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Proofs without syntax

By Dominic J. D. Hughes

[M ]athematicians care no more for logic

than logicians for mathematics.

Augustus de Morgan, 1868

Abstract

Proofs are traditionally syntactic, inductively generated objects. This
paper presents an abstract mathematical formulation of propositional calcu-
lus (propositional logic) in which proofs are combinatorial (graph-theoretic),
rather than syntactic. It defines a combinatorial proof of a proposition φ as a
graph homomorphism h : C → G(φ), where G(φ) is a graph associated with φ

and C is a coloured graph. The main theorem is soundness and completeness:
φ is true if and only if there exists a combinatorial proof h : C → G(φ).

1. Introduction

In 1868, de Morgan lamented the rift between mathematics and logic
[deM68]: “[M ]athematicians care no more for logic than logicians for mathe-

matics.” The dry syntactic manipulations of formal logic can be off-putting
to mathematicians accustomed to beautiful symmetries, geometries, and rich
layers of structure. Figure 1 (see Section 2) shows a syntactic proof in a stan-
dard Hilbert system taught to mathematics undergraduates [Hil28], [Joh87].
Although the system itself is elegant (just three axiom schemata suffice), the
syntactic proofs generated in it need not be. Other syntactic systems include
[Fr1879], [Gen35].

This paper presents an abstract mathematical formulation of proposi-
tional calculus (propositional logic) in which proofs are combinatorial (graph-
theoretic), rather than syntactic. It defines a combinatorial proof of a proposi-
tion φ as a graph homomorphism h : C → G(φ), where G(φ) is a graph associ-
ated with φ and C is a coloured graph. For example, if φ = ((p⇒ q)⇒ p)⇒ p

then G(φ) is: •
p •

q

•
p��� •

p
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A combinatorial proof h : C → G(φ) of φ is shown below:

•
p •

q

•
p��� •

p

◦

� �

◦
�
�
���

�
�
���

The upper graph C has two colours (white ◦ and grey ), and the arrows
define h. The same proposition is proved syntactically in Figure 1.

The main theorem of the paper is soundness and completeness:

A proposition is true if and only if it has a combinatorial proof.

As with conventional syntactic soundness and completeness, this theorem mat-
ches a universal quantification with an existential one: a proposition φ is true
if it evaluates to 1 for all 0/1 assignments of its variables, and φ is provable
if there exists a proof of φ. However, where conventional completeness pro-
vides an inductively generated syntactic witness (e.g. Figure 1), this theorem
provides an abstract mathematical witness for every true proposition (e.g. the
homomorphism h drawn above).

Just three conditions suffice for soundness and completeness: a graph
homomorphism h : C → G(φ) is a combinatorial proof of φ if (1) C is a suitable
coloured graph, (2) the image of each colour class is labelled appropriately, and
(3) h is a skew fibration, a lax form of graph fibration. Each condition can be
checked in polynomial time, so combinatorial proofs constitute a formal proof
system [CR79].

Acknowledgements. Nil Demirçubuk, Vaughan Pratt, Julien Basch,
Rajat Bhattacharjee, Rob van Glabbeek, Sol Feferman, Grisha Mints and Don
Knuth. Stanford grant 1DMA644.

2. Notation and terminology

Graphs. An edge on a set V is a two-element subset of V. A graph (V, E)
is a finite set V of vertices and a set E of edges on V . Write V (G) and E(G)
for the vertex set and edge set of a graph G, respectively, and vw for {v, w}.
The complement of (V, E) is the graph (V, Ec) with vw ∈Ec if and only if
vw �∈E. A graph (V, E) is coloured if V carries an equivalence relation ∼ such
that v∼w only if vw �∈ E; each equivalence class is a colour class. Given a
set L, a graph is L-labelled if every vertex has an element of L associated with
it, its label . Let G = (V,E) and G′= (V ′,E′) be graphs. A homomorphism

h : G → G′ is a function h : V → V ′ such that vw ∈ E implies h(v)h(w) ∈ E′.
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Below is a proof of Peirce’s law ((p⇒ q)⇒ p)⇒ p in a standard Hilbert formulation
of propositional logic, taught to mathematics undergraduates [Joh87], with axiom
schemata (a) x ⇒ (y ⇒ x)

(b) (x ⇒ (y ⇒ z)) ⇒ ((x ⇒ y) ⇒ (x ⇒ z))
(c) ((x ⇒ ⊥) ⇒ ⊥) ⇒ x

and where (mi
j) marks modus ponens with hypotheses numbered i and j. Hilbert

systems tend to emphasise the elegance of the schemata (just (a)–(c) suffice) over
the elegance of the proofs generated by the schemata. (Note: there may exist a
shorter proof of Peirce’s law in this system.)

1 (c) ((q⇒⊥)⇒⊥)⇒q

2 (a) (((q⇒⊥)⇒⊥)⇒q) ⇒ (⊥⇒(((q⇒⊥)⇒⊥)⇒q))

3 (m1
2) ⊥⇒(((q⇒⊥)⇒⊥)⇒q)

4 (b) (⊥⇒(((q⇒⊥)⇒⊥)⇒q)) ⇒ ((⊥⇒((q⇒⊥)⇒⊥))⇒(⊥⇒q))

5 (m3
4) (⊥⇒((q⇒⊥)⇒⊥))⇒(⊥⇒q)

6 (a) ⊥⇒((q⇒⊥)⇒⊥)

7 (m6
5) ⊥⇒q

8 (a) (⊥⇒q)⇒(p⇒(⊥⇒q))

9 (m7
8) p⇒(⊥⇒q)

10 (b) (p⇒(⊥⇒q)) ⇒ ((p⇒⊥)⇒(p⇒q))

11 (m9
10) (p⇒⊥)⇒(p⇒q)

12 (a) ((p⇒q)⇒p)⇒((p⇒⊥)⇒((p⇒q)⇒p))

13 (b) ((p⇒⊥)⇒((p⇒q)⇒p)) ⇒ (((p⇒⊥)⇒(p⇒q))⇒((p⇒⊥)⇒p))

14 (a) (((p⇒⊥)⇒((p⇒q)⇒p))⇒(((p⇒⊥)⇒(p⇒q))⇒((p⇒⊥)⇒p))) ⇒
(((p⇒q)⇒p)⇒(((p⇒⊥)⇒((p⇒q)⇒p))⇒ (((p⇒⊥)⇒(p⇒q))⇒((p⇒⊥)⇒p))))

15 (m13
14) ((p⇒q)⇒p)⇒(((p⇒⊥)⇒((p⇒q)⇒p))⇒ (((p⇒⊥)⇒(p⇒q))⇒((p⇒⊥)⇒p)))

16 (b) (((p⇒q)⇒p)⇒(((p⇒⊥)⇒((p⇒q)⇒p))⇒(((p⇒⊥)⇒(p⇒q))⇒ ((p⇒⊥)⇒p)))) ⇒
((((p⇒q)⇒p)⇒((p⇒⊥)⇒((p⇒q)⇒p)))⇒ (((p⇒q)⇒p)⇒(((p⇒⊥)⇒(p⇒q))⇒((p⇒⊥)⇒p))))

17 (m15
16) (((p⇒q)⇒p)⇒((p⇒⊥)⇒((p⇒q)⇒p)))⇒ (((p⇒q)⇒p)⇒(((p⇒⊥)⇒(p⇒q))⇒((p⇒⊥)⇒p)))

18 (m12
17) ((p⇒q)⇒p)⇒ (((p⇒⊥)⇒(p⇒q))⇒((p⇒⊥)⇒p))

19 (b) (((p⇒q)⇒p)⇒(((p⇒⊥)⇒(p⇒q))⇒((p⇒⊥)⇒p))) ⇒
((((p⇒q)⇒p)⇒((p⇒⊥)⇒(p⇒q)))⇒ (((p⇒q)⇒p)⇒((p⇒⊥)⇒p)))

20 (m18
19) (((p⇒q)⇒p)⇒((p⇒⊥)⇒(p⇒q)))⇒ (((p⇒q)⇒p)⇒((p⇒⊥)⇒p))

21 (a) ((p⇒⊥)⇒(p⇒q))⇒ (((p⇒q)⇒p)⇒((p⇒⊥)⇒(p⇒q)))

22 (a) ((((p⇒q)⇒p)⇒((p⇒⊥)⇒(p⇒q)))⇒(((p⇒q)⇒p)⇒((p⇒⊥)⇒p))) ⇒
(((p⇒⊥)⇒(p⇒q))⇒((((p⇒q)⇒p)⇒((p⇒⊥)⇒(p⇒q)))⇒ (((p⇒q)⇒p)⇒((p⇒⊥)⇒p))))

23 (m20
22) ((p⇒⊥)⇒(p⇒q))⇒((((p⇒q)⇒p)⇒((p⇒⊥)⇒(p⇒q))) ⇒ (((p⇒q)⇒p)⇒((p⇒⊥)⇒p)))

24 (b) (((p⇒⊥)⇒(p⇒q))⇒((((p⇒q)⇒p)⇒((p⇒⊥)⇒(p⇒q)))⇒ (((p⇒q)⇒p)⇒((p⇒⊥)⇒p)))) ⇒ ((((p⇒⊥)⇒
(p⇒q))⇒(((p⇒q)⇒p)⇒((p⇒⊥)⇒(p⇒q))))⇒(((p⇒⊥)⇒(p⇒q))⇒ (((p⇒q)⇒p)⇒((p⇒⊥)⇒p))))

25 (m23
24) (((p⇒⊥)⇒(p⇒q))⇒(((p⇒q)⇒p)⇒((p⇒⊥)⇒(p⇒q))))⇒(((p⇒⊥)⇒(p⇒q))⇒(((p⇒q)⇒p)⇒((p⇒⊥)⇒p)))

26 (m21
25) ((p⇒⊥)⇒(p⇒q))⇒(((p⇒q)⇒p)⇒((p⇒⊥)⇒p))

27 (m11
26) ((p⇒q)⇒p)⇒((p⇒⊥)⇒p)

28 (a) (p⇒⊥)⇒(((p⇒⊥)⇒(p⇒⊥))⇒(p⇒⊥))

29 (b) ((p⇒⊥)⇒(((p⇒⊥)⇒(p⇒⊥))⇒(p⇒⊥))) ⇒ (((p⇒⊥)⇒((p⇒⊥)⇒(p⇒⊥)))⇒((p⇒⊥)⇒(p⇒⊥)))

30 (m28
29) ((p⇒⊥)⇒((p⇒⊥)⇒(p⇒⊥)))⇒((p⇒⊥)⇒(p⇒⊥))

31 (a) (p⇒⊥)⇒((p⇒⊥)⇒(p⇒⊥))

32 (m31
30) (p⇒⊥)⇒(p⇒⊥)

33 (b) ((p⇒⊥)⇒(p⇒⊥))⇒ (((p⇒⊥)⇒p)⇒((p⇒⊥)⇒⊥))

34 (m32
33) ((p⇒⊥)⇒p)⇒((p⇒⊥)⇒⊥)

35 (c) ((p⇒⊥)⇒⊥)⇒p

36 (a) (((p⇒⊥)⇒⊥)⇒p)⇒ (((p⇒⊥)⇒p)⇒(((p⇒⊥)⇒⊥)⇒p))

37 (m35
36) ((p⇒⊥)⇒p)⇒(((p⇒⊥)⇒⊥)⇒p)

38 (b) (((p⇒⊥)⇒p)⇒(((p⇒⊥)⇒⊥)⇒p)) ⇒ ((((p⇒⊥)⇒p)⇒((p⇒⊥)⇒⊥))⇒ (((p⇒⊥)⇒p)⇒p))

39 (m37
38) (((p⇒⊥)⇒p)⇒((p⇒⊥)⇒⊥))⇒ (((p⇒⊥)⇒p)⇒p)

40 (m34
39) ((p⇒⊥)⇒p)⇒p

41 (a) (((p⇒⊥)⇒p)⇒p) ⇒ (((p⇒q)⇒p)⇒(((p⇒⊥)⇒p)⇒p))

42 (m40
41) ((p⇒q)⇒p)⇒(((p⇒⊥)⇒p)⇒p)

43 (b) (((p⇒q)⇒p)⇒(((p⇒⊥)⇒p)⇒p)) ⇒ ((((p⇒q)⇒p)⇒((p⇒⊥)⇒p))⇒ (((p⇒q)⇒p)⇒p))

44 (m42
43) (((p⇒q)⇒p)⇒((p⇒⊥)⇒p))⇒ (((p⇒q)⇒p)⇒p)

45 (m27
44) ((p⇒q)⇒p)⇒p

Figure 1: A syntactic proof in a standard Hilbert system
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If V and V ′ are disjoint, the union G ∨ G′ is (V ∪ V ′, E ∪ E′) and the join

G∧G′ is (V ∪ V ′, E ∪E′ ∪ {vv′ : v∈V, v′∈V ′}); colourings or labellings of G

and G′ are inherited. A graph (V, E) is a cograph [CLS81] if V is non-empty
and for any distinct v, w, x, y∈V , the restriction of E to edges on {v, w, x, y}
is not {vw, wx, xy}. A set W ⊆ V induces a matching if it is non-empty
and for all w∈W there is a unique w′∈W such that ww′ ∈ E.

Propositions. Fix a set V of variables. A proposition is any expression
generated freely from variables by the binary operations and ∧, or ∨, and
implies ⇒, the unary operation not ¬, and the constants (nullary operations)
true 1 and false 0. A valuation is a function f : V → {0, 1}. Write f̂ for
the extension of a valuation f to propositions defined by f̂(0) = 0, f̂(1) = 1,
f̂(¬φ) = 1− f̂(φ), f̂(φ∧ρ) = min{f̂(φ),f̂(ρ)}, f̂(φ∨ρ) = max{f̂(φ),f̂(ρ)}, and
f̂(φ ⇒ρ)= f̂((¬φ)∨ρ). A proposition φ is true if f̂(φ)=1 for all valuations f .
Variables p ∈ V and their negations p =¬p are literals; p and p are dual , as
are 0 and 1. An atom is a literal or constant, and A denotes the set of atoms.

3. Combinatorial proofs

Given an A-labelled graph G, define ¬G as the result of complementing
G and every label of G. For example, if G is the graph below-left, then ¬G is
the graph below-right.

•p

•q

• 0

•p

�
�

��
�

�
•p

•q

• 1

•p

Define G⇒G′ = (¬G)∨G′. Identify each atom a with a single vertex labelled a;
thus, having defined operations ¬, ∨, ∧ and ⇒ on A-labelled graphs, every
proposition φ determines an A-labelled graph, denoted G(φ). For example,
G

(
(p ∨¬q) ∧ (0 ∨ p)

)
is above-left, G

(
(q ∧ ¬p) ∨ (1 ∧ ¬p)

)
is above-right, and

G
(
((p ⇒ q) ⇒ p) ⇒ p

)
is as in the introduction. A colouring is nice if every

colour class has at most two vertices and no union of two-vertex colour classes
induces a matching. A graph homomorphism h : G→G′ is a skew fibration

(see figure below) if for all v ∈V (G) and h(v)w∈E(G′) there exists vŵ∈E(G)
with h(ŵ)w �∈E(G′).

∀v
ŵ				

�
�

∃

h(v)
h(ŵ)

w



���

∀

Given a graph homomorphism h : G → G′ with G′ an A-labelled graph, a
vertex v ∈ V (G) is axiomatic if h(v) is labelled 1, and a pair {v, w} ⊆ V (G)
is axiomatic if h(v) and h(w) are labelled by dual literals.
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Definition 3.1. A combinatorial proof of a proposition φ is a skew
fibration h : C → G(φ) from a nicely coloured cograph C to the graph G(φ)
of φ, such that every colour class of C is axiomatic.

A combinatorial proof of ((p⇒ q)⇒ p)⇒ p is shown in the introduction. The
reader may find it instructive to consider why p ∧¬p has no combinatorial
proof.

Theorem 3.1 (Soundness and Completeness). A proposition is true if
and only if it has a combinatorial proof.

Section 4 reformulates this theorem in terms of combinatorial (non-syn-
tactic, non-inductive) notions of proposition and truth. Section 5 proves the
reformulated theorem.

Notes. The map φ �→ G(φ) is based on a well understood translation of
a boolean formula into a graph [CLS81], and (up to standard graph isomor-
phism1) represents propositions modulo associativity and commutativity of ∧
and ∨, double negation ¬¬φ = φ, de Morgan duality ¬(φ ∧ ρ) = (¬φ) ∨ (¬ρ)
and ¬(φ ∨ ρ) = (¬φ) ∧ (¬ρ) , and φ ⇒ ρ = (¬φ) ∨ ρ . Perhaps the earliest
graphical representation of propositions is due to Peirce [Pei58, vol. 4:2], dating
from the late 1800s.

A skew fibration is a lax notion of graph fibration. A graph homomorphism
h : G → G′ is a graph fibration (see e.g. [BV02]) if for all v ∈ V (G) and
h(v)w ∈ E(G′) there is a unique vŵ ∈ E(G) with h(ŵ)=w .2 The definition of
skew fibration drops uniqueness and relaxes h(ŵ) = w to ‘skewness’ h(ŵ)w �∈
E(G′).

Combinatorial proofs constitute a formal proof system [CR79] since cor-
rectness can be checked in polynomial time.3 There is a polynomial-time com-
putable function taking a propositional sequent calculus proof of φ with n ≥ 0
cut rules [Gen35] to a combinatorial proof of φ with n cuts: a combinatorial
proof of φ ∨ (θ1 ∧ ¬θ1) ∨ · · · ∨ (θn ∧ ¬θn) for propositions θi.

In the example of a combinatorial proof drawn in the introduction, observe
that the image of the colour class ◦ ◦ under h is •

p
•
p . Think of the colour

class as actively pairing an occurrence of a variable p with an occurrence of its

1Graphs (V, E) and (V ′, E′) are isomorphic if there exists a bijection h : V → V ′ with
vw ∈ E if and only if h(v)h(w) ∈ E′.

2This is simply a convenient restatement of the familiar notions of fibration in topology
[Whi78] and category theory [Gro59], [Gra66]: a graph homomorphism is a graph fibration
if and only if it satisfies the homotopy lifting property (when viewed as a continuous map
by identifying each edge with a copy of the unit interval) if and only if it has all requisite
cartesian liftings (when viewed as a functor by identifying each graph with its path category).

3The skew fibration and axiomatic conditions are clearly polynomial. Checking that a
graph G is a cograph is polynomial by constructing its modular decomposition tree T (G)
[BLS99], and checking that G is nicely coloured is a simple breadth-first search on T (G).
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dual p. The idea of pairing dual variable occurrences has arisen in the study
of various forms of syntax, such as closed categories [KM71], contraction-free
predicate calculus [KW84] and linear logic [Gir87]. Combinatorial proofs relate
only superficially to the connection/matrix method [Dav71], [Bib74], [And81];
the latter fails to provide a proof system [CR79].

A partially combinatorial notion of proof for classical logic, called a proof
net, was presented in [Gir91], though promptly dismissed by the author as
overly syntactic: a proof net of a proposition φ has an underlying syntax tree
containing not only ∧’s and ∨’s from φ, but also auxiliary syntactic connectives
which are not even boolean operations (contraction and weakening).

Nicely coloured cographs with two vertices in every colour class corre-
spond to unlabelled chorded R&B-cographs [Ret03]. When labelled, the latter
represent proof nets of mixed multiplicative linear logic [Gir87].

4. Combinatorial propositions and truth

A set W ⊆ V(G) is stable if vw �∈E(G) for all v,w ∈W. A clause is a
maximal stable set. A clause of an A-labelled graph is true if it contains a
1-labelled vertex or two vertices labelled by dual literals; an A-labelled graph
is true if its clauses are true. For example, •

p
•
p
•
1 ( = G(p⇒(p∧1)) ) is true,

with true clauses •
p
•
p and •

p
•
1 .

Lemma 4.1. A proposition φ is true if and only if its graph G(φ) is true.

Proof. Exhaustively apply distributivity θ∨(ψ1∧ψ2) → (θ∨ψ1)∧(θ∨ψ2) to
φ modulo associativity and commutativity of ∧ and ∨, yielding a conjunction
φ′ of syntactic clauses (disjunctions of atoms). The lemma is immediate for
φ′ since G(φ′) is a join of clauses, and G

(
θ ∨ (ψ1 ∧ ψ2)

)
is true if and only if

G
(
(θ ∨ ψ1) ∧ (θ ∨ ψ2)

)
is true since for non-empty graphs G1 and G2, a clause

of G1∨ G2 (resp. G1 ∧ G2) is a clause of G1 and (resp. or) a clause of G2.

A combinatorial proposition is an A-labelled cograph. Since a graph
is a cograph if and only if it is derivable from individual vertices by union, join
and complement [BLS99, §11.3], the graph G(φ) of any syntactic proposition
φ is a combinatorial proposition; conversely, every combinatorial proposition
is (isomorphic to) G(φ) for some φ.

Definition 4.1. A combinatorial proof of a combinatorial proposition
P is a skew fibration h : C → P from a nicely coloured cograph C whose colour
classes are axiomatic.

Thus a combinatorial proof of a syntactic proposition φ (Def. 3.1) is a com-
binatorial proof of G(φ) (Def. 4.1). By Lemma 4.1, the following is equivalent
to Theorem 3.1.
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Theorem 4.1 (Combinatorial Soundness and Completeness). A combi-
natorial proposition is true if and only if it has a combinatorial proof.

5. Proof of Theorem 4.1

The diagram below shows the dependency between the Lemmas (4.1–5.8)
and Theorems (Ti.j) in this paper.

T3.1 �� T4.1
4.1

T5.2� 5.6�

5.3 � 5.4 � T5.1

�

� 5.8

�
��

�
�

�
��

�
�

5.1 �

�

5.2

�
��

�
�

5.5

�

5.7

�
��

�
�

Given a graph homomorphism h : G → G′, an edge vŵ∈E(G) is a skew

lifting of h(v)w ∈ E(G′) at v if h(ŵ)w �∈E(G′) . Thus h is a skew fibration
if and only if every edge h(v)w ∈ E(G′) has a skew lifting at v.

A graph G is a subgraph of G′, denoted G ⊆ G′, if V (G) ⊆ V (G′) and
E(G)⊆E(G′). The subgraph G[W ] of G induced by W⊆V(G) is (W, { vw∈
E(G) : v,w∈W }). Let h : G→H be a graph homomorphism and let G′ and
H ′ be induced subgraphs of G and H, respectively. Write h(G′) for the induced
subgraph H [h(V (G′))] and h−1(H ′) for the induced subgraph G[h−1(V (H ′))].
Define the restriction h�H′ : h−1(H ′) → H ′ by h�H′(v) = h(v).

Lemma 5.1. Let � ∈ {∧,∨}. If h : G → H1 � H2 is a skew fibration then
both restrictions h�Hi

are skew fibrations.

Proof. We prove that if vŵ is a skew lifting of h�Hi
(v)w = h(v)w ∈ E(Hi)

at v with respect to h, then h(ŵ) ∈ Hi ; hence vŵ is a well-defined skew
lifting with respect to h�Hi

. Suppose h(ŵ) ∈ Hj and j �= i. If �=∨, since h

is a homomorphism, h(v)h(ŵ) is an edge between H1 and H2 in H1 ∨ H2, a
contradiction; if �=∧ , since H1∧H2 has all edges between H1 and H2, h(ŵ)w
is an edge, contradicting vŵ being a skew lifting with respect to h.

Lemma 5.2. Let h : (G1 ∧ G2) ∨ (H1 ∨ H2) → (K1 ∧ K2) ∨ L be a skew
fibration with h(Gi) ⊆ Ki and h(Hi) ⊆ L. Then hi : Gi∨Hi →Ki∨L defined
by hi(v) =h(v) is a skew fibration.

Proof. Since a graph union X1 ∨X2 has no edges between X1 and X2, (a)
if k : X1 ∨ X2 → Y is a skew fibration, so also is k�Xi : Xi → Y defined by
k�Xi(x) = k(x), and (b) if ki : Zi → Xi is a skew fibration for i = 1, 2, so also
is k1 ∨ k2 : Z1 ∨ Z2 → X1 ∨ X2 defined by (k1 ∨ k2)(z) = ki(z) if and only if
z ∈ V (Zi). Since hi = h�Ki

∨ (h�L)�Hi, it is a skew fibration by (a), (b) and
Lemma 5.1.
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Lemma 5.3. If h : G → K is a skew fibration into a cograph K, then
every clause of K contains a clause of h(G).

Proof. By induction on the number of vertices in K. The base case with
K a single vertex is immediate. Otherwise K = K1 � K2 for � ∈ {∧,∨} and
cographs Ki. Let Gi = h−1(Ki) and hi = h�Ki

: Gi → Ki, a skew fibration
by Lemma 5.1. Let C be a clause of K. If � = ∧ then C is a clause of Kj

for j = 1 or 2; by induction C contains a clause C ′ of hj(Gj), also a clause of
h1(G1) ∧ h2(G2) = h(G). If � = ∨ then C = C1 ∪ C2 for clauses Ci of Ki; by
induction Ci contains a clause C ′

i of hi(Gi), so C contains the clause C ′
1 ∪ C ′

2

of h1(G1) ∨ h2(G2) = h(G).

Lemma 5.4. Let h : G → P be a skew fibration into a combinatorial
proposition P . If h(G) is true then P is true.

Proof. Lemma 5.3 and the definition of true.

The empty graph is the graph with no vertices. A graph is disconnected

if it is a union of non-empty graphs, and connected otherwise. A compo-

nent is a maximal non-empty connected subgraph. A graph homomorphism
h : G → H is shallow if h−1(K) has at most one component for every com-
ponent K of H.

Lemma 5.5. For any combinatorial proof h : G → P there exists a shallow
combinatorial proof h′ : G → P ′ such that P is true if and only if P ′ is true.

Proof. Let G1, . . . , Gn be the components of G, and let P ′ be the union of
n copies of P defined by V (P ′) = V (P ) × {1, . . . , n} and 〈v, i〉〈w, j〉 ∈ E(P ′)
if and only if vw ∈ E(P ) and i = j, and the label of 〈v, i〉 in P ′ is equal to the
label of v in P . Define h′ : G → P ′ on v ∈ V (Gi) by h′(v) = 〈h(v), i〉. Since
P ′ is a union of copies of P, it is true if and only if P is true (every clause of
P ′ contains a clause of P ; conversely the union of n copies of a clause of P is a
clause of P ′), and h′ is a combinatorial proof (skew liftings copied from h).

A subgraph G′ of G is a portion of G if G = G′ ∨ G′′ for some G′′. A
fusion of graphs G and H is any graph obtained from G ∨ H by selecting
portions G′ of G and H ′ of H and adding edges between every vertex of G′

and every vertex of H ′. Union and join are extremal cases of fusion: union
with G′, H ′ empty; join with G′=G, H ′=H. On coloured graphs, fusion does
not reduce to union and join: the coloured cograph ◦ ◦ is a fusion
of ◦ ◦ and , but is not a union or a join of coloured graphs (since we
defined a colouring as an equivalence relation). Henceforth abbreviate nicely
coloured to nice.

Lemma 5.6. A fusion of nice cographs is a nice cograph.
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Proof. Let C be the fusion of nice cographs C1 and C2 obtained by joining
portions C ′

i of Ci. Suppose U is a union of two-vertex colour classes in C which
induces a matching. Let Ui = U ∩ V (Ci) and U ′

i = U ∩ V (C ′
i). By definition

of fusion, the only edges in C between U1 and U2 are between U ′
1 and U ′

2, and
there are edges between all vertices of U ′

1 and all vertices of U ′
2; thus (�) there

is at most one edge between U1 and U2, or else two edges of C on U would
intersect. Since U is a union of two-vertex colour classes, each either in U1 or
U2, each Ui contains an even number of vertices. Therefore, since U induces
a matching, (†) there must be an even number of edges between U1 and U2.
Together (�) and (†) imply there is no edge between U1 and U2; hence, for
whichever Ui is non-empty (perhaps both), Ui is a union of two-vertex colour
classes inducing a matching in Ci, contradicting Ci being nice.

Lemma 5.7. Every nice cograph with more than one colour class is a fu-
sion of nice cographs.

Proof. Let C be a nice cograph. Since C is a cograph, its underlying
(uncoloured) graph has the form (C1 ∧C2)∨ (C3 ∧C4)∨. . .∨ (Cn−1 ∧Cn)∨H

for cographs Ci and H with no edges. Assume n �= 0, otherwise the result is
trivial. Let G be the graph whose vertices are the Ci, with CiCj ∈ E(G) if
and only if there is an edge or colour class {v, w} in C with v ∈ V (Ci) and
w∈V (Cj) (cf. the proof of Theorem 4 in [Ret03]). A perfect matching is a set
of pairwise disjoint edges whose union contains all vertices. Since C is nice,
M = {C1C2, C3C4, . . . , Cn−1Cn} is the only perfect matching of G. For if M ′

is another perfect matching, then M ′\M determines a set of two-vertex colour
classes in C whose union induces a matching in C: for each CiCj ∈ M ′ \M

pick a colour class {v, w} with v ∈ V (Ci) and w ∈ V (Cj). Since G has a
unique perfect matching, some CkCk+1 ∈ M is a bridge [Kot59], [LP86], i.e.,
(V (G), E(G) \ CkCk+1 ) = X ∨ Y with Ck ∈V (X) and Ck+1 ∈V (Y ). Let W

be the union of all colour classes of C coincident with any Ci in X, and let
W ′ = V (C) \W . Then C[W ] and C[W ′] are nice (since W and W ′ are unions
of colour classes), and C is the fusion of C[W ] and C[W ′] joining portions Ck

of C[W ] and Ck+1 of C[W ′].

Lemma 5.8. Let P1 and P2 be combinatorial propositions and Q a combi-
natorial proposition or the empty graph. Then (P1∧P2)∨Q is true if and only
if P1∨Q and P2∨Q are true.

Proof. A clause of (P1∧P2)∨Q is a clause of P1∨Q or P2∨Q, and vice
versa.

Theorem 5.1 (Combinatorial Soundness). If a combinatorial proposition
has a combinatorial proof, it is true.
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Proof. Let h : C → P be a combinatorial proof. We show P is true by
induction on the number of colour classes in C. In the base case, V (C) is a
colour class. If v ∈ V (C) then h(v) is in no edge of P (for if h(v)w ∈ E(P )
then a skew lifting at v is an edge in C, a contradiction), hence is in every
clause K of P . Since V (C) is axiomatic, K is true.

Induction step. By Lemmas 5.4 and 5.5, assume h is shallow and sur-
jective. By Lemma 5.7, C is a fusion of nice cographs C1 and C2 obtained
from C1∨ C2 by joining portions C ′

i of Ci. If C = C1 ∨ C2 then h′ : C1 → P

defined by h′(v) =h(v) is a combinatorial proof, and P is true by the induction
hypothesis. Otherwise each C ′

i is non-empty. Let Pi = h(C ′
i). Since C ′

1 ∧ C ′
2

is a component of C and h is a shallow surjection, P1 ∧ P2 is a component
of P , say P = (P1 ∧ P2) ∨ Q. Define hi : Ci → Pi ∨ Q by hi(v) = h(v), a
combinatorial proof: Ci is a nice cograph, the axiomatic colour class property
is inherited from h, and hi is a skew fibration by Lemma 5.2 (applied after
forgetting colourings). By the induction hypothesis Pi ∨ Q is true; hence P is
true by Lemma 5.8.

Theorem 5.2 (Combinatorial Completeness). Every true combinatorial
proposition has a combinatorial proof.

Proof. Let P be a true combinatorial proposition. We construct a com-
binatorial proof of P by induction on the number of edges in P . In the base
case, V (P ) is a true clause, so there exists W ⊆ V (P ) comprising a 1-labelled
vertex or a pair of vertices labelled with dual literals. Inclusion W → P is a
combinatorial proof (viewing W as a graph with no edge and a single colour
class, and forgetting its labels).

Induction step. Since P is a cograph with an edge, P = (P1 ∧ P2) ∨ Q

for combinatorial propositions Pi and Q a combinatorial proposition or the
empty graph. Assume Q is empty or not true; otherwise by induction there
is a combinatorial proof C → Q composable with inclusion Q → P for a
combinatorial proof of P , and we are done. By Lemma 5.8, Pi ∨ Q is true, so
by induction has a combinatorial proof hi : Ci → Pi ∨ Q. Let C be the fusion
of C1 and C2 obtained by joining the portions h−1

i (Pi) of Ci. By Lemma 5.6,
C is nice. Define h : C → P by h(v) = hi(v) if and only if v ∈ V (Ci). Then
h is a graph homomorphism: let vw ∈ E(C) with v ∈ V (Ci) and w ∈ V (Cj);
if i = j then h(v)h(w) ∈ E(P ) since hi is a homomorphism; if i �= j then vw

arose from fusion, so h(v) ∈ Pi and h(w) ∈ Pj , hence h(v)h(w) ∈ E(P ) since
P1 ∧ P2 ⊆ P has all edges between P1 and P2.

The axiomatic colour class property for h is inherited from the hi, so it
remains to show that h is a skew fibration. Let v ∈ V (C) and h(v)w ∈ E(P ).
By symmetry, assume v ∈ V (C1). Assume h(v) ∈ V (P1) and w ∈ V (P2);
otherwise we immediately obtain a skew lifting of h(v)w since h1 is a skew
fibration. There is a vertex x in h−1

2 (P2): if Q is empty, this is immediate;
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otherwise Q is not true and h2�Q : C2 → Q would be a combinatorial proof,
contradicting soundness. Since fusion joined the h−1

i (Pi), we have vx∈E(C).
If h(x)w �∈ E(P2) we are done; otherwise since h2 is a skew fibration and
h(x)w ∈E(P2) there exists xy ∈E(C2) with h(y)w �∈E(P2). Since vy ∈E(C)
(again by fusion), we have the desired skew lifting of h(v)w at v. (See figure
below. Note: h(y) = w is possible.)

x

�

y

�

v

� h(x)

w
h(y)h(v)︸︷︷︸

P1

︸ ︷︷ ︸
P2 �

Stanford University, Stanford, CA
E-mail address: dominic@theory.stanford.edu

References

[And81] P. B. Andrews, Theorem proving via general matings, J. ACM 28 (1981), 193–214.

[Bib74] W. Bibel, An approach to a systematic theorem proving procedure in first-order
logic, Computing 12 (1974), 43–55.

[BV02] P. Boldi and S. Vigna, Fibrations of graphs, Discrete Math. 243 (2002), 21–66.
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