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Analytic representation of functions and
a new quasi-analyticity threshold

By Gady Kozma and Alexander Olevskĭı*

Abstract

We characterize precisely the possible rate of decay of the anti-analytic
half of a trigonometric series converging to zero almost everywhere.

1. Introduction

1.1. In 1916, D. E. Menshov constructed an example of a nontrivial
trigonometric series on the circle T

∞∑
n=−∞

c(n)eint(1)

which converges to zero almost everywhere (a.e.). Such series are called null-
series. This result was the origin of the modern theory of uniqueness in Fourier
analysis, see [Z59], [B64], [KL87], [KS94].

Clearly for such a series
∑

|c(n)|2 = ∞. A less trivial observation is
that a null series cannot be analytic, that is, involve positive frequencies only.
Indeed, it would then follow by Abel’s theorem that the corresponding analytic
function

F (z) =
∑
n≥0

c(n)zn(2)

has nontangential boundary values equal to zero a.e. on the circle |z| = 1. Pri-
valov’s uniqueness theorem (see below in §2.3) now shows that F is identically
zero.

Definition. We say that a function f on the circle T belongs to PLA (which
stands for Pointwise Limit of Analytic series) if it admits a representation

f(t) =
∑
n≥0

c(n)eint(3)

by an a.e. converging series.

*Research supported in part by the Israel Science Foundation.
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The discussion above shows that such a representation is unique. Further,
for example, e−int is not in PLA for any n > 0 since multiplying with zn would
lead to a contradiction to Privalov’s theorem.

If f is an L2 function with positive Fourier spectrum, or in other words, if
it belongs to the Hardy space H2, then it is in PLA according to the Carleson
convergence theorem. On the other hand, we proved in [KO03] that L2 contains
in addition PLA functions which are not in H2. The representation (3) for such
functions is “nonclassical” in the sense that it is different from the Fourier
expansion.

One should contrast this phenomenon against some results in the Rieman-
nian theory (see [Z59, Chap. 11]) which say that whenever a representation by
harmonics is unique then it is the Fourier one. Compare for examples the
Cantor theorem to the du Bois-Reymond theorem. In an explicit form this
principle was stated in [P23]: If a function f ∈ L1(T) has a unique pointwise
decomposition (1) outside of some compact K then it is the Fourier expansion
of f . Again, for analytic expansions (3) this is not true.

1.2. Taking a function f from the “nonclassic” part of PLA∩L2 and
subtracting from the representation (3) the Fourier expansion of f , one gets a
null-series with a small anti-analytic part in the sense that∑

n<0

|c(n)|2 < ∞.

Note that there are many investigations of the possible size of the coefficients
of a null-series. They show that the coefficients may be arbitrarily close to l2.
See [I57], [A84], [P85], [K87]. In all known constructions the behavior of the
amplitudes in the positive and the negative parts of the spectrum is the same.
[KO03] shows that a substantial nonsymmetry may occur. How far may this
nonsymmetry go? Is it possible for the anti-analytic amplitudes to decrease
fast? Equivalently, may a function in PLA \H2 be smooth?

The method used in [KO03] is too coarse to approach this problem. How-
ever, we proved recently that smooth and even C∞ functions do exist in
PLA \H2. Precisely, in [KO04] we sketched the proof of the following:

Theorem 1. There exists a null-series (1) with amplitudes in negative
spectrum (n < 0) satisfying the condition

c(n) = O(|n|−k), k = 1, 2, . . . .(4)

Hence we are lead to the following question: what is the maximal possible
smoothness of a “nonclassic” PLA function? In other words we want to char-
acterize the possible rate of decreasing the amplitudes |c(n)| of a null-series as
n → −∞. This is the main problem considered here.
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1.3. It should be mentioned that if one replaces convergence a.e. by
convergence on a set of positive measure, then the characterization is given by
the classic quasi-analyticity condition. Namely, the class of series (1) satisfying

c(n) = O(e−ρ(|n|)) ∀n < 0(5)

for some ρ(n) (with some regularity) is prohibited from containing a nontrivial
series converging to zero on a set E of positive measure if and only if∑ ρ(n)

n2
= ∞.(6)

The part “only if” is well known: if this sum converges one may construct a
function vanishing on an interval E whose Fourier coefficients satisfy (5), and
for n positive as well (see e.g. [M35, Chap. 6]). The “if” part follows from
a deep theorem of Beurling [Be89], extended by Borichev [Bo88]. See more
details below in Section 2.3.

It turns out that in our situation the threshold is completely different. The
following uniqueness theorem with a much weaker requirement on coefficients
is true.

Theorem 2. Let ω be a function R+ → R+, ω(t)/t increase and∑ 1
ω(n)

< ∞.(7)

Then the condition:

c(n) = O(e−ω(log |n|)), n < 0(8)

for a series (1) converging to zero a.e. implies that all c(n) are zero.

It is remarkable that the condition is sharp. The following strengthened
version of Theorem 1 is true:

Theorem 3. Let ω be a function R+ → R+, let ω(t)/t be concave and∑ 1
ω(n)

= ∞.(9)

Then there exists a null-series (1) such that (8) is fulfilled.

So the maximal possible smoothness of a “nonclassical” PLA function f

is precisely characterized in terms of its Fourier transform by the condition

f̂(n) = O(e−ω(log |n|)), n ∈ Z

where ω satisfies (9). As far as we are aware this condition has never appeared
before as a smoothness threshold.

We mention that whereas the usual quasi-analyticity is placed near the
“right end” in the scale of smoothness connecting C∞ and analyticity, this
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new quasi-analyticity threshold is located just in the opposite side, somewhere
between n− log log n and n−(log log n)1+ε

.
The main results of this paper were announced in our recent note [KO04].

2. Preliminaries

In this section we give standard notation, needed background and some
additional comments.

2.1. We denote by T the circle group R/2πZ. We denote by D the disk
in the complex plane {z : |z| < 1} and ∂D = {eit : t ∈ T}. For a function
F (harmonic, analytic) on D and a ζ ∈ ∂D we shall denote the nontangential
limit of F at ζ (if it exists) by F (ζ).

We denote by C and c constants, possibly different in different places. By
X ≈ Y we mean cX ≤ Y ≤ CX. By X � Y we mean X = o(Y ). Sometimes
we will use notation such as −O(·). While this seems identical to just O(·) we
use this notation to remind the reader that the relevant quantity is negative.

The notation 	x
 will stand for the lower integral value of x. �x� will
stand for the upper integral value.

When x is a point and K some set in T or D, the notation d(x, K) stands,
as usual, for infy∈K d(x, y).

2.2. For a z ∈ D we shall denote the Poisson kernel at the point z by Pz

and the conjugate Poisson kernel by Qz. We denote by H the Hilbert kernel
on T. See e.g. [Z59]. If f ∈ L2(T) we shall denote by F (z) the harmonic
extension of f to the disk, i.e.

F (z) =
∫ 2π

0
Pz(t)f(t) dt, ∀z ∈ D.(10)

Similarly, the harmonic conjugate to F can be derived directly from f by

F̃ (z) =
∫ 2π

0
Qz(t)f(t) dt, ∀z ∈ D.

It is well known that F and F̃ have nontangential boundary values a.e. and
that F (eit) = f(t) a.e. We shall denote f̃(t) := F̃ (eit). We remind the reader
also that

f̃(x) = (f ∗ H)(x) =
∫ 2π

0
f(t)H(x − t) dt

where the integral is understood in the principal value sense.
For a function F on the disk, the notation F (D) denotes tangent differenti-

ation, namely F ′(reiθ) := ∂F
∂θ . The representations above admit differentiation.



ANALYTIC REPRESENTATION 1037

For example,

F (D)(z) =
∫

P (D)
z (t)f(t) dt, ∀z ∈ D.

We shall use the following well known estimates for P , Q and their derivatives:

|P (D)
z (t)| ≤ C(D)

|eit − z|D+1
, |Q(D)

z (t)| ≤ C(D)
|eit − z|D+1

∀D ≥ 0;(11)

for H we shall need the symmetry H(t) = −H(−t) and

|H(D)(t)| ≤ (CD)CD

|eit − 1|D+1
.(12)

2.3. Uniqueness theorems. In 1918 Privalov proved the following funda-
mental theorem:

Let F be an analytic function on D such that F (eit) = 0 on a set E of
positive measure. Then F is identically zero.

See [P50], [K98]. The conclusion also holds under the condition

F (eit) =
−1∑

n=−∞
c(n)eint on E

with the |c(n)| decreasing exponentially. When one goes further the pic-
ture gets more complicated. Examine the following result of Levinson and
Cartwright [L40]:

Let F be an analytic function on D with the growth condition

|F (z)| < ν(1 − |z|)
∫ 1

0
log log ν < ∞.(13)

Assume that F can be continued analytically through an arc E ⊂ ∂D to an f

in C \ D which satisfies

f(z) =
−1∑

n=−∞
c(n)zn.

and the c(n) satisfy the quasi-analyticity conditions (5), (6). Then F and f

are identically zero.

It follows if a series (1) converges to zero on an interval and the “negative”
coefficients decrease quasianalytically then it is trivial.

In 1961 Beurling extended the Levinson-Cartwright theorem from an arc
to any set E with positive measure (see [Be89]):

Let f ∈ L2 vanish on E and let its Fourier coefficients c(n) satisfy (5), (6).
Then f is identically zero.
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Borichev [Bo88] proved that the L2 condition in this theorem could be
replaced by a very weak growth condition on the analytic part F in D, similar in
spirit to (13). Certainly this condition would be fulfilled if the series converged
pointwise on E. Note again that the classic quasi-analyticity condition in all
these results cannot be improved. Our proof of uniqueness uses the same
general framework used in [Bo88], [BV89], [Bo89].

Other results about the uncertainty principle in analytic settings exist,
namely connecting smallness of support with fast decrease of the Fourier co-
efficients. See for example [H78] for an analysis of support of measures with
smooth Cauchy transform. The connection between the smoothness of the
boundary value of a function F and the increase of F near the singular points
of the boundary was investigated for F from the Nevanlinna class; see Shapiro
[S66], Shamoyan [S95] and Bourhim, El-Fallah and Kellay [BEK04]. In par-
ticular, applying theorem A of [BEK04] to our case shows that one cannot
construct a C1 function in PLA \H2 by taking the boundary value of a Nevan-
linna function. For comparison, our first example of a function from PLA \H2

(see [KO03]) is a boundary value of a Nevanlinna class function. That exam-
ple is L∞ and can be made continuous, but it cannot be made smooth in any
reasonable sense without leaving the Nevanlinna class.

2.4. The harmonic measure. Let D be a connected open set in C such that
∂D is a finite collection of Jordan curves, and let v ∈ D. Let B be Brownian
motion (see [B95, I.2]) starting from v. Let T be the stopping time on the
boundary of D, i.e.

T := inf{t : B(t) ∈ ∂D}.

See [B95, Prop. I.2.7]. Then B(T ) is a random point on ∂D, or in other words,
the distribution of B(T ) is a measure on ∂D called the harmonic measure and
denoted by Ω(v,D). The following result is due to Kakutani [K44].

Let f be a harmonic function in a domain D and continuous up to the
boundary. Let v ∈ D. Then

f(v) =
∫

f(θ) dΩ(v,D)(θ).(14)

It follows that the definition of harmonic measure above is equivalent to
the original definition of Nevanlinna which used solutions of Dirichlet’s prob-
lem. We shall also need the following version of Kakutani’s theorem:

Let f be a subharmonic function in a domain D and upper semi-continuous
up to ∂D. Let v ∈ D. Then

f(v) ≤
∫

f(θ) dΩ(v,D)(θ).(15)
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See [B95, Propositions II.6.5 and II.6.7]. See also [ibid, Theorem II.1.15
and Proposition II.1.13].

3. Construction of smooth PLA functions

3.1. In this section we prove Theorem 3. We wish to restate it in a form
which makes explicit the fact that the singular set is in fact compact:

Theorem 3′. Let ω be a function R+ → R+, ω(t)/t be concave and∑ 1
ω(n) = ∞. Then there exists a series (1) converging to zero outside a

compact set K of measure zero such that (8) is fulfilled.

The regularity condition that ω(t)/t be concave in Theorem 3′ implies the
very rough estimate ω(t) = eo(t), which is what we will use. Actually, one may
strengthen the theorem slightly by requiring only that ω(t)/t is increasing and
ω(t) = eo(t), and the result would still hold.

Without loss of generality it is enough to prove

c(n) = O(e−cω(log |n|)), n < 0(16)

for some c > 0, instead of (8). Also we may assume ω(t)/t increases to infinity
(otherwise, just consider ω(t) = t log(t + 2) instead).

The c above, like all notation c and C, �, o and O in this section, is
allowed to depend on ω. In general we will consider ω as given and fixed, and
will not remind the reader that the various parameters depend on it.

A rough outline of the proof is as follows: we shall define a probabilistically-
skewed thick Cantor set K and a random harmonic function G on the disk such
that the boundary values of G on K are positive infinite, while the boundary
values outside K are finite negative (except a countable set of points where
they are infinite negative). Further, the function G is “not integrable” in the
sense that

∫ 2π
0 |G(reiθ)| dθ → ∞ as r → 1. The thickness of the set K would

depend on ω. For example, if ω(t) = t log t (which is enough for the construc-
tion of a nonclassic PLA∩C∞ function, i.e. for the proof of Theorem 1) then
K would have infinite δ log log 1/δ-Hausdorff measure. Then we shall define
F = eG+iG̃ and f its boundary value (f is a nonclassic PLA function). We
shall arrange for G|∂D to converge to −∞ sufficiently fast near K, and it would
follow that f is smooth. A bound for the growth of G to +∞ near K would
ensure that the Taylor coefficients of F go to zero with probability one. Finally
the desired null-series would be defined by

c(n) := f̂(n) −
{

F̂ (n) n ≥ 0
0 n < 0

(17)
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where f̂ is the Fourier transform of f while F̂ are the Taylor coefficients of F :

F (z) =
∞∑

n=0

F̂ (n)zn.(18)

3.2. Auxiliary sequences. Let ω2 satisfy that ω2(t)/t is increasing,
∑ 1

ω2

= ∞ , and

ω(t) � ω2(t) = ω(t)to(1)(19)

(note that ω2(t) = eo(t)). Define

Φ(n) := exp

(
−

n∑
k=1

1
ω2(k)

)
and in particular Φ(0) = 1. Also, Φ decreases slowly (depending on ω2), and
the fact that ω2(t)

t increases to ∞ gives

Φ(n) = n−o(1).(20)

Another regularity condition over Φ that will be used is the following:

Lemma 1.

n∑
k=1

Φ(k) = O(nΦ(n)).(21)

Proof. Fix N such that ω2(n)/n > 100 for n > N . Then for all n > 3N ,

n∑
k=� 1

3
n�

1
ω2(k)

≤ 0.03

and hence Φ(k) ≤ 1.04Φ(n) for all k ∈
[⌊

1
3n

⌋
, n

]
. Inductively we get Φ(k) ≤

1.04lΦ(n) for any k ∈
[⌊

n3−l
⌋
,
⌊
n31−l

⌋]
∩ {N, . . . }. Hence we get

n∑
k=1

Φ(k) =
�log3 n�+1∑

l=1

�n31−l�∑
k=�n3−l�+1

Φ(k) ≤ N +
�log3 n�+1∑

l=1

⌈
2 · 3−ln

⌉
Φ(n)(1.04)l

= O(nΦ(n)).

Notice that in the last equality we used the fact that Φ(n) � 1/n (20).

Next, define

σn = 2π · 2−nΦ(n), τn =
1
12

(σn−1 − 2σn), n ≥ 0.(22)
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The purpose behind the definition of Φ is so that the following (which can be
verified with a simple calculation) holds:

τn

σn
=

1
6ω2(n)

+ O

(
1

ω2
2(n)

)
.(23)

From this and the regularity conditions ω2(n) = eo(n) and (20) we get a rough
but important estimate for τn:

τn = 2−n−o(n).(24)

3.3. The functions gn. Next we define some auxiliary functions. Let
a ∈ C∞([0, 1]) be a nonnegative function satisfying

a|[0,1/3] ≡ 0, a|[1/2,1] ≡ 1, max
∣∣∣a(D)

∣∣∣ ≤ (CD)CD.

Since the standard building block e−1/x satisfies the estimate for the growth
of the derivatives above (even a very rough estimate can show this — say, use
Lemma 7 below), and since such constraints are preserved by multiplication,
there is no difficulty in constructing a.

Let l be defined by

l(t) = −t−1/3a(1 − t) − a(t).

Then l satisfies

l(t) = −t−1/3, t ∈
]
0, 1

3

]
,(25)

l(t) = −1, t ∈ [23 , 1],

and l ≤ −1 on ]0, 1].
Using l, define functions on R depending on a parameter s ∈ [0, 1],

l±(s;x) :=


l(x) 0 < x ≤ 1
−1 1 < x ≤ 2 ± s

l(3 ± s − x) 2 ± s < x ≤ 3 ± s

(26)

and 0 otherwise. The estimate for the derivatives of a translates to∣∣∣(l±)(D) (s;x)
∣∣∣ ≤ (CD)CD

d(x, {3 ± s, 0})D+1/3
.(27)

Let s(n, k) be a collection of numbers between 0 and 1, for each n ∈ N
and each 0 ≤ k < 2n. Most of the proof will hold for any choice of s(n, k), but
in the last part we shall make them random, and prove that the constructed
function will have the required properties for almost any choice of s(n, k).
Define now inductively intervals I(n, k) = [a(n, k), a(n, k) + σn] (we call these
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I(n, k) “intervals of rank n”) as follows: I(0, 0) = [0, 2π] and for n ≥ 0,
0 ≤ k < 2n,

a(n + 1, 2k) = a(n, k) + τn+1(3 + s(n + 1, 2k)),(28)

a(n + 1, 2k + 1) = a(n, k) + 1
2σn + τn+1(3 + s(n + 1, 2k + 1)).

In other words, at the nth step, inside each interval of rank n (which has length
σn), situate two disjoint intervals of rank n+1 of lengths σn+1 in random places
(but not too near the boundary of I(n, k) or its middle). Define

K := ∩∞
n=1Kn, Kn := ∪2n−1

k=0 I(n, k).

K◦ := eiK , K◦
n := eiKn .

Note that
∑ 1

ω2
= ∞ shows that Φ(n) → 0 and hence K has zero measure.

We now define the most important auxiliary functions, gn ∈ L2(T). We
define them inductively, with g0 ≡ 0. For one n and k, let I be the interval of
rank n − 1 containing I(n, k), and let I ′ be its half containing I(n, k). Now,
I ′ \ I(n, k) is composed of two intervals, which we denote by J1 (left) and J2

(right). Define the function gn(t) on the set I ′ \ I(n, k) by

gn(t) := ω(n)l+(s(n, k);ϕ1(t)), t ∈ J1, ϕ1 : J1 → [0, 3 + s(n, k)],

gn(t) := ω(n)l−(s(n, k);ϕ2(t)), t ∈ J2, ϕ2 : J2 → [0, 3 − s(n, k)],
(29)

where the ϕi-s are linear, increasing and onto so that they are defined uniquely
by their domain and range. As will become clear later, the ω(n) factor above
is what determines the rate of decrease of the coefficients of the null series.

This defines gn on Kn−1 \ Kn. On T \ Kn−1 we define gn ≡ gn−1. On Kn

we define gn to be a constant such that
∫

T gn = 0. Note that gn is negative
on T \ Kn and positive on Kn. Also note that the definition of gn shows that∫
I(n−1,k) g−n is independent of s(n− 1, k) — what you earn on the left you lose

on the right. See Figure 1.
Extend gn(eit) to a harmonic function in the interior of the disk (remember

that each gn is in L2), and denote the extension by Gn. Denote by G̃n the
harmonic conjugate to Gn.

3.4. The growth of the gn. We need to estimate the positive part of gn.
We have ∫

I(n−1,k)
|g−n (x)|

(∗)
≈ τnω(n)

(∗∗)
� σn(30)

where (∗) comes from the definition of gn (29) and (∗∗) comes from τn/σn ≈
1/ω2(n) (23) and ω � ω2 (19). Summing (and using σn = 2−nΦ(n)) we get∫

T

∣∣g−n ∣∣ =
n−1∑
l=0

2l−1∑
k=0

∫
I(l,k)

|g−l+1(x)| (30)
=

n∑
l=1

o(Φ(l))
(∗)
= o(nΦ(n)),(31)
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−ω(1)

− ω(2)

− ω(3)

Figure 1: g3 (not drawn to scale). Notice the random perturbations in the
widths of the constant parts of g−3 but the fixed width of the intervals in K3.

where (∗) comes from Lemma 1 and Φ(n) � 1/n (20). Hence

max gn = o(n).(32)

This crucial inequality is the one that guarantees in the end that our function
F would satisfy F̂ (m) → 0. Comparing this to (29) we observe that even
though K has zero measure, one can balance superlinear growth outside K

(the ω(n) factor in (29)) with sublinear growth inside K.
We will also need a simple estimate from the other side. The same

calculations, but using ω(n) = ω2(n) · n−o(1) (the second half of (19)) and
Φ(n) = n−o(1) (20) give ∫

T
g−n = −n1−o(1).(33)

3.5. The limit of the Gn. First we want to show that the Gn’s converge
to a harmonic function G on compact subsets of the disk, and to discuss the
boundary behavior of G and G̃. For this purpose we need to examine the
singularities of gn. First, and more important is K. Clearly, limn→∞ gn(t) =
+∞ while limt′→t,t′ 
∈K limn→∞ gn(t′) = −∞ for every t ∈ K. Additionally
we have a countable set of points where the gn’s have t−1/3-type singularities,
namely

Q :=
∞⋃

n=1

2n−1⋃
k=0

{
a(n, k), a(n, k) + 1

2σn, a(n, k) + σn

}
.

Denote K ′ := K ∪ Q, (K ′)◦ := eiK′
. We will need the following calculation:

Lemma 2. For any z ∈ D \ K◦
n, and any D ≥ 0,

|G(D)
n+1(z) − G(D)

n (z)| ≤ C(D)
2nd(z, K◦

n)D+1
.(34)



1044 GADY KOZMA AND ALEXANDER OLEVSKĬı

Proof. On the circle T, gn+1 − gn is nonzero only on the intervals I(n, k),
and on each interval we have∫

I(n,k)
(gn+1(x) − gn(x)) dx = 0.(35)

Further, the negative part of gn+1−gn on I(n, k), which is simply g−n+1−max gn

restricted to I(n, k) \ (I(n + 1, 2k) ∪ I(n + 1, 2k + 1)) can be estimated using
(30) and (32) to get∫

I(n,k)
|gn+1(x) − gn(x)| = 2

∫
(gn+1 − gn)− ≈ τn+1(ω(n + 1) + o(n))

(∗)
� 2−nΦ(n + 1) � 2−n

where in (∗) we use that n � ω(n). Hence by (35),∣∣∣ ∫ u

t
gn+1(x) − gn(x) dx

∣∣∣ ≤ C2−n ∀t, u ∈ [0, 1], ∀n.(36)

Write G(D)(z) =
∫

T g(t)P (D)
z (t), where Pz is the Poisson kernel. We divide into

two cases: if 1 − |z| > 1
2d(z, K◦

n) then we have from (11) that∫
T
|P (D+1)

z | ≤ C(D)
(1 − |z|)D+1

≤ C(D)
d(z, K◦

n)D+1
.

On the other hand, if 1− |z| ≤ 1
2d(z, K◦

n) then gn+1 − gn is zero in an interval
J := [t − cd(z, K◦), t + cd(z, K◦)] for some c sufficiently small, where t is given
by eit = z/|z|, and ∫

T\J
|P (D+1)

z | ≤ C(D)
d(z, K◦

n)D+1
.

In either case, a simple integration by parts gives (34).
Finally, on ∂D we have Gn+1(eit)−Gn(eit) = gn+1(t)−gn(t) = 0 for every

t �∈ Kn.

A similar calculation with the conjugate Poisson kernel (and the Hilbert
kernel on the boundary) shows

|G̃n+1
(D)

(z) − G̃n
(D)

(z)| ≤ C(D)
2nd(z, K◦

n)D+1
.(37)

From (34) and (37) it is now clear that both Gn and G̃n converge uniformly
on compact subsets of D \ (K ′)◦. Denote their respective limits by G and G̃

— clearly they are indeed harmonic conjugates which justifies the notation G̃.
Also we remind the reader the known fact that if gn is CD in some interval
I ⊂ T then Gn is CD in eiI and in particular G

(D)
n is continuous there. The

following lemma is now clear:
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Lemma 3. (i) G+ iG̃ is analytic in D and continuous up to the bound-
ary except at (K ′)◦.

(ii) If t ∈ T \ Kn then G(eit) = gn(t) = g−n (t).

(iii) (Gn + iG̃n)(D) converges to (G + iG̃)(D) uniformly on compact subsets of
D \ (K ′)◦.

3.6. The function F . We can now define a crucial element of the con-
struction:

F = exp(G + iG̃).

Clearly Lemma 3, (i) shows that F is an analytic function with almost every-
where defined boundary values. Denote by f(t) the boundary value of F at
eit. Define similarly g and g̃ and get that f = eg+ig̃.

The reader should keep in mind that the relation between F and f is not
similar to the one between an H2 function and its boundary value (for example,
between Gn + iG̃n and gn + ig̃n). In our case there is a singular distribution
(supported on K ′) which is “lost” when taking the limit. The Fourier series of
this singular distribution is exactly the null series we are trying to construct.

Lemma 4. (i) F is not in H1(D).

(ii) f ∈ L∞(T).

The first follows from Lemma 3, (ii) if we notice that the L1 norms of gn

tend to ∞ according to (33) so that log |f | = g �∈ L1(T). The second is also
a direct consequence of Lemma 3, (ii). These properties taken together show
that the c(n) (17) are nontrivial. The theorem now divides into the following
two claims:

Lemma 5. f ∈ C∞(T). Further, f has the smoothness in the statement
of the theorem:

f̂(n) = O(e−cω(log |n|)), n ∈ Z.(38)

Lemma 6. With probability 1,

F̂ (n) = o(1).

Now we use the Riemann localization principle in a form due to Kahane-
Salem [KS94, p. 54]:

If S is a distribution with Ŝ(n) = o(1) and I is an interval outside the
support of S then

∑
Ŝ(n)eint = 0 on I.

Lemma 3, (i) shows that the c(n) defined by (17) represent a singular
distribution supported on K ′, and the last estimate shows that c(n) = o(1).
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Hence (1) is a nontrivial series convergent to 0 everywhere on T \ K ′. This,
along with Lemma 5, proves the theorem.

The purpose of the next section is to prove Lemma 5.

3.7. Smoothness. The following two lemmas are self-contained; that is,
their f -s, g-s, ω-s and K-s are not necessarily the same ones as those defined
in the previous parts of the proof.

Lemma 7. Let f = exp(g). Then

f (D) = f ·
∑

l1+...+li=D

a�l

i∏
j=1

g(lj),(39)

and
∑

�l
|a�l

| ≤ D!

This is a straightforward induction and we shall skip the proof.

Lemma 8. Let ω(t) satisfy that ω(t)/t is increasing to ∞ and ω(t) = eo(t).
Let K be some compact and let g ∈ C∞(T \ K) satisfy

(i) Re g(x) ≤ −ω(log 1/d(x, K));

(ii) |g(D)(x)| ≤ (CD)CD

d(x,K)2D for every D ≥ 1.

Let f = eg outside K, f |K ≡ 0. Then f̂(m) = O(e−cω(log |m|)).

We remark that condition (ii) interfaces only with the regularity condition
ω = eo(t). The important point here is the interaction between condition (i)
and the estimate for f̂ .

Proof. Denote d = d(x, K). Plugging the inequality for g(D) into (39)
gives

|f (D)(x)| ≤ |f(x)|D!
(CD)CD

d2D
≤ |f(x)|(CD)CD

d2D
.

In particular, ω(t)/t → ∞ shows that |f(x)| ≤ Ce−ω(log 1/d) decreases su-
perpolynomially near K which shows that f (D)(x) = 0 for all x ∈ K and
(inductively) for all D and hence f ∈ C∞([0, 1]). Further (assume D > 1),

|f (D)(x)| ≤ C exp (−ω(log 1/d) + CD log D + 2D log 1/d) .(40)

For any m sufficiently large, choose now

D =

⌊
2
ω(1

4 log |m|)
log |m|

⌋
.
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Note that the condition ω(t) = eo(t) shows that D = |m|o(1). To estimate the
maximum of f (D) in (40), we notice that if log 1/d > 1

4 log |m| then ω(log 1/d) ≥
2D log 1/d (here ω(t)/t is increasing); hence we may estimate roughly that

max
d

−ω(log 1/d) + 2D log 1/d ≤ 1
2D log |m|

and get

‖f (D)‖∞ ≤ C exp
(

1
2D log |m| + CD log D

) (∗)
= exp

(
D log |m|

(
1
2 + o(1)

))
where (∗) comes from D = |m|o(1).

We now use the fact that |f̂(m)| ≤ |m|−D‖f (D)‖∞ to get

|f̂(m)| ≤ C exp(−(1
2 − o(1))D log |m|)

= C exp(− (1 − o(1))ω(1
4 log |m|) + O(log |m|)).

Remembering that ω(1
4 log |m|) ≤ 1

4ω(log |m|) (again, because ω(t)/t is increas-
ing) and that ω(t)/t → ∞ we see that the lemma is proved.

We remark that, in some sense, the lemma actually hides two applications
of the Legendre transform, (Lh)(x) := maxt h(t) − xt. Roughly speaking, the
norms of f (D) are the Legendre transform of the rate of decrease of g to −∞
(condition (i) of the lemma) and f̂(m) are the Legendre transform of f (D).
Combining both facts allowed us not to use explicitly the notation L and to
simplify somewhat.

Proof of Lemma 5. Our goal is to use Lemma 8 with the function g + ig̃,
the compact K ′ and the ω of the lemma being cω for some c > 0 sufficiently
small. The condition (i) on the size of the negative decrease of Re(g+ig̃) = g is
easiest to show. Let x ∈ Kn−1\Kn. We divide into two cases: if d(x, K ′) > e−n

then we may estimate

−ω(log 1/d(x, K ′)) ≥ −ω(n)
(29)

≥ g−n (x)
(∗)
= g(x)(41)

where (∗) comes from Lemma 3, (ii). If d(x, K ′) ≤ e−n then τn = e−n(log 2+o(1))

≥ cd(x, K ′)0.7 (24) and

g(x) ≤ −cω(n)
(

d(x, K ′)
τn

)−1/3 (∗)
≤ −cd(x, K ′)−0.1(42)

= −c exp
(

1
10 log 1/d(x, K ′)

) (∗∗)
� −ω(log 1/d(x, K ′))

where in (∗) we estimated trivially ω(n) ≥ c and in (∗∗) we used the regularity
condition ω(n) = eo(n). Hence we get g(x) ≤ −cω(log 1/d(x, K ′)) for all x,
i.e. the condition (i) of Lemma 8.
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To estimate g(D) outside K ′, start from (27) and get for x ∈ Kn−1 \ Kn

that ∣∣∣g(D)
n (x)

∣∣∣ ≤ ω(n)
(CD)CD

d(x, K ′)D+1/3
.

Since |In,k| ≤ 2π · 2−n we get that for every x ∈ In,k

d(x, K ′)2/3 ≤ C2−2n/3 � 1/ω(n)

so that ∣∣∣g(D)(x)
∣∣∣ =

∣∣∣g(D)
n (x)

∣∣∣ ≤ (CD)CD

d(x, K ′)D+1
.(43)

Note that (43) holds for gn and any x �∈ Kn (not necessarily in Kn−1).
For g̃ we need to examine g̃n and take n → ∞ (remember Lemma 3, (iii)).

Let x �∈ Kn ∪ K ′, let ρ = 1
2d(x, K ′) and let I = [−ρ, ρ]. Now,

g̃n(x) =
∫

T
H(t)gn(x − t) dt =

( ∫
I
+

∫
T\I

)
H(t)gn(x − t) dt.(44)

In general, the symmetry of H and |H(t)| ≈ 1
t (12) allows to estimate for any h∣∣∣∣∫

I
h(t)H(t)

∣∣∣∣ ≤ C|I|max
I

|h′|(45)

which we use as follows: For the first integral, D differentiations under the
integral sign (which can be justified easily using (45)) show that

∣∣∣∣∣
(

d

dx

)D ∫
I
H(t)gn(x − t)

∣∣∣∣∣ =
∣∣∣∣∫

I
H(t) (gn)(D) (x − t)

∣∣∣∣ (45)

≤ Cρmax
I

∣∣∣(gn)(D+1)
∣∣∣

(46)

(43)

≤ (CD)CD

ρD+1
.

For the second half of (44) we consider gn and H as periodic functions and
change variables to get

∫ x+2π−ρ
x+ρ H(x − t)gn(t). This we differentiate D times

under the integral sign and shift back, and we get(
d

dx

)D ∫
T\I

H(t)gn(x − t) =
D−1∑
i=0

H(i)(t) (gn)(D−1−i) (x − t)
∣∣∣ρ
−ρ

(47)

+
∫

T\I
H(D)(t)gn(x − t) dt

where as usual g|ba stands for g(b) − g(a). Denote a(s) =
∫ s
ρ gn(x − t) dt, and

remember that (36) gives that |a| ≤ C. Hence when we integrate by parts the



ANALYTIC REPRESENTATION 1049

integral on the right hand side of (47) gives∣∣∣∣∣
∫

T\I
H(D)(t)gn(x − t) dt

∣∣∣∣∣ ≤ ∣∣∣H(D)(−ρ)a(2π − ρ)
∣∣∣ +

∣∣∣∣∫ 2π−ρ

ρ
H(D+1)(t)a(t) dt

∣∣∣∣
(36)

≤ C
∣∣∣H(D)(−ρ)

∣∣∣ + C

∫ 2π−ρ

ρ

∣∣∣H(D+1)(t)
∣∣∣ dt

(12)

≤ (CD)CD

ρD+1
.

Similarly we can use (43) and (12) to estimate the sum in (47) and this gives∣∣∣∣∣
(

d

dx

)D ∫
T\I

H(t)gn(x − t) dt

∣∣∣∣∣ ≤ (CD)CD

ρD+1
.(48)

Together with (46) and (44) this gives∣∣∣g̃n
(D)(x)

∣∣∣ ≤ (CD)CD

ρD+1
∀x �∈ Kn ∪ K ′.(49)

Any x �∈ K ′ is also not in some Km and hence (49) holds for any n > m and
hence it holds for g̃. With (43) and (42) we can use Lemma 8 and get (38)
which proves Lemma 5.

3.8. The Taylor coefficients of F . In this section we prove Lemma 6,
namely show that with probability 1, F̂ (m) → 0 as m → ∞. First we define
Fn to be the harmonic extension of fn = egn+ig̃n to D (each fn is bounded)
and we want to find some n such that f̂n(m) = F̂n(m) approximates F̂ (m).
Summing (34) and (37) over n we get

|(Gn + iG̃n)(z) − (G + iG̃)(z)| ≤ C

(1 − |z|)2n
.

Fix, therefore, n = n(m) := �C log m� for some C sufficiently large, and get,
for every z with |z| = 1− 1

m that |(Gn+iG̃n)(z)−(G+iG̃)(z)| ≤ 1/m. Further,
we have that

max |Fn|
(32)

≤ eo(n) ≤ mo(1)(50)

which means that, for |z| = 1 − 1
m ,

|Fn(z) − F (z)| ≤ |Fn(z)‖1 − exp((Gn + iG̃n)(z) − (G + iG̃)(z))| ≤ Cm−1/2.

Finally we use

F̂ (m) =
1
m!

F (m)(0) =
∫
|z|=1−1/m

z−m−1F (z) dz
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so that

|F̂n(m) − F̂ (m)| =

∣∣∣∣∣
∫
|z|=1−1/m

z−m−1(Fn(z) − F (z)) dz

∣∣∣∣∣ ≤ Cm−1/2(51)

and we see that it is enough to calculate f̂n(m).

3.9. Probability. At this point we use the fact that the s(n, k) are random.
Take them to be independent and uniformly distributed on [0, 1]. We shall per-
form a (probabilistic) estimate of f̂n(m) by moment methods. Unfortunately,
it seems we need the fourth moment. We start with a lemma that contains the
calculation we need without referring to analytic functions

For i = 1, 2, 3, 4 and j = 1, 2, 3 we denote i ⊂ j if i = j or i = 4 and j = 3.
The inverse will be denoted by i �⊂ j.

Lemma 9. Let Ii be 4 intervals and let τ, α, β > 0 be some numbers. Let
h1, h2, h3 be functions satisfying∫

Ii

|hj | ≤ α, i ⊂ j,(52)

|hj(x)| = 1, |h′
j(x)| ≤ β, |h′′

j (x)| ≤ β2 ∀x ∈ Ii + [−τ, τ ], i �⊂ j,(53)

where “+” stands for regular set addition. Let t1 and t2 be two random vari-
ables, uniformly distributed on [0, τ ], and let t3 = t4 = 0. Define

f(x) = ft1,t2(x) := h1(x − t1)h2(x − t2)h3(x).(54)

Then

E :=

∣∣∣∣∣E
(

4∏
i=1

∫
Ii+ti

f(xi)e−imxi dxi

)∣∣∣∣∣ ≤ C
α4

m2

(
max β,

1
τ

)2

.(55)

Proof. Denote β′ = maxβ, 1
τ . Define Si =

∫
Ii+ti

f(xi)e−imxi dxi. Trans-
late S1 and S2 to get

S1 =
∫

I1

h1(x1)h2(x1 + t1 − t2)h3(x1 + t1)e−im(x1+t1) dx1,

S2 =
∫

I2

h1(x2 + t2 − t1)h2(x2)h3(x2 + t2)e−im(x2+t2) dx2.

Changing the order of integration we get

E =
∣∣∣∣∫

I1

h1(x1)e−imx1 · · ·
∫

I3

h3(x3)e−imx3

∫
I4

h3(x4)e−imx4A dx1 · · · dx4

∣∣∣∣
(56)

where A, the central element, is defined by

A =
1
τ2

∫ τ

0

∫ τ

0
e−im(t1+t2)A(t1, t2) dt1 dt2
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and where

A(t1, t2) := h2(x1 + t1 − t2)h3(x1 + t1)h1(x2 + t2 − t1)h3(x2 + t2)

h1(x3 − t1)h2(x3 − t2)h1(x4 − t1)h2(x4 − t2).

The lemma will be proved once, we estimate A, which will be done by inte-
grating by parts over t1 and then over t2. We notice that A contains only
expressions of the type hj(x) where x ∈ Ii + [−τ, τ ] and i �⊂ j. Therefore,
using (53) we get

|A(t1, t2)| = 1,

∣∣∣∣∂A(t1, t2)
∂ti

∣∣∣∣ ≤ 5β,

∣∣∣∣∂2A(t1, t2)
∂t1∂t2

∣∣∣∣ ≤ 25β2.

Integrating by parts once, we get∣∣∣∣∫ τ

0
A(t1, t2)e−imt1 dt1

∣∣∣∣ ≤ 2
|m| +

5τβ

|m| ≤ 7τβ′

|m| .

Further,∣∣∣∣ ∂

∂t2

∫ τ

0
A(t1, t2)e−imt1 dt1

∣∣∣∣ =
∣∣∣∣∫ τ

0

∂A(t1, t2)
∂t2

e−imt1 dt1

∣∣∣∣
=

∣∣∣∣∣∂A(t1, t2)
∂t2

e−imt1

−im

∣∣∣τ
0
−

∫ τ

0

∂2A(t1, t2)
∂t2∂t1

e−imt1

−im

∣∣∣∣∣
≤ 10β

|m| +
25τβ2

|m| ≤ 35τβ
′2

|m| .

These two statements allow us to perform integration by parts over t2 getting

|A| =
1
τ2

∣∣∣∣∫ τ

0

∫ τ

0
A(t1, t2)e−im(t1+t2)

∣∣∣∣ ≤ 1
τ2

(
14τβ′

m2
+

35τ2β
′2

m2

)
≤ 49β

′2

m2
.

Plugging this into (56) and integrating using (52) we conclude the proof of the
lemma.

Continuing the proof of the theorem, for every 0 ≤ k < 2n denote

Ik =
∫

I(n,k)
fn(x)e−imx dx.

We note that (32) shows that

|Ik| ≤
∫

I(n,k)
|fn(x)| ≤ σneo(n) =: γ.(57)

In other words, γ = γ(n) is a bound for |Ik| independent of k satisfying

γ = σneo(n) = 2−nmo(1)(58)

(for the last equality, remember that σn = 2−nΦ(n), Φ(n) = n−o(1) (20) and
n ≈ log m).
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Lemma 10. Let 0 ≤ k1, k2, k3, k4 < 2n and let 1 ≤ r < n, and assume
that the I(n, ki) belong to at least three different intervals of rank r. Then

E(Ik1Ik2Ik3Ik4) ≤ γ4 Cω(n)2

m2τ3
r

.

Proof. Define q1, . . . , q4 using I(n, ki) ⊂ I(r, qi). We may assume without
loss of generality that the two qi-s which may be equal are q3 and q4. Let X
be the σ-field spanning all s-es except s(r, q1) and s(r, q2). We shall show

E(Ik1Ik2Ik3Ik4 |X ) ≤ γ4 Cω(n)2

m2τ3
r

and then integrating over X will give the result. We note that conditioning by
X is in effect fixing everything except the positions of I(r, q1) and I(r, q2) inside
I(r − 1, 	qi/2
). To be more precise, two copies of l also move with I(r, qi).
Therefore define Jj := I(r, qj)+[−τr, τr] (j = 1, 2), which is the part of fn that
moves when s(r, qj) changes (there are zones where fn ≡ −µ(r) which expand
and contract on the sides of Jj) and denote J3 = T \ (J1 ∪ J2). Assume for a
moment that s(r, q1) = s(r, q2) = 0 and define, using this assumption,

ηj := (gn + ω(r))|Jj
, j = 1, 2, 3, hj := eηj+iη̃j ,

Ii := I(n, ki), i = 1, 2, 3, 4.
(59)

Under the assumption s(r, q1) = s(r, q2) = 0 we clearly have fn = h1h2h3e
−ω(r)

and when we remove this assumption, the only change is a translation of h1

and h2. In other words, if we define ti = s(r, qi)τr then

fn(x) = h1(x − t1)h2(x − t2)h3(x)e−ω(r).

Examining (54) we see that |E(Ik1Ik2Ik3Ik4 |X )| = e−4ω(r)E where E is defined
by (55); where the Ii of (55) are the same as those of (59); and where the τ of
(55) is τr. To make (55) concrete we need to specify values for the α and β of
(52) and (53) and prove that they hold. We define

α = γeω(r), β = C
ω(n)

τ
3/2
r

.

Notice that β is obviously larger than 1/τr. With all these, Lemma 10 would
follow from Lemma 9 once we show (52) and (53). (52) is clear from the
definitions of α above, γ (57) and hi (59), so we need only show (53).

Examining the definitions of ηj and I(n, k) we see easily that ηj(x) = 0
for x ∈ Ii +[−2τr, 2τr] whenever i �⊂ j (we defined l± (26) with a slightly larger
“space” so that this fact would be true). This immediately shows |hi(x)| = 1.
Further, h′

i = hi(η′i + iη̃i
′) gives |h′

i| = |η̃i
′| and h′′

i = hi((η′i + iη̃′i)
2 + η′′i +

iη̃i
′′) gives |h′′

i | ≤ |η̃i
′|2 + |η̃i

′′|. As in (47), the derivatives of η̃i have the
representations

η̃i
′(x) =

∫
T

ηi(x − t)H ′(t) dt, η̃i
′′(x) =

∫
T

ηi(x − t)H ′′(t) dt
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where H is the Hilbert kernel. In general there are boundary terms (as in the
calculation in (47)), but, as remarked, in our case ηi is zero in [x − τr, x + τr]
(when x ∈ Ij + [−τr, τr]) so these terms disappear. We may therefore estimate

η̃i
′(x) ≤ ‖η‖2

∥∥H ′|T\[−τr,τr]

∥∥
2
, η̃i

′′(x) ≤ ‖η‖2

∥∥H ′′|T\[−τr,τr]

∥∥
2
.(60)

The second terms are a straightforward calculation from (12) and we get∥∥H ′|[−τr,τr]c
∥∥

2
≈ τ−3/2

r ,
∥∥H ′′|[−τr,τr]c

∥∥
2
≈ τ−5/2

r .

The first terms can be estimated easily: since the singularities in η (which
originally came from the x−1/3 factor in l) are in L2. Indeed, it is for this point
that we defined l using x−1/3. We easily get

‖η‖2 ≤ Cω(n)(61)

which gives us the estimate we need:

|h′
i| ≤ Cτ−3/2

r ω(n), |h′′
i | ≤ Cτ−3

r ω2(n).

With this the conditions of Lemma 9 are fulfilled and we are done.

Proof of Lemma 6. Define

X = Xm =
2n−1∑
k=0

∫
I(n,k)

fn(x)e−imx dx.

Now the difference f̂n(m) − X is exactly ̂fn1T\Kn
(m). The functions fn1T\Kn

are uniformly C1 so this difference converges to zero. To see this last claim,
note that (43) and (49) show that g′n+i (g̃n)′ has a bound of C/d(x, Kn)2 while
(41) and (42) show that fn ≤ Cd(x, Kn)10 (actually fn converges to zero near
Kn superpolynomially uniformly).

Therefore we want to bound X, and we shall estimate EX4. Let

E(k1, k2, k3, k4) := E
∏

Iki
;

let r(k1, . . . , k4) be the minimal r such that the I(n, ki)-s are contained in at
least 3 distinct intervals of rank r. A simple calculation shows

#{(k1, . . . , k4) : r(k1, . . . , k4) = r} ≈ 24n−2r.

If τr is too small then the estimate of the lemma is useless and it would
be better to estimate |E(k1, . . . , k4)| ≤ γ4. Let R be some number. Then for
large r we have the estimate

E1 :=
∑

r(k1,...,k4)≥R

E(k1, . . . , k4) ≤ Cγ424n−2R (58)
= mo(1)2−2R.(62)
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For small r we use the lemma to get a better estimate. Examine one such
k1, . . . , k4 and let r = r(k1, . . . , k4). Lemma 10 gives

E(k1, . . . , k4) ≤ γ4 Cω2(n)
m2τ3

r

(∗)
=

γ4

m2−o(1)τ3
r

where (∗) comes from the regularity condition ω(n) = eo(n) and n ≈ log m.
Therefore

E2 :=
∑

r(k1,...,k4)<R

E(k1, . . . , k4) ≤ γ424nm−2+o(1)
R∑

r=1

2−2rτ−3
r(63)

(24,58)
= m−2+o(1)

R∑
r=1

2r+o(r) = m−2+o(1)2R+o(R).

Taking R =
⌊

2
3 log2 m

⌋
and summing (62) and (63) we get

EX4 ≤ m−4/3+o(1).(64)

This gives that

E
∑
m

X4
m ≤

∑
EX4

m < ∞.

In particular, with probability 1, Xm → 0. As remarked above, this shows that
f̂n(m) → 0 and hence F̂ (m) → 0 which concludes Lemma 6 and the theorem.

3.10. Remarks. 1. It is clear that if f ∈ PLA then the associated analytic
function F defined by (2), (3) has the estimate

F (z) = o

(
1

1 − |z|

)
(65)

simply because F̂ (n) → 0. It turns out that in some vague sense, this inequality
is the “calculationary essence” of PLA \H2. In other words, if you have a
singular distribution whose analytic part F satisfies (65) and its boundary
value is in L2 then you are already quite close to constructing a nonclassic PLA
function. Note that (65) is enough to prove uniqueness (see Theorem 2′ below)
and the additional information F̂ (n) → 0 does not help. This ideology also
stands behind the proof above. To understand why, let K be a nonprobabilistic
Cantor set with the same thickness; namely at step n the total length of the
2n intervals is Φ(n). Let G be a harmonic function constructed similarly;
i.e. “hang” copies of −x−1/3 suitably dilated and shifted from all intervals
contiguous to K and define F = eG+iG̃. Then a much simpler calculation
shows that F satisfies (65), and even the stronger

F (z) =
(

1
1 − |z|

)o(1)

.(66)
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This implies

2n+1∑
k=2n

|F̂ (k)|2 = o(2n)

so that “in average” the coefficients tend to zero, with no need for probability
in the construction. Thus the probabilistic skewing introduced above “smears”
the spectrum of F uniformly and allows us to conclude the stronger F̂ (m) → 0.

Question. Is the nonprobabilistic construction (e.g. taking all s(n, k) to
be 0) in PLA?

The use of stochastic perturbations of the time domain to smooth singu-
larities in the spectrum is not new. One may find examples of such techniques
in [K85], notably the use of Brownian images in Chapter 17, and in [KO98]. A
reader fluent in these techniques would probably assume it is possible to sim-
plify the proof of Lemma 6 significantly along the following rough lines: find
some event X that would separate Ik1 from the rest of the Iki

’s making them
independent, perhaps similar to the X actually used. Now calculate E(Ik|X )
using one simple integration by parts. Next multiply E(Iki

|X ) out, and inte-
grate over X . Unfortunately, it seems that no proof can be constructed this
way. The problem is that, while g has a local structure and would be amenable
to such a handling, g̃ does not, and any change to one s(n, k) affects the values
of g̃ globally.

2. The regularity condition ω(n) = eo(log n) can be relaxed somewhat, but
it is not clear whether it can be removed altogether. For example, there is an
inherent difficulty in generalizing Lemma 8 without this condition.

3. It is also of interest to ask how fast does F̂ (m) → 0, or in other words
how much do we pay in {c(n)}n>0 for the quick decrease of the {c(n)}n<0. Us-
ing Chebyshev’s inequality with (64) it is easy to see that |F̂ (m)| ≤ m−1/12+o(1).
This, however, can be improved significantly. Indeed, one may change the defi-
nition of l, (25) to have a singularity of type x−ε and then replace (60) with an
Lp − Lq estimate and get τ2+ε

r in the formulation of Lemma 10, which would
end up as Xm ≤ m−1/4+ε almost surely. Further, it is possible to use higher
moment estimates. To estimate the 2kth moment, use a generalized version of
Lemmas 9 and 10 for k moving intervals and k stationary ones to get an esti-
mate of m−kτk+ε

r and the final outcome would be Xm ≤ m−1/2+1/2k+ε almost
surely. Thus in effect we may construct a function F satisfying F̂ ∈ l2+ε for
all ε > 0, almost surely.

4. It is possible to characterize precisely the size of exceptional sets for
the “nonclassic” part of PLA∩L2. Namely, denote by Λ the (generalized)
Hausdorff measure generated by the function t �→ t log 1/t. Then the following
is true
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Theorem. (i) There exists a function f ∈ L2 \H2 which admits a decom-
position (3) converging everywhere outside of some compact K of finite
Λ-measure.

(ii) The result fails if one replaces the condition Λ(K) < ∞ with Λ(K) = 0
even if K is not required to be compact.

Part (i) can be proved by the construction of the section, with a nonnegli-
gible simplification since we do not watch for smoothness. Part (ii) follows eas-
ily from Phragmén-Lindelöf-like theorems for analytic functions of slow growth
in D. See [B92], [D77].

Note that in the symmetric settings, the corresponding exceptional sets (so
called M -sets) could have dimension zero [B64], [KS94], [KL87] and moreover,
may be “thin” with respect to any (generalized) Hausdorff measure [I68].

5. We also have some structural results about the set PLA∩C. Namely:

Theorem. PLA∩C is the first Baire category and has zero Wiener mea-
sure.

Theorem. PLA is dense in C (in sharp contrast to H2).

We intend to publish proofs of these three results elsewhere.1

4. Uniqueness

4.1. The most natural settings for the statement of the uniqueness result
is that of boundary behavior of analytic functions. Let us therefore restate
Theorem 2 in a stronger form

Theorem 2′. Let F be an analytic function on D satisfying

F (z) = O

(
1

(1 − |z|)M

)
for some M.(67)

Assume that F has nontangential boundary limit almost everywhere and that

F (ζ) = f(ζ) :=
−1∑

n=−∞
c(n)ζn a.e. on ∂D(68)

and assume the c(n) satisfy (8) with some ω : R+ → R+, ω(t)/t increasing and∑ 1
ω(n) < ∞. Then F and f are identically zero.

To see that Theorem 2′ generalizes Theorem 2 define F (z) by (2) and note
that (65) is stronger than (67). And as usual, Abel’s theorem shows that F

has nontangential boundary limit a.e.
In this section the notation C and c will be allowed to depend on the

function F — here we consider F as given and fixed. By m we denote the arc

1The last two results are to appear at Bull. London Math. Soc.
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length on the circle, normalized so that m∂D = 1. For θ ∈ ∂D we denote by
I(θ, ε) an arc centered around θ with mI(θ, ε) = ε.

For a compact subset E of ∂D we shall define the Privalov domain over
E, P(E), to be a subset of D created by removing, for every arc I from the
complement of E, a disk DI orthogonal to D at the end points of I. If I is
larger than a half circle, remove D\DI instead of DI so that in both cases you
remove the component containing I (this definition is slightly different from
the standard one). The following is well known:

Lemma 11. Let F be an analytic function on D with almost everywhere
nontangential boundary values, and let δ > 0. Then there exists a compact set
E ⊂ ∂D with mE > 1 − δ such that F is continuous on P(E).

4.2. The following lemma is simple but plays a crucial part in the proof.

Lemma 12. Let L be a function on some measure space with a probability
measure µ with A ≤ L ≤ B. Assume for some ε ∈ [0, 1],∫

L dµ = εB + (1 − ε)A.(69)

Let D ∈ ]A, B[. Then∫
max{L, D} dµ ≤ εB + (1 − ε)D.(70)

Proof. By considering L − D, we may assume without loss of generality
that D = 0. Assume by contradiction that∫

L+ > εB.

This shows that the support of the positive part of L has measure > ε so that
the support of the negative part must have measure < 1 − ε and therefore∫

L− > A(1 − ε), a contradiction to (69).

Lemma 13. Let E be compact in ∂D and let ε > 0. Let z ∈ P(E) with
|z| > 1 − ε and define ζ := z/|z| and l := (1 − |z|)/ε. Assume that

m(I(ζ, l) \ E) ≤ ε2l.(71)

Let D be the component of P(E) \ (1 − l)D containing z. Then the harmonic
measure of E has the estimate

Ω(z,D)(E) > 1 − C1ε.(72)

Here C1 is an absolute constant. Similarly all constants in the proof of
the lemma, both explicit and implicit in ≈ notations are absolute.
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Proof. Without loss of generality, assume ε < 1
4 . For any arc I which is

a component of ∂D \ E let DI be the Privalov disk as in the definition of a
Privalov domain. Let B be a Brownian motion starting from z. Let T be the
stopping time of B on ∂D and TI be the stopping time of B on DI .

We start with an estimate of p := Ω(z, D\DI)(∂DI). We need to consider
two cases:

(i) If I is “far” from z we use p ≤ C(1 − |z|)/d(z, I).

(ii) If I is “close” to z we use p ≤ CmI/(1 − |z|).
Both follow from the conformal invariance of the harmonic measure [B95, The-
orem V.1.2] which gives an explicit formula for Ω(z, D \ DI) and (i) and (ii)
with a simple calculation.

Let J be T \ I(ζ, l/2), and let TJ be the hitting time of J . Then (i) shows
that Ω(z, D \ DJ)(∂DJ) ≤ Cε and hence

P(TJ < T ) ≤ Cε.

For any I ⊂ J we have DI ⊂ DJ so that TI > TJ . Now,

P
(

inf
I⊂J

TI < T

)
≤ Cε.(73)

Next, if I ⊂ I(ζ, l) we use (ii) above and (71) to get

P
(

inf
I⊂I(ζ,l)

TI < T

)
≤

∑
I⊂I(ζ,l)

P(TI < T )
(ii)

≤ C
∑

I⊂I(ζ,l)

mI

1 − |z|
(71)

≤ Cε.(74)

The assumption ε ≤ 1
4 together with (71) shows that any arc I in the com-

plement of E is either a subset of I(ζ, l) or of J . Hence the lemma is almost
finished. We still have to deal with {|z| = 1 − l}, which is easy: define T ∗ to
be the stopping time of B on the circle {|z| = 1 − l}. Let A be the annulus
{1 − l ≤ |z| ≤ 1}. The harmonic measure Ω(z,A)({|z| = 1 − l}) can be calcu-
lated explicitly from the fact that the solution h of Dirichlet’s problem on A
with boundary conditions 1 on {|z| = 1− l} and 0 on {|z| = 1} has the explicit
form

h(w) =
log |w|

log(1 − l)
.(75)

Since Ω(z,A)({|z| = 1 − l}) (14)
= h(z) ≤ Cε,

P(T ∗ < T ) ≤ Cε

and this together with (73) and (74) gives

P
(

min
{

inf
I

TI , T
∗
}

< T

)
≤ Cε.

This is equivalent to (72) and the lemma is proved.
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4.3. Proof of Theorem 2′. Without loss of generality we may assume the
log in (8) is to base 2. Also, we may assume without loss of generality that
ω(n) ≤ n2, since otherwise just take ω′(n) := min{ω(n), n2}. For n ≥ 0 denote
the Taylor coefficients of F by c(n):

c(n) := F̂ (n), n ≥ 0

(remember that for n < 0, c(n) are defined by (68)).
Next, define for k ∈ N,

fk(z) :=
∞∑

n=−2k

c(n)zn, z ∈ D, lk(z) := log |fk(z)|, rk := 1 − 4−k.

A simple calculation shows that

|fk(z) − F (z)| ≤ C ∀|z| ≥ 1 − 2−k.(76)

Hence, from (67) we get

F (z) = O

(
1

(1 − |z|)M

)
⇒ fk = O

(
1

(1 − |z|)M

)
uniformly in k(77)

⇒ lk(z) ≤ C2k ∀z, 1 − 2−k ≤ |z| ≤ 1 − 8−k.

Define Ak := −ω(k)/2.

Lemma 14. For every δ > 0 there exists a K = K(δ) such that

m{θ : lK(θrK) > AK} < δ.

Proof. Use Lemma 11 to find a compact S ⊂ ∂D of measure > 1 − δ/2
satisfying the fact that F is continuous on P(S). Let S′ ⊂ S be a compact set
of measure > 1 − δ such that

lim
η→0

m(S ∩ I(θ, η))
η

= 1 uniformly in θ ∈ S′.(78)

Our purpose is to use Lemma 13 with ε = 1/4C1. Therefore, define η0 by
the condition

m(S ∩ I(θ, η))
η

≥ 1 − ε2 ∀θ ∈ S′,∀η < η0.

For any k and any z = θrk, θ ∈ S′, let A = A(k, θ) be the component of the
set P(S) \ (1− 4−k/ε)D containing z. Examine the harmonic measure Ω of A.
Lemma 13 gives, for all k sufficiently large such that 4−k < η0ε,

Ω(z,A)(S ∩ ∂A) ≥ 3
4
.(79)

Now, if k is sufficiently large so as to satisfy in addition that 4−k/ε < 2−k

then we can use (76) and the continuity of F on P(S) to get

lk(z) ≤ C ∀k, ∀θ ∈ S′, ∀z ∈ ∂A(k, θ).(80)
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(80) will be used on ∂A \ S. On ∂A ∩ S we write

|fk(θ)| ≤
∑

n<−2k

|c(n)| ≤ C
∑

n<−2k

e−ω(log |n|) ≤ C
∞∑

j=k

2je−ω(j) ≤ Ce−(1−o(1))ω(k)

(81)

(in the last inequality we used the fact that ω(n)/n is increasing to infinity,
due to (7)). Hence if k is sufficiently large we get

lk(θ) ≤ −3
4
ω(k) + C ∀θ ∈ S.(82)

Now l is the logarithm of an analytic function and is therefore subharmonic.
This allows us to use (15) and from (79), (80) and (82) we get

lk(z) ≤ − 9
16

ω(k) + C.

With K sufficiently large to satisfy all requirements so far, as well as ω(K)/16
> C, the lemma is proved.

4.4. Continuing the proof of the theorem, let δ > 0 be some arbitrary
number, and let z0 ∈ D satisfy |z0| = 1 −

√
δ. Let Pk := Ω(z0, rkD) (this is

just the Poisson kernel with appropriate parameters). Naturally, we assume
z0 ∈ rkD, so that everything below holds for k > log4 1/(1−|z0|). Our purpose
is to show that the integrals ∫

lk(z) dPk(z)

increase only in a precisely controlled manner. It turns out that this is difficult
to do directly, and we need to “regularize” before doing so. Define therefore

Ik :=
∫

[lk(z)]Ak
dPk(z)

where [f ]M := max(f, M). The proof will revolve around a comparison of
Ik+1 and Ik. Since the calculation is long, we shall perform it in two stages,
first moving the circle of integration inward but keeping the fk and only then
changing fk.

Lemma 15. With the notation above,∫
[lk+1(z)]Ak+1

dPk(z) ≤ Ik+1 + Ck22−k.

Proof. We wish to compare the harmonic measure on rk+1D to the one
on the annulus A := {1− 2−k−1 ≤ |z| ≤ rk+1}. The probability of a Brownian
motion starting from z, |z| = rk to hit

{
|z| = 1 − 2−k−1

}
before {|z| = rk+1}
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is ≤ C2−k (this follows from the explicit formula for the solution of Dirichlet’s
problem in an annulus (75)) , and therefore

‖Ω(z,A) − Ω(z, rk+1D)‖ ≤ C2−k ∀|z| = rk(83)

where the norm is the usual norm in the space of measures on D. We use this
with the subharmonic function ϕ(z) := [lk+1(z)]Ak+1

and get

ϕ(z)
(15)

≤
∫

ϕ dΩ(z,A)
(83)

≤
∫

ϕ dΩ(z, rk+1D) + C2−k max
∂A

|ϕ|(84)

(77)

≤
∫

ϕ dΩ(z, rk+1D) + C2−k(k + |Ak+1|)

≤
∫

ϕ dΩ(z, rk+1D) + C2−kk2.

This we integrate to get∫
[lk+1(z)]Ak+1

dPk(z)
(84)

≤
∫ ∫

[lk+1(x)]Ak+1
dΩ(z, rk+1D)(x) dPk(z) + C2−kk2

=
∫

[lk+1(z)]Ak+1
dPk+1(z) + C2−kk2.

The last equality is the well known semigroup property of the Poisson kernel.
In probabilistic terms, this is integration over conditional expectation.

Lemma 16. With the notation above,

Ik ≤
∫

[lk+1(z)]Ak
dPk(z) + Ce−cω(k).(85)

Proof. The difference between fk and fk+1 can be estimated as in (81)
(for |z| = rk) by

|fk(z) − fk+1(z)| ≤
−2k−1∑

n=−2k+1

|c(n)|rn
k ≤ C

∑
e−ω(log2 n) ≤ Ce−(1−o(1))ω(k).

Therefore, if |fk(z)| ≥ e−ω(k)/2 then |fk| ≤ |fk+1|(1 + Ce−ω(k)(1/2−o(1))) which
gives

lk(z) ≤ lk+1(z) + Ce−cω(k) ∀|z| = rk, lk(z) ≥ Ak

or in other words

[lk]Ak
≤ [lk+1]Ak

+ Ce−cω(k)

which immediately gives (85) and proves the lemma.
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The gap between the [lk+1]Ak+1
of Lemma 15 and the [lk+1]Ak

of Lemma
16 is bridged by Lemma 12. It will be convenient to reparametrize as follows:
define Bk = C2k so that by (77) we would have

Ak ≤ [lk]Ak
(z) ≤ Bk ∀|z| = rk−1.

Define ε′k by the relation∫
[lk(z)]Ak

dPk−1(z) = ε′kBk + (1 − ε′k)Ak.

Then Lemma 12 gives∫
[lk+1(z)]Ak

dPk(z) ≤ ε′k+1Bk+1 + (1 − ε′k+1)Ak.

Lemma 15 and then Lemma 16 now give

ε′kBk + (1 − ε′k)Ak =
∫

[lk(z)]Ak
dPk−1(z) ≤ Ik + Ck22−k(86)

≤ ε′k+1Bk+1 + (1 − ε′k+1)Ak + Ck22−k + Ce−cω(k)

so that

ε′k ≤ ε′k+1

(
1 +

C2

Bk − Ak

)
+

Ck22−k

Bk − Ak
≤ ε′k+1

(
1 +

C

ω(k)

)
+ Ck2−k.(87)

The same holds for the more natural quantity εk defined by∫
[lk(z)]Ak

dPk(z) = εkBk + (1 − εk)Ak.(88)

Indeed, (86) shows that

ε′k − Ck2−k ≤ εk ≤ ε′k+1

(
1 +

C

ω(k)

)
+ Ce−cω(k).

4.5. With this, the theorem is now easy. Lemma 14 combined with
the fact that |PK(z)| ≤ Cδ−1/2 for all z ∈ ∂(rKD) shows that for some K

sufficiently large∫
[lK(z)]AK

dPK(z) ≤ CK
√

δ − (1 − C
√

δ)
ω(K)

2

so that εK ≤ C
√

δ. Applying (87) repeatedly, we get that for all applicable k,
εk ≤ C

√
δ + Ck2−k (here is where we use the condition

∑ 1
ω(k) < ∞). Let k0

be the minimal applicable k, namely �log2 1/δ� + 1. In particular

εk0 ≤ C
√

δ.(89)
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We can now estimate lk0(z0) as in Lemma 15: define A := {1−2−k0 ≤ |z| ≤ rk0}
and get

lk0(z0) ≤
∫

lk0 dΩ(z0,A)
(83)

≤
∫

lk0 dPk0 + C2−k0 max
∂A

|lk0 |

(∗)
≤ εk0Bk0 + (1 − εk0)Ak0 + Ck2

02
−k0

(89)

≤ −cω(log2 1/δ),

where (∗) comes from the definition of εk, (88) for the left term and (77) and
ω(k) ≤ k2 for the right term. Therefore |fk0(z0)| ≤ e−cω(log2 1/δ). Since this
holds for all z0 with |z0| = 1−

√
δ we may estimate c(n) using Laurent’s formula

(we need to assume n ≥ −2k0 so assume n ≥ −1/δ) and get

|c(n)| ≤ (1 −
√

δ)−1−ne−cω(log2 1/δ).

Since this holds for all δ > 0, we get that c(n) = 0 for all n, and the theorem
is proved.
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analytic functions of slow growth, Indiana Univ. Math. J . 41 (1992), 465–481.

[Be89] A. Beurling, Quasi-analyticity, in The Collected Works of Arne Beurling , Vol. 1
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[M35] S. Mandelbrojt, Séries de Fourier et classes quasi-analytiques de fonctions,
Gauthier-Villiars, 1935.

[P85] N. B. Pogosyan, Coefficients of trigonometric null-series (Russian), Anal. Math. 11
(1985), 139–177.
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