Hn,n(Z/2) is a homotopy invariant sheaf with trans-
fers, we have an embedding

H0(Č(X), Hn,n(Z/2)) ↪→ Hn,n(Z/2)(Spec(k(X))).

The right-hand side is isomorphic to Hn,n(Spec(k(X)),Z/2) = KM
n (k(X))/2.

This completes the proof of the proposition.
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Let us now construct the exact sequence (3). Denote the standard simpli-
cial scheme Č(Qa) by Xa. Recall that we have a distinguished triangle of the
form

M(Xa)(2n−1 − 1)[2n − 2]
ϕ→ Ma

ψ→ M(Xa)
µ′

→ M(Xa)(2n−1 − 1)[2n − 1](6)

where Ma is a direct summand of the motive of the quadric Qa. Denote the
composition

M(Xa)
µ′

→ M(Xa)(2n−1 − 1)[2n − 1]
pr→ Z/2(2n−1 − 1)[2n − 1](7)

by µ ∈ H2n−1,2n−1−1(Xa,Z/2). By Lemma 2.2,

H i,i(Xa,Z/2) = H i,i(Spec(k),Z/2) = KM
i (k)/2.

Therefore, multiplication with µ defines a homomorphism

KM
i (k)/2

·µ→ H i+2n−1,i+2n−1−1(Xa,Z/2).

Proposition 2.5. The sequence∐
x∈(Qa)(0)

KM
i (k(x))/2

Trk(x)/k→ KM
i (k)/2

·µ→ H i+2n−1,i+2n−1−1(Xa,Z/2) → 0(8)

is exact.

Proof. Let us consider morphisms in the triangulated category of motives
from the distinguished triangle (6) to the object Z/2(i+2n−1−1)[i+2n−1]. By
definition, Ma is a direct summand of the motive of the smooth projective vari-
ety Qa of dimension 2n−1−1. Therefore, the group H i+2n−1,i+2n−1−1(Ma,Z/2)
is trivial by [13, Lemma 4.11] and [9]. Using this fact, we obtain the following
exact sequence:

H i+2n−2,i+2n−1−1(Ma,Z/2)
ϕ∗

→ H i,i(Xa,Z/2)
µ′∗

→(9)

→ H i+2n−1,i+2n−1−1(Xa,Z/2) → 0.

By definition (see [13, p. 22]) the morphism ϕ is given by the composition

M(Xa)(2n−1 − 1)[2n − 2]
pr→ Z(2n−1 − 1)[2n − 2] → Ma(10)

and the composition of the second arrow with the canonical embedding
Ma → M(Qa) is the fundamental cycle map

Z(2n−1 − 1)[2n − 2] → M(Qa)

which corresponds to the fundamental cycle on Qa under the isomorphism

Hom(Z(2n−1 − 1)[2n − 2], M(Qa)) = CH2n−1−1(Qa) ∼= Z

(see [13, Th. 4.4]). On the other hand by Lemma 2.2 the homomorphism

H i,i(Spec(k),Z/2) → H i,i(Xa,Z/2)
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defined by the first arrow in (10) is an isomorphism. This implies immediately
that the exact sequence (9) defines an exact sequence of the form

(11) H i+2n−2,i+2n−1−1(Qa,Z/2)
ϕ∗

→ H i,i(Spec(k),Z/2)
µ′∗

→
→ H i+2n−1,i+2n−1−1(Xa,Z/2) → 0.

By [13, Lemma 4.11] there is an isomorphism

H i+2n−2,i+2n−1−1(Qa,Z/2) ∼= H2n−1−1(Qa, K
M
i+2n−1−1/2).

The Gersten resolution for the sheaf KM
m /2 (see, for example, [9]) shows that

the group H2n−1−1(Qa, K
M
i+2n−1−1/2) can be identified with the cokernel of the

map: ∐
y∈(Qa)(1)

KM
i+1(k(y))/2 ∂→

∐
x∈(Qa)(0)

KM
i (k(x))/2,

and the map H i+2n−2,i+2n−1−1(Qa,Z/2)→H i,i(Spec(k),Z/2) defined by the
fundamental cycle corresponds in this description to the map∐

x∈(Qa)(0)

KM
i (k(x))/2

Trk(x)/k→ KM
i (k)/2 = H i,i(Spec(k),Z/2).

This finishes the proof of Proposition 2.5.

We are going to show now that the map KM
∗ (k)/2

α→ KM
∗+n(k)/2 glues

the exact sequences (4) and (8) in one. Denote by Hi(Xa) the direct sum
⊕mHm+i,m(Xa,Z/2). It has a natural structure of a graded module over the
ring KM

∗ (k)/2 and one can easily see that the sequences (4) and (8) define
sequences of KM

∗ (k)/2-modules of the form

0 → H1(Xa) → KM
∗ (k)/2 → KM

∗ (k(Qa))/2,(12) ∐
x∈(Qa)(0)

KM
∗ (k(x))/2

Trk(x)/k→ KM
∗ (k)/2

·µ→ H2n−1
(Xa) → 0.(13)

Consider cohomological operations

Qi : H•,∗(−,Z/2) → H•+2i+1−1,∗+2i−1(−,Z/2)

introduced in [12]. The composition Qn−2 · · ·Q0 defines a homomorphism of
graded abelian groups d : H1(Xa) → H2n−1

(Xa). Now, [12, Prop. 13.4] to-
gether with the fact that Hp,q(Spec(k),Z/2) = 0 for p > q implies that d is
a homomorphism of KM

∗ (k)/2-modules. We are going to show that d is an
isomorphism and that the composition

KM
∗ (k)/2

·µ→ H2n−1
(Xa)

d−1

→ H1(Xa) → KM
∗ (k)/2(14)

is multiplication with a.
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Lemma 2.6. The homomorphism d is injective.

Proof. We have to show that the composition of operations

Qn−2 . . . Q0 : H∗+n,∗+n−1(Xa,Z/2)→H∗+2n−1,∗+2n−1−1(Xa,Z/2)

is injective. Let X̃a be the simplicial cone of the morphism Xa → Spec(k)
which we consider as a pointed simplicial scheme. The long exact sequence of
cohomology defined by the cofibration sequence

(Xa)+ → Spec(k)+ → X̃a → Σ1
s((Xa)+)(15)

together with the fact that Hp,q(Spec(k),Z/2) = 0 for p > q shows that for
p > q + 1 we have a natural isomorphism Hp,q(X̃a,Z/2) = Hp−1,q(Xa,Z/2)
compatible with the actions of cohomological operations. Therefore, it is suffi-
cient to prove injectivity of the composition Qn−2 . . . Q0 on motivic cohomol-
ogy groups of the form H∗+n+1,∗+n−1(X̃a,Z/2). To show that Qn−2 · · ·Q0 is a
monomorphism it is sufficient to check that the operation Qi acts monomor-
phically on the group

H∗+n−i+2i+1−1,∗+n−i+2i−2(X̃a,Z/2)

for all i = 0, . . . , n − 2. For any i ≤ n − 1 we have ker(Qi) = Im(Qi) by
[13, Cor. 3.5]. Therefore, the kernel of Qi on our group is the image of
H∗+n−i,∗+n−i−1(X̃a,Z/2). On the other hand, the cofibration sequence (15)
together with Lemma 2.2 implies that for p ≤ q +1 we have Hp,q(X̃a,Z/2) = 0
which proves the lemma.

Denote by γ the element of Hn,n−1(Xa,Z/2) which corresponds to the
symbol a under the embedding into KM

n (k)/2 (sequence (4)). To prove that d

is surjective and that the composition (14) is multiplication with a we use the
following lemma.

Lemma 2.7. The composition KM
∗ (k)/2

·γ→ H1(Xa)
d→ H2n−1

(Xa) coin-
cides with multiplication by µ.

Proof. Since our maps are homomorphisms of KM
∗ (k)-modules it is suffi-

cient to verify that the cohomological operation d sends γ ∈ Hn,n−1(Xa,Z/2)
to µ ∈ H2n−1,2n−1−1(Xa,Z/2). By Lemma 2.6, d is injective. Therefore, the
element d(γ) iz nonzero. On the other hand, sequence (8) shows that

H2n−1,2n−1−1(Xa,Z/2) ∼= KM
0 (k)/2 ∼= Z/2

and µ is a generator of this group. Therefore, d(γ) = µ.

Lemma 2.8. The homomorphism d is surjective.

Proof. This follows immediately from Lemma 2.7 and surjectivity of mul-
tiplication by µ (Proposition 2.5).
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Lemma 2.9. The composition (14) is multiplication with a.

Proof. Since all the maps in (14) are morphisms of KM
∗ (k)-modules, it is

sufficient to check the condition for the generator 1 ∈ KM
0 (k)/2. And the later

follows from Lemma 2.7 and the definition of γ.

This finishes the proof of Theorem 2.1.

The following statement, which is easily deduced from the exact sequence
(1), is the key to many applications.

Let E/k be a field. For any element h ∈ KM
n (k) denote by h|E , as usual,

the restriction of h on E, i.e., the image of h under the natural morphism
KM

n (k) → KM
n (E).

Theorem 2.10. For any field k and any nonzero h ∈ KM
n (k)/2 there

exist a field E/k and a pure symbol α = {a1, . . . , an} ∈ KM
n (k)/2 such that

h|E = α|E is a nonzero pure symbol of KM
n (E)/2.

Proof. Let h = α1 + · · ·+ αl, where αi are pure symbols corresponding to
sequences ai = (a1i, . . . , ani). Let Qai

be the norm quadric corresponding to
the symbol αi. For any 0 < i ≤ l denote by Ei the field k(Qa1

× · · · ×Qai
). It

is clear that h|El
= 0. Let us fix i such that h|Ei+1 = 0 and h|Ei

is a nonzero
element. Then h|Ei

belongs to

ker(KM
n (Ei)/2 → KM

n (Ei+1)/2).

By Theorem 2.1, the kernel is covered by KM
0 (Ei) ∼= Z/2 and is generated by

αi+1|Ei
. Thus, we have αi+1|Ei

= h|Ei
�= 0.

3. Reduction to points of degree 2

In this section we prove the following result.

Theorem 3.1. Let k be a field such that char(k) �= 2 and Q be a smooth
quadric over k. Let Q(0) be the set of closed points of Q and Q(0,≤2) the subset
in Q(0) of points x such that [kx : k] ≤ 2. Then, for any n ≥ 0, the image of
the map

⊕trkx/k : ⊕x∈Q(0)K
M
n (kx) → KM

n (k)(16)

coincides with the image of the map

⊕trkx/k : ⊕x∈Q(0,≤2)K
M
n (kx) → KM

n (k).(17)

Combining Theorem 2.1 with Theorem 3.1 we get the following result.
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Theorem 3.2. Let k be a field of characteristic zero and a = (a1, . . . , an)
a sequence of invertible elements of k. Then the sequence

⊕x∈(Qa)(0,≤2)
KM

i (kx)/2 → KM
i (k)/2

a→ KM
i+n(k)/2 → KM

i+n(k(Qa))/2(18)

is exact.

Theorem 3.2 together with the well known result of Bass and Tate (see [1,
Cor. 5.3]) implies the following.

Theorem 3.3. Let k be a field of characteristic zero and a = (a1, . . . , an)
a sequence of invertible elements of k such that the corresponding elements of
KM

n (k)/2 are not zero. Then the kernel of the homomorphism KM
∗ (k)/2

a→
KM

∗+n(k)/2 is generated, as a module over KM
∗ (k), by the kernel of the homo-

morphism KM
1 (k)/2 → KM

1+n(k)/2.

Let us start the proof of Theorem 3.1 with the following two lemmas.

Lemma 3.4. Let E be an extension of k of degree n and V a k-linear
subspace in E such that 2dim(V ) > n. Then, for any n > 0, KM

n (E) is
generated, as an abelian group, by elements of the form (x1, . . . , xn) where all
xi’s are in V .

Proof. It is sufficient to prove the statement for n = 1. Let x be an invert-
ible element of E. Since 2dim(V ) > dimkE we have V ∩ xV �= 0. Therefore x

is a quotient of two elements of V ∩ E∗.

Lemma 3.5. Let k be an infinite field and p a closed, separable point in
Pn

k , n ≥ 2 of degree m. Then there exists a rational curve C of degree m − 1
such that p ∈ C and C is either nonsingular, or has one rational singular point.

Proof. We may assume that p lies in An ⊂ Pn. Then there exists a linear
function x1 on An such that the map of the residue fields kx1(p) → kp is an
isomorphism. Let (x1, . . . , xn) be a coordinate system starting with x1. Since
the restriction of x1 to p is an isomorphism the inverse gives a collection of
regular functions x̄2, . . . , x̄n on x1(p) ⊂ A1. Each of these functions has a
representative fi in k[x1] of degree at most m − 1. The projective closure of
the affine curve given by the equations xi = fi(x1), i = 2, . . . , n, satisfies the
conditions of the lemma.

Let Q be any quadric over k. If Q has a rational point (or even a point
of odd degree, which is the same by Springer’s theorem, [3, VII, Th. 2.3]),
then Theorem 3.1 for Q holds for obvious reasons. Therefore we may assume
that Q has no points of odd degree. It is well known (see e.g. [11, Th. 2.3.8,
p. 39]) that any smooth quadric of dimension > 0 over a finite field of odd
characteristic has a rational point. Since the statement of the theorem is
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obvious for dim(Q) = 0 we may assume that k is infinite. By the theorem of
Springer, for finite extension of odd degree E/F , the quadric QF is isotropic
if and only if QE is. Hence, we can assume that E/k is separable.

Let e be a point on Q with the residue field E. We have to show that
the image of the transfer map KM

n (E) → KM
n (k) lies in the image of the map

(17). We proceed by induction on d where 2d = [E : k]. If d = 1 there is
nothing to prove. Assume by induction that for any closed point f of Q such
that [kf : k] < 2d the image of the transfer map KM

n (kf ) → KM
n (k) lies in the

image of (17).
If dim(Q) = 0 our statement is obvious. Consider the case of a conic

dim(Q) = 1. Let D be any effective divisor on Q of degree 2d − 2. Denote by
h0(D) the linear space H0(Q,O(D)) which can be identified with the space of
rational functions f such that D+(f) is effective. Evaluating elements of h0(D)
on e we get a homomorphism h0(D) → E which is injective since deg(D) <

2d. By the Riemann-Roch theorem, dim(h0(D)) = 2d − 1 and therefore, by
Lemma 3.4, KM

n (E) is generated by elements of the form {f1(e), . . . , fn(e)}
where fi ∈ h0(D). Let now D′ be an effective divisor on Q of degree 2 (it
exists since Q is a conic). Using again the Riemann-Roch theorem we see that
dim(|e − D′|) > 0, i.e. that there exists a rational function f with a simple
pole in e and a zero in D′. In particular, the degrees of all the points where
f has singularities other than e is strictly less than 2d. Consider the symbol
{f1, . . . , fn, f} ∈ KM

n+1(k(Q)). Let

∂ : KM
n+1(k(Q)) → ⊕x∈Q(0)K

M
n (kx)

be the residue homomorphism. By [9] its composition with (16) is zero. On
the other hand we have

∂({f1, . . . , fn, f}) = {f1(e), . . . , fn(e)} + u

where u is a sum of symbols concentrated in the singular points of f1, . . . , fn

and singular points of f other than e. Therefore, by our construction u belongs
to ⊕x∈Q(0),<2d

KM
n (kx) and we conclude that trE/k{f1(e), . . . , fn(e)} lies in the

image of (17) by induction.
Let now Q be a quadric in Pn where n ≥ 3. Let c be a rational point of

Pn outside Q and π : Q → Pn−1 be the projection with the center in c. The
ramification locus of π is a quadric on Pn−1 which has no rational points.

Assume first that there exists e such that the degree of π(e) is d. Then,
by Lemma 3.5, we can find a (singular) rational curve C ′ in Pn−1 of degree
d− 1 which contains π(e). Consider the curve C = π−1(C ′) ⊂ Q. Let C̃, C̃ ′ be
the normalizations of C and C ′ and π̃ : C̃ → C̃ ′ the morphism corresponding
to π. Since deg(e) = 2d and deg(π(e)) = d the point e does not belong to the
ramification locus of π : Q → Pn−1. This implies that e lifts to a point ẽ of C̃
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of degree 2d and that ẽ = π̃−1(π̃(ẽ)). Since the ramification locus of π has no
rational points the singular point of C ′ is unramified. This implies that π̃ is
ramified in ≤ 2(d−1) points and, therefore, C̃ is a hyperelliptic curve of genus
less than or equal to d − 2.

Let D be an effective divisor on C̃ of degree 2d−2. By the Riemann-Roch
theorem we have dim(h0(D)) ≥ d + 1. On the other hand, since deg(D) <

2d, the homomorphism h0(D) → E defined by evaluation at ẽ is injective.
Therefore, by Lemma 3.4, KM

n (E) is additively generated by the elements of
the form {f1(ẽ), . . . , fn(ẽ)} for fi ∈ h0(D).

Let D′ be an effective divisor on C̃ of degree 2. By the Riemann-Roch
theorem we have dim(h0(ẽ−D′)) ≥ d+1 > 0. Therefore, there exists a rational
function f , with simple pole in ẽ, such that all its other singularities are located
in points of degree < 2d. We can conclude now that trE/k{f1(ẽ), . . . , fn(ẽ)}
belongs to the image of (17) in the same way as in the case of dim(Q) = 1.

Consider now the general case - we still assume that n ≥ 3 but not that we
can find a center of projection c such that deg(π(e)) = d. Taking a general c we
may assume that deg(π(e)) = 2d and that e does not belong to the ramification
locus of π. By Lemma 3.5 we can find a rational curve C ′ in Pn−1 of degree
2d−1 which contains π(e). Consider the curve C = π−1(C ′) ⊂ Q. Let C̃, C̃ ′ be
the normalizations of C and C ′, and π̃ : C̃ → C̃ ′ the morphism corresponding
to π. Since the point e does not belong to the ramification locus of π it lifts
to a point ẽ of C̃ of degree 2d. Since the ramification locus of π does not have
rational points and the only singular point of C ′ is rational, π̃ is ramified in
no more than 2(2d − 1) points; therefore, C̃ is a hyperelliptic curve of genus
≤ 2d − 2.

Let D be an effective divisor on C̃ ′ = P1 of degree d. We have dim(h0(D))
= d + 1 and since π̃(ẽ) has degree 2d the evaluation at π̃(ẽ) gives an injective
homomorphism h0(D) → E. By Lemma 3.4, we conclude that any element of
KM

n (E) is a linear combination of elements of the form {f1(π̃(ẽ)), . . . , fn(π̃(ẽ))}
where fi are in h0(D).

Let D′ be an effective divisor of degree 2 on C̃. By the Riemann-Roch
theorem we have dim(h0(ẽ − D′)) ≥ 1; i.e., there exists a rational function
f with a simple pole in ẽ and a zero in D′. If d > 1 then all the singular
points of f , except ẽ, are of degree < 2d and by the same reasoning as in the
previous two cases we conclude that trE/k({f1(π̃(ẽ)), . . . , fn(π̃(ẽ))}) is a linear
combination of the form∑

x∈C̃(0),<2d

trkx/k(ux) +
∑

i,y∈(fi◦π̃)

trky/k(vi,y).

Summands of the first type are in the image of (17) by the inductive assump-
tion. The fact that summands of the second type are in the image of (17)
follows from the case deg(π(e)) = d considered above.
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4. Some applications

4.1. Milnor ’s Conjecture on quadratic forms. As the first corollary of
Theorem 2.10 we get Milnor ’s Conjecture on quadratic forms.

As usual, we denote by W (k) the Witt ring of quadratic forms over k, and
by I ⊂ W (k) the ideal of even-dimensional forms. The filtration W (k) ⊃ I ⊃
I2 ⊃ · · · ⊃ In ⊃ . . . by the powers of I is called the I-filtration on W . We
denote the associated graded ring by Gr∗I·(W (k)). Consider the map

KM
1 (k)/2 = k∗/(k∗)2

ϕ1→ Gr1I·(W (k))

which sends {a} to 〈1,−a〉. Since (〈1,−a〉 + 〈1,−b〉 − 〈1,−ab〉) ∈ I2 it is a
group-homomorphism and one can easily see that it is an isomorphism. For any
a ∈ k∗\1, the form 〈〈a, 1 − a〉〉 is hyperbolic and, therefore, the isomorphism
ϕ1 can be extended to a ring homomorphism ϕ : KM

∗ (k)/2 → Gr∗I·(W (k)).
Since Gr∗I·(W (k)) is generated by the first-degree component ϕ is surjective.
The Milnor Conjecture on quadratic forms states that ϕ is an isomorphism i.e.
that it is injective. It was proven in degree 2 by J. Milnor [6], in degree 3 by
M. Rost [8] and A. Merkurjev-A. Suslin [7], and in degree 4 by M. Rost.
Moreover, R. Elman and T. Y. Lam [2] proved that the map ϕ is injective on
pure symbols.

Theorem 4.1. Let k be a field of characteristic zero. Then, the natural
map ϕ : KM

∗ (k)/2 → Gr∗I·(W (k)) is an isomorphism.

Proof. We already know that ϕ is surjective. Let h �= 0 be an element
of KM

n (k)/2. By Theorem 2.10 there exists a field extension E/k such that
h|E is a nonzero pure symbol. By a result of R. Elman and T. Y. Lam ([2])
the map ϕ is injective on pure symbols. Hence ϕ(h|E) is a nonzero element of
Grn

I·(W (E)). Since the morphism ϕ is compatible with field extensions, the
element ϕ(h) ∈ Grn

I·(W (k)) is also nonzero. Therefore, ϕ is injective.

4.2. The Kahn-Rost-Sujatha Conjecture. In [5] B. Kahn, M. Rost and
R. Sujatha proved that for any quadric Q of dimension m the ker(KM

i (k)/2 →
KM

i (k(Q))) is trivial for any i < log2(m + 2), if i ≤ 4 (actually, in [5] the
authors worked with H i

et(k,Z/2) instead of KM
i (k)/2, but because of [13] we

can use KM
i (k)/2 here). The authors also conjectured1 (among other things)

that the same is true without the restriction i ≤ 4. The following result proves
this conjecture.

Theorem 4.2. Let Q be an m-dimensional quadric over a field k of char-
acteristic zero. Then ker(KM

i (k)/2 → KM
i (k(Q))/2) is trivial for any i <

log2(m + 2).

1only in the original version of the paper
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Proof. Denote by q a quadratic form which defines the quadric Q. Assume
that h is a nonzero element of ker(KM

i (k)/2 → KM
i (k(Q))/2). Using Theorem

2.10 we can find an extension E/k such that h|E is a nonzero pure symbol of
the form a = {a1, . . . , an}. Then, since h|E(Q) = 0, the corresponding Pfister
quadric Qa/E becomes hyperbolic over E(Q). Since Qa|E(Q) is hyperbolic the
form t ·q|E is isomorphic to a subform of the Pfister form 〈〈a1, . . . , an〉〉 for some
coefficient t ∈ E∗ by [11, Ch. 4, Th. 5.4]. In particular, m + 2 = dim(Q) + 2 =
dim(q) ≤ 2i. Therefore, i ≥ log2(m + 2).

4.3. The J-filtration conjecture. Together with the I-filtration on W (k) we
can consider the following so-called J-filtration. Let x ∈ W (k) be an element,
q an anisotropic quadratic form which represents x and Q the correspond-
ing projective quadric. Since Q has a point over the field k(Q), we have a
decomposition of the form

q|k(Q) = q1 ⊥ H ⊥ · · · ⊥ H︸ ︷︷ ︸
i1(q)

,

where q1 is an anisotropic form over k(Q), and H is the elementary hyperbolic
form. The number i1(q) is called the first higher Witt index of q. In the same
way we can decompose q1|k(Q)(Q1) etc., obtaining a sequence of quadratic forms
q, q1, . . . , qs−1, where each qi is an anisotropic form defined over k(Q) . . . (Qi−1),
and

qs−1|k(Q)...(Qs−1) = H ⊥ · · · ⊥ H︸ ︷︷ ︸
is(q)

is a hyperbolic form. By [4, Th. 5.8] (see also [11, Ch. 4, Th. 5.4]), any
quadratic form q′ over a field E, such that q′|E(Q′) is hyperbolic, is proportional
to some Pfister form. This implies that the form qs−1 is proportional to an
n-fold Pfister form 〈〈a1, . . . , an〉〉, where {a1, . . . , an} ∈ KM

n (k(Q) . . . (Qs−2))/2.
This procedure defines, for any element x ∈ W (k), a natural number n which
we will call the degree of x.

Let us define Jn(W (k)) as the subset of W (k) consisting of all elements
of degree ≥ n. It can be easily checked that In ⊆ Jn. It was conjectured in
[4, Question 6.7] and in [11] that the J coincides with the I. The following
theorem proves this conjecture.

Theorem 4.3. Jn = In.

Proof. Let x be an element of Jn(W (k)) which is represented by a quadratic
form q. As above we have a sequence of quadrics Q, Q1, . . . , Qs−1 such that
q|k(Q)(Q1)...(Qs−1) is hyperbolic. This means that x goes to 0 under the natural
map from W (k) to W (k(Q)(Q1) . . . (Qs−1)).

All quadrics Q, Q1, . . . , Qs−1 have dimensions ≥ 2n−2 > 2n−1−2. By The-
orem 4.2, for any 0 ≤ i ≤ n−1, the kernel ker(KM

i (k)/2 → KM
i (k(Q) . . . (Qs−1)))
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is trivial. Therefore, applying the Milnor conjecture (Theorem 4.1), we con-
clude that the map

Gri
I·(W (k)) → Gri

I·(W (k(Q) . . . (Qs−1)))

is a monomorphism for all 0 ≤ i ≤ n − 1. Therefore the map

W (k)/In(W (k)) → W (k(Q) . . . (Qs−1))/In(W (k(Q) . . . (Qs−1)))

is a monomorphism as well. Therefore, x belongs to In(W (k)).
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